- Grid List
Filter
Failure of Plastics an...
$270.00
{"id":11242218372,"title":"Failure of Plastics and Rubber Products. Causes, Effects and Case Studies Involving Degradation","handle":"978-1-85957-517-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.C. Wright \u003cbr\u003eISBN 978-1-85957-517-8 \u003cbr\u003e\u003cbr\u003ePages: 412, Figures: 139, Tables: 52\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics and rubbers together make up the most adaptable and varied class of materials available to product designers. They may be transparent or opaque, rigid or flexible, lightweight, insulating, and weatherproof. They are used in almost every industry, and in every part of the home. Applications range from the humble hot water bottle to the sheathing on a high voltage cable, and from a simple scrubbing brush to a tank for storing hydrochloric acid. Products may be disposable (e.g. packaging goods) or intended to last for decades, such as a buried sewage pipe. However, it is this very diversity which makes materials selection so difficult, and appropriate design so important. Indeed the one thing that all these particular products have in common is their presence in this book of failures! \u003cbr\u003eFailures due to degradation may result from exposure to the weather or an aggressive operating environment. Alternatively, they may be caused by the introduction of an external agent unforeseen by the product designer. They may be rapid or very slow, and they may result from a combination of factors. In this book Dr. Wright describes the following mechanisms of polymer degradation, and then illustrates each failure mechanism with a number of case studies: \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThermo-oxidation,\u003c\/li\u003e\n\u003cli\u003ePhoto-oxidation,\u003c\/li\u003e\n\u003cli\u003eDegradation due to ionizing radiation,\u003c\/li\u003e\n\u003cli\u003eChemical attack,\u003c\/li\u003e\n\u003cli\u003eEnvironmental stress cracking,\u003c\/li\u003e\n\u003cli\u003eOther miscellaneous effects, including treeing, electrochemical degradation and biodegradation.\u003c\/li\u003e\n\u003c\/ul\u003e\nMany of the case studies are based on Dr. Wright's own experiences whilst working at Rapra. In each case, he describes the circumstances of the failure and discusses both the consequences of the failure and\u003cbr\u003ethe lessons that may be learned from it. Most of the failed products are familiar to us all, and his style is both readable and informative. Colored photographs are included where available. \u003cbr\u003eThe book will be essential reading for designers, engineers, product specifiers and forensic engineers. Materials suppliers and processors will also benefit from the pragmatic analysis and advice it contains. It will also be of value to all students of polymer science and technology, providing an essential insight into the practical application of plastics and rubbers and the potential problems. Finally, it will be of interest to a much broader readership, including anyone who ever wondered why things break, and it should become a standard reference work in all technical libraries. \u003cbr\u003eThis book was written with the support of the UK Department of Trade and Industry. It is intended to raise awareness of the causes and consequences of polymer product failures, in order to reduce the future\u003cbr\u003eincidences of such failures, and their considerable costs to industry\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1 Failure Analysis - A Personal Perspective\u003c\/strong\u003e \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Identification of strategic weaknesses \u003cbr\u003e1.3 Identification of human and material weaknesses \u003cbr\u003e1.4 Identification of product testing weaknesses \u003cbr\u003e1.5 Priorities for future consideration\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003e2 Thermo-oxidation\u003c\/b\u003e \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 The influence of polymer chemistry \u003cbr\u003e2.3 The efficacy of stabilising additives \u003cbr\u003e2.4 Metal catalysis \u003cbr\u003e2.5 The influence of stress \u003cbr\u003e2.6 The oxidising medium \u003cbr\u003e2.7 Oxidation and stabilisation of polyvinyl chloride \u003cbr\u003e2.8 Case studies\u003c\/p\u003e\n\u003cli\u003e2.8.1 Low density polyethylene insulation covers\u003c\/li\u003e\n\u003cli\u003e2.8.2 Rubber expansion joints\u003c\/li\u003e\n\u003cli\u003e2.8.3 Vehicle tyres\u003c\/li\u003e\n\u003cli\u003e2.8.4 Flexible hose (example 1)\u003c\/li\u003e\n\u003cli\u003e2.8.5 Flexible connectors\u003c\/li\u003e\n\u003cli\u003e2.8.6 Lift pump diaphragms\u003c\/li\u003e\n\u003cli\u003e2.8.7 Hot water bottle\u003c\/li\u003e\n\u003cli\u003e2.8.8 Flexible hose (example 2)\u003c\/li\u003e\n\u003cli\u003e2.8.9 Polypropylene laminated steel sheet\u003c\/li\u003e\n\u003cli\u003e2.8.10 Acrylic bulkhead light covers\n\u003cp\u003e\u003cb\u003e3 Photo-oxidation\u003c\/b\u003e \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 The severity of exposure \u003cbr\u003e3.3 The influence of polymer chemistry \u003cbr\u003e3.4 Stabilisation \u003cbr\u003e3.5 Material and application examples \u003cbr\u003e3.6 Case studies\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003e3.6.1 Polyethylene irrigation pipe\u003c\/li\u003e\n\u003cli\u003e3.6.2 Polyvinyl chloride power line insulation\u003c\/li\u003e\n\u003cli\u003e3.6.3 Colour instability of pigmented polymers\u003c\/li\u003e\n\u003cli\u003e3.6.4 Low density polyethylene tube\u003c\/li\u003e\n\u003cli\u003e3.6.5 Acrylonitrile-butadiene-styrene pipework\u003c\/li\u003e\n\u003cli\u003e3.6.6 Crosslinked polyethylene (XLPE) pole terminated waveconal cable\u003c\/li\u003e\n\u003cli\u003e3.6.7 High impact polystyrene jug handle\u003c\/li\u003e\n\u003cli\u003e3.6.8 Artificial ski slope filaments\u003c\/li\u003e\n\u003cli\u003e3.6.9 Polyvinyl chloride shrouds\u003c\/li\u003e\n\u003cli\u003e3.6.10 Polypropylene starter units\u003c\/li\u003e\n\u003cli\u003e3.6.11 Polyvinyl chloride running rails\n\u003cp\u003e\u003cb\u003e4 Degradation Due to Ionising Radiation\u003c\/b\u003e \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Degradation mechanisms \u003cbr\u003e4.3 Radiation resistance of polymers \u003cbr\u003e4.4 Performance of specific materials \u003cbr\u003e4.5 Failure examples\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003e5 Chemical Attack\u003c\/b\u003e \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Solvation effects \u003cbr\u003e5.3 Oxidation \u003cbr\u003e5.4 Acid induced stress corrosion cracking \u003cbr\u003e5.5 Hydrolysis \u003cbr\u003e5.6 Case studies\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003e5.6.1 Polyvinylidene fluoride in dry chlorine\u003c\/li\u003e\n\u003cli\u003e5.6.2 Acrylonitrile-butadiene-styrene in hydrochloric acid\u003c\/li\u003e\n\u003cli\u003e5.6.3 Acetal in chlorinated water\u003c\/li\u003e\n\u003cli\u003e5.6.4 Stress corrosion cracking of acetal (1)\u003c\/li\u003e\n\u003cli\u003e5.6.5 Stress corrosion cracking of acetal (2)\u003c\/li\u003e\n\u003cli\u003e5.6.6 Thermoplastic elastomers in hot water\u003c\/li\u003e\n\u003cli\u003e5.6.7 Solvent attack: cables in ducts and contaminated soil\u003c\/li\u003e\n\u003cli\u003e5.6.8 Glass-reinforced plastic in sulphuric acid\u003c\/li\u003e\n\u003cli\u003e5.6.9 Corrosion cracking of composite insulators\u003c\/li\u003e\n\u003cli\u003e5.6.10 Acetal pipe fittings\u003c\/li\u003e\n\u003cli\u003e5.6.11 Polyurethane oil seals\u003c\/li\u003e\n\u003cli\u003e5.6.12 Degraded polycarbonate mouldings\u003c\/li\u003e\n\u003cli\u003e5.6.13 Glass-reinforced plastic in hydrochloric acid\u003c\/li\u003e\n\u003cli\u003e5.6.14 Polyvinyl chloride lined rinsing tank\n\u003cp\u003e\u003cb\u003e6 Environmental Stress Cracking\u003c\/b\u003e \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Crazing and cracking in air \u003cbr\u003e6.3 Crazing and cracking in active fluids \u003cbr\u003e6.4 Performance of specific materials \u003cbr\u003e6.5 Case studies\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003e6.5.1 Noryl fire extinguisher head\u003c\/li\u003e\n\u003cli\u003e6.5.2 High density polyethylene screw caps\u003c\/li\u003e\n\u003cli\u003e6.5.3 Crazing of an acrylic sight glass\u003c\/li\u003e\n\u003cli\u003e6.5.4 Polycarbonate instrument housing\u003c\/li\u003e\n\u003cli\u003e6.5.5 Nylon 6 fire hose valve\u003c\/li\u003e\n\u003cli\u003e6.5.6 Polyethylene agrochemical container\u003c\/li\u003e\n\u003cli\u003e6.5.7 Noryl electrical plugs\u003c\/li\u003e\n\u003cli\u003e6.5.8 Acrylonitrile-butadiene-styrene pipe fittings\u003c\/li\u003e\n\u003cli\u003e6.5.9 Motorised wheelchairs\u003c\/li\u003e\n\u003cli\u003e6.5.10 Pin hinged polystyrene mouldings\u003c\/li\u003e\n\u003cli\u003e6.5.11 Polyethylene wire insulation\u003c\/li\u003e\n\u003cli\u003e6.5.12 Polystyrene scrubbing brushes\u003c\/li\u003e\n\u003cli\u003e6.5.13 Blow moulded polyvinyl chloride bottles\u003c\/li\u003e\n\u003cli\u003e6.5.14 Polyvinyl chloride pressure pipe\u003c\/li\u003e\n\u003cli\u003e6.5.15 Fracture of an acrylic sight glass\u003c\/li\u003e\n\u003cli\u003e6.5.16 Rotationally moulded polyethylene wine coolers\u003c\/li\u003e\n\u003cli\u003e6.5.17 Polycarbonate mixing bowls and jugs\u003c\/li\u003e\n\u003cli\u003e6.5.18 Acrylonitrile-butadiene-styrene rotary switches\u003c\/li\u003e\n\u003cli\u003e6.5.19 Vacuum moulded sweets dispenser\u003c\/li\u003e\n\u003cli\u003e6.5.20 Acrylonitrile-butadiene-styrene pipe\u003c\/li\u003e\n\u003cli\u003e6.5.21 Polycarbonate filter bowls\u003c\/li\u003e\n\u003cli\u003e6.5.22 Noryl rotary switches\n\u003cp\u003e\u003cb\u003e7 Other Miscellaneous Effects\u003c\/b\u003e \u003cbr\u003e7.1 Electrical treeing and water treeing\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003e7.1.1 Introduction\u003c\/li\u003e\n\u003cli\u003e7.1.2 Minimising the risk of failure \u003cbr\u003e7.2 Electrochemical degradation \u003cbr\u003e7.3 Biodegradation\u003c\/li\u003e\n\u003cli\u003e7.3.1 Body fluids\u003c\/li\u003e\n\u003cli\u003e7.3.2 Micro-organisms \u003cbr\u003e7.4 Diffusion, permeation, and migration \u003cbr\u003e7.5 Physical ageing \u003cbr\u003e7.6 Case studies\u003c\/li\u003e\n\u003cli\u003e7.6.1 Water treeing failure of crosslinked polyethylene power cable insulation\u003c\/li\u003e\n\u003cli\u003e7.6.2 Loss of polyvinyl chloride plasticiser\u003c\/li\u003e\n\u003cli\u003e7.6.3 Marring in contact with polyvinyl chloride covered wiring\u003c\/li\u003e\n\u003cli\u003e7.6.4 Shrinkage of ethylene-propylene-diene hose\u003c\/li\u003e\n\u003cli\u003e7.6.5 Diffusion of chlorine through polyvinylidene fluoride\u003c\/li\u003e\n\u003cli\u003e7.6.6 Cracking of a Nylon 6 outsert moulding\u003c\/li\u003e\n\u003cli\u003e7.6.7 Nylon 66 drive coupling\u003c\/li\u003e\n\u003cli\u003e7.6.8 Blistering of a glass-reinforced plastic laminate\u003c\/li\u003e\n\u003cli\u003e7.6.9 Polysulphone filter bowl\u003c\/li\u003e\n\u003cli\u003e7.6.10 Polyvinyl chloride skylights\u003c\/li\u003e\n\u003cli\u003e7.6.11 Polypropylene scooter wheels\u003c\/li\u003e\n\u003cli\u003e7.6.12 Epoxy flooring\u003c\/li\u003e\n\u003cli\u003e7.6.13 Valve sleeves\n\u003cp\u003eAbbreviations and Acronyms \u003cbr\u003eIndex\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003c\/li\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDuring his 30 years with Rapra, until his recent retirement, Dr. Wright specialized in the failure of plastics materials and products, researching into critical issues of materials durability, such as creep, fatigue and environmental stress cracking. He published around 90 technical papers and 3 books and was involved in the diagnosis of some 5,000 product failures, making him a leading expert in this field.","published_at":"2017-06-22T21:13:36-04:00","created_at":"2017-06-22T21:13:36-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","acrylonitrile-butadiene-styrene","biodegradation","book","chemical attack","color","colour","cracking","crazing","crosslinked polyethylene","degradation","environmental stress cracking","filaments","high impact","insulation","ionising radiation","ionizing radiation","p-properties","photo-oxidation","physical ageing","pigment","pipe","polyethylene","polymer","polypropylene","polyvinyl chloride","radation","rails","rubbers","shrouds","thermo-oxidation","tube","XLPE"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378362116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Failure of Plastics and Rubber Products. Causes, Effects and Case Studies Involving Degradation","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-517-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-517-8.jpg?v=1499988183"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-517-8.jpg?v=1499988183","options":["Title"],"media":[{"alt":null,"id":354795159645,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-517-8.jpg?v=1499988183"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-517-8.jpg?v=1499988183","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.C. Wright \u003cbr\u003eISBN 978-1-85957-517-8 \u003cbr\u003e\u003cbr\u003ePages: 412, Figures: 139, Tables: 52\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics and rubbers together make up the most adaptable and varied class of materials available to product designers. They may be transparent or opaque, rigid or flexible, lightweight, insulating, and weatherproof. They are used in almost every industry, and in every part of the home. Applications range from the humble hot water bottle to the sheathing on a high voltage cable, and from a simple scrubbing brush to a tank for storing hydrochloric acid. Products may be disposable (e.g. packaging goods) or intended to last for decades, such as a buried sewage pipe. However, it is this very diversity which makes materials selection so difficult, and appropriate design so important. Indeed the one thing that all these particular products have in common is their presence in this book of failures! \u003cbr\u003eFailures due to degradation may result from exposure to the weather or an aggressive operating environment. Alternatively, they may be caused by the introduction of an external agent unforeseen by the product designer. They may be rapid or very slow, and they may result from a combination of factors. In this book Dr. Wright describes the following mechanisms of polymer degradation, and then illustrates each failure mechanism with a number of case studies: \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThermo-oxidation,\u003c\/li\u003e\n\u003cli\u003ePhoto-oxidation,\u003c\/li\u003e\n\u003cli\u003eDegradation due to ionizing radiation,\u003c\/li\u003e\n\u003cli\u003eChemical attack,\u003c\/li\u003e\n\u003cli\u003eEnvironmental stress cracking,\u003c\/li\u003e\n\u003cli\u003eOther miscellaneous effects, including treeing, electrochemical degradation and biodegradation.\u003c\/li\u003e\n\u003c\/ul\u003e\nMany of the case studies are based on Dr. Wright's own experiences whilst working at Rapra. In each case, he describes the circumstances of the failure and discusses both the consequences of the failure and\u003cbr\u003ethe lessons that may be learned from it. Most of the failed products are familiar to us all, and his style is both readable and informative. Colored photographs are included where available. \u003cbr\u003eThe book will be essential reading for designers, engineers, product specifiers and forensic engineers. Materials suppliers and processors will also benefit from the pragmatic analysis and advice it contains. It will also be of value to all students of polymer science and technology, providing an essential insight into the practical application of plastics and rubbers and the potential problems. Finally, it will be of interest to a much broader readership, including anyone who ever wondered why things break, and it should become a standard reference work in all technical libraries. \u003cbr\u003eThis book was written with the support of the UK Department of Trade and Industry. It is intended to raise awareness of the causes and consequences of polymer product failures, in order to reduce the future\u003cbr\u003eincidences of such failures, and their considerable costs to industry\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1 Failure Analysis - A Personal Perspective\u003c\/strong\u003e \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Identification of strategic weaknesses \u003cbr\u003e1.3 Identification of human and material weaknesses \u003cbr\u003e1.4 Identification of product testing weaknesses \u003cbr\u003e1.5 Priorities for future consideration\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003e2 Thermo-oxidation\u003c\/b\u003e \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 The influence of polymer chemistry \u003cbr\u003e2.3 The efficacy of stabilising additives \u003cbr\u003e2.4 Metal catalysis \u003cbr\u003e2.5 The influence of stress \u003cbr\u003e2.6 The oxidising medium \u003cbr\u003e2.7 Oxidation and stabilisation of polyvinyl chloride \u003cbr\u003e2.8 Case studies\u003c\/p\u003e\n\u003cli\u003e2.8.1 Low density polyethylene insulation covers\u003c\/li\u003e\n\u003cli\u003e2.8.2 Rubber expansion joints\u003c\/li\u003e\n\u003cli\u003e2.8.3 Vehicle tyres\u003c\/li\u003e\n\u003cli\u003e2.8.4 Flexible hose (example 1)\u003c\/li\u003e\n\u003cli\u003e2.8.5 Flexible connectors\u003c\/li\u003e\n\u003cli\u003e2.8.6 Lift pump diaphragms\u003c\/li\u003e\n\u003cli\u003e2.8.7 Hot water bottle\u003c\/li\u003e\n\u003cli\u003e2.8.8 Flexible hose (example 2)\u003c\/li\u003e\n\u003cli\u003e2.8.9 Polypropylene laminated steel sheet\u003c\/li\u003e\n\u003cli\u003e2.8.10 Acrylic bulkhead light covers\n\u003cp\u003e\u003cb\u003e3 Photo-oxidation\u003c\/b\u003e \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 The severity of exposure \u003cbr\u003e3.3 The influence of polymer chemistry \u003cbr\u003e3.4 Stabilisation \u003cbr\u003e3.5 Material and application examples \u003cbr\u003e3.6 Case studies\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003e3.6.1 Polyethylene irrigation pipe\u003c\/li\u003e\n\u003cli\u003e3.6.2 Polyvinyl chloride power line insulation\u003c\/li\u003e\n\u003cli\u003e3.6.3 Colour instability of pigmented polymers\u003c\/li\u003e\n\u003cli\u003e3.6.4 Low density polyethylene tube\u003c\/li\u003e\n\u003cli\u003e3.6.5 Acrylonitrile-butadiene-styrene pipework\u003c\/li\u003e\n\u003cli\u003e3.6.6 Crosslinked polyethylene (XLPE) pole terminated waveconal cable\u003c\/li\u003e\n\u003cli\u003e3.6.7 High impact polystyrene jug handle\u003c\/li\u003e\n\u003cli\u003e3.6.8 Artificial ski slope filaments\u003c\/li\u003e\n\u003cli\u003e3.6.9 Polyvinyl chloride shrouds\u003c\/li\u003e\n\u003cli\u003e3.6.10 Polypropylene starter units\u003c\/li\u003e\n\u003cli\u003e3.6.11 Polyvinyl chloride running rails\n\u003cp\u003e\u003cb\u003e4 Degradation Due to Ionising Radiation\u003c\/b\u003e \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Degradation mechanisms \u003cbr\u003e4.3 Radiation resistance of polymers \u003cbr\u003e4.4 Performance of specific materials \u003cbr\u003e4.5 Failure examples\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003e5 Chemical Attack\u003c\/b\u003e \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Solvation effects \u003cbr\u003e5.3 Oxidation \u003cbr\u003e5.4 Acid induced stress corrosion cracking \u003cbr\u003e5.5 Hydrolysis \u003cbr\u003e5.6 Case studies\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003e5.6.1 Polyvinylidene fluoride in dry chlorine\u003c\/li\u003e\n\u003cli\u003e5.6.2 Acrylonitrile-butadiene-styrene in hydrochloric acid\u003c\/li\u003e\n\u003cli\u003e5.6.3 Acetal in chlorinated water\u003c\/li\u003e\n\u003cli\u003e5.6.4 Stress corrosion cracking of acetal (1)\u003c\/li\u003e\n\u003cli\u003e5.6.5 Stress corrosion cracking of acetal (2)\u003c\/li\u003e\n\u003cli\u003e5.6.6 Thermoplastic elastomers in hot water\u003c\/li\u003e\n\u003cli\u003e5.6.7 Solvent attack: cables in ducts and contaminated soil\u003c\/li\u003e\n\u003cli\u003e5.6.8 Glass-reinforced plastic in sulphuric acid\u003c\/li\u003e\n\u003cli\u003e5.6.9 Corrosion cracking of composite insulators\u003c\/li\u003e\n\u003cli\u003e5.6.10 Acetal pipe fittings\u003c\/li\u003e\n\u003cli\u003e5.6.11 Polyurethane oil seals\u003c\/li\u003e\n\u003cli\u003e5.6.12 Degraded polycarbonate mouldings\u003c\/li\u003e\n\u003cli\u003e5.6.13 Glass-reinforced plastic in hydrochloric acid\u003c\/li\u003e\n\u003cli\u003e5.6.14 Polyvinyl chloride lined rinsing tank\n\u003cp\u003e\u003cb\u003e6 Environmental Stress Cracking\u003c\/b\u003e \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Crazing and cracking in air \u003cbr\u003e6.3 Crazing and cracking in active fluids \u003cbr\u003e6.4 Performance of specific materials \u003cbr\u003e6.5 Case studies\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003e6.5.1 Noryl fire extinguisher head\u003c\/li\u003e\n\u003cli\u003e6.5.2 High density polyethylene screw caps\u003c\/li\u003e\n\u003cli\u003e6.5.3 Crazing of an acrylic sight glass\u003c\/li\u003e\n\u003cli\u003e6.5.4 Polycarbonate instrument housing\u003c\/li\u003e\n\u003cli\u003e6.5.5 Nylon 6 fire hose valve\u003c\/li\u003e\n\u003cli\u003e6.5.6 Polyethylene agrochemical container\u003c\/li\u003e\n\u003cli\u003e6.5.7 Noryl electrical plugs\u003c\/li\u003e\n\u003cli\u003e6.5.8 Acrylonitrile-butadiene-styrene pipe fittings\u003c\/li\u003e\n\u003cli\u003e6.5.9 Motorised wheelchairs\u003c\/li\u003e\n\u003cli\u003e6.5.10 Pin hinged polystyrene mouldings\u003c\/li\u003e\n\u003cli\u003e6.5.11 Polyethylene wire insulation\u003c\/li\u003e\n\u003cli\u003e6.5.12 Polystyrene scrubbing brushes\u003c\/li\u003e\n\u003cli\u003e6.5.13 Blow moulded polyvinyl chloride bottles\u003c\/li\u003e\n\u003cli\u003e6.5.14 Polyvinyl chloride pressure pipe\u003c\/li\u003e\n\u003cli\u003e6.5.15 Fracture of an acrylic sight glass\u003c\/li\u003e\n\u003cli\u003e6.5.16 Rotationally moulded polyethylene wine coolers\u003c\/li\u003e\n\u003cli\u003e6.5.17 Polycarbonate mixing bowls and jugs\u003c\/li\u003e\n\u003cli\u003e6.5.18 Acrylonitrile-butadiene-styrene rotary switches\u003c\/li\u003e\n\u003cli\u003e6.5.19 Vacuum moulded sweets dispenser\u003c\/li\u003e\n\u003cli\u003e6.5.20 Acrylonitrile-butadiene-styrene pipe\u003c\/li\u003e\n\u003cli\u003e6.5.21 Polycarbonate filter bowls\u003c\/li\u003e\n\u003cli\u003e6.5.22 Noryl rotary switches\n\u003cp\u003e\u003cb\u003e7 Other Miscellaneous Effects\u003c\/b\u003e \u003cbr\u003e7.1 Electrical treeing and water treeing\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003e7.1.1 Introduction\u003c\/li\u003e\n\u003cli\u003e7.1.2 Minimising the risk of failure \u003cbr\u003e7.2 Electrochemical degradation \u003cbr\u003e7.3 Biodegradation\u003c\/li\u003e\n\u003cli\u003e7.3.1 Body fluids\u003c\/li\u003e\n\u003cli\u003e7.3.2 Micro-organisms \u003cbr\u003e7.4 Diffusion, permeation, and migration \u003cbr\u003e7.5 Physical ageing \u003cbr\u003e7.6 Case studies\u003c\/li\u003e\n\u003cli\u003e7.6.1 Water treeing failure of crosslinked polyethylene power cable insulation\u003c\/li\u003e\n\u003cli\u003e7.6.2 Loss of polyvinyl chloride plasticiser\u003c\/li\u003e\n\u003cli\u003e7.6.3 Marring in contact with polyvinyl chloride covered wiring\u003c\/li\u003e\n\u003cli\u003e7.6.4 Shrinkage of ethylene-propylene-diene hose\u003c\/li\u003e\n\u003cli\u003e7.6.5 Diffusion of chlorine through polyvinylidene fluoride\u003c\/li\u003e\n\u003cli\u003e7.6.6 Cracking of a Nylon 6 outsert moulding\u003c\/li\u003e\n\u003cli\u003e7.6.7 Nylon 66 drive coupling\u003c\/li\u003e\n\u003cli\u003e7.6.8 Blistering of a glass-reinforced plastic laminate\u003c\/li\u003e\n\u003cli\u003e7.6.9 Polysulphone filter bowl\u003c\/li\u003e\n\u003cli\u003e7.6.10 Polyvinyl chloride skylights\u003c\/li\u003e\n\u003cli\u003e7.6.11 Polypropylene scooter wheels\u003c\/li\u003e\n\u003cli\u003e7.6.12 Epoxy flooring\u003c\/li\u003e\n\u003cli\u003e7.6.13 Valve sleeves\n\u003cp\u003eAbbreviations and Acronyms \u003cbr\u003eIndex\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003c\/li\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDuring his 30 years with Rapra, until his recent retirement, Dr. Wright specialized in the failure of plastics materials and products, researching into critical issues of materials durability, such as creep, fatigue and environmental stress cracking. He published around 90 technical papers and 3 books and was involved in the diagnosis of some 5,000 product failures, making him a leading expert in this field."}
Filled PolymersScience...
$170.00
{"id":11242222596,"title":"Filled PolymersScience and Industrial Applications","handle":"978-1-4398004-2-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jean L. Leblanc \u003cbr\u003eISBN 978-1-4398004-2-3 \u003cbr\u003e\u003cbr\u003ePages: 444 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe idea of mixing single available materials into compounds to fulfill a set of desired properties is likely as old as mankind. Highly sophisticated polymer applications would simply be impossible without the enhancement of some of their properties through the addition of fine mineral particles or synthetic or natural short fibers. Many filled polymers, either thermoplastics or vulcanizable rubbers, have different chemical natures but exhibit common singular properties. An understanding of why they do so is likely to be the source of promising scientific and engineering developments—and Filled Polymers: Science and Industrial Applications thoroughly explores the question. \u003cbr\u003e\u003cbr\u003eBased on the author’s 30 years of research, engineering activities, and teaching in the field of complex polymer systems, this comprehensive survey of polymer applications illustrates their commonalities and the scientific background behind their many industrial uses. The text analyzes theoretical considerations which explain the origin of the singular properties of filled polymers, and it includes appendices which feature a selection of calculation worksheets that offer numerical illustrations of several of the theoretical considerations discussed in the book.\u003cbr\u003e\u003cbr\u003eOur understanding of polymer reinforcement remains incomplete because any progress in the field is strongly connected with either the availability of appropriate experimental and observation techniques or theoretical views about polymer-filler interactions, or both. This book presents tools—such as equations tested with familiar calculation software—to clarify these concepts and take understanding to the highest possible level.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eIntroduction\u003c\/strong\u003e\u003cstrong\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eScope of the Book\u003cbr\u003e\u003cbr\u003eFilled Polymers vs. Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTypes of Fillers\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eConcept of Reinforcement\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eTypical Fillers for Polymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCarbon Black\u003cbr\u003e\u003cbr\u003eWhite Fillers\u003cbr\u003e\u003cbr\u003eShort Synthetic Fibers\u003cbr\u003e\u003cbr\u003eShort Fibers of Natural Origin\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCarbon Black Data\u003cbr\u003e\u003cbr\u003eMedalia’s Floc Simulation for Carbon Black Aggregate\u003cbr\u003e\u003cbr\u003eMedalia’s Aggregate Morphology Approach\u003cbr\u003e\u003cbr\u003eCarbon Black: Number of Particles\/Aggregate\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and Carbon Black\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eElastomers and Carbon Black (CB)\u003cbr\u003e\u003cbr\u003eThermoplastics and Carbon Black \u003cbr\u003e\u003cbr\u003eAppendix\u003cbr\u003e\u003cbr\u003eNetwork Junction Theory\u003cbr\u003e\u003cbr\u003eKraus Deagglomeration–Reagglomeration Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003eUlmer Modification of the Kraus Model for Dynamic Strain Softening (DSS): Fitting the Model\u003cbr\u003e\u003cbr\u003eAggregates Flocculation\/Entanglement\u003cbr\u003e\u003cbr\u003eModel (Cluster–Cluster Aggregation (CCA) Model, Klüppel et al.)\u003cbr\u003e\u003cbr\u003eLion et al. Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003eMaier and Göritz Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and White Fillers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eElastomers and White Fillers\u003cbr\u003e\u003cbr\u003eThermoplastics and White Fillers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eAdsorption Kinetics of Silica on Silicone Polymers\u003cbr\u003e\u003cbr\u003eModeling the Shear Viscosity Function of Filled\u003cbr\u003e\u003cbr\u003ePolymer Systems\u003cbr\u003e\u003cbr\u003eModels for the Rheology of Suspensions of Rigid Particles,\u003cbr\u003e\u003cbr\u003eInvolving the Maximum Packing Fraction Φm\u003cbr\u003e\u003cbr\u003eAssessing the Capabilities of Model for the Shear\u003cbr\u003e\u003cbr\u003eViscosity Function of Filled Polymers\u003cbr\u003e\u003cbr\u003eExpanding the Krieger–Dougherty Relationship\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and Short Fibers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eGeneralities\u003cbr\u003e\u003cbr\u003eMicromechanic Models for Short Fibers-Filled Polymer\u003cbr\u003e\u003cbr\u003eComposites\u003cbr\u003e\u003cbr\u003eThermoplastics and Short Glass Fibers\u003cbr\u003e\u003cbr\u003eTypical Rheological Aspect of Short Fiber-Filled\u003cbr\u003e\u003cbr\u003eThermoplastic Melts\u003cbr\u003e\u003cbr\u003eThermoplastics and Short Fibers of Natural Origin\u003cbr\u003e\u003cbr\u003eElastomers and Short Fibers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eShort Fiber-Reinforced Composites: Minimum Fiber Aspect Ratio\u003cbr\u003e\u003cbr\u003eHalpin–Tsai Equations for Short Fibers Filled Systems: Numerical Illustration\u003cbr\u003e\u003cbr\u003eNielsen Modification of Halpin–Tsai Equations with Respect to the Maximum Packing Fraction: Numerical Illustration\u003cbr\u003e\u003cbr\u003eMori–Tanaka’s Average Stress Concept: Tandon–Weng\u003cbr\u003e\u003cbr\u003eExpressions for Randomly Distributed Ellipsoidal (Fiber-Like) Particles: Numerical Illustration\u003cbr\u003e\u003cbr\u003eShear Lag Model: Numerical illustration\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eIndex\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJean L. Leblanc is the director of the Polymer Rheology and Processing Laboratory at the University P \u0026amp; M Curie in Paris. He has published more than 120 scientific papers and two books, contributed chapters in several collective books, made numerous presentations in international conferences, and has given seminars in Brazil, Canada, Thailand, the USA, and several European countries.","published_at":"2017-06-22T21:13:50-04:00","created_at":"2017-06-22T21:13:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","book","fillers","p-properties","polymer","polymer-fillers interactions","properties","reinforcement"],"price":17000,"price_min":17000,"price_max":17000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378376388,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Filled PolymersScience and Industrial Applications","public_title":null,"options":["Default Title"],"price":17000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4398004-2-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398004-2-3.jpg?v=1499385887"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398004-2-3.jpg?v=1499385887","options":["Title"],"media":[{"alt":null,"id":354805776477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398004-2-3.jpg?v=1499385887"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398004-2-3.jpg?v=1499385887","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jean L. Leblanc \u003cbr\u003eISBN 978-1-4398004-2-3 \u003cbr\u003e\u003cbr\u003ePages: 444 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe idea of mixing single available materials into compounds to fulfill a set of desired properties is likely as old as mankind. Highly sophisticated polymer applications would simply be impossible without the enhancement of some of their properties through the addition of fine mineral particles or synthetic or natural short fibers. Many filled polymers, either thermoplastics or vulcanizable rubbers, have different chemical natures but exhibit common singular properties. An understanding of why they do so is likely to be the source of promising scientific and engineering developments—and Filled Polymers: Science and Industrial Applications thoroughly explores the question. \u003cbr\u003e\u003cbr\u003eBased on the author’s 30 years of research, engineering activities, and teaching in the field of complex polymer systems, this comprehensive survey of polymer applications illustrates their commonalities and the scientific background behind their many industrial uses. The text analyzes theoretical considerations which explain the origin of the singular properties of filled polymers, and it includes appendices which feature a selection of calculation worksheets that offer numerical illustrations of several of the theoretical considerations discussed in the book.\u003cbr\u003e\u003cbr\u003eOur understanding of polymer reinforcement remains incomplete because any progress in the field is strongly connected with either the availability of appropriate experimental and observation techniques or theoretical views about polymer-filler interactions, or both. This book presents tools—such as equations tested with familiar calculation software—to clarify these concepts and take understanding to the highest possible level.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eIntroduction\u003c\/strong\u003e\u003cstrong\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eScope of the Book\u003cbr\u003e\u003cbr\u003eFilled Polymers vs. Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTypes of Fillers\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eConcept of Reinforcement\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eTypical Fillers for Polymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCarbon Black\u003cbr\u003e\u003cbr\u003eWhite Fillers\u003cbr\u003e\u003cbr\u003eShort Synthetic Fibers\u003cbr\u003e\u003cbr\u003eShort Fibers of Natural Origin\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eCarbon Black Data\u003cbr\u003e\u003cbr\u003eMedalia’s Floc Simulation for Carbon Black Aggregate\u003cbr\u003e\u003cbr\u003eMedalia’s Aggregate Morphology Approach\u003cbr\u003e\u003cbr\u003eCarbon Black: Number of Particles\/Aggregate\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and Carbon Black\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eElastomers and Carbon Black (CB)\u003cbr\u003e\u003cbr\u003eThermoplastics and Carbon Black \u003cbr\u003e\u003cbr\u003eAppendix\u003cbr\u003e\u003cbr\u003eNetwork Junction Theory\u003cbr\u003e\u003cbr\u003eKraus Deagglomeration–Reagglomeration Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003eUlmer Modification of the Kraus Model for Dynamic Strain Softening (DSS): Fitting the Model\u003cbr\u003e\u003cbr\u003eAggregates Flocculation\/Entanglement\u003cbr\u003e\u003cbr\u003eModel (Cluster–Cluster Aggregation (CCA) Model, Klüppel et al.)\u003cbr\u003e\u003cbr\u003eLion et al. Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003eMaier and Göritz Model for Dynamic Strain Softening (DSS)\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and White Fillers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eElastomers and White Fillers\u003cbr\u003e\u003cbr\u003eThermoplastics and White Fillers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eAdsorption Kinetics of Silica on Silicone Polymers\u003cbr\u003e\u003cbr\u003eModeling the Shear Viscosity Function of Filled\u003cbr\u003e\u003cbr\u003ePolymer Systems\u003cbr\u003e\u003cbr\u003eModels for the Rheology of Suspensions of Rigid Particles,\u003cbr\u003e\u003cbr\u003eInvolving the Maximum Packing Fraction Φm\u003cbr\u003e\u003cbr\u003eAssessing the Capabilities of Model for the Shear\u003cbr\u003e\u003cbr\u003eViscosity Function of Filled Polymers\u003cbr\u003e\u003cbr\u003eExpanding the Krieger–Dougherty Relationship\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers and Short Fibers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eGeneralities\u003cbr\u003e\u003cbr\u003eMicromechanic Models for Short Fibers-Filled Polymer\u003cbr\u003e\u003cbr\u003eComposites\u003cbr\u003e\u003cbr\u003eThermoplastics and Short Glass Fibers\u003cbr\u003e\u003cbr\u003eTypical Rheological Aspect of Short Fiber-Filled\u003cbr\u003e\u003cbr\u003eThermoplastic Melts\u003cbr\u003e\u003cbr\u003eThermoplastics and Short Fibers of Natural Origin\u003cbr\u003e\u003cbr\u003eElastomers and Short Fibers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAppendix\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eShort Fiber-Reinforced Composites: Minimum Fiber Aspect Ratio\u003cbr\u003e\u003cbr\u003eHalpin–Tsai Equations for Short Fibers Filled Systems: Numerical Illustration\u003cbr\u003e\u003cbr\u003eNielsen Modification of Halpin–Tsai Equations with Respect to the Maximum Packing Fraction: Numerical Illustration\u003cbr\u003e\u003cbr\u003eMori–Tanaka’s Average Stress Concept: Tandon–Weng\u003cbr\u003e\u003cbr\u003eExpressions for Randomly Distributed Ellipsoidal (Fiber-Like) Particles: Numerical Illustration\u003cbr\u003e\u003cbr\u003eShear Lag Model: Numerical illustration\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eIndex\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJean L. Leblanc is the director of the Polymer Rheology and Processing Laboratory at the University P \u0026amp; M Curie in Paris. He has published more than 120 scientific papers and two books, contributed chapters in several collective books, made numerous presentations in international conferences, and has given seminars in Brazil, Canada, Thailand, the USA, and several European countries."}
Film Properties of Pla...
$275.00
{"id":11242202244,"title":"Film Properties of Plastics and Elastomers, 3rd Edition","handle":"978-1-4557-2551-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2551-9 \u003cbr\u003e\u003cbr\u003e320 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively revised second edition is the only data handbook available on the engineering properties of commercial polymeric films details many physical, mechanical, optical, electrical, and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in the same family as well as materials in different families. Data are presented on the characteristics of 47 major plastic and elastomer packaging materials. New to this edition, the resin chapters each contain textual summary information including category, general description, processing methods, applications, and other facts as appropriate, such as reliability, weatherability, and regulatory approval considerations for use in food and medical packaging. Extensive references are provided.\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers, chemists, manufacturers, suppliers, designers and other technical professionals who want a comprehensive reference guide to film properties of plastics and elastomers.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1. Introduction to Plastics and Polymers \u003cbr\u003e1.1. Polymerization\u003cbr\u003e1.1.1. Addition Polymerization\u003cbr\u003e1.1.2. Condensation Polymerization\u003cbr\u003e1.2. Copolymers\u003cbr\u003e1.3. Linear, Branched, and Crosslinked Polymers\u003cbr\u003e1.4. Polarity\u003cbr\u003e1.5. Unsaturation\u003cbr\u003e1.6. Steric Hindrance\u003cbr\u003e1.7. Isomers\u003cbr\u003e1.7.1. Structural isomers\u003cbr\u003e1.7.2. Geometric Isomers\u003cbr\u003e1.7.3. Stereosiomers - Syndiotactic, Isotactic, Atactic\u003cbr\u003e1.8. Inter and Intramolecular attractions in polymers\u003cbr\u003e1.8.1. Hydrogen Bonding\u003cbr\u003e1.8.2. Van der waals Forces\u003cbr\u003e1.8.3. Chain Entanglement\u003cbr\u003e1.9. General Classifications\u003cbr\u003e1.9.1. Molecular Weight\u003cbr\u003e1.9.2. Thermosets vs. Thermoplastics\u003cbr\u003e1.9.3. Crystalline vs. Amorphous\u003cbr\u003e1.9.4. Orientation\u003cbr\u003e1.10. Plastic Compositions\u003cbr\u003e1.10.1. Polymer Blends\u003cbr\u003e1.10.2. Elastomers\u003cbr\u003e1.10.3. Additives\u003cbr\u003e1.10.3.1. Fillers, Reinforcement, Composites \u003cbr\u003e1.10.3.2. Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants\u003cbr\u003e1.10.3.3. Release Agents\u003cbr\u003e1.10.3.4. Slip additives\/Internal Lubricants \u003cbr\u003e1.10.3.5. Antiblock Additives\u003cbr\u003e1.10.3.6. Catalysts\u003cbr\u003e1.10.3.7. Impact Modifiers and Tougheners\u003cbr\u003e1.10.3.8. UV Stabilizers\u003cbr\u003e1.10.3.9. Optical Brighteners\u003cbr\u003e1.10.3.10. Plasticizers\u003cbr\u003e1.10.3.11. Pigments, Extenders, Dyes, Mica\u003cbr\u003e1.10.3.12. Coupling Agents\u003cbr\u003e1.10.3.13. Thermal Stabilizers\u003cbr\u003e1.10.3.14. Antistats\u003cbr\u003e1.11. Summary\u003cbr\u003e2. Chapter 2 - Introduction to the Mechanical, Thermal and Permeation Properties of Plastics and Elastomers\u003cbr\u003e2.1. Physical property testing of plastic films\u003cbr\u003e2.1.1. Specific gravity, density\u003cbr\u003e2.1.2. Dimensional stability\u003cbr\u003e2.1.3. Hygroscopic expansion\u003cbr\u003e2.1.4. Residual shrinkage\u003cbr\u003e2.1.5. Coefficient of Thermal Expansion\u003cbr\u003e2.1.6. Appearance: Color, Haze, and Gloss\u003cbr\u003e2.1.6.1. Color\u003cbr\u003e2.1.6.2. Gloss measurement\u003cbr\u003e2.1.6.3. Haze measurement\u003cbr\u003e2.1.7. Coefficient of friction\u003cbr\u003e2.2. Mechanical Property Testing of Plastic films\u003cbr\u003e2.2.1. Tensile Properties\u003cbr\u003e2.2.2. Flexural Properties\u003cbr\u003e2.2.3. Folding endurance (MIT)\u003cbr\u003e2.2.4. Puncture properties\u003cbr\u003e2.2.4.1. High speed puncture test\u003cbr\u003e2.2.4.2. Drop Dart Impact Test for Plastics Film\u003cbr\u003e2.2.5. Tear Properties\u003cbr\u003e2.2.5.1. Elmendorf Tear Strength\u003cbr\u003e2.2.5.2. Trouser Tear Resistance\u003cbr\u003e2.3. Thermal Property Testing of Plastic films\u003cbr\u003e2.3.1. Melt Flow Index\u003cbr\u003e2.3.2. melting point\u003cbr\u003e2.3.3. Glass Transition Temperature, Tg\u003cbr\u003e2.3.4. Other Thermal Tests\u003cbr\u003e2.4. Electrical Properties of Films\u003cbr\u003e2.4.1. Dielectric constant (or Relative Permittivity)\u003cbr\u003e2.4.2. Dissipation factor\u003cbr\u003e2.4.3. Dielectric Strength\u003cbr\u003e2.4.4. Surface Resistivity\u003cbr\u003e2.4.5. Volume Resistivity\u003cbr\u003e2.5. Permeation of films\u003cbr\u003e2.5.1. History\u003cbr\u003e2.5.2. Transport of Gases and Vapors through solid materials- \u003cbr\u003e2.5.3. Effusion\u003cbr\u003e2.5.4. Solution-Diffusion and Pore-flow Models\u003cbr\u003e2.5.4.1. Dependence of Permeability, Diffusion and Solubility Pressure\u003cbr\u003e2.5.4.2. Dependence of Permeability, Diffusion and Solubility on Temperature - The Arrhenius Equation \u003cbr\u003e2.5.5. Multiple layered films \u003cbr\u003e2.5.6. Permeation and Vapor Transmission Testing \u003cbr\u003e2.5.6.1. Units of Measurement\u003cbr\u003e2.5.6.2. Gas Permeation test cells\u003cbr\u003e2.5.6.3. Vapor Permeation Cup testing\u003cbr\u003e2.5.6.4. Standard Tests for permeation and vapor transmission\u003cbr\u003e3. Production of films\u003cbr\u003e3.1. Extrusion\u003cbr\u003e3.2. Blown Film\u003cbr\u003e3.3. Calendaring\u003cbr\u003e3.4. Casting film lines\u003cbr\u003e3.5. Post film formation processing \u003cbr\u003e3.6. Web coating\u003cbr\u003e3.6.1. Gravure Coating\u003cbr\u003e3.6.2. Reverse Roll Coating\u003cbr\u003e3.6.3. Knife On Roll Coating\u003cbr\u003e3.6.4. Metering Rod (Meyer Rod) Coating\u003cbr\u003e3.6.5. Slot Die (Slot, Extrusion) Coating\u003cbr\u003e3.6.6. Immersion (Dip) Coating\u003cbr\u003e3.6.7. Vacuum deposition\u003cbr\u003e3.6.8. Web Coating process summary\u003cbr\u003e3.7. Lamination\u003cbr\u003e3.7.1. Hot Roll\/Belt Lamination\u003cbr\u003e3.7.2. Flame Lamination\u003cbr\u003e3.8. Orientation\u003cbr\u003e3.8.1. Machine Direction Orientation\u003cbr\u003e3.8.2. Biaxial orientation\u003cbr\u003e3.8.3. Blown Film Orientation\u003cbr\u003e3.9. Skiving\u003cbr\u003e3.10. Coatings\u003cbr\u003e3.11. Summary\u003cbr\u003e4. Markets and Applications for films\u003cbr\u003e4.1. Barrier Films in packaging \u003cbr\u003e4.1.1. Water Vapor\u003cbr\u003e4.1.2. Atmospheric Gases\u003cbr\u003e4.1.3. Odors and Flavors\u003cbr\u003e4.1.4. Markets and Applications of barrier films\u003cbr\u003e4.1.5. Some illustrated applications of multiple layered films\u003cbr\u003e5. Styrenic Plastics\u003cbr\u003e5.1. Acrylonitrile-Butadiene-Styrene Copolymer (ABS) \u003cbr\u003e5.2. Acrylonitrile-Styrene-Acrylate Copolymer (ASA)\u003cbr\u003e5.3. Polystyrene (PS) \u003cbr\u003e5.4. Styrene-Acrylonitrile Copolymer (SAN)\u003cbr\u003e6. Polyesters\u003cbr\u003e6.1. Liquid Crystal Polymer (LCP) \u003cbr\u003e6.2. Polybutylene Terephthalate (PBT)\u003cbr\u003e6.3. Polycarbonate (PC)\u003cbr\u003e6.4. Polycyclohexylene-dimethylene Terephthalate (PCT)\u003cbr\u003e6.5. Polyethylene Napthalate (PEN)\u003cbr\u003e6.6. Polyethylene Terephthalate (PET)\u003cbr\u003e7. Polyimides \u003cbr\u003e7.1. Polyamide-imide\u003cbr\u003e7.2. Polyetherimide\u003cbr\u003e7.3. Polyimide \u003cbr\u003e8. Polyamides (Nylons)\u003cbr\u003e8.1. Polyamide 6 (Nylon 6)\u003cbr\u003e8.2. Polyamide 12 (Nylon 12)\u003cbr\u003e8.3. Polyamide 66 (Nylon 66) \u003cbr\u003e8.4. Polyamide 66\/610 (Nylon 66\/610)\u003cbr\u003e8.5. Polyamide 6\/12 (Nylon 6\/12)\u003cbr\u003e8.6. Polyamide 666 (Nylon 666 or 6\/66)\u003cbr\u003e8.7. Polyamide 6\/69 (Nylon 6\/6.9)\u003cbr\u003e8.8. Nylon 1010\u003cbr\u003e8.9. Specialty Polyamides\u003cbr\u003e8.9.1. Amorphous Polyamides\u003cbr\u003e8.9.2. Nylon PACM-12\u003cbr\u003e8.9.3. PAA - Polyarylamide\u003cbr\u003e9. Polyolefins \u003cbr\u003e9.1. Polyethylene (PE)\u003cbr\u003e9.1.1. Unclassified polyethylene\u003cbr\u003e9.1.2. Ultralow Density polyethylene (ULDPE)\u003cbr\u003e9.1.3. Linear low density polyethylene (LLDPE)\u003cbr\u003e9.1.4. Low density polyethylene (LDPE)\u003cbr\u003e9.1.5. Medium density polyethylene (MDPE)\u003cbr\u003e9.1.6. High density polyethylene (HDPE)\u003cbr\u003e9.2. Polypropylene (PP)\u003cbr\u003e9.3. Polybutene-1 - PB-1\u003cbr\u003e9.4. Polymethyl Pentene (PMP) \u003cbr\u003e9.5. Cyclic Olefin Copolymer (COC)\u003cbr\u003e9.6. Plastomers\u003cbr\u003e10. Polyvinyls \u0026amp; Acrylics\u003cbr\u003e10.1. Ethylene-Vinyl Acetate Copolymer (EVA)\u003cbr\u003e10.2. Ethylene - Vinyl Alcohol Copolymer (EVOH)\u003cbr\u003e10.3. Polyvinyl Alcohol (PVOH)\u003cbr\u003e10.4. Polyvinyl Chloride (PVC)\u003cbr\u003e10.5. Polyvinylidene Chloride (PVDC)\u003cbr\u003e10.6. Polyacrylics\u003cbr\u003e10.7. Acrylonitrile-Methyl Acrylate Copolymer (AMA)\u003cbr\u003e10.8. Ionomers\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e11.1. Polytetrafluoroethylene (PTFE)\u003cbr\u003e11.2. Fluorinated Ethylene Propylene (FEP)\u003cbr\u003e11.3. Perfluoro Alkoxy (PFA)\u003cbr\u003e11.3.1. PFA\u003cbr\u003e11.3.2. MFA\u003cbr\u003e11.4. Amorphous fluoropolymer - Teflon AF®\u003cbr\u003e11.5. Polyvinyl Fluoride (PVF)\u003cbr\u003e11.6. Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e11.7. Polyvinylidene Fluoride (PVDF)\u003cbr\u003e11.8. Ethylene-Tetrafluoroethylene Copolymer (ETFE)\u003cbr\u003e11.9. Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE)\u003cbr\u003e12. High Temperature\/High Performance Polymers\u003cbr\u003e12.1. Polyether ether ketone (PEEK\u003cbr\u003e12.2. Polysiloxane\u003cbr\u003e12.3. Polyphenylene Sulfide (PPS)\u003cbr\u003e12.4. Polysulfone (PSU)\u003cbr\u003e12.5. Polyethersulfone (PES)\u003cbr\u003e12.6. Polybenzimidazole (PBI)\u003cbr\u003e12.7. Parylene (poly(p-xylylene))\u003cbr\u003e12.8. Polyphenylene sulfone (PPSU)\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e13.1. Thermoplastic Polyurethane Elastomers (TPU)\u003cbr\u003e13.2. Olefinic Thermoplastic Elastomers (TPO)\u003cbr\u003e13.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE)\u003cbr\u003e13.4. Thermoplastic Polyether Block Amide Elastomers (PEBA)\u003cbr\u003e13.5. Styrenic Block Copolymer (SBS) Thermoplastic Elastomers\u003cbr\u003e13.6. Syndiotactic 1,2 polybutadiene \u003cbr\u003e14. Renewable Resource or biodegradable polymers \u003cbr\u003e14.1. Cellophane™\u003cbr\u003e14.2. Nitrocellulose\u003cbr\u003e14.3. Cellulose acetate\u003cbr\u003e14.4. Cellulose acetate butyrate\u003cbr\u003e14.5. Ethylcellulose\u003cbr\u003e14.6. Polycaprolactone (PCL)\u003cbr\u003e14.7. Poly (Lactic Acid) (PLA)\u003cbr\u003e14.8. Poly-3-hydroxybutyrate (PHB or PH3B)\u003cbr\u003eAppendices\u003cbr\u003ePermeation Unit Conversion Factors\u003cbr\u003eVapor Transmission rate Conversion factors\u003cbr\u003eIndices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eLaurence W McKeen\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eSenior Research Associate, DuPont, Wilmington, DE, USA\u003c\/div\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","additives","book","electrical","film","Films","lamination","material","mechanical","optical","p-applications","plastics","polymer","properties"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378310468,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Film Properties of Plastics and Elastomers, 3rd Edition","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2551-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111","options":["Title"],"media":[{"alt":null,"id":354806726749,"position":1,"preview_image":{"aspect_ratio":0.771,"height":450,"width":347,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111"},"aspect_ratio":0.771,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111","width":347}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2551-9 \u003cbr\u003e\u003cbr\u003e320 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively revised second edition is the only data handbook available on the engineering properties of commercial polymeric films details many physical, mechanical, optical, electrical, and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in the same family as well as materials in different families. Data are presented on the characteristics of 47 major plastic and elastomer packaging materials. New to this edition, the resin chapters each contain textual summary information including category, general description, processing methods, applications, and other facts as appropriate, such as reliability, weatherability, and regulatory approval considerations for use in food and medical packaging. Extensive references are provided.\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers, chemists, manufacturers, suppliers, designers and other technical professionals who want a comprehensive reference guide to film properties of plastics and elastomers.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1. Introduction to Plastics and Polymers \u003cbr\u003e1.1. Polymerization\u003cbr\u003e1.1.1. Addition Polymerization\u003cbr\u003e1.1.2. Condensation Polymerization\u003cbr\u003e1.2. Copolymers\u003cbr\u003e1.3. Linear, Branched, and Crosslinked Polymers\u003cbr\u003e1.4. Polarity\u003cbr\u003e1.5. Unsaturation\u003cbr\u003e1.6. Steric Hindrance\u003cbr\u003e1.7. Isomers\u003cbr\u003e1.7.1. Structural isomers\u003cbr\u003e1.7.2. Geometric Isomers\u003cbr\u003e1.7.3. Stereosiomers - Syndiotactic, Isotactic, Atactic\u003cbr\u003e1.8. Inter and Intramolecular attractions in polymers\u003cbr\u003e1.8.1. Hydrogen Bonding\u003cbr\u003e1.8.2. Van der waals Forces\u003cbr\u003e1.8.3. Chain Entanglement\u003cbr\u003e1.9. General Classifications\u003cbr\u003e1.9.1. Molecular Weight\u003cbr\u003e1.9.2. Thermosets vs. Thermoplastics\u003cbr\u003e1.9.3. Crystalline vs. Amorphous\u003cbr\u003e1.9.4. Orientation\u003cbr\u003e1.10. Plastic Compositions\u003cbr\u003e1.10.1. Polymer Blends\u003cbr\u003e1.10.2. Elastomers\u003cbr\u003e1.10.3. Additives\u003cbr\u003e1.10.3.1. Fillers, Reinforcement, Composites \u003cbr\u003e1.10.3.2. Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants\u003cbr\u003e1.10.3.3. Release Agents\u003cbr\u003e1.10.3.4. Slip additives\/Internal Lubricants \u003cbr\u003e1.10.3.5. Antiblock Additives\u003cbr\u003e1.10.3.6. Catalysts\u003cbr\u003e1.10.3.7. Impact Modifiers and Tougheners\u003cbr\u003e1.10.3.8. UV Stabilizers\u003cbr\u003e1.10.3.9. Optical Brighteners\u003cbr\u003e1.10.3.10. Plasticizers\u003cbr\u003e1.10.3.11. Pigments, Extenders, Dyes, Mica\u003cbr\u003e1.10.3.12. Coupling Agents\u003cbr\u003e1.10.3.13. Thermal Stabilizers\u003cbr\u003e1.10.3.14. Antistats\u003cbr\u003e1.11. Summary\u003cbr\u003e2. Chapter 2 - Introduction to the Mechanical, Thermal and Permeation Properties of Plastics and Elastomers\u003cbr\u003e2.1. Physical property testing of plastic films\u003cbr\u003e2.1.1. Specific gravity, density\u003cbr\u003e2.1.2. Dimensional stability\u003cbr\u003e2.1.3. Hygroscopic expansion\u003cbr\u003e2.1.4. Residual shrinkage\u003cbr\u003e2.1.5. Coefficient of Thermal Expansion\u003cbr\u003e2.1.6. Appearance: Color, Haze, and Gloss\u003cbr\u003e2.1.6.1. Color\u003cbr\u003e2.1.6.2. Gloss measurement\u003cbr\u003e2.1.6.3. Haze measurement\u003cbr\u003e2.1.7. Coefficient of friction\u003cbr\u003e2.2. Mechanical Property Testing of Plastic films\u003cbr\u003e2.2.1. Tensile Properties\u003cbr\u003e2.2.2. Flexural Properties\u003cbr\u003e2.2.3. Folding endurance (MIT)\u003cbr\u003e2.2.4. Puncture properties\u003cbr\u003e2.2.4.1. High speed puncture test\u003cbr\u003e2.2.4.2. Drop Dart Impact Test for Plastics Film\u003cbr\u003e2.2.5. Tear Properties\u003cbr\u003e2.2.5.1. Elmendorf Tear Strength\u003cbr\u003e2.2.5.2. Trouser Tear Resistance\u003cbr\u003e2.3. Thermal Property Testing of Plastic films\u003cbr\u003e2.3.1. Melt Flow Index\u003cbr\u003e2.3.2. melting point\u003cbr\u003e2.3.3. Glass Transition Temperature, Tg\u003cbr\u003e2.3.4. Other Thermal Tests\u003cbr\u003e2.4. Electrical Properties of Films\u003cbr\u003e2.4.1. Dielectric constant (or Relative Permittivity)\u003cbr\u003e2.4.2. Dissipation factor\u003cbr\u003e2.4.3. Dielectric Strength\u003cbr\u003e2.4.4. Surface Resistivity\u003cbr\u003e2.4.5. Volume Resistivity\u003cbr\u003e2.5. Permeation of films\u003cbr\u003e2.5.1. History\u003cbr\u003e2.5.2. Transport of Gases and Vapors through solid materials- \u003cbr\u003e2.5.3. Effusion\u003cbr\u003e2.5.4. Solution-Diffusion and Pore-flow Models\u003cbr\u003e2.5.4.1. Dependence of Permeability, Diffusion and Solubility Pressure\u003cbr\u003e2.5.4.2. Dependence of Permeability, Diffusion and Solubility on Temperature - The Arrhenius Equation \u003cbr\u003e2.5.5. Multiple layered films \u003cbr\u003e2.5.6. Permeation and Vapor Transmission Testing \u003cbr\u003e2.5.6.1. Units of Measurement\u003cbr\u003e2.5.6.2. Gas Permeation test cells\u003cbr\u003e2.5.6.3. Vapor Permeation Cup testing\u003cbr\u003e2.5.6.4. Standard Tests for permeation and vapor transmission\u003cbr\u003e3. Production of films\u003cbr\u003e3.1. Extrusion\u003cbr\u003e3.2. Blown Film\u003cbr\u003e3.3. Calendaring\u003cbr\u003e3.4. Casting film lines\u003cbr\u003e3.5. Post film formation processing \u003cbr\u003e3.6. Web coating\u003cbr\u003e3.6.1. Gravure Coating\u003cbr\u003e3.6.2. Reverse Roll Coating\u003cbr\u003e3.6.3. Knife On Roll Coating\u003cbr\u003e3.6.4. Metering Rod (Meyer Rod) Coating\u003cbr\u003e3.6.5. Slot Die (Slot, Extrusion) Coating\u003cbr\u003e3.6.6. Immersion (Dip) Coating\u003cbr\u003e3.6.7. Vacuum deposition\u003cbr\u003e3.6.8. Web Coating process summary\u003cbr\u003e3.7. Lamination\u003cbr\u003e3.7.1. Hot Roll\/Belt Lamination\u003cbr\u003e3.7.2. Flame Lamination\u003cbr\u003e3.8. Orientation\u003cbr\u003e3.8.1. Machine Direction Orientation\u003cbr\u003e3.8.2. Biaxial orientation\u003cbr\u003e3.8.3. Blown Film Orientation\u003cbr\u003e3.9. Skiving\u003cbr\u003e3.10. Coatings\u003cbr\u003e3.11. Summary\u003cbr\u003e4. Markets and Applications for films\u003cbr\u003e4.1. Barrier Films in packaging \u003cbr\u003e4.1.1. Water Vapor\u003cbr\u003e4.1.2. Atmospheric Gases\u003cbr\u003e4.1.3. Odors and Flavors\u003cbr\u003e4.1.4. Markets and Applications of barrier films\u003cbr\u003e4.1.5. Some illustrated applications of multiple layered films\u003cbr\u003e5. Styrenic Plastics\u003cbr\u003e5.1. Acrylonitrile-Butadiene-Styrene Copolymer (ABS) \u003cbr\u003e5.2. Acrylonitrile-Styrene-Acrylate Copolymer (ASA)\u003cbr\u003e5.3. Polystyrene (PS) \u003cbr\u003e5.4. Styrene-Acrylonitrile Copolymer (SAN)\u003cbr\u003e6. Polyesters\u003cbr\u003e6.1. Liquid Crystal Polymer (LCP) \u003cbr\u003e6.2. Polybutylene Terephthalate (PBT)\u003cbr\u003e6.3. Polycarbonate (PC)\u003cbr\u003e6.4. Polycyclohexylene-dimethylene Terephthalate (PCT)\u003cbr\u003e6.5. Polyethylene Napthalate (PEN)\u003cbr\u003e6.6. Polyethylene Terephthalate (PET)\u003cbr\u003e7. Polyimides \u003cbr\u003e7.1. Polyamide-imide\u003cbr\u003e7.2. Polyetherimide\u003cbr\u003e7.3. Polyimide \u003cbr\u003e8. Polyamides (Nylons)\u003cbr\u003e8.1. Polyamide 6 (Nylon 6)\u003cbr\u003e8.2. Polyamide 12 (Nylon 12)\u003cbr\u003e8.3. Polyamide 66 (Nylon 66) \u003cbr\u003e8.4. Polyamide 66\/610 (Nylon 66\/610)\u003cbr\u003e8.5. Polyamide 6\/12 (Nylon 6\/12)\u003cbr\u003e8.6. Polyamide 666 (Nylon 666 or 6\/66)\u003cbr\u003e8.7. Polyamide 6\/69 (Nylon 6\/6.9)\u003cbr\u003e8.8. Nylon 1010\u003cbr\u003e8.9. Specialty Polyamides\u003cbr\u003e8.9.1. Amorphous Polyamides\u003cbr\u003e8.9.2. Nylon PACM-12\u003cbr\u003e8.9.3. PAA - Polyarylamide\u003cbr\u003e9. Polyolefins \u003cbr\u003e9.1. Polyethylene (PE)\u003cbr\u003e9.1.1. Unclassified polyethylene\u003cbr\u003e9.1.2. Ultralow Density polyethylene (ULDPE)\u003cbr\u003e9.1.3. Linear low density polyethylene (LLDPE)\u003cbr\u003e9.1.4. Low density polyethylene (LDPE)\u003cbr\u003e9.1.5. Medium density polyethylene (MDPE)\u003cbr\u003e9.1.6. High density polyethylene (HDPE)\u003cbr\u003e9.2. Polypropylene (PP)\u003cbr\u003e9.3. Polybutene-1 - PB-1\u003cbr\u003e9.4. Polymethyl Pentene (PMP) \u003cbr\u003e9.5. Cyclic Olefin Copolymer (COC)\u003cbr\u003e9.6. Plastomers\u003cbr\u003e10. Polyvinyls \u0026amp; Acrylics\u003cbr\u003e10.1. Ethylene-Vinyl Acetate Copolymer (EVA)\u003cbr\u003e10.2. Ethylene - Vinyl Alcohol Copolymer (EVOH)\u003cbr\u003e10.3. Polyvinyl Alcohol (PVOH)\u003cbr\u003e10.4. Polyvinyl Chloride (PVC)\u003cbr\u003e10.5. Polyvinylidene Chloride (PVDC)\u003cbr\u003e10.6. Polyacrylics\u003cbr\u003e10.7. Acrylonitrile-Methyl Acrylate Copolymer (AMA)\u003cbr\u003e10.8. Ionomers\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e11.1. Polytetrafluoroethylene (PTFE)\u003cbr\u003e11.2. Fluorinated Ethylene Propylene (FEP)\u003cbr\u003e11.3. Perfluoro Alkoxy (PFA)\u003cbr\u003e11.3.1. PFA\u003cbr\u003e11.3.2. MFA\u003cbr\u003e11.4. Amorphous fluoropolymer - Teflon AF®\u003cbr\u003e11.5. Polyvinyl Fluoride (PVF)\u003cbr\u003e11.6. Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e11.7. Polyvinylidene Fluoride (PVDF)\u003cbr\u003e11.8. Ethylene-Tetrafluoroethylene Copolymer (ETFE)\u003cbr\u003e11.9. Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE)\u003cbr\u003e12. High Temperature\/High Performance Polymers\u003cbr\u003e12.1. Polyether ether ketone (PEEK\u003cbr\u003e12.2. Polysiloxane\u003cbr\u003e12.3. Polyphenylene Sulfide (PPS)\u003cbr\u003e12.4. Polysulfone (PSU)\u003cbr\u003e12.5. Polyethersulfone (PES)\u003cbr\u003e12.6. Polybenzimidazole (PBI)\u003cbr\u003e12.7. Parylene (poly(p-xylylene))\u003cbr\u003e12.8. Polyphenylene sulfone (PPSU)\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e13.1. Thermoplastic Polyurethane Elastomers (TPU)\u003cbr\u003e13.2. Olefinic Thermoplastic Elastomers (TPO)\u003cbr\u003e13.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE)\u003cbr\u003e13.4. Thermoplastic Polyether Block Amide Elastomers (PEBA)\u003cbr\u003e13.5. Styrenic Block Copolymer (SBS) Thermoplastic Elastomers\u003cbr\u003e13.6. Syndiotactic 1,2 polybutadiene \u003cbr\u003e14. Renewable Resource or biodegradable polymers \u003cbr\u003e14.1. Cellophane™\u003cbr\u003e14.2. Nitrocellulose\u003cbr\u003e14.3. Cellulose acetate\u003cbr\u003e14.4. Cellulose acetate butyrate\u003cbr\u003e14.5. Ethylcellulose\u003cbr\u003e14.6. Polycaprolactone (PCL)\u003cbr\u003e14.7. Poly (Lactic Acid) (PLA)\u003cbr\u003e14.8. Poly-3-hydroxybutyrate (PHB or PH3B)\u003cbr\u003eAppendices\u003cbr\u003ePermeation Unit Conversion Factors\u003cbr\u003eVapor Transmission rate Conversion factors\u003cbr\u003eIndices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eLaurence W McKeen\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eSenior Research Associate, DuPont, Wilmington, DE, USA\u003c\/div\u003e"}
Fire Retardancy of Pol...
$249.00
{"id":11242254340,"title":"Fire Retardancy of Polymers","handle":"978-0-85404-582-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Le Bras, C. Wilkie, S. Bourbigot \u003cbr\u003eISBN 978-0-85404-582-2 \u003cbr\u003e\u003cbr\u003epages 410, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymers is restricted by their flammability- they may indeed initiate or propagate fire. \u003cstrong\u003eFire Retardancy of Polymers\u003c\/strong\u003e focuses on mineral additives from either micro- or nano-composites for application in fire retardants. With the use of fire retardant additives containing halogen or phosphorus compounds in decline, the need for other systems is evident.\u003cbr\u003e\u003cbr\u003eThe major materials that are used as fire retardant fillers for polymers are alumina trihydrate or magnesium hydroxide, which account for more than 50% by weight of the worldwide sales of fire retardants. Recent works have shown that such halogen-free compounds may give enhanced fire retardancy to polymeric materials when used in low levels, alone, or in the synergistic mixture and that the corresponding fire performances depend on the dispersion of the mineral filler, micrometer-scale dispersion leading to the best performances.\u003cbr\u003e\u003cbr\u003eSpecialists discuss these new applications of mineral fillers with particular emphasis on action mechanisms, new materials including textiles, toxicology, and hazards. With extensive references, this book provides a comprehensive and up-to-date view of these applications and will appeal to professionals, materials scientists, and engineers looking for novel ways to eliminate fire hazards and improve flame retardancy of materials, with a special interest in sustainable development.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:28-04:00","created_at":"2017-06-22T21:15:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","additives","alumina trihydrate","book","dispersion","fillers","fire","flame retardancy","hazards","magnesium hydroxide","mineral filler","p-additives","polymer","polymers","textiles","toxicology"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378489796,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fire Retardancy of Polymers","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-85404-582-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-85404-582-2.jpg?v=1500216348"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-85404-582-2.jpg?v=1500216348","options":["Title"],"media":[{"alt":null,"id":354807283805,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-85404-582-2.jpg?v=1500216348"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-85404-582-2.jpg?v=1500216348","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Le Bras, C. Wilkie, S. Bourbigot \u003cbr\u003eISBN 978-0-85404-582-2 \u003cbr\u003e\u003cbr\u003epages 410, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymers is restricted by their flammability- they may indeed initiate or propagate fire. \u003cstrong\u003eFire Retardancy of Polymers\u003c\/strong\u003e focuses on mineral additives from either micro- or nano-composites for application in fire retardants. With the use of fire retardant additives containing halogen or phosphorus compounds in decline, the need for other systems is evident.\u003cbr\u003e\u003cbr\u003eThe major materials that are used as fire retardant fillers for polymers are alumina trihydrate or magnesium hydroxide, which account for more than 50% by weight of the worldwide sales of fire retardants. Recent works have shown that such halogen-free compounds may give enhanced fire retardancy to polymeric materials when used in low levels, alone, or in the synergistic mixture and that the corresponding fire performances depend on the dispersion of the mineral filler, micrometer-scale dispersion leading to the best performances.\u003cbr\u003e\u003cbr\u003eSpecialists discuss these new applications of mineral fillers with particular emphasis on action mechanisms, new materials including textiles, toxicology, and hazards. With extensive references, this book provides a comprehensive and up-to-date view of these applications and will appeal to professionals, materials scientists, and engineers looking for novel ways to eliminate fire hazards and improve flame retardancy of materials, with a special interest in sustainable development.\u003cbr\u003e\u003cbr\u003e"}
Flame Retardant Polyme...
$187.00
{"id":11242206916,"title":"Flame Retardant Polymer Nanocomposites","handle":"978-0-471-73426-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., Alexander B. Morgan, Charles A. Wilkie \u003cbr\u003eISBN 978-0-471-73426-0 \u003cbr\u003e\u003cbr\u003epages 421, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFlame Retardant Polymer Nanocomposites takes a comprehensive look at polymer nanocomposites for flame retardancy applications and includes nanocomposite fundamentals (theory, design, synthesis, characterization) as well as polymer flammability fundamentals with emphasis on how nanocomposites affect flammability.\u003cbr\u003e\u003cbr\u003eThe book has practical examples from literature, patents, and existing commercial products. Readers can design new work based upon the material in the book or use it as a handy reference for interpreting existing work and results.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1. Introduction to Flame Retardancy and Polymer Flammability. \u003cbr\u003e\u003cbr\u003eChapter 2. Polymer Nanocomposite Technology, Fundamentals. \u003cbr\u003e\u003cbr\u003eChapter 3. Flame Retardant Mechanism of Polymer Clay Nanocomposites. \u003cbr\u003e\u003cbr\u003eChapter 4. Molecular Mechanics Calculations of the Thermodynamic Stabilities of Polymer\/Carbon Nanotube Composites? \u003cbr\u003e\u003cbr\u003eChapter 5. Considerations on the Specific Impacts of the Main Fire Retardancy Mechanisms in Nanocomposites. \u003cbr\u003e\u003cbr\u003eChapter 6. Intumescence and Nanocomposite: a Novel Route for Flame Retarding Polymeric Materials. \u003cbr\u003e\u003cbr\u003eChapter 7. Flame Retardant Properties of Organoclays and Carbon Nanotubes and Their Combinations with Alumina Trihydrate. \u003cbr\u003e\u003cbr\u003eChapter 8. Nanocomposites with Halogen and Non-Intumescent Phosphorus Flame Retardant Additives. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 9. Thermoset Fire Retardant Nanocomposites. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 10. Progress in Flammability Studies of Nanocomposites with New Types of Nanoparticles. \u003cbr\u003e\u003cbr\u003eChapter 11. Potential Applications of Nanocomposites for Flame Retardancy. \u003cbr\u003e\u003cbr\u003eChapter 12. Practical Issues and Future Trends of Polymer Nanocomposite Flammability Research.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eAlexander B. Morgan\u003c\/strong\u003e, PhD, is a Senior Research Scientist and group leader for the Advanced Polymers Group at the University of Dayton Research Institute. Dr. Morgan has worked for over eleven years in the field of flame retardancy and has focused on flame retardant nanocomposites for the past seven years. He previously held positions at Dow Chemical as a research chemist and was a National Research Council Postdoctoral Fellow at the National Institute of Standards and Technology. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCharles A. Wilkie\u003c\/strong\u003e, PhD, is the Pfletschinger-Habermann Professor of Chemistry at Marquette University. Dr. Wilkie has worked for almost thirty years in fire retardancy, focusing on nanocomposites the past seven years. He is Associate Editor of Polymers for Advanced Technologies and on the editorial boards of Thermochimica Acta and Polymer Degradation and Stability.","published_at":"2017-06-22T21:12:58-04:00","created_at":"2017-06-22T21:12:58-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additives","book","carbon","clay","fire","flame retardancy","flame retardant","flammability","nanocomposites","nanotubes","p-additives","phosphorus","ploymer","polymer","polymeric"],"price":18700,"price_min":18700,"price_max":18700,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378322436,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Flame Retardant Polymer Nanocomposites","public_title":null,"options":["Default Title"],"price":18700,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-471-73426-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-73426-0.jpg?v=1499724462"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-73426-0.jpg?v=1499724462","options":["Title"],"media":[{"alt":null,"id":354807349341,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-73426-0.jpg?v=1499724462"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-73426-0.jpg?v=1499724462","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., Alexander B. Morgan, Charles A. Wilkie \u003cbr\u003eISBN 978-0-471-73426-0 \u003cbr\u003e\u003cbr\u003epages 421, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFlame Retardant Polymer Nanocomposites takes a comprehensive look at polymer nanocomposites for flame retardancy applications and includes nanocomposite fundamentals (theory, design, synthesis, characterization) as well as polymer flammability fundamentals with emphasis on how nanocomposites affect flammability.\u003cbr\u003e\u003cbr\u003eThe book has practical examples from literature, patents, and existing commercial products. Readers can design new work based upon the material in the book or use it as a handy reference for interpreting existing work and results.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1. Introduction to Flame Retardancy and Polymer Flammability. \u003cbr\u003e\u003cbr\u003eChapter 2. Polymer Nanocomposite Technology, Fundamentals. \u003cbr\u003e\u003cbr\u003eChapter 3. Flame Retardant Mechanism of Polymer Clay Nanocomposites. \u003cbr\u003e\u003cbr\u003eChapter 4. Molecular Mechanics Calculations of the Thermodynamic Stabilities of Polymer\/Carbon Nanotube Composites? \u003cbr\u003e\u003cbr\u003eChapter 5. Considerations on the Specific Impacts of the Main Fire Retardancy Mechanisms in Nanocomposites. \u003cbr\u003e\u003cbr\u003eChapter 6. Intumescence and Nanocomposite: a Novel Route for Flame Retarding Polymeric Materials. \u003cbr\u003e\u003cbr\u003eChapter 7. Flame Retardant Properties of Organoclays and Carbon Nanotubes and Their Combinations with Alumina Trihydrate. \u003cbr\u003e\u003cbr\u003eChapter 8. Nanocomposites with Halogen and Non-Intumescent Phosphorus Flame Retardant Additives. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 9. Thermoset Fire Retardant Nanocomposites. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 10. Progress in Flammability Studies of Nanocomposites with New Types of Nanoparticles. \u003cbr\u003e\u003cbr\u003eChapter 11. Potential Applications of Nanocomposites for Flame Retardancy. \u003cbr\u003e\u003cbr\u003eChapter 12. Practical Issues and Future Trends of Polymer Nanocomposite Flammability Research.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eAlexander B. Morgan\u003c\/strong\u003e, PhD, is a Senior Research Scientist and group leader for the Advanced Polymers Group at the University of Dayton Research Institute. Dr. Morgan has worked for over eleven years in the field of flame retardancy and has focused on flame retardant nanocomposites for the past seven years. He previously held positions at Dow Chemical as a research chemist and was a National Research Council Postdoctoral Fellow at the National Institute of Standards and Technology. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCharles A. Wilkie\u003c\/strong\u003e, PhD, is the Pfletschinger-Habermann Professor of Chemistry at Marquette University. Dr. Wilkie has worked for almost thirty years in fire retardancy, focusing on nanocomposites the past seven years. He is Associate Editor of Polymers for Advanced Technologies and on the editorial boards of Thermochimica Acta and Polymer Degradation and Stability."}
Fluorinated Ionomers, ...
$180.00
{"id":11242240580,"title":"Fluorinated Ionomers, 2nd Edition","handle":"978-1-4377-4457-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Walther Grot, Ion Power, Inc. (former DuPont), Delaware, U.S.A. \u003cbr\u003eISBN 978-1-4377-4457-6 \u003cbr\u003e\u003cbr\u003eHardbound, 312 Pages \n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFluorinated ionomer polymers form impermeable membranes that conduct electricity, properties that have been put to use in large-scale electrochemical applications, revolutionizing the chlor-alkali industry and transforming production methods of some of the world’s highest-production commodity chemicals: chlorine, sodium hydroxide, and potassium hydroxide. The use of fluorinated ionomers such as Nafion® has removed the need for mercury and asbestos in these processes and led to a massive reduction in electricity usage in these highly energy-intensive processes. Polymers in this group have also found uses in fuel-cells, metal-ion recovery, water electrolysis, plating, surface treatment of metals, batteries, sensors, drug release technologies, gas drying and humidification, and super-acid catalysis used in the production of specialty chemicals. Walther Grot, who invented Nafion® while working for DuPont, has written this book as a practical guide to engineers and scientists working in electrochemistry, the fuel cell industry and other areas of application. His book is a unique guide to this important polymer group and its applications, in membranes and other forms. The 2e expands this handbook by over a third, with new sections covering developments in electrolysis and membranes, additional information about the synthesis and science of the polymer group, and an enhanced provision of reference data. \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience:\u003c\/b\u003e \u003c\/p\u003e\n\u003cp\u003eIndustrial Chemists, Chemical Engineers and Electrical Engineers involved in product development and technical service in the Chlor-alkali and fuel cell industries. Engineers involved in applications using fluorinated ionomers, e.g. chemical industry, energy\/cleantech, automotive industry. Fluoropolymer manufacturers \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e1.1 Polymers\u003cbr\u003e\u003cbr\u003e1.2 Physical Shapes\u003cbr\u003e\u003cbr\u003e1.3 References\u003cbr\u003e\u003cbr\u003e2 History\u003cbr\u003e\u003cbr\u003e2.1 References\u003cbr\u003e\u003cbr\u003e3 Manufacture\u003cbr\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e\u003cbr\u003e3.2 Perfluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.3 Polymerization\u003cbr\u003e\u003cbr\u003e3.4 Fabrication\u003cbr\u003e\u003cbr\u003e3.5 Hydrolysis and Acid Exchange\u003cbr\u003e\u003cbr\u003e3.6 Finishing and Testing\u003cbr\u003e\u003cbr\u003e3.7 Liquid Compositions\u003cbr\u003e\u003cbr\u003e3.8 Fluorinated Ionomers with Phosphonic or Sulfonyl Imide Functional Groups\u003cbr\u003e\u003cbr\u003e3.9 Partially Fluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.10 Composite Materials of Ionomers and Inorganic Oxides\u003cbr\u003e\u003cbr\u003e3.11 Composite Materials of Ionomers and a Porous Matrix\u003cbr\u003e\u003cbr\u003e3.12 Remanufactured Membranes\u003cbr\u003e\u003cbr\u003e3.13 References\u003cbr\u003e\u003cbr\u003e4 Properties\u003cbr\u003e\u003cbr\u003e4.1 Properties of the Precursor Polymers\u003cbr\u003e\u003cbr\u003e4.2 Properties of the Ionic Forms\u003cbr\u003e\u003cbr\u003e4.3 Morphology\u003cbr\u003e\u003cbr\u003e4.4 Transport Properties\u003cbr\u003e\u003cbr\u003e4.5 Optical Properties\u003cbr\u003e\u003cbr\u003e4.6 Thermal Properties\u003cbr\u003e\u003cbr\u003e4.7 Stability\u003cbr\u003e\u003cbr\u003e4.8 References\u003cbr\u003e\u003cbr\u003e5 Applications\u003cbr\u003e\u003cbr\u003e5.1 Electrolysis\u003cbr\u003e\u003cbr\u003e5.2 Sensors and Actuators\u003cbr\u003e\u003cbr\u003e5.3 Dialysis\u003cbr\u003e\u003cbr\u003e5.4 Gas and Vapor Diffusion\u003cbr\u003e\u003cbr\u003e5.5 Protective Clothing\u003cbr\u003e\u003cbr\u003e5.6 Catalysis\u003cbr\u003e\u003cbr\u003e5.7 References\u003cbr\u003e\u003cbr\u003e6 Fuel Cells and Batteries\u003cbr\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e\u003cbr\u003e6.2 Operating Parameters\u003cbr\u003e\u003cbr\u003e6.3 Ionomer Stability\u003cbr\u003e\u003cbr\u003e6.4 Direct Methanol Fuel Cells (DMFCs)\u003cbr\u003e\u003cbr\u003e6.5 Manufacture of MEAs\u003cbr\u003e\u003cbr\u003e6.6 Rechargeable Flow Through Batteries\u003cbr\u003e\u003cbr\u003e6.7 References\u003cbr\u003e\u003cbr\u003e6.8 Further Reading\u003cbr\u003e\u003cbr\u003e7 Commercial Membrane Types\u003cbr\u003e\u003cbr\u003e7.1 Unreinforced Perfluorinated Sulfonic Acid Films\u003cbr\u003e\u003cbr\u003e7.2 Reinforced Perfluorinated Membranes\u003cbr\u003e\u003cbr\u003e8 Economic Aspects\u003cbr\u003e\u003cbr\u003e8.1 Chlor-Alkali Cells\u003cbr\u003e\u003cbr\u003e8.2 Fuel Cells\u003cbr\u003e\u003cbr\u003e8.3 References\u003cbr\u003e\u003cbr\u003e9 Experimental Methods\u003cbr\u003e\u003cbr\u003e9.1 Infrared Spectra\u003cbr\u003e\u003cbr\u003e9.2 Hydrolysis, Surface Hydrolysis, and Staining\u003cbr\u003e\u003cbr\u003e9.3 Other Reactions of the Precursor Polymer\u003cbr\u003e\u003cbr\u003e9.4 Ion Exchange Equilibrium\u003cbr\u003e\u003cbr\u003e9.5 Determination of EW by Titration or Infrared Analysis\u003cbr\u003e\u003cbr\u003e9.6 Determining Melt Flow\u003cbr\u003e\u003cbr\u003e9.7 Distinguishing the Precursor Polymer from Various Ionic Forms\u003cbr\u003e\u003cbr\u003e9.8 Fenton’s Test for Oxidative Stability\u003cbr\u003e\u003cbr\u003e9.9 Examination of a Membrane\u003cbr\u003e\u003cbr\u003e9.10 Determining the Permselectivity\u003cbr\u003e\u003cbr\u003e9.11 Measuring Pervaporation Rates\u003cbr\u003e\u003cbr\u003e9.12 Simple Electrolytic Cells\u003cbr\u003e\u003cbr\u003e9.13 References\u003cbr\u003e\u003cbr\u003e10 Heat Sealing and Repair\u003cbr\u003e\u003cbr\u003e10.1 Reference\u003cbr\u003e\u003cbr\u003e11 Handling and Storage\u003cbr\u003e\u003cbr\u003e11.1 Handling the Film\u003cbr\u003e\u003cbr\u003e11.2 Pretreatment\u003cbr\u003e\u003cbr\u003e11.3 Installation\u003cbr\u003e\u003cbr\u003e11.4 Sealing and Gasketing\u003cbr\u003e\u003cbr\u003e12 Toxicology, Safety and Disposal\u003cbr\u003e\u003cbr\u003e12.1 Toxicology\u003cbr\u003e\u003cbr\u003e12.2 Safety\u003cbr\u003e\u003cbr\u003e12.3 Disposal\u003cbr\u003e\u003cbr\u003e12.4 References\u003cbr\u003e\u003cbr\u003eAppendix A A Chromic Acid Regeneration System\u003cbr\u003e\u003cbr\u003eAppendix B Laboratory Chlor-alkali Cell\u003cbr\u003e\u003cbr\u003eAppendix C Solution Cast Nafion Film\u003cbr\u003e\u003cbr\u003eAppendix D Plastic-Based Bipolar Plates\u003cbr\u003e\u003cbr\u003eSuppliers and Resources\u003cbr\u003e\u003cbr\u003eGlossary and Web Sites\u003cbr\u003e\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:45-04:00","created_at":"2017-06-22T21:14:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","composite","fluorinated ionomers","fluoropolymers","ionic forms","ionomers","Nafion","p-chemistry","polymer"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433988,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fluorinated Ionomers, 2nd Edition","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-4457-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526","options":["Title"],"media":[{"alt":null,"id":354807447645,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Walther Grot, Ion Power, Inc. (former DuPont), Delaware, U.S.A. \u003cbr\u003eISBN 978-1-4377-4457-6 \u003cbr\u003e\u003cbr\u003eHardbound, 312 Pages \n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFluorinated ionomer polymers form impermeable membranes that conduct electricity, properties that have been put to use in large-scale electrochemical applications, revolutionizing the chlor-alkali industry and transforming production methods of some of the world’s highest-production commodity chemicals: chlorine, sodium hydroxide, and potassium hydroxide. The use of fluorinated ionomers such as Nafion® has removed the need for mercury and asbestos in these processes and led to a massive reduction in electricity usage in these highly energy-intensive processes. Polymers in this group have also found uses in fuel-cells, metal-ion recovery, water electrolysis, plating, surface treatment of metals, batteries, sensors, drug release technologies, gas drying and humidification, and super-acid catalysis used in the production of specialty chemicals. Walther Grot, who invented Nafion® while working for DuPont, has written this book as a practical guide to engineers and scientists working in electrochemistry, the fuel cell industry and other areas of application. His book is a unique guide to this important polymer group and its applications, in membranes and other forms. The 2e expands this handbook by over a third, with new sections covering developments in electrolysis and membranes, additional information about the synthesis and science of the polymer group, and an enhanced provision of reference data. \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience:\u003c\/b\u003e \u003c\/p\u003e\n\u003cp\u003eIndustrial Chemists, Chemical Engineers and Electrical Engineers involved in product development and technical service in the Chlor-alkali and fuel cell industries. Engineers involved in applications using fluorinated ionomers, e.g. chemical industry, energy\/cleantech, automotive industry. Fluoropolymer manufacturers \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e1.1 Polymers\u003cbr\u003e\u003cbr\u003e1.2 Physical Shapes\u003cbr\u003e\u003cbr\u003e1.3 References\u003cbr\u003e\u003cbr\u003e2 History\u003cbr\u003e\u003cbr\u003e2.1 References\u003cbr\u003e\u003cbr\u003e3 Manufacture\u003cbr\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e\u003cbr\u003e3.2 Perfluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.3 Polymerization\u003cbr\u003e\u003cbr\u003e3.4 Fabrication\u003cbr\u003e\u003cbr\u003e3.5 Hydrolysis and Acid Exchange\u003cbr\u003e\u003cbr\u003e3.6 Finishing and Testing\u003cbr\u003e\u003cbr\u003e3.7 Liquid Compositions\u003cbr\u003e\u003cbr\u003e3.8 Fluorinated Ionomers with Phosphonic or Sulfonyl Imide Functional Groups\u003cbr\u003e\u003cbr\u003e3.9 Partially Fluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.10 Composite Materials of Ionomers and Inorganic Oxides\u003cbr\u003e\u003cbr\u003e3.11 Composite Materials of Ionomers and a Porous Matrix\u003cbr\u003e\u003cbr\u003e3.12 Remanufactured Membranes\u003cbr\u003e\u003cbr\u003e3.13 References\u003cbr\u003e\u003cbr\u003e4 Properties\u003cbr\u003e\u003cbr\u003e4.1 Properties of the Precursor Polymers\u003cbr\u003e\u003cbr\u003e4.2 Properties of the Ionic Forms\u003cbr\u003e\u003cbr\u003e4.3 Morphology\u003cbr\u003e\u003cbr\u003e4.4 Transport Properties\u003cbr\u003e\u003cbr\u003e4.5 Optical Properties\u003cbr\u003e\u003cbr\u003e4.6 Thermal Properties\u003cbr\u003e\u003cbr\u003e4.7 Stability\u003cbr\u003e\u003cbr\u003e4.8 References\u003cbr\u003e\u003cbr\u003e5 Applications\u003cbr\u003e\u003cbr\u003e5.1 Electrolysis\u003cbr\u003e\u003cbr\u003e5.2 Sensors and Actuators\u003cbr\u003e\u003cbr\u003e5.3 Dialysis\u003cbr\u003e\u003cbr\u003e5.4 Gas and Vapor Diffusion\u003cbr\u003e\u003cbr\u003e5.5 Protective Clothing\u003cbr\u003e\u003cbr\u003e5.6 Catalysis\u003cbr\u003e\u003cbr\u003e5.7 References\u003cbr\u003e\u003cbr\u003e6 Fuel Cells and Batteries\u003cbr\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e\u003cbr\u003e6.2 Operating Parameters\u003cbr\u003e\u003cbr\u003e6.3 Ionomer Stability\u003cbr\u003e\u003cbr\u003e6.4 Direct Methanol Fuel Cells (DMFCs)\u003cbr\u003e\u003cbr\u003e6.5 Manufacture of MEAs\u003cbr\u003e\u003cbr\u003e6.6 Rechargeable Flow Through Batteries\u003cbr\u003e\u003cbr\u003e6.7 References\u003cbr\u003e\u003cbr\u003e6.8 Further Reading\u003cbr\u003e\u003cbr\u003e7 Commercial Membrane Types\u003cbr\u003e\u003cbr\u003e7.1 Unreinforced Perfluorinated Sulfonic Acid Films\u003cbr\u003e\u003cbr\u003e7.2 Reinforced Perfluorinated Membranes\u003cbr\u003e\u003cbr\u003e8 Economic Aspects\u003cbr\u003e\u003cbr\u003e8.1 Chlor-Alkali Cells\u003cbr\u003e\u003cbr\u003e8.2 Fuel Cells\u003cbr\u003e\u003cbr\u003e8.3 References\u003cbr\u003e\u003cbr\u003e9 Experimental Methods\u003cbr\u003e\u003cbr\u003e9.1 Infrared Spectra\u003cbr\u003e\u003cbr\u003e9.2 Hydrolysis, Surface Hydrolysis, and Staining\u003cbr\u003e\u003cbr\u003e9.3 Other Reactions of the Precursor Polymer\u003cbr\u003e\u003cbr\u003e9.4 Ion Exchange Equilibrium\u003cbr\u003e\u003cbr\u003e9.5 Determination of EW by Titration or Infrared Analysis\u003cbr\u003e\u003cbr\u003e9.6 Determining Melt Flow\u003cbr\u003e\u003cbr\u003e9.7 Distinguishing the Precursor Polymer from Various Ionic Forms\u003cbr\u003e\u003cbr\u003e9.8 Fenton’s Test for Oxidative Stability\u003cbr\u003e\u003cbr\u003e9.9 Examination of a Membrane\u003cbr\u003e\u003cbr\u003e9.10 Determining the Permselectivity\u003cbr\u003e\u003cbr\u003e9.11 Measuring Pervaporation Rates\u003cbr\u003e\u003cbr\u003e9.12 Simple Electrolytic Cells\u003cbr\u003e\u003cbr\u003e9.13 References\u003cbr\u003e\u003cbr\u003e10 Heat Sealing and Repair\u003cbr\u003e\u003cbr\u003e10.1 Reference\u003cbr\u003e\u003cbr\u003e11 Handling and Storage\u003cbr\u003e\u003cbr\u003e11.1 Handling the Film\u003cbr\u003e\u003cbr\u003e11.2 Pretreatment\u003cbr\u003e\u003cbr\u003e11.3 Installation\u003cbr\u003e\u003cbr\u003e11.4 Sealing and Gasketing\u003cbr\u003e\u003cbr\u003e12 Toxicology, Safety and Disposal\u003cbr\u003e\u003cbr\u003e12.1 Toxicology\u003cbr\u003e\u003cbr\u003e12.2 Safety\u003cbr\u003e\u003cbr\u003e12.3 Disposal\u003cbr\u003e\u003cbr\u003e12.4 References\u003cbr\u003e\u003cbr\u003eAppendix A A Chromic Acid Regeneration System\u003cbr\u003e\u003cbr\u003eAppendix B Laboratory Chlor-alkali Cell\u003cbr\u003e\u003cbr\u003eAppendix C Solution Cast Nafion Film\u003cbr\u003e\u003cbr\u003eAppendix D Plastic-Based Bipolar Plates\u003cbr\u003e\u003cbr\u003eSuppliers and Resources\u003cbr\u003e\u003cbr\u003eGlossary and Web Sites\u003cbr\u003e\u003cbr\u003eIndex"}
Fluoroelastomers Handb...
$289.00
{"id":11242216516,"title":"Fluoroelastomers Handbook: The Definitive User's Guide and Databook","handle":"0-8155-1517-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Albert L. Moore \u003cbr\u003eISBN \u003cspan\u003e0-8155-1517-0\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003ePages 325\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive reference on fluoroelastomer chemistry, processing technology, and applications. This is a must-have reference for materials scientists and engineers in the automotive, aerospace, chemical, chemical process, and power generation industries. Fluoroelastomers meet rigorous performance requirements in harsh environments, enhancing reliability, safety, and environmental friendliness. Fluoroelastomers are growing as products of choice for critical components such as O-rings, hoses, and seals in hostile fluid and temperature conditions. \u003cbr\u003e\u003cbr\u003eThe first part of this book is an overview of fluorocarbon elastomers, including descriptions of the nature of fluoroelastomers, properties of various compositions, developmental history, and major uses. The second part provides more details of fluoroelastomer technology, including monomer properties and synthesis, polymerization and production processes, cure systems, and processing methods. The third and last part covers fluid resistance of various fluoroelastomer families, major applications of fluoroelastomers, and safety and disposal.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey Features\u003c\/strong\u003e \u003cbr\u003e• Sections on polymerization include considerable theoretical detail.\u003cbr\u003e• Sections on technology emphasize what is currently used commercially, along with some developments likely to become important in the future.\u003cbr\u003e• Trends in product development, emerging uses, and methods of fabrication are discussed.\u003cbr\u003e• References at the end of each chapter serve as a bibliography and additional reading resources.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart 1: Fluoroelastomers Overview\u003cbr\u003e1. Fundamentals\u003cbr\u003e2. Fluoroelastomer Composition and Properties \u003cbr\u003e\u003cbr\u003ePart 2: Fluoroelastomers Technology\u003cbr\u003e3. Fluoroelastomers Monomers\u003cbr\u003e4. Production of Fluoroelastomers\u003cbr\u003e5. Cure systems for Fluoroelastomers\u003cbr\u003e6. Processing of Fluoroelastomers \u003cbr\u003e\u003cbr\u003ePart 3: Fluoroelastomer Applications\u003cbr\u003e7. Fluid Resistance of VDF-Containing Fluoroelastomers\u003cbr\u003e8. Fluid and Heat Resistance of Perfluoroelastomers\u003cbr\u003e9. Fluid Resistance of TPE-Olefin Fluoroelastomers\u003cbr\u003e10. Fluoroelastomer Applications\u003cbr\u003e11. Compounds for O-Rings and Molded Goods\u003cbr\u003e12. Compounds for Auto Fuel Systems\u003cbr\u003e13. Compounds for Auto Power Train Service\u003cbr\u003e14. Compounds for Power Plant Service\u003cbr\u003e15. Other Fluoroelastomer Applications and Processing\u003cbr\u003e16. Fluoroelastomer Safety and Disposal\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Albert L. Moore, with a Sc.D. from MIT, began his career in 1961 with DuPont as a research engineer in the Elastomer Chemicals Department. He accumulated more than twelve processes and composition of matter patents during his career of nearly forty years, including twenty-five years in fluoroelastomers research and development. His contributions included several new fluoroelastomer compositions and polymerization process improvements. At the time of his recent retirement, he was the only recognized Senior DuPont Dow Scientist and was a recipient of the 2000 DuPont Lavoisier Medal for Technical Achievement. Recently, he received the 2004 Technical Award from the International Institute of Synthetic Rubber Producers.","published_at":"2017-06-22T21:13:29-04:00","created_at":"2017-06-22T21:13:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","aerospace","applications","automotive","book","cure systems","disposal","fluorocarbon","fluoroelastomer chemistry","fluoroelastomers","p-chemistry","polymer","polymerization","safety","technology"],"price":28900,"price_min":28900,"price_max":28900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378358084,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fluoroelastomers Handbook: The Definitive User's Guide and Databook","public_title":null,"options":["Default Title"],"price":28900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"0-8155-1517-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1517-0.jpg?v=1499386426"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1517-0.jpg?v=1499386426","options":["Title"],"media":[{"alt":null,"id":354807480413,"position":1,"preview_image":{"aspect_ratio":0.776,"height":450,"width":349,"src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1517-0.jpg?v=1499386426"},"aspect_ratio":0.776,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1517-0.jpg?v=1499386426","width":349}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Albert L. Moore \u003cbr\u003eISBN \u003cspan\u003e0-8155-1517-0\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003ePages 325\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive reference on fluoroelastomer chemistry, processing technology, and applications. This is a must-have reference for materials scientists and engineers in the automotive, aerospace, chemical, chemical process, and power generation industries. Fluoroelastomers meet rigorous performance requirements in harsh environments, enhancing reliability, safety, and environmental friendliness. Fluoroelastomers are growing as products of choice for critical components such as O-rings, hoses, and seals in hostile fluid and temperature conditions. \u003cbr\u003e\u003cbr\u003eThe first part of this book is an overview of fluorocarbon elastomers, including descriptions of the nature of fluoroelastomers, properties of various compositions, developmental history, and major uses. The second part provides more details of fluoroelastomer technology, including monomer properties and synthesis, polymerization and production processes, cure systems, and processing methods. The third and last part covers fluid resistance of various fluoroelastomer families, major applications of fluoroelastomers, and safety and disposal.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey Features\u003c\/strong\u003e \u003cbr\u003e• Sections on polymerization include considerable theoretical detail.\u003cbr\u003e• Sections on technology emphasize what is currently used commercially, along with some developments likely to become important in the future.\u003cbr\u003e• Trends in product development, emerging uses, and methods of fabrication are discussed.\u003cbr\u003e• References at the end of each chapter serve as a bibliography and additional reading resources.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart 1: Fluoroelastomers Overview\u003cbr\u003e1. Fundamentals\u003cbr\u003e2. Fluoroelastomer Composition and Properties \u003cbr\u003e\u003cbr\u003ePart 2: Fluoroelastomers Technology\u003cbr\u003e3. Fluoroelastomers Monomers\u003cbr\u003e4. Production of Fluoroelastomers\u003cbr\u003e5. Cure systems for Fluoroelastomers\u003cbr\u003e6. Processing of Fluoroelastomers \u003cbr\u003e\u003cbr\u003ePart 3: Fluoroelastomer Applications\u003cbr\u003e7. Fluid Resistance of VDF-Containing Fluoroelastomers\u003cbr\u003e8. Fluid and Heat Resistance of Perfluoroelastomers\u003cbr\u003e9. Fluid Resistance of TPE-Olefin Fluoroelastomers\u003cbr\u003e10. Fluoroelastomer Applications\u003cbr\u003e11. Compounds for O-Rings and Molded Goods\u003cbr\u003e12. Compounds for Auto Fuel Systems\u003cbr\u003e13. Compounds for Auto Power Train Service\u003cbr\u003e14. Compounds for Power Plant Service\u003cbr\u003e15. Other Fluoroelastomer Applications and Processing\u003cbr\u003e16. Fluoroelastomer Safety and Disposal\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Albert L. Moore, with a Sc.D. from MIT, began his career in 1961 with DuPont as a research engineer in the Elastomer Chemicals Department. He accumulated more than twelve processes and composition of matter patents during his career of nearly forty years, including twenty-five years in fluoroelastomers research and development. His contributions included several new fluoroelastomer compositions and polymerization process improvements. At the time of his recent retirement, he was the only recognized Senior DuPont Dow Scientist and was a recipient of the 2000 DuPont Lavoisier Medal for Technical Achievement. Recently, he received the 2004 Technical Award from the International Institute of Synthetic Rubber Producers."}
Fluoroplastics: Melt-P...
$255.00
{"id":11242217732,"title":"Fluoroplastics: Melt-Processible Fluoroplastics. Volume 2","handle":"1-884207-96-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sina Ebnesajjad \u003cbr\u003eISBN \u003cspan\u003e1-884207-96-0\u003c\/span\u003e\n\u003cdiv class=\"weak inline printman\"\u003e\u003c\/div\u003e\nDuPont Fluoroproducts, Wilmington, DE, USA\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the second of a two-volume series of books about fluoroplastics. Volume 1 covers the non-melt processible homopolymers, requiring non-traditional processing techniques. Volume 2 is devoted to the melt-processible fluoropolymers, their polymerization and fabrication techniques including injection molding, wire, tube, and film extrusion, rotational molding, blow molding, compression molding, and transfer molding. Both a source of data and a reference, the properties, characteristics, applications, safety, disposal, and recycling of melt-processible fluoropolymers are comprehensively detailed for immediate use by today's practicing engineering and scientists in the plastics industry. Students will benefit from the book's arrangement and extensive references.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eIntroduction\u003cbr\u003e\u003cbr\u003ePART I\u003cbr\u003eChapter 1 Fundamentals\u003cbr\u003eChapter 2 Fluoropolymers: Properties and Structure \u003cbr\u003eChapter 3 Operational Classification of Fluoropolymers\u003cbr\u003eChapter 4 Homofluoropolymer Monomers \u003cbr\u003eChapter 5 Polymerization and Finishing Melt Processible Fluoropolymers\u003cbr\u003eChapter 6 Commercial Grades of Melt Processible Fluoropolymers\u003cbr\u003e\u003cbr\u003ePART II\u003cbr\u003eChapter 7 Injection Molding\u003cbr\u003eChapter 8 Extrusion\u003cbr\u003eChapter 9 Rotational Molding and Lining\u003cbr\u003eChapter 10 Other Molding Techniques\u003cbr\u003eChapter 11 Fluoropolymer Foams \u003cbr\u003e\u003cbr\u003ePART III\u003cbr\u003eChapter 12 Chemical Properties of Fluoropolymers\u003cbr\u003eChapter 13 Properties of Fluoropolymers\u003cbr\u003eChapter 14 Fabrication Techniques for Fluoropolymers \u003cbr\u003eChapter 15 Fluoropolymer Applications in the Microelectronics Industry \u003cbr\u003eChapter 16 Typical Applications of Fluoropolymers\u003cbr\u003eChapter 17 Safety, Disposal, and Recycling of Fluoropolymers \u003cbr\u003e\u003cbr\u003eAppendix I High Temperature Resistance of Fluoropolymers to Automotive Fuels \u003cbr\u003eAppendix II Permeation Properties of Perfluoroplastics \u003cbr\u003eAppendix III Permeation Properties of Partially Fluorinated Fluoroplastics \u003cbr\u003eAppendix IV Permeation Properties of Automotive Fuels Through Fluoroplastics \u003cbr\u003eAppendix V Permeation of Organic and Inorganic Chemicals Through \u003cbr\u003eFluoroplastics Film\u003cbr\u003eAppendix VI Mechanical, Thermal, Electrical, Physical, and Miscellaneous \u003cbr\u003eProperties of Fluoroplastics\u003cbr\u003eAppendix VII Modulus Data for Fluoroplastics \u003cbr\u003e\u003cbr\u003eGlossary\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Sina Ebnesajjad is a Senior Technology Associate in the Fluoropolymers Division of DuPont Fluoroproducts in Wilmington, Delaware, where he has been involved in a variety of technical assignments since 1986. He earned his Ph.D. in chemical engineering from the University of Michigan, Ann Arbor.","published_at":"2017-06-22T21:13:34-04:00","created_at":"2017-06-22T21:13:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","applications","blow molding","book","characteristics","compression molding","disposal","electrical","extrusion","film","fluoropolymers","injection molding","melt-processible","p-chemistry","perfluoroplastics","polymer","polymerization","properties","recycling","rotational molding","safety","semiconductor industries","transfer molding","tube","wire"],"price":25500,"price_min":25500,"price_max":25500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378361284,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fluoroplastics: Melt-Processible Fluoroplastics. Volume 2","public_title":null,"options":["Default Title"],"price":25500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-96-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-96-0.jpg?v=1499386513"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-96-0.jpg?v=1499386513","options":["Title"],"media":[{"alt":null,"id":354807611485,"position":1,"preview_image":{"aspect_ratio":0.771,"height":450,"width":347,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-96-0.jpg?v=1499386513"},"aspect_ratio":0.771,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-96-0.jpg?v=1499386513","width":347}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sina Ebnesajjad \u003cbr\u003eISBN \u003cspan\u003e1-884207-96-0\u003c\/span\u003e\n\u003cdiv class=\"weak inline printman\"\u003e\u003c\/div\u003e\nDuPont Fluoroproducts, Wilmington, DE, USA\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the second of a two-volume series of books about fluoroplastics. Volume 1 covers the non-melt processible homopolymers, requiring non-traditional processing techniques. Volume 2 is devoted to the melt-processible fluoropolymers, their polymerization and fabrication techniques including injection molding, wire, tube, and film extrusion, rotational molding, blow molding, compression molding, and transfer molding. Both a source of data and a reference, the properties, characteristics, applications, safety, disposal, and recycling of melt-processible fluoropolymers are comprehensively detailed for immediate use by today's practicing engineering and scientists in the plastics industry. Students will benefit from the book's arrangement and extensive references.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eIntroduction\u003cbr\u003e\u003cbr\u003ePART I\u003cbr\u003eChapter 1 Fundamentals\u003cbr\u003eChapter 2 Fluoropolymers: Properties and Structure \u003cbr\u003eChapter 3 Operational Classification of Fluoropolymers\u003cbr\u003eChapter 4 Homofluoropolymer Monomers \u003cbr\u003eChapter 5 Polymerization and Finishing Melt Processible Fluoropolymers\u003cbr\u003eChapter 6 Commercial Grades of Melt Processible Fluoropolymers\u003cbr\u003e\u003cbr\u003ePART II\u003cbr\u003eChapter 7 Injection Molding\u003cbr\u003eChapter 8 Extrusion\u003cbr\u003eChapter 9 Rotational Molding and Lining\u003cbr\u003eChapter 10 Other Molding Techniques\u003cbr\u003eChapter 11 Fluoropolymer Foams \u003cbr\u003e\u003cbr\u003ePART III\u003cbr\u003eChapter 12 Chemical Properties of Fluoropolymers\u003cbr\u003eChapter 13 Properties of Fluoropolymers\u003cbr\u003eChapter 14 Fabrication Techniques for Fluoropolymers \u003cbr\u003eChapter 15 Fluoropolymer Applications in the Microelectronics Industry \u003cbr\u003eChapter 16 Typical Applications of Fluoropolymers\u003cbr\u003eChapter 17 Safety, Disposal, and Recycling of Fluoropolymers \u003cbr\u003e\u003cbr\u003eAppendix I High Temperature Resistance of Fluoropolymers to Automotive Fuels \u003cbr\u003eAppendix II Permeation Properties of Perfluoroplastics \u003cbr\u003eAppendix III Permeation Properties of Partially Fluorinated Fluoroplastics \u003cbr\u003eAppendix IV Permeation Properties of Automotive Fuels Through Fluoroplastics \u003cbr\u003eAppendix V Permeation of Organic and Inorganic Chemicals Through \u003cbr\u003eFluoroplastics Film\u003cbr\u003eAppendix VI Mechanical, Thermal, Electrical, Physical, and Miscellaneous \u003cbr\u003eProperties of Fluoroplastics\u003cbr\u003eAppendix VII Modulus Data for Fluoroplastics \u003cbr\u003e\u003cbr\u003eGlossary\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Sina Ebnesajjad is a Senior Technology Associate in the Fluoropolymers Division of DuPont Fluoroproducts in Wilmington, Delaware, where he has been involved in a variety of technical assignments since 1986. He earned his Ph.D. in chemical engineering from the University of Michigan, Ann Arbor."}
Fluoropolymer Additive...
$249.00
{"id":11242202628,"title":"Fluoropolymer Additives, 1st Edition","handle":"978-1-4377-3461-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ebnesajjad \u0026amp; Morgan \u003cbr\u003eISBN 978-1-4377-3461-4 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cli\u003eFluoropolymer additives are becoming more widely used with key applications including use as a polymer processing aid (increasing speed and reducing faults) and as an additive to lubricants, inks and coatings. This book is the only practical guide available to the selection and use of fluoropolymer additives and will help readers to optimize existing fluoropolymer applications and implement new ones.\u003c\/li\u003e\n\u003cli\u003eFluoropolymers are known as an area where detailed information is hard to come by. In this book, two former DuPont employees provide a wide range of industry sectors with the essential practical information and data they need to realize the full benefits of fluoropolymer additives. \u003c\/li\u003e\n\u003cli\u003eWritten for practicing engineers, Ebnesajjad and Morgan take a highly practical approach to the subject, based on real-world experience and case studies.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn recent years, the applications of fluoropolymer additives have expanded significantly, with even the meaning of 'fluoropolymer additives' expanding from relatively the narrow definition of PTFE powder fillers to a wide variety of fluoropolymer elastomers, used as a processing aid for plastics processing such as extrusion, injection molding, and film blowing. The benefits of fluoropolymer additives used in plastics are the elimination of sharkskin defects, increases in process speed and output (up to 20%), the reduction of die build up, the reduction of gels and optical defects, etc.In addition, fluropolymer additives are being increasingly used in inks, lubricants, and coatings.For example, in the coating industry fluoropolymer additives can increase the life cycle of exterior coatings due to their excellent weatherability and subsequently increase the time between recoats.Engineers and scientists involved in polymer processing need practical information about these additives, their applications, and proper and safe handling. Until now much of this information has been difficult to obtain because of commercial secrecy.Existing books on polymer additives only include the briefest of coverage of fluoropolymer additives. In this first book on an additive group of growing importance, the authors review the commercial additives available on the market. The applications chapters provide readers with a step by step description of techniques to select and incorporate these additives in various products.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eUNIQUE FEATURES AND BENEFITS:\u003c\/b\u003e\n\u003c\/li\u003e\n\u003cli\u003eFluoropolymer additives are becoming more widely used with key applications including use as a polymer processing aid (increasing speed and reducing faults) and as an additive to lubricants, inks and coatings. This book is the only practical guide available to the selection and use of fluoropolymer additives and will help readers to optimize existing fluoropolymer applications and implement new ones.\u003c\/li\u003e\n\u003cli\u003eFluoropolymers are known as an area where detailed information is hard to come by. In this book, two former DuPont employees provide a wide range of industry sectors with the essential practical information and data they need to realize the full benefits of fluoropolymer additives.\u003c\/li\u003e\n\u003cli\u003eWritten for practicing engineers, Ebnesajjad and Morgan take a highly practical approach to the subject, based on real-world experience and case studies.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePrimary: Plastics Engineers and Product Design Engineers across a wide range of industrial sectors: automotive, aerospace, electronic, pharmaceutical, consumer, furniture, printing\/publishing, lubricants, oil\u0026amp;gas, medical devices; Plastics Compounders.Secondary: University researchers and graduate students, purchasing managers, fluoropolymer manufacturers, fluoropolymer additive manufacturers.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u0026lt;\u003cbr\u003e2. Description of Additives\u0026lt;\u003cbr\u003ePART I MANUFACTURING AND PROPERTIES\u0026lt;\u003cbr\u003e3. Manufacturing and Properties of High Molecular Weight fluoropolymer Additives\u0026lt;\u003cbr\u003e4. Manufacturing and Properties of Low Molecular Weight fluoropolymer Additives\u0026lt;\u003cbr\u003e\u0026lt;\u003cbr\u003e5. Manufacturing and Properties of Fluoroelastomer-based Additives\u0026lt;\u003cbr\u003ePART II APPLICATIONS\u0026lt;\u003cbr\u003e6. Applications of fluoropolymer-based Additives: Lubrication\u0026lt;\u003cbr\u003e7. Applications of fluoropolymer-based Additives: Plastics\u0026lt;\u003cbr\u003e8. Applications of fluoropolymer-based Additives: Inks\u0026lt;\u003cbr\u003e9. Applications of fluoropolymer-based Additives: Coatings, Paints, and Finishes\u0026lt;\u003cbr\u003e10. Applications of fluoropolymer-based Additives: Elastomers\u0026lt;\u003cbr\u003e11. Applications of Processing Aid Additives (fluoroelastomers and FLPR) - Extrusion, Film Blowing, Blow Molding, Injection Molding, and Others\u0026lt;\u003cbr\u003ePART III COMPLIANCE AND ECONOMICS\u0026lt;\u003cbr\u003e12. Compliance with Regulations and Standards\u0026lt;\u003cbr\u003e13. Safety, Health, Environmental, Disposal, and Recycling\u0026lt;\u003cbr\u003eAppendix I Chemical Resistance of PTFE\u0026lt;\u003cbr\u003eAppendix II FDA 21CFR1550\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAreas of Expertise\u003c\/div\u003e\n\u003cdiv\u003eFluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:12:45-04:00","created_at":"2017-06-22T21:12:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","Aaplications of fluoropolymer-based additives","book","flouoropolymer additives","fluoropolymers","p-chemistry","polymer"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378312708,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fluoropolymer Additives, 1st Edition","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-3461-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3461-4.jpg?v=1499386556"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3461-4.jpg?v=1499386556","options":["Title"],"media":[{"alt":null,"id":354808004701,"position":1,"preview_image":{"aspect_ratio":0.78,"height":450,"width":351,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3461-4.jpg?v=1499386556"},"aspect_ratio":0.78,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3461-4.jpg?v=1499386556","width":351}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ebnesajjad \u0026amp; Morgan \u003cbr\u003eISBN 978-1-4377-3461-4 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cli\u003eFluoropolymer additives are becoming more widely used with key applications including use as a polymer processing aid (increasing speed and reducing faults) and as an additive to lubricants, inks and coatings. This book is the only practical guide available to the selection and use of fluoropolymer additives and will help readers to optimize existing fluoropolymer applications and implement new ones.\u003c\/li\u003e\n\u003cli\u003eFluoropolymers are known as an area where detailed information is hard to come by. In this book, two former DuPont employees provide a wide range of industry sectors with the essential practical information and data they need to realize the full benefits of fluoropolymer additives. \u003c\/li\u003e\n\u003cli\u003eWritten for practicing engineers, Ebnesajjad and Morgan take a highly practical approach to the subject, based on real-world experience and case studies.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn recent years, the applications of fluoropolymer additives have expanded significantly, with even the meaning of 'fluoropolymer additives' expanding from relatively the narrow definition of PTFE powder fillers to a wide variety of fluoropolymer elastomers, used as a processing aid for plastics processing such as extrusion, injection molding, and film blowing. The benefits of fluoropolymer additives used in plastics are the elimination of sharkskin defects, increases in process speed and output (up to 20%), the reduction of die build up, the reduction of gels and optical defects, etc.In addition, fluropolymer additives are being increasingly used in inks, lubricants, and coatings.For example, in the coating industry fluoropolymer additives can increase the life cycle of exterior coatings due to their excellent weatherability and subsequently increase the time between recoats.Engineers and scientists involved in polymer processing need practical information about these additives, their applications, and proper and safe handling. Until now much of this information has been difficult to obtain because of commercial secrecy.Existing books on polymer additives only include the briefest of coverage of fluoropolymer additives. In this first book on an additive group of growing importance, the authors review the commercial additives available on the market. The applications chapters provide readers with a step by step description of techniques to select and incorporate these additives in various products.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eUNIQUE FEATURES AND BENEFITS:\u003c\/b\u003e\n\u003c\/li\u003e\n\u003cli\u003eFluoropolymer additives are becoming more widely used with key applications including use as a polymer processing aid (increasing speed and reducing faults) and as an additive to lubricants, inks and coatings. This book is the only practical guide available to the selection and use of fluoropolymer additives and will help readers to optimize existing fluoropolymer applications and implement new ones.\u003c\/li\u003e\n\u003cli\u003eFluoropolymers are known as an area where detailed information is hard to come by. In this book, two former DuPont employees provide a wide range of industry sectors with the essential practical information and data they need to realize the full benefits of fluoropolymer additives.\u003c\/li\u003e\n\u003cli\u003eWritten for practicing engineers, Ebnesajjad and Morgan take a highly practical approach to the subject, based on real-world experience and case studies.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePrimary: Plastics Engineers and Product Design Engineers across a wide range of industrial sectors: automotive, aerospace, electronic, pharmaceutical, consumer, furniture, printing\/publishing, lubricants, oil\u0026amp;gas, medical devices; Plastics Compounders.Secondary: University researchers and graduate students, purchasing managers, fluoropolymer manufacturers, fluoropolymer additive manufacturers.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u0026lt;\u003cbr\u003e2. Description of Additives\u0026lt;\u003cbr\u003ePART I MANUFACTURING AND PROPERTIES\u0026lt;\u003cbr\u003e3. Manufacturing and Properties of High Molecular Weight fluoropolymer Additives\u0026lt;\u003cbr\u003e4. Manufacturing and Properties of Low Molecular Weight fluoropolymer Additives\u0026lt;\u003cbr\u003e\u0026lt;\u003cbr\u003e5. Manufacturing and Properties of Fluoroelastomer-based Additives\u0026lt;\u003cbr\u003ePART II APPLICATIONS\u0026lt;\u003cbr\u003e6. Applications of fluoropolymer-based Additives: Lubrication\u0026lt;\u003cbr\u003e7. Applications of fluoropolymer-based Additives: Plastics\u0026lt;\u003cbr\u003e8. Applications of fluoropolymer-based Additives: Inks\u0026lt;\u003cbr\u003e9. Applications of fluoropolymer-based Additives: Coatings, Paints, and Finishes\u0026lt;\u003cbr\u003e10. Applications of fluoropolymer-based Additives: Elastomers\u0026lt;\u003cbr\u003e11. Applications of Processing Aid Additives (fluoroelastomers and FLPR) - Extrusion, Film Blowing, Blow Molding, Injection Molding, and Others\u0026lt;\u003cbr\u003ePART III COMPLIANCE AND ECONOMICS\u0026lt;\u003cbr\u003e12. Compliance with Regulations and Standards\u0026lt;\u003cbr\u003e13. Safety, Health, Environmental, Disposal, and Recycling\u0026lt;\u003cbr\u003eAppendix I Chemical Resistance of PTFE\u0026lt;\u003cbr\u003eAppendix II FDA 21CFR1550\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAreas of Expertise\u003c\/div\u003e\n\u003cdiv\u003eFluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003c\/li\u003e"}
Food Contact Polymers ...
$180.00
{"id":11242236868,"title":"Food Contact Polymers 2009 Conference Proceedings","handle":"978-1-84735-390-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-390-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e21-22 April 2009, Brussels, Belgium\u003c\/p\u003e\n\u003cp\u003e18 papers\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe worldwide food contact polymers market has seen the enormous change in recent years, a trend in part due to the shifting regulatory landscape. It is important, perhaps now more than ever, to keep abreast of regulatory matters and to identify the provisions that are legally necessary.\u003cbr\u003e\u003cbr\u003eWith these challenges in mind, Food Contact Polymers, 2009 brought together partners from the food processing and packaging supply chain. New materials and innovations in food manufacturing processes and packaging were discussed in detail. Material selection, testing and the all important legislation applicable to all types of food contact materials was also covered.\u003cbr\u003e\u003cbr\u003eAll technical papers presented at this conference are included ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eSESSION 1 THE REGULATORY LANDSCAPE\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKEY NOTE PRESENTATION\u003cbr\u003e\u003cbr\u003ePaper 1 An update on the EU regulations relating to food contact materials\u003cbr\u003eDr. Annette Schäfer, European Commission Health and Consumers Directorate General, Belgium\u003cbr\u003e\u003cbr\u003ePaper 2 Main legislations relating to colorants, inks, and adhesives\u003cbr\u003eDr. Luigi Rossi, Keller \u0026amp; Heckman LLP, Belgium\u003cbr\u003e\u003cbr\u003ePaper 3 Risk assessment by EFSA\u003cbr\u003eDr. Laurence Castle, Central Science laboratory, UK\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 4 Coatings code of practice and results of the FACET project\u003cbr\u003eDr. Peter Oldring, Valspar Europe, UK\u003cbr\u003e\u003cbr\u003ePaper 5 Enforcing the EU legislation on phthalate plasticisers\u003cbr\u003eDr. Jens Højslev Petersen, DTU-Food, National Food Institute, Denmark\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2 MIGRATION RESEARCH\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 6 Assessment of intakes of packaged foods per kg body weight\u003cbr\u003eDr. Emma Foster, Newcastle University, UK\u003cbr\u003e\u003cbr\u003ePaper 7 Elastomeric materials in contact with food- legislation and testing\u003cbr\u003eJohn Sidwell, Sidwell Consulting and Analytical Services Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 8 Safety assessment of FCM migrants using advanced bio-analytical strategies and the TTC principle\u003cbr\u003eWilliam D van Dongen, Sander Koster, M A J Rennen, L Coulier, L van Stee \u0026amp; G F Houben, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 9 DESI\/DART-MS: One minute migration testing?\u003cbr\u003eDr. Sander Koster, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 10 Food safety from the packaging manufacturer's perspective\u003cbr\u003eRobert Broughton, Alcan Packaging UK Ltd, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 ACTIVE \u0026amp; INTELLIGENT PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Testing protocols and developments in active and intelligent packaging\u003cbr\u003eLynneric Potter, Campden BRI, UK\u003cbr\u003e\u003cbr\u003ePaper 12 Study of an active packaging with antioxidant properties\u003cbr\u003eDr. Consuelo Fernández, Dr. Ana Galet \u0026amp; Dr. José María Bermúdez, ITENE, Spain\u003cbr\u003e\u003cbr\u003ePaper 13 Production and properties of multilayer active polyester films for food packaging applications\u003cbr\u003eDr. Maria Rosaria Galdi, Valeria Nicolais, Luciano Di Maio \u0026amp; Loredana Incarnato, University of Salerno, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Special injection technologies applied to the development of active packaging\u003cbr\u003eSerafin Garcia Navarro, AIMPLAS, Spain\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 INNOVATION IN FOOD PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 15 Innovative packaging design for the wine industry\u003cbr\u003eAthanasios Manavis, Ali Mousli, Vaya Dinopoulou \u0026amp; Panagiotis Kyrastsis, Technological Educational Institution of West Macedonia, Greece\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical and oxygen barrier properties of biaxially oriented polypropylene zinc oxide nanocomposites for food packaging applications\u003cbr\u003eDr. Nadia Lepot, Hasselt University, Belgium \u0026amp; Xios Hogeschool Limburg, Belgium; M K Van Bael \u0026amp; H Van den Rul, Hasselt University, Belgium \u0026amp; IMEC vzw, Belgium; J D Haen \u0026amp; J Mullens, Hasselt University, Belgium; R Peters \u0026amp; D Franco, Xios Hogeschool Limburg, Belgium\u003cbr\u003e\u003cbr\u003ePaper 17 Multilayer PP\/EVOH\/PP barrier tray containing O2 scavenger for retort applications\u003cbr\u003eDidier Houssier, EVAL Europe nv, Belgium; Benjamin Bourbon, RPC Barrier Containers, France\u003cbr\u003e\u003cbr\u003ePaper 18 Mater bi biopolymers, packaging applications: Multilayer structures, film lamination \u0026amp; coating \"Compostable packaging\"\u003cbr\u003eStefano Facco, Novamont SpA, Italy\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:14:33-04:00","created_at":"2017-06-22T21:14:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","antioxidants","biopolymers","book","EU regulations","films","food safety","migration","nanocomposites","p-applications","packaging","polyester films","polymer","zinc oxide"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423748,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Food Contact Polymers 2009 Conference Proceedings","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-390-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336","options":["Title"],"media":[{"alt":null,"id":354808234077,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-390-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e21-22 April 2009, Brussels, Belgium\u003c\/p\u003e\n\u003cp\u003e18 papers\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe worldwide food contact polymers market has seen the enormous change in recent years, a trend in part due to the shifting regulatory landscape. It is important, perhaps now more than ever, to keep abreast of regulatory matters and to identify the provisions that are legally necessary.\u003cbr\u003e\u003cbr\u003eWith these challenges in mind, Food Contact Polymers, 2009 brought together partners from the food processing and packaging supply chain. New materials and innovations in food manufacturing processes and packaging were discussed in detail. Material selection, testing and the all important legislation applicable to all types of food contact materials was also covered.\u003cbr\u003e\u003cbr\u003eAll technical papers presented at this conference are included ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eSESSION 1 THE REGULATORY LANDSCAPE\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKEY NOTE PRESENTATION\u003cbr\u003e\u003cbr\u003ePaper 1 An update on the EU regulations relating to food contact materials\u003cbr\u003eDr. Annette Schäfer, European Commission Health and Consumers Directorate General, Belgium\u003cbr\u003e\u003cbr\u003ePaper 2 Main legislations relating to colorants, inks, and adhesives\u003cbr\u003eDr. Luigi Rossi, Keller \u0026amp; Heckman LLP, Belgium\u003cbr\u003e\u003cbr\u003ePaper 3 Risk assessment by EFSA\u003cbr\u003eDr. Laurence Castle, Central Science laboratory, UK\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 4 Coatings code of practice and results of the FACET project\u003cbr\u003eDr. Peter Oldring, Valspar Europe, UK\u003cbr\u003e\u003cbr\u003ePaper 5 Enforcing the EU legislation on phthalate plasticisers\u003cbr\u003eDr. Jens Højslev Petersen, DTU-Food, National Food Institute, Denmark\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2 MIGRATION RESEARCH\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 6 Assessment of intakes of packaged foods per kg body weight\u003cbr\u003eDr. Emma Foster, Newcastle University, UK\u003cbr\u003e\u003cbr\u003ePaper 7 Elastomeric materials in contact with food- legislation and testing\u003cbr\u003eJohn Sidwell, Sidwell Consulting and Analytical Services Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 8 Safety assessment of FCM migrants using advanced bio-analytical strategies and the TTC principle\u003cbr\u003eWilliam D van Dongen, Sander Koster, M A J Rennen, L Coulier, L van Stee \u0026amp; G F Houben, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 9 DESI\/DART-MS: One minute migration testing?\u003cbr\u003eDr. Sander Koster, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 10 Food safety from the packaging manufacturer's perspective\u003cbr\u003eRobert Broughton, Alcan Packaging UK Ltd, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 ACTIVE \u0026amp; INTELLIGENT PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Testing protocols and developments in active and intelligent packaging\u003cbr\u003eLynneric Potter, Campden BRI, UK\u003cbr\u003e\u003cbr\u003ePaper 12 Study of an active packaging with antioxidant properties\u003cbr\u003eDr. Consuelo Fernández, Dr. Ana Galet \u0026amp; Dr. José María Bermúdez, ITENE, Spain\u003cbr\u003e\u003cbr\u003ePaper 13 Production and properties of multilayer active polyester films for food packaging applications\u003cbr\u003eDr. Maria Rosaria Galdi, Valeria Nicolais, Luciano Di Maio \u0026amp; Loredana Incarnato, University of Salerno, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Special injection technologies applied to the development of active packaging\u003cbr\u003eSerafin Garcia Navarro, AIMPLAS, Spain\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 INNOVATION IN FOOD PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 15 Innovative packaging design for the wine industry\u003cbr\u003eAthanasios Manavis, Ali Mousli, Vaya Dinopoulou \u0026amp; Panagiotis Kyrastsis, Technological Educational Institution of West Macedonia, Greece\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical and oxygen barrier properties of biaxially oriented polypropylene zinc oxide nanocomposites for food packaging applications\u003cbr\u003eDr. Nadia Lepot, Hasselt University, Belgium \u0026amp; Xios Hogeschool Limburg, Belgium; M K Van Bael \u0026amp; H Van den Rul, Hasselt University, Belgium \u0026amp; IMEC vzw, Belgium; J D Haen \u0026amp; J Mullens, Hasselt University, Belgium; R Peters \u0026amp; D Franco, Xios Hogeschool Limburg, Belgium\u003cbr\u003e\u003cbr\u003ePaper 17 Multilayer PP\/EVOH\/PP barrier tray containing O2 scavenger for retort applications\u003cbr\u003eDidier Houssier, EVAL Europe nv, Belgium; Benjamin Bourbon, RPC Barrier Containers, France\u003cbr\u003e\u003cbr\u003ePaper 18 Mater bi biopolymers, packaging applications: Multilayer structures, film lamination \u0026amp; coating \"Compostable packaging\"\u003cbr\u003eStefano Facco, Novamont SpA, Italy\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e"}
Food Industry and Pack...
$205.00
{"id":11242241284,"title":"Food Industry and Packaging Materials - Performance-oriented Guidelines for Users","handle":"9781847356093","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9781847356093 \u003cbr\u003e\u003cbr\u003epage 398\n\u003ch5\u003eSummary\u003c\/h5\u003e\nQuality inspection of packaging materials is a difficult task for food producers because the technical tests for packaging are mainly designed to measure the 'performance' of materials in relation to their chemical formulation, processing data, and intended uses. This may be difficult for food producers because their knowledge is essentially orientated to the performance of the final products (the packaged food).\u003cbr\u003e\u003cbr\u003eHowever, the assessment of the suitability of food packaging materials has to be legally demonstrated by food producers in the European Union.\u003cbr\u003e\u003cbr\u003eThis book provides detailed and comprehensible information about Quality Control (QC) in the industry. Different viewpoints are explained in relation to food companies, packaging producers, and technical experts, including regulatory aspects. One of the most important steps is the comprehension of QC failures in relation to the ‘food product’ (food\/packaging).\u003cbr\u003e\u003cbr\u003eThe book also presents a detailed selection of proposals about new testing methods. On the basis of regulatory obligations in the EU about the technological suitability of food packaging materials, a list of ‘performance-oriented’ guidelines is proposed. Food sectors are mentioned in relation to products, related packaging materials, known failures and existing quality control procedures.\u003cbr\u003e\u003cbr\u003eThis volume serves as a practical guide on food packaging and QC methods and a quick reference to food operators, official safety inspectors, public health institutions, Certification bodies, students and researchers from the academia and the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 The Essential Role of Quality Control Procedures: General Principles.\u003cbr\u003e1.1 Basic Concepts for Quality Control \u003cbr\u003e1.1.1 Quality in the Food and Beverage Field \u003cbr\u003e1.1.2 Quality: Management Systems and Control-based Procedures \u003cbr\u003e1.2 Statistical Consideration: Sampling Plans \u003cbr\u003e1.2.1 Influence of Numbers \u003cbr\u003e1.2.2 Influence of Analytical Results \u003cbr\u003e1.3 Quality Control and Economic Sustainability \u003cbr\u003e1.4 The Quality Control Team: Organisation, Duties, and Responsibilities \u003cbr\u003e\u003cbr\u003e2 Differences between Food Companies and Other Industries: Safety Concepts \u003cbr\u003e2.1 Quality in the Food Industry: Hazard Analysis and Critical \u003cbr\u003eControl Points and Different Risk Levels \u003cbr\u003e2.2 Quality in Chemical Industries: The Analytical Approach \u003cbr\u003e2.3 Quality in Manufacturing Industries: The Packaging \u003cbr\u003e2.4 Theory of Food Packaging and Practical Considerations\u003cbr\u003e2.5 Quality in Packaging Industries: Hybrid Testing Methods \u003cbr\u003e\u003cbr\u003e3 Food Industries: Chemistry, Microbiology, and Safety of Related Products \u003cbr\u003e3.1 Chemistry of Food Products - General Considerations \u003cbr\u003e3.1.1 Food Technology of Commerce - Standardisation of Production, Packing and Storage Processes\u003cbr\u003e3.1.2 Relation between Sensory Features and Chemical Composition \u003cbr\u003e3.1.3 Preventive Definition of Chemical and Microbiological Modifications \u003cbr\u003e3.1.4 Evaluation of Food Products - Chemical Contamination \u003cbr\u003e3.2 Microbiology of Food Products - Technological Implications \u003cbr\u003e3.3 Microbiology and Safety \u003cbr\u003e3.3.1 Microbiological Quality: Microbial Markers \u003cbr\u003e3.3.2 Pathogenic Bacteria \u003cbr\u003e3.4 Other Hazard Analysis and Critical Control Points Risks \u003cbr\u003e3.5 Food Alterations: The Problem of Shelf Life Assessment \u003cbr\u003e\u003cbr\u003e4 Packaging Industries: Chemistry and Technology of Packaging Materials \u003cbr\u003e4.1 Plastic Packaging \u003cbr\u003e4.2 Metal Packaging \u003cbr\u003e4.2.1 Metal Packages: General Features \u003cbr\u003e4.2.2 Metal Packaging: Production and Technology \u003cbr\u003e4.2.3 Metal Packages: The Metallic Support \u003cbr\u003e4.2.4 Plastic Coatings \u003cbr\u003e4.3 Paper and Paper-based Packaging \u003cbr\u003e4.4 Glass-based Packages \u003cbr\u003e4.5 Coupled Packages \u003cbr\u003e4.6 Smart and Intelligent Packages \u003cbr\u003e4.6.1 Active Packages \u003cbr\u003e4.6.2 Intelligent Packages \u003cbr\u003e\u003cbr\u003e5 Packaging and Processing Methods in the Food Industry: Most Common Failures \u003cbr\u003e5.1 Vegetables and Canned Foods \u003cbr\u003e5.1.1 Plastic Packages \u003cbr\u003e5.1.2 Metal Packages \u003cbr\u003e5.1.3 Paper and Paper-based Packages \u003cbr\u003e5.1.4 Glass Packages \u003cbr\u003e5.1.5 Polycoupled Packages \u003cbr\u003e5.1.6 Smart Packages \u003cbr\u003e5.2 Meat Foods \u003cbr\u003e5.2.1 Plastic Packages \u003cbr\u003e5.2.2 Metal Packages \u003cbr\u003e5.2.3 Paper and Paper-based Packages \u003cbr\u003e5.2.4 Glass Packages \u003cbr\u003e5.2.5 Coupled Packages \u003cbr\u003e5.2.6 Smart and Intelligent Packages \u003cbr\u003e5.3 Dairy Products \u003cbr\u003e5.3.1 Plastic Packages \u003cbr\u003e5.3.2 Metal Packages \u003cbr\u003e5.3.3 Paper and Paper-based Packages \u003cbr\u003e5.3.4 Glass Packages \u003cbr\u003e5.3.5 Coupled Packages \u003cbr\u003e5.4 Fish Products \u003cbr\u003e5.4.1 Plastic Packages \u003cbr\u003e5.4.2 Metal Packages \u003cbr\u003e5.4.3 Paper and Paper-based Packages \u003cbr\u003e5.4.4 Glass Packages \u003cbr\u003e5.4.5 Coupled Packages \u003cbr\u003e5.5 Other Food Products \u003cbr\u003e\u003cbr\u003e6 Analytical Methods for Food Products \u003cbr\u003e6.1 Chemical Analyses \u003cbr\u003e6.1.1 The Evaluation of Chemical Risks \u003cbr\u003e6.2 Microbiological Analyses \u003cbr\u003e6.2.1 Total Viable Count \u003cbr\u003e6.2.2 Food Alterations: Microbial Markers \u003cbr\u003e6.2.3 Pathogenic Microorganisms \u003cbr\u003e6.3 Detection of Foreign Substances \u003cbr\u003e6.4 Evaluation of Shelf Life Values \u003cbr\u003e\u003cbr\u003e7 Analytical and Testing Methods for Food Packaging \u003cbr\u003e7.1 Chemical Analyses \u003cbr\u003e7.2 Mechanical Tests \u003cbr\u003e7.3 Thermal Testing - Sterilisation and Other Treatments \u003cbr\u003e7.4 Other Simple Testing Methods \u003cbr\u003e\u003cbr\u003e8 Legal Requirements for Food Products and Packaging Materials in the European Union \u003cbr\u003e8.1 Food Products - Hygiene and Safety Requirements in the European Union \u003cbr\u003e8.2 Food Packaging - Legal Requirements in the European Union \u003cbr\u003e\u003cbr\u003e9 Conceptual Barriers between Packaging Producers and Food Industries: \u003cbr\u003eProposals for a ‘Second Level’ Quality Control \u003cbr\u003e9.1 Food Operators and their Competence in Packaging\u003cbr\u003e9.2 Collaborative Design of Packaging Materials \u003cbr\u003e9.3 Food Industries Needs New Approaches about Quality Control for Accessory Materials \u003cbr\u003e\u003cbr\u003e10 Food Packaging for Dairy Products \u003cbr\u003e10.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e10.1.1 Food Packaging Failures and Food Products: A Short Discussion about the Assessment of Technological Suitability \u003cbr\u003e10.1.2 Food Packaging Failures and Food Products: Sampling Plans and Simplified Advice \u003cbr\u003e10.1.3 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e10.1.3.1 Defective Closure and Sealing (Different Causes and Damages) . \u003cbr\u003e10.1.3.2 Migration of Macroscopic and Microscopic Bodies and Particles from Food Packaging Materials to Foods (Different Causes and Damages) \u003cbr\u003e10.1.3.3 Migration of Printing Inks (Ghosting Effect and Similar Situations) \u003cbr\u003e10.1.3.4 Superficial Damage and Ageing Correlation \u003cbr\u003e10.1.4 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e10.1.4.1 Superficial Damage, Microscopic Fractures, Scratches, Micro-bubbles and Dewetting. \u003cbr\u003e10.1.4.2 Presence of Foreign Bodies (Different Causes) \u003cbr\u003e10.1.4.3 Ghosting Effect \u003cbr\u003e10.1.4.4 Different Colorimetric Variations \u003cbr\u003e10.1.4.5 Workability Failures \u003cbr\u003e10.1.5 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e10.1.5.1 Excessive Rigidity of Cellulosic Materials \u003cbr\u003e10.1.5.2 Colorimetric Variations \u003cbr\u003e10.1.5.3 Paper Wrinkling \u003cbr\u003e10.1.5.4 Ghosting Effect \u003cbr\u003e10.1.5.5 Bleeding Effect \u003cbr\u003e10.1.5.6 Adhesion Defects (or Excessive Dripping) \u003cbr\u003e10.1.5.7 Paper Pulverisation \u003cbr\u003e10.1.5.8 Final Thoughts about Paper Food Packaging Materials \u003cbr\u003e10.1.6 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e10.1.6.1 Micro-bubbling \u003cbr\u003e10.1.6.2 Scratches \u003cbr\u003e10.1.6.3 Micro Fractures \u003cbr\u003e10.1.6.4 Macro Fractures \u003cbr\u003e10.1.6.5 Final Considerations: Other Failures \u003cbr\u003e10.2 Microbiological Contamination \u003cbr\u003e10.3 Hybrid Tests \u003cbr\u003e10.3.1 A Necessary Premise \u003cbr\u003e10.3.2 Workability Testing Methods \u003cbr\u003e10.3.2.1 Abrasion Test according to Parisi - Method for the Evaluation of the Laceration of Rigid Boxes for MAP Packed Cheeses \u003cbr\u003e10.3.2.1.1 Objective \u003cbr\u003e10.3.2.1.2 Preliminary Note \u003cbr\u003e10.3.2.1.3 Materials \u003cbr\u003e10.3.2.1.4 Method \u003cbr\u003e10.3.2.1.5 Evaluation of Results \u003cbr\u003e10.3.2.1.6 Final Observations \u003cbr\u003e10.3.3 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e10.3.3.1 Evaluation of Hydric Apparent Absorption and Related Modifications in Packed Cheeses with Different Food Packaging Materials (Comparison Test) \u003cbr\u003e10.3.3.1.1 Objective \u003cbr\u003e10.3.3.1.2 Preliminary Note \u003cbr\u003e10.3.3.1.3 Materials \u003cbr\u003e10.3.3.1.4 Method \u003cbr\u003e10.3.3.1.5 Evaluation of Results \u003cbr\u003e10.3.3.1.6 Final Observations \u003cbr\u003e10.3.4 Estimation of Shelf Life for Integrated Food Products (Comparison Test) \u003cbr\u003e10.3.4.1 Variation of Shelf Life Values in Packed, Semi-hard Cheeses in Relation to the Use of Different Food Packaging Materials \u003cbr\u003e10.3.4.1.1 Objective \u003cbr\u003e10.3.4.1.2 Preliminary Note \u003cbr\u003e10.3.4.1.3 Materials \u003cbr\u003e10.3.4.1.4 Method \u003cbr\u003e10.3.4.1.5 Evaluation of Results \u003cbr\u003e10.3.4.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e10.3.4.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e10.3.4.1.6 Final Observations\u003cbr\u003e10.4 Digital Image Analysis and Processing \u003cbr\u003e10.4.1 Colorimetry \u003cbr\u003e10.4.2 Digital Acquisition and Interpretation of Pictures \u003cbr\u003e10.4.3 Image Analysis and Processing - Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.4 Image Analysis and Processing - Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e10.4.5 Image Analysis and Processing: Practical Examples\u003cbr\u003e10.4.5.1 Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.5.2 Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e\u003cbr\u003e11 Food Packaging for Meat and Meat-based Foods \u003cbr\u003e11.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e11.1.1 Food Packaging Failures and Meat Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e11.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e11.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e11.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect\u003cbr\u003e11.1.1.4 Possible Fractures of Edible and Plastic Casings \u003cbr\u003e11.1.2 Food Packaging Failures and Meat Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e11.1.2.1 Superficial Damages, Microscopic Fractures, Scratches, Micro-bubbles, Dewetting\u003cbr\u003e11.1.2.2 External Lithography and Related Defects \u003cbr\u003e11.1.3 Food Packaging Failures and Meat Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e11.1.3.1 Colorimetric Variations \u003cbr\u003e11.1.3.2 Paper Pulverisation \u003cbr\u003e11.1.4 Food Packaging Failures and Meat Products - Visually Detectable Failures: Glass-Based Packages \u003cbr\u003e11.1.4.1 Micro-bubbling \u003cbr\u003e11.2 Microbiological Contamination \u003cbr\u003e11.3 Hybrid Tests \u003cbr\u003e11.3.1 Workability Testing Methods \u003cbr\u003e11.3.1.1 Method for the Evaluation of Impact Resistance of Infrangible Glass Containers (Final Use: Pasteurised Meat Preparations) \u003cbr\u003e11.3.1.1.1 Objective \u003cbr\u003e11.3.1.1.2 Preliminary Note \u003cbr\u003e11.3.1.1.3 Materials \u003cbr\u003e11.3.1.1.4 Method \u003cbr\u003e11.3.1.1.5 Evaluation of Results \u003cbr\u003e11.3.1.1.6 Final Observations \u003cbr\u003e11.3.2 ‘Performance’ Estimation for Integrated Food Products\u003cbr\u003e11.3.3 Estimation of the Shelf Life for Integrated Meat Products (Comparison Test) \u003cbr\u003e11.3.3.1 Variation of Shelf Life Values in Modified Atmosphere Packaging Fresh Meats with the Use of Different Food Packaging Materials \u003cbr\u003e11.3.3.1.1 Objective \u003cbr\u003e11.3.3.1.2 Preliminary Note \u003cbr\u003e11.3.3.1.3 Materials \u003cbr\u003e11.3.3.1.4 Method \u003cbr\u003e11.3.3.1.5 Evaluation of Results \u003cbr\u003e11.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e11.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e11.3.3.1.6 Final Observations\u003cbr\u003e\u003cbr\u003e12 Food Packaging for Fish Products \u003cbr\u003e12.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e12.1.1 Food Packaging Failures and Fish Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e12.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e12.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e12.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect \u003cbr\u003e12.1.1.4 Micro-bubbling and Bursting \u003cbr\u003e12.1.2 Food Packaging Failures and Fish Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e12.1.2.1 Canned Fish and Vegetable Products - Specific Colorimetric Variations\u003cbr\u003e12.1.3 Food Packaging Failures and Fish Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e12.1.4 Food Packaging Failures and Fish Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e12.2 Microbiological Contamination \u003cbr\u003e12.3 Hybrid Tests \u003cbr\u003e12.3.1 Workability Testing Methods \u003cbr\u003e12.3.1.1 Delamination Test on Sealable Polycoupled Packages (Easy Peel Pouches) for Tuna Fish \u003cbr\u003ein Water \u003cbr\u003e12.3.1.1.1 Objective \u003cbr\u003e12.3.1.1.2 Preliminary Note \u003cbr\u003e12.3.1.1.3 Materials \u003cbr\u003e12.3.1.1.4 Method \u003cbr\u003e12.3.1.1.5 Evaluation of Results \u003cbr\u003e12.3.1.1.6 Final Observations \u003cbr\u003e12.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e12.3.3 Estimation of Shelf Life for Integrated Fish Products (Comparison Test) \u003cbr\u003e12.3.3.1 Variation of Shelf Life Values in Vacuum Packed and Frozen Fish in Relation to the \u003cbr\u003eUse of Different Food Packaging Materials \u003cbr\u003e12.3.3.1.1 Objective \u003cbr\u003e12.3.3.1.2 Preliminary Note \u003cbr\u003e12.3.3.1.3 Materials \u003cbr\u003e12.3.3.1.4 Method \u003cbr\u003e12.3.3.1.5 Evaluation of Results \u003cbr\u003e12.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value \u003cbr\u003e12.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e12.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e13 Food Packaging for Fruits, Vegetables and Canned Foods \u003cbr\u003e13.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e13.1.1 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e13.1.2 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e13.1.2.1 Specific Colorimetric Variations \u003cbr\u003e13.1.3 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e13.1.4 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e13.2 Microbiological Contamination \u003cbr\u003e13.3 Hybrid Tests \u003cbr\u003e13.3.1 Workability Testing Methods \u003cbr\u003e13.3.1.1 Sterilisation Test on Metal Cans for Double Concentrated Tomato Sauce \u003cbr\u003e13.3.1.1.1 Objective \u003cbr\u003e13.3.1.1.2 Preliminary Note \u003cbr\u003e13.3.1.1.3 Materials \u003cbr\u003e13.3.1.1.4 Method \u003cbr\u003e13.3.1.1.5 Evaluation of Results \u003cbr\u003e13.3.1.1.6 Final Observations \u003cbr\u003e13.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e13.3.3 Estimation of Shelf Life for Integrated Products (Comparison Test) \u003cbr\u003e13.3.3.1 Variation of Shelf Life Values in Canned Peas with Reference to the Use of Different Food Packaging Materials\u003cbr\u003e13.3.3.1.1 Objective\u003cbr\u003e13.3.3.1.2 Preliminary Note \u003cbr\u003e13.3.3.1.3 Materials \u003cbr\u003e13.3.3.1.4 Method \u003cbr\u003e13.3.3.1.5 Evaluation of Results \u003cbr\u003e13.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e14 Food Packaging for Other Food Products \u003cbr\u003e14.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e14.1.1 Smart Packages \u003cbr\u003e14.1.1.1 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (High Sensibility)\u003cbr\u003e14.1.1.1.1 Objective \u003cbr\u003e14.1.1.1.2 Materials \u003cbr\u003e14.1.1.1.3 Method \u003cbr\u003e14.1.1.1.4 Evaluation of Results \u003cbr\u003e14.1.1.2 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (Low Sensibility) \u003cbr\u003e14.1.1.2.1 Objective \u003cbr\u003e14.1.1.2.2 Materials \u003cbr\u003e14.1.1.2.3 Method \u003cbr\u003e14.1.1.2.4 Evaluation of Results \u003cbr\u003e14.2 Microbiological Contamination \u003cbr\u003e14.3 Hybrid Tests \u003cbr\u003e\u003cbr\u003e15 Conclusions \u003cbr\u003e15.1 Food Producers Will Need More Training \u003cbr\u003e15.2 Will Official Regulations Follow Voluntary Testing Methods? \u003cbr\u003e15.3 Performance-Oriented Guidelines - Perspectives for Advanced Training in Academia \u003cbr\u003e15.4 The Viewpoint of Certification Bodies \u003cbr\u003eAppendix 1 List of Accredited Organisations with Recognised Authority \u003cbr\u003e(Analytical Testing Methods)\u003cbr\u003eAbbreviations \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","environment","food","formulation","health","management system","microbiology","p-applications","packaging","polymer","quality","quality control"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378438084,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Food Industry and Packaging Materials - Performance-oriented Guidelines for Users","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356093","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787","options":["Title"],"media":[{"alt":null,"id":354808594525,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9781847356093 \u003cbr\u003e\u003cbr\u003epage 398\n\u003ch5\u003eSummary\u003c\/h5\u003e\nQuality inspection of packaging materials is a difficult task for food producers because the technical tests for packaging are mainly designed to measure the 'performance' of materials in relation to their chemical formulation, processing data, and intended uses. This may be difficult for food producers because their knowledge is essentially orientated to the performance of the final products (the packaged food).\u003cbr\u003e\u003cbr\u003eHowever, the assessment of the suitability of food packaging materials has to be legally demonstrated by food producers in the European Union.\u003cbr\u003e\u003cbr\u003eThis book provides detailed and comprehensible information about Quality Control (QC) in the industry. Different viewpoints are explained in relation to food companies, packaging producers, and technical experts, including regulatory aspects. One of the most important steps is the comprehension of QC failures in relation to the ‘food product’ (food\/packaging).\u003cbr\u003e\u003cbr\u003eThe book also presents a detailed selection of proposals about new testing methods. On the basis of regulatory obligations in the EU about the technological suitability of food packaging materials, a list of ‘performance-oriented’ guidelines is proposed. Food sectors are mentioned in relation to products, related packaging materials, known failures and existing quality control procedures.\u003cbr\u003e\u003cbr\u003eThis volume serves as a practical guide on food packaging and QC methods and a quick reference to food operators, official safety inspectors, public health institutions, Certification bodies, students and researchers from the academia and the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 The Essential Role of Quality Control Procedures: General Principles.\u003cbr\u003e1.1 Basic Concepts for Quality Control \u003cbr\u003e1.1.1 Quality in the Food and Beverage Field \u003cbr\u003e1.1.2 Quality: Management Systems and Control-based Procedures \u003cbr\u003e1.2 Statistical Consideration: Sampling Plans \u003cbr\u003e1.2.1 Influence of Numbers \u003cbr\u003e1.2.2 Influence of Analytical Results \u003cbr\u003e1.3 Quality Control and Economic Sustainability \u003cbr\u003e1.4 The Quality Control Team: Organisation, Duties, and Responsibilities \u003cbr\u003e\u003cbr\u003e2 Differences between Food Companies and Other Industries: Safety Concepts \u003cbr\u003e2.1 Quality in the Food Industry: Hazard Analysis and Critical \u003cbr\u003eControl Points and Different Risk Levels \u003cbr\u003e2.2 Quality in Chemical Industries: The Analytical Approach \u003cbr\u003e2.3 Quality in Manufacturing Industries: The Packaging \u003cbr\u003e2.4 Theory of Food Packaging and Practical Considerations\u003cbr\u003e2.5 Quality in Packaging Industries: Hybrid Testing Methods \u003cbr\u003e\u003cbr\u003e3 Food Industries: Chemistry, Microbiology, and Safety of Related Products \u003cbr\u003e3.1 Chemistry of Food Products - General Considerations \u003cbr\u003e3.1.1 Food Technology of Commerce - Standardisation of Production, Packing and Storage Processes\u003cbr\u003e3.1.2 Relation between Sensory Features and Chemical Composition \u003cbr\u003e3.1.3 Preventive Definition of Chemical and Microbiological Modifications \u003cbr\u003e3.1.4 Evaluation of Food Products - Chemical Contamination \u003cbr\u003e3.2 Microbiology of Food Products - Technological Implications \u003cbr\u003e3.3 Microbiology and Safety \u003cbr\u003e3.3.1 Microbiological Quality: Microbial Markers \u003cbr\u003e3.3.2 Pathogenic Bacteria \u003cbr\u003e3.4 Other Hazard Analysis and Critical Control Points Risks \u003cbr\u003e3.5 Food Alterations: The Problem of Shelf Life Assessment \u003cbr\u003e\u003cbr\u003e4 Packaging Industries: Chemistry and Technology of Packaging Materials \u003cbr\u003e4.1 Plastic Packaging \u003cbr\u003e4.2 Metal Packaging \u003cbr\u003e4.2.1 Metal Packages: General Features \u003cbr\u003e4.2.2 Metal Packaging: Production and Technology \u003cbr\u003e4.2.3 Metal Packages: The Metallic Support \u003cbr\u003e4.2.4 Plastic Coatings \u003cbr\u003e4.3 Paper and Paper-based Packaging \u003cbr\u003e4.4 Glass-based Packages \u003cbr\u003e4.5 Coupled Packages \u003cbr\u003e4.6 Smart and Intelligent Packages \u003cbr\u003e4.6.1 Active Packages \u003cbr\u003e4.6.2 Intelligent Packages \u003cbr\u003e\u003cbr\u003e5 Packaging and Processing Methods in the Food Industry: Most Common Failures \u003cbr\u003e5.1 Vegetables and Canned Foods \u003cbr\u003e5.1.1 Plastic Packages \u003cbr\u003e5.1.2 Metal Packages \u003cbr\u003e5.1.3 Paper and Paper-based Packages \u003cbr\u003e5.1.4 Glass Packages \u003cbr\u003e5.1.5 Polycoupled Packages \u003cbr\u003e5.1.6 Smart Packages \u003cbr\u003e5.2 Meat Foods \u003cbr\u003e5.2.1 Plastic Packages \u003cbr\u003e5.2.2 Metal Packages \u003cbr\u003e5.2.3 Paper and Paper-based Packages \u003cbr\u003e5.2.4 Glass Packages \u003cbr\u003e5.2.5 Coupled Packages \u003cbr\u003e5.2.6 Smart and Intelligent Packages \u003cbr\u003e5.3 Dairy Products \u003cbr\u003e5.3.1 Plastic Packages \u003cbr\u003e5.3.2 Metal Packages \u003cbr\u003e5.3.3 Paper and Paper-based Packages \u003cbr\u003e5.3.4 Glass Packages \u003cbr\u003e5.3.5 Coupled Packages \u003cbr\u003e5.4 Fish Products \u003cbr\u003e5.4.1 Plastic Packages \u003cbr\u003e5.4.2 Metal Packages \u003cbr\u003e5.4.3 Paper and Paper-based Packages \u003cbr\u003e5.4.4 Glass Packages \u003cbr\u003e5.4.5 Coupled Packages \u003cbr\u003e5.5 Other Food Products \u003cbr\u003e\u003cbr\u003e6 Analytical Methods for Food Products \u003cbr\u003e6.1 Chemical Analyses \u003cbr\u003e6.1.1 The Evaluation of Chemical Risks \u003cbr\u003e6.2 Microbiological Analyses \u003cbr\u003e6.2.1 Total Viable Count \u003cbr\u003e6.2.2 Food Alterations: Microbial Markers \u003cbr\u003e6.2.3 Pathogenic Microorganisms \u003cbr\u003e6.3 Detection of Foreign Substances \u003cbr\u003e6.4 Evaluation of Shelf Life Values \u003cbr\u003e\u003cbr\u003e7 Analytical and Testing Methods for Food Packaging \u003cbr\u003e7.1 Chemical Analyses \u003cbr\u003e7.2 Mechanical Tests \u003cbr\u003e7.3 Thermal Testing - Sterilisation and Other Treatments \u003cbr\u003e7.4 Other Simple Testing Methods \u003cbr\u003e\u003cbr\u003e8 Legal Requirements for Food Products and Packaging Materials in the European Union \u003cbr\u003e8.1 Food Products - Hygiene and Safety Requirements in the European Union \u003cbr\u003e8.2 Food Packaging - Legal Requirements in the European Union \u003cbr\u003e\u003cbr\u003e9 Conceptual Barriers between Packaging Producers and Food Industries: \u003cbr\u003eProposals for a ‘Second Level’ Quality Control \u003cbr\u003e9.1 Food Operators and their Competence in Packaging\u003cbr\u003e9.2 Collaborative Design of Packaging Materials \u003cbr\u003e9.3 Food Industries Needs New Approaches about Quality Control for Accessory Materials \u003cbr\u003e\u003cbr\u003e10 Food Packaging for Dairy Products \u003cbr\u003e10.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e10.1.1 Food Packaging Failures and Food Products: A Short Discussion about the Assessment of Technological Suitability \u003cbr\u003e10.1.2 Food Packaging Failures and Food Products: Sampling Plans and Simplified Advice \u003cbr\u003e10.1.3 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e10.1.3.1 Defective Closure and Sealing (Different Causes and Damages) . \u003cbr\u003e10.1.3.2 Migration of Macroscopic and Microscopic Bodies and Particles from Food Packaging Materials to Foods (Different Causes and Damages) \u003cbr\u003e10.1.3.3 Migration of Printing Inks (Ghosting Effect and Similar Situations) \u003cbr\u003e10.1.3.4 Superficial Damage and Ageing Correlation \u003cbr\u003e10.1.4 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e10.1.4.1 Superficial Damage, Microscopic Fractures, Scratches, Micro-bubbles and Dewetting. \u003cbr\u003e10.1.4.2 Presence of Foreign Bodies (Different Causes) \u003cbr\u003e10.1.4.3 Ghosting Effect \u003cbr\u003e10.1.4.4 Different Colorimetric Variations \u003cbr\u003e10.1.4.5 Workability Failures \u003cbr\u003e10.1.5 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e10.1.5.1 Excessive Rigidity of Cellulosic Materials \u003cbr\u003e10.1.5.2 Colorimetric Variations \u003cbr\u003e10.1.5.3 Paper Wrinkling \u003cbr\u003e10.1.5.4 Ghosting Effect \u003cbr\u003e10.1.5.5 Bleeding Effect \u003cbr\u003e10.1.5.6 Adhesion Defects (or Excessive Dripping) \u003cbr\u003e10.1.5.7 Paper Pulverisation \u003cbr\u003e10.1.5.8 Final Thoughts about Paper Food Packaging Materials \u003cbr\u003e10.1.6 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e10.1.6.1 Micro-bubbling \u003cbr\u003e10.1.6.2 Scratches \u003cbr\u003e10.1.6.3 Micro Fractures \u003cbr\u003e10.1.6.4 Macro Fractures \u003cbr\u003e10.1.6.5 Final Considerations: Other Failures \u003cbr\u003e10.2 Microbiological Contamination \u003cbr\u003e10.3 Hybrid Tests \u003cbr\u003e10.3.1 A Necessary Premise \u003cbr\u003e10.3.2 Workability Testing Methods \u003cbr\u003e10.3.2.1 Abrasion Test according to Parisi - Method for the Evaluation of the Laceration of Rigid Boxes for MAP Packed Cheeses \u003cbr\u003e10.3.2.1.1 Objective \u003cbr\u003e10.3.2.1.2 Preliminary Note \u003cbr\u003e10.3.2.1.3 Materials \u003cbr\u003e10.3.2.1.4 Method \u003cbr\u003e10.3.2.1.5 Evaluation of Results \u003cbr\u003e10.3.2.1.6 Final Observations \u003cbr\u003e10.3.3 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e10.3.3.1 Evaluation of Hydric Apparent Absorption and Related Modifications in Packed Cheeses with Different Food Packaging Materials (Comparison Test) \u003cbr\u003e10.3.3.1.1 Objective \u003cbr\u003e10.3.3.1.2 Preliminary Note \u003cbr\u003e10.3.3.1.3 Materials \u003cbr\u003e10.3.3.1.4 Method \u003cbr\u003e10.3.3.1.5 Evaluation of Results \u003cbr\u003e10.3.3.1.6 Final Observations \u003cbr\u003e10.3.4 Estimation of Shelf Life for Integrated Food Products (Comparison Test) \u003cbr\u003e10.3.4.1 Variation of Shelf Life Values in Packed, Semi-hard Cheeses in Relation to the Use of Different Food Packaging Materials \u003cbr\u003e10.3.4.1.1 Objective \u003cbr\u003e10.3.4.1.2 Preliminary Note \u003cbr\u003e10.3.4.1.3 Materials \u003cbr\u003e10.3.4.1.4 Method \u003cbr\u003e10.3.4.1.5 Evaluation of Results \u003cbr\u003e10.3.4.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e10.3.4.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e10.3.4.1.6 Final Observations\u003cbr\u003e10.4 Digital Image Analysis and Processing \u003cbr\u003e10.4.1 Colorimetry \u003cbr\u003e10.4.2 Digital Acquisition and Interpretation of Pictures \u003cbr\u003e10.4.3 Image Analysis and Processing - Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.4 Image Analysis and Processing - Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e10.4.5 Image Analysis and Processing: Practical Examples\u003cbr\u003e10.4.5.1 Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.5.2 Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e\u003cbr\u003e11 Food Packaging for Meat and Meat-based Foods \u003cbr\u003e11.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e11.1.1 Food Packaging Failures and Meat Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e11.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e11.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e11.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect\u003cbr\u003e11.1.1.4 Possible Fractures of Edible and Plastic Casings \u003cbr\u003e11.1.2 Food Packaging Failures and Meat Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e11.1.2.1 Superficial Damages, Microscopic Fractures, Scratches, Micro-bubbles, Dewetting\u003cbr\u003e11.1.2.2 External Lithography and Related Defects \u003cbr\u003e11.1.3 Food Packaging Failures and Meat Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e11.1.3.1 Colorimetric Variations \u003cbr\u003e11.1.3.2 Paper Pulverisation \u003cbr\u003e11.1.4 Food Packaging Failures and Meat Products - Visually Detectable Failures: Glass-Based Packages \u003cbr\u003e11.1.4.1 Micro-bubbling \u003cbr\u003e11.2 Microbiological Contamination \u003cbr\u003e11.3 Hybrid Tests \u003cbr\u003e11.3.1 Workability Testing Methods \u003cbr\u003e11.3.1.1 Method for the Evaluation of Impact Resistance of Infrangible Glass Containers (Final Use: Pasteurised Meat Preparations) \u003cbr\u003e11.3.1.1.1 Objective \u003cbr\u003e11.3.1.1.2 Preliminary Note \u003cbr\u003e11.3.1.1.3 Materials \u003cbr\u003e11.3.1.1.4 Method \u003cbr\u003e11.3.1.1.5 Evaluation of Results \u003cbr\u003e11.3.1.1.6 Final Observations \u003cbr\u003e11.3.2 ‘Performance’ Estimation for Integrated Food Products\u003cbr\u003e11.3.3 Estimation of the Shelf Life for Integrated Meat Products (Comparison Test) \u003cbr\u003e11.3.3.1 Variation of Shelf Life Values in Modified Atmosphere Packaging Fresh Meats with the Use of Different Food Packaging Materials \u003cbr\u003e11.3.3.1.1 Objective \u003cbr\u003e11.3.3.1.2 Preliminary Note \u003cbr\u003e11.3.3.1.3 Materials \u003cbr\u003e11.3.3.1.4 Method \u003cbr\u003e11.3.3.1.5 Evaluation of Results \u003cbr\u003e11.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e11.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e11.3.3.1.6 Final Observations\u003cbr\u003e\u003cbr\u003e12 Food Packaging for Fish Products \u003cbr\u003e12.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e12.1.1 Food Packaging Failures and Fish Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e12.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e12.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e12.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect \u003cbr\u003e12.1.1.4 Micro-bubbling and Bursting \u003cbr\u003e12.1.2 Food Packaging Failures and Fish Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e12.1.2.1 Canned Fish and Vegetable Products - Specific Colorimetric Variations\u003cbr\u003e12.1.3 Food Packaging Failures and Fish Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e12.1.4 Food Packaging Failures and Fish Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e12.2 Microbiological Contamination \u003cbr\u003e12.3 Hybrid Tests \u003cbr\u003e12.3.1 Workability Testing Methods \u003cbr\u003e12.3.1.1 Delamination Test on Sealable Polycoupled Packages (Easy Peel Pouches) for Tuna Fish \u003cbr\u003ein Water \u003cbr\u003e12.3.1.1.1 Objective \u003cbr\u003e12.3.1.1.2 Preliminary Note \u003cbr\u003e12.3.1.1.3 Materials \u003cbr\u003e12.3.1.1.4 Method \u003cbr\u003e12.3.1.1.5 Evaluation of Results \u003cbr\u003e12.3.1.1.6 Final Observations \u003cbr\u003e12.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e12.3.3 Estimation of Shelf Life for Integrated Fish Products (Comparison Test) \u003cbr\u003e12.3.3.1 Variation of Shelf Life Values in Vacuum Packed and Frozen Fish in Relation to the \u003cbr\u003eUse of Different Food Packaging Materials \u003cbr\u003e12.3.3.1.1 Objective \u003cbr\u003e12.3.3.1.2 Preliminary Note \u003cbr\u003e12.3.3.1.3 Materials \u003cbr\u003e12.3.3.1.4 Method \u003cbr\u003e12.3.3.1.5 Evaluation of Results \u003cbr\u003e12.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value \u003cbr\u003e12.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e12.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e13 Food Packaging for Fruits, Vegetables and Canned Foods \u003cbr\u003e13.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e13.1.1 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e13.1.2 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e13.1.2.1 Specific Colorimetric Variations \u003cbr\u003e13.1.3 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e13.1.4 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e13.2 Microbiological Contamination \u003cbr\u003e13.3 Hybrid Tests \u003cbr\u003e13.3.1 Workability Testing Methods \u003cbr\u003e13.3.1.1 Sterilisation Test on Metal Cans for Double Concentrated Tomato Sauce \u003cbr\u003e13.3.1.1.1 Objective \u003cbr\u003e13.3.1.1.2 Preliminary Note \u003cbr\u003e13.3.1.1.3 Materials \u003cbr\u003e13.3.1.1.4 Method \u003cbr\u003e13.3.1.1.5 Evaluation of Results \u003cbr\u003e13.3.1.1.6 Final Observations \u003cbr\u003e13.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e13.3.3 Estimation of Shelf Life for Integrated Products (Comparison Test) \u003cbr\u003e13.3.3.1 Variation of Shelf Life Values in Canned Peas with Reference to the Use of Different Food Packaging Materials\u003cbr\u003e13.3.3.1.1 Objective\u003cbr\u003e13.3.3.1.2 Preliminary Note \u003cbr\u003e13.3.3.1.3 Materials \u003cbr\u003e13.3.3.1.4 Method \u003cbr\u003e13.3.3.1.5 Evaluation of Results \u003cbr\u003e13.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e14 Food Packaging for Other Food Products \u003cbr\u003e14.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e14.1.1 Smart Packages \u003cbr\u003e14.1.1.1 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (High Sensibility)\u003cbr\u003e14.1.1.1.1 Objective \u003cbr\u003e14.1.1.1.2 Materials \u003cbr\u003e14.1.1.1.3 Method \u003cbr\u003e14.1.1.1.4 Evaluation of Results \u003cbr\u003e14.1.1.2 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (Low Sensibility) \u003cbr\u003e14.1.1.2.1 Objective \u003cbr\u003e14.1.1.2.2 Materials \u003cbr\u003e14.1.1.2.3 Method \u003cbr\u003e14.1.1.2.4 Evaluation of Results \u003cbr\u003e14.2 Microbiological Contamination \u003cbr\u003e14.3 Hybrid Tests \u003cbr\u003e\u003cbr\u003e15 Conclusions \u003cbr\u003e15.1 Food Producers Will Need More Training \u003cbr\u003e15.2 Will Official Regulations Follow Voluntary Testing Methods? \u003cbr\u003e15.3 Performance-Oriented Guidelines - Perspectives for Advanced Training in Academia \u003cbr\u003e15.4 The Viewpoint of Certification Bodies \u003cbr\u003eAppendix 1 List of Accredited Organisations with Recognised Authority \u003cbr\u003e(Analytical Testing Methods)\u003cbr\u003eAbbreviations \u003cbr\u003eIndex"}
Functional Fillers for...
$270.00
{"id":11242208516,"title":"Functional Fillers for Plastics","handle":"978-3-527-32361-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Marino Xanthos \u003cbr\u003eISBN 978-3-527-32361-6 \u003cbr\u003e\u003cbr\u003epages 531, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEdited and co-authored by Professor Marino Xanthos with contributions by international experts from industry and academia, the book presents methods of mixing\/incorporation technologies, surface treatments and modifications for enhanced functionality, an analysis of parameters affecting filler performance and a presentation of current and emerging applications. Additionally, the novel classification according to modification of specific polymer properties rather than filler chemical composition will provide a better understanding of the relationships between processing, structure, and properties of products containing functional fillers and the identification of new markets and applications. \u003cbr\u003e\u003cbr\u003eFor engineers, scientists and technologists involved in the industrially important sector of polymer composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003eList of Contributors. \u003cbr\u003e\u003cstrong\u003ePart I: Polymers and Fillers.\u003c\/strong\u003e \u003cbr\u003e1 Polymers and Polymer Composites. \u003cbr\u003e2 Modification of Polymer Mechanical and Rheological Properties\u003cbr\u003ewith Functional Fillers. \u003cbr\u003e3 Mixing of Fillers with Plastics. \u003cbr\u003e\u003cstrong\u003ePart II: Surface Modifiers and Coupling Agents.\u003c\/strong\u003e \u003cbr\u003e4 Silane Coupling Agents. \u003cbr\u003e5 Titanate Coupling Agents. \u003cbr\u003e6 Functional Polymers and Other Modifiers. \u003cbr\u003e\u003cstrong\u003ePart III: Fillers and their Functions.\u003c\/strong\u003e \u003cbr\u003e7 Glass Fibers. \u003cbr\u003e8 Mica Flakes. \u003cbr\u003e9 Nanoclays and Their Emerging Markets. \u003cbr\u003e10 Carbon Nanotubes\/Nanofibers and Carbon Fibers. \u003cbr\u003e11 Natural Fibers. \u003cbr\u003e12 Talc. \u003cbr\u003e13 Kaolin. \u003cbr\u003e14 Wollastonite. \u003cbr\u003e15 Wood Flour. \u003cbr\u003e16 Calcium Carbonate. \u003cbr\u003e17 Fire Retardants. \u003cbr\u003e18 Conductive and Magnetic Fillers.\u003cbr\u003e19 Surface Property Modifiers. \u003cbr\u003e20 Processing Aids. \u003cbr\u003e21 Glass and Ceramic Spheres. \u003cbr\u003e22 Bioactive Fillers. \u003cbr\u003e23 In Situ Generated Fillers: Organic–Inorganic Hybrids.\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMarino Xanthos\u003c\/strong\u003e is Professor of Chemical Engineering and Director of the Polymer Engineering Center of the New Jersey Institute of Technology since 1995. He studied chemical engineering at the University of Toronto, where he took his Ph.D. degree in 1974. He then became Manager of R \u0026amp; D and Technical Services at Marietta Resources International Ltd. in 1975 and taught at the Stevens Institute of Technology, Hoboken, from 1980 to 1995. Since 1988, he has also been Director of Research at the Polymer Processing Institute (PPI), Newark, NJ, an independent non-profit research organization located at NJIT. His interests focus on polymer blends, composites, and foams, polymer modification and reactive processing, plastics recycling and life-cycle assessment, structure-property relationships, environmental considerations in polymer processing.","published_at":"2017-06-22T21:13:03-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","applications","bioactive","book","calcium carbonate","ceramic","composite","conductive","fibers","fillers","fire retardant","functional","glass","magnetic","mica","mineral","p-additives","plastics","polymer","polymers","processing aids","rheology","silane","talc kaolin wollastonite","Wiley","wood"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378328452,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Fillers for Plastics","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-32361-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32361-6.jpg?v=1499386929"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32361-6.jpg?v=1499386929","options":["Title"],"media":[{"alt":null,"id":354808856669,"position":1,"preview_image":{"aspect_ratio":0.736,"height":450,"width":331,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32361-6.jpg?v=1499386929"},"aspect_ratio":0.736,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32361-6.jpg?v=1499386929","width":331}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Marino Xanthos \u003cbr\u003eISBN 978-3-527-32361-6 \u003cbr\u003e\u003cbr\u003epages 531, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEdited and co-authored by Professor Marino Xanthos with contributions by international experts from industry and academia, the book presents methods of mixing\/incorporation technologies, surface treatments and modifications for enhanced functionality, an analysis of parameters affecting filler performance and a presentation of current and emerging applications. Additionally, the novel classification according to modification of specific polymer properties rather than filler chemical composition will provide a better understanding of the relationships between processing, structure, and properties of products containing functional fillers and the identification of new markets and applications. \u003cbr\u003e\u003cbr\u003eFor engineers, scientists and technologists involved in the industrially important sector of polymer composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003eList of Contributors. \u003cbr\u003e\u003cstrong\u003ePart I: Polymers and Fillers.\u003c\/strong\u003e \u003cbr\u003e1 Polymers and Polymer Composites. \u003cbr\u003e2 Modification of Polymer Mechanical and Rheological Properties\u003cbr\u003ewith Functional Fillers. \u003cbr\u003e3 Mixing of Fillers with Plastics. \u003cbr\u003e\u003cstrong\u003ePart II: Surface Modifiers and Coupling Agents.\u003c\/strong\u003e \u003cbr\u003e4 Silane Coupling Agents. \u003cbr\u003e5 Titanate Coupling Agents. \u003cbr\u003e6 Functional Polymers and Other Modifiers. \u003cbr\u003e\u003cstrong\u003ePart III: Fillers and their Functions.\u003c\/strong\u003e \u003cbr\u003e7 Glass Fibers. \u003cbr\u003e8 Mica Flakes. \u003cbr\u003e9 Nanoclays and Their Emerging Markets. \u003cbr\u003e10 Carbon Nanotubes\/Nanofibers and Carbon Fibers. \u003cbr\u003e11 Natural Fibers. \u003cbr\u003e12 Talc. \u003cbr\u003e13 Kaolin. \u003cbr\u003e14 Wollastonite. \u003cbr\u003e15 Wood Flour. \u003cbr\u003e16 Calcium Carbonate. \u003cbr\u003e17 Fire Retardants. \u003cbr\u003e18 Conductive and Magnetic Fillers.\u003cbr\u003e19 Surface Property Modifiers. \u003cbr\u003e20 Processing Aids. \u003cbr\u003e21 Glass and Ceramic Spheres. \u003cbr\u003e22 Bioactive Fillers. \u003cbr\u003e23 In Situ Generated Fillers: Organic–Inorganic Hybrids.\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMarino Xanthos\u003c\/strong\u003e is Professor of Chemical Engineering and Director of the Polymer Engineering Center of the New Jersey Institute of Technology since 1995. He studied chemical engineering at the University of Toronto, where he took his Ph.D. degree in 1974. He then became Manager of R \u0026amp; D and Technical Services at Marietta Resources International Ltd. in 1975 and taught at the Stevens Institute of Technology, Hoboken, from 1980 to 1995. Since 1988, he has also been Director of Research at the Polymer Processing Institute (PPI), Newark, NJ, an independent non-profit research organization located at NJIT. His interests focus on polymer blends, composites, and foams, polymer modification and reactive processing, plastics recycling and life-cycle assessment, structure-property relationships, environmental considerations in polymer processing."}
Functional Fillers. Ch...
$285.00
{"id":384215023647,"title":"Functional Fillers. Chemical composition, morphology, performance, applications","handle":"functional-fillers-chemical-composition-morphology-performance-applications","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-37-6 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2018\u003cbr\u003ePages 226 + vi\u003cbr\u003e\u003c\/span\u003e\u003cspan\u003eFigures 135\u003cbr\u003e\u003c\/span\u003eTables 34\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eFillers do not fill but modify the next generation materials, control their properties, open new applications. This opening sentence underlines the aims of this book which shows applications of fillers resulting from their chemical composition (or modification) and\/or special morphological features. This combination results in a high performance required by many new products.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has two sections: analysis of the chemical composition and morphology of classical fillers (some of the over 100 fillers listed in \u003cstrong\u003eHandbook of Fillers\u003c\/strong\u003e, 4\u003csup\u003eth\u003c\/sup\u003e Edition) which contributed to the exceptional enhancements in their properties and applications.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePresentation of new generations of fillers which provide designers with special properties not available so far from the classical fillers used by industry. Special groups of fillers discussed in this part of the book include, as follows\u003c\/span\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cspan\u003eStructure \u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eMolecular (e.g., silsesquioxanes)\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eCarbon dots\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNano\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanowires\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanorods\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanosheets\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanodiamonds\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eHigh aspect ratio\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eLayered double hydroxides\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eFunctionalized\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eEncapsulated\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eHybrid\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003ePhysical properties \u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eSuperlight\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eDense\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eThermally insulating and conductive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eThermal energy storage\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eElectrical and magnetic properties\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eConductive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eInsulating \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eInsulating\/conductive mixtures\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eDielectric\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMagnetic\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMagnetodielectric\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eEMI shielding\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMicrowave absorption\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003ePiezoresistive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eElectrostatic discharge prevention\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eApplications\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eLubricant\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eAnti-corrosion\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMembrane\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eOsteoconductive and other bone tissue engineering fillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eTissue fillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eAntimicrobial\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eRenewable and recycling\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eBiofillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eBiosorbents\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eGeopolymers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eRecycled materials\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan\u003eFrom the above list, it is pertinent that chemical modifications, structural features, enhanced physical properties, mixtures of fillers, electrical and magnetic properties, special applications corrosion resistance, medicine, dentistry, and antimicrobial, and fillers from renewable resources are the main topics of the book.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience, as in the case of \u003cstrong\u003eHandbook of Fillers\u003c\/strong\u003e, includes most branches of chemical industry (and some other such as pharmaceutical, medicinal, electronics, etc.), considering that these products are common throughout the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:15:02-04:00","created_at":"2017-12-21T15:29:34-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2018","additive","additives","applications","book","filler","fillers","mechanical and thermal properties","polymer","polymers","properties","recycling","structure"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":5105827282975,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Fillers. Chemical composition, morphology, performance, applications","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-37-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-37-6.jpg?v=1513888277"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-37-6.jpg?v=1513888277","options":["Title"],"media":[{"alt":null,"id":730921467997,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-37-6.jpg?v=1513888277"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-37-6.jpg?v=1513888277","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-37-6 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2018\u003cbr\u003ePages 226 + vi\u003cbr\u003e\u003c\/span\u003e\u003cspan\u003eFigures 135\u003cbr\u003e\u003c\/span\u003eTables 34\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eFillers do not fill but modify the next generation materials, control their properties, open new applications. This opening sentence underlines the aims of this book which shows applications of fillers resulting from their chemical composition (or modification) and\/or special morphological features. This combination results in a high performance required by many new products.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has two sections: analysis of the chemical composition and morphology of classical fillers (some of the over 100 fillers listed in \u003cstrong\u003eHandbook of Fillers\u003c\/strong\u003e, 4\u003csup\u003eth\u003c\/sup\u003e Edition) which contributed to the exceptional enhancements in their properties and applications.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePresentation of new generations of fillers which provide designers with special properties not available so far from the classical fillers used by industry. Special groups of fillers discussed in this part of the book include, as follows\u003c\/span\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cspan\u003eStructure \u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eMolecular (e.g., silsesquioxanes)\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eCarbon dots\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNano\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanowires\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanorods\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanosheets\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanodiamonds\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eHigh aspect ratio\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eLayered double hydroxides\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eFunctionalized\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eEncapsulated\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eHybrid\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003ePhysical properties \u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eSuperlight\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eDense\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eThermally insulating and conductive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eThermal energy storage\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eElectrical and magnetic properties\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eConductive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eInsulating \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eInsulating\/conductive mixtures\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eDielectric\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMagnetic\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMagnetodielectric\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eEMI shielding\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMicrowave absorption\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003ePiezoresistive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eElectrostatic discharge prevention\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eApplications\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eLubricant\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eAnti-corrosion\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMembrane\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eOsteoconductive and other bone tissue engineering fillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eTissue fillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eAntimicrobial\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eRenewable and recycling\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eBiofillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eBiosorbents\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eGeopolymers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eRecycled materials\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan\u003eFrom the above list, it is pertinent that chemical modifications, structural features, enhanced physical properties, mixtures of fillers, electrical and magnetic properties, special applications corrosion resistance, medicine, dentistry, and antimicrobial, and fillers from renewable resources are the main topics of the book.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience, as in the case of \u003cstrong\u003eHandbook of Fillers\u003c\/strong\u003e, includes most branches of chemical industry (and some other such as pharmaceutical, medicinal, electronics, etc.), considering that these products are common throughout the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Functional Nanostructu...
$149.00
{"id":11242233604,"title":"Functional Nanostructures, Processing, Characterization, and Applications","handle":"978-0-387-35463-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Sudipta Seal \u003cbr\u003eISBN 978-0-387-35463-7 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003epages approx., 350\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eNanocrystalline materials exhibit outstanding structural and mechanical properties. However, future progress in this emerging field is critically dependent upon the development of new methods of understanding and analyzing the underlying nanoscale and interface effects causing their unique mechanical properties. This exceptionally well- researched volume in Nanostructure Science and Technology serves both as an introduction to structural nanocrystalline materials as well as a monograph providing a systematic overview of the current state-of-the-art of fundamental and applied research in the area. The book provides a unique interdisciplinary approach by incorporating chapters from contributors from various academic disciplines including Engineering, Physics, Chemistry, and Polymer Science. Sudipta Seal integrates the most current and relevant technologies in the field to address the subject. This volume will prove to be indispensable to professionals in the in the field of nanomaterials science and nanotechnologies, from researchers and graduate students to engineers who are involved in production and processing of nanomaterials with enhanced physico-chemical properties.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction\u003c\/p\u003e\n\u003cp\u003e- Nanoceramic and Cermets.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures films.\u003c\/p\u003e\n\u003cp\u003e- NEMS, MEMS, Bio-MEMS.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures Biomaterials.\u003c\/p\u003e\n\u003cp\u003e- Self Assembly in Nanophase separated Polymer and Thin Film.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures, sensor and catalytic properties.\u003c\/p\u003e\n\u003cp\u003e- High-Resolution TEM for nanocharacterization.\u003c\/p\u003e\n\u003cp\u003e- AFM in nanotechnology.\u003c\/p\u003e\n\u003cp\u003e- Concluding Remarks and future trends\u003c\/p\u003e","published_at":"2017-06-22T21:14:23-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","AFM","biomaterials","book","nano","nanostructures","nanotechnolgy","polymer","structure nanophase","TEM"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Nanostructures, Processing, Characterization, and Applications","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-387-35463-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278","options":["Title"],"media":[{"alt":null,"id":354808889437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Sudipta Seal \u003cbr\u003eISBN 978-0-387-35463-7 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003epages approx., 350\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eNanocrystalline materials exhibit outstanding structural and mechanical properties. However, future progress in this emerging field is critically dependent upon the development of new methods of understanding and analyzing the underlying nanoscale and interface effects causing their unique mechanical properties. This exceptionally well- researched volume in Nanostructure Science and Technology serves both as an introduction to structural nanocrystalline materials as well as a monograph providing a systematic overview of the current state-of-the-art of fundamental and applied research in the area. The book provides a unique interdisciplinary approach by incorporating chapters from contributors from various academic disciplines including Engineering, Physics, Chemistry, and Polymer Science. Sudipta Seal integrates the most current and relevant technologies in the field to address the subject. This volume will prove to be indispensable to professionals in the in the field of nanomaterials science and nanotechnologies, from researchers and graduate students to engineers who are involved in production and processing of nanomaterials with enhanced physico-chemical properties.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction\u003c\/p\u003e\n\u003cp\u003e- Nanoceramic and Cermets.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures films.\u003c\/p\u003e\n\u003cp\u003e- NEMS, MEMS, Bio-MEMS.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures Biomaterials.\u003c\/p\u003e\n\u003cp\u003e- Self Assembly in Nanophase separated Polymer and Thin Film.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures, sensor and catalytic properties.\u003c\/p\u003e\n\u003cp\u003e- High-Resolution TEM for nanocharacterization.\u003c\/p\u003e\n\u003cp\u003e- AFM in nanotechnology.\u003c\/p\u003e\n\u003cp\u003e- Concluding Remarks and future trends\u003c\/p\u003e"}
Handbook of Adhesion P...
$285.00
{"id":384216367135,"title":"Handbook of Adhesion Promoters","handle":"handbook-of-adhesion-promoters","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-29-1\u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2018\u003cbr\u003ePages 236+vi\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAdhesion promoters form a very important group of additives without which many industrial products cannot perform according to requirements. The knowledge on this subject mostly related to silanes, which form the most widely used group of these additives, is still based on the book which was published in the beginning of 1980s. Since then many new additives were introduced into the market. Most of these new additives are not based on silanes but on one of over 30 chemical groups of chemical compounds needed for a variety of products in which silanes do not function, are too expensive, or better performance can be achieved with these new additives.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book fills the existing gap in the literature which still lacks the most recent comprehensive review of current options and knowledge. Handbook of Adhesion Promoters contains 10 chapters each discussing essential aspect of the application of adhesion promoters. The known mechanisms which belong to one of 13 groups outline principles of use, action, and application of these additives. This chapter is followed by the discussion of mechanisms which cause adhesion loss, such as corrosion, delamination, detachment, liquid penetration, and peeling.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eSurface condition and its treatment are discussed regarding surface treatment by different methods (cleaning, mechanical, plasma, microwave, flame, corona discharge, laser, UV, and chemical modification) which are used in practical applications. All these are illustrated with practical examples.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eChapter 5 gives formulations of typical primers used in the application of adhesives and sealants, coatings, coil coatings, cosmetics, dental, leather, metal, optical devices, paper, polymers and plastics, printing, and wood. This chapter contains over 50 primer formulations.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eA full chapter is devoted to the subject of polymer modification which can improve adhesion – a method frequently used instead of addition of adhesion promoters. The properties of (over 30 groups of adhesion promoters and their potential applications are discussed in the chapter devoted to this subject based on published articles, manufacturers information. and analysis of patents.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe last three chapters contain information on available evaluation and selection of adhesion promoters which work with different polymers (29), products (28), and help to prevent corrosion. A full list of covered polymers and products is given in the table of contents below.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eIn addition to the theoretical and practical knowledge required to effectively formulate products used in various applications discussed in this book, there is also available \u003cstrong\u003eDatabook of Adhesion Promoters\u003c\/strong\u003e which contains data on a large number of the most extensively used commercial additives. Both books contain the most recent information available in literature, patents, and published by manufacturers and users of these products. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book is recommended for readers interested in all aspects of polymers and plastics, with special attention to the development, studies, legislation, and production of coatings, paints, adhesives, sealants, coated fabrics, laminates, conveyor belts, films, inks, tapes, gaskets, electronics, pharmaceuticals, corrosion protection, and many other products.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e \u003cbr\u003e1.1 Definitions \u003cbr\u003e1.2 History \u003cbr\u003e\u003cstrong\u003e2 Mechanisms of Adhesion\u003c\/strong\u003e \u003cbr\u003e2.1 Mechanical interlocking \u003cbr\u003e2.2 Surface condition and shape \u003cbr\u003e2.3 Diffusion and entanglement \u003cbr\u003e2.4 Adsorption\/interaction \u003cbr\u003e2.5 Acid-base and electrostatic interactions\u003cbr\u003e2.5.1 Acid-base interactions \u003cbr\u003e2.5.2 Electrostatic interactions \u003cbr\u003e2.6 Surface free energy and wetting \u003cbr\u003e2.7 Crystalline properties \u003cbr\u003e2.8 Interphase formation \u003cbr\u003e2.9 Chemical bonding \u003cbr\u003e2.10 Hydrogen bonding \u003cbr\u003e2.11 Reversible hydrolysis \u003cbr\u003e2.12 Microbiological and biological adhesion \u003cbr\u003e2.13 Cellular adhesion \u003cbr\u003e\u003cstrong\u003e3 Mechanisms of Adhesion Loss\u003c\/strong\u003e \u003cbr\u003e3.1 Corrosion \u003cbr\u003e3.2 Delamination \u003cbr\u003e3.3 Detachment \u003cbr\u003e3.4 Debonding \u003cbr\u003e3.5 Liquid penetration \u003cbr\u003e3.6 Peeling \u003cbr\u003e\u003cstrong\u003e4 Substrates - Surface Condition and Treatment\u003c\/strong\u003e \u003cbr\u003e4.1 Surface evaluation \u003cbr\u003e4.2 Surface treatment \u003cbr\u003e4.2.1 Cleaning \u003cbr\u003e4.2.2 Mechanical \u003cbr\u003e4.2.3 Plasma \u003cbr\u003e4.2.4 Microwave plasma \u003cbr\u003e4.2.5 Flame \u003cbr\u003e4.2.6 Corona discharge \u003cbr\u003e4.2.7 Laser \u003cbr\u003e4.2.8 UV \u003cbr\u003e4.2.9 Chemical modification \u003cbr\u003e\u003cstrong\u003e5 Typical Primer Formulations and Applications to Different Substrates\u003c\/strong\u003e \u003cbr\u003e5.1 Adhesives and sealants \u003cbr\u003e5.2 Coatings \u003cbr\u003e5.3 Coil coating \u003cbr\u003e5.4 Cosmetics \u003cbr\u003e5.5 Dental \u003cbr\u003e5.6 Leather \u003cbr\u003e5.7 Metal \u003cbr\u003e5.8 Optical devices \u003cbr\u003e5.9 Paper \u003cbr\u003e5.10 Polymers and plastics \u003cbr\u003e5.11 Printing \u003cbr\u003e5.12 Wood \u003cbr\u003e\u003cstrong\u003e6 Polymer Modification to Improve Adhesion\u003c\/strong\u003e \u003cbr\u003e6.1 Selection of co-monomers \u003cbr\u003e6.2 Selection of polyols and isocyanates \u003cbr\u003e6.3 Modification of polymers by maleic anhydride \u003cbr\u003e6.4 Modification by epoxy group \u003cbr\u003e6.5 Silane grafting \u003cbr\u003e\u003cstrong\u003e7 Properties of Adhesion Promoters\u003c\/strong\u003e \u003cbr\u003e7.1 Acrylates \u003cbr\u003e7.2 Amines, amides, aminoamides \u003cbr\u003e7.3 Aryl diazonium salts \u003cbr\u003e7.4 Benzene derivatives \u003cbr\u003e7.5 Carbamic resin \u003cbr\u003e7.6 Chlorinated polyolefins \u003cbr\u003e7.7 Crosslinkers \u003cbr\u003e7.8 Epoxides \u003cbr\u003e7.9 Esters \u003cbr\u003e7.10 Inorganic compounds \u003cbr\u003e7.11 Ionomers \u003cbr\u003e7.12 Isocyanates \u003cbr\u003e7.13 Isocyanurates \u003cbr\u003e7.14 Lignin \u003cbr\u003e7.15 Maleic anhydride modified polymers \u003cbr\u003e7.16 Melamine \u003cbr\u003e7.17 Monomers \u003cbr\u003e7.18 Oligomers \u003cbr\u003e7.19 Phenol novolac resins \u003cbr\u003e7.20 Phosphoric acid esters \u003cbr\u003e7.21 Polymers and copolymers \u003cbr\u003e7.22 Polyols \u003cbr\u003e7.23 Resorcinol \u003cbr\u003e7.24 Rosin \u003cbr\u003e7.25 Silanes \u003cbr\u003e7.26 Silane+silica \u003cbr\u003e7.27 Silane+silicate \u003cbr\u003e7.28 Silane+titanate \u003cbr\u003e7.29 Sucrose derivatives \u003cbr\u003e7.30 Sulfur compounds \u003cbr\u003e7.31 Titanates \u003cbr\u003e\u003cstrong\u003e8 Selection of Adhesion Promoters for Different Substrates\u003c\/strong\u003e \u003cbr\u003e8.1 ABS \u003cbr\u003e8.2 Alkyd resins \u003cbr\u003e8.3 Cellulose and its derivatives \u003cbr\u003e8.4 Epoxy resin \u003cbr\u003e8.5 Glass \u003cbr\u003e8.6 Metal \u003cbr\u003e8.7 Poly(3,4-ethylenedioxythiophene) \u003cbr\u003e8.8 Polyamide \u003cbr\u003e8.9 Polyaniline \u003cbr\u003e8.10 Polycarbonate \u003cbr\u003e8.11 Polydimethylsiloxane \u003cbr\u003e8.12 Polyester \u003cbr\u003e8.13 Polyetheretherketone \u003cbr\u003e8.14 Polyethylene \u003cbr\u003e8.15 Polyimide \u003cbr\u003e8.16 Poly(lactic acid) \u003cbr\u003e8.17 Polypropylene \u003cbr\u003e8.18 Polystyrene \u003cbr\u003e8.19 Polysulfide \u003cbr\u003e8.20 Polysulfone \u003cbr\u003e8.21 Polytetrafluoroethylene \u003cbr\u003e8.22 Polyurethane \u003cbr\u003e8.23 Polyvinylalcohol \u003cbr\u003e8.24 Polyvinylbutyral \u003cbr\u003e8.25 Polyvinylchloride \u003cbr\u003e8.26 Poly(p-xylylene) \u003cbr\u003e8.27 Porcelain \u003cbr\u003e8.28 Rubber \u003cbr\u003e8.29 TPO \u003cbr\u003e\u003cstrong\u003e9 Selection of Adhesion Promoters for Different Products\u003c\/strong\u003e \u003cbr\u003e9.1 Adhesives \u003cbr\u003e9.2 Aerospace \u003cbr\u003e9.3 Agriculture \u003cbr\u003e9.4 Automotive \u003cbr\u003e9.5 Bitumen \u003cbr\u003e9.6 Ceramic tiles \u003cbr\u003e9.7 Coated fabrics \u003cbr\u003e9.8 Coatings and paints \u003cbr\u003e9.9 Coil coatings \u003cbr\u003e9.10 Composites \u003cbr\u003e9.11 Construction \u003cbr\u003e9.12 Cosmetics \u003cbr\u003e9.13 Dental \u003cbr\u003e9.14 Electrodes \u003cbr\u003e9.15 Electronics \u003cbr\u003e9.16 Flooring \u003cbr\u003e9.17 Food applications \u003cbr\u003e9.18 Inks \u003cbr\u003e9.19 Laminates \u003cbr\u003e9.20 Medical \u003cbr\u003e9.21 Membranes \u003cbr\u003e9.22 Metal coating \u003cbr\u003e9.23 Pharmaceutical \u003cbr\u003e9.24 Roofing \u003cbr\u003e9.25 Sealants \u003cbr\u003e9.26 Tires \u003cbr\u003e9.27 Waterproofing \u003cbr\u003e9.28 Wire \u0026amp; cable \u003cbr\u003e\u003cstrong\u003e10 Adhesion and Corrosion Protection\u003c\/strong\u003e \u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:15:02-04:00","created_at":"2017-12-21T15:32:54-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2018","additive","additives","adhesion","book","filler","fillers","polymer","polymers","properties","surface"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":5105834655775,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Adhesion Promoters","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-29-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-29-1.jpg?v=1513890939"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-29-1.jpg?v=1513890939","options":["Title"],"media":[{"alt":null,"id":730936377437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-29-1.jpg?v=1513890939"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-29-1.jpg?v=1513890939","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-29-1\u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2018\u003cbr\u003ePages 236+vi\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAdhesion promoters form a very important group of additives without which many industrial products cannot perform according to requirements. The knowledge on this subject mostly related to silanes, which form the most widely used group of these additives, is still based on the book which was published in the beginning of 1980s. Since then many new additives were introduced into the market. Most of these new additives are not based on silanes but on one of over 30 chemical groups of chemical compounds needed for a variety of products in which silanes do not function, are too expensive, or better performance can be achieved with these new additives.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book fills the existing gap in the literature which still lacks the most recent comprehensive review of current options and knowledge. Handbook of Adhesion Promoters contains 10 chapters each discussing essential aspect of the application of adhesion promoters. The known mechanisms which belong to one of 13 groups outline principles of use, action, and application of these additives. This chapter is followed by the discussion of mechanisms which cause adhesion loss, such as corrosion, delamination, detachment, liquid penetration, and peeling.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eSurface condition and its treatment are discussed regarding surface treatment by different methods (cleaning, mechanical, plasma, microwave, flame, corona discharge, laser, UV, and chemical modification) which are used in practical applications. All these are illustrated with practical examples.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eChapter 5 gives formulations of typical primers used in the application of adhesives and sealants, coatings, coil coatings, cosmetics, dental, leather, metal, optical devices, paper, polymers and plastics, printing, and wood. This chapter contains over 50 primer formulations.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eA full chapter is devoted to the subject of polymer modification which can improve adhesion – a method frequently used instead of addition of adhesion promoters. The properties of (over 30 groups of adhesion promoters and their potential applications are discussed in the chapter devoted to this subject based on published articles, manufacturers information. and analysis of patents.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe last three chapters contain information on available evaluation and selection of adhesion promoters which work with different polymers (29), products (28), and help to prevent corrosion. A full list of covered polymers and products is given in the table of contents below.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eIn addition to the theoretical and practical knowledge required to effectively formulate products used in various applications discussed in this book, there is also available \u003cstrong\u003eDatabook of Adhesion Promoters\u003c\/strong\u003e which contains data on a large number of the most extensively used commercial additives. Both books contain the most recent information available in literature, patents, and published by manufacturers and users of these products. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book is recommended for readers interested in all aspects of polymers and plastics, with special attention to the development, studies, legislation, and production of coatings, paints, adhesives, sealants, coated fabrics, laminates, conveyor belts, films, inks, tapes, gaskets, electronics, pharmaceuticals, corrosion protection, and many other products.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e \u003cbr\u003e1.1 Definitions \u003cbr\u003e1.2 History \u003cbr\u003e\u003cstrong\u003e2 Mechanisms of Adhesion\u003c\/strong\u003e \u003cbr\u003e2.1 Mechanical interlocking \u003cbr\u003e2.2 Surface condition and shape \u003cbr\u003e2.3 Diffusion and entanglement \u003cbr\u003e2.4 Adsorption\/interaction \u003cbr\u003e2.5 Acid-base and electrostatic interactions\u003cbr\u003e2.5.1 Acid-base interactions \u003cbr\u003e2.5.2 Electrostatic interactions \u003cbr\u003e2.6 Surface free energy and wetting \u003cbr\u003e2.7 Crystalline properties \u003cbr\u003e2.8 Interphase formation \u003cbr\u003e2.9 Chemical bonding \u003cbr\u003e2.10 Hydrogen bonding \u003cbr\u003e2.11 Reversible hydrolysis \u003cbr\u003e2.12 Microbiological and biological adhesion \u003cbr\u003e2.13 Cellular adhesion \u003cbr\u003e\u003cstrong\u003e3 Mechanisms of Adhesion Loss\u003c\/strong\u003e \u003cbr\u003e3.1 Corrosion \u003cbr\u003e3.2 Delamination \u003cbr\u003e3.3 Detachment \u003cbr\u003e3.4 Debonding \u003cbr\u003e3.5 Liquid penetration \u003cbr\u003e3.6 Peeling \u003cbr\u003e\u003cstrong\u003e4 Substrates - Surface Condition and Treatment\u003c\/strong\u003e \u003cbr\u003e4.1 Surface evaluation \u003cbr\u003e4.2 Surface treatment \u003cbr\u003e4.2.1 Cleaning \u003cbr\u003e4.2.2 Mechanical \u003cbr\u003e4.2.3 Plasma \u003cbr\u003e4.2.4 Microwave plasma \u003cbr\u003e4.2.5 Flame \u003cbr\u003e4.2.6 Corona discharge \u003cbr\u003e4.2.7 Laser \u003cbr\u003e4.2.8 UV \u003cbr\u003e4.2.9 Chemical modification \u003cbr\u003e\u003cstrong\u003e5 Typical Primer Formulations and Applications to Different Substrates\u003c\/strong\u003e \u003cbr\u003e5.1 Adhesives and sealants \u003cbr\u003e5.2 Coatings \u003cbr\u003e5.3 Coil coating \u003cbr\u003e5.4 Cosmetics \u003cbr\u003e5.5 Dental \u003cbr\u003e5.6 Leather \u003cbr\u003e5.7 Metal \u003cbr\u003e5.8 Optical devices \u003cbr\u003e5.9 Paper \u003cbr\u003e5.10 Polymers and plastics \u003cbr\u003e5.11 Printing \u003cbr\u003e5.12 Wood \u003cbr\u003e\u003cstrong\u003e6 Polymer Modification to Improve Adhesion\u003c\/strong\u003e \u003cbr\u003e6.1 Selection of co-monomers \u003cbr\u003e6.2 Selection of polyols and isocyanates \u003cbr\u003e6.3 Modification of polymers by maleic anhydride \u003cbr\u003e6.4 Modification by epoxy group \u003cbr\u003e6.5 Silane grafting \u003cbr\u003e\u003cstrong\u003e7 Properties of Adhesion Promoters\u003c\/strong\u003e \u003cbr\u003e7.1 Acrylates \u003cbr\u003e7.2 Amines, amides, aminoamides \u003cbr\u003e7.3 Aryl diazonium salts \u003cbr\u003e7.4 Benzene derivatives \u003cbr\u003e7.5 Carbamic resin \u003cbr\u003e7.6 Chlorinated polyolefins \u003cbr\u003e7.7 Crosslinkers \u003cbr\u003e7.8 Epoxides \u003cbr\u003e7.9 Esters \u003cbr\u003e7.10 Inorganic compounds \u003cbr\u003e7.11 Ionomers \u003cbr\u003e7.12 Isocyanates \u003cbr\u003e7.13 Isocyanurates \u003cbr\u003e7.14 Lignin \u003cbr\u003e7.15 Maleic anhydride modified polymers \u003cbr\u003e7.16 Melamine \u003cbr\u003e7.17 Monomers \u003cbr\u003e7.18 Oligomers \u003cbr\u003e7.19 Phenol novolac resins \u003cbr\u003e7.20 Phosphoric acid esters \u003cbr\u003e7.21 Polymers and copolymers \u003cbr\u003e7.22 Polyols \u003cbr\u003e7.23 Resorcinol \u003cbr\u003e7.24 Rosin \u003cbr\u003e7.25 Silanes \u003cbr\u003e7.26 Silane+silica \u003cbr\u003e7.27 Silane+silicate \u003cbr\u003e7.28 Silane+titanate \u003cbr\u003e7.29 Sucrose derivatives \u003cbr\u003e7.30 Sulfur compounds \u003cbr\u003e7.31 Titanates \u003cbr\u003e\u003cstrong\u003e8 Selection of Adhesion Promoters for Different Substrates\u003c\/strong\u003e \u003cbr\u003e8.1 ABS \u003cbr\u003e8.2 Alkyd resins \u003cbr\u003e8.3 Cellulose and its derivatives \u003cbr\u003e8.4 Epoxy resin \u003cbr\u003e8.5 Glass \u003cbr\u003e8.6 Metal \u003cbr\u003e8.7 Poly(3,4-ethylenedioxythiophene) \u003cbr\u003e8.8 Polyamide \u003cbr\u003e8.9 Polyaniline \u003cbr\u003e8.10 Polycarbonate \u003cbr\u003e8.11 Polydimethylsiloxane \u003cbr\u003e8.12 Polyester \u003cbr\u003e8.13 Polyetheretherketone \u003cbr\u003e8.14 Polyethylene \u003cbr\u003e8.15 Polyimide \u003cbr\u003e8.16 Poly(lactic acid) \u003cbr\u003e8.17 Polypropylene \u003cbr\u003e8.18 Polystyrene \u003cbr\u003e8.19 Polysulfide \u003cbr\u003e8.20 Polysulfone \u003cbr\u003e8.21 Polytetrafluoroethylene \u003cbr\u003e8.22 Polyurethane \u003cbr\u003e8.23 Polyvinylalcohol \u003cbr\u003e8.24 Polyvinylbutyral \u003cbr\u003e8.25 Polyvinylchloride \u003cbr\u003e8.26 Poly(p-xylylene) \u003cbr\u003e8.27 Porcelain \u003cbr\u003e8.28 Rubber \u003cbr\u003e8.29 TPO \u003cbr\u003e\u003cstrong\u003e9 Selection of Adhesion Promoters for Different Products\u003c\/strong\u003e \u003cbr\u003e9.1 Adhesives \u003cbr\u003e9.2 Aerospace \u003cbr\u003e9.3 Agriculture \u003cbr\u003e9.4 Automotive \u003cbr\u003e9.5 Bitumen \u003cbr\u003e9.6 Ceramic tiles \u003cbr\u003e9.7 Coated fabrics \u003cbr\u003e9.8 Coatings and paints \u003cbr\u003e9.9 Coil coatings \u003cbr\u003e9.10 Composites \u003cbr\u003e9.11 Construction \u003cbr\u003e9.12 Cosmetics \u003cbr\u003e9.13 Dental \u003cbr\u003e9.14 Electrodes \u003cbr\u003e9.15 Electronics \u003cbr\u003e9.16 Flooring \u003cbr\u003e9.17 Food applications \u003cbr\u003e9.18 Inks \u003cbr\u003e9.19 Laminates \u003cbr\u003e9.20 Medical \u003cbr\u003e9.21 Membranes \u003cbr\u003e9.22 Metal coating \u003cbr\u003e9.23 Pharmaceutical \u003cbr\u003e9.24 Roofing \u003cbr\u003e9.25 Sealants \u003cbr\u003e9.26 Tires \u003cbr\u003e9.27 Waterproofing \u003cbr\u003e9.28 Wire \u0026amp; cable \u003cbr\u003e\u003cstrong\u003e10 Adhesion and Corrosion Protection\u003c\/strong\u003e \u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Adhesion P...
$335.00
{"id":7703567040669,"title":"Handbook of Adhesion Promoters, 2nd Ed.","handle":"handbook-of-adhesion-promoters-2nd-ed","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-018-7 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003ePages 322+vi\u003cbr\u003eFigures 154\u003cbr\u003ePublished Jan. 2023\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eAdhesion promoters form a significant group of additives, without, which many industrial products cannot perform according to requirements. The knowledge on this subject mostly related to silanes, which form the most widely used group of these additives, is frequently based on the book which was published at the beginning of 1980s by a scientist who developed many silanes used until today. Since then, many new additives were introduced into the market. Most of these new additives are not based on silanes but on one of over 30 chemical groups of chemical compounds needed for a variety of products in which silanes do not function, are too expensive, or better performance can be achieved with these new additives.\u003cbr\u003e\u003cbr\u003eThis book fills the existing gap in the literature, which still lacks the most recent comprehensive review of current options and knowledge. Handbook of Adhesion Promoters contains 10 chapters, each discussing essential aspects of the application of adhesion promoters. The known mechanisms which belong to one of 13 groups outline principles of use, action, and application of these additives. This chapter is followed by the discussion of mechanisms that cause adhesion loss, such as corrosion, delamination, detachment, liquid penetration, and peeling.\u003cbr\u003e\u003cbr\u003eSurface condition and its treatment are discussed regarding surface treatment by different methods (cleaning, mechanical, plasma, microwave, flame, corona discharge, laser, UV, and chemical modification), which are used in practical applications. All these are illustrated with practical examples.\u003cbr\u003e\u003cbr\u003eChapter 5 gives formulations of typical primers used in the application of adhesives and sealants, coatings, coil coatings, cosmetics, dental, leather, metal, optical devices, paper, polymers and plastics, printing, and wood. This chapter contains over 50 primer formulations.\u003cbr\u003e\u003cbr\u003eA full chapter is devoted to the subject of polymer modification which can improve adhesion – a method frequently used instead of the addition of adhesion promoters. The properties of (over 30 groups of adhesion promoters and their potential applications are discussed in the chapter devoted to this subject based on published articles, manufacturers’ information, and analysis of patents.\u003cbr\u003e\u003cbr\u003eThe last three chapters contain information on available evaluation and selection of adhesion promoters that work with different polymers (29), products (28) and help to prevent corrosion. A full list of covered polymers and products is given in the table of contents below.\u003cbr\u003e\u003cbr\u003eIn addition to the theoretical and practical knowledge required to effectively formulate products used in various applications discussed in this book, there is also available Databook of Adhesion Promoters, which contains data on many most extensively used commercial additives. Both books contain the most recent information available in literature, patents, and published by manufacturers and users of these products. \u003cbr\u003eThe Handbook of Adhesion Promoters is an important reference for chemists, engineers, and materials scientists in various industries. It is also suitable as a reference book for advanced graduate students.\u003cbr\u003eIt is recommended for readers interested in all aspects of polymers and plastics, with special attention to the development, studies, legislation, and production of adhesives, aerospace, agriculture, automotive, bitumen, ceramic tiles, coated fabrics, coatings and paints, coil coatings, composites, construction, cosmetics, dental, electrodes, electronics, flooring, food applications, inks, laminates, medical, membranes, metal coating, pharmaceutical, roofing, sealants, tires, waterproofing, and wire \u0026amp; cable.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e1.1 Definitions \u003cbr data-mce-fragment=\"1\"\u003e1.2 History \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Mechanisms of Adhesion\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e2.1 Mechanical interlocking \u003cbr data-mce-fragment=\"1\"\u003e2.2 Surface condition and shape \u003cbr data-mce-fragment=\"1\"\u003e2.3 Diffusion and entanglement \u003cbr data-mce-fragment=\"1\"\u003e2.4 Adsorption\/interaction \u003cbr data-mce-fragment=\"1\"\u003e2.5 Acid-base and electrostatic interactions\u003cbr data-mce-fragment=\"1\"\u003e2.5.1 Acid-base interactions \u003cbr data-mce-fragment=\"1\"\u003e2.5.2 Electrostatic interactions \u003cbr data-mce-fragment=\"1\"\u003e2.6 Surface free energy and wetting \u003cbr data-mce-fragment=\"1\"\u003e2.7 Crystalline properties \u003cbr data-mce-fragment=\"1\"\u003e2.8 Interphase formation \u003cbr data-mce-fragment=\"1\"\u003e2.9 Chemical bonding \u003cbr data-mce-fragment=\"1\"\u003e2.10 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.11 Reversible hydrolysis \u003cbr data-mce-fragment=\"1\"\u003e2.12 Microbiological and biological adhesion \u003cbr data-mce-fragment=\"1\"\u003e2.13 Cellular adhesion \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Mechanisms of Adhesion Loss\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e3.1 Corrosion \u003cbr data-mce-fragment=\"1\"\u003e3.2 Delamination \u003cbr data-mce-fragment=\"1\"\u003e3.3 Detachment \u003cbr data-mce-fragment=\"1\"\u003e3.4 Debonding \u003cbr data-mce-fragment=\"1\"\u003e3.5 Liquid penetration \u003cbr data-mce-fragment=\"1\"\u003e3.6 Peeling \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Substrates - Surface Condition and Treatment\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e4.1 Surface evaluation \u003cbr data-mce-fragment=\"1\"\u003e4.2 Surface treatment \u003cbr data-mce-fragment=\"1\"\u003e4.2.1 Cleaning \u003cbr data-mce-fragment=\"1\"\u003e4.2.2 Mechanical \u003cbr data-mce-fragment=\"1\"\u003e4.2.3 Plasma \u003cbr data-mce-fragment=\"1\"\u003e4.2.4 Microwave plasma \u003cbr data-mce-fragment=\"1\"\u003e4.2.5 Flame \u003cbr data-mce-fragment=\"1\"\u003e4.2.6 Corona discharge \u003cbr data-mce-fragment=\"1\"\u003e4.2.7 Laser \u003cbr data-mce-fragment=\"1\"\u003e4.2.8 UV \u003cbr data-mce-fragment=\"1\"\u003e4.2.9 Chemical modification \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Typical Primer Formulations and Applications to Different Substrates\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e5.1 Adhesives and sealants \u003cbr data-mce-fragment=\"1\"\u003e5.2 Coatings \u003cbr data-mce-fragment=\"1\"\u003e5.3 Coil coating \u003cbr data-mce-fragment=\"1\"\u003e5.4 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e5.5 Dental \u003cbr data-mce-fragment=\"1\"\u003e5.6 Leather \u003cbr data-mce-fragment=\"1\"\u003e5.7 Metal \u003cbr data-mce-fragment=\"1\"\u003e5.8 Optical devices \u003cbr data-mce-fragment=\"1\"\u003e5.9 Paper \u003cbr data-mce-fragment=\"1\"\u003e5.10 Polymers and plastics \u003cbr data-mce-fragment=\"1\"\u003e5.11 Printing \u003cbr data-mce-fragment=\"1\"\u003e5.12 Wood \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e6 Polymer Modification to Improve Adhesion\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e6.1 Selection of co-monomers \u003cbr data-mce-fragment=\"1\"\u003e6.2 Selection of polyols and isocyanates \u003cbr data-mce-fragment=\"1\"\u003e6.3 Modification of polymers by maleic anhydride \u003cbr data-mce-fragment=\"1\"\u003e6.4 Modification by epoxy group \u003cbr data-mce-fragment=\"1\"\u003e6.5 Silane grafting \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e7 Properties of Adhesion Promoters\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e7.1 Acrylates \u003cbr data-mce-fragment=\"1\"\u003e7.2 Amines, amides, aminoamides \u003cbr data-mce-fragment=\"1\"\u003e7.3 Aryl diazonium salts \u003cbr data-mce-fragment=\"1\"\u003e7.4 Benzene derivatives \u003cbr data-mce-fragment=\"1\"\u003e7.5 Carbamic resin \u003cbr data-mce-fragment=\"1\"\u003e7.6 Chlorinated polyolefins \u003cbr data-mce-fragment=\"1\"\u003e7.7 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e7.8 Epoxides \u003cbr data-mce-fragment=\"1\"\u003e7.9 Esters \u003cbr data-mce-fragment=\"1\"\u003e7.10 Inorganic compounds \u003cbr data-mce-fragment=\"1\"\u003e7.11 Ionomers \u003cbr data-mce-fragment=\"1\"\u003e7.12 Isocyanates \u003cbr data-mce-fragment=\"1\"\u003e7.13 Isocyanurates \u003cbr data-mce-fragment=\"1\"\u003e7.14 Lignin \u003cbr data-mce-fragment=\"1\"\u003e7.15 Maleic anhydride modified polymers \u003cbr data-mce-fragment=\"1\"\u003e7.16 Melamine \u003cbr data-mce-fragment=\"1\"\u003e7.17 Monomers \u003cbr data-mce-fragment=\"1\"\u003e7.18 Oligomers \u003cbr data-mce-fragment=\"1\"\u003e7.19 Phenol novolac resins \u003cbr data-mce-fragment=\"1\"\u003e7.20 Phosphoric acid esters \u003cbr data-mce-fragment=\"1\"\u003e7.21 Polymers and copolymers \u003cbr data-mce-fragment=\"1\"\u003e7.22 Polyols \u003cbr data-mce-fragment=\"1\"\u003e7.23 Resorcinol \u003cbr data-mce-fragment=\"1\"\u003e7.24 Rosin \u003cbr data-mce-fragment=\"1\"\u003e7.25 Silanes \u003cbr data-mce-fragment=\"1\"\u003e7.26 Silane+silica \u003cbr data-mce-fragment=\"1\"\u003e7.27 Silane+silicate \u003cbr data-mce-fragment=\"1\"\u003e7.28 Silane+titanate \u003cbr data-mce-fragment=\"1\"\u003e7.29 Sucrose derivatives \u003cbr data-mce-fragment=\"1\"\u003e7.30 Sulfur compounds \u003cbr data-mce-fragment=\"1\"\u003e7.31 Titanates \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e8 Selection of Adhesion Promoters for Different Substrates\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e8.1 ABS \u003cbr data-mce-fragment=\"1\"\u003e8.2 Alkyd resins \u003cbr data-mce-fragment=\"1\"\u003e8.3 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e8.4 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e8.5 Glass \u003cbr data-mce-fragment=\"1\"\u003e8.6 Metal \u003cbr data-mce-fragment=\"1\"\u003e8.7 Poly(3,4-ethylenedioxythiophene) \u003cbr data-mce-fragment=\"1\"\u003e8.8 Polyamide \u003cbr data-mce-fragment=\"1\"\u003e8.9 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e8.10 Polycarbonate \u003cbr data-mce-fragment=\"1\"\u003e8.11 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e8.12 Polyester \u003cbr data-mce-fragment=\"1\"\u003e8.13 Polyetheretherketone \u003cbr data-mce-fragment=\"1\"\u003e8.14 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e8.15 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e8.16 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e8.17 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e8.18 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e8.19 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e8.20 Polysulfone \u003cbr data-mce-fragment=\"1\"\u003e8.21 Polytetrafluoroethylene \u003cbr data-mce-fragment=\"1\"\u003e8.22 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e8.23 Polyvinylalcohol \u003cbr data-mce-fragment=\"1\"\u003e8.24 Polyvinylbutyral \u003cbr data-mce-fragment=\"1\"\u003e8.25 Polyvinylchloride \u003cbr data-mce-fragment=\"1\"\u003e8.26 Poly(p-xylylene) \u003cbr data-mce-fragment=\"1\"\u003e8.27 Porcelain \u003cbr data-mce-fragment=\"1\"\u003e8.28 Rubber \u003cbr data-mce-fragment=\"1\"\u003e8.29 TPO \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e9 Selection of Adhesion Promoters for Different Products\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e9.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e9.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e9.3 Agriculture \u003cbr data-mce-fragment=\"1\"\u003e9.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e9.5 Bitumen \u003cbr data-mce-fragment=\"1\"\u003e9.6 Ceramic tiles \u003cbr data-mce-fragment=\"1\"\u003e9.7 Coated fabrics \u003cbr data-mce-fragment=\"1\"\u003e9.8 Coatings and paints \u003cbr data-mce-fragment=\"1\"\u003e9.9 Coil coatings \u003cbr data-mce-fragment=\"1\"\u003e9.10 Composites \u003cbr data-mce-fragment=\"1\"\u003e9.11 Construction \u003cbr data-mce-fragment=\"1\"\u003e9.12 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e9.13 Dental \u003cbr data-mce-fragment=\"1\"\u003e9.14 Electrodes \u003cbr data-mce-fragment=\"1\"\u003e9.15 Electronics \u003cbr data-mce-fragment=\"1\"\u003e9.16 Flooring \u003cbr data-mce-fragment=\"1\"\u003e9.17 Food applications \u003cbr data-mce-fragment=\"1\"\u003e9.18 Inks \u003cbr data-mce-fragment=\"1\"\u003e9.19 Laminates \u003cbr data-mce-fragment=\"1\"\u003e9.20 Medical \u003cbr data-mce-fragment=\"1\"\u003e9.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e9.22 Metal coating \u003cbr data-mce-fragment=\"1\"\u003e9.23 Pharmaceutical \u003cbr data-mce-fragment=\"1\"\u003e9.24 Roofing \u003cbr data-mce-fragment=\"1\"\u003e9.25 Sealants \u003cbr data-mce-fragment=\"1\"\u003e9.26 Tires \u003cbr data-mce-fragment=\"1\"\u003e9.27 Waterproofing \u003cbr data-mce-fragment=\"1\"\u003e9.28 Wire \u0026amp; cable \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e10 Adhesion and Corrosion Protection \u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003eIndex\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.","published_at":"2023-02-24T14:28:53-05:00","created_at":"2023-02-24T14:15:19-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","additive","additives","adhesion","book","filler","fillers","polymer","polymers","properties","surface"],"price":33500,"price_min":33500,"price_max":33500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43394020933789,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Adhesion Promoters, 2nd Ed.","public_title":null,"options":["Default Title"],"price":33500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-018-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670187-Case.png?v=1677266905"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670187-Case.png?v=1677266905","options":["Title"],"media":[{"alt":null,"id":27340098863261,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670187-Case.png?v=1677266905"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670187-Case.png?v=1677266905","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-018-7 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003ePages 322+vi\u003cbr\u003eFigures 154\u003cbr\u003ePublished Jan. 2023\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eAdhesion promoters form a significant group of additives, without, which many industrial products cannot perform according to requirements. The knowledge on this subject mostly related to silanes, which form the most widely used group of these additives, is frequently based on the book which was published at the beginning of 1980s by a scientist who developed many silanes used until today. Since then, many new additives were introduced into the market. Most of these new additives are not based on silanes but on one of over 30 chemical groups of chemical compounds needed for a variety of products in which silanes do not function, are too expensive, or better performance can be achieved with these new additives.\u003cbr\u003e\u003cbr\u003eThis book fills the existing gap in the literature, which still lacks the most recent comprehensive review of current options and knowledge. Handbook of Adhesion Promoters contains 10 chapters, each discussing essential aspects of the application of adhesion promoters. The known mechanisms which belong to one of 13 groups outline principles of use, action, and application of these additives. This chapter is followed by the discussion of mechanisms that cause adhesion loss, such as corrosion, delamination, detachment, liquid penetration, and peeling.\u003cbr\u003e\u003cbr\u003eSurface condition and its treatment are discussed regarding surface treatment by different methods (cleaning, mechanical, plasma, microwave, flame, corona discharge, laser, UV, and chemical modification), which are used in practical applications. All these are illustrated with practical examples.\u003cbr\u003e\u003cbr\u003eChapter 5 gives formulations of typical primers used in the application of adhesives and sealants, coatings, coil coatings, cosmetics, dental, leather, metal, optical devices, paper, polymers and plastics, printing, and wood. This chapter contains over 50 primer formulations.\u003cbr\u003e\u003cbr\u003eA full chapter is devoted to the subject of polymer modification which can improve adhesion – a method frequently used instead of the addition of adhesion promoters. The properties of (over 30 groups of adhesion promoters and their potential applications are discussed in the chapter devoted to this subject based on published articles, manufacturers’ information, and analysis of patents.\u003cbr\u003e\u003cbr\u003eThe last three chapters contain information on available evaluation and selection of adhesion promoters that work with different polymers (29), products (28) and help to prevent corrosion. A full list of covered polymers and products is given in the table of contents below.\u003cbr\u003e\u003cbr\u003eIn addition to the theoretical and practical knowledge required to effectively formulate products used in various applications discussed in this book, there is also available Databook of Adhesion Promoters, which contains data on many most extensively used commercial additives. Both books contain the most recent information available in literature, patents, and published by manufacturers and users of these products. \u003cbr\u003eThe Handbook of Adhesion Promoters is an important reference for chemists, engineers, and materials scientists in various industries. It is also suitable as a reference book for advanced graduate students.\u003cbr\u003eIt is recommended for readers interested in all aspects of polymers and plastics, with special attention to the development, studies, legislation, and production of adhesives, aerospace, agriculture, automotive, bitumen, ceramic tiles, coated fabrics, coatings and paints, coil coatings, composites, construction, cosmetics, dental, electrodes, electronics, flooring, food applications, inks, laminates, medical, membranes, metal coating, pharmaceutical, roofing, sealants, tires, waterproofing, and wire \u0026amp; cable.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e1.1 Definitions \u003cbr data-mce-fragment=\"1\"\u003e1.2 History \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Mechanisms of Adhesion\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e2.1 Mechanical interlocking \u003cbr data-mce-fragment=\"1\"\u003e2.2 Surface condition and shape \u003cbr data-mce-fragment=\"1\"\u003e2.3 Diffusion and entanglement \u003cbr data-mce-fragment=\"1\"\u003e2.4 Adsorption\/interaction \u003cbr data-mce-fragment=\"1\"\u003e2.5 Acid-base and electrostatic interactions\u003cbr data-mce-fragment=\"1\"\u003e2.5.1 Acid-base interactions \u003cbr data-mce-fragment=\"1\"\u003e2.5.2 Electrostatic interactions \u003cbr data-mce-fragment=\"1\"\u003e2.6 Surface free energy and wetting \u003cbr data-mce-fragment=\"1\"\u003e2.7 Crystalline properties \u003cbr data-mce-fragment=\"1\"\u003e2.8 Interphase formation \u003cbr data-mce-fragment=\"1\"\u003e2.9 Chemical bonding \u003cbr data-mce-fragment=\"1\"\u003e2.10 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.11 Reversible hydrolysis \u003cbr data-mce-fragment=\"1\"\u003e2.12 Microbiological and biological adhesion \u003cbr data-mce-fragment=\"1\"\u003e2.13 Cellular adhesion \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Mechanisms of Adhesion Loss\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e3.1 Corrosion \u003cbr data-mce-fragment=\"1\"\u003e3.2 Delamination \u003cbr data-mce-fragment=\"1\"\u003e3.3 Detachment \u003cbr data-mce-fragment=\"1\"\u003e3.4 Debonding \u003cbr data-mce-fragment=\"1\"\u003e3.5 Liquid penetration \u003cbr data-mce-fragment=\"1\"\u003e3.6 Peeling \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Substrates - Surface Condition and Treatment\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e4.1 Surface evaluation \u003cbr data-mce-fragment=\"1\"\u003e4.2 Surface treatment \u003cbr data-mce-fragment=\"1\"\u003e4.2.1 Cleaning \u003cbr data-mce-fragment=\"1\"\u003e4.2.2 Mechanical \u003cbr data-mce-fragment=\"1\"\u003e4.2.3 Plasma \u003cbr data-mce-fragment=\"1\"\u003e4.2.4 Microwave plasma \u003cbr data-mce-fragment=\"1\"\u003e4.2.5 Flame \u003cbr data-mce-fragment=\"1\"\u003e4.2.6 Corona discharge \u003cbr data-mce-fragment=\"1\"\u003e4.2.7 Laser \u003cbr data-mce-fragment=\"1\"\u003e4.2.8 UV \u003cbr data-mce-fragment=\"1\"\u003e4.2.9 Chemical modification \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Typical Primer Formulations and Applications to Different Substrates\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e5.1 Adhesives and sealants \u003cbr data-mce-fragment=\"1\"\u003e5.2 Coatings \u003cbr data-mce-fragment=\"1\"\u003e5.3 Coil coating \u003cbr data-mce-fragment=\"1\"\u003e5.4 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e5.5 Dental \u003cbr data-mce-fragment=\"1\"\u003e5.6 Leather \u003cbr data-mce-fragment=\"1\"\u003e5.7 Metal \u003cbr data-mce-fragment=\"1\"\u003e5.8 Optical devices \u003cbr data-mce-fragment=\"1\"\u003e5.9 Paper \u003cbr data-mce-fragment=\"1\"\u003e5.10 Polymers and plastics \u003cbr data-mce-fragment=\"1\"\u003e5.11 Printing \u003cbr data-mce-fragment=\"1\"\u003e5.12 Wood \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e6 Polymer Modification to Improve Adhesion\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e6.1 Selection of co-monomers \u003cbr data-mce-fragment=\"1\"\u003e6.2 Selection of polyols and isocyanates \u003cbr data-mce-fragment=\"1\"\u003e6.3 Modification of polymers by maleic anhydride \u003cbr data-mce-fragment=\"1\"\u003e6.4 Modification by epoxy group \u003cbr data-mce-fragment=\"1\"\u003e6.5 Silane grafting \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e7 Properties of Adhesion Promoters\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e7.1 Acrylates \u003cbr data-mce-fragment=\"1\"\u003e7.2 Amines, amides, aminoamides \u003cbr data-mce-fragment=\"1\"\u003e7.3 Aryl diazonium salts \u003cbr data-mce-fragment=\"1\"\u003e7.4 Benzene derivatives \u003cbr data-mce-fragment=\"1\"\u003e7.5 Carbamic resin \u003cbr data-mce-fragment=\"1\"\u003e7.6 Chlorinated polyolefins \u003cbr data-mce-fragment=\"1\"\u003e7.7 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e7.8 Epoxides \u003cbr data-mce-fragment=\"1\"\u003e7.9 Esters \u003cbr data-mce-fragment=\"1\"\u003e7.10 Inorganic compounds \u003cbr data-mce-fragment=\"1\"\u003e7.11 Ionomers \u003cbr data-mce-fragment=\"1\"\u003e7.12 Isocyanates \u003cbr data-mce-fragment=\"1\"\u003e7.13 Isocyanurates \u003cbr data-mce-fragment=\"1\"\u003e7.14 Lignin \u003cbr data-mce-fragment=\"1\"\u003e7.15 Maleic anhydride modified polymers \u003cbr data-mce-fragment=\"1\"\u003e7.16 Melamine \u003cbr data-mce-fragment=\"1\"\u003e7.17 Monomers \u003cbr data-mce-fragment=\"1\"\u003e7.18 Oligomers \u003cbr data-mce-fragment=\"1\"\u003e7.19 Phenol novolac resins \u003cbr data-mce-fragment=\"1\"\u003e7.20 Phosphoric acid esters \u003cbr data-mce-fragment=\"1\"\u003e7.21 Polymers and copolymers \u003cbr data-mce-fragment=\"1\"\u003e7.22 Polyols \u003cbr data-mce-fragment=\"1\"\u003e7.23 Resorcinol \u003cbr data-mce-fragment=\"1\"\u003e7.24 Rosin \u003cbr data-mce-fragment=\"1\"\u003e7.25 Silanes \u003cbr data-mce-fragment=\"1\"\u003e7.26 Silane+silica \u003cbr data-mce-fragment=\"1\"\u003e7.27 Silane+silicate \u003cbr data-mce-fragment=\"1\"\u003e7.28 Silane+titanate \u003cbr data-mce-fragment=\"1\"\u003e7.29 Sucrose derivatives \u003cbr data-mce-fragment=\"1\"\u003e7.30 Sulfur compounds \u003cbr data-mce-fragment=\"1\"\u003e7.31 Titanates \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e8 Selection of Adhesion Promoters for Different Substrates\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e8.1 ABS \u003cbr data-mce-fragment=\"1\"\u003e8.2 Alkyd resins \u003cbr data-mce-fragment=\"1\"\u003e8.3 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e8.4 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e8.5 Glass \u003cbr data-mce-fragment=\"1\"\u003e8.6 Metal \u003cbr data-mce-fragment=\"1\"\u003e8.7 Poly(3,4-ethylenedioxythiophene) \u003cbr data-mce-fragment=\"1\"\u003e8.8 Polyamide \u003cbr data-mce-fragment=\"1\"\u003e8.9 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e8.10 Polycarbonate \u003cbr data-mce-fragment=\"1\"\u003e8.11 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e8.12 Polyester \u003cbr data-mce-fragment=\"1\"\u003e8.13 Polyetheretherketone \u003cbr data-mce-fragment=\"1\"\u003e8.14 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e8.15 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e8.16 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e8.17 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e8.18 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e8.19 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e8.20 Polysulfone \u003cbr data-mce-fragment=\"1\"\u003e8.21 Polytetrafluoroethylene \u003cbr data-mce-fragment=\"1\"\u003e8.22 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e8.23 Polyvinylalcohol \u003cbr data-mce-fragment=\"1\"\u003e8.24 Polyvinylbutyral \u003cbr data-mce-fragment=\"1\"\u003e8.25 Polyvinylchloride \u003cbr data-mce-fragment=\"1\"\u003e8.26 Poly(p-xylylene) \u003cbr data-mce-fragment=\"1\"\u003e8.27 Porcelain \u003cbr data-mce-fragment=\"1\"\u003e8.28 Rubber \u003cbr data-mce-fragment=\"1\"\u003e8.29 TPO \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e9 Selection of Adhesion Promoters for Different Products\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e9.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e9.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e9.3 Agriculture \u003cbr data-mce-fragment=\"1\"\u003e9.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e9.5 Bitumen \u003cbr data-mce-fragment=\"1\"\u003e9.6 Ceramic tiles \u003cbr data-mce-fragment=\"1\"\u003e9.7 Coated fabrics \u003cbr data-mce-fragment=\"1\"\u003e9.8 Coatings and paints \u003cbr data-mce-fragment=\"1\"\u003e9.9 Coil coatings \u003cbr data-mce-fragment=\"1\"\u003e9.10 Composites \u003cbr data-mce-fragment=\"1\"\u003e9.11 Construction \u003cbr data-mce-fragment=\"1\"\u003e9.12 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e9.13 Dental \u003cbr data-mce-fragment=\"1\"\u003e9.14 Electrodes \u003cbr data-mce-fragment=\"1\"\u003e9.15 Electronics \u003cbr data-mce-fragment=\"1\"\u003e9.16 Flooring \u003cbr data-mce-fragment=\"1\"\u003e9.17 Food applications \u003cbr data-mce-fragment=\"1\"\u003e9.18 Inks \u003cbr data-mce-fragment=\"1\"\u003e9.19 Laminates \u003cbr data-mce-fragment=\"1\"\u003e9.20 Medical \u003cbr data-mce-fragment=\"1\"\u003e9.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e9.22 Metal coating \u003cbr data-mce-fragment=\"1\"\u003e9.23 Pharmaceutical \u003cbr data-mce-fragment=\"1\"\u003e9.24 Roofing \u003cbr data-mce-fragment=\"1\"\u003e9.25 Sealants \u003cbr data-mce-fragment=\"1\"\u003e9.26 Tires \u003cbr data-mce-fragment=\"1\"\u003e9.27 Waterproofing \u003cbr data-mce-fragment=\"1\"\u003e9.28 Wire \u0026amp; cable \u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e10 Adhesion and Corrosion Protection \u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003eIndex\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education."}
Handbook of Adhesives ...
$250.00
{"id":11242254212,"title":"Handbook of Adhesives and Sealants General Knowledge, Application of Adhesives, New Curing Techniques","handle":"978-0-08-044708-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Phillipe Cognard, Versailles, France \u003cbr\u003eISBN 978-0-08-044708-7 \u003cbr\u003e\u003cbr\u003eHardbound, 512 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nContributions from more than 60 authors, each a well-known specialist in their field, have been coordinated to produce the most comprehensive Handbook of Adhesives and Sealants ever published. The handbook will be published as 8 volumes, over a period of 4 years and will contain over 2800 pages, rich with case studies, industrial applications, and the latest research. It is a work in progress, enabling the latest new and important applications to be included as they happen. \u003cbr\u003e\u003cbr\u003eVolume 2 of Elsevier's Handbook of Adhesives \u0026amp; Sealants Series, General knowledge, application of adhesives \u0026amp; new curing techniques, covers the mechanisms of adhesion, its application, and drying and curing techniques. The volume is divided into the following sections: \u003cbr\u003e\u003cbr\u003e• Theory of adhesion \u003cbr\u003e• Metering and dispensing \u003cbr\u003e• Design and calculation of bonded joints\u003cbr\u003e• Heat stable adhesives\u003cbr\u003e• UV curing \u003cbr\u003e• Flexible bonding and sealants \u003cbr\u003e\u003cbr\u003eEach contributing author is a scientist, practitioner, engineer, or chemist with an abundance of practical experience in their respective field, making this text an authoritative reference source for any materials scientist or engineer, whether in academia or industry.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:27-04:00","created_at":"2017-06-22T21:15:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","adhesion","adhesives","bonded joints","book","flexible bonding","p-applications","polymer","sealants","UV curing"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378489412,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Adhesives and Sealants General Knowledge, Application of Adhesives, New Curing Techniques","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08-044708-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-044708-7.jpg?v=1499387193"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-044708-7.jpg?v=1499387193","options":["Title"],"media":[{"alt":null,"id":354809020509,"position":1,"preview_image":{"aspect_ratio":0.722,"height":450,"width":325,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-044708-7.jpg?v=1499387193"},"aspect_ratio":0.722,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-044708-7.jpg?v=1499387193","width":325}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Phillipe Cognard, Versailles, France \u003cbr\u003eISBN 978-0-08-044708-7 \u003cbr\u003e\u003cbr\u003eHardbound, 512 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nContributions from more than 60 authors, each a well-known specialist in their field, have been coordinated to produce the most comprehensive Handbook of Adhesives and Sealants ever published. The handbook will be published as 8 volumes, over a period of 4 years and will contain over 2800 pages, rich with case studies, industrial applications, and the latest research. It is a work in progress, enabling the latest new and important applications to be included as they happen. \u003cbr\u003e\u003cbr\u003eVolume 2 of Elsevier's Handbook of Adhesives \u0026amp; Sealants Series, General knowledge, application of adhesives \u0026amp; new curing techniques, covers the mechanisms of adhesion, its application, and drying and curing techniques. The volume is divided into the following sections: \u003cbr\u003e\u003cbr\u003e• Theory of adhesion \u003cbr\u003e• Metering and dispensing \u003cbr\u003e• Design and calculation of bonded joints\u003cbr\u003e• Heat stable adhesives\u003cbr\u003e• UV curing \u003cbr\u003e• Flexible bonding and sealants \u003cbr\u003e\u003cbr\u003eEach contributing author is a scientist, practitioner, engineer, or chemist with an abundance of practical experience in their respective field, making this text an authoritative reference source for any materials scientist or engineer, whether in academia or industry.\u003cbr\u003e\u003cbr\u003e"}
Handbook of Adhesives ...
$270.00
{"id":11242244996,"title":"Handbook of Adhesives and Sealants Basic Concepts and High Tech Bonding","handle":"978-0-08-044554-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Phillipe Cognard, Versailles, France \u003cbr\u003eISBN 978-0-08-044554-0 \u003cbr\u003e\u003cbr\u003eHardbound, 398 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the most comprehensive Adhesives and Sealants Handbook ever published, with the cooperation of around 35 authors from all over the world – each one a specialist in their field. It will include 80 chapters dealing with general information, the theory of bonding and sealing, the design of bonding parts, technical characteristics, chemistry, types of adhesives, application, equipment, controls, standards etc. Industrial applications such as automotive, aeronautics, building and civil engineering, electronics, packaging, wood, furniture, metals, plastics and composites, textiles, footwear etc.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nGeneral information, the theory of bonding and sealing, the design of bonding parts, technical characteristics, chemistry, types of adhesives, application, equipment, controls, standards etc. Industrial applications such as automotive, aeronautics, building and civil engineering, electronics, packaging, wood, furniture, metals, plastics and composites, textiles, footwear etc.","published_at":"2017-06-22T21:14:58-04:00","created_at":"2017-06-22T21:14:58-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","adhesives","applications","bonding","book","p-applications","polymer","sealing"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378451396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Adhesives and Sealants Basic Concepts and High Tech Bonding","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08-044554-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-044554-0.jpg?v=1503331710"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-044554-0.jpg?v=1503331710","options":["Title"],"media":[{"alt":null,"id":407236640861,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-044554-0.jpg?v=1503331710"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-044554-0.jpg?v=1503331710","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Phillipe Cognard, Versailles, France \u003cbr\u003eISBN 978-0-08-044554-0 \u003cbr\u003e\u003cbr\u003eHardbound, 398 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the most comprehensive Adhesives and Sealants Handbook ever published, with the cooperation of around 35 authors from all over the world – each one a specialist in their field. It will include 80 chapters dealing with general information, the theory of bonding and sealing, the design of bonding parts, technical characteristics, chemistry, types of adhesives, application, equipment, controls, standards etc. Industrial applications such as automotive, aeronautics, building and civil engineering, electronics, packaging, wood, furniture, metals, plastics and composites, textiles, footwear etc.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nGeneral information, the theory of bonding and sealing, the design of bonding parts, technical characteristics, chemistry, types of adhesives, application, equipment, controls, standards etc. Industrial applications such as automotive, aeronautics, building and civil engineering, electronics, packaging, wood, furniture, metals, plastics and composites, textiles, footwear etc."}
Handbook of Antistatics
$265.00
{"id":11242205060,"title":"Handbook of Antistatics","handle":"1-895198-34-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jürgen Pionteck \u0026amp; George Wypych \u003cbr\u003eISBN 1-895198-34-8 \u003cbr\u003e\u003cbr\u003ePages 359,Tables 140, Figures 110\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first comprehensive book written on the subject of antistatic additives. A few previously published books are either very old or they constitute short reviews or chapters in books on polymer additives.\u003cbr\u003e\u003cbr\u003eThe present volume includes information based on the complete review of existing literature and patented inventions on additives capable to modify properties of materials in such a manner that they become antistatic, conductive, and\/or EMI shielding.\u003cbr\u003e\u003cbr\u003eThirteen chemical families of materials are used for a production of antistatic additives. There are about 700 commercial products derived from these developments and used by industry to change electric conductivity of materials. The properties of these commercial products are given in the extensive database of antistatics which constitutes a separate publication but useful together with this handbook (see separate publication: Database of Antistatics). The information in both publications is not repeated but it is complementary.\u003cbr\u003e\u003cbr\u003eAntistatic additives are used in the production of materials from 57 generic families of polymers and numerous polymer blends having excellent conductive properties. Polymers containing antistatic additives are processed by 18 groups of processing methods and, in addition, 9 incorporation methods are used on the commercial scale with these products. The processing methods are used by 40 industries, listed in the box on the left side of the page, for the manufacture of a large number of commercial products.\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various polymers is divided into the following sections: types and concentrations of antistatics used, the potential effect of antistatics on polymer and\/or other additives, and examples of typical formulations used for processing of polymers containing the antistatic additive.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various products is divided into the following sections: types and concentrations of antistatics used by a particular industry, reasons for their use, advantages, and disadvantages of the use of different additives, the effect on product properties, and examples of formulations. \u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: types and concentrations of antistatics, eventual influence on processing, and examples of formulations. The goal of this chapter is to provide information on the amount and the type of antistatics used in each processing method, discuss the eventual influence of antistatics on a process and give examples of typical formulations used by the discussed here processing methods.\u003cbr\u003e\u003cbr\u003eThe book contains 22 chapters, each addressing specific aspect of properties and applications of antistatic agents. Please review the attached table contents for a detailed list of topics, ideas, and reviews included in this comprehensive volume. In addition, a separate publication is also available (Database of Antistatics), which is a database of commercial materials used as antistatic additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Historical developments in studies on static electricity \u003cbr\u003e1.2 The triboelectric series and electrostatic charging \u003cbr\u003e1.3 Electrical properties of plastics \u003cbr\u003e1.3.1 Electrical conductivity \u003cbr\u003e1.3.2 Dielectric behavior of plastics in low electric fields \u003cbr\u003e1.3.3 Electrostatic charging of dielectric polymers \u003cbr\u003e1.3.4 Stability of plastics in high electric fields \u003cbr\u003e1.4 Antistatic agents \u003cbr\u003e1.4.1 Classification of antistatics \u003cbr\u003e1.4.2 Expectations from antistatics \u003cbr\u003e1.5 Definitions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Types of Antistatic Agents \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial antistatic agents \u003cbr\u003e2.2.1 Amines (quaternary and others) \u003cbr\u003e2.2.2 Carbon black \u003cbr\u003e2.2.3 Esters \u003cbr\u003e2.2.4 Fibers \u003cbr\u003e2.2.4.1 Metal \u003cbr\u003e2.2.4.2 Carbon and graphite fibers \u003cbr\u003e2.2.4.3 Others \u003cbr\u003e2.2.5 Inorganic materials \u003cbr\u003e2.2.6 Masterbatches \u003cbr\u003e2.2.7 Metal powders and nanopowders \u003cbr\u003e2.2.8 Nanotubes \u003cbr\u003e2.2.9 Polyethylene glycol \u003cbr\u003e2.2.10 Polymers \u003cbr\u003e2.2.10.1 Inherently conductive \u003cbr\u003e2.2.10.2 Containing antistatic \u003cbr\u003e\u003cbr\u003e3 Typical Methods of Quality Control of Antistatics \u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Brookfield viscosity \u003cbr\u003e3.4 Capacitance \u003cbr\u003e3.5 Chemical resistance \u003cbr\u003e3.6 Color \u003cbr\u003e3.7 Compression set \u003cbr\u003e3.8 Dielectric breakdown voltage \u003cbr\u003e3.9 Dielectric constant (relative permittivity) \u003cbr\u003e3.10 Dielectric strength \u003cbr\u003e3.11 Dissipation factor \u003cbr\u003e3.12 Dry arc resistance \u003cbr\u003e3.13 Electrical resistivity \u003cbr\u003e3.14 Erosion resistance \u003cbr\u003e3.15 Flash and fire point \u003cbr\u003e3.16 Hardness \u003cbr\u003e3.17 Kinematic viscosity \u003cbr\u003e3.18 Loss index \u003cbr\u003e3.19 Marking (classification) \u003cbr\u003e3.20 Melt rheology \u003cbr\u003e3.21 Refractive index \u003cbr\u003e3.22 Residual contamination \u003cbr\u003e3.23 Saponification value \u003cbr\u003e3.24 Specific gravity \u003cbr\u003e3.25 Specifications for commercial products and standard test methods \u003cbr\u003e3.25.1 Adhesive bonding \u003cbr\u003e3.25.2 Aviation and distillate fuels \u003cbr\u003e3.25.3 Conductive adhesives \u003cbr\u003e3.25.4 Conveyor belting \u003cbr\u003e3.25.5 Crosslinkable ethylene plastics \u003cbr\u003e3.25.6 Electrical insulating materials \u003cbr\u003e3.25.7 Electrocoat bath \u003cbr\u003e3.25.8 Electronic devices \u003cbr\u003e3.25.9 Endless belts \u003cbr\u003e3.25.10 Extruded film and tape \u003cbr\u003e3.25.11 Flooring \u003cbr\u003e3.25.12 Footwear (protective) \u003cbr\u003e3.25.13 Hoses \u003cbr\u003e3.25.14 Insulation shielding materials \u003cbr\u003e3.25.15 Liquid paints \u003cbr\u003e3.25.16 Medical applications \u003cbr\u003e3.25.17 Polymer-based microwave circuit substrates \u003cbr\u003e3.25.18 Protective clothing \u003cbr\u003e3.25.19 Rubber \u003cbr\u003e3.25.20 Textile fabric \u003cbr\u003e3.25.21 Ventilation materials \u003cbr\u003e3.25.22 Writing paper \u003cbr\u003e3.26 Tensile properties \u003cbr\u003e3.27 Thermal expansion coefficient \u003cbr\u003e3.28 Water concentration \u003cbr\u003e3.29 Weight loss \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 Electrostatic Hazards \u003cbr\u003e4.1 Electrostatic charge generation \u003cbr\u003e4.2 Electromagnetic interference \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Ignition Hazards and Preventive Measures \u003cbr\u003e5.1 Conditions of ignition \u003cbr\u003e5.2 Types of discharge and discharge energy \u003cbr\u003e5.3 Minimum ignition energy \u003cbr\u003e5.4 Preventive measures \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Mechanisms of Action of Antistatic Agents \u003cbr\u003ePetra Pötschke \u0026amp; Jürgen Pionteck\u003cbr\u003e6.1 Conductive modification of polymer surfaces \u003cbr\u003e6.2 Mechanism of action of antistatics added into bulk \u003cbr\u003e6.2.1 Internal organic antistatics \u003cbr\u003e6.2.2 Conductive inorganic fillers \u003cbr\u003e6.2.3 Conductive inorganic materials in blends of insulating polymers \u003cbr\u003e6.2.4 Conductive polymer\/insulating polymer composites \u003cbr\u003e6.3 Consideration of mechanism in selection of antistatic agents for particular application\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Compatibility of Antistatic Agents with Matrix and Their Performance \u003cbr\u003e7.1 What influences compatibility of antistatic agents with matrix? \u003cbr\u003e7.2 Methods of antistatic agent selection based on principles of compatibility \u003cbr\u003e7.3 Influence of compatibility on permanence of antistatic agent incorporation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Antistatic Agent Motion and Diffusion \u003cbr\u003e8.1 Antistatic agent diffusion rate and the methods of study \u003cbr\u003e8.2 Antistatic agent motion and distribution in matrix \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Structure and Distribution of Non-migrating Antistatics \u003cbr\u003e9.1 Morphological structure and distribution of non-migrating (permanent) antistatics \u003cbr\u003e9.2 Percolation threshold \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Antistatic Agent Incorporation Method and Its Performance \u003cbr\u003e10.1 Grafting \u003cbr\u003e10.2 Chemical modification \u003cbr\u003e10.3 Surface coating \u003cbr\u003e10.4 UV and electron beam curing \u003cbr\u003e10.5 Plasma treatment \u003cbr\u003e10.6 Physical vapor deposition \u003cbr\u003e10.7 Mixing\/dispersion \u003cbr\u003e10.8 Crystallization in matrix \u003cbr\u003e10.9 Nucleation of inorganic nanoparticles \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 Antistatic Agents and Other Components of Formulation \u003cbr\u003e11.1 Antistatic agent consumption by fillers \u003cbr\u003e11.2 Absorption of additives by antistatic agents \u003cbr\u003e11.3 Molecular mobility and transport in the presence of antistatic agents \u003cbr\u003e11.4 Effect of antistatic agents on polymerization and curing reactions \u003cbr\u003e11.5 Effect of moisture and humidity \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 Effect of Antistatic Agents on Some Properties of Compounded Materials \u003cbr\u003e12.1 Mechanical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.2 Optical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.3 Spectral properties \u003cbr\u003e12.4 Rheological properties \u003cbr\u003ePetra Pötschke \u003cbr\u003e12.4.1 Effect of low molecular weight organic additives \u003cbr\u003e12.4.2 Effect of conductive inorganic materials \u003cbr\u003e12.5 Electrical properties \u003cbr\u003e12.6 Glass transition temperature \u003cbr\u003e12.7 Thermal stability \u003cbr\u003e12.8 Effect of UV and ionized radiation on materials containing antistatics \u003cbr\u003e12.9 Morphology, crystallization, structure, and orientation of macromolecules \u003cbr\u003e12.10 Hydrophilic properties, surface free energy \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 Antistatic Agent Selection for Specific Polymers \u003cbr\u003e13.1 ABS \u003cbr\u003e13.2 Acrylics \u003cbr\u003e13.3 Cellulose acetate \u003cbr\u003e13.4 Cellulose butyrate and propionate \u003cbr\u003e13.5 Cellulose nitrate \u003cbr\u003e13.6 Charge transfer polymers \u003cbr\u003e13.7 Chlorinated polyvinylchloride \u003cbr\u003e13.8 Chlorosulfonated polyethylene \u003cbr\u003e13.9 Epoxy resin \u003cbr\u003e13.10 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e13.11 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e13.12 Ionomers \u003cbr\u003e13.13 Nitrile rubber \u003cbr\u003e13.14 Polyacene \u003cbr\u003e13.15 Polyacetylene \u003cbr\u003e13.16 Polyacrylonitrile \u003cbr\u003e13.17 Polyamide \u003cbr\u003e13.18 Polyaniline \u003cbr\u003e13.19 Polybutadiene \u003cbr\u003e13.20 Polybutylmethacrylate \u003cbr\u003e13.21 Polycarbonate \u003cbr\u003e13.22 Polyester \u003cbr\u003e13.23 Polyetheretherketone \u003cbr\u003e13.24 Polyetherimide \u003cbr\u003e13.25 Polyethylene \u003cbr\u003e13.26 Polyimide \u003cbr\u003e13.27 Polyisoprene \u003cbr\u003e13.28 Polyisothionaphthene \u003cbr\u003e13.29 Polylactide \u003cbr\u003e13.30 Polymethylmethacrylate \u003cbr\u003e13.31 Polyoxyethylene \u003cbr\u003e13.32 Polyoxymethylene \u003cbr\u003e13.33 Poly(N-vinyl-2-pyrrolidone) 176\u003cbr\u003e13.34 Polyparaphenylene \u003cbr\u003e13.35 Poly(phenylene ether) \u003cbr\u003e13.36 Poly(phenylene sulfide) \u003cbr\u003e13.37 Poly(phenylene vinylene) \u003cbr\u003e13.38 Polypropylene \u003cbr\u003e13.39 Polypyrrole \u003cbr\u003e13.40 Polystyrene \u003cbr\u003e13.41 Polysulfone \u003cbr\u003e13.42 Polythiophene \u003cbr\u003e13.43 Polyvinylacetate \u003cbr\u003e13.44 Polyvinylalcohol \u003cbr\u003e13.45 Polyvinylbenzylalcohol \u003cbr\u003e13.46 Polyvinylbutyral \u003cbr\u003e13.47 Polyvinylchloride \u003cbr\u003e13.48 Poly(vinylene sulfide) \u003cbr\u003e13.49 Polyvinylidenechloride \u003cbr\u003e13.50 Polyvinylidenefluoride \u003cbr\u003e13.51 Polyurethanes \u003cbr\u003e13.52 Proteins \u003cbr\u003e13.53 Rubber, natural \u003cbr\u003e13.54 Silicone \u003cbr\u003e13.55 Styrene-butadiene rubber \u003cbr\u003e13.56 Styrene-butadiene-styrene copolymer \u003cbr\u003e13.57 Starch \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 Antistatic Agents in Polymer Blends \u003cbr\u003e14.1 Antistatic agent partition between blend component polymers \u003cbr\u003e14.2 Interaction of antistatic agents with blend components \u003cbr\u003e14.3 Blends of conductive and non-conductive polymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 Antistatic Agents in Various Industrial Products \u003cbr\u003e15.1 Adhesives and sealants \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Agriculture \u003cbr\u003e15.4 Automotive applications \u003cbr\u003e15.5 Bottles and plastic containers \u003cbr\u003e15.6 Bulk shipping containers \u003cbr\u003e15.7 Business machines \u003cbr\u003e15.8 Cementitious materials \u003cbr\u003e15.9 Ceramics \u003cbr\u003e15.10 Coated fabrics \u003cbr\u003e15.11 Composites \u003cbr\u003e15.12 Cosmetics \u003cbr\u003e15.13 Equipment manufacture \u003cbr\u003e15.14 Electrical equipment \u003cbr\u003e15.15 Electronics \u003cbr\u003e15.16 Fibers and textile materials \u003cbr\u003e15.17 Filtration \u003cbr\u003e15.18 Flooring \u003cbr\u003e15.19 Foams \u003cbr\u003e15.20 Footwear \u003cbr\u003e15.21 Fuels \u003cbr\u003e15.22 Gaskets \u003cbr\u003e15.23 Glass \u003cbr\u003e15.24 Inks, varnishes, and lacquers \u003cbr\u003e15.25 Magnetic tapes and disks \u003cbr\u003e15.26 Masking tapes \u003cbr\u003e15.27 Medical applications \u003cbr\u003e15.28 Membranes \u003cbr\u003e15.29 Packaging \u003cbr\u003e15.30 Paints and coatings \u003cbr\u003e15.31 Paper \u003cbr\u003e15.32 Pharmaceutical products \u003cbr\u003e15.33 Photographic materials \u003cbr\u003e15.34 Pipes and conveying systems \u003cbr\u003e15.35 Roofing and pavement materials \u003cbr\u003e15.36 Tires \u003cbr\u003e15.37 Tubing \u003cbr\u003e15.38 Upholstery \u003cbr\u003e15.39 Wire and cable \u003cbr\u003e15.40 Work clothing \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 Antistatic Agents in Various Processing Methods \u003cbr\u003e16.1 Blow molding \u003cbr\u003e16.2 Calendering \u003cbr\u003e16.3 Casting \u003cbr\u003e16.4 Coil coating \u003cbr\u003e16.5 Compression molding \u003cbr\u003e16.6 Dip coating \u003cbr\u003e16.7 Extrusion \u003cbr\u003e16.8 Injection molding \u003cbr\u003e16.9 Multilayered lamination \u003cbr\u003e16.10 Powder molding \u003cbr\u003e16.11 Rotational molding \u003cbr\u003e16.12 Rubber processing \u003cbr\u003e16.13 Spray coating \u003cbr\u003e16.14 Spin coating and finishing \u003cbr\u003e16.15 Sputtering \u003cbr\u003e16.16 Thermoforming \u003cbr\u003e16.17 Vacuum molding \u003cbr\u003e16.18 Web coating \u003cbr\u003e16.18 Wire coating \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 Specialized Analytical Methods in Antistatic Agent Testing \u003cbr\u003e17.1 Identification \u003cbr\u003e17.2 Methods of determination of concentration \u003cbr\u003e17.3 General methods \u003cbr\u003e17.3.1 Time-of-flight secondary ion mass spectrometry \u003cbr\u003e17.3.2 Atomic force microscopy \u003cbr\u003e17.3.3 Microscopy \u003cbr\u003e17.3.4 X-ray photoelectron spectroscopy, XPS or ESCA \u003cbr\u003e17.3.5 X-ray analysis \u003cbr\u003e17.3.6 Visible, UV and IR spectroscopy \u003cbr\u003e17.3.7 Ellipsometry \u003cbr\u003e17.3.8 Contact angle \u003cbr\u003e17.3.9 Atomic absorption spectroscopy \u003cbr\u003e17.3.10 Thermal analysis \u003cbr\u003e17.3.11 Molecular mass \u003cbr\u003e17.3.12 Specific surface area \u003cbr\u003e17.3.14 Mechanical aging \u003cbr\u003e17.4 Specific methods \u003cbr\u003e17.4.1 Charge accumulation and charge decay time \u003cbr\u003e17.4.2 Dielectric spectroscopy \u003cbr\u003e17.4.3 Dirt pickup methods \u003cbr\u003e17.4.4 Electrical conductivity \u003cbr\u003e17.4.5 Shielding effectiveness \u003cbr\u003e17.4.6 Propagating brush discharge \u003cbr\u003e17.4.7 Half-life discharge \u003cbr\u003e17.4.8 Tribocharging \u003cbr\u003e17.4.9 Electrostatic charge and field \u003cbr\u003e17.4.10 Surface and volume resistivity \u003cbr\u003e17.4.11 Internal space charge \u003cbr\u003e17.4.12 Ionic-conductivity spectra \u003cbr\u003e17.4.13 Electrical capacitance tomography \u003cbr\u003e17.4.14 Contact potential \u003cbr\u003e17.4.15 Transfer efficiency \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 Mathematical Modelling of Antistatic Properties \u003cbr\u003e18.1 Percolation concentration of antistatic filler \u003cbr\u003e18.2 Conduction mechanism modeling \u003cbr\u003e18.3 Charge decay \u003cbr\u003e18.4 Dielectric permittivity \u003cbr\u003e18.5 Electromagnetic wave shielding effectiveness \u003cbr\u003e18.6 Electrification of transformer oil \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 Health and Safety Issues with Antistatic Agents \u003cbr\u003e19.1 Aluminum \u003cbr\u003e19.2 Carbon black \u003cbr\u003e19.3 Copper \u003cbr\u003e19.4 Graphite \u003cbr\u003e19.5 Nickel and its compounds \u003cbr\u003e19.6 Silver \u003cbr\u003e19.7 Sorbitan monooleate \u003cbr\u003e19.8 Sorbitan monostearate \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 The Environmental Fate of Antistatic Agents \u003cbr\u003eWilliam R. Roy\u003cbr\u003e20.1 Introduction \u003cbr\u003e20.2 A lack of information \u003cbr\u003e20.3 Surfactants and metals \u003cbr\u003e20.3.1 Surfactants \u003cbr\u003e20.3.2 Sorption of surfactants by soils and clays \u003cbr\u003e20.3.3 Silver and nickel \u003cbr\u003e20.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e21 Regulations and Data \u003cbr\u003e21.1 Toxic substance control \u003cbr\u003e21.2. Carcinogenic effect \u003cbr\u003e21.3 Workplace exposure limits \u003cbr\u003e21.4 Food regulatory acts \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e22 Personal Protection \u003cbr\u003e22.1 Clothing \u003cbr\u003e22.2 Gloves \u003cbr\u003e22.3 Eye protection \u003cbr\u003e22.4 Respiratory protection \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJürgen Pionteck\u003c\/strong\u003e, born in 1957, studied chemistry at the Dresden Technical University, where he obtained his Ph. D. (Dr. rer. nat.) in the field of physical-organic chemistry under the guidance of K. Schwetlick in 1988. Since 1988 he is the researcher at the Leibniz Institute of Polymer Research Dresden, where he was heading the Polymer Blend Department from 1990 till 1998. In 1991\/1992 he worked for 1 year with W. J. MacKnight at the University of Massachusetts at Amherst. Jürgen Pionteck is author or co-author of almost 100 scientific papers. He was awarded the Science Award of the Dresden Technical University, third-class, the Award of the Association of Supporters of the IPF for Innovative Research on New Materials, and the Honorary Medal of the Polymer Institute Bratislava.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003e has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/p\u003e","published_at":"2017-06-22T21:12:52-04:00","created_at":"2017-06-22T21:12:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","antistatic","antistatic agents","antistatics additives","application of antistatic agents","book","conductive","environmental","medical applications","p-additives","polymer","regulations","stability of plastics in high electric fields","types of antistatics agents"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378319556,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Antistatics","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-34-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-34-8.jpg?v=1499387415"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-34-8.jpg?v=1499387415","options":["Title"],"media":[{"alt":null,"id":354809249885,"position":1,"preview_image":{"aspect_ratio":0.754,"height":499,"width":376,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-34-8.jpg?v=1499387415"},"aspect_ratio":0.754,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-34-8.jpg?v=1499387415","width":376}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jürgen Pionteck \u0026amp; George Wypych \u003cbr\u003eISBN 1-895198-34-8 \u003cbr\u003e\u003cbr\u003ePages 359,Tables 140, Figures 110\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first comprehensive book written on the subject of antistatic additives. A few previously published books are either very old or they constitute short reviews or chapters in books on polymer additives.\u003cbr\u003e\u003cbr\u003eThe present volume includes information based on the complete review of existing literature and patented inventions on additives capable to modify properties of materials in such a manner that they become antistatic, conductive, and\/or EMI shielding.\u003cbr\u003e\u003cbr\u003eThirteen chemical families of materials are used for a production of antistatic additives. There are about 700 commercial products derived from these developments and used by industry to change electric conductivity of materials. The properties of these commercial products are given in the extensive database of antistatics which constitutes a separate publication but useful together with this handbook (see separate publication: Database of Antistatics). The information in both publications is not repeated but it is complementary.\u003cbr\u003e\u003cbr\u003eAntistatic additives are used in the production of materials from 57 generic families of polymers and numerous polymer blends having excellent conductive properties. Polymers containing antistatic additives are processed by 18 groups of processing methods and, in addition, 9 incorporation methods are used on the commercial scale with these products. The processing methods are used by 40 industries, listed in the box on the left side of the page, for the manufacture of a large number of commercial products.\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various polymers is divided into the following sections: types and concentrations of antistatics used, the potential effect of antistatics on polymer and\/or other additives, and examples of typical formulations used for processing of polymers containing the antistatic additive.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various products is divided into the following sections: types and concentrations of antistatics used by a particular industry, reasons for their use, advantages, and disadvantages of the use of different additives, the effect on product properties, and examples of formulations. \u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: types and concentrations of antistatics, eventual influence on processing, and examples of formulations. The goal of this chapter is to provide information on the amount and the type of antistatics used in each processing method, discuss the eventual influence of antistatics on a process and give examples of typical formulations used by the discussed here processing methods.\u003cbr\u003e\u003cbr\u003eThe book contains 22 chapters, each addressing specific aspect of properties and applications of antistatic agents. Please review the attached table contents for a detailed list of topics, ideas, and reviews included in this comprehensive volume. In addition, a separate publication is also available (Database of Antistatics), which is a database of commercial materials used as antistatic additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Historical developments in studies on static electricity \u003cbr\u003e1.2 The triboelectric series and electrostatic charging \u003cbr\u003e1.3 Electrical properties of plastics \u003cbr\u003e1.3.1 Electrical conductivity \u003cbr\u003e1.3.2 Dielectric behavior of plastics in low electric fields \u003cbr\u003e1.3.3 Electrostatic charging of dielectric polymers \u003cbr\u003e1.3.4 Stability of plastics in high electric fields \u003cbr\u003e1.4 Antistatic agents \u003cbr\u003e1.4.1 Classification of antistatics \u003cbr\u003e1.4.2 Expectations from antistatics \u003cbr\u003e1.5 Definitions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Types of Antistatic Agents \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial antistatic agents \u003cbr\u003e2.2.1 Amines (quaternary and others) \u003cbr\u003e2.2.2 Carbon black \u003cbr\u003e2.2.3 Esters \u003cbr\u003e2.2.4 Fibers \u003cbr\u003e2.2.4.1 Metal \u003cbr\u003e2.2.4.2 Carbon and graphite fibers \u003cbr\u003e2.2.4.3 Others \u003cbr\u003e2.2.5 Inorganic materials \u003cbr\u003e2.2.6 Masterbatches \u003cbr\u003e2.2.7 Metal powders and nanopowders \u003cbr\u003e2.2.8 Nanotubes \u003cbr\u003e2.2.9 Polyethylene glycol \u003cbr\u003e2.2.10 Polymers \u003cbr\u003e2.2.10.1 Inherently conductive \u003cbr\u003e2.2.10.2 Containing antistatic \u003cbr\u003e\u003cbr\u003e3 Typical Methods of Quality Control of Antistatics \u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Brookfield viscosity \u003cbr\u003e3.4 Capacitance \u003cbr\u003e3.5 Chemical resistance \u003cbr\u003e3.6 Color \u003cbr\u003e3.7 Compression set \u003cbr\u003e3.8 Dielectric breakdown voltage \u003cbr\u003e3.9 Dielectric constant (relative permittivity) \u003cbr\u003e3.10 Dielectric strength \u003cbr\u003e3.11 Dissipation factor \u003cbr\u003e3.12 Dry arc resistance \u003cbr\u003e3.13 Electrical resistivity \u003cbr\u003e3.14 Erosion resistance \u003cbr\u003e3.15 Flash and fire point \u003cbr\u003e3.16 Hardness \u003cbr\u003e3.17 Kinematic viscosity \u003cbr\u003e3.18 Loss index \u003cbr\u003e3.19 Marking (classification) \u003cbr\u003e3.20 Melt rheology \u003cbr\u003e3.21 Refractive index \u003cbr\u003e3.22 Residual contamination \u003cbr\u003e3.23 Saponification value \u003cbr\u003e3.24 Specific gravity \u003cbr\u003e3.25 Specifications for commercial products and standard test methods \u003cbr\u003e3.25.1 Adhesive bonding \u003cbr\u003e3.25.2 Aviation and distillate fuels \u003cbr\u003e3.25.3 Conductive adhesives \u003cbr\u003e3.25.4 Conveyor belting \u003cbr\u003e3.25.5 Crosslinkable ethylene plastics \u003cbr\u003e3.25.6 Electrical insulating materials \u003cbr\u003e3.25.7 Electrocoat bath \u003cbr\u003e3.25.8 Electronic devices \u003cbr\u003e3.25.9 Endless belts \u003cbr\u003e3.25.10 Extruded film and tape \u003cbr\u003e3.25.11 Flooring \u003cbr\u003e3.25.12 Footwear (protective) \u003cbr\u003e3.25.13 Hoses \u003cbr\u003e3.25.14 Insulation shielding materials \u003cbr\u003e3.25.15 Liquid paints \u003cbr\u003e3.25.16 Medical applications \u003cbr\u003e3.25.17 Polymer-based microwave circuit substrates \u003cbr\u003e3.25.18 Protective clothing \u003cbr\u003e3.25.19 Rubber \u003cbr\u003e3.25.20 Textile fabric \u003cbr\u003e3.25.21 Ventilation materials \u003cbr\u003e3.25.22 Writing paper \u003cbr\u003e3.26 Tensile properties \u003cbr\u003e3.27 Thermal expansion coefficient \u003cbr\u003e3.28 Water concentration \u003cbr\u003e3.29 Weight loss \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 Electrostatic Hazards \u003cbr\u003e4.1 Electrostatic charge generation \u003cbr\u003e4.2 Electromagnetic interference \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Ignition Hazards and Preventive Measures \u003cbr\u003e5.1 Conditions of ignition \u003cbr\u003e5.2 Types of discharge and discharge energy \u003cbr\u003e5.3 Minimum ignition energy \u003cbr\u003e5.4 Preventive measures \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Mechanisms of Action of Antistatic Agents \u003cbr\u003ePetra Pötschke \u0026amp; Jürgen Pionteck\u003cbr\u003e6.1 Conductive modification of polymer surfaces \u003cbr\u003e6.2 Mechanism of action of antistatics added into bulk \u003cbr\u003e6.2.1 Internal organic antistatics \u003cbr\u003e6.2.2 Conductive inorganic fillers \u003cbr\u003e6.2.3 Conductive inorganic materials in blends of insulating polymers \u003cbr\u003e6.2.4 Conductive polymer\/insulating polymer composites \u003cbr\u003e6.3 Consideration of mechanism in selection of antistatic agents for particular application\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Compatibility of Antistatic Agents with Matrix and Their Performance \u003cbr\u003e7.1 What influences compatibility of antistatic agents with matrix? \u003cbr\u003e7.2 Methods of antistatic agent selection based on principles of compatibility \u003cbr\u003e7.3 Influence of compatibility on permanence of antistatic agent incorporation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Antistatic Agent Motion and Diffusion \u003cbr\u003e8.1 Antistatic agent diffusion rate and the methods of study \u003cbr\u003e8.2 Antistatic agent motion and distribution in matrix \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Structure and Distribution of Non-migrating Antistatics \u003cbr\u003e9.1 Morphological structure and distribution of non-migrating (permanent) antistatics \u003cbr\u003e9.2 Percolation threshold \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Antistatic Agent Incorporation Method and Its Performance \u003cbr\u003e10.1 Grafting \u003cbr\u003e10.2 Chemical modification \u003cbr\u003e10.3 Surface coating \u003cbr\u003e10.4 UV and electron beam curing \u003cbr\u003e10.5 Plasma treatment \u003cbr\u003e10.6 Physical vapor deposition \u003cbr\u003e10.7 Mixing\/dispersion \u003cbr\u003e10.8 Crystallization in matrix \u003cbr\u003e10.9 Nucleation of inorganic nanoparticles \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 Antistatic Agents and Other Components of Formulation \u003cbr\u003e11.1 Antistatic agent consumption by fillers \u003cbr\u003e11.2 Absorption of additives by antistatic agents \u003cbr\u003e11.3 Molecular mobility and transport in the presence of antistatic agents \u003cbr\u003e11.4 Effect of antistatic agents on polymerization and curing reactions \u003cbr\u003e11.5 Effect of moisture and humidity \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 Effect of Antistatic Agents on Some Properties of Compounded Materials \u003cbr\u003e12.1 Mechanical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.2 Optical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.3 Spectral properties \u003cbr\u003e12.4 Rheological properties \u003cbr\u003ePetra Pötschke \u003cbr\u003e12.4.1 Effect of low molecular weight organic additives \u003cbr\u003e12.4.2 Effect of conductive inorganic materials \u003cbr\u003e12.5 Electrical properties \u003cbr\u003e12.6 Glass transition temperature \u003cbr\u003e12.7 Thermal stability \u003cbr\u003e12.8 Effect of UV and ionized radiation on materials containing antistatics \u003cbr\u003e12.9 Morphology, crystallization, structure, and orientation of macromolecules \u003cbr\u003e12.10 Hydrophilic properties, surface free energy \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 Antistatic Agent Selection for Specific Polymers \u003cbr\u003e13.1 ABS \u003cbr\u003e13.2 Acrylics \u003cbr\u003e13.3 Cellulose acetate \u003cbr\u003e13.4 Cellulose butyrate and propionate \u003cbr\u003e13.5 Cellulose nitrate \u003cbr\u003e13.6 Charge transfer polymers \u003cbr\u003e13.7 Chlorinated polyvinylchloride \u003cbr\u003e13.8 Chlorosulfonated polyethylene \u003cbr\u003e13.9 Epoxy resin \u003cbr\u003e13.10 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e13.11 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e13.12 Ionomers \u003cbr\u003e13.13 Nitrile rubber \u003cbr\u003e13.14 Polyacene \u003cbr\u003e13.15 Polyacetylene \u003cbr\u003e13.16 Polyacrylonitrile \u003cbr\u003e13.17 Polyamide \u003cbr\u003e13.18 Polyaniline \u003cbr\u003e13.19 Polybutadiene \u003cbr\u003e13.20 Polybutylmethacrylate \u003cbr\u003e13.21 Polycarbonate \u003cbr\u003e13.22 Polyester \u003cbr\u003e13.23 Polyetheretherketone \u003cbr\u003e13.24 Polyetherimide \u003cbr\u003e13.25 Polyethylene \u003cbr\u003e13.26 Polyimide \u003cbr\u003e13.27 Polyisoprene \u003cbr\u003e13.28 Polyisothionaphthene \u003cbr\u003e13.29 Polylactide \u003cbr\u003e13.30 Polymethylmethacrylate \u003cbr\u003e13.31 Polyoxyethylene \u003cbr\u003e13.32 Polyoxymethylene \u003cbr\u003e13.33 Poly(N-vinyl-2-pyrrolidone) 176\u003cbr\u003e13.34 Polyparaphenylene \u003cbr\u003e13.35 Poly(phenylene ether) \u003cbr\u003e13.36 Poly(phenylene sulfide) \u003cbr\u003e13.37 Poly(phenylene vinylene) \u003cbr\u003e13.38 Polypropylene \u003cbr\u003e13.39 Polypyrrole \u003cbr\u003e13.40 Polystyrene \u003cbr\u003e13.41 Polysulfone \u003cbr\u003e13.42 Polythiophene \u003cbr\u003e13.43 Polyvinylacetate \u003cbr\u003e13.44 Polyvinylalcohol \u003cbr\u003e13.45 Polyvinylbenzylalcohol \u003cbr\u003e13.46 Polyvinylbutyral \u003cbr\u003e13.47 Polyvinylchloride \u003cbr\u003e13.48 Poly(vinylene sulfide) \u003cbr\u003e13.49 Polyvinylidenechloride \u003cbr\u003e13.50 Polyvinylidenefluoride \u003cbr\u003e13.51 Polyurethanes \u003cbr\u003e13.52 Proteins \u003cbr\u003e13.53 Rubber, natural \u003cbr\u003e13.54 Silicone \u003cbr\u003e13.55 Styrene-butadiene rubber \u003cbr\u003e13.56 Styrene-butadiene-styrene copolymer \u003cbr\u003e13.57 Starch \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 Antistatic Agents in Polymer Blends \u003cbr\u003e14.1 Antistatic agent partition between blend component polymers \u003cbr\u003e14.2 Interaction of antistatic agents with blend components \u003cbr\u003e14.3 Blends of conductive and non-conductive polymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 Antistatic Agents in Various Industrial Products \u003cbr\u003e15.1 Adhesives and sealants \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Agriculture \u003cbr\u003e15.4 Automotive applications \u003cbr\u003e15.5 Bottles and plastic containers \u003cbr\u003e15.6 Bulk shipping containers \u003cbr\u003e15.7 Business machines \u003cbr\u003e15.8 Cementitious materials \u003cbr\u003e15.9 Ceramics \u003cbr\u003e15.10 Coated fabrics \u003cbr\u003e15.11 Composites \u003cbr\u003e15.12 Cosmetics \u003cbr\u003e15.13 Equipment manufacture \u003cbr\u003e15.14 Electrical equipment \u003cbr\u003e15.15 Electronics \u003cbr\u003e15.16 Fibers and textile materials \u003cbr\u003e15.17 Filtration \u003cbr\u003e15.18 Flooring \u003cbr\u003e15.19 Foams \u003cbr\u003e15.20 Footwear \u003cbr\u003e15.21 Fuels \u003cbr\u003e15.22 Gaskets \u003cbr\u003e15.23 Glass \u003cbr\u003e15.24 Inks, varnishes, and lacquers \u003cbr\u003e15.25 Magnetic tapes and disks \u003cbr\u003e15.26 Masking tapes \u003cbr\u003e15.27 Medical applications \u003cbr\u003e15.28 Membranes \u003cbr\u003e15.29 Packaging \u003cbr\u003e15.30 Paints and coatings \u003cbr\u003e15.31 Paper \u003cbr\u003e15.32 Pharmaceutical products \u003cbr\u003e15.33 Photographic materials \u003cbr\u003e15.34 Pipes and conveying systems \u003cbr\u003e15.35 Roofing and pavement materials \u003cbr\u003e15.36 Tires \u003cbr\u003e15.37 Tubing \u003cbr\u003e15.38 Upholstery \u003cbr\u003e15.39 Wire and cable \u003cbr\u003e15.40 Work clothing \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 Antistatic Agents in Various Processing Methods \u003cbr\u003e16.1 Blow molding \u003cbr\u003e16.2 Calendering \u003cbr\u003e16.3 Casting \u003cbr\u003e16.4 Coil coating \u003cbr\u003e16.5 Compression molding \u003cbr\u003e16.6 Dip coating \u003cbr\u003e16.7 Extrusion \u003cbr\u003e16.8 Injection molding \u003cbr\u003e16.9 Multilayered lamination \u003cbr\u003e16.10 Powder molding \u003cbr\u003e16.11 Rotational molding \u003cbr\u003e16.12 Rubber processing \u003cbr\u003e16.13 Spray coating \u003cbr\u003e16.14 Spin coating and finishing \u003cbr\u003e16.15 Sputtering \u003cbr\u003e16.16 Thermoforming \u003cbr\u003e16.17 Vacuum molding \u003cbr\u003e16.18 Web coating \u003cbr\u003e16.18 Wire coating \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 Specialized Analytical Methods in Antistatic Agent Testing \u003cbr\u003e17.1 Identification \u003cbr\u003e17.2 Methods of determination of concentration \u003cbr\u003e17.3 General methods \u003cbr\u003e17.3.1 Time-of-flight secondary ion mass spectrometry \u003cbr\u003e17.3.2 Atomic force microscopy \u003cbr\u003e17.3.3 Microscopy \u003cbr\u003e17.3.4 X-ray photoelectron spectroscopy, XPS or ESCA \u003cbr\u003e17.3.5 X-ray analysis \u003cbr\u003e17.3.6 Visible, UV and IR spectroscopy \u003cbr\u003e17.3.7 Ellipsometry \u003cbr\u003e17.3.8 Contact angle \u003cbr\u003e17.3.9 Atomic absorption spectroscopy \u003cbr\u003e17.3.10 Thermal analysis \u003cbr\u003e17.3.11 Molecular mass \u003cbr\u003e17.3.12 Specific surface area \u003cbr\u003e17.3.14 Mechanical aging \u003cbr\u003e17.4 Specific methods \u003cbr\u003e17.4.1 Charge accumulation and charge decay time \u003cbr\u003e17.4.2 Dielectric spectroscopy \u003cbr\u003e17.4.3 Dirt pickup methods \u003cbr\u003e17.4.4 Electrical conductivity \u003cbr\u003e17.4.5 Shielding effectiveness \u003cbr\u003e17.4.6 Propagating brush discharge \u003cbr\u003e17.4.7 Half-life discharge \u003cbr\u003e17.4.8 Tribocharging \u003cbr\u003e17.4.9 Electrostatic charge and field \u003cbr\u003e17.4.10 Surface and volume resistivity \u003cbr\u003e17.4.11 Internal space charge \u003cbr\u003e17.4.12 Ionic-conductivity spectra \u003cbr\u003e17.4.13 Electrical capacitance tomography \u003cbr\u003e17.4.14 Contact potential \u003cbr\u003e17.4.15 Transfer efficiency \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 Mathematical Modelling of Antistatic Properties \u003cbr\u003e18.1 Percolation concentration of antistatic filler \u003cbr\u003e18.2 Conduction mechanism modeling \u003cbr\u003e18.3 Charge decay \u003cbr\u003e18.4 Dielectric permittivity \u003cbr\u003e18.5 Electromagnetic wave shielding effectiveness \u003cbr\u003e18.6 Electrification of transformer oil \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 Health and Safety Issues with Antistatic Agents \u003cbr\u003e19.1 Aluminum \u003cbr\u003e19.2 Carbon black \u003cbr\u003e19.3 Copper \u003cbr\u003e19.4 Graphite \u003cbr\u003e19.5 Nickel and its compounds \u003cbr\u003e19.6 Silver \u003cbr\u003e19.7 Sorbitan monooleate \u003cbr\u003e19.8 Sorbitan monostearate \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 The Environmental Fate of Antistatic Agents \u003cbr\u003eWilliam R. Roy\u003cbr\u003e20.1 Introduction \u003cbr\u003e20.2 A lack of information \u003cbr\u003e20.3 Surfactants and metals \u003cbr\u003e20.3.1 Surfactants \u003cbr\u003e20.3.2 Sorption of surfactants by soils and clays \u003cbr\u003e20.3.3 Silver and nickel \u003cbr\u003e20.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e21 Regulations and Data \u003cbr\u003e21.1 Toxic substance control \u003cbr\u003e21.2. Carcinogenic effect \u003cbr\u003e21.3 Workplace exposure limits \u003cbr\u003e21.4 Food regulatory acts \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e22 Personal Protection \u003cbr\u003e22.1 Clothing \u003cbr\u003e22.2 Gloves \u003cbr\u003e22.3 Eye protection \u003cbr\u003e22.4 Respiratory protection \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJürgen Pionteck\u003c\/strong\u003e, born in 1957, studied chemistry at the Dresden Technical University, where he obtained his Ph. D. (Dr. rer. nat.) in the field of physical-organic chemistry under the guidance of K. Schwetlick in 1988. Since 1988 he is the researcher at the Leibniz Institute of Polymer Research Dresden, where he was heading the Polymer Blend Department from 1990 till 1998. In 1991\/1992 he worked for 1 year with W. J. MacKnight at the University of Massachusetts at Amherst. Jürgen Pionteck is author or co-author of almost 100 scientific papers. He was awarded the Science Award of the Dresden Technical University, third-class, the Award of the Association of Supporters of the IPF for Innovative Research on New Materials, and the Honorary Medal of the Polymer Institute Bratislava.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003e has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/p\u003e"}
Handbook of Conducting...
$299.00
{"id":11242239172,"title":"Handbook of Conducting Polymers, 3rd Ed. 2 Vol. Set","handle":"9781574446654","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. A. Skotheim, J. Reynolds \u003cbr\u003eISBN 9781574446654 \u003cbr\u003e\u003cbr\u003epages 1680\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAs the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two volumes, this third edition incorporates the latest developments in both the fundamental science and practical applications of polymers while maintaining the clear format of the previous editions and the expertise of the editors and world-renowned contributors.\u003cbr\u003e\u003cbr\u003eThe first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind p-conjugated materials and electron-lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.\u003cbr\u003e\u003cbr\u003ePicking up where the first volume left off, the second book concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators. \u003cbr\u003e\u003cbr\u003eAs the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eRetains the expertise of the world-renowned editors and contributors as well as the clear format from previous editions\u003c\/li\u003e\n\u003cli\u003eDescribes in detail the structure-property relationships of redox, interfacial, electrical, and optical phenomena unique to conducting polymers\u003c\/li\u003e\n\u003cli\u003eHighlights conducting and semiconducting polymers in light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators\u003c\/li\u003e\n\u003cli\u003eFeatures the most active and visible researchers in the field of conjugated and conducting polymers\u003c\/li\u003e\n\u003cli\u003eIncludes numerous equations, tables, and both black and white and color figures\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:40-04:00","created_at":"2017-06-22T21:14:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","actuators","biosensors","book","conducting","electrical","electrochromic panels","field effect","interfacial","optical","p-applications","polymer","polymers","redox","semiconducting polymers in light-emitting displays","solar cells","transistors"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432452,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Conducting Polymers, 3rd Ed. 2 Vol. Set","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781574446654","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880","options":["Title"],"media":[{"alt":null,"id":354810265693,"position":1,"preview_image":{"aspect_ratio":0.659,"height":499,"width":329,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880"},"aspect_ratio":0.659,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880","width":329}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. A. Skotheim, J. Reynolds \u003cbr\u003eISBN 9781574446654 \u003cbr\u003e\u003cbr\u003epages 1680\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAs the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two volumes, this third edition incorporates the latest developments in both the fundamental science and practical applications of polymers while maintaining the clear format of the previous editions and the expertise of the editors and world-renowned contributors.\u003cbr\u003e\u003cbr\u003eThe first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind p-conjugated materials and electron-lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.\u003cbr\u003e\u003cbr\u003ePicking up where the first volume left off, the second book concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators. \u003cbr\u003e\u003cbr\u003eAs the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eRetains the expertise of the world-renowned editors and contributors as well as the clear format from previous editions\u003c\/li\u003e\n\u003cli\u003eDescribes in detail the structure-property relationships of redox, interfacial, electrical, and optical phenomena unique to conducting polymers\u003c\/li\u003e\n\u003cli\u003eHighlights conducting and semiconducting polymers in light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators\u003c\/li\u003e\n\u003cli\u003eFeatures the most active and visible researchers in the field of conjugated and conducting polymers\u003c\/li\u003e\n\u003cli\u003eIncludes numerous equations, tables, and both black and white and color figures\u003c\/li\u003e\n\u003c\/ul\u003e"}