- Grid List
Filter
Additive Migration fro...
$170.00
{"id":11242227908,"title":"Additive Migration from Plastics into Foods","handle":"978-1-84735-055-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R. Crompton \u003cbr\u003eISBN 978-1-84735-055-8 \u003cbr\u003e\u003cbr\u003e\u003cb\u003eA Guide for Analytical Chemists\u003cbr\u003e\u003c\/b\u003eSmithers Rapra Technology\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003eSoft-backed, 255 x 190 mm, 325 pages.\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics are now being used on a large scale for the packaging of fatty and aqueous foodstuffs and beverages, both alcoholic and non-alcoholic. This is evident for all to see on the supermarket shelves, margarine is packed in polystyrene tubs, beer is packed in PVC bottles and meats and bacon in shrink-wrap film. Foods are also increasingly being shipped in bulk, in plastic containers. Additionally, there is the area of use of plastics utensils, containers, and processing equipment in the home and during a bulk preparation of food in producing factories, at home and in restaurants and canteens. \u003cbr\u003e\u003cbr\u003eThus it is likely that some transfer of polymer additives will occur - adventitious impurities such as monomers, oligomers, catalyst remnants and residual polymerization solvents and low molecular weight polymer fractions - from the plastic into the packaged material with the consequent risk of a toxic hazard to the consumer. The actual hazard arising to the consumer from any extractable material is a function of two properties, namely, the intrinsic toxicity of the extracted material as evaluated in animal feeding trials (not dealt with in this book) and the amount of material extracted from the polymer which enters the packed commodity under service conditions, i.e., during packaging operations and during the shelf life of the packaged commodity at the time of the consumption. \u003cbr\u003e\u003cbr\u003eThis book covers all aspects of the migration of additives into food and gives detailed information on the analytical determination of the additives in various plastics. It will be of interest to those engaged in the implementation of packaging legislation, including management, analytical chemists and the manufacturers of foods, beverages, pharmaceuticals and cosmetics and also scientific and toxicologists in the packaging industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Additive Migration from Plastics into Packaged Commodities \u003cbr\u003e2 Types of Polymers Used in Commodity Packaging \u003cbr\u003e3 Non-Polymeric Components of Plastics \u003cbr\u003e4 Determination of Antioxidants \u003cbr\u003e5 Determination of Ultraviolet Stabilisers in Extractants \u003cbr\u003e6 Determination of Plasticisers in Extractants \u003cbr\u003e7 Determination of Organotin Thermal Stabilisers in Extractants \u003cbr\u003e8 Determination of Organic Sulfur Compounds in Extractants \u003cbr\u003e9 Determination of Polydimethyl Siloxanes in Extractants \u003cbr\u003e10 Determination of Lubricants in Extraction Liquids \u003cbr\u003e11 Determination of Monomers and Oligomers in Extractants \u003cbr\u003e12 Analysis of Polymer Extraction Liquids Containing More Than One Migrant \u003cbr\u003e13 Determination of Additives and their Breakdown Products in Extractants \u003cbr\u003e14 Additive Migration Theory \u003cbr\u003e15 Gas Barrier Properties of Food Packaging Plastic Films \u003cbr\u003e16 Legislative Aspects of the Use of Additives in Packaging Plastics \u003cbr\u003e17 Direct Determination of Migrants from Polymers into Foodstuffs\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoy Crompton was Head of the polymer analysis research department of a major international polymer producer for some 15 years. In the early fifties, he was heavily engaged in the development of methods of analysis for low-pressure polyolefins produced by the Ziegler-Natta route, including work on high-density polyethylene and polypropylene. He was responsible for the development of methods of analysis of the organoaluminum catalysts used for the synthesis of these polymers. He was also responsible for the development of thin-layer chromatography for the determination of various types of additives in polymers and did pioneering work on the use of TLC to separate polymer additives and to examine the separated additives by infrared and mass spectrometry. He retired in 1988 and has since been engaged as a consultant in the field of analytical chemistry and has written extensively on this subject, with some 20 books published.","published_at":"2017-06-22T21:14:06-04:00","created_at":"2017-06-22T21:14:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additive","antioxidants","book","determination","extractants","lubricants","migration","monomes","non-polymeric","oligomers","p-applications","packaging","plastic","plasticisers","plasticizers","plastics","polymer","polymers","stabilisers","sulfur compounds","ultraviolet"],"price":17000,"price_min":17000,"price_max":17000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378395844,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Additive Migration from Plastics into Foods","public_title":null,"options":["Default Title"],"price":17000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-055-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-055-8.jpg?v=1498185547"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-055-8.jpg?v=1498185547","options":["Title"],"media":[{"alt":null,"id":350138663005,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-055-8.jpg?v=1498185547"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-055-8.jpg?v=1498185547","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R. Crompton \u003cbr\u003eISBN 978-1-84735-055-8 \u003cbr\u003e\u003cbr\u003e\u003cb\u003eA Guide for Analytical Chemists\u003cbr\u003e\u003c\/b\u003eSmithers Rapra Technology\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003eSoft-backed, 255 x 190 mm, 325 pages.\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics are now being used on a large scale for the packaging of fatty and aqueous foodstuffs and beverages, both alcoholic and non-alcoholic. This is evident for all to see on the supermarket shelves, margarine is packed in polystyrene tubs, beer is packed in PVC bottles and meats and bacon in shrink-wrap film. Foods are also increasingly being shipped in bulk, in plastic containers. Additionally, there is the area of use of plastics utensils, containers, and processing equipment in the home and during a bulk preparation of food in producing factories, at home and in restaurants and canteens. \u003cbr\u003e\u003cbr\u003eThus it is likely that some transfer of polymer additives will occur - adventitious impurities such as monomers, oligomers, catalyst remnants and residual polymerization solvents and low molecular weight polymer fractions - from the plastic into the packaged material with the consequent risk of a toxic hazard to the consumer. The actual hazard arising to the consumer from any extractable material is a function of two properties, namely, the intrinsic toxicity of the extracted material as evaluated in animal feeding trials (not dealt with in this book) and the amount of material extracted from the polymer which enters the packed commodity under service conditions, i.e., during packaging operations and during the shelf life of the packaged commodity at the time of the consumption. \u003cbr\u003e\u003cbr\u003eThis book covers all aspects of the migration of additives into food and gives detailed information on the analytical determination of the additives in various plastics. It will be of interest to those engaged in the implementation of packaging legislation, including management, analytical chemists and the manufacturers of foods, beverages, pharmaceuticals and cosmetics and also scientific and toxicologists in the packaging industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Additive Migration from Plastics into Packaged Commodities \u003cbr\u003e2 Types of Polymers Used in Commodity Packaging \u003cbr\u003e3 Non-Polymeric Components of Plastics \u003cbr\u003e4 Determination of Antioxidants \u003cbr\u003e5 Determination of Ultraviolet Stabilisers in Extractants \u003cbr\u003e6 Determination of Plasticisers in Extractants \u003cbr\u003e7 Determination of Organotin Thermal Stabilisers in Extractants \u003cbr\u003e8 Determination of Organic Sulfur Compounds in Extractants \u003cbr\u003e9 Determination of Polydimethyl Siloxanes in Extractants \u003cbr\u003e10 Determination of Lubricants in Extraction Liquids \u003cbr\u003e11 Determination of Monomers and Oligomers in Extractants \u003cbr\u003e12 Analysis of Polymer Extraction Liquids Containing More Than One Migrant \u003cbr\u003e13 Determination of Additives and their Breakdown Products in Extractants \u003cbr\u003e14 Additive Migration Theory \u003cbr\u003e15 Gas Barrier Properties of Food Packaging Plastic Films \u003cbr\u003e16 Legislative Aspects of the Use of Additives in Packaging Plastics \u003cbr\u003e17 Direct Determination of Migrants from Polymers into Foodstuffs\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoy Crompton was Head of the polymer analysis research department of a major international polymer producer for some 15 years. In the early fifties, he was heavily engaged in the development of methods of analysis for low-pressure polyolefins produced by the Ziegler-Natta route, including work on high-density polyethylene and polypropylene. He was responsible for the development of methods of analysis of the organoaluminum catalysts used for the synthesis of these polymers. He was also responsible for the development of thin-layer chromatography for the determination of various types of additives in polymers and did pioneering work on the use of TLC to separate polymer additives and to examine the separated additives by infrared and mass spectrometry. He retired in 1988 and has since been engaged as a consultant in the field of analytical chemistry and has written extensively on this subject, with some 20 books published."}
Additives for waterbor...
$235.00
{"id":11242230340,"title":"Additives for waterborne Coatings","handle":"978-3-86630-850-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Wernfried Heilein, Director of Technical Marketing, Evonik Tego Chemical GmbH, Essen, Germany \u003cbr\u003eISBN 978-3-86630-850-3 \u003cbr\u003e\u003cbr\u003eHardbound, 240 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book offers an overview of the most important aspects and applications of additives for waterborne systems in diverse market segments. Wernfried Heilein helps to understand how additives work and elucidates all kinds of mechanisms in great detail. Furthermore, he dispels a lot of myths surrounding paint additives with an excellent combination of theory and practice. This enables a deep insight into all the different application areas for additives in waterborne paint systems.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience: \u003c\/b\u003e\u003cbr\u003eFormulators involved in developing, producing, and testing of waterborne coatings and paints for different applications and substrates including can and coil coatings, heavy-duty protective coatings, plastics coatings, wood coatings and architectural coatings.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 Introduction\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 Wetting- and dispersing additives\u003c\/b\u003e\u003cbr\u003e2.1 Modes of action\u003cbr\u003e2.1.1 Pigment wetting\u003cbr\u003e2.1.2 Grinding\u003cbr\u003e2.1.3 Stabilisation\u003cbr\u003e2.1.3.1 Electrostatic stabilisation\u003cbr\u003e2.1.3.2 Steric stabilisation\u003cbr\u003e2.1.3.3 Electrosteric stabilisation\u003cbr\u003e2.1.4 Influences on formulation\u003cbr\u003e2.1.4.1 Viscosity\u003cbr\u003e2.1.4.2 Colour strength\u003cbr\u003e2.1.4.3 Compatibility\u003cbr\u003e2.1.4.4 Stability\u003cbr\u003e2.2 Chemical structures\u003cbr\u003e2.2.1 Polyacrylate salts\u003cbr\u003e2.2.2 Fatty acid and fatty alcohol derivatives\u003cbr\u003e2.2.3 Acrylic-copolymers\u003cbr\u003e2.2.4 Maleic anhydride copolymers\u003cbr\u003e2.2.5 Alkyl phenol ethoxylates\u003cbr\u003e2.2.6 Alkyl phenol ethoxylate replacements\u003cbr\u003e2.3 Wetting and dispersing additives in different market segments\u003cbr\u003e2.3.1 Architectural coatings\u003cbr\u003e2.3.1.1 Direct-grind\u003cbr\u003e2.3.1.2 Pigment concentrates\u003cbr\u003e2.3.2 Wood and furniture coatings\u003cbr\u003e2.3.2.1 Direct grind\u003cbr\u003e2.3.2.2 Pigment concentrates\u003cbr\u003e2.3.3 Industrial coatings\u003cbr\u003e2.3.3.1 Direct grind\u003cbr\u003e2.3.3.2 Pigment concentrates\u003cbr\u003e2.3.4 Printing inks\u003cbr\u003e2.3.4.1 Direct grind\u003cbr\u003e2.3.4.2 Pigment concentrates\u003cbr\u003e2.4 Tips and Tricks\u003cbr\u003e2.5 Test methods\u003cbr\u003e2.5.1 Particle size\u003cbr\u003e2.5.2 Colour strength\u003cbr\u003e2.5.3 Rub-out\u003cbr\u003e2.5.4 Viscosity\u003cbr\u003e2.5.5 Zeta potential\u003cbr\u003e2.6 Summary\u003cbr\u003e2.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e3 Defoaming of coating systems\u003c\/b\u003e\u003cbr\u003e3.1 Defoaming mechanisms\u003cbr\u003e3.1.1 Foam\u003cbr\u003e3.1.1.1 Causes of foam\u003cbr\u003e3.1.1.2 Types of foam\u003cbr\u003e3.2 Defoamers\u003cbr\u003e3.2.1 Composition of defoamers\u003cbr\u003e3.2.2 Defoaming mechanisms\u003cbr\u003e3.2.2.1 Defoaming by drainage\/slow defoaming\u003cbr\u003e3.2.2.2 Entry barrier\/entry coefficient\u003cbr\u003e3.2.2.3 Bridging mechanism\u003cbr\u003e3.2.2.4 Spreading mechanism\u003cbr\u003e3.2.2.5 Bridging stretching mechanism\u003cbr\u003e3.2.2.6 Bridging dewetting mechanism\u003cbr\u003e3.2.2.7 Spreading fluid mechanism\u003cbr\u003e3.2.2.8 Spreading wave mechanism\u003cbr\u003e3.2.2.9 Effect of fillers on the performance of defoamers\u003cbr\u003e3.3 Chemistry and formulation of defoamers\u003cbr\u003e3.3.1 Active ingredients in defoamers\u003cbr\u003e3.3.1.1 Silicone oils (polysiloxanes)\u003cbr\u003e3.3.1.2 Mineral oils\u003cbr\u003e3.3.1.3 Vegetable oils\u003cbr\u003e3.3.1.4 Polar oils\u003cbr\u003e3.3.1.5 Molecular defoamers (gemini surfactants)\u003cbr\u003e3.3.1.6 Hydrophobic particles\u003cbr\u003e3.3.1.7 Emulsifiers\u003cbr\u003e3.3.1.8 Solvents\u003cbr\u003e3.3.2 Defoamer formulations\u003cbr\u003e3.3.3 Suppliers of defoamers\u003cbr\u003e3.4 Product recommendations for different binders\u003cbr\u003e3.4.1 Acrylic emulsions\u003cbr\u003e3.4.2 Styrene acrylic emulsions\u003cbr\u003e3.4.3 Vinyl acetate based emulsions\u003cbr\u003e3.4.4 Polyurethane dispersions\u003cbr\u003e3.5 Product choice according to field of application\u003cbr\u003e3.5.1 Influence of the pigment volume concentration (PVC)\u003cbr\u003e3.5.2 Method of incorporating the defoamer\u003cbr\u003e3.5.3 Application of shear forces during application\u003cbr\u003e3.5.4 Surfactant content of the formulation\u003cbr\u003e3.6 Tips and tricks\u003cbr\u003e3.7 Summary\u003cbr\u003e3.8 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 Rheology modifiers\u003c\/b\u003e\u003cbr\u003e4.1 General assessment of rheology modifiers\u003cbr\u003e4.1.1 Market overview\u003cbr\u003e4.1.2 Basic characteristics of the different rheological additives\u003cbr\u003e4.2 Requirements for rheology modifiers\u003cbr\u003e4.2.1 Rheology\u003cbr\u003e4.2.2 Example of application\u003cbr\u003e4.3 Ethoxylated and hydrophobically modified urethanes\u003cbr\u003e4.3.1 Synthesis of HEUR\u003cbr\u003e4.3.2 Associative properties of HEUR additives\u003cbr\u003e4.3.3 From self-association to associative behaviour\u003cbr\u003e4.3.4 Hydrophobic\/hydrophilic equilibrium of waterborne coatings\u003cbr\u003e4.3.5 Improved colour acceptance with HEUR\u003cbr\u003e4.4 Alkali swellable emulsions: ASE and HASE\u003cbr\u003e4.4.1 Synthesis\u003cbr\u003e4.4.1.1 ASE\u003cbr\u003e4.4.1.2 HASE\u003cbr\u003e4.4.1.3 Interaction between binders\u003cbr\u003e4.4.2 Thixotropy and HASE\u003cbr\u003e4.5 Outlook\u003cbr\u003e4.6 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e5 Substrate wetting additives\u003c\/b\u003e\u003cbr\u003e5.1 Mechanism of action\u003cbr\u003e5.1.1 Water as a solvent\u003cbr\u003e5.1.2 Surface tension\u003cbr\u003e5.1.3 Reason of the surface tension\u003cbr\u003e5.1.4 Effect of the high surface tension of water\u003cbr\u003e5.1.5 Substrate wetting additives are surfactants\u003cbr\u003e5.1.6 Mode of action of substrate wetting additives\u003cbr\u003e5.1.7 Further general properties of substrate wetting additives\/side effects\u003cbr\u003e5.2 Chemical structure of substrate wetting additives\u003cbr\u003e5.2.1 Basic properties of substrate wetting additives\u003cbr\u003e5.2.2 Chemical structure of substrate wetting additives important in coatings\u003cbr\u003e5.2.2.1 Polyethersiloxanes\u003cbr\u003e5.2.2.2 Gemini surfactants\u003cbr\u003e5.2.2.3 Fluoro surfactants\u003cbr\u003e5.2.2.4 Acetylenediols and modifications\u003cbr\u003e5.2.2.5 Sulfosuccinate\u003cbr\u003e5.2.2.6 Alkoxylated fatty alcohols\u003cbr\u003e5.2.2.7 Alkylphenol ethoxylates (APEO)\u003cbr\u003e5.3 Application of substrate wetting additives\u003cbr\u003e5.3.1 Basic properties of various chemical classes\u003cbr\u003e5.3.2 Reduction of static surface tension\u003cbr\u003e5.3.3 Possible foam stabilisation\u003cbr\u003e5.3.4 Effective reduction in static surface tension versus flow\u003cbr\u003e5.3.5 Reduction of dynamic surface tension\u003cbr\u003e5.3.6 Which property correlates with which practical application?\u003cbr\u003e5.3.6.1 Craters\u003cbr\u003e5.3.6.2 Wetting and atomisation of spray coatings\u003cbr\u003e5.3.6.3 Rewettability, reprintability, recoatability\u003cbr\u003e5.3.6.4 Flow\u003cbr\u003e5.3.6.5 Spray mist uptake\u003cbr\u003e5.4 Use of substrate wetting additives in different market sectors\u003cbr\u003e5.5 Tips and tricks\u003cbr\u003e5.5.1 Successful use of substrate wetting additives in coatings\u003cbr\u003e5.5.2 Metallic shades\u003cbr\u003e5.6 Test methods for measuring surface tension\u003cbr\u003e5.6.1 Static surface tension\u003cbr\u003e5.6.2 Dynamic surface tension\u003cbr\u003e5.6.3 Dynamic versus static\u003cbr\u003e5.6.4 Further practical test methods\u003cbr\u003e5.6.4.1 Wedge spray application\u003cbr\u003e5.6.4.2 One spray path\u003cbr\u003e5.6.4.3 Crater test\u003cbr\u003e5.6.4.4 Drawdown\u003cbr\u003e5.6.4.5 Spray drop uptake\u003cbr\u003e5.6.5 Analytical test methods\u003cbr\u003e5.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e6 Improving performance with co-binders\u003c\/b\u003e\u003cbr\u003e6.1 Preparation of co-binders\u003cbr\u003e6.1.1 Secondary dispersions\u003cbr\u003e6.1.1.1 Polyester dispersions\u003cbr\u003e6.1.1.2 Polyurethane dispersions\u003cbr\u003e6.2 Applications of co-binders\u003cbr\u003e6.2.1 Co-binders for better property profiles\u003cbr\u003e6.2.1.1 Drying time\u003cbr\u003e6.2.1.2 Adhesion\u003cbr\u003e6.2.1.3 Hardness-flexibility balance\u003cbr\u003e6.2.1.4 Gloss\u003cbr\u003e6.2.2 Co-binders for pigment pastes\u003cbr\u003e6.3 Summary\u003cbr\u003e6.4 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e7 Deaerators\u003c\/b\u003e\u003cbr\u003e7.1 Mode of action of deaerators\u003cbr\u003e7.1.1 Dissolution of microfoam\u003cbr\u003e7.1.2 Rise of microfoam bubbles in the coating film\u003cbr\u003e7.1.3 How to prevent microfoam in coating films\u003cbr\u003e7.1.4 How deaerators combat microfoam\u003cbr\u003e7.1.4.1 Deaerators promote the dissolution or formation of small microfoam bubbles\u003cbr\u003e7.1.4.2 How deaerators promote the dissolution of microfoam bubbles\u003cbr\u003e7.2 Chemical composition of deaerators\u003cbr\u003e7.3 Main applications according to binder systems\u003cbr\u003e7.4 Main applications according to market segments\u003cbr\u003e7.5 Tips and tricks\u003cbr\u003e7.6 Evaluating the effectiveness of deaerators\u003cbr\u003e7.6.1 Test method for low to medium viscosity coating formulations\u003cbr\u003e7.6.2 Test method for medium to high viscosity coating formulations\u003cbr\u003e7.6.3 Further test methods for microfoam\u003cbr\u003e7.7 Conclusion\u003cbr\u003e7.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e8 Flow additives\u003c\/b\u003e\u003cbr\u003e8.1 Mode of action\u003cbr\u003e8.1.1 Mode of action in waterborne systems without co-solvents\u003cbr\u003e8.1.2 Sagging\u003cbr\u003e8.1.3 Total film flow\u003cbr\u003e8.1.4 Mode of action in waterborne systems with co-solvents\u003cbr\u003e8.1.5 Mode of action in an example of a thermosetting waterborne system with cosolvents\u003cbr\u003e8.1.6 Surface tension gradients\u003cbr\u003e8.1.7 Summary\u003cbr\u003e8.2 Chemistry of active ingredients\u003cbr\u003e8.2.1 Polyether siloxanes\u003cbr\u003e8.2.2 Polyacrylates\u003cbr\u003e8.2.3 Side effects of polyether siloxanes\u003cbr\u003e8.2.4 Slip\u003cbr\u003e8.3 Film formation\u003cbr\u003e8.4 Main applications by market segment\u003cbr\u003e8.4.1 Industrial metal coating\u003cbr\u003e8.4.1.1 Electrophoretic coating\u003cbr\u003e8.4.1.2 Waterborne coatings\u003cbr\u003e8.4.2 Industrial coatings\u003cbr\u003e8.4.3 Architectural coatings\u003cbr\u003e8.4.3.1 Flat and semi-gloss emulsion paints\u003cbr\u003e8.4.3.2 High gloss emulsion paints\u003cbr\u003e8.5 Conclusion\u003cbr\u003e8.6 Test methods\u003cbr\u003e8.6.1 Measurement of flow\u003cbr\u003e8.6.2 Measuring flow and sagging by DMA\u003cbr\u003e8.6.3 Measuring the surface slip properties\u003cbr\u003e8.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e9 Wax additives\u003c\/b\u003e\u003cbr\u003e9.1 Raw material wax\u003cbr\u003e9.1.1 Natural waxes\u003cbr\u003e9.1.1.1 Waxes from renewable raw materials\u003cbr\u003e9.1.1.2 Waxes from fossilised sources\u003cbr\u003e9.1.2 Semi-synthetic and synthetic waxes\u003cbr\u003e9.1.2.1 Semi-synthetic waxes\u003cbr\u003e9.1.2.2 Synthetic waxes\u003cbr\u003e9.2 From wax to wax additives\u003cbr\u003e9.2.1 Wax and water\u003cbr\u003e9.2.1.1 Wax emulsions\u003cbr\u003e9.2.1.2 Wax dispersions\u003cbr\u003e9.2.3 Micronized wax additives\u003cbr\u003e9.3 Wax additives for the coating industry\u003cbr\u003e9.3.1 Acting mechanism\u003cbr\u003e9.3.2 Coating properties\u003cbr\u003e9.3.2.1 Surface protection\u003cbr\u003e9.3.2.2 Gloss reduction\u003cbr\u003e9.3.2.3 Texture and structure\u003cbr\u003e9.3.2.4 Rheology control\u003cbr\u003e9.4 Summary\u003cbr\u003e\u003cbr\u003e\u003cb\u003e10 Light stabilizers for waterborne coatings\u003c\/b\u003e\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Light and photo-oxidative degradation\u003cbr\u003e10.3 Stabilization options for polymers\u003cbr\u003e10.3.1 UV absorbers\u003cbr\u003e10.3.2 Radical scavengers\u003cbr\u003e10.3.2.1 Antioxidants\u003cbr\u003e10.3.2.2 Sterically hindered amines\u003cbr\u003e10.4 Light stabilizers for waterborne coatings\u003cbr\u003e10.4.1 Market overview\u003cbr\u003e10.4.2 Application fields and market segments\u003cbr\u003e10.4.2.1 Application specific product selection\u003cbr\u003e10.5 Conclusions\u003cbr\u003e10.6 Test methods and analytical determination\u003cbr\u003e10.6.1 UV absorbers\u003cbr\u003e10.6.2 HALS\u003cbr\u003e10.6.3 Weathering methods and evaluation criteria\u003cbr\u003e10.6.3.1 Accelerated exposure tests\u003cbr\u003e10.6.3.2 Further evaluation criteria\u003cbr\u003e10.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e11 In-can and dry film preservation\u003c\/b\u003e\u003cbr\u003e11.1 Sustainable and effective in-can and dry film preservation\u003cbr\u003e11.2 In-can preservation\u003cbr\u003e11.2.1 Types of active ingredients\u003cbr\u003e11.2.2 Selection of active ingredients for the preservation system\u003cbr\u003e11.2.3 Plant hygiene\u003cbr\u003e11.3 Dry film preservation\u003cbr\u003e11.3.1. Conventional dry film preservatives\u003cbr\u003e11.3.2 New, „old” actives\u003cbr\u003e11.3.3 Improvements in the ecotoxicological properties\u003cbr\u003e11.4 External determining factors\u003cbr\u003e11.5 Prospect\u003cbr\u003e11.6 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e12 Hydrophobing agents\u003c\/b\u003e\u003cbr\u003e12.1 Mode of action\u003cbr\u003e12.1.1 Capillary water-absorption\u003cbr\u003e12.1.2 Hydrophobicity\u003cbr\u003e12.1.3 How hydrophobing agents work\u003cbr\u003e12.2 Chemical structures\u003cbr\u003e12.2.1 Linear polysiloxanes and organofunctional polysiloxanes\u003cbr\u003e12.2.2 Silicone resins\/silicone resin emulsions\u003cbr\u003e12.2.3 Other hydrophobing agents\u003cbr\u003e12.2.4 Production of linear polysiloxanes\u003cbr\u003e12.2.5 Production of silicone resin emulsions\u003cbr\u003e12.2.5.1 Secondary emulsification process\u003cbr\u003e12.2.5.2 Primary emulsification process\u003cbr\u003e12.3 Waterborne architectural paints\u003cbr\u003e12.3.1 Synthetic emulsion paints\u003cbr\u003e12.3.2 Silicate emulsion paints\u003cbr\u003e12.3.3 Emulsion paints with silicate character (SIL-paints)\u003cbr\u003e12.3.4 Siloxane architectural paints with strong water-beading effect\u003cbr\u003e12.3.5 Silicone resin emulsion paints\u003cbr\u003e12.4 Conclusions\u003cbr\u003e12.5 Appendix\u003cbr\u003e12.5.1 Facade protection theory according to Künzel\u003cbr\u003e12.5.2 Measurement of capillary water-absorption (w-value)\u003cbr\u003e12.5.3 Water vapour diffusion (sd-value)\u003cbr\u003e12.5.4 Simulated dirt pick-up\u003cbr\u003e12.5.5 Pigment-volume concentration (PVC):\u003cbr\u003e12.6 Literature\u003cbr\u003eAuthors\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:14-04:00","created_at":"2017-06-22T21:14:14-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","additives","book","co-binders","coatings","deaerators","dispersing","formulators","hydrophobing agents","p-applications","paints","plastic","polymer","waterborne systems","wetting"],"price":23500,"price_min":23500,"price_max":23500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378399876,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Additives for waterborne Coatings","public_title":null,"options":["Default Title"],"price":23500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-86630-850-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-850-3.jpg?v=1498184602"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-850-3.jpg?v=1498184602","options":["Title"],"media":[{"alt":null,"id":350139383901,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-850-3.jpg?v=1498184602"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-850-3.jpg?v=1498184602","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Wernfried Heilein, Director of Technical Marketing, Evonik Tego Chemical GmbH, Essen, Germany \u003cbr\u003eISBN 978-3-86630-850-3 \u003cbr\u003e\u003cbr\u003eHardbound, 240 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book offers an overview of the most important aspects and applications of additives for waterborne systems in diverse market segments. Wernfried Heilein helps to understand how additives work and elucidates all kinds of mechanisms in great detail. Furthermore, he dispels a lot of myths surrounding paint additives with an excellent combination of theory and practice. This enables a deep insight into all the different application areas for additives in waterborne paint systems.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience: \u003c\/b\u003e\u003cbr\u003eFormulators involved in developing, producing, and testing of waterborne coatings and paints for different applications and substrates including can and coil coatings, heavy-duty protective coatings, plastics coatings, wood coatings and architectural coatings.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 Introduction\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 Wetting- and dispersing additives\u003c\/b\u003e\u003cbr\u003e2.1 Modes of action\u003cbr\u003e2.1.1 Pigment wetting\u003cbr\u003e2.1.2 Grinding\u003cbr\u003e2.1.3 Stabilisation\u003cbr\u003e2.1.3.1 Electrostatic stabilisation\u003cbr\u003e2.1.3.2 Steric stabilisation\u003cbr\u003e2.1.3.3 Electrosteric stabilisation\u003cbr\u003e2.1.4 Influences on formulation\u003cbr\u003e2.1.4.1 Viscosity\u003cbr\u003e2.1.4.2 Colour strength\u003cbr\u003e2.1.4.3 Compatibility\u003cbr\u003e2.1.4.4 Stability\u003cbr\u003e2.2 Chemical structures\u003cbr\u003e2.2.1 Polyacrylate salts\u003cbr\u003e2.2.2 Fatty acid and fatty alcohol derivatives\u003cbr\u003e2.2.3 Acrylic-copolymers\u003cbr\u003e2.2.4 Maleic anhydride copolymers\u003cbr\u003e2.2.5 Alkyl phenol ethoxylates\u003cbr\u003e2.2.6 Alkyl phenol ethoxylate replacements\u003cbr\u003e2.3 Wetting and dispersing additives in different market segments\u003cbr\u003e2.3.1 Architectural coatings\u003cbr\u003e2.3.1.1 Direct-grind\u003cbr\u003e2.3.1.2 Pigment concentrates\u003cbr\u003e2.3.2 Wood and furniture coatings\u003cbr\u003e2.3.2.1 Direct grind\u003cbr\u003e2.3.2.2 Pigment concentrates\u003cbr\u003e2.3.3 Industrial coatings\u003cbr\u003e2.3.3.1 Direct grind\u003cbr\u003e2.3.3.2 Pigment concentrates\u003cbr\u003e2.3.4 Printing inks\u003cbr\u003e2.3.4.1 Direct grind\u003cbr\u003e2.3.4.2 Pigment concentrates\u003cbr\u003e2.4 Tips and Tricks\u003cbr\u003e2.5 Test methods\u003cbr\u003e2.5.1 Particle size\u003cbr\u003e2.5.2 Colour strength\u003cbr\u003e2.5.3 Rub-out\u003cbr\u003e2.5.4 Viscosity\u003cbr\u003e2.5.5 Zeta potential\u003cbr\u003e2.6 Summary\u003cbr\u003e2.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e3 Defoaming of coating systems\u003c\/b\u003e\u003cbr\u003e3.1 Defoaming mechanisms\u003cbr\u003e3.1.1 Foam\u003cbr\u003e3.1.1.1 Causes of foam\u003cbr\u003e3.1.1.2 Types of foam\u003cbr\u003e3.2 Defoamers\u003cbr\u003e3.2.1 Composition of defoamers\u003cbr\u003e3.2.2 Defoaming mechanisms\u003cbr\u003e3.2.2.1 Defoaming by drainage\/slow defoaming\u003cbr\u003e3.2.2.2 Entry barrier\/entry coefficient\u003cbr\u003e3.2.2.3 Bridging mechanism\u003cbr\u003e3.2.2.4 Spreading mechanism\u003cbr\u003e3.2.2.5 Bridging stretching mechanism\u003cbr\u003e3.2.2.6 Bridging dewetting mechanism\u003cbr\u003e3.2.2.7 Spreading fluid mechanism\u003cbr\u003e3.2.2.8 Spreading wave mechanism\u003cbr\u003e3.2.2.9 Effect of fillers on the performance of defoamers\u003cbr\u003e3.3 Chemistry and formulation of defoamers\u003cbr\u003e3.3.1 Active ingredients in defoamers\u003cbr\u003e3.3.1.1 Silicone oils (polysiloxanes)\u003cbr\u003e3.3.1.2 Mineral oils\u003cbr\u003e3.3.1.3 Vegetable oils\u003cbr\u003e3.3.1.4 Polar oils\u003cbr\u003e3.3.1.5 Molecular defoamers (gemini surfactants)\u003cbr\u003e3.3.1.6 Hydrophobic particles\u003cbr\u003e3.3.1.7 Emulsifiers\u003cbr\u003e3.3.1.8 Solvents\u003cbr\u003e3.3.2 Defoamer formulations\u003cbr\u003e3.3.3 Suppliers of defoamers\u003cbr\u003e3.4 Product recommendations for different binders\u003cbr\u003e3.4.1 Acrylic emulsions\u003cbr\u003e3.4.2 Styrene acrylic emulsions\u003cbr\u003e3.4.3 Vinyl acetate based emulsions\u003cbr\u003e3.4.4 Polyurethane dispersions\u003cbr\u003e3.5 Product choice according to field of application\u003cbr\u003e3.5.1 Influence of the pigment volume concentration (PVC)\u003cbr\u003e3.5.2 Method of incorporating the defoamer\u003cbr\u003e3.5.3 Application of shear forces during application\u003cbr\u003e3.5.4 Surfactant content of the formulation\u003cbr\u003e3.6 Tips and tricks\u003cbr\u003e3.7 Summary\u003cbr\u003e3.8 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 Rheology modifiers\u003c\/b\u003e\u003cbr\u003e4.1 General assessment of rheology modifiers\u003cbr\u003e4.1.1 Market overview\u003cbr\u003e4.1.2 Basic characteristics of the different rheological additives\u003cbr\u003e4.2 Requirements for rheology modifiers\u003cbr\u003e4.2.1 Rheology\u003cbr\u003e4.2.2 Example of application\u003cbr\u003e4.3 Ethoxylated and hydrophobically modified urethanes\u003cbr\u003e4.3.1 Synthesis of HEUR\u003cbr\u003e4.3.2 Associative properties of HEUR additives\u003cbr\u003e4.3.3 From self-association to associative behaviour\u003cbr\u003e4.3.4 Hydrophobic\/hydrophilic equilibrium of waterborne coatings\u003cbr\u003e4.3.5 Improved colour acceptance with HEUR\u003cbr\u003e4.4 Alkali swellable emulsions: ASE and HASE\u003cbr\u003e4.4.1 Synthesis\u003cbr\u003e4.4.1.1 ASE\u003cbr\u003e4.4.1.2 HASE\u003cbr\u003e4.4.1.3 Interaction between binders\u003cbr\u003e4.4.2 Thixotropy and HASE\u003cbr\u003e4.5 Outlook\u003cbr\u003e4.6 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e5 Substrate wetting additives\u003c\/b\u003e\u003cbr\u003e5.1 Mechanism of action\u003cbr\u003e5.1.1 Water as a solvent\u003cbr\u003e5.1.2 Surface tension\u003cbr\u003e5.1.3 Reason of the surface tension\u003cbr\u003e5.1.4 Effect of the high surface tension of water\u003cbr\u003e5.1.5 Substrate wetting additives are surfactants\u003cbr\u003e5.1.6 Mode of action of substrate wetting additives\u003cbr\u003e5.1.7 Further general properties of substrate wetting additives\/side effects\u003cbr\u003e5.2 Chemical structure of substrate wetting additives\u003cbr\u003e5.2.1 Basic properties of substrate wetting additives\u003cbr\u003e5.2.2 Chemical structure of substrate wetting additives important in coatings\u003cbr\u003e5.2.2.1 Polyethersiloxanes\u003cbr\u003e5.2.2.2 Gemini surfactants\u003cbr\u003e5.2.2.3 Fluoro surfactants\u003cbr\u003e5.2.2.4 Acetylenediols and modifications\u003cbr\u003e5.2.2.5 Sulfosuccinate\u003cbr\u003e5.2.2.6 Alkoxylated fatty alcohols\u003cbr\u003e5.2.2.7 Alkylphenol ethoxylates (APEO)\u003cbr\u003e5.3 Application of substrate wetting additives\u003cbr\u003e5.3.1 Basic properties of various chemical classes\u003cbr\u003e5.3.2 Reduction of static surface tension\u003cbr\u003e5.3.3 Possible foam stabilisation\u003cbr\u003e5.3.4 Effective reduction in static surface tension versus flow\u003cbr\u003e5.3.5 Reduction of dynamic surface tension\u003cbr\u003e5.3.6 Which property correlates with which practical application?\u003cbr\u003e5.3.6.1 Craters\u003cbr\u003e5.3.6.2 Wetting and atomisation of spray coatings\u003cbr\u003e5.3.6.3 Rewettability, reprintability, recoatability\u003cbr\u003e5.3.6.4 Flow\u003cbr\u003e5.3.6.5 Spray mist uptake\u003cbr\u003e5.4 Use of substrate wetting additives in different market sectors\u003cbr\u003e5.5 Tips and tricks\u003cbr\u003e5.5.1 Successful use of substrate wetting additives in coatings\u003cbr\u003e5.5.2 Metallic shades\u003cbr\u003e5.6 Test methods for measuring surface tension\u003cbr\u003e5.6.1 Static surface tension\u003cbr\u003e5.6.2 Dynamic surface tension\u003cbr\u003e5.6.3 Dynamic versus static\u003cbr\u003e5.6.4 Further practical test methods\u003cbr\u003e5.6.4.1 Wedge spray application\u003cbr\u003e5.6.4.2 One spray path\u003cbr\u003e5.6.4.3 Crater test\u003cbr\u003e5.6.4.4 Drawdown\u003cbr\u003e5.6.4.5 Spray drop uptake\u003cbr\u003e5.6.5 Analytical test methods\u003cbr\u003e5.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e6 Improving performance with co-binders\u003c\/b\u003e\u003cbr\u003e6.1 Preparation of co-binders\u003cbr\u003e6.1.1 Secondary dispersions\u003cbr\u003e6.1.1.1 Polyester dispersions\u003cbr\u003e6.1.1.2 Polyurethane dispersions\u003cbr\u003e6.2 Applications of co-binders\u003cbr\u003e6.2.1 Co-binders for better property profiles\u003cbr\u003e6.2.1.1 Drying time\u003cbr\u003e6.2.1.2 Adhesion\u003cbr\u003e6.2.1.3 Hardness-flexibility balance\u003cbr\u003e6.2.1.4 Gloss\u003cbr\u003e6.2.2 Co-binders for pigment pastes\u003cbr\u003e6.3 Summary\u003cbr\u003e6.4 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e7 Deaerators\u003c\/b\u003e\u003cbr\u003e7.1 Mode of action of deaerators\u003cbr\u003e7.1.1 Dissolution of microfoam\u003cbr\u003e7.1.2 Rise of microfoam bubbles in the coating film\u003cbr\u003e7.1.3 How to prevent microfoam in coating films\u003cbr\u003e7.1.4 How deaerators combat microfoam\u003cbr\u003e7.1.4.1 Deaerators promote the dissolution or formation of small microfoam bubbles\u003cbr\u003e7.1.4.2 How deaerators promote the dissolution of microfoam bubbles\u003cbr\u003e7.2 Chemical composition of deaerators\u003cbr\u003e7.3 Main applications according to binder systems\u003cbr\u003e7.4 Main applications according to market segments\u003cbr\u003e7.5 Tips and tricks\u003cbr\u003e7.6 Evaluating the effectiveness of deaerators\u003cbr\u003e7.6.1 Test method for low to medium viscosity coating formulations\u003cbr\u003e7.6.2 Test method for medium to high viscosity coating formulations\u003cbr\u003e7.6.3 Further test methods for microfoam\u003cbr\u003e7.7 Conclusion\u003cbr\u003e7.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e8 Flow additives\u003c\/b\u003e\u003cbr\u003e8.1 Mode of action\u003cbr\u003e8.1.1 Mode of action in waterborne systems without co-solvents\u003cbr\u003e8.1.2 Sagging\u003cbr\u003e8.1.3 Total film flow\u003cbr\u003e8.1.4 Mode of action in waterborne systems with co-solvents\u003cbr\u003e8.1.5 Mode of action in an example of a thermosetting waterborne system with cosolvents\u003cbr\u003e8.1.6 Surface tension gradients\u003cbr\u003e8.1.7 Summary\u003cbr\u003e8.2 Chemistry of active ingredients\u003cbr\u003e8.2.1 Polyether siloxanes\u003cbr\u003e8.2.2 Polyacrylates\u003cbr\u003e8.2.3 Side effects of polyether siloxanes\u003cbr\u003e8.2.4 Slip\u003cbr\u003e8.3 Film formation\u003cbr\u003e8.4 Main applications by market segment\u003cbr\u003e8.4.1 Industrial metal coating\u003cbr\u003e8.4.1.1 Electrophoretic coating\u003cbr\u003e8.4.1.2 Waterborne coatings\u003cbr\u003e8.4.2 Industrial coatings\u003cbr\u003e8.4.3 Architectural coatings\u003cbr\u003e8.4.3.1 Flat and semi-gloss emulsion paints\u003cbr\u003e8.4.3.2 High gloss emulsion paints\u003cbr\u003e8.5 Conclusion\u003cbr\u003e8.6 Test methods\u003cbr\u003e8.6.1 Measurement of flow\u003cbr\u003e8.6.2 Measuring flow and sagging by DMA\u003cbr\u003e8.6.3 Measuring the surface slip properties\u003cbr\u003e8.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e9 Wax additives\u003c\/b\u003e\u003cbr\u003e9.1 Raw material wax\u003cbr\u003e9.1.1 Natural waxes\u003cbr\u003e9.1.1.1 Waxes from renewable raw materials\u003cbr\u003e9.1.1.2 Waxes from fossilised sources\u003cbr\u003e9.1.2 Semi-synthetic and synthetic waxes\u003cbr\u003e9.1.2.1 Semi-synthetic waxes\u003cbr\u003e9.1.2.2 Synthetic waxes\u003cbr\u003e9.2 From wax to wax additives\u003cbr\u003e9.2.1 Wax and water\u003cbr\u003e9.2.1.1 Wax emulsions\u003cbr\u003e9.2.1.2 Wax dispersions\u003cbr\u003e9.2.3 Micronized wax additives\u003cbr\u003e9.3 Wax additives for the coating industry\u003cbr\u003e9.3.1 Acting mechanism\u003cbr\u003e9.3.2 Coating properties\u003cbr\u003e9.3.2.1 Surface protection\u003cbr\u003e9.3.2.2 Gloss reduction\u003cbr\u003e9.3.2.3 Texture and structure\u003cbr\u003e9.3.2.4 Rheology control\u003cbr\u003e9.4 Summary\u003cbr\u003e\u003cbr\u003e\u003cb\u003e10 Light stabilizers for waterborne coatings\u003c\/b\u003e\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Light and photo-oxidative degradation\u003cbr\u003e10.3 Stabilization options for polymers\u003cbr\u003e10.3.1 UV absorbers\u003cbr\u003e10.3.2 Radical scavengers\u003cbr\u003e10.3.2.1 Antioxidants\u003cbr\u003e10.3.2.2 Sterically hindered amines\u003cbr\u003e10.4 Light stabilizers for waterborne coatings\u003cbr\u003e10.4.1 Market overview\u003cbr\u003e10.4.2 Application fields and market segments\u003cbr\u003e10.4.2.1 Application specific product selection\u003cbr\u003e10.5 Conclusions\u003cbr\u003e10.6 Test methods and analytical determination\u003cbr\u003e10.6.1 UV absorbers\u003cbr\u003e10.6.2 HALS\u003cbr\u003e10.6.3 Weathering methods and evaluation criteria\u003cbr\u003e10.6.3.1 Accelerated exposure tests\u003cbr\u003e10.6.3.2 Further evaluation criteria\u003cbr\u003e10.7 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e11 In-can and dry film preservation\u003c\/b\u003e\u003cbr\u003e11.1 Sustainable and effective in-can and dry film preservation\u003cbr\u003e11.2 In-can preservation\u003cbr\u003e11.2.1 Types of active ingredients\u003cbr\u003e11.2.2 Selection of active ingredients for the preservation system\u003cbr\u003e11.2.3 Plant hygiene\u003cbr\u003e11.3 Dry film preservation\u003cbr\u003e11.3.1. Conventional dry film preservatives\u003cbr\u003e11.3.2 New, „old” actives\u003cbr\u003e11.3.3 Improvements in the ecotoxicological properties\u003cbr\u003e11.4 External determining factors\u003cbr\u003e11.5 Prospect\u003cbr\u003e11.6 Literature\u003cbr\u003e\u003cbr\u003e\u003cb\u003e12 Hydrophobing agents\u003c\/b\u003e\u003cbr\u003e12.1 Mode of action\u003cbr\u003e12.1.1 Capillary water-absorption\u003cbr\u003e12.1.2 Hydrophobicity\u003cbr\u003e12.1.3 How hydrophobing agents work\u003cbr\u003e12.2 Chemical structures\u003cbr\u003e12.2.1 Linear polysiloxanes and organofunctional polysiloxanes\u003cbr\u003e12.2.2 Silicone resins\/silicone resin emulsions\u003cbr\u003e12.2.3 Other hydrophobing agents\u003cbr\u003e12.2.4 Production of linear polysiloxanes\u003cbr\u003e12.2.5 Production of silicone resin emulsions\u003cbr\u003e12.2.5.1 Secondary emulsification process\u003cbr\u003e12.2.5.2 Primary emulsification process\u003cbr\u003e12.3 Waterborne architectural paints\u003cbr\u003e12.3.1 Synthetic emulsion paints\u003cbr\u003e12.3.2 Silicate emulsion paints\u003cbr\u003e12.3.3 Emulsion paints with silicate character (SIL-paints)\u003cbr\u003e12.3.4 Siloxane architectural paints with strong water-beading effect\u003cbr\u003e12.3.5 Silicone resin emulsion paints\u003cbr\u003e12.4 Conclusions\u003cbr\u003e12.5 Appendix\u003cbr\u003e12.5.1 Facade protection theory according to Künzel\u003cbr\u003e12.5.2 Measurement of capillary water-absorption (w-value)\u003cbr\u003e12.5.3 Water vapour diffusion (sd-value)\u003cbr\u003e12.5.4 Simulated dirt pick-up\u003cbr\u003e12.5.5 Pigment-volume concentration (PVC):\u003cbr\u003e12.6 Literature\u003cbr\u003eAuthors\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Adhesives Technology f...
$169.00
{"id":11242202180,"title":"Adhesives Technology for Electronic Applications, 2nd Edition - Materials, Processing, Reliability","handle":"978-1-4377-7889-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: James J. Licari \u0026amp; Dale W. Swanson \u003cbr\u003eISBN 978-1-4377-7889-2 \u003cbr\u003e\u003cbr\u003e512 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\n\u003cli\u003eA complete guide for the electronics industry to adhesive types, their properties, and applications - this book is an essential reference for a wide range of specialists including electrical engineers, adhesion chemists, and other engineering professionals.\u003c\/li\u003e\n\u003cli\u003eProvides specifications of adhesives for particular uses and outlines the processes for application and curing - coverage that is of particular benefit to design engineers, who are charged with creating the interface between the adhesive material and the microelectronic device.\u003c\/li\u003e\n\u003cli\u003eDiscusses the respective advantages and limitations of different adhesives for varying applications, thereby addressing reliability issues before they occur and offering useful information to both design engineers and Quality Assurance personnel.\u003c\/li\u003e\n\u003cp\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAdhesives are widely used in the manufacture and assembly of electronic circuits and products. Generally, electronics design engineers and manufacturing engineers are not well versed in adhesives, while adhesion chemists have a limited knowledge of electronics. This book bridges these knowledge gaps and is useful to both groups.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThe book includes chapters covering types of adhesive, the chemistry on which they are based, and their properties, applications, processes, specifications, and reliability. Coverage of toxicity, environmental impacts, and the regulatory framework make this book particularly important for engineers and managers alike.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThe third edition has been updated throughout and includes new sections on nanomaterials, environmental impacts and new environmentally friendly ‘green’ adhesives. Information about regulations and compliance has been brought fully up-to-date.\u003cbr\u003e\u003cbr\u003eAs well as providing full coverage of standard adhesive types, Licari explores the most recent developments in fields such as:\u003cbr\u003e\u003cbr\u003e• Tamper-proof adhesives for electronic security devices.\u003cbr\u003e\u003cbr\u003e• Bio-compatible adhesives for implantable medical devices.\u003cbr\u003e\u003cbr\u003e• Electrically conductive adhesives to replace toxic tin-lead solders in printed circuit assembly - as required by regulatory regimes, e.g. the EU’s Restriction of Hazardous Substances Directive or RoHS (compliance is required for all products placed on the European market).\u003cbr\u003e\u003cbr\u003e• Nano-fillers in adhesives used to increase the thermal conductivity of current adhesives for cooling electronic devices.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eElectronics and materials engineers in the automotive, medical, semiconductors, space, plastics, and military industries.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eQuotes\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\"I recommend this book without reservation to everyone in electronics who must understand adhesives, or make decisions about adhesives, or both.\" - George Riley\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Adhesives Types and Definitions\u003cbr\u003e1.2 Summary of Packaging Technologies\u003cbr\u003e1.3 History of Adhesives in Electronic Applications\u003cbr\u003e1.4 Comparison of Polymer Adhesives with Metallurgical and Vitreous Attachment Materials\u003cbr\u003e1.5 Specifications\u003cbr\u003e1.6 The Market \u003cbr\u003e2. Functions and Theory of Adhesives\u003cbr\u003e2.1 Mechanical Attachment\u003cbr\u003e2.2 Electrical Connections\u003cbr\u003e2.3 Thermal Dissipation\u003cbr\u003e2.4 Stress Dissipation \u003cbr\u003e3. Chemistry, Formulation, and Properties of Adhesives\u003cbr\u003e3.1 Chemistry\u003cbr\u003e3.2 Formulation of Adhesives\u003cbr\u003e3.3 Properties \u003cbr\u003e4. Adhesive Bonding Properties\u003cbr\u003e4.1 Cleaning\u003cbr\u003e4.2 Surface Treatments\u003cbr\u003e4.3 Adhesive Dispensing\u003cbr\u003e4.4 Placement of Devices and Components\u003cbr\u003e4.5 Curing\u003cbr\u003e4.6 Rework \u003cbr\u003e5. Applications\u003cbr\u003e5.1 General Applications\u003cbr\u003e5.2 Specific Applications \u003cbr\u003e6. Reliability\u003cbr\u003e6.1 Failure Modes and Mechanisms\u003cbr\u003e6.2 Specifications \u003cbr\u003e7. Test and Inspection Methods\u003cbr\u003e7.1 Physical Tests\u003cbr\u003e7.2 Electrical Tests\u003cbr\u003e7.3 Environmental Tests\u003cbr\u003e7.4 Thermal Tests\u003cbr\u003e7.5 Mechanical and Thermomechanical Tests\u003cbr\u003e7.6 Chemical Analysis\u003cbr\u003eAppendix\u003cbr\u003eConversion Factors\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eJames J. Licari\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAvanTeco, Whittier, CA, USA\u003c\/div\u003e\n\u003cdiv\u003ehas his own consulting firm, AvanTeco, specializing in materials and processes for electronics. He holds a BS in Chemistry from Fordham University and a Ph.D. in Chemistry from Princeton University, where he was a DuPont Senior Fellow. His areas of expertise include materials and processes for electronic applications, primarily for high-reliability systems, hybrid microcircuits, printed wiring circuits, and other interconnect packaging technologies. He is an expert on polymeric materials including adhesives, coatings, encapsulants, insulation, reliability based on failure modes and mechanisms. Dr. Licari has had a forty-year career dedicated to the study and advancement of microelectronic materials and processes. Notable achievements throughout this career include conducting the first studies on the reliability and use of die-attach adhesives for microcircuits, which he did in the mid-1970s through the early 1980s, making industry and the government aware of the degrading effects of trace amounts of ionic contaminants in epoxy resins. He conducted early exploratory development on the use of non-noble metal (Cu) thick-film conductor pastes for thick-film ceramic circuits. He carried out the first studies on the use of Parylene as a dielectric and passivation coating for MOS devices and as a particle immobilizer for hybrid microcircuits. He developed the first photo-definable thick-film conductor and resistor pastes that were the forerunners of DuPont’s Fodel process, for which he received a patent was granted in England. And he developed the first photocurable epoxy coating using cationic photoinitiation by employing a diazonium salt as the catalytic agent (U.S. 3205157). The work was referenced as pioneering work in a review article by J.V. Crivello “The Discovery and Development of Onium Salt Cationic Photoinitiators,” J. Polymer Chemistry (1999)\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eDale W. Swanson \u003c\/b\u003ehas over 29 years experience in Materials and process engineering\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","adhesives","book","electronic","mechanical testing","p-applications","physical testing","plastic","polymer","surface","thermal testing"],"price":16900,"price_min":16900,"price_max":16900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378310404,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Adhesives Technology for Electronic Applications, 2nd Edition - Materials, Processing, Reliability","public_title":null,"options":["Default Title"],"price":16900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-7889-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7889-2_cc1a9f07-b661-41cc-bfb1-5ab1ffa1d865.jpg?v=1498185491"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7889-2_cc1a9f07-b661-41cc-bfb1-5ab1ffa1d865.jpg?v=1498185491","options":["Title"],"media":[{"alt":null,"id":350140825693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7889-2_cc1a9f07-b661-41cc-bfb1-5ab1ffa1d865.jpg?v=1498185491"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7889-2_cc1a9f07-b661-41cc-bfb1-5ab1ffa1d865.jpg?v=1498185491","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: James J. Licari \u0026amp; Dale W. Swanson \u003cbr\u003eISBN 978-1-4377-7889-2 \u003cbr\u003e\u003cbr\u003e512 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\n\u003cli\u003eA complete guide for the electronics industry to adhesive types, their properties, and applications - this book is an essential reference for a wide range of specialists including electrical engineers, adhesion chemists, and other engineering professionals.\u003c\/li\u003e\n\u003cli\u003eProvides specifications of adhesives for particular uses and outlines the processes for application and curing - coverage that is of particular benefit to design engineers, who are charged with creating the interface between the adhesive material and the microelectronic device.\u003c\/li\u003e\n\u003cli\u003eDiscusses the respective advantages and limitations of different adhesives for varying applications, thereby addressing reliability issues before they occur and offering useful information to both design engineers and Quality Assurance personnel.\u003c\/li\u003e\n\u003cp\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAdhesives are widely used in the manufacture and assembly of electronic circuits and products. Generally, electronics design engineers and manufacturing engineers are not well versed in adhesives, while adhesion chemists have a limited knowledge of electronics. This book bridges these knowledge gaps and is useful to both groups.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThe book includes chapters covering types of adhesive, the chemistry on which they are based, and their properties, applications, processes, specifications, and reliability. Coverage of toxicity, environmental impacts, and the regulatory framework make this book particularly important for engineers and managers alike.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThe third edition has been updated throughout and includes new sections on nanomaterials, environmental impacts and new environmentally friendly ‘green’ adhesives. Information about regulations and compliance has been brought fully up-to-date.\u003cbr\u003e\u003cbr\u003eAs well as providing full coverage of standard adhesive types, Licari explores the most recent developments in fields such as:\u003cbr\u003e\u003cbr\u003e• Tamper-proof adhesives for electronic security devices.\u003cbr\u003e\u003cbr\u003e• Bio-compatible adhesives for implantable medical devices.\u003cbr\u003e\u003cbr\u003e• Electrically conductive adhesives to replace toxic tin-lead solders in printed circuit assembly - as required by regulatory regimes, e.g. the EU’s Restriction of Hazardous Substances Directive or RoHS (compliance is required for all products placed on the European market).\u003cbr\u003e\u003cbr\u003e• Nano-fillers in adhesives used to increase the thermal conductivity of current adhesives for cooling electronic devices.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eElectronics and materials engineers in the automotive, medical, semiconductors, space, plastics, and military industries.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eQuotes\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\"I recommend this book without reservation to everyone in electronics who must understand adhesives, or make decisions about adhesives, or both.\" - George Riley\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Adhesives Types and Definitions\u003cbr\u003e1.2 Summary of Packaging Technologies\u003cbr\u003e1.3 History of Adhesives in Electronic Applications\u003cbr\u003e1.4 Comparison of Polymer Adhesives with Metallurgical and Vitreous Attachment Materials\u003cbr\u003e1.5 Specifications\u003cbr\u003e1.6 The Market \u003cbr\u003e2. Functions and Theory of Adhesives\u003cbr\u003e2.1 Mechanical Attachment\u003cbr\u003e2.2 Electrical Connections\u003cbr\u003e2.3 Thermal Dissipation\u003cbr\u003e2.4 Stress Dissipation \u003cbr\u003e3. Chemistry, Formulation, and Properties of Adhesives\u003cbr\u003e3.1 Chemistry\u003cbr\u003e3.2 Formulation of Adhesives\u003cbr\u003e3.3 Properties \u003cbr\u003e4. Adhesive Bonding Properties\u003cbr\u003e4.1 Cleaning\u003cbr\u003e4.2 Surface Treatments\u003cbr\u003e4.3 Adhesive Dispensing\u003cbr\u003e4.4 Placement of Devices and Components\u003cbr\u003e4.5 Curing\u003cbr\u003e4.6 Rework \u003cbr\u003e5. Applications\u003cbr\u003e5.1 General Applications\u003cbr\u003e5.2 Specific Applications \u003cbr\u003e6. Reliability\u003cbr\u003e6.1 Failure Modes and Mechanisms\u003cbr\u003e6.2 Specifications \u003cbr\u003e7. Test and Inspection Methods\u003cbr\u003e7.1 Physical Tests\u003cbr\u003e7.2 Electrical Tests\u003cbr\u003e7.3 Environmental Tests\u003cbr\u003e7.4 Thermal Tests\u003cbr\u003e7.5 Mechanical and Thermomechanical Tests\u003cbr\u003e7.6 Chemical Analysis\u003cbr\u003eAppendix\u003cbr\u003eConversion Factors\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eJames J. Licari\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAvanTeco, Whittier, CA, USA\u003c\/div\u003e\n\u003cdiv\u003ehas his own consulting firm, AvanTeco, specializing in materials and processes for electronics. He holds a BS in Chemistry from Fordham University and a Ph.D. in Chemistry from Princeton University, where he was a DuPont Senior Fellow. His areas of expertise include materials and processes for electronic applications, primarily for high-reliability systems, hybrid microcircuits, printed wiring circuits, and other interconnect packaging technologies. He is an expert on polymeric materials including adhesives, coatings, encapsulants, insulation, reliability based on failure modes and mechanisms. Dr. Licari has had a forty-year career dedicated to the study and advancement of microelectronic materials and processes. Notable achievements throughout this career include conducting the first studies on the reliability and use of die-attach adhesives for microcircuits, which he did in the mid-1970s through the early 1980s, making industry and the government aware of the degrading effects of trace amounts of ionic contaminants in epoxy resins. He conducted early exploratory development on the use of non-noble metal (Cu) thick-film conductor pastes for thick-film ceramic circuits. He carried out the first studies on the use of Parylene as a dielectric and passivation coating for MOS devices and as a particle immobilizer for hybrid microcircuits. He developed the first photo-definable thick-film conductor and resistor pastes that were the forerunners of DuPont’s Fodel process, for which he received a patent was granted in England. And he developed the first photocurable epoxy coating using cationic photoinitiation by employing a diazonium salt as the catalytic agent (U.S. 3205157). The work was referenced as pioneering work in a review article by J.V. Crivello “The Discovery and Development of Onium Salt Cationic Photoinitiators,” J. Polymer Chemistry (1999)\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eDale W. Swanson \u003c\/b\u003ehas over 29 years experience in Materials and process engineering\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Adhesives Technology H...
$160.00
{"id":11242241732,"title":"Adhesives Technology Handbook","handle":"978-0-8155-1533-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Arthur H. Landrock, PLASTEC (retired) \u003cbr\u003eSina Ebnesajjad, Fluoroconsultants Group; (former DuPont), Chadds Ford, Pennsylvania, U.S.A. \u003cbr\u003eISBN 978-0-8155-1533-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eSecond Edition\u003c\/p\u003e\n\u003cp\u003eHardbound, 475 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book presents information that will allow practitioners of adhesion technology to select the right adhesive for bonding different materials. Early chapters cover basic principles of adhesion, such as adhesion theories, surface characterization and measurement, and types of adhesive bonds, and describe common adhesive materials and application techniques. Subsequent chapters focus on the design of joints, methods of handling and application of adhesives to substrates, solvent cementing, and methods for testing strength and durability of adhesive bonds. A final chapter deals with economics, environmental, and safety issues. The book serves as a practical resource for engineers, chemists, students, and others involved in selecting adhesives and bonding materials. The book is based on an updated from Arthur Landrock's Adhesives Technology Handbook, published in 1985 by Noyes Publishing. Ebnesajjad is a fluoropolymer technology consultant.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience: \u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eMaterials scientists, mechanical engineers, plastics engineers, scientists, researchers and students involved or interested in adhesives and sealants.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Provides the end user practitioners of adhesion technology with a complete guide to bonding materials successfully\u003cbr\u003e• Covers most substrates, including plastics, metals, elastomers, and ceramics, explaining basic principles and describing common materials and application techniques\u003cbr\u003e• Arranges information so that each chapter can be studied selectively or in conjunction with others\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction and Adhesion Theories \u003cbr\u003e2. Basic Concepts of Surfaces and Interfaces \u003cbr\u003e3. Material Surface Preparation Techniques \u003cbr\u003e4. Classification of Adhesives and Compounds \u003cbr\u003e5. Characteristics of Adhesive Materials \u003cbr\u003e6. Adhesives for Special Adherends \u003cbr\u003e7. Joint Design \u003cbr\u003e8. Adhesive Applications and Bonding Processes \u003cbr\u003e9. Solvent Cementing of Plastics \u003cbr\u003e10. Durability of Adhesive Bonds \u003cbr\u003e11. Testing of Adhesive Bonds \u003cbr\u003e12. Quality Control \u003cbr\u003e13. Economic, Environmental, Safety Aspects and Future Trends\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:49-04:00","created_at":"2017-06-22T21:14:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","bonding materials","book","ceramics","elastomers","metals","p-applications","plastic","plastics","polymer"],"price":16000,"price_min":16000,"price_max":16000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378442500,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Adhesives Technology Handbook","public_title":null,"options":["Default Title"],"price":16000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1533-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1533-3_f5ac154b-465a-4e41-a8bf-e1fde9e15b82.jpg?v=1499138095"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1533-3_f5ac154b-465a-4e41-a8bf-e1fde9e15b82.jpg?v=1499138095","options":["Title"],"media":[{"alt":null,"id":353514094685,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1533-3_f5ac154b-465a-4e41-a8bf-e1fde9e15b82.jpg?v=1499138095"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1533-3_f5ac154b-465a-4e41-a8bf-e1fde9e15b82.jpg?v=1499138095","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Arthur H. Landrock, PLASTEC (retired) \u003cbr\u003eSina Ebnesajjad, Fluoroconsultants Group; (former DuPont), Chadds Ford, Pennsylvania, U.S.A. \u003cbr\u003eISBN 978-0-8155-1533-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eSecond Edition\u003c\/p\u003e\n\u003cp\u003eHardbound, 475 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book presents information that will allow practitioners of adhesion technology to select the right adhesive for bonding different materials. Early chapters cover basic principles of adhesion, such as adhesion theories, surface characterization and measurement, and types of adhesive bonds, and describe common adhesive materials and application techniques. Subsequent chapters focus on the design of joints, methods of handling and application of adhesives to substrates, solvent cementing, and methods for testing strength and durability of adhesive bonds. A final chapter deals with economics, environmental, and safety issues. The book serves as a practical resource for engineers, chemists, students, and others involved in selecting adhesives and bonding materials. The book is based on an updated from Arthur Landrock's Adhesives Technology Handbook, published in 1985 by Noyes Publishing. Ebnesajjad is a fluoropolymer technology consultant.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience: \u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eMaterials scientists, mechanical engineers, plastics engineers, scientists, researchers and students involved or interested in adhesives and sealants.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Provides the end user practitioners of adhesion technology with a complete guide to bonding materials successfully\u003cbr\u003e• Covers most substrates, including plastics, metals, elastomers, and ceramics, explaining basic principles and describing common materials and application techniques\u003cbr\u003e• Arranges information so that each chapter can be studied selectively or in conjunction with others\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction and Adhesion Theories \u003cbr\u003e2. Basic Concepts of Surfaces and Interfaces \u003cbr\u003e3. Material Surface Preparation Techniques \u003cbr\u003e4. Classification of Adhesives and Compounds \u003cbr\u003e5. Characteristics of Adhesive Materials \u003cbr\u003e6. Adhesives for Special Adherends \u003cbr\u003e7. Joint Design \u003cbr\u003e8. Adhesive Applications and Bonding Processes \u003cbr\u003e9. Solvent Cementing of Plastics \u003cbr\u003e10. Durability of Adhesive Bonds \u003cbr\u003e11. Testing of Adhesive Bonds \u003cbr\u003e12. Quality Control \u003cbr\u003e13. Economic, Environmental, Safety Aspects and Future Trends\u003cbr\u003e\u003cbr\u003e"}
Advances in Polymer Co...
$200.00
{"id":11242255236,"title":"Advances in Polymer Coated Textiles","handle":"978-1-84735-497-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Güneri Akovali, Bireswar Banerjee, A.K. Sen, Dipak K. Setua \u003cbr\u003eISBN 978-1-84735-497-6 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer coated textiles are known as engineered composite materials at a macro scale. A coating can offer significant improvements to the substrate, mainly of the physical (like impermeability and fabric abrasion) and\/or of overall chemical properties; as well as the appearance, by combining advantages of the components.\u003cbr\u003e\u003cbr\u003ePolymer coated systems employ various kinds of textile substrate structures available, mostly of technical textiles. Since there are a number of possibilities for different types of polymers and their combinations, textile structures as well as their combinations are possible; it is widely open to creativities and almost every day some new innovative application is being introduced. Polymer coated textile industry, being parallel to the developments in the textile research, is so dynamic that, today, applications like reactive coatings with nanoparticles (with self-cleaning, self-sterilizing surfaces), systems with conductive polymer coatings to provide EM shielding, electronic textile systems -with body monitoring properties-, environmental responsive systems etc. are already somewhat classical and are considered almost left in the shade of incoming new developments.\u003cbr\u003e\u003cbr\u003eThis book is an up-to-date summary of the subject by considering the passage from conventional to emerging technologies. Criteria for selection of the coat and textile are considered and the manufacturing basics of the system are summarized. Emerging technologies and applications (including smart, intelligent and nanostructured applications) are completed by testing and quality control methods of these systems.\u003cbr\u003e\u003cbr\u003eThe book is written for all that are interested in this interdisciplinary area, it certainly will prove to be of great help to textile and polymer technologists, to engineers, to scientists, as well as to students.","published_at":"2017-06-22T21:15:30-04:00","created_at":"2017-06-22T21:15:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","applications of coated textiles","book","coated textiles","composite materils","p-applications","plastic","polymer","properties of coated textiles"],"price":20000,"price_min":20000,"price_max":20000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378490756,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Advances in Polymer Coated Textiles","public_title":null,"options":["Default Title"],"price":20000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-497-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-497-6.jpg?v=1499718204"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-497-6.jpg?v=1499718204","options":["Title"],"media":[{"alt":null,"id":350147215453,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-497-6.jpg?v=1499718204"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-497-6.jpg?v=1499718204","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Güneri Akovali, Bireswar Banerjee, A.K. Sen, Dipak K. Setua \u003cbr\u003eISBN 978-1-84735-497-6 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer coated textiles are known as engineered composite materials at a macro scale. A coating can offer significant improvements to the substrate, mainly of the physical (like impermeability and fabric abrasion) and\/or of overall chemical properties; as well as the appearance, by combining advantages of the components.\u003cbr\u003e\u003cbr\u003ePolymer coated systems employ various kinds of textile substrate structures available, mostly of technical textiles. Since there are a number of possibilities for different types of polymers and their combinations, textile structures as well as their combinations are possible; it is widely open to creativities and almost every day some new innovative application is being introduced. Polymer coated textile industry, being parallel to the developments in the textile research, is so dynamic that, today, applications like reactive coatings with nanoparticles (with self-cleaning, self-sterilizing surfaces), systems with conductive polymer coatings to provide EM shielding, electronic textile systems -with body monitoring properties-, environmental responsive systems etc. are already somewhat classical and are considered almost left in the shade of incoming new developments.\u003cbr\u003e\u003cbr\u003eThis book is an up-to-date summary of the subject by considering the passage from conventional to emerging technologies. Criteria for selection of the coat and textile are considered and the manufacturing basics of the system are summarized. Emerging technologies and applications (including smart, intelligent and nanostructured applications) are completed by testing and quality control methods of these systems.\u003cbr\u003e\u003cbr\u003eThe book is written for all that are interested in this interdisciplinary area, it certainly will prove to be of great help to textile and polymer technologists, to engineers, to scientists, as well as to students."}
Applications of Polyme...
$250.00
{"id":11242240964,"title":"Applications of Polymers in Drug Delivery","handle":"9781847358516","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","delivery system","drug absorption","drug delivery","gastric drug delivery","mucaodhesive drug delivery","ocular drug delivery","oral drug delivery","p-applications","patch delivery system","polymer","polymeric system","r-formulation","transdermal drug delivery"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applications of Polymers in Drug Delivery","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847358516","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","options":["Title"],"media":[{"alt":null,"id":350156095581,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex"}
Bonding Elastomers: A ...
$153.00
{"id":11242239556,"title":"Bonding Elastomers: A Review of Adhesives and Processes","handle":"978-1-85957-495-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G. Polaski, J. Means, B. Stull, P. Warren, K. Allen, D. Mowrey and B. Carney, Lord Corporation \u003cbr\u003eISBN 978-1-85957-495-9 \u003cbr\u003e\u003cbr\u003ePages 150\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review has been written as a practical approach to bonding various kinds of elastomers to substrates such as steel and plastics, as used in the manufacture of diverse products such as rubber covered rolls, urethane fork lift wheels, rubber lining for chemical storage or solid rocket motors, engine bushes and mounts, seals for transmissions, electrical power connectors and military tank track pads. \u003cbr\u003e\u003cbr\u003eThere are over 20 kinds of elastomeric polymer each having unique physical and chemical resistance characteristics. Through compounding, a given elastomer’s performance can be enhanced but no single elastomer can be compounded to meet all applications. In the same manner, no single adhesive can provide the needed levels of adhesion and environmental resistance to all polymers. Even when bonding a particular elastomer, the adhesive of choice can vary depending upon the compounding of the rubber including the cure system, the environmental application of the bonded assembly, the substrate to which the rubber is going to be bonded, the moulding method and the geometry of the part. Other factors affecting adhesive selection might include colour, conductivity, and means of application. \u003cbr\u003e\u003cbr\u003eThis review is based on the authors' years of experience working closely with end-use customers and offers a thorough overview of how to successfully bond rubber to a given substrate in the manufacture of quality rubber engineered components: \u003cbr\u003e\u003cbr\u003esubstrate preparation selection of adhesive adhesive preparation adhesive application moulding conditions testing and bond failure analysis future trends \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Forward \u003cbr\u003e2 Introduction\u003cbr\u003e2.1 The Process\u003cbr\u003e2.2 Primers\u003cbr\u003e2.3 Adhesives\u003cbr\u003e2.4 Environmental Concerns \u003cbr\u003e3 Adhesive Application\u003cbr\u003e3.1 Surface Preparation\u003cbr\u003e3.2 Adhesive Selection\u003cbr\u003e3.3 Adhesive Preparation\u003cbr\u003e3.4 Adhesive Application\u003cbr\u003e3.5 Film Thickness\u003cbr\u003e3.6 Drying\u003cbr\u003e3.7 Storage \u003cbr\u003e4 Moulding\u003cbr\u003e4.1 Methods of Mould Bonding\u003cbr\u003e4.2 Sweeping (Flow)\u003cbr\u003e4.3 Pre-bake Resistance\u003cbr\u003e4.4 Mould Release\u003cbr\u003e4.5 Demoulding \u003cbr\u003e5 Environmentally Preferred Adhesives\u003cbr\u003e5.1 Adhesive Description\u003cbr\u003e5.2 Formulations\u003cbr\u003e5.3 Application\u003cbr\u003e5.4 Rubber Formulations\u003cbr\u003e5.5 Testing\u003cbr\u003e5.5.1 Bond Performance\u003cbr\u003e5.5.2 Primary Adhesion\u003cbr\u003e5.5.3 Sweep\u003cbr\u003e5.5.4 Hot Tear\u003cbr\u003e5.5.5 Salt Spray\u003cbr\u003e5.6 Results\u003cbr\u003e5.7 Summary \u003cbr\u003e6 Aqueous Adhesives\u003cbr\u003e6.1 Aqueous versus Solvent Based Adhesives\u003cbr\u003e6.2 Experimental\u003cbr\u003e6.3 Results and Discussion\u003cbr\u003e6.4 Summary \u003cbr\u003e7 Troubleshooting\u003cbr\u003e7.1 Types of Failures\u003cbr\u003e7.1.1 Rubber Failure\u003cbr\u003e7.1.2 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.1.3 Cement-to Metal (CM) Failure\u003cbr\u003e7.1.4 Other Failures\u003cbr\u003e7.2 Failure Analysis\u003cbr\u003e7.2.1 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.2.2 Cement-to-Metal Failure\u003cbr\u003e7.3 Surface Analysis Techniques\u003cbr\u003e7.4 Root Cause\u003cbr\u003e7.5 Summary \u003cbr\u003e8 Testing \u003cbr\u003e9 Markets\u003cbr\u003e9.1 Bonding Rubber Rolls\u003cbr\u003e9.1.1 Core Preparation\u003cbr\u003e9.1.2 The Adhesive System Selection Process\u003cbr\u003e9.1.3 Handling, Mixing, and Application Processes\u003cbr\u003e9.1.4 Rubber Lay-Up and Curing\u003cbr\u003e9.1.5 Troubleshooting\u003cbr\u003e9.2 Bonding Urethane's\u003cbr\u003e9.2.1 Bonding Applications\u003cbr\u003e9.2.2 Adhesive System Selection\u003cbr\u003e9.2.3 Adhesive Application\u003cbr\u003e9.3 Thermoplastic Elastomer Bonding\u003cbr\u003e9.3.1 Bonding Applications\u003cbr\u003e9.3.2 Bonding Methods\u003cbr\u003e9.3.3 Adhesive Selection (for Use in Injection Moulding)\u003cbr\u003e9.3.4 Application\u003cbr\u003e9.3.5 Pre-Baking Adhesive Coated Parts Prior to Moulding\u003cbr\u003e9.3.6 Injection Moulding\u003cbr\u003e9.3.7 Checking Bond Adhesion\u003cbr\u003e9.3.8 Bond Performance\u003cbr\u003e9.4 Rubber Lining\u003cbr\u003e9.4.1 Surface Preparation\u003cbr\u003e9.4.2 Rubber Lining\u003cbr\u003e9.4.3 Rubber and the Cure System\u003cbr\u003e9.4.4 Primers\/Adhesives\/Tack Coats\u003cbr\u003e9.4.5 Adhesive Handling\u003cbr\u003e9.4.6 Application\u003cbr\u003e9.4.7 Quality Control\u003cbr\u003e9.4.8 Summary\u003cbr\u003e9.5 Adhesives for Seals and Gaskets\u003cbr\u003e9.5.1 Adhesive and Coating Selections\u003cbr\u003e9.5.2 Summary\u003cbr\u003e9.6 Adhesives for Automotive Weatherstripping\u003cbr\u003e9.6.1 Metal Profile Carriers\u003cbr\u003e9.6.2 Elastomeric Sealing Surfaces\u003cbr\u003e9.6.3 Extrusion Process\u003cbr\u003e9.6.4 Performance Testing\u003cbr\u003e9.6.5 Summary \u003cbr\u003e10 Future Trends in Rubber-to-Metal Bonding \u003cbr\u003eAbbreviations\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","adhesives","book","chemical","electrical properties","film thickness","gaskets","mechanical","mold release","molding","moulding","p-applications","poly","polyethylene","rheological","rubber","seals","thermal properties"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432900,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Bonding Elastomers: A Review of Adhesives and Processes","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-495-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579","options":["Title"],"media":[{"alt":null,"id":353925038173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G. Polaski, J. Means, B. Stull, P. Warren, K. Allen, D. Mowrey and B. Carney, Lord Corporation \u003cbr\u003eISBN 978-1-85957-495-9 \u003cbr\u003e\u003cbr\u003ePages 150\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review has been written as a practical approach to bonding various kinds of elastomers to substrates such as steel and plastics, as used in the manufacture of diverse products such as rubber covered rolls, urethane fork lift wheels, rubber lining for chemical storage or solid rocket motors, engine bushes and mounts, seals for transmissions, electrical power connectors and military tank track pads. \u003cbr\u003e\u003cbr\u003eThere are over 20 kinds of elastomeric polymer each having unique physical and chemical resistance characteristics. Through compounding, a given elastomer’s performance can be enhanced but no single elastomer can be compounded to meet all applications. In the same manner, no single adhesive can provide the needed levels of adhesion and environmental resistance to all polymers. Even when bonding a particular elastomer, the adhesive of choice can vary depending upon the compounding of the rubber including the cure system, the environmental application of the bonded assembly, the substrate to which the rubber is going to be bonded, the moulding method and the geometry of the part. Other factors affecting adhesive selection might include colour, conductivity, and means of application. \u003cbr\u003e\u003cbr\u003eThis review is based on the authors' years of experience working closely with end-use customers and offers a thorough overview of how to successfully bond rubber to a given substrate in the manufacture of quality rubber engineered components: \u003cbr\u003e\u003cbr\u003esubstrate preparation selection of adhesive adhesive preparation adhesive application moulding conditions testing and bond failure analysis future trends \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Forward \u003cbr\u003e2 Introduction\u003cbr\u003e2.1 The Process\u003cbr\u003e2.2 Primers\u003cbr\u003e2.3 Adhesives\u003cbr\u003e2.4 Environmental Concerns \u003cbr\u003e3 Adhesive Application\u003cbr\u003e3.1 Surface Preparation\u003cbr\u003e3.2 Adhesive Selection\u003cbr\u003e3.3 Adhesive Preparation\u003cbr\u003e3.4 Adhesive Application\u003cbr\u003e3.5 Film Thickness\u003cbr\u003e3.6 Drying\u003cbr\u003e3.7 Storage \u003cbr\u003e4 Moulding\u003cbr\u003e4.1 Methods of Mould Bonding\u003cbr\u003e4.2 Sweeping (Flow)\u003cbr\u003e4.3 Pre-bake Resistance\u003cbr\u003e4.4 Mould Release\u003cbr\u003e4.5 Demoulding \u003cbr\u003e5 Environmentally Preferred Adhesives\u003cbr\u003e5.1 Adhesive Description\u003cbr\u003e5.2 Formulations\u003cbr\u003e5.3 Application\u003cbr\u003e5.4 Rubber Formulations\u003cbr\u003e5.5 Testing\u003cbr\u003e5.5.1 Bond Performance\u003cbr\u003e5.5.2 Primary Adhesion\u003cbr\u003e5.5.3 Sweep\u003cbr\u003e5.5.4 Hot Tear\u003cbr\u003e5.5.5 Salt Spray\u003cbr\u003e5.6 Results\u003cbr\u003e5.7 Summary \u003cbr\u003e6 Aqueous Adhesives\u003cbr\u003e6.1 Aqueous versus Solvent Based Adhesives\u003cbr\u003e6.2 Experimental\u003cbr\u003e6.3 Results and Discussion\u003cbr\u003e6.4 Summary \u003cbr\u003e7 Troubleshooting\u003cbr\u003e7.1 Types of Failures\u003cbr\u003e7.1.1 Rubber Failure\u003cbr\u003e7.1.2 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.1.3 Cement-to Metal (CM) Failure\u003cbr\u003e7.1.4 Other Failures\u003cbr\u003e7.2 Failure Analysis\u003cbr\u003e7.2.1 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.2.2 Cement-to-Metal Failure\u003cbr\u003e7.3 Surface Analysis Techniques\u003cbr\u003e7.4 Root Cause\u003cbr\u003e7.5 Summary \u003cbr\u003e8 Testing \u003cbr\u003e9 Markets\u003cbr\u003e9.1 Bonding Rubber Rolls\u003cbr\u003e9.1.1 Core Preparation\u003cbr\u003e9.1.2 The Adhesive System Selection Process\u003cbr\u003e9.1.3 Handling, Mixing, and Application Processes\u003cbr\u003e9.1.4 Rubber Lay-Up and Curing\u003cbr\u003e9.1.5 Troubleshooting\u003cbr\u003e9.2 Bonding Urethane's\u003cbr\u003e9.2.1 Bonding Applications\u003cbr\u003e9.2.2 Adhesive System Selection\u003cbr\u003e9.2.3 Adhesive Application\u003cbr\u003e9.3 Thermoplastic Elastomer Bonding\u003cbr\u003e9.3.1 Bonding Applications\u003cbr\u003e9.3.2 Bonding Methods\u003cbr\u003e9.3.3 Adhesive Selection (for Use in Injection Moulding)\u003cbr\u003e9.3.4 Application\u003cbr\u003e9.3.5 Pre-Baking Adhesive Coated Parts Prior to Moulding\u003cbr\u003e9.3.6 Injection Moulding\u003cbr\u003e9.3.7 Checking Bond Adhesion\u003cbr\u003e9.3.8 Bond Performance\u003cbr\u003e9.4 Rubber Lining\u003cbr\u003e9.4.1 Surface Preparation\u003cbr\u003e9.4.2 Rubber Lining\u003cbr\u003e9.4.3 Rubber and the Cure System\u003cbr\u003e9.4.4 Primers\/Adhesives\/Tack Coats\u003cbr\u003e9.4.5 Adhesive Handling\u003cbr\u003e9.4.6 Application\u003cbr\u003e9.4.7 Quality Control\u003cbr\u003e9.4.8 Summary\u003cbr\u003e9.5 Adhesives for Seals and Gaskets\u003cbr\u003e9.5.1 Adhesive and Coating Selections\u003cbr\u003e9.5.2 Summary\u003cbr\u003e9.6 Adhesives for Automotive Weatherstripping\u003cbr\u003e9.6.1 Metal Profile Carriers\u003cbr\u003e9.6.2 Elastomeric Sealing Surfaces\u003cbr\u003e9.6.3 Extrusion Process\u003cbr\u003e9.6.4 Performance Testing\u003cbr\u003e9.6.5 Summary \u003cbr\u003e10 Future Trends in Rubber-to-Metal Bonding \u003cbr\u003eAbbreviations\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e"}
Bottles, Preforms and ...
$149.00
{"id":11242203908,"title":"Bottles, Preforms and Closures, 2nd Edition - A Design Guide for PET Packaging","handle":"978-1-4377-3526-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ottmar Brandau \u003cbr\u003eISBN 978-1-4377-3526-0 \u003cbr\u003e\u003cbr\u003e180 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book is a thoroughly practical handbook that provides engineers and managers with the toolkit to improve production and engineering aspects in their own businesses - saving money, increasing output and improving competitiveness by adopting new technologies.\u003c\/p\u003e\n\u003cp\u003eIn this book, Brandau covers the engineering aspects of bottle production and the relevant production processes (focusing on blow molding), along with plant layout and organization and production management. \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart One: PET Preforms (Ottmar Brandau, Dr. Laura Martin):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Manufacture and States of PET;\u003cbr\u003e\u003cbr\u003e3 Behaviour in the Blow Mould; 4 Manufacture of PET Preforms;\u003cbr\u003e\u003cbr\u003e5 Preform Design Methodology;\u003cbr\u003e\u003cbr\u003e6 Preform Design Examples;\u003cbr\u003e\u003cbr\u003ePart 2: PET Beverage Bottles (Dr. Christian DeTrois, Thomas Steinbauer):\u003cbr\u003e\u003cbr\u003e1 From the First Idea to the Finished Bottle;\u003cbr\u003e\u003cbr\u003e2 Determination of Bottle Properties;\u003cbr\u003e\u003cbr\u003e3 Generating the First Design in CAD;\u003cbr\u003e\u003cbr\u003e4 From Shape to Fully-Fledged Design for a Safe Process;\u003cbr\u003e\u003cbr\u003e5 Verification of the 3D Design through FE Simulation;\u003cbr\u003e\u003cbr\u003e6 Selection of the Mould Concept to Meet Customer-Specific Criteria;\u003cbr\u003e\u003cbr\u003e7 Mould Design and Mould Manufacture;\u003cbr\u003e\u003cbr\u003e8 Mould Trials and Examination of Sample Bottles;\u003cbr\u003e\u003cbr\u003ePart 3 Closures for PET Bottles (Ottmar Brandau, Romeo Corvaglia):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Neck Finishes for Various Bottle Types;\u003cbr\u003e\u003cbr\u003e3 Closure Types;\u003cbr\u003e\u003cbr\u003e4 Tamper Evident Bands;\u003cbr\u003e\u003cbr\u003e5 Resins;\u003cbr\u003e\u003cbr\u003e6 Manufacturing Methods;\u003cbr\u003e\u003cbr\u003e7 Economic Guidelines;\u003cbr\u003e\u003cbr\u003e8 Test Procedures;\u003cbr\u003e\u003cbr\u003e9 Process Control during Injection Moulding; Light-weigh caps, new standards\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eOttmar Brandau\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eOB Plastics Consulting, Ontario, Canada\u003c\/div\u003e\n\u003cdiv\u003ePresident, OB Plastics Consulting, Ontario, Canada Process troubleshooting and training of plant and office personnel. Formerly VP Operations, Magic North America (Packaging \u0026amp; Containers). Member of the Omnexus (SpecialChem Plastics \u0026amp; Elastomers) Expert Team.\u003c\/div\u003e","published_at":"2017-06-22T21:12:49-04:00","created_at":"2017-06-22T21:12:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","blow molding","book","bottles","fault analysis","p-applications","packaging","PET","PET packaging","plastics processing","polymer","troubleshooting"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316740,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Bottles, Preforms and Closures, 2nd Edition - A Design Guide for PET Packaging","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-3526-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204","options":["Title"],"media":[{"alt":null,"id":353925529693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ottmar Brandau \u003cbr\u003eISBN 978-1-4377-3526-0 \u003cbr\u003e\u003cbr\u003e180 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book is a thoroughly practical handbook that provides engineers and managers with the toolkit to improve production and engineering aspects in their own businesses - saving money, increasing output and improving competitiveness by adopting new technologies.\u003c\/p\u003e\n\u003cp\u003eIn this book, Brandau covers the engineering aspects of bottle production and the relevant production processes (focusing on blow molding), along with plant layout and organization and production management. \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart One: PET Preforms (Ottmar Brandau, Dr. Laura Martin):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Manufacture and States of PET;\u003cbr\u003e\u003cbr\u003e3 Behaviour in the Blow Mould; 4 Manufacture of PET Preforms;\u003cbr\u003e\u003cbr\u003e5 Preform Design Methodology;\u003cbr\u003e\u003cbr\u003e6 Preform Design Examples;\u003cbr\u003e\u003cbr\u003ePart 2: PET Beverage Bottles (Dr. Christian DeTrois, Thomas Steinbauer):\u003cbr\u003e\u003cbr\u003e1 From the First Idea to the Finished Bottle;\u003cbr\u003e\u003cbr\u003e2 Determination of Bottle Properties;\u003cbr\u003e\u003cbr\u003e3 Generating the First Design in CAD;\u003cbr\u003e\u003cbr\u003e4 From Shape to Fully-Fledged Design for a Safe Process;\u003cbr\u003e\u003cbr\u003e5 Verification of the 3D Design through FE Simulation;\u003cbr\u003e\u003cbr\u003e6 Selection of the Mould Concept to Meet Customer-Specific Criteria;\u003cbr\u003e\u003cbr\u003e7 Mould Design and Mould Manufacture;\u003cbr\u003e\u003cbr\u003e8 Mould Trials and Examination of Sample Bottles;\u003cbr\u003e\u003cbr\u003ePart 3 Closures for PET Bottles (Ottmar Brandau, Romeo Corvaglia):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Neck Finishes for Various Bottle Types;\u003cbr\u003e\u003cbr\u003e3 Closure Types;\u003cbr\u003e\u003cbr\u003e4 Tamper Evident Bands;\u003cbr\u003e\u003cbr\u003e5 Resins;\u003cbr\u003e\u003cbr\u003e6 Manufacturing Methods;\u003cbr\u003e\u003cbr\u003e7 Economic Guidelines;\u003cbr\u003e\u003cbr\u003e8 Test Procedures;\u003cbr\u003e\u003cbr\u003e9 Process Control during Injection Moulding; Light-weigh caps, new standards\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eOttmar Brandau\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eOB Plastics Consulting, Ontario, Canada\u003c\/div\u003e\n\u003cdiv\u003ePresident, OB Plastics Consulting, Ontario, Canada Process troubleshooting and training of plant and office personnel. Formerly VP Operations, Magic North America (Packaging \u0026amp; Containers). Member of the Omnexus (SpecialChem Plastics \u0026amp; Elastomers) Expert Team.\u003c\/div\u003e"}
Coatings and Inks for ...
$153.00
{"id":11242230404,"title":"Coatings and Inks for Food Contact Materials","handle":"978-1-84735-079-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Martin J. Forrest \u003cbr\u003eISBN 978-1-84735-079-4 \u003cbr\u003e\u003cbr\u003eRapra Review Report\u003cbr\u003eVol. 16, No. 6, Report 186, Soft-backed, 121 pages.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor many years, Smithers Rapra has carried out research projects for the UK Food Standards Agency (FSA). This review report has, as its origin, an FSA project on coatings and inks that was carried out at Smithers Rapra from 2005 until 2007. The objective of this project was to assess the potential for the migration of substances from coatings and inks that were used in food packaging applications. As a significant amount of work had already been carried out on coatings that were in direct contact with food (e.g., can coatings), a boundary was set that only coatings and inks in non-direct food contact situations would be considered. As the scope of this review report is greater than the Smithers Rapra project and, due to the limitations of this particular format, it has only been possible to include some of the information that was acquired during the course of the FSA project. \u003cbr\u003e\u003cbr\u003eThis report has attempted to cover all of the coatings and inks products used in food contact scenarios. Hence, direct and non-direct contact situations are included throughout the food chain, e.g., harvesting, processing, transportation, packaging and cooking. In practice, this encompasses an extremely wide range of polymer systems and formulations, and an emphasis has been placed on coatings and inks used in food packaging, as this is usually regarded as representing the most important application category with respect to the potential for migration to occur. With respect to food packaging, all three of the major material classes are covered, i.e., metal, paper and board, and plastic. In addition to a thorough introduction of the polymers and additives that are used to produce coatings and inks, there are also chapters covering the regulation of these materials, the migration and analytical tests that are performed on them to assess their suitability for food contact applications, the migration data that have been published, and the areas in the field that are receiving the most attention for research and development. \u003cbr\u003e\u003cbr\u003eThis report is one of a series of three. A report summarising the current situation of the use of rubber products for food contact applications was published in 2006 and a report reviewing the use of silicone-based materials (including rubbers, resins and liquids) with food will be published by Smithers Rapra shortly. \u003cbr\u003e\u003cbr\u003eThis report will be of interest to anyone who works with the packaging of food and beverages and also to those who are studying food packaging\/processing. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1. Introduction\u003c\/b\u003e \u003cbr\u003e\u003cb\u003e2. Coating and Ink Products for Food Contact Materials\u003c\/b\u003e \u003cbr\u003e2.1 Polymers for Coatings and Inks \u003cbr\u003e2.1.1 Acrylic \u003cbr\u003e2.1.2 Alkyd resins \u003cbr\u003e2.1.3 Amino Resins (e.g., urea-formaldehyde resins) \u003cbr\u003e2.1.4 Epoxy Resins \u003cbr\u003e2.1.5 Cellulosics \u003cbr\u003e2.1.6 Polyesters – Saturated and Unsaturated \u003cbr\u003e2.1.7 Polyurethanes \u003cbr\u003e2.1.8 Rosin \u003cbr\u003e2.1.9 Silicone Resins \u003cbr\u003e2.1.10 Vinyl Polymers \u003cbr\u003e2.1.11 Other Polymers (e.g., hydrocarbons) \u003cbr\u003e2.2 Constituents of Coatings \u003cbr\u003e2.2.1 Crosslinking Agents \u003cbr\u003e2.2.2 Other Additives \u003cbr\u003e2.2.3 Solvents \u003cbr\u003e2.3 Constituents of Inks \u003cbr\u003e2.3.1 Solvents \u003cbr\u003e2.3.2 Plasticisers \u003cbr\u003e2.3.3 Driers \u003cbr\u003e2.3.4 Photoinitiators \u003cbr\u003e2.3.5 Colorants \u003cbr\u003e2.3.6 Other Additives \u003cbr\u003e\u003cb\u003e3. Coatings and Inks used in the Food Chain\u003c\/b\u003e \u003cbr\u003e3.1 Food Packaging \u003cbr\u003e3.1.1 Packaging Types \u003cbr\u003e3.1.2 Coatings Used in Metal Packaging (Tables 5 to 9) \u003cbr\u003e3.1.3 Coatings and Adhesives for Flexible Packaging (Tables 10 and 11) \u003cbr\u003e3.1.4 Inks for Metal Packaging (Table 12) \u003cbr\u003e3.1.5 Inks for Paper and Board Packaging (Table 13) \u003cbr\u003e3.1.6 Inks for Flexible Packaging (Table 14) \u003cbr\u003e3.2 Harvesting and Processing of Food \u003cbr\u003e3.3 Storage and Transportation \u003cbr\u003e3.4 Presentation, Dispensing and Cooking \u003cbr\u003e\u003cb\u003e4. Application Techniques for Inks\u003c\/b\u003e \u003cbr\u003e4.1 Lithography \u003cbr\u003e4.2 Flexography \u003cbr\u003e4.3 Gravure \u003cbr\u003e4.4 Inkjet \u003cbr\u003e4.5 Influence of Substrate Type \u003cbr\u003e4.5.1 Inks for Metal Packaging \u003cbr\u003e4.5.2 Inks for Paper and Board \u003cbr\u003e4.5.3 Inks for Flexible Plastic Packaging \u003cbr\u003e4.5.4 Set Off \u003cbr\u003e\u003cb\u003e5. Regulations Covering the Use of Inks and Coatings with Food\u003c\/b\u003e \u003cbr\u003e5.1 Regulation in the European Union \u003cbr\u003e5.2 Council of Europe (CoE) Regulations \u003cbr\u003e5.2.1 Coatings \u003cbr\u003e5.2.2 Inks \u003cbr\u003e5.3 National Regulations within the EU \u003cbr\u003e5.4 FDA Regulations \u003cbr\u003e5.5 Other Considerations for Industrial Use \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6. Assessing the Safety of Inks and Coatings for Food Applications\u003c\/b\u003e \u003cbr\u003e6.1 Global Migration Tests \u003cbr\u003e6.2 Specific Migration Tests \u003cbr\u003e6.3 Fingerprinting of Potential Migrants from Coatings and Inks \u003cbr\u003e6.4 Determination of Specific Target Species in Coatings and Ink Products and in Food Simulants and Foods \u003cbr\u003e6.4.1 Monomers, Solvents and Low Molecular Weight Additives and Breakdown Products \u003cbr\u003e6.4.2 Oligomers \u003cbr\u003e6.4.3 Plasticisers and Oil-type Additives \u003cbr\u003e6.4.4 Polar Additives and Metal Containing Compounds \u003cbr\u003e6.4.5 Cure System Species, Initiators, Catalysts and Their Reaction Products \u003cbr\u003e6.4.6 Antidegradants, Stabilisers and Their Reaction Products \u003cbr\u003e6.5 Sensory Testing \u003cbr\u003e6.6 Toxicological assessment of migrants \u003cbr\u003e\u003cbr\u003e\u003cb\u003e7. Potential Migrants and Published Migration Data\u003c\/b\u003e \u003cbr\u003e7.1 Acrylates \u003cbr\u003e7.2 Amines \u003cbr\u003e7.3 Aromatics from Unsaturated Polyesters \u003cbr\u003e7.4 Aromatics from Photoinitiation Reactions and Photoinitiator Additives \u003cbr\u003e7.5 BPA and BADGE and Derivatives \u003cbr\u003e7.6 Epichlorohydrin \u003cbr\u003e7.7 Bisphenol A \u003cbr\u003e7.8 Solvents \u003cbr\u003e7.9 Plasticisers \u003cbr\u003e7.10 Extractables from UV-Cured Coating for Cardboard \u003cbr\u003e7.11 Potential Migrants \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8. Improving the Safety of Inks and Coatings for Food Use\u003c\/b\u003e \u003cbr\u003e8.1 New Food Approved Pigments \u003cbr\u003e8.2 Water-Based Systems \u003cbr\u003e8.3 UV\/EB Curable Systems \u003cbr\u003e8.4 New Initiators for UV Curable Inks \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9. Future Trends\u003c\/b\u003e \u003cbr\u003e9.1 Improvements in Recycling Systems \u003cbr\u003e9.2 Biodegradability \u003cbr\u003e9.3 Use of Coatings to Improve Barrier Properties of Food Packaging \u003cbr\u003e9.4 Antimicrobial Systems \u003cbr\u003e9.5 Laser Marking to replace Conventional Inks \u003cbr\u003e9.6 Intelligent and Active Packaging \u003cbr\u003e9.7 Applications of Nanotechnology \u003cbr\u003e9.8 Developments in Analytical Techniques \u003cbr\u003e\u003cbr\u003e\u003cb\u003e10. Conclusion\u003c\/b\u003e \u003cbr\u003e\u003cbr\u003eAdditional References \u003cbr\u003e\u003cbr\u003eSources of Further Information and Advice \u003cbr\u003eReference Books \u003cbr\u003eReports \u003cbr\u003eProfessional, Research, Trade and Governmental Organisations \u003cbr\u003eCommercial Abstract Databases \u003cbr\u003e\u003cbr\u003eAcknowledgements \u003cbr\u003e\u003cbr\u003eAbbreviations \u003cbr\u003e\u003cbr\u003eSubject Index \u003cbr\u003e\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:14-04:00","created_at":"2017-06-22T21:14:14-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","book","coatings","food","p-applications","packaging"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378400516,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Coatings and Inks for Food Contact Materials","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-079-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-079-4.jpg?v=1499724016"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-079-4.jpg?v=1499724016","options":["Title"],"media":[{"alt":null,"id":353960362077,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-079-4.jpg?v=1499724016"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-079-4.jpg?v=1499724016","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Martin J. Forrest \u003cbr\u003eISBN 978-1-84735-079-4 \u003cbr\u003e\u003cbr\u003eRapra Review Report\u003cbr\u003eVol. 16, No. 6, Report 186, Soft-backed, 121 pages.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor many years, Smithers Rapra has carried out research projects for the UK Food Standards Agency (FSA). This review report has, as its origin, an FSA project on coatings and inks that was carried out at Smithers Rapra from 2005 until 2007. The objective of this project was to assess the potential for the migration of substances from coatings and inks that were used in food packaging applications. As a significant amount of work had already been carried out on coatings that were in direct contact with food (e.g., can coatings), a boundary was set that only coatings and inks in non-direct food contact situations would be considered. As the scope of this review report is greater than the Smithers Rapra project and, due to the limitations of this particular format, it has only been possible to include some of the information that was acquired during the course of the FSA project. \u003cbr\u003e\u003cbr\u003eThis report has attempted to cover all of the coatings and inks products used in food contact scenarios. Hence, direct and non-direct contact situations are included throughout the food chain, e.g., harvesting, processing, transportation, packaging and cooking. In practice, this encompasses an extremely wide range of polymer systems and formulations, and an emphasis has been placed on coatings and inks used in food packaging, as this is usually regarded as representing the most important application category with respect to the potential for migration to occur. With respect to food packaging, all three of the major material classes are covered, i.e., metal, paper and board, and plastic. In addition to a thorough introduction of the polymers and additives that are used to produce coatings and inks, there are also chapters covering the regulation of these materials, the migration and analytical tests that are performed on them to assess their suitability for food contact applications, the migration data that have been published, and the areas in the field that are receiving the most attention for research and development. \u003cbr\u003e\u003cbr\u003eThis report is one of a series of three. A report summarising the current situation of the use of rubber products for food contact applications was published in 2006 and a report reviewing the use of silicone-based materials (including rubbers, resins and liquids) with food will be published by Smithers Rapra shortly. \u003cbr\u003e\u003cbr\u003eThis report will be of interest to anyone who works with the packaging of food and beverages and also to those who are studying food packaging\/processing. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1. Introduction\u003c\/b\u003e \u003cbr\u003e\u003cb\u003e2. Coating and Ink Products for Food Contact Materials\u003c\/b\u003e \u003cbr\u003e2.1 Polymers for Coatings and Inks \u003cbr\u003e2.1.1 Acrylic \u003cbr\u003e2.1.2 Alkyd resins \u003cbr\u003e2.1.3 Amino Resins (e.g., urea-formaldehyde resins) \u003cbr\u003e2.1.4 Epoxy Resins \u003cbr\u003e2.1.5 Cellulosics \u003cbr\u003e2.1.6 Polyesters – Saturated and Unsaturated \u003cbr\u003e2.1.7 Polyurethanes \u003cbr\u003e2.1.8 Rosin \u003cbr\u003e2.1.9 Silicone Resins \u003cbr\u003e2.1.10 Vinyl Polymers \u003cbr\u003e2.1.11 Other Polymers (e.g., hydrocarbons) \u003cbr\u003e2.2 Constituents of Coatings \u003cbr\u003e2.2.1 Crosslinking Agents \u003cbr\u003e2.2.2 Other Additives \u003cbr\u003e2.2.3 Solvents \u003cbr\u003e2.3 Constituents of Inks \u003cbr\u003e2.3.1 Solvents \u003cbr\u003e2.3.2 Plasticisers \u003cbr\u003e2.3.3 Driers \u003cbr\u003e2.3.4 Photoinitiators \u003cbr\u003e2.3.5 Colorants \u003cbr\u003e2.3.6 Other Additives \u003cbr\u003e\u003cb\u003e3. Coatings and Inks used in the Food Chain\u003c\/b\u003e \u003cbr\u003e3.1 Food Packaging \u003cbr\u003e3.1.1 Packaging Types \u003cbr\u003e3.1.2 Coatings Used in Metal Packaging (Tables 5 to 9) \u003cbr\u003e3.1.3 Coatings and Adhesives for Flexible Packaging (Tables 10 and 11) \u003cbr\u003e3.1.4 Inks for Metal Packaging (Table 12) \u003cbr\u003e3.1.5 Inks for Paper and Board Packaging (Table 13) \u003cbr\u003e3.1.6 Inks for Flexible Packaging (Table 14) \u003cbr\u003e3.2 Harvesting and Processing of Food \u003cbr\u003e3.3 Storage and Transportation \u003cbr\u003e3.4 Presentation, Dispensing and Cooking \u003cbr\u003e\u003cb\u003e4. Application Techniques for Inks\u003c\/b\u003e \u003cbr\u003e4.1 Lithography \u003cbr\u003e4.2 Flexography \u003cbr\u003e4.3 Gravure \u003cbr\u003e4.4 Inkjet \u003cbr\u003e4.5 Influence of Substrate Type \u003cbr\u003e4.5.1 Inks for Metal Packaging \u003cbr\u003e4.5.2 Inks for Paper and Board \u003cbr\u003e4.5.3 Inks for Flexible Plastic Packaging \u003cbr\u003e4.5.4 Set Off \u003cbr\u003e\u003cb\u003e5. Regulations Covering the Use of Inks and Coatings with Food\u003c\/b\u003e \u003cbr\u003e5.1 Regulation in the European Union \u003cbr\u003e5.2 Council of Europe (CoE) Regulations \u003cbr\u003e5.2.1 Coatings \u003cbr\u003e5.2.2 Inks \u003cbr\u003e5.3 National Regulations within the EU \u003cbr\u003e5.4 FDA Regulations \u003cbr\u003e5.5 Other Considerations for Industrial Use \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6. Assessing the Safety of Inks and Coatings for Food Applications\u003c\/b\u003e \u003cbr\u003e6.1 Global Migration Tests \u003cbr\u003e6.2 Specific Migration Tests \u003cbr\u003e6.3 Fingerprinting of Potential Migrants from Coatings and Inks \u003cbr\u003e6.4 Determination of Specific Target Species in Coatings and Ink Products and in Food Simulants and Foods \u003cbr\u003e6.4.1 Monomers, Solvents and Low Molecular Weight Additives and Breakdown Products \u003cbr\u003e6.4.2 Oligomers \u003cbr\u003e6.4.3 Plasticisers and Oil-type Additives \u003cbr\u003e6.4.4 Polar Additives and Metal Containing Compounds \u003cbr\u003e6.4.5 Cure System Species, Initiators, Catalysts and Their Reaction Products \u003cbr\u003e6.4.6 Antidegradants, Stabilisers and Their Reaction Products \u003cbr\u003e6.5 Sensory Testing \u003cbr\u003e6.6 Toxicological assessment of migrants \u003cbr\u003e\u003cbr\u003e\u003cb\u003e7. Potential Migrants and Published Migration Data\u003c\/b\u003e \u003cbr\u003e7.1 Acrylates \u003cbr\u003e7.2 Amines \u003cbr\u003e7.3 Aromatics from Unsaturated Polyesters \u003cbr\u003e7.4 Aromatics from Photoinitiation Reactions and Photoinitiator Additives \u003cbr\u003e7.5 BPA and BADGE and Derivatives \u003cbr\u003e7.6 Epichlorohydrin \u003cbr\u003e7.7 Bisphenol A \u003cbr\u003e7.8 Solvents \u003cbr\u003e7.9 Plasticisers \u003cbr\u003e7.10 Extractables from UV-Cured Coating for Cardboard \u003cbr\u003e7.11 Potential Migrants \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8. Improving the Safety of Inks and Coatings for Food Use\u003c\/b\u003e \u003cbr\u003e8.1 New Food Approved Pigments \u003cbr\u003e8.2 Water-Based Systems \u003cbr\u003e8.3 UV\/EB Curable Systems \u003cbr\u003e8.4 New Initiators for UV Curable Inks \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9. Future Trends\u003c\/b\u003e \u003cbr\u003e9.1 Improvements in Recycling Systems \u003cbr\u003e9.2 Biodegradability \u003cbr\u003e9.3 Use of Coatings to Improve Barrier Properties of Food Packaging \u003cbr\u003e9.4 Antimicrobial Systems \u003cbr\u003e9.5 Laser Marking to replace Conventional Inks \u003cbr\u003e9.6 Intelligent and Active Packaging \u003cbr\u003e9.7 Applications of Nanotechnology \u003cbr\u003e9.8 Developments in Analytical Techniques \u003cbr\u003e\u003cbr\u003e\u003cb\u003e10. Conclusion\u003c\/b\u003e \u003cbr\u003e\u003cbr\u003eAdditional References \u003cbr\u003e\u003cbr\u003eSources of Further Information and Advice \u003cbr\u003eReference Books \u003cbr\u003eReports \u003cbr\u003eProfessional, Research, Trade and Governmental Organisations \u003cbr\u003eCommercial Abstract Databases \u003cbr\u003e\u003cbr\u003eAcknowledgements \u003cbr\u003e\u003cbr\u003eAbbreviations \u003cbr\u003e\u003cbr\u003eSubject Index \u003cbr\u003e\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e"}
Coatings Basics
$120.00
{"id":11242251204,"title":"Coatings Basics","handle":"978-3-86630-851-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Adrie Winkelaar \u003cbr\u003eISBN 978-3-86630-851-0 \u003cbr\u003e\u003cbr\u003e140 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eAn overview of the scientific fundamentals and practical aspects of paints and coatings\u003c\/li\u003e\n\u003cli\u003eProvides readers with the knowledge needed to select the right paint products, and use them in a way that delivers excellent results\u003c\/li\u003e\n\u003cli\u003eEssential reading for non-specialists and business professionals - and a fascinating overview for experienced professionals\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nWhat is paint or a coating; Basic Principles of Chemistry; Paint Ingredients; Consistency and Stability; Coating Properties; Paint Products and Paint formula; Paint production; Application, Drying and Removal; Paint test Methods; Health, Safety and Environment","published_at":"2017-06-22T21:15:18-04:00","created_at":"2017-06-22T21:15:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","application","book","coating","formula","p-applications","paint","polymer","safety"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378476228,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Coatings Basics","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-86630-851-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-851-0.jpg?v=1499720143"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-851-0.jpg?v=1499720143","options":["Title"],"media":[{"alt":null,"id":353960460381,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-851-0.jpg?v=1499720143"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-851-0.jpg?v=1499720143","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Adrie Winkelaar \u003cbr\u003eISBN 978-3-86630-851-0 \u003cbr\u003e\u003cbr\u003e140 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eAn overview of the scientific fundamentals and practical aspects of paints and coatings\u003c\/li\u003e\n\u003cli\u003eProvides readers with the knowledge needed to select the right paint products, and use them in a way that delivers excellent results\u003c\/li\u003e\n\u003cli\u003eEssential reading for non-specialists and business professionals - and a fascinating overview for experienced professionals\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nWhat is paint or a coating; Basic Principles of Chemistry; Paint Ingredients; Consistency and Stability; Coating Properties; Paint Products and Paint formula; Paint production; Application, Drying and Removal; Paint test Methods; Health, Safety and Environment"}
Coatings Technology Ha...
$297.00
{"id":11242201860,"title":"Coatings Technology Handbook, Third Edition","handle":"978-1-57444-649-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Arthur A . Tracton \u003cbr\u003eISBN 978-1-57444-649-4 \u003cbr\u003e\u003cbr\u003e936 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCompletely revised and updated, the Coatings Technology Handbook, Third Edition supplies a broad cross-index of the different aspects involved in the discipline.\u003cbr\u003e\u003cbr\u003eContaining 14 new chapters, the book covers the composition of both organic and inorganic resins, pigments or fillers, and additives, from polymeric fluorocarbons to water borne, solvent-borne, and one hundred percent non-volatile compounds. It examines the testing of raw materials and products and shows dyes used in inks with formulation data. This edition includes a new chapter on specialty pigments for high temperature unique to this book, a chapter on statistical experimentation, a chapter on regulations, and a chapter on formulations with a spreadsheet of formulation calculations. This resource expands your awareness and knowledge of coatings, inks, and adhesives, aids you in problem-solving, and increases your level of familiarity with the technology.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nFUNDAMENTALS AND TESTING\u003cbr\u003e\u003cbr\u003eRheology and Surface Chemistry, K.B. Gilleo\u003cbr\u003e\u003cbr\u003eCoating Rheology, C.-M. Chan and S. Venkatraman\u003cbr\u003e\u003cbr\u003eStructure-Property Relationships in Polymers, S. Venkatraman\u003cbr\u003e\u003cbr\u003eThe Theory of Adhesion, C.A. Dahlquist\u003cbr\u003e\u003cbr\u003eAdhesion Testing, U. Zorll\u003cbr\u003e\u003cbr\u003eCoating Calculations, A.A. Tracton\u003cbr\u003e\u003cbr\u003eInfrared Spectroscopy of Coatings, D.S. Kendall\u003cbr\u003e\u003cbr\u003eThermal Analysis for Coatings Characterizations, W.S. Gilman\u003cbr\u003e\u003cbr\u003eColor Measurement for the Coatings Industry, H. Van Aken\u003cbr\u003e\u003cbr\u003eThe Use of X-ray Fluorescence for Coat Weight Determinations, W.E. Mozer\u003cbr\u003e\u003cbr\u003eSunlight, Ultraviolet, and Accelerated Weathering, P. Brennan and C. Fedor\u003cbr\u003e\u003cbr\u003eCure Monitoring: Microdielectric Techniques, D.R. Day\u003cbr\u003e\u003cbr\u003eTest Panels, D. Grossman and P. Patton\u003cbr\u003e\u003cbr\u003eNew! Design of Experiments for Coatings, M.J. Anderson and P.J. Whitcomb\u003cbr\u003e\u003cbr\u003eNew! Top 10 Reasons Not to Base Service Life Predictions upon Accelerated Lab Light Stability Tests, E.T. Everett\u003cbr\u003e\u003cbr\u003eNew! Under What Regulation? A.A. Tracton\u003cbr\u003e\u003cbr\u003eCOATING AND PROCESSING TECHNIQUES\u003cbr\u003e\u003cbr\u003eWire-Wound Rod Coating, D.M. MacLeod\u003cbr\u003e\u003cbr\u003eSlot Die Coating for Low Viscosity Fluids, H.G. Lippert\u003cbr\u003e\u003cbr\u003ePorous Roll Coater, F.S. McIntyre\u003cbr\u003e\u003cbr\u003eRotary Screen Coating, F.A. Goossens\u003cbr\u003e\u003cbr\u003eScreen Printing, T.B. McSweeney\u003cbr\u003e\u003cbr\u003eFlexography, R. Neumann\u003cbr\u003e\u003cbr\u003eInk-Jet Printing, N.L. Cameron\u003cbr\u003e\u003cbr\u003eElectrodeposition of Polymers, G.E.F. Brewer\u003cbr\u003e\u003cbr\u003eElectroless Plating, A. Vakelis\u003cbr\u003e\u003cbr\u003eThe Electrolizing Thin, Dense, Chromium Process, M. O'Mary\u003cbr\u003e\u003cbr\u003eThe Armoloy Chromium Process, M. O'Mary\u003cbr\u003e\u003cbr\u003eSputtered Thin Film Coatings, B.E. Aufderheide\u003cbr\u003e\u003cbr\u003eNew! Vapor Deposition Coating Technologies, L. Pranevicius\u003cbr\u003e\u003cbr\u003eCathodic Arc Plasma Deposition, H. Randhawa\u003cbr\u003e\u003cbr\u003eIndustrial Diamond and Diamondlike Films, A.H. Deutchman and R.J. Partyka\u003cbr\u003e\u003cbr\u003eTribological Synergistic Coatings, W. Alina\u003cbr\u003e\u003cbr\u003eChemical Vapor Deposition, D. G. Bhat\u003cbr\u003e\u003cbr\u003eSolvent Vapor Emission Control, R. Rathmell\u003cbr\u003e\u003cbr\u003eSurface Treatment of Plastics, W.F. Harrington, Jr.\u003cbr\u003e\u003cbr\u003eFlame Surface Treatment, H.T. Lindland\u003cbr\u003e\u003cbr\u003ePlasma Surface Treatment, S.L. Kaplan and P.W. Rose\u003cbr\u003e\u003cbr\u003eSurface Pretreatment of Polymer Webs by Fluorine, R. Milker and A. Koch\u003cbr\u003e\u003cbr\u003e\u003cspan\u003eCalendering \u003c\/span\u003e of Magnetic Media, J.A. McClenathan\u003cbr\u003e\u003cbr\u003eEmbossing, J.A. Pasquale III\u003cbr\u003e\u003cbr\u003eIn-Mold Finishing, R.W. Carpenter\u003cbr\u003e\u003cbr\u003eHVLP: The Science of High-Volume, Low-Pressure Finishing, S. Stalker\u003cbr\u003e\u003cbr\u003eNew! A Practical Guide to High-Speed Dispersion, H. Hockmeyer\u003cbr\u003e\u003cbr\u003eMATERIALS\u003cbr\u003e\u003cbr\u003eAcrylic Polymers, R.A. Lombardi and J.D. Gasper\u003cbr\u003e\u003cbr\u003eVinyl Ether Polymers, H.W. J. Müller\u003cbr\u003e\u003cbr\u003ePoly(Styrene-Butadiene), R.W. Zempel\u003cbr\u003e\u003cbr\u003eLiquid Polymers for Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003ePolyesters, H.F. Huber and D. Stoye\u003cbr\u003e\u003cbr\u003eAlkyd Resins, K. Holmberg\u003cbr\u003e\u003cbr\u003eThe Polyurea Revolution: Protective Coatings for the 21st Century, B.R. Baxter\u003cbr\u003e\u003cbr\u003ePhenolic Resins, K. Bourlier\u003cbr\u003e\u003cbr\u003eCoal Tar and Asphalt Coatings, H.R. Stoner\u003cbr\u003e\u003cbr\u003eVulcanizate Thermoplastic Elastomers, C.P. Rader\u003cbr\u003e\u003cbr\u003eOlefinic Thermoplastic Elastomers, J. Edenbaum\u003cbr\u003e\u003cbr\u003eEthylene Vinyl Alcohol Copolymer (EVOH) Resins, R.H. Foster\u003cbr\u003e\u003cbr\u003eElastomeric Alloy Thermoplastic Elastomers, C.P. Rader\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride and Its Copolymers in Plastisol Coatings, J. Edenbaum\u003cbr\u003e\u003cbr\u003ePolyvinyl Acetal Resins, T.P. Blomstrom\u003cbr\u003e\u003cbr\u003ePolyimides, B.H. Lee\u003cbr\u003e\u003cbr\u003eParylene Coating, W.F. Beach\u003cbr\u003e\u003cbr\u003eNitrocellulose, D.M. Zavisza\u003cbr\u003e\u003cbr\u003eSoybean, Blood, and Casein Glues, A. Lambuth\u003cbr\u003e\u003cbr\u003eFish Gelatin and Fish Glue, R.E. Norland\u003cbr\u003e\u003cbr\u003eWaxes, J.D. Bower\u003cbr\u003e\u003cbr\u003eCarboxymethylcellulose, R.M. Davis\u003cbr\u003e\u003cbr\u003eHydroxyethylcellulose, L.A. Burmeister\u003cbr\u003e\u003cbr\u003eAntistatic and Conductive Additives, B. Davis\u003cbr\u003e\u003cbr\u003eSilane Adhesion Promoters, E.P. Plueddemann\u003cbr\u003e\u003cbr\u003eChromium Complexes, J.R. Harrison\u003cbr\u003e\u003cbr\u003eNonmetallic Fatty Chemicals as Internal Mold Release Agents in Polymers, K.S. Percell, H.H. Tomlinson, and L.E. Walp\u003cbr\u003e\u003cbr\u003eOrganic Peroxides, P.A. Callais\u003cbr\u003e\u003cbr\u003eSurfactants for Waterborne Coatings Applications, S.P. Morell\u003cbr\u003e\u003cbr\u003eSurfactants, Dispersants, and Defoamers for the Coatings, Inks, and Adhesives Industries, J.W. Du\u003cbr\u003e\u003cbr\u003ePigment Dispersion, T.G. Vernardakis\u003cbr\u003e\u003cbr\u003eColored Inorganic Pigments, P.A. Lewis\u003cbr\u003e\u003cbr\u003eOrganic Pigments, P.A. Lewis\u003cbr\u003e\u003cbr\u003eAmino Resins, G.D. Vaughn\u003cbr\u003e\u003cbr\u003eNew! Driers, M. Nowak\u003cbr\u003e\u003cbr\u003eNew! Biocides for the Coatings Industry, K. Winkowski\u003cbr\u003e\u003cbr\u003eNew! Clays, A. Khokhani\u003cbr\u003e\u003cbr\u003eNew! Fluorocarbon Resins for Coatings and Inks, K.A. Wood\u003cbr\u003e\u003cbr\u003eNew! High Temperature Pigments, H. Hatcher\u003cbr\u003e\u003cbr\u003eNew! Polyurethane Associative Thickeners for Waterborne Coatings, D.N. Smith and D. van Peij\u003cbr\u003e\u003cbr\u003eSURFACE COATINGS\u003cbr\u003e\u003cbr\u003eFlexographic Inks, S. Gilbert\u003cbr\u003e\u003cbr\u003eMulticolor Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003ePaintings Conservation Varnish, C.W. McGlinchey\u003cbr\u003e\u003cbr\u003eThermoset Powder Coatings, L.R. Waelde\u003cbr\u003e\u003cbr\u003ePeelable Medical Coatings, D.A. Reinke\u003cbr\u003e\u003cbr\u003eConductive Coatings, R. Liepins\u003cbr\u003e\u003cbr\u003eSilicone Release Coatings, R.P. Eckberg\u003cbr\u003e\u003cbr\u003eSilicone Hard Coatings, E.A. Bernheim\u003cbr\u003e\u003cbr\u003ePressure-Sensitive Adhesives and Adhesive Products, D. Satas\u003cbr\u003e\u003cbr\u003eSelf-Seal Adhesives, L.S. Timm\u003cbr\u003e\u003cbr\u003eSolgel Coatings, L.C. Klein\u003cbr\u003e\u003cbr\u003eRadiation-Cured Coatings, J.V. Koleske\u003cbr\u003e\u003cbr\u003eNonwoven Fabric Binders, A.G. Hoyle\u003cbr\u003e\u003cbr\u003eFire-Retardant\/Fire-Resistive Coatings, J. Green\u003cbr\u003e\u003cbr\u003eLeather Coatings, V. Rajeckas\u003cbr\u003e\u003cbr\u003eMetal Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003eCorrosion and Its Control by Coatings, C.H. Hare\u003cbr\u003e\u003cbr\u003eMarine Coatings Industry, J. Hickey\u003cbr\u003e\u003cbr\u003eDecorative Surface Protection Products, J.J. Shah\u003cbr\u003e\u003cbr\u003eCoated Fabrics for Protective Clothing, N.J. Abbott\u003cbr\u003e\u003cbr\u003eCoated Fabrics for Apparel Use: The Problem of Comfort, N.J. Abbott\u003cbr\u003e\u003cbr\u003eArchitectural Fabrics, M. Dery\u003cbr\u003e\u003cbr\u003eGummed Tape, M.C. Schmit\u003cbr\u003e\u003cbr\u003eTransdermal Drug Delivery Systems, G.W. Cleary\u003cbr\u003e\u003cbr\u003eOptical Fiber Coatings, K. Lawson\u003cbr\u003e\u003cbr\u003eExterior Wood Finishes, W.C. Feist\u003cbr\u003e\u003cbr\u003ePharmaceutical Tablet Coating, J.L. Johnson\u003cbr\u003e\u003cbr\u003eTextiles for Coating, A. Matukonis\u003cbr\u003e\u003cbr\u003eNonwovens as Coating and Laminating Substrates, A.G. Hoyle\u003cbr\u003e\u003cbr\u003eNew! General Use of Inks and the Dyes Used to Make Them, C.D. Klein\u003cbr\u003e\u003cbr\u003eNew! Gravure Inks, S. Gilbert\u003cbr\u003e\u003cbr\u003eNew! Artist's Paints: Their Composition and History, M. Iskowitz\u003cbr\u003e\u003cbr\u003eNew! Fade Resistance of Lithographic Inks - A New Path Forward: Real World Exposures in Florida and Arizona Compared to Accelerated Xenon Arc Exposures, E.T. Everett, J. Lind, and J. Stack.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eEdited by\u003c\/b\u003e Arthur A. Tracton\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eContributors:\u003c\/b\u003e Subbu Venkatraman, Krister Holmberg, Mark J. Anderson, Eric T. Everett, Sam Gilbert, Helen Hatcher, Herman Hockmeyer, Douglas Kendall, Ashok Khokhani, Lisa Klein, Milton Nowak, Liudvikas Pranevicius, Donald Reinke, Douglas Smith, Geroge Vaughn, Theodore Vernarakis, Lawrence Wealde, Karen Winkowski, Kurt Wood, Carol D. Klein, Paul Brennan, John W. Du, Michael Iskowitz, Patrick J. Whitcomb, Detlef van Peij, Carol Fedor\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:42-04:00","created_at":"2017-06-22T21:12:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","coating formulation","coating rheology","coating technology","compounding","drug delivery systems","p-applications","poly"],"price":29700,"price_min":29700,"price_max":29700,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309828,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Coatings Technology Handbook, Third Edition","public_title":null,"options":["Default Title"],"price":29700,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-57444-649-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-57444-649-4.jpg?v=1499724290"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-57444-649-4.jpg?v=1499724290","options":["Title"],"media":[{"alt":null,"id":353961050205,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-57444-649-4.jpg?v=1499724290"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-57444-649-4.jpg?v=1499724290","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Arthur A . Tracton \u003cbr\u003eISBN 978-1-57444-649-4 \u003cbr\u003e\u003cbr\u003e936 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCompletely revised and updated, the Coatings Technology Handbook, Third Edition supplies a broad cross-index of the different aspects involved in the discipline.\u003cbr\u003e\u003cbr\u003eContaining 14 new chapters, the book covers the composition of both organic and inorganic resins, pigments or fillers, and additives, from polymeric fluorocarbons to water borne, solvent-borne, and one hundred percent non-volatile compounds. It examines the testing of raw materials and products and shows dyes used in inks with formulation data. This edition includes a new chapter on specialty pigments for high temperature unique to this book, a chapter on statistical experimentation, a chapter on regulations, and a chapter on formulations with a spreadsheet of formulation calculations. This resource expands your awareness and knowledge of coatings, inks, and adhesives, aids you in problem-solving, and increases your level of familiarity with the technology.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nFUNDAMENTALS AND TESTING\u003cbr\u003e\u003cbr\u003eRheology and Surface Chemistry, K.B. Gilleo\u003cbr\u003e\u003cbr\u003eCoating Rheology, C.-M. Chan and S. Venkatraman\u003cbr\u003e\u003cbr\u003eStructure-Property Relationships in Polymers, S. Venkatraman\u003cbr\u003e\u003cbr\u003eThe Theory of Adhesion, C.A. Dahlquist\u003cbr\u003e\u003cbr\u003eAdhesion Testing, U. Zorll\u003cbr\u003e\u003cbr\u003eCoating Calculations, A.A. Tracton\u003cbr\u003e\u003cbr\u003eInfrared Spectroscopy of Coatings, D.S. Kendall\u003cbr\u003e\u003cbr\u003eThermal Analysis for Coatings Characterizations, W.S. Gilman\u003cbr\u003e\u003cbr\u003eColor Measurement for the Coatings Industry, H. Van Aken\u003cbr\u003e\u003cbr\u003eThe Use of X-ray Fluorescence for Coat Weight Determinations, W.E. Mozer\u003cbr\u003e\u003cbr\u003eSunlight, Ultraviolet, and Accelerated Weathering, P. Brennan and C. Fedor\u003cbr\u003e\u003cbr\u003eCure Monitoring: Microdielectric Techniques, D.R. Day\u003cbr\u003e\u003cbr\u003eTest Panels, D. Grossman and P. Patton\u003cbr\u003e\u003cbr\u003eNew! Design of Experiments for Coatings, M.J. Anderson and P.J. Whitcomb\u003cbr\u003e\u003cbr\u003eNew! Top 10 Reasons Not to Base Service Life Predictions upon Accelerated Lab Light Stability Tests, E.T. Everett\u003cbr\u003e\u003cbr\u003eNew! Under What Regulation? A.A. Tracton\u003cbr\u003e\u003cbr\u003eCOATING AND PROCESSING TECHNIQUES\u003cbr\u003e\u003cbr\u003eWire-Wound Rod Coating, D.M. MacLeod\u003cbr\u003e\u003cbr\u003eSlot Die Coating for Low Viscosity Fluids, H.G. Lippert\u003cbr\u003e\u003cbr\u003ePorous Roll Coater, F.S. McIntyre\u003cbr\u003e\u003cbr\u003eRotary Screen Coating, F.A. Goossens\u003cbr\u003e\u003cbr\u003eScreen Printing, T.B. McSweeney\u003cbr\u003e\u003cbr\u003eFlexography, R. Neumann\u003cbr\u003e\u003cbr\u003eInk-Jet Printing, N.L. Cameron\u003cbr\u003e\u003cbr\u003eElectrodeposition of Polymers, G.E.F. Brewer\u003cbr\u003e\u003cbr\u003eElectroless Plating, A. Vakelis\u003cbr\u003e\u003cbr\u003eThe Electrolizing Thin, Dense, Chromium Process, M. O'Mary\u003cbr\u003e\u003cbr\u003eThe Armoloy Chromium Process, M. O'Mary\u003cbr\u003e\u003cbr\u003eSputtered Thin Film Coatings, B.E. Aufderheide\u003cbr\u003e\u003cbr\u003eNew! Vapor Deposition Coating Technologies, L. Pranevicius\u003cbr\u003e\u003cbr\u003eCathodic Arc Plasma Deposition, H. Randhawa\u003cbr\u003e\u003cbr\u003eIndustrial Diamond and Diamondlike Films, A.H. Deutchman and R.J. Partyka\u003cbr\u003e\u003cbr\u003eTribological Synergistic Coatings, W. Alina\u003cbr\u003e\u003cbr\u003eChemical Vapor Deposition, D. G. Bhat\u003cbr\u003e\u003cbr\u003eSolvent Vapor Emission Control, R. Rathmell\u003cbr\u003e\u003cbr\u003eSurface Treatment of Plastics, W.F. Harrington, Jr.\u003cbr\u003e\u003cbr\u003eFlame Surface Treatment, H.T. Lindland\u003cbr\u003e\u003cbr\u003ePlasma Surface Treatment, S.L. Kaplan and P.W. Rose\u003cbr\u003e\u003cbr\u003eSurface Pretreatment of Polymer Webs by Fluorine, R. Milker and A. Koch\u003cbr\u003e\u003cbr\u003e\u003cspan\u003eCalendering \u003c\/span\u003e of Magnetic Media, J.A. McClenathan\u003cbr\u003e\u003cbr\u003eEmbossing, J.A. Pasquale III\u003cbr\u003e\u003cbr\u003eIn-Mold Finishing, R.W. Carpenter\u003cbr\u003e\u003cbr\u003eHVLP: The Science of High-Volume, Low-Pressure Finishing, S. Stalker\u003cbr\u003e\u003cbr\u003eNew! A Practical Guide to High-Speed Dispersion, H. Hockmeyer\u003cbr\u003e\u003cbr\u003eMATERIALS\u003cbr\u003e\u003cbr\u003eAcrylic Polymers, R.A. Lombardi and J.D. Gasper\u003cbr\u003e\u003cbr\u003eVinyl Ether Polymers, H.W. J. Müller\u003cbr\u003e\u003cbr\u003ePoly(Styrene-Butadiene), R.W. Zempel\u003cbr\u003e\u003cbr\u003eLiquid Polymers for Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003ePolyesters, H.F. Huber and D. Stoye\u003cbr\u003e\u003cbr\u003eAlkyd Resins, K. Holmberg\u003cbr\u003e\u003cbr\u003eThe Polyurea Revolution: Protective Coatings for the 21st Century, B.R. Baxter\u003cbr\u003e\u003cbr\u003ePhenolic Resins, K. Bourlier\u003cbr\u003e\u003cbr\u003eCoal Tar and Asphalt Coatings, H.R. Stoner\u003cbr\u003e\u003cbr\u003eVulcanizate Thermoplastic Elastomers, C.P. Rader\u003cbr\u003e\u003cbr\u003eOlefinic Thermoplastic Elastomers, J. Edenbaum\u003cbr\u003e\u003cbr\u003eEthylene Vinyl Alcohol Copolymer (EVOH) Resins, R.H. Foster\u003cbr\u003e\u003cbr\u003eElastomeric Alloy Thermoplastic Elastomers, C.P. Rader\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride and Its Copolymers in Plastisol Coatings, J. Edenbaum\u003cbr\u003e\u003cbr\u003ePolyvinyl Acetal Resins, T.P. Blomstrom\u003cbr\u003e\u003cbr\u003ePolyimides, B.H. Lee\u003cbr\u003e\u003cbr\u003eParylene Coating, W.F. Beach\u003cbr\u003e\u003cbr\u003eNitrocellulose, D.M. Zavisza\u003cbr\u003e\u003cbr\u003eSoybean, Blood, and Casein Glues, A. Lambuth\u003cbr\u003e\u003cbr\u003eFish Gelatin and Fish Glue, R.E. Norland\u003cbr\u003e\u003cbr\u003eWaxes, J.D. Bower\u003cbr\u003e\u003cbr\u003eCarboxymethylcellulose, R.M. Davis\u003cbr\u003e\u003cbr\u003eHydroxyethylcellulose, L.A. Burmeister\u003cbr\u003e\u003cbr\u003eAntistatic and Conductive Additives, B. Davis\u003cbr\u003e\u003cbr\u003eSilane Adhesion Promoters, E.P. Plueddemann\u003cbr\u003e\u003cbr\u003eChromium Complexes, J.R. Harrison\u003cbr\u003e\u003cbr\u003eNonmetallic Fatty Chemicals as Internal Mold Release Agents in Polymers, K.S. Percell, H.H. Tomlinson, and L.E. Walp\u003cbr\u003e\u003cbr\u003eOrganic Peroxides, P.A. Callais\u003cbr\u003e\u003cbr\u003eSurfactants for Waterborne Coatings Applications, S.P. Morell\u003cbr\u003e\u003cbr\u003eSurfactants, Dispersants, and Defoamers for the Coatings, Inks, and Adhesives Industries, J.W. Du\u003cbr\u003e\u003cbr\u003ePigment Dispersion, T.G. Vernardakis\u003cbr\u003e\u003cbr\u003eColored Inorganic Pigments, P.A. Lewis\u003cbr\u003e\u003cbr\u003eOrganic Pigments, P.A. Lewis\u003cbr\u003e\u003cbr\u003eAmino Resins, G.D. Vaughn\u003cbr\u003e\u003cbr\u003eNew! Driers, M. Nowak\u003cbr\u003e\u003cbr\u003eNew! Biocides for the Coatings Industry, K. Winkowski\u003cbr\u003e\u003cbr\u003eNew! Clays, A. Khokhani\u003cbr\u003e\u003cbr\u003eNew! Fluorocarbon Resins for Coatings and Inks, K.A. Wood\u003cbr\u003e\u003cbr\u003eNew! High Temperature Pigments, H. Hatcher\u003cbr\u003e\u003cbr\u003eNew! Polyurethane Associative Thickeners for Waterborne Coatings, D.N. Smith and D. van Peij\u003cbr\u003e\u003cbr\u003eSURFACE COATINGS\u003cbr\u003e\u003cbr\u003eFlexographic Inks, S. Gilbert\u003cbr\u003e\u003cbr\u003eMulticolor Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003ePaintings Conservation Varnish, C.W. McGlinchey\u003cbr\u003e\u003cbr\u003eThermoset Powder Coatings, L.R. Waelde\u003cbr\u003e\u003cbr\u003ePeelable Medical Coatings, D.A. Reinke\u003cbr\u003e\u003cbr\u003eConductive Coatings, R. Liepins\u003cbr\u003e\u003cbr\u003eSilicone Release Coatings, R.P. Eckberg\u003cbr\u003e\u003cbr\u003eSilicone Hard Coatings, E.A. Bernheim\u003cbr\u003e\u003cbr\u003ePressure-Sensitive Adhesives and Adhesive Products, D. Satas\u003cbr\u003e\u003cbr\u003eSelf-Seal Adhesives, L.S. Timm\u003cbr\u003e\u003cbr\u003eSolgel Coatings, L.C. Klein\u003cbr\u003e\u003cbr\u003eRadiation-Cured Coatings, J.V. Koleske\u003cbr\u003e\u003cbr\u003eNonwoven Fabric Binders, A.G. Hoyle\u003cbr\u003e\u003cbr\u003eFire-Retardant\/Fire-Resistive Coatings, J. Green\u003cbr\u003e\u003cbr\u003eLeather Coatings, V. Rajeckas\u003cbr\u003e\u003cbr\u003eMetal Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003eCorrosion and Its Control by Coatings, C.H. Hare\u003cbr\u003e\u003cbr\u003eMarine Coatings Industry, J. Hickey\u003cbr\u003e\u003cbr\u003eDecorative Surface Protection Products, J.J. Shah\u003cbr\u003e\u003cbr\u003eCoated Fabrics for Protective Clothing, N.J. Abbott\u003cbr\u003e\u003cbr\u003eCoated Fabrics for Apparel Use: The Problem of Comfort, N.J. Abbott\u003cbr\u003e\u003cbr\u003eArchitectural Fabrics, M. Dery\u003cbr\u003e\u003cbr\u003eGummed Tape, M.C. Schmit\u003cbr\u003e\u003cbr\u003eTransdermal Drug Delivery Systems, G.W. Cleary\u003cbr\u003e\u003cbr\u003eOptical Fiber Coatings, K. Lawson\u003cbr\u003e\u003cbr\u003eExterior Wood Finishes, W.C. Feist\u003cbr\u003e\u003cbr\u003ePharmaceutical Tablet Coating, J.L. Johnson\u003cbr\u003e\u003cbr\u003eTextiles for Coating, A. Matukonis\u003cbr\u003e\u003cbr\u003eNonwovens as Coating and Laminating Substrates, A.G. Hoyle\u003cbr\u003e\u003cbr\u003eNew! General Use of Inks and the Dyes Used to Make Them, C.D. Klein\u003cbr\u003e\u003cbr\u003eNew! Gravure Inks, S. Gilbert\u003cbr\u003e\u003cbr\u003eNew! Artist's Paints: Their Composition and History, M. Iskowitz\u003cbr\u003e\u003cbr\u003eNew! Fade Resistance of Lithographic Inks - A New Path Forward: Real World Exposures in Florida and Arizona Compared to Accelerated Xenon Arc Exposures, E.T. Everett, J. Lind, and J. Stack.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eEdited by\u003c\/b\u003e Arthur A. Tracton\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eContributors:\u003c\/b\u003e Subbu Venkatraman, Krister Holmberg, Mark J. Anderson, Eric T. Everett, Sam Gilbert, Helen Hatcher, Herman Hockmeyer, Douglas Kendall, Ashok Khokhani, Lisa Klein, Milton Nowak, Liudvikas Pranevicius, Donald Reinke, Douglas Smith, Geroge Vaughn, Theodore Vernarakis, Lawrence Wealde, Karen Winkowski, Kurt Wood, Carol D. Klein, Paul Brennan, John W. Du, Michael Iskowitz, Patrick J. Whitcomb, Detlef van Peij, Carol Fedor\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Comprehensive Semicond...
$2,430.00
{"id":11242201028,"title":"Comprehensive Semiconductor Science and Technology, Six-Volume Set","handle":"978-0-444-53143-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Pallab Bhattacharya, Roberto Fornari and Hiroshi Kamimura \u003cbr\u003eISBN 978-0-444-53143-8 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eApprox. 3608 pages\u003c\/p\u003e\n\u003cp\u003eHardcover, Reference\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSemiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world.\u003cbr\u003e\u003cbr\u003eThe work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us.\u003cbr\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eProvides a comprehensive global picture of the semiconductor world \u003c\/li\u003e\n\u003cli\u003eEach of the work's three sections presents a complete description of one aspect of the whole\u003c\/li\u003e\n\u003cli\u003eWritten and Edited by a truly international team of experts\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nElectrons in semiconductors: Empirical and ab initio theories\u003cbr\u003e\u003cbr\u003eAb initio theories of the structural, electronic and optical properties of semiconductors: bulk crystals to nanostructures\u003cbr\u003e\u003cbr\u003eImpurity Bands in Group-IV Semiconductors\u003cbr\u003e\u003cbr\u003eInteger Quantum Hall Effect\u003cbr\u003e\u003cbr\u003eComposite fermion theory of the fractional quantum Hall effect\u003cbr\u003e\u003cbr\u003eBallistic Transport in GaAs\/AlGaAs Heterostructures\u003cbr\u003e\u003cbr\u003eSpin-Hall effect: Theoretical\u003cbr\u003e\u003cbr\u003eThermal conduction \/ thermoelectric power\u003cbr\u003e\u003cbr\u003eElectronic structures of Quantum Dots\u003cbr\u003e\u003cbr\u003eControl over single electron spins in quantum dots\u003cbr\u003e\u003cbr\u003eAtomic structures and electronic properties of semiconductor interfaces\u003cbr\u003e\u003cbr\u003eContact hyperfine interactions in semiconductor heterostructures\u003cbr\u003e\u003cbr\u003eOptical properties of semiconductors\u003cbr\u003e\u003cbr\u003eBloch oscillation and ultrafast coherent optical phenomena\u003cbr\u003e\u003cbr\u003eOptical properties of Si semiconductor nanocrystals\u003cbr\u003e\u003cbr\u003eExcitons and polaritons in semiconductors\u003cbr\u003e\u003cbr\u003eMagneto-spectroscopy of semiconductors\u003cbr\u003e\u003cbr\u003eMicrocavities of semiconductor quantum structures\u003cbr\u003e\u003cbr\u003eSemimagnetic semiconductors\u003cbr\u003e\u003cbr\u003eElectronic states and properties of carbon crystalline from graphene to carbon nanotubes\u003cbr\u003e\u003cbr\u003eAngle-Resolved Photoemission Spectroscopy of Graphen, Graphite, and Related Compounds\u003cbr\u003e\u003cbr\u003eTheory of Superconductivity in Graphite Intercalation Compounds\u003cbr\u003e\u003cbr\u003eCrystal Growth: an Overview\u003cbr\u003e\u003cbr\u003eMolecular Beam Epitaxy: An Overview\u003cbr\u003e\u003cbr\u003eBulk Growth of Crystals of III-V Compound Semiconductors\u003cbr\u003e\u003cbr\u003eNew Developments in Czochralski Silicon\u003cbr\u003e\u003cbr\u003eGrowth of CdZnTe Bulk Crystal\u003cbr\u003e\u003cbr\u003eGrowth of bulk SiC with Low Defect Densities and SiC epitaxy\u003cbr\u003e\u003cbr\u003eGrowth of Bulk GaN Crystals\u003cbr\u003e\u003cbr\u003eGrowth of bulk A1N Crystals\u003cbr\u003e\u003cbr\u003eGrowth of Bulk ZnO\u003cbr\u003e\u003cbr\u003eOrganometallic Vapor Phase Growth of Group III Nitrides\u003cbr\u003e\u003cbr\u003eZnO epitaxial growth\u003cbr\u003e\u003cbr\u003eNanostructures of metal oxides\u003cbr\u003e\u003cbr\u003eGrowth of Low Dimensional Semiconductors Structures\u003cbr\u003e\u003cbr\u003eIntegration of Dissimilar Materials\u003cbr\u003e\u003cbr\u003eIon Implantation in Group III Nitrides\u003cbr\u003e\u003cbr\u003eContacts to Wide Band Gap Semiconductors\u003cbr\u003e\u003cbr\u003eFormation of Ultra-shallow Junctions\u003cbr\u003e\u003cbr\u003eNew High-K Materials for C-MOS Applications\u003cbr\u003e\u003cbr\u003eFerroelectric thin layers\u003cbr\u003e\u003cbr\u003eAmorphous chalcogenides\u003cbr\u003e\u003cbr\u003eScanning tunneling microscopy and spectroscopy of semiconductor materials\u003cbr\u003e\u003cbr\u003eStudy of Semiconductors by High Resolution Microscopy and Aberration Corrected Microscopy\u003cbr\u003e\u003cbr\u003eAssessment of semiconductors by Scanning Electron Microscopy Techniques\u003cbr\u003e\u003cbr\u003eCharacterization of Semiconductors by X-Ray Diffraction and Topography\u003cbr\u003e\u003cbr\u003eElectronic Energy Levels in Group III Nitrides\u003cbr\u003e\u003cbr\u003eOrganic Semiconductors\u003cbr\u003e\u003cbr\u003eSiGe\/Si Heterojunction Bipolar Transistors and Circuits\u003cbr\u003e\u003cbr\u003eSi MOSFETs for VLSI: Scaling Issues and Limits\u003cbr\u003e\u003cbr\u003eHigh Electron Mobility Transistors and Their Applications\u003cbr\u003e\u003cbr\u003eHigh-Frequency and High-Speed InP-Based Heterojunction Bipolar Transistors\u003cbr\u003e\u003cbr\u003eNegative Differential Resistance Devices and Circuits\u003cbr\u003e\u003cbr\u003eHigh-Frequency Nitride-Based Field Effect Transistors\u003cbr\u003e\u003cbr\u003eWide band Gap Semiconductor Power Devices\u003cbr\u003e\u003cbr\u003eSingle Electron Transistors and Their Applications\u003cbr\u003e\u003cbr\u003eMolecular Electronics\u003cbr\u003e\u003cbr\u003eElectronic and Optoelectronic Properties and Applications of Carbon Nanotubes\u003cbr\u003e\u003cbr\u003eFlexible Electronics\u003cbr\u003e\u003cbr\u003eMEMS Based Sensors\u003cbr\u003e\u003cbr\u003eAvalanche Photodiodes\u003cbr\u003e\u003cbr\u003eOptoelectronic Devices and Their Integration By Disordering\u003cbr\u003e\u003cbr\u003eQuantum Well Lasers and Their Applications\u003cbr\u003e\u003cbr\u003eQuantum Cascade Lasers\u003cbr\u003e\u003cbr\u003eSlow Light Devices and Applications\u003cbr\u003e\u003cbr\u003eShort Wavelength Light Sources\u003cbr\u003e\u003cbr\u003eNitride-Based LEDs and Superluminescent LEDs\u003cbr\u003e\u003cbr\u003eZnO Based Materials and Devices\u003cbr\u003e\u003cbr\u003eMCT Materials and Detectors\u003cbr\u003e\u003cbr\u003eQuantum Well Infrared Detectors\u003cbr\u003e\u003cbr\u003eType II Superlattice Detectors\u003cbr\u003e\u003cbr\u003eTerahertz Detection Devices\u003cbr\u003e\u003cbr\u003eAmorphous and Nanocrystal Silicon Solar Cells\u003cbr\u003e\u003cbr\u003eQuantum Dot Lasers: Physics and Applications\u003cbr\u003e\u003cbr\u003eHigh-Performance Quantum Dot Lasers\u003cbr\u003e\u003cbr\u003eQuantum Dot Infrared Photodetectors\u003cbr\u003e\u003cbr\u003ePhotonic Crystal Microcavity Light Sources\u003cbr\u003e\u003cbr\u003ePhotonic Crystal Waveguides and Filters\u003cbr\u003e\u003cbr\u003eSpintronic Devices\u003cbr\u003e\u003cbr\u003eSpin-Based Semiconductor Heterostructure Devices\u003cbr\u003e\u003cbr\u003eSpin-Polarized Transport and Spintronic Devices\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003ePallab Bhattacharya\u003c\/b\u003e, College of Engineering, University of Michigan, USA.; \u003cb\u003eRoberto Fornari\u003c\/b\u003e, Institute of Physics, humboldt University, Berlin, Germany. and \u003cb\u003eHiroshi Kamimura\u003c\/b\u003e, Department of Applied Physics, Tokyo University of Science, Japan.","published_at":"2017-06-22T21:12:40-04:00","created_at":"2017-06-22T21:12:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","electronic and optical properties","nanocrystals","p-applications","polymer","polymers","semiconductor","technology"],"price":243000,"price_min":243000,"price_max":243000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308356,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Comprehensive Semiconductor Science and Technology, Six-Volume Set","public_title":null,"options":["Default Title"],"price":243000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-444-53143-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53143-8.jpg?v=1499211518"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53143-8.jpg?v=1499211518","options":["Title"],"media":[{"alt":null,"id":353965113437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53143-8.jpg?v=1499211518"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53143-8.jpg?v=1499211518","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Pallab Bhattacharya, Roberto Fornari and Hiroshi Kamimura \u003cbr\u003eISBN 978-0-444-53143-8 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eApprox. 3608 pages\u003c\/p\u003e\n\u003cp\u003eHardcover, Reference\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSemiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world.\u003cbr\u003e\u003cbr\u003eThe work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us.\u003cbr\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eProvides a comprehensive global picture of the semiconductor world \u003c\/li\u003e\n\u003cli\u003eEach of the work's three sections presents a complete description of one aspect of the whole\u003c\/li\u003e\n\u003cli\u003eWritten and Edited by a truly international team of experts\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nElectrons in semiconductors: Empirical and ab initio theories\u003cbr\u003e\u003cbr\u003eAb initio theories of the structural, electronic and optical properties of semiconductors: bulk crystals to nanostructures\u003cbr\u003e\u003cbr\u003eImpurity Bands in Group-IV Semiconductors\u003cbr\u003e\u003cbr\u003eInteger Quantum Hall Effect\u003cbr\u003e\u003cbr\u003eComposite fermion theory of the fractional quantum Hall effect\u003cbr\u003e\u003cbr\u003eBallistic Transport in GaAs\/AlGaAs Heterostructures\u003cbr\u003e\u003cbr\u003eSpin-Hall effect: Theoretical\u003cbr\u003e\u003cbr\u003eThermal conduction \/ thermoelectric power\u003cbr\u003e\u003cbr\u003eElectronic structures of Quantum Dots\u003cbr\u003e\u003cbr\u003eControl over single electron spins in quantum dots\u003cbr\u003e\u003cbr\u003eAtomic structures and electronic properties of semiconductor interfaces\u003cbr\u003e\u003cbr\u003eContact hyperfine interactions in semiconductor heterostructures\u003cbr\u003e\u003cbr\u003eOptical properties of semiconductors\u003cbr\u003e\u003cbr\u003eBloch oscillation and ultrafast coherent optical phenomena\u003cbr\u003e\u003cbr\u003eOptical properties of Si semiconductor nanocrystals\u003cbr\u003e\u003cbr\u003eExcitons and polaritons in semiconductors\u003cbr\u003e\u003cbr\u003eMagneto-spectroscopy of semiconductors\u003cbr\u003e\u003cbr\u003eMicrocavities of semiconductor quantum structures\u003cbr\u003e\u003cbr\u003eSemimagnetic semiconductors\u003cbr\u003e\u003cbr\u003eElectronic states and properties of carbon crystalline from graphene to carbon nanotubes\u003cbr\u003e\u003cbr\u003eAngle-Resolved Photoemission Spectroscopy of Graphen, Graphite, and Related Compounds\u003cbr\u003e\u003cbr\u003eTheory of Superconductivity in Graphite Intercalation Compounds\u003cbr\u003e\u003cbr\u003eCrystal Growth: an Overview\u003cbr\u003e\u003cbr\u003eMolecular Beam Epitaxy: An Overview\u003cbr\u003e\u003cbr\u003eBulk Growth of Crystals of III-V Compound Semiconductors\u003cbr\u003e\u003cbr\u003eNew Developments in Czochralski Silicon\u003cbr\u003e\u003cbr\u003eGrowth of CdZnTe Bulk Crystal\u003cbr\u003e\u003cbr\u003eGrowth of bulk SiC with Low Defect Densities and SiC epitaxy\u003cbr\u003e\u003cbr\u003eGrowth of Bulk GaN Crystals\u003cbr\u003e\u003cbr\u003eGrowth of bulk A1N Crystals\u003cbr\u003e\u003cbr\u003eGrowth of Bulk ZnO\u003cbr\u003e\u003cbr\u003eOrganometallic Vapor Phase Growth of Group III Nitrides\u003cbr\u003e\u003cbr\u003eZnO epitaxial growth\u003cbr\u003e\u003cbr\u003eNanostructures of metal oxides\u003cbr\u003e\u003cbr\u003eGrowth of Low Dimensional Semiconductors Structures\u003cbr\u003e\u003cbr\u003eIntegration of Dissimilar Materials\u003cbr\u003e\u003cbr\u003eIon Implantation in Group III Nitrides\u003cbr\u003e\u003cbr\u003eContacts to Wide Band Gap Semiconductors\u003cbr\u003e\u003cbr\u003eFormation of Ultra-shallow Junctions\u003cbr\u003e\u003cbr\u003eNew High-K Materials for C-MOS Applications\u003cbr\u003e\u003cbr\u003eFerroelectric thin layers\u003cbr\u003e\u003cbr\u003eAmorphous chalcogenides\u003cbr\u003e\u003cbr\u003eScanning tunneling microscopy and spectroscopy of semiconductor materials\u003cbr\u003e\u003cbr\u003eStudy of Semiconductors by High Resolution Microscopy and Aberration Corrected Microscopy\u003cbr\u003e\u003cbr\u003eAssessment of semiconductors by Scanning Electron Microscopy Techniques\u003cbr\u003e\u003cbr\u003eCharacterization of Semiconductors by X-Ray Diffraction and Topography\u003cbr\u003e\u003cbr\u003eElectronic Energy Levels in Group III Nitrides\u003cbr\u003e\u003cbr\u003eOrganic Semiconductors\u003cbr\u003e\u003cbr\u003eSiGe\/Si Heterojunction Bipolar Transistors and Circuits\u003cbr\u003e\u003cbr\u003eSi MOSFETs for VLSI: Scaling Issues and Limits\u003cbr\u003e\u003cbr\u003eHigh Electron Mobility Transistors and Their Applications\u003cbr\u003e\u003cbr\u003eHigh-Frequency and High-Speed InP-Based Heterojunction Bipolar Transistors\u003cbr\u003e\u003cbr\u003eNegative Differential Resistance Devices and Circuits\u003cbr\u003e\u003cbr\u003eHigh-Frequency Nitride-Based Field Effect Transistors\u003cbr\u003e\u003cbr\u003eWide band Gap Semiconductor Power Devices\u003cbr\u003e\u003cbr\u003eSingle Electron Transistors and Their Applications\u003cbr\u003e\u003cbr\u003eMolecular Electronics\u003cbr\u003e\u003cbr\u003eElectronic and Optoelectronic Properties and Applications of Carbon Nanotubes\u003cbr\u003e\u003cbr\u003eFlexible Electronics\u003cbr\u003e\u003cbr\u003eMEMS Based Sensors\u003cbr\u003e\u003cbr\u003eAvalanche Photodiodes\u003cbr\u003e\u003cbr\u003eOptoelectronic Devices and Their Integration By Disordering\u003cbr\u003e\u003cbr\u003eQuantum Well Lasers and Their Applications\u003cbr\u003e\u003cbr\u003eQuantum Cascade Lasers\u003cbr\u003e\u003cbr\u003eSlow Light Devices and Applications\u003cbr\u003e\u003cbr\u003eShort Wavelength Light Sources\u003cbr\u003e\u003cbr\u003eNitride-Based LEDs and Superluminescent LEDs\u003cbr\u003e\u003cbr\u003eZnO Based Materials and Devices\u003cbr\u003e\u003cbr\u003eMCT Materials and Detectors\u003cbr\u003e\u003cbr\u003eQuantum Well Infrared Detectors\u003cbr\u003e\u003cbr\u003eType II Superlattice Detectors\u003cbr\u003e\u003cbr\u003eTerahertz Detection Devices\u003cbr\u003e\u003cbr\u003eAmorphous and Nanocrystal Silicon Solar Cells\u003cbr\u003e\u003cbr\u003eQuantum Dot Lasers: Physics and Applications\u003cbr\u003e\u003cbr\u003eHigh-Performance Quantum Dot Lasers\u003cbr\u003e\u003cbr\u003eQuantum Dot Infrared Photodetectors\u003cbr\u003e\u003cbr\u003ePhotonic Crystal Microcavity Light Sources\u003cbr\u003e\u003cbr\u003ePhotonic Crystal Waveguides and Filters\u003cbr\u003e\u003cbr\u003eSpintronic Devices\u003cbr\u003e\u003cbr\u003eSpin-Based Semiconductor Heterostructure Devices\u003cbr\u003e\u003cbr\u003eSpin-Polarized Transport and Spintronic Devices\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003ePallab Bhattacharya\u003c\/b\u003e, College of Engineering, University of Michigan, USA.; \u003cb\u003eRoberto Fornari\u003c\/b\u003e, Institute of Physics, humboldt University, Berlin, Germany. and \u003cb\u003eHiroshi Kamimura\u003c\/b\u003e, Department of Applied Physics, Tokyo University of Science, Japan."}
Databook of Antiblocki...
$285.00
{"id":11242210692,"title":"Databook of Antiblocking, Release, and Slip Additives","handle":"978-1895198-63-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1895198-63-8 \u003cbr\u003e\u003cbr\u003eNumber of pages: 428\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDatabook of Antiblocking, Release, and Slip Additives contains data on over 300 the most important additives. Its structure has 145 data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The additive databook is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; Performance and contains any of the listed below data if they are available for a particular compound. \u003cbr\u003e\u003cbr\u003eIn General information section the following data are included: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical formula, Molecular weight, Chemical class, Mixture, Alkyl distribution, Primary amine concentration, Product contents, Free acid, Amine number, Moisture content, Silicone content, and Solids content .\u003cbr\u003e\u003cbr\u003ePhysical section contains data on State, Odor, Color (Gardner and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Cloud point, Dropping point, Iodine Value, Particle hardness, Particles size, Surface area (BET), Refractive index, Specific gravity, Density, Bulk density, Vapor pressure, pH, Saponification value, Acidity, Viscosity, Kinematic viscosity, Melt index, Surface tension, Solubility in water and solvents, Thermal expansion coefficient, Heat of combustion, Specific heat, Thermal conductivity, Volatility, Coefficient of friction, Volume resistivity, Dielectric constant, and Ash contents.\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on ADR \/RID Class, Flash point, Flash Point Method, Autoignition temperature, Explosive LEL, Explosive UEL, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, WHMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, OSHA Hazard Class, EINECS number, EC number, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat, LC50, Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, Mutagenicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA).\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biological Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (rainbow trout, bluegill sunfish, fathead minnow, daphnia magna), and Partition coefficients (log Koc, log Kow).\u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Recommended for general applications, Recommended for polymers, Recommended for products, Features \u0026amp; benefits, Recommended processing method, Recommended mold material, Additive type, Additive application method, Recommended dosage, Post-processing, Food law approvals, Coefficient of friction at 1000 ppm, Release force, and Davies scale.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Information on data fields\u003cbr\u003e3 Antiblocking agents\u003cbr\u003e3.1 Inorganic \u003cbr\u003e3.1.1 Calcium carbonate \u003cbr\u003e3.1.2 Synthetic silica \u003cbr\u003e3.1.3 Synthetic clay (laponite) \u003cbr\u003e3.1.4 Talc \u003cbr\u003e3.1.5 Other \u003cbr\u003e3.2 Organic \u003cbr\u003e3.2.1 Microparticles \u003cbr\u003e3.2.2 Fatty acid amides \u003cbr\u003e3.2.3 Polymers and waxes \u003cbr\u003e3.2.4 Other\u003cbr\u003e4 Release agents \u003cbr\u003e4.1 Fluorocompounds\u003cbr\u003e4.2 Silicone polymers\u003cbr\u003e4.3 Other polymeric compounds\u003cbr\u003e4.4 Other chemical compounds\u003cbr\u003e5 Slip agents\u003cbr\u003e5.1 Acids\u003cbr\u003e5.2 Esters\u003cbr\u003e5.3 Fatty acid amides\u003cbr\u003e5.4 Natural wax and its substitutes\u003cbr\u003e5.5 Salts\u003cbr\u003e5.6 Others\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), several databases, 6 scientific papers, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.","published_at":"2017-06-22T21:13:10-04:00","created_at":"2017-06-22T21:13:10-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","additives","Antiblocking agents","book","ecological properties","environment","health","p-additives","p-applications","performance","physical properties","release agents","slip agents","use"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378332804,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Databook of Antiblocking, Release, and Slip Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-63-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-63-8.jpg?v=1499724104"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-63-8.jpg?v=1499724104","options":["Title"],"media":[{"alt":null,"id":353968455773,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-63-8.jpg?v=1499724104"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-63-8.jpg?v=1499724104","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1895198-63-8 \u003cbr\u003e\u003cbr\u003eNumber of pages: 428\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDatabook of Antiblocking, Release, and Slip Additives contains data on over 300 the most important additives. Its structure has 145 data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The additive databook is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; Performance and contains any of the listed below data if they are available for a particular compound. \u003cbr\u003e\u003cbr\u003eIn General information section the following data are included: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical formula, Molecular weight, Chemical class, Mixture, Alkyl distribution, Primary amine concentration, Product contents, Free acid, Amine number, Moisture content, Silicone content, and Solids content .\u003cbr\u003e\u003cbr\u003ePhysical section contains data on State, Odor, Color (Gardner and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Cloud point, Dropping point, Iodine Value, Particle hardness, Particles size, Surface area (BET), Refractive index, Specific gravity, Density, Bulk density, Vapor pressure, pH, Saponification value, Acidity, Viscosity, Kinematic viscosity, Melt index, Surface tension, Solubility in water and solvents, Thermal expansion coefficient, Heat of combustion, Specific heat, Thermal conductivity, Volatility, Coefficient of friction, Volume resistivity, Dielectric constant, and Ash contents.\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on ADR \/RID Class, Flash point, Flash Point Method, Autoignition temperature, Explosive LEL, Explosive UEL, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, WHMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, OSHA Hazard Class, EINECS number, EC number, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat, LC50, Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, Mutagenicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA).\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biological Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (rainbow trout, bluegill sunfish, fathead minnow, daphnia magna), and Partition coefficients (log Koc, log Kow).\u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Recommended for general applications, Recommended for polymers, Recommended for products, Features \u0026amp; benefits, Recommended processing method, Recommended mold material, Additive type, Additive application method, Recommended dosage, Post-processing, Food law approvals, Coefficient of friction at 1000 ppm, Release force, and Davies scale.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Information on data fields\u003cbr\u003e3 Antiblocking agents\u003cbr\u003e3.1 Inorganic \u003cbr\u003e3.1.1 Calcium carbonate \u003cbr\u003e3.1.2 Synthetic silica \u003cbr\u003e3.1.3 Synthetic clay (laponite) \u003cbr\u003e3.1.4 Talc \u003cbr\u003e3.1.5 Other \u003cbr\u003e3.2 Organic \u003cbr\u003e3.2.1 Microparticles \u003cbr\u003e3.2.2 Fatty acid amides \u003cbr\u003e3.2.3 Polymers and waxes \u003cbr\u003e3.2.4 Other\u003cbr\u003e4 Release agents \u003cbr\u003e4.1 Fluorocompounds\u003cbr\u003e4.2 Silicone polymers\u003cbr\u003e4.3 Other polymeric compounds\u003cbr\u003e4.4 Other chemical compounds\u003cbr\u003e5 Slip agents\u003cbr\u003e5.1 Acids\u003cbr\u003e5.2 Esters\u003cbr\u003e5.3 Fatty acid amides\u003cbr\u003e5.4 Natural wax and its substitutes\u003cbr\u003e5.5 Salts\u003cbr\u003e5.6 Others\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), several databases, 6 scientific papers, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment."}
Edible Coatings and Fi...
$210.00
{"id":11242201924,"title":"Edible Coatings and Films to Improve Food Quality, 2nd Edition","handle":"978-1-42-005962-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Elizabeth A. Baldwin, Robert Hagenmaier, Jinhe Bai \u003cbr\u003eISBN \u003cspan\u003e9781138198937 \u003c\/span\u003e\u003cbr\u003eHard cover\u003cbr\u003eNumber of pages 460\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the publication of the first edition of this text, ever-increasing coatings research has led to many developments in the field. Updated and completely revised with the latest discoveries, Edible Coatings and Films to Improve Food Quality, Second Edition is a critical resource for all those involved in buying, selling, regulating, developing, or using coatings to improve the quality and safety of foods. Topics discussed in this volume include:\u003cbr\u003e\u003cbr\u003e• The materials used in edible coatings and films\u003cbr\u003e• The chemical and physical properties of coatings and how the coating or film ingredients affect these properties\u003cbr\u003e• How coatings and films present barriers to gases and water vapors\u003cbr\u003e• How coatings and films can improve appearance, or conversely, result in discoloration and cause other visual defects, as well as how to avoid these problems\u003cbr\u003e• The use of coatings and films on fresh fruit and vegetables, fresh-cut produce, and processed foods\u003cbr\u003e• How to apply coatings to various commodities\u003cbr\u003e• How coatings can function as carriers of useful additives, including color, antioxidants, and flavorings\u003cbr\u003e• Regulation of coatings and coating ingredients by various governing bodies\u003cbr\u003eThe information contained in this volume is destined to encourage further advances in this field for food and pharmaceutical products. Aggressive research into these products can help to reduce plastic waste, improve applications, lead to greater efficacy, and make regulatory decisions easier in a global climate—ultimately resulting in economical, heightened quality of food and pharmaceutical products.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction; Elizabeth Baldwin and Robert Hagenmaier\u003cbr\u003e\u003cbr\u003eProtein-based films and coatings; Maria B. Pérez-Gago\u003cbr\u003e\u003cbr\u003eEdible coatings from lipids, waxes, and resins; David J. Hall\u003cbr\u003e\u003cbr\u003ePolysaccharide coatings; Robert Soliva-Fortuny, María Alejandra Rojas-Graü, and Olga Martín-Belloso\u003cbr\u003e\u003cbr\u003eGas-exchange properties of edible films and coatings; Robert D. Hagenmaier\u003cbr\u003e\u003cbr\u003eRole of edible film and coating additives; Roberto de Jesús Avena-Bustillos and Tara H. McHugh\u003cbr\u003e\u003cbr\u003eCoatings for fresh fruits and vegetables; Jinhe Bai and Anne Plotto\u003cbr\u003e\u003cbr\u003eCoatings for minimally processed fruits and vegetables; Sharon Dea, Christian Ghidelli, Maria B. Pérez-Gago, and Anne Plotto\u003cbr\u003e\u003cbr\u003eApplications of edible films and coatings to processed foods; Tara H. McHugh and Roberto de Jesús Avena-Bustillos\u003cbr\u003e\u003cbr\u003eApplication of commercial coatings; Yanyun Zhao\u003cbr\u003e\u003cbr\u003eEncapsulation of flavors, nutraceuticals, and antibacterials; Stéphane Desobry and Frédéric Debeaufort\u003cbr\u003e\u003cbr\u003eOverview of pharmaceutical coatings; Anthony Palmieri\u003cbr\u003e\u003cbr\u003eRegulatory aspects of coatings; Guiwen A. Cheng and Elizabeth A. Baldwin\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eElizabeth E. Baldwin\u003c\/b\u003e is currently research leader and research horticulturist of the U.S. Department of Agriculture, Agricultural Research Service (USDA\/ARS), Citrus and Subtropical Products Laboratory in Winter Haven, Florida. Her research interests include postharvest physiology and overall quality of fresh, fresh-cut, and processed fruits and vegetables, with an emphasis on the use of edible coatings and flavor quality of citrus, tomatoes, and tropical\/subtropical products. She received a BA in anthropology from Hunter College, City University of New York; a BS in plant and soil science from Middle Tennessee State University, and a MS and PhD in horticulture from the University of Florida.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eRobert D. Hagenmaier\u003c\/b\u003e worked until retirement as a research chemist for USDA\/ARS, Citrus and Subtropical Products Laboratory at Winter Haven, Florida. He holds a PhD in physical chemistry from Purdue University. His research interests focused first on coconut food products and later on how the quality of fresh fruit depends on permeability properties of coatings.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eJinhe Bai\u003c\/b\u003e is a food technologist at USDA\/ARS, Citrus and Subtropical Products Laboratory at Winter Haven, Florida. He received a BS from Shanxi Agriculture University, China; MS from Northwest Agriculture University, China; and a PhD from Osaka Prefecture University, Japan, on the effects of modified atmosphere (MA) packaging on volatile production of fruits. His current research interests are focused on development of controlled atmosphere (CA) storage, MA packaging and edible coating technologies, and discovery of how internal and environmental factors influence metabolism and further impact flavor and nutritional quality of fruits and vegetables.\u003c\/div\u003e","published_at":"2017-06-22T21:12:43-04:00","created_at":"2017-06-22T21:12:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","applications of coatings","book","edible coatings","edible films","fresh fruits and vegetables","p-applications","pharmaceutical coatings","Polysaccharide coatings","protein-based films and coatings"],"price":21000,"price_min":21000,"price_max":21000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309892,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Edible Coatings and Films to Improve Food Quality, 2nd Edition","public_title":null,"options":["Default Title"],"price":21000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-42-005962-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-42-005962-5.jpg?v=1499281104"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-42-005962-5.jpg?v=1499281104","options":["Title"],"media":[{"alt":null,"id":354453717085,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-42-005962-5.jpg?v=1499281104"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-42-005962-5.jpg?v=1499281104","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Elizabeth A. Baldwin, Robert Hagenmaier, Jinhe Bai \u003cbr\u003eISBN \u003cspan\u003e9781138198937 \u003c\/span\u003e\u003cbr\u003eHard cover\u003cbr\u003eNumber of pages 460\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the publication of the first edition of this text, ever-increasing coatings research has led to many developments in the field. Updated and completely revised with the latest discoveries, Edible Coatings and Films to Improve Food Quality, Second Edition is a critical resource for all those involved in buying, selling, regulating, developing, or using coatings to improve the quality and safety of foods. Topics discussed in this volume include:\u003cbr\u003e\u003cbr\u003e• The materials used in edible coatings and films\u003cbr\u003e• The chemical and physical properties of coatings and how the coating or film ingredients affect these properties\u003cbr\u003e• How coatings and films present barriers to gases and water vapors\u003cbr\u003e• How coatings and films can improve appearance, or conversely, result in discoloration and cause other visual defects, as well as how to avoid these problems\u003cbr\u003e• The use of coatings and films on fresh fruit and vegetables, fresh-cut produce, and processed foods\u003cbr\u003e• How to apply coatings to various commodities\u003cbr\u003e• How coatings can function as carriers of useful additives, including color, antioxidants, and flavorings\u003cbr\u003e• Regulation of coatings and coating ingredients by various governing bodies\u003cbr\u003eThe information contained in this volume is destined to encourage further advances in this field for food and pharmaceutical products. Aggressive research into these products can help to reduce plastic waste, improve applications, lead to greater efficacy, and make regulatory decisions easier in a global climate—ultimately resulting in economical, heightened quality of food and pharmaceutical products.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction; Elizabeth Baldwin and Robert Hagenmaier\u003cbr\u003e\u003cbr\u003eProtein-based films and coatings; Maria B. Pérez-Gago\u003cbr\u003e\u003cbr\u003eEdible coatings from lipids, waxes, and resins; David J. Hall\u003cbr\u003e\u003cbr\u003ePolysaccharide coatings; Robert Soliva-Fortuny, María Alejandra Rojas-Graü, and Olga Martín-Belloso\u003cbr\u003e\u003cbr\u003eGas-exchange properties of edible films and coatings; Robert D. Hagenmaier\u003cbr\u003e\u003cbr\u003eRole of edible film and coating additives; Roberto de Jesús Avena-Bustillos and Tara H. McHugh\u003cbr\u003e\u003cbr\u003eCoatings for fresh fruits and vegetables; Jinhe Bai and Anne Plotto\u003cbr\u003e\u003cbr\u003eCoatings for minimally processed fruits and vegetables; Sharon Dea, Christian Ghidelli, Maria B. Pérez-Gago, and Anne Plotto\u003cbr\u003e\u003cbr\u003eApplications of edible films and coatings to processed foods; Tara H. McHugh and Roberto de Jesús Avena-Bustillos\u003cbr\u003e\u003cbr\u003eApplication of commercial coatings; Yanyun Zhao\u003cbr\u003e\u003cbr\u003eEncapsulation of flavors, nutraceuticals, and antibacterials; Stéphane Desobry and Frédéric Debeaufort\u003cbr\u003e\u003cbr\u003eOverview of pharmaceutical coatings; Anthony Palmieri\u003cbr\u003e\u003cbr\u003eRegulatory aspects of coatings; Guiwen A. Cheng and Elizabeth A. Baldwin\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eElizabeth E. Baldwin\u003c\/b\u003e is currently research leader and research horticulturist of the U.S. Department of Agriculture, Agricultural Research Service (USDA\/ARS), Citrus and Subtropical Products Laboratory in Winter Haven, Florida. Her research interests include postharvest physiology and overall quality of fresh, fresh-cut, and processed fruits and vegetables, with an emphasis on the use of edible coatings and flavor quality of citrus, tomatoes, and tropical\/subtropical products. She received a BA in anthropology from Hunter College, City University of New York; a BS in plant and soil science from Middle Tennessee State University, and a MS and PhD in horticulture from the University of Florida.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eRobert D. Hagenmaier\u003c\/b\u003e worked until retirement as a research chemist for USDA\/ARS, Citrus and Subtropical Products Laboratory at Winter Haven, Florida. He holds a PhD in physical chemistry from Purdue University. His research interests focused first on coconut food products and later on how the quality of fresh fruit depends on permeability properties of coatings.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eJinhe Bai\u003c\/b\u003e is a food technologist at USDA\/ARS, Citrus and Subtropical Products Laboratory at Winter Haven, Florida. He received a BS from Shanxi Agriculture University, China; MS from Northwest Agriculture University, China; and a PhD from Osaka Prefecture University, Japan, on the effects of modified atmosphere (MA) packaging on volatile production of fruits. His current research interests are focused on development of controlled atmosphere (CA) storage, MA packaging and edible coating technologies, and discovery of how internal and environmental factors influence metabolism and further impact flavor and nutritional quality of fruits and vegetables.\u003c\/div\u003e"}
European Coatings Hand...
$300.00
{"id":11242246532,"title":"European Coatings Handbook, 2nd Edition","handle":"978-3-86630-849-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peter Mischke, Michael Groteklaes, and Thomas Brock \u003cbr\u003eISBN 978-3-86630-849-7 \u003cbr\u003e\u003cbr\u003e400 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis work is intended to fill a gap in the current specialist literature: as an accompanying handbook. An extremely broad knowledge base is a prerequisite for mastering this unique protective and finishing material. However, today’s coatings specialist also requires knowledge of process engineering in use of production and application equipment. This includes an understanding of materials science in the substrate materials and more generally the quality of the paint and its coatings. This also includes a familiarity with the environmental and safety aspects of coatings for paints.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThese features are underpinned by a constant awareness of emerging developments in the coatings sector, which remains as dynamic as ever. The book covers the principles of raw materials, manufacture, application, and testing of coatings. But its principal aim is to clearly illustrate and create connections throughout the coatings field. It will provide a student with a solid basis for a closer study of coating technology and will also easily explain it to those that do not have a background in this subject area.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction; Raw materials for coatings; Coating systems, formulation, film-forming; Manufacture of paints and coatings; Substrates and pretreatment; Application and drying; Painting and coating processes; Test methods and measuring techniques; Environmental protection and safety at work","published_at":"2017-06-22T21:15:03-04:00","created_at":"2017-06-22T21:15:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","application","book","coating","formulation","p-applications","paints","polymer","testing"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378457668,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"European Coatings Handbook, 2nd Edition","public_title":null,"options":["Default Title"],"price":30000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-86630-849-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-849-7.jpg?v=1499988141"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-849-7.jpg?v=1499988141","options":["Title"],"media":[{"alt":null,"id":354794897501,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-849-7.jpg?v=1499988141"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-849-7.jpg?v=1499988141","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peter Mischke, Michael Groteklaes, and Thomas Brock \u003cbr\u003eISBN 978-3-86630-849-7 \u003cbr\u003e\u003cbr\u003e400 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis work is intended to fill a gap in the current specialist literature: as an accompanying handbook. An extremely broad knowledge base is a prerequisite for mastering this unique protective and finishing material. However, today’s coatings specialist also requires knowledge of process engineering in use of production and application equipment. This includes an understanding of materials science in the substrate materials and more generally the quality of the paint and its coatings. This also includes a familiarity with the environmental and safety aspects of coatings for paints.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThese features are underpinned by a constant awareness of emerging developments in the coatings sector, which remains as dynamic as ever. The book covers the principles of raw materials, manufacture, application, and testing of coatings. But its principal aim is to clearly illustrate and create connections throughout the coatings field. It will provide a student with a solid basis for a closer study of coating technology and will also easily explain it to those that do not have a background in this subject area.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction; Raw materials for coatings; Coating systems, formulation, film-forming; Manufacture of paints and coatings; Substrates and pretreatment; Application and drying; Painting and coating processes; Test methods and measuring techniques; Environmental protection and safety at work"}
Film Properties of Pla...
$275.00
{"id":11242202244,"title":"Film Properties of Plastics and Elastomers, 3rd Edition","handle":"978-1-4557-2551-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2551-9 \u003cbr\u003e\u003cbr\u003e320 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively revised second edition is the only data handbook available on the engineering properties of commercial polymeric films details many physical, mechanical, optical, electrical, and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in the same family as well as materials in different families. Data are presented on the characteristics of 47 major plastic and elastomer packaging materials. New to this edition, the resin chapters each contain textual summary information including category, general description, processing methods, applications, and other facts as appropriate, such as reliability, weatherability, and regulatory approval considerations for use in food and medical packaging. Extensive references are provided.\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers, chemists, manufacturers, suppliers, designers and other technical professionals who want a comprehensive reference guide to film properties of plastics and elastomers.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1. Introduction to Plastics and Polymers \u003cbr\u003e1.1. Polymerization\u003cbr\u003e1.1.1. Addition Polymerization\u003cbr\u003e1.1.2. Condensation Polymerization\u003cbr\u003e1.2. Copolymers\u003cbr\u003e1.3. Linear, Branched, and Crosslinked Polymers\u003cbr\u003e1.4. Polarity\u003cbr\u003e1.5. Unsaturation\u003cbr\u003e1.6. Steric Hindrance\u003cbr\u003e1.7. Isomers\u003cbr\u003e1.7.1. Structural isomers\u003cbr\u003e1.7.2. Geometric Isomers\u003cbr\u003e1.7.3. Stereosiomers - Syndiotactic, Isotactic, Atactic\u003cbr\u003e1.8. Inter and Intramolecular attractions in polymers\u003cbr\u003e1.8.1. Hydrogen Bonding\u003cbr\u003e1.8.2. Van der waals Forces\u003cbr\u003e1.8.3. Chain Entanglement\u003cbr\u003e1.9. General Classifications\u003cbr\u003e1.9.1. Molecular Weight\u003cbr\u003e1.9.2. Thermosets vs. Thermoplastics\u003cbr\u003e1.9.3. Crystalline vs. Amorphous\u003cbr\u003e1.9.4. Orientation\u003cbr\u003e1.10. Plastic Compositions\u003cbr\u003e1.10.1. Polymer Blends\u003cbr\u003e1.10.2. Elastomers\u003cbr\u003e1.10.3. Additives\u003cbr\u003e1.10.3.1. Fillers, Reinforcement, Composites \u003cbr\u003e1.10.3.2. Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants\u003cbr\u003e1.10.3.3. Release Agents\u003cbr\u003e1.10.3.4. Slip additives\/Internal Lubricants \u003cbr\u003e1.10.3.5. Antiblock Additives\u003cbr\u003e1.10.3.6. Catalysts\u003cbr\u003e1.10.3.7. Impact Modifiers and Tougheners\u003cbr\u003e1.10.3.8. UV Stabilizers\u003cbr\u003e1.10.3.9. Optical Brighteners\u003cbr\u003e1.10.3.10. Plasticizers\u003cbr\u003e1.10.3.11. Pigments, Extenders, Dyes, Mica\u003cbr\u003e1.10.3.12. Coupling Agents\u003cbr\u003e1.10.3.13. Thermal Stabilizers\u003cbr\u003e1.10.3.14. Antistats\u003cbr\u003e1.11. Summary\u003cbr\u003e2. Chapter 2 - Introduction to the Mechanical, Thermal and Permeation Properties of Plastics and Elastomers\u003cbr\u003e2.1. Physical property testing of plastic films\u003cbr\u003e2.1.1. Specific gravity, density\u003cbr\u003e2.1.2. Dimensional stability\u003cbr\u003e2.1.3. Hygroscopic expansion\u003cbr\u003e2.1.4. Residual shrinkage\u003cbr\u003e2.1.5. Coefficient of Thermal Expansion\u003cbr\u003e2.1.6. Appearance: Color, Haze, and Gloss\u003cbr\u003e2.1.6.1. Color\u003cbr\u003e2.1.6.2. Gloss measurement\u003cbr\u003e2.1.6.3. Haze measurement\u003cbr\u003e2.1.7. Coefficient of friction\u003cbr\u003e2.2. Mechanical Property Testing of Plastic films\u003cbr\u003e2.2.1. Tensile Properties\u003cbr\u003e2.2.2. Flexural Properties\u003cbr\u003e2.2.3. Folding endurance (MIT)\u003cbr\u003e2.2.4. Puncture properties\u003cbr\u003e2.2.4.1. High speed puncture test\u003cbr\u003e2.2.4.2. Drop Dart Impact Test for Plastics Film\u003cbr\u003e2.2.5. Tear Properties\u003cbr\u003e2.2.5.1. Elmendorf Tear Strength\u003cbr\u003e2.2.5.2. Trouser Tear Resistance\u003cbr\u003e2.3. Thermal Property Testing of Plastic films\u003cbr\u003e2.3.1. Melt Flow Index\u003cbr\u003e2.3.2. melting point\u003cbr\u003e2.3.3. Glass Transition Temperature, Tg\u003cbr\u003e2.3.4. Other Thermal Tests\u003cbr\u003e2.4. Electrical Properties of Films\u003cbr\u003e2.4.1. Dielectric constant (or Relative Permittivity)\u003cbr\u003e2.4.2. Dissipation factor\u003cbr\u003e2.4.3. Dielectric Strength\u003cbr\u003e2.4.4. Surface Resistivity\u003cbr\u003e2.4.5. Volume Resistivity\u003cbr\u003e2.5. Permeation of films\u003cbr\u003e2.5.1. History\u003cbr\u003e2.5.2. Transport of Gases and Vapors through solid materials- \u003cbr\u003e2.5.3. Effusion\u003cbr\u003e2.5.4. Solution-Diffusion and Pore-flow Models\u003cbr\u003e2.5.4.1. Dependence of Permeability, Diffusion and Solubility Pressure\u003cbr\u003e2.5.4.2. Dependence of Permeability, Diffusion and Solubility on Temperature - The Arrhenius Equation \u003cbr\u003e2.5.5. Multiple layered films \u003cbr\u003e2.5.6. Permeation and Vapor Transmission Testing \u003cbr\u003e2.5.6.1. Units of Measurement\u003cbr\u003e2.5.6.2. Gas Permeation test cells\u003cbr\u003e2.5.6.3. Vapor Permeation Cup testing\u003cbr\u003e2.5.6.4. Standard Tests for permeation and vapor transmission\u003cbr\u003e3. Production of films\u003cbr\u003e3.1. Extrusion\u003cbr\u003e3.2. Blown Film\u003cbr\u003e3.3. Calendaring\u003cbr\u003e3.4. Casting film lines\u003cbr\u003e3.5. Post film formation processing \u003cbr\u003e3.6. Web coating\u003cbr\u003e3.6.1. Gravure Coating\u003cbr\u003e3.6.2. Reverse Roll Coating\u003cbr\u003e3.6.3. Knife On Roll Coating\u003cbr\u003e3.6.4. Metering Rod (Meyer Rod) Coating\u003cbr\u003e3.6.5. Slot Die (Slot, Extrusion) Coating\u003cbr\u003e3.6.6. Immersion (Dip) Coating\u003cbr\u003e3.6.7. Vacuum deposition\u003cbr\u003e3.6.8. Web Coating process summary\u003cbr\u003e3.7. Lamination\u003cbr\u003e3.7.1. Hot Roll\/Belt Lamination\u003cbr\u003e3.7.2. Flame Lamination\u003cbr\u003e3.8. Orientation\u003cbr\u003e3.8.1. Machine Direction Orientation\u003cbr\u003e3.8.2. Biaxial orientation\u003cbr\u003e3.8.3. Blown Film Orientation\u003cbr\u003e3.9. Skiving\u003cbr\u003e3.10. Coatings\u003cbr\u003e3.11. Summary\u003cbr\u003e4. Markets and Applications for films\u003cbr\u003e4.1. Barrier Films in packaging \u003cbr\u003e4.1.1. Water Vapor\u003cbr\u003e4.1.2. Atmospheric Gases\u003cbr\u003e4.1.3. Odors and Flavors\u003cbr\u003e4.1.4. Markets and Applications of barrier films\u003cbr\u003e4.1.5. Some illustrated applications of multiple layered films\u003cbr\u003e5. Styrenic Plastics\u003cbr\u003e5.1. Acrylonitrile-Butadiene-Styrene Copolymer (ABS) \u003cbr\u003e5.2. Acrylonitrile-Styrene-Acrylate Copolymer (ASA)\u003cbr\u003e5.3. Polystyrene (PS) \u003cbr\u003e5.4. Styrene-Acrylonitrile Copolymer (SAN)\u003cbr\u003e6. Polyesters\u003cbr\u003e6.1. Liquid Crystal Polymer (LCP) \u003cbr\u003e6.2. Polybutylene Terephthalate (PBT)\u003cbr\u003e6.3. Polycarbonate (PC)\u003cbr\u003e6.4. Polycyclohexylene-dimethylene Terephthalate (PCT)\u003cbr\u003e6.5. Polyethylene Napthalate (PEN)\u003cbr\u003e6.6. Polyethylene Terephthalate (PET)\u003cbr\u003e7. Polyimides \u003cbr\u003e7.1. Polyamide-imide\u003cbr\u003e7.2. Polyetherimide\u003cbr\u003e7.3. Polyimide \u003cbr\u003e8. Polyamides (Nylons)\u003cbr\u003e8.1. Polyamide 6 (Nylon 6)\u003cbr\u003e8.2. Polyamide 12 (Nylon 12)\u003cbr\u003e8.3. Polyamide 66 (Nylon 66) \u003cbr\u003e8.4. Polyamide 66\/610 (Nylon 66\/610)\u003cbr\u003e8.5. Polyamide 6\/12 (Nylon 6\/12)\u003cbr\u003e8.6. Polyamide 666 (Nylon 666 or 6\/66)\u003cbr\u003e8.7. Polyamide 6\/69 (Nylon 6\/6.9)\u003cbr\u003e8.8. Nylon 1010\u003cbr\u003e8.9. Specialty Polyamides\u003cbr\u003e8.9.1. Amorphous Polyamides\u003cbr\u003e8.9.2. Nylon PACM-12\u003cbr\u003e8.9.3. PAA - Polyarylamide\u003cbr\u003e9. Polyolefins \u003cbr\u003e9.1. Polyethylene (PE)\u003cbr\u003e9.1.1. Unclassified polyethylene\u003cbr\u003e9.1.2. Ultralow Density polyethylene (ULDPE)\u003cbr\u003e9.1.3. Linear low density polyethylene (LLDPE)\u003cbr\u003e9.1.4. Low density polyethylene (LDPE)\u003cbr\u003e9.1.5. Medium density polyethylene (MDPE)\u003cbr\u003e9.1.6. High density polyethylene (HDPE)\u003cbr\u003e9.2. Polypropylene (PP)\u003cbr\u003e9.3. Polybutene-1 - PB-1\u003cbr\u003e9.4. Polymethyl Pentene (PMP) \u003cbr\u003e9.5. Cyclic Olefin Copolymer (COC)\u003cbr\u003e9.6. Plastomers\u003cbr\u003e10. Polyvinyls \u0026amp; Acrylics\u003cbr\u003e10.1. Ethylene-Vinyl Acetate Copolymer (EVA)\u003cbr\u003e10.2. Ethylene - Vinyl Alcohol Copolymer (EVOH)\u003cbr\u003e10.3. Polyvinyl Alcohol (PVOH)\u003cbr\u003e10.4. Polyvinyl Chloride (PVC)\u003cbr\u003e10.5. Polyvinylidene Chloride (PVDC)\u003cbr\u003e10.6. Polyacrylics\u003cbr\u003e10.7. Acrylonitrile-Methyl Acrylate Copolymer (AMA)\u003cbr\u003e10.8. Ionomers\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e11.1. Polytetrafluoroethylene (PTFE)\u003cbr\u003e11.2. Fluorinated Ethylene Propylene (FEP)\u003cbr\u003e11.3. Perfluoro Alkoxy (PFA)\u003cbr\u003e11.3.1. PFA\u003cbr\u003e11.3.2. MFA\u003cbr\u003e11.4. Amorphous fluoropolymer - Teflon AF®\u003cbr\u003e11.5. Polyvinyl Fluoride (PVF)\u003cbr\u003e11.6. Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e11.7. Polyvinylidene Fluoride (PVDF)\u003cbr\u003e11.8. Ethylene-Tetrafluoroethylene Copolymer (ETFE)\u003cbr\u003e11.9. Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE)\u003cbr\u003e12. High Temperature\/High Performance Polymers\u003cbr\u003e12.1. Polyether ether ketone (PEEK\u003cbr\u003e12.2. Polysiloxane\u003cbr\u003e12.3. Polyphenylene Sulfide (PPS)\u003cbr\u003e12.4. Polysulfone (PSU)\u003cbr\u003e12.5. Polyethersulfone (PES)\u003cbr\u003e12.6. Polybenzimidazole (PBI)\u003cbr\u003e12.7. Parylene (poly(p-xylylene))\u003cbr\u003e12.8. Polyphenylene sulfone (PPSU)\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e13.1. Thermoplastic Polyurethane Elastomers (TPU)\u003cbr\u003e13.2. Olefinic Thermoplastic Elastomers (TPO)\u003cbr\u003e13.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE)\u003cbr\u003e13.4. Thermoplastic Polyether Block Amide Elastomers (PEBA)\u003cbr\u003e13.5. Styrenic Block Copolymer (SBS) Thermoplastic Elastomers\u003cbr\u003e13.6. Syndiotactic 1,2 polybutadiene \u003cbr\u003e14. Renewable Resource or biodegradable polymers \u003cbr\u003e14.1. Cellophane™\u003cbr\u003e14.2. Nitrocellulose\u003cbr\u003e14.3. Cellulose acetate\u003cbr\u003e14.4. Cellulose acetate butyrate\u003cbr\u003e14.5. Ethylcellulose\u003cbr\u003e14.6. Polycaprolactone (PCL)\u003cbr\u003e14.7. Poly (Lactic Acid) (PLA)\u003cbr\u003e14.8. Poly-3-hydroxybutyrate (PHB or PH3B)\u003cbr\u003eAppendices\u003cbr\u003ePermeation Unit Conversion Factors\u003cbr\u003eVapor Transmission rate Conversion factors\u003cbr\u003eIndices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eLaurence W McKeen\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eSenior Research Associate, DuPont, Wilmington, DE, USA\u003c\/div\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","additives","book","electrical","film","Films","lamination","material","mechanical","optical","p-applications","plastics","polymer","properties"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378310468,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Film Properties of Plastics and Elastomers, 3rd Edition","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2551-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111","options":["Title"],"media":[{"alt":null,"id":354806726749,"position":1,"preview_image":{"aspect_ratio":0.771,"height":450,"width":347,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111"},"aspect_ratio":0.771,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111","width":347}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2551-9 \u003cbr\u003e\u003cbr\u003e320 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively revised second edition is the only data handbook available on the engineering properties of commercial polymeric films details many physical, mechanical, optical, electrical, and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in the same family as well as materials in different families. Data are presented on the characteristics of 47 major plastic and elastomer packaging materials. New to this edition, the resin chapters each contain textual summary information including category, general description, processing methods, applications, and other facts as appropriate, such as reliability, weatherability, and regulatory approval considerations for use in food and medical packaging. Extensive references are provided.\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers, chemists, manufacturers, suppliers, designers and other technical professionals who want a comprehensive reference guide to film properties of plastics and elastomers.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1. Introduction to Plastics and Polymers \u003cbr\u003e1.1. Polymerization\u003cbr\u003e1.1.1. Addition Polymerization\u003cbr\u003e1.1.2. Condensation Polymerization\u003cbr\u003e1.2. Copolymers\u003cbr\u003e1.3. Linear, Branched, and Crosslinked Polymers\u003cbr\u003e1.4. Polarity\u003cbr\u003e1.5. Unsaturation\u003cbr\u003e1.6. Steric Hindrance\u003cbr\u003e1.7. Isomers\u003cbr\u003e1.7.1. Structural isomers\u003cbr\u003e1.7.2. Geometric Isomers\u003cbr\u003e1.7.3. Stereosiomers - Syndiotactic, Isotactic, Atactic\u003cbr\u003e1.8. Inter and Intramolecular attractions in polymers\u003cbr\u003e1.8.1. Hydrogen Bonding\u003cbr\u003e1.8.2. Van der waals Forces\u003cbr\u003e1.8.3. Chain Entanglement\u003cbr\u003e1.9. General Classifications\u003cbr\u003e1.9.1. Molecular Weight\u003cbr\u003e1.9.2. Thermosets vs. Thermoplastics\u003cbr\u003e1.9.3. Crystalline vs. Amorphous\u003cbr\u003e1.9.4. Orientation\u003cbr\u003e1.10. Plastic Compositions\u003cbr\u003e1.10.1. Polymer Blends\u003cbr\u003e1.10.2. Elastomers\u003cbr\u003e1.10.3. Additives\u003cbr\u003e1.10.3.1. Fillers, Reinforcement, Composites \u003cbr\u003e1.10.3.2. Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants\u003cbr\u003e1.10.3.3. Release Agents\u003cbr\u003e1.10.3.4. Slip additives\/Internal Lubricants \u003cbr\u003e1.10.3.5. Antiblock Additives\u003cbr\u003e1.10.3.6. Catalysts\u003cbr\u003e1.10.3.7. Impact Modifiers and Tougheners\u003cbr\u003e1.10.3.8. UV Stabilizers\u003cbr\u003e1.10.3.9. Optical Brighteners\u003cbr\u003e1.10.3.10. Plasticizers\u003cbr\u003e1.10.3.11. Pigments, Extenders, Dyes, Mica\u003cbr\u003e1.10.3.12. Coupling Agents\u003cbr\u003e1.10.3.13. Thermal Stabilizers\u003cbr\u003e1.10.3.14. Antistats\u003cbr\u003e1.11. Summary\u003cbr\u003e2. Chapter 2 - Introduction to the Mechanical, Thermal and Permeation Properties of Plastics and Elastomers\u003cbr\u003e2.1. Physical property testing of plastic films\u003cbr\u003e2.1.1. Specific gravity, density\u003cbr\u003e2.1.2. Dimensional stability\u003cbr\u003e2.1.3. Hygroscopic expansion\u003cbr\u003e2.1.4. Residual shrinkage\u003cbr\u003e2.1.5. Coefficient of Thermal Expansion\u003cbr\u003e2.1.6. Appearance: Color, Haze, and Gloss\u003cbr\u003e2.1.6.1. Color\u003cbr\u003e2.1.6.2. Gloss measurement\u003cbr\u003e2.1.6.3. Haze measurement\u003cbr\u003e2.1.7. Coefficient of friction\u003cbr\u003e2.2. Mechanical Property Testing of Plastic films\u003cbr\u003e2.2.1. Tensile Properties\u003cbr\u003e2.2.2. Flexural Properties\u003cbr\u003e2.2.3. Folding endurance (MIT)\u003cbr\u003e2.2.4. Puncture properties\u003cbr\u003e2.2.4.1. High speed puncture test\u003cbr\u003e2.2.4.2. Drop Dart Impact Test for Plastics Film\u003cbr\u003e2.2.5. Tear Properties\u003cbr\u003e2.2.5.1. Elmendorf Tear Strength\u003cbr\u003e2.2.5.2. Trouser Tear Resistance\u003cbr\u003e2.3. Thermal Property Testing of Plastic films\u003cbr\u003e2.3.1. Melt Flow Index\u003cbr\u003e2.3.2. melting point\u003cbr\u003e2.3.3. Glass Transition Temperature, Tg\u003cbr\u003e2.3.4. Other Thermal Tests\u003cbr\u003e2.4. Electrical Properties of Films\u003cbr\u003e2.4.1. Dielectric constant (or Relative Permittivity)\u003cbr\u003e2.4.2. Dissipation factor\u003cbr\u003e2.4.3. Dielectric Strength\u003cbr\u003e2.4.4. Surface Resistivity\u003cbr\u003e2.4.5. Volume Resistivity\u003cbr\u003e2.5. Permeation of films\u003cbr\u003e2.5.1. History\u003cbr\u003e2.5.2. Transport of Gases and Vapors through solid materials- \u003cbr\u003e2.5.3. Effusion\u003cbr\u003e2.5.4. Solution-Diffusion and Pore-flow Models\u003cbr\u003e2.5.4.1. Dependence of Permeability, Diffusion and Solubility Pressure\u003cbr\u003e2.5.4.2. Dependence of Permeability, Diffusion and Solubility on Temperature - The Arrhenius Equation \u003cbr\u003e2.5.5. Multiple layered films \u003cbr\u003e2.5.6. Permeation and Vapor Transmission Testing \u003cbr\u003e2.5.6.1. Units of Measurement\u003cbr\u003e2.5.6.2. Gas Permeation test cells\u003cbr\u003e2.5.6.3. Vapor Permeation Cup testing\u003cbr\u003e2.5.6.4. Standard Tests for permeation and vapor transmission\u003cbr\u003e3. Production of films\u003cbr\u003e3.1. Extrusion\u003cbr\u003e3.2. Blown Film\u003cbr\u003e3.3. Calendaring\u003cbr\u003e3.4. Casting film lines\u003cbr\u003e3.5. Post film formation processing \u003cbr\u003e3.6. Web coating\u003cbr\u003e3.6.1. Gravure Coating\u003cbr\u003e3.6.2. Reverse Roll Coating\u003cbr\u003e3.6.3. Knife On Roll Coating\u003cbr\u003e3.6.4. Metering Rod (Meyer Rod) Coating\u003cbr\u003e3.6.5. Slot Die (Slot, Extrusion) Coating\u003cbr\u003e3.6.6. Immersion (Dip) Coating\u003cbr\u003e3.6.7. Vacuum deposition\u003cbr\u003e3.6.8. Web Coating process summary\u003cbr\u003e3.7. Lamination\u003cbr\u003e3.7.1. Hot Roll\/Belt Lamination\u003cbr\u003e3.7.2. Flame Lamination\u003cbr\u003e3.8. Orientation\u003cbr\u003e3.8.1. Machine Direction Orientation\u003cbr\u003e3.8.2. Biaxial orientation\u003cbr\u003e3.8.3. Blown Film Orientation\u003cbr\u003e3.9. Skiving\u003cbr\u003e3.10. Coatings\u003cbr\u003e3.11. Summary\u003cbr\u003e4. Markets and Applications for films\u003cbr\u003e4.1. Barrier Films in packaging \u003cbr\u003e4.1.1. Water Vapor\u003cbr\u003e4.1.2. Atmospheric Gases\u003cbr\u003e4.1.3. Odors and Flavors\u003cbr\u003e4.1.4. Markets and Applications of barrier films\u003cbr\u003e4.1.5. Some illustrated applications of multiple layered films\u003cbr\u003e5. Styrenic Plastics\u003cbr\u003e5.1. Acrylonitrile-Butadiene-Styrene Copolymer (ABS) \u003cbr\u003e5.2. Acrylonitrile-Styrene-Acrylate Copolymer (ASA)\u003cbr\u003e5.3. Polystyrene (PS) \u003cbr\u003e5.4. Styrene-Acrylonitrile Copolymer (SAN)\u003cbr\u003e6. Polyesters\u003cbr\u003e6.1. Liquid Crystal Polymer (LCP) \u003cbr\u003e6.2. Polybutylene Terephthalate (PBT)\u003cbr\u003e6.3. Polycarbonate (PC)\u003cbr\u003e6.4. Polycyclohexylene-dimethylene Terephthalate (PCT)\u003cbr\u003e6.5. Polyethylene Napthalate (PEN)\u003cbr\u003e6.6. Polyethylene Terephthalate (PET)\u003cbr\u003e7. Polyimides \u003cbr\u003e7.1. Polyamide-imide\u003cbr\u003e7.2. Polyetherimide\u003cbr\u003e7.3. Polyimide \u003cbr\u003e8. Polyamides (Nylons)\u003cbr\u003e8.1. Polyamide 6 (Nylon 6)\u003cbr\u003e8.2. Polyamide 12 (Nylon 12)\u003cbr\u003e8.3. Polyamide 66 (Nylon 66) \u003cbr\u003e8.4. Polyamide 66\/610 (Nylon 66\/610)\u003cbr\u003e8.5. Polyamide 6\/12 (Nylon 6\/12)\u003cbr\u003e8.6. Polyamide 666 (Nylon 666 or 6\/66)\u003cbr\u003e8.7. Polyamide 6\/69 (Nylon 6\/6.9)\u003cbr\u003e8.8. Nylon 1010\u003cbr\u003e8.9. Specialty Polyamides\u003cbr\u003e8.9.1. Amorphous Polyamides\u003cbr\u003e8.9.2. Nylon PACM-12\u003cbr\u003e8.9.3. PAA - Polyarylamide\u003cbr\u003e9. Polyolefins \u003cbr\u003e9.1. Polyethylene (PE)\u003cbr\u003e9.1.1. Unclassified polyethylene\u003cbr\u003e9.1.2. Ultralow Density polyethylene (ULDPE)\u003cbr\u003e9.1.3. Linear low density polyethylene (LLDPE)\u003cbr\u003e9.1.4. Low density polyethylene (LDPE)\u003cbr\u003e9.1.5. Medium density polyethylene (MDPE)\u003cbr\u003e9.1.6. High density polyethylene (HDPE)\u003cbr\u003e9.2. Polypropylene (PP)\u003cbr\u003e9.3. Polybutene-1 - PB-1\u003cbr\u003e9.4. Polymethyl Pentene (PMP) \u003cbr\u003e9.5. Cyclic Olefin Copolymer (COC)\u003cbr\u003e9.6. Plastomers\u003cbr\u003e10. Polyvinyls \u0026amp; Acrylics\u003cbr\u003e10.1. Ethylene-Vinyl Acetate Copolymer (EVA)\u003cbr\u003e10.2. Ethylene - Vinyl Alcohol Copolymer (EVOH)\u003cbr\u003e10.3. Polyvinyl Alcohol (PVOH)\u003cbr\u003e10.4. Polyvinyl Chloride (PVC)\u003cbr\u003e10.5. Polyvinylidene Chloride (PVDC)\u003cbr\u003e10.6. Polyacrylics\u003cbr\u003e10.7. Acrylonitrile-Methyl Acrylate Copolymer (AMA)\u003cbr\u003e10.8. Ionomers\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e11.1. Polytetrafluoroethylene (PTFE)\u003cbr\u003e11.2. Fluorinated Ethylene Propylene (FEP)\u003cbr\u003e11.3. Perfluoro Alkoxy (PFA)\u003cbr\u003e11.3.1. PFA\u003cbr\u003e11.3.2. MFA\u003cbr\u003e11.4. Amorphous fluoropolymer - Teflon AF®\u003cbr\u003e11.5. Polyvinyl Fluoride (PVF)\u003cbr\u003e11.6. Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e11.7. Polyvinylidene Fluoride (PVDF)\u003cbr\u003e11.8. Ethylene-Tetrafluoroethylene Copolymer (ETFE)\u003cbr\u003e11.9. Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE)\u003cbr\u003e12. High Temperature\/High Performance Polymers\u003cbr\u003e12.1. Polyether ether ketone (PEEK\u003cbr\u003e12.2. Polysiloxane\u003cbr\u003e12.3. Polyphenylene Sulfide (PPS)\u003cbr\u003e12.4. Polysulfone (PSU)\u003cbr\u003e12.5. Polyethersulfone (PES)\u003cbr\u003e12.6. Polybenzimidazole (PBI)\u003cbr\u003e12.7. Parylene (poly(p-xylylene))\u003cbr\u003e12.8. Polyphenylene sulfone (PPSU)\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e13.1. Thermoplastic Polyurethane Elastomers (TPU)\u003cbr\u003e13.2. Olefinic Thermoplastic Elastomers (TPO)\u003cbr\u003e13.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE)\u003cbr\u003e13.4. Thermoplastic Polyether Block Amide Elastomers (PEBA)\u003cbr\u003e13.5. Styrenic Block Copolymer (SBS) Thermoplastic Elastomers\u003cbr\u003e13.6. Syndiotactic 1,2 polybutadiene \u003cbr\u003e14. Renewable Resource or biodegradable polymers \u003cbr\u003e14.1. Cellophane™\u003cbr\u003e14.2. Nitrocellulose\u003cbr\u003e14.3. Cellulose acetate\u003cbr\u003e14.4. Cellulose acetate butyrate\u003cbr\u003e14.5. Ethylcellulose\u003cbr\u003e14.6. Polycaprolactone (PCL)\u003cbr\u003e14.7. Poly (Lactic Acid) (PLA)\u003cbr\u003e14.8. Poly-3-hydroxybutyrate (PHB or PH3B)\u003cbr\u003eAppendices\u003cbr\u003ePermeation Unit Conversion Factors\u003cbr\u003eVapor Transmission rate Conversion factors\u003cbr\u003eIndices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eLaurence W McKeen\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eSenior Research Associate, DuPont, Wilmington, DE, USA\u003c\/div\u003e"}
Food Contact Polymers ...
$180.00
{"id":11242236868,"title":"Food Contact Polymers 2009 Conference Proceedings","handle":"978-1-84735-390-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-390-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e21-22 April 2009, Brussels, Belgium\u003c\/p\u003e\n\u003cp\u003e18 papers\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe worldwide food contact polymers market has seen the enormous change in recent years, a trend in part due to the shifting regulatory landscape. It is important, perhaps now more than ever, to keep abreast of regulatory matters and to identify the provisions that are legally necessary.\u003cbr\u003e\u003cbr\u003eWith these challenges in mind, Food Contact Polymers, 2009 brought together partners from the food processing and packaging supply chain. New materials and innovations in food manufacturing processes and packaging were discussed in detail. Material selection, testing and the all important legislation applicable to all types of food contact materials was also covered.\u003cbr\u003e\u003cbr\u003eAll technical papers presented at this conference are included ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eSESSION 1 THE REGULATORY LANDSCAPE\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKEY NOTE PRESENTATION\u003cbr\u003e\u003cbr\u003ePaper 1 An update on the EU regulations relating to food contact materials\u003cbr\u003eDr. Annette Schäfer, European Commission Health and Consumers Directorate General, Belgium\u003cbr\u003e\u003cbr\u003ePaper 2 Main legislations relating to colorants, inks, and adhesives\u003cbr\u003eDr. Luigi Rossi, Keller \u0026amp; Heckman LLP, Belgium\u003cbr\u003e\u003cbr\u003ePaper 3 Risk assessment by EFSA\u003cbr\u003eDr. Laurence Castle, Central Science laboratory, UK\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 4 Coatings code of practice and results of the FACET project\u003cbr\u003eDr. Peter Oldring, Valspar Europe, UK\u003cbr\u003e\u003cbr\u003ePaper 5 Enforcing the EU legislation on phthalate plasticisers\u003cbr\u003eDr. Jens Højslev Petersen, DTU-Food, National Food Institute, Denmark\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2 MIGRATION RESEARCH\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 6 Assessment of intakes of packaged foods per kg body weight\u003cbr\u003eDr. Emma Foster, Newcastle University, UK\u003cbr\u003e\u003cbr\u003ePaper 7 Elastomeric materials in contact with food- legislation and testing\u003cbr\u003eJohn Sidwell, Sidwell Consulting and Analytical Services Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 8 Safety assessment of FCM migrants using advanced bio-analytical strategies and the TTC principle\u003cbr\u003eWilliam D van Dongen, Sander Koster, M A J Rennen, L Coulier, L van Stee \u0026amp; G F Houben, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 9 DESI\/DART-MS: One minute migration testing?\u003cbr\u003eDr. Sander Koster, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 10 Food safety from the packaging manufacturer's perspective\u003cbr\u003eRobert Broughton, Alcan Packaging UK Ltd, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 ACTIVE \u0026amp; INTELLIGENT PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Testing protocols and developments in active and intelligent packaging\u003cbr\u003eLynneric Potter, Campden BRI, UK\u003cbr\u003e\u003cbr\u003ePaper 12 Study of an active packaging with antioxidant properties\u003cbr\u003eDr. Consuelo Fernández, Dr. Ana Galet \u0026amp; Dr. José María Bermúdez, ITENE, Spain\u003cbr\u003e\u003cbr\u003ePaper 13 Production and properties of multilayer active polyester films for food packaging applications\u003cbr\u003eDr. Maria Rosaria Galdi, Valeria Nicolais, Luciano Di Maio \u0026amp; Loredana Incarnato, University of Salerno, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Special injection technologies applied to the development of active packaging\u003cbr\u003eSerafin Garcia Navarro, AIMPLAS, Spain\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 INNOVATION IN FOOD PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 15 Innovative packaging design for the wine industry\u003cbr\u003eAthanasios Manavis, Ali Mousli, Vaya Dinopoulou \u0026amp; Panagiotis Kyrastsis, Technological Educational Institution of West Macedonia, Greece\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical and oxygen barrier properties of biaxially oriented polypropylene zinc oxide nanocomposites for food packaging applications\u003cbr\u003eDr. Nadia Lepot, Hasselt University, Belgium \u0026amp; Xios Hogeschool Limburg, Belgium; M K Van Bael \u0026amp; H Van den Rul, Hasselt University, Belgium \u0026amp; IMEC vzw, Belgium; J D Haen \u0026amp; J Mullens, Hasselt University, Belgium; R Peters \u0026amp; D Franco, Xios Hogeschool Limburg, Belgium\u003cbr\u003e\u003cbr\u003ePaper 17 Multilayer PP\/EVOH\/PP barrier tray containing O2 scavenger for retort applications\u003cbr\u003eDidier Houssier, EVAL Europe nv, Belgium; Benjamin Bourbon, RPC Barrier Containers, France\u003cbr\u003e\u003cbr\u003ePaper 18 Mater bi biopolymers, packaging applications: Multilayer structures, film lamination \u0026amp; coating \"Compostable packaging\"\u003cbr\u003eStefano Facco, Novamont SpA, Italy\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:14:33-04:00","created_at":"2017-06-22T21:14:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","antioxidants","biopolymers","book","EU regulations","films","food safety","migration","nanocomposites","p-applications","packaging","polyester films","polymer","zinc oxide"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423748,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Food Contact Polymers 2009 Conference Proceedings","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-390-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336","options":["Title"],"media":[{"alt":null,"id":354808234077,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-390-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e21-22 April 2009, Brussels, Belgium\u003c\/p\u003e\n\u003cp\u003e18 papers\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe worldwide food contact polymers market has seen the enormous change in recent years, a trend in part due to the shifting regulatory landscape. It is important, perhaps now more than ever, to keep abreast of regulatory matters and to identify the provisions that are legally necessary.\u003cbr\u003e\u003cbr\u003eWith these challenges in mind, Food Contact Polymers, 2009 brought together partners from the food processing and packaging supply chain. New materials and innovations in food manufacturing processes and packaging were discussed in detail. Material selection, testing and the all important legislation applicable to all types of food contact materials was also covered.\u003cbr\u003e\u003cbr\u003eAll technical papers presented at this conference are included ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eSESSION 1 THE REGULATORY LANDSCAPE\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKEY NOTE PRESENTATION\u003cbr\u003e\u003cbr\u003ePaper 1 An update on the EU regulations relating to food contact materials\u003cbr\u003eDr. Annette Schäfer, European Commission Health and Consumers Directorate General, Belgium\u003cbr\u003e\u003cbr\u003ePaper 2 Main legislations relating to colorants, inks, and adhesives\u003cbr\u003eDr. Luigi Rossi, Keller \u0026amp; Heckman LLP, Belgium\u003cbr\u003e\u003cbr\u003ePaper 3 Risk assessment by EFSA\u003cbr\u003eDr. Laurence Castle, Central Science laboratory, UK\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 4 Coatings code of practice and results of the FACET project\u003cbr\u003eDr. Peter Oldring, Valspar Europe, UK\u003cbr\u003e\u003cbr\u003ePaper 5 Enforcing the EU legislation on phthalate plasticisers\u003cbr\u003eDr. Jens Højslev Petersen, DTU-Food, National Food Institute, Denmark\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2 MIGRATION RESEARCH\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 6 Assessment of intakes of packaged foods per kg body weight\u003cbr\u003eDr. Emma Foster, Newcastle University, UK\u003cbr\u003e\u003cbr\u003ePaper 7 Elastomeric materials in contact with food- legislation and testing\u003cbr\u003eJohn Sidwell, Sidwell Consulting and Analytical Services Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 8 Safety assessment of FCM migrants using advanced bio-analytical strategies and the TTC principle\u003cbr\u003eWilliam D van Dongen, Sander Koster, M A J Rennen, L Coulier, L van Stee \u0026amp; G F Houben, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 9 DESI\/DART-MS: One minute migration testing?\u003cbr\u003eDr. Sander Koster, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 10 Food safety from the packaging manufacturer's perspective\u003cbr\u003eRobert Broughton, Alcan Packaging UK Ltd, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 ACTIVE \u0026amp; INTELLIGENT PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Testing protocols and developments in active and intelligent packaging\u003cbr\u003eLynneric Potter, Campden BRI, UK\u003cbr\u003e\u003cbr\u003ePaper 12 Study of an active packaging with antioxidant properties\u003cbr\u003eDr. Consuelo Fernández, Dr. Ana Galet \u0026amp; Dr. José María Bermúdez, ITENE, Spain\u003cbr\u003e\u003cbr\u003ePaper 13 Production and properties of multilayer active polyester films for food packaging applications\u003cbr\u003eDr. Maria Rosaria Galdi, Valeria Nicolais, Luciano Di Maio \u0026amp; Loredana Incarnato, University of Salerno, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Special injection technologies applied to the development of active packaging\u003cbr\u003eSerafin Garcia Navarro, AIMPLAS, Spain\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 INNOVATION IN FOOD PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 15 Innovative packaging design for the wine industry\u003cbr\u003eAthanasios Manavis, Ali Mousli, Vaya Dinopoulou \u0026amp; Panagiotis Kyrastsis, Technological Educational Institution of West Macedonia, Greece\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical and oxygen barrier properties of biaxially oriented polypropylene zinc oxide nanocomposites for food packaging applications\u003cbr\u003eDr. Nadia Lepot, Hasselt University, Belgium \u0026amp; Xios Hogeschool Limburg, Belgium; M K Van Bael \u0026amp; H Van den Rul, Hasselt University, Belgium \u0026amp; IMEC vzw, Belgium; J D Haen \u0026amp; J Mullens, Hasselt University, Belgium; R Peters \u0026amp; D Franco, Xios Hogeschool Limburg, Belgium\u003cbr\u003e\u003cbr\u003ePaper 17 Multilayer PP\/EVOH\/PP barrier tray containing O2 scavenger for retort applications\u003cbr\u003eDidier Houssier, EVAL Europe nv, Belgium; Benjamin Bourbon, RPC Barrier Containers, France\u003cbr\u003e\u003cbr\u003ePaper 18 Mater bi biopolymers, packaging applications: Multilayer structures, film lamination \u0026amp; coating \"Compostable packaging\"\u003cbr\u003eStefano Facco, Novamont SpA, Italy\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e"}
Food Industry and Pack...
$205.00
{"id":11242241284,"title":"Food Industry and Packaging Materials - Performance-oriented Guidelines for Users","handle":"9781847356093","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9781847356093 \u003cbr\u003e\u003cbr\u003epage 398\n\u003ch5\u003eSummary\u003c\/h5\u003e\nQuality inspection of packaging materials is a difficult task for food producers because the technical tests for packaging are mainly designed to measure the 'performance' of materials in relation to their chemical formulation, processing data, and intended uses. This may be difficult for food producers because their knowledge is essentially orientated to the performance of the final products (the packaged food).\u003cbr\u003e\u003cbr\u003eHowever, the assessment of the suitability of food packaging materials has to be legally demonstrated by food producers in the European Union.\u003cbr\u003e\u003cbr\u003eThis book provides detailed and comprehensible information about Quality Control (QC) in the industry. Different viewpoints are explained in relation to food companies, packaging producers, and technical experts, including regulatory aspects. One of the most important steps is the comprehension of QC failures in relation to the ‘food product’ (food\/packaging).\u003cbr\u003e\u003cbr\u003eThe book also presents a detailed selection of proposals about new testing methods. On the basis of regulatory obligations in the EU about the technological suitability of food packaging materials, a list of ‘performance-oriented’ guidelines is proposed. Food sectors are mentioned in relation to products, related packaging materials, known failures and existing quality control procedures.\u003cbr\u003e\u003cbr\u003eThis volume serves as a practical guide on food packaging and QC methods and a quick reference to food operators, official safety inspectors, public health institutions, Certification bodies, students and researchers from the academia and the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 The Essential Role of Quality Control Procedures: General Principles.\u003cbr\u003e1.1 Basic Concepts for Quality Control \u003cbr\u003e1.1.1 Quality in the Food and Beverage Field \u003cbr\u003e1.1.2 Quality: Management Systems and Control-based Procedures \u003cbr\u003e1.2 Statistical Consideration: Sampling Plans \u003cbr\u003e1.2.1 Influence of Numbers \u003cbr\u003e1.2.2 Influence of Analytical Results \u003cbr\u003e1.3 Quality Control and Economic Sustainability \u003cbr\u003e1.4 The Quality Control Team: Organisation, Duties, and Responsibilities \u003cbr\u003e\u003cbr\u003e2 Differences between Food Companies and Other Industries: Safety Concepts \u003cbr\u003e2.1 Quality in the Food Industry: Hazard Analysis and Critical \u003cbr\u003eControl Points and Different Risk Levels \u003cbr\u003e2.2 Quality in Chemical Industries: The Analytical Approach \u003cbr\u003e2.3 Quality in Manufacturing Industries: The Packaging \u003cbr\u003e2.4 Theory of Food Packaging and Practical Considerations\u003cbr\u003e2.5 Quality in Packaging Industries: Hybrid Testing Methods \u003cbr\u003e\u003cbr\u003e3 Food Industries: Chemistry, Microbiology, and Safety of Related Products \u003cbr\u003e3.1 Chemistry of Food Products - General Considerations \u003cbr\u003e3.1.1 Food Technology of Commerce - Standardisation of Production, Packing and Storage Processes\u003cbr\u003e3.1.2 Relation between Sensory Features and Chemical Composition \u003cbr\u003e3.1.3 Preventive Definition of Chemical and Microbiological Modifications \u003cbr\u003e3.1.4 Evaluation of Food Products - Chemical Contamination \u003cbr\u003e3.2 Microbiology of Food Products - Technological Implications \u003cbr\u003e3.3 Microbiology and Safety \u003cbr\u003e3.3.1 Microbiological Quality: Microbial Markers \u003cbr\u003e3.3.2 Pathogenic Bacteria \u003cbr\u003e3.4 Other Hazard Analysis and Critical Control Points Risks \u003cbr\u003e3.5 Food Alterations: The Problem of Shelf Life Assessment \u003cbr\u003e\u003cbr\u003e4 Packaging Industries: Chemistry and Technology of Packaging Materials \u003cbr\u003e4.1 Plastic Packaging \u003cbr\u003e4.2 Metal Packaging \u003cbr\u003e4.2.1 Metal Packages: General Features \u003cbr\u003e4.2.2 Metal Packaging: Production and Technology \u003cbr\u003e4.2.3 Metal Packages: The Metallic Support \u003cbr\u003e4.2.4 Plastic Coatings \u003cbr\u003e4.3 Paper and Paper-based Packaging \u003cbr\u003e4.4 Glass-based Packages \u003cbr\u003e4.5 Coupled Packages \u003cbr\u003e4.6 Smart and Intelligent Packages \u003cbr\u003e4.6.1 Active Packages \u003cbr\u003e4.6.2 Intelligent Packages \u003cbr\u003e\u003cbr\u003e5 Packaging and Processing Methods in the Food Industry: Most Common Failures \u003cbr\u003e5.1 Vegetables and Canned Foods \u003cbr\u003e5.1.1 Plastic Packages \u003cbr\u003e5.1.2 Metal Packages \u003cbr\u003e5.1.3 Paper and Paper-based Packages \u003cbr\u003e5.1.4 Glass Packages \u003cbr\u003e5.1.5 Polycoupled Packages \u003cbr\u003e5.1.6 Smart Packages \u003cbr\u003e5.2 Meat Foods \u003cbr\u003e5.2.1 Plastic Packages \u003cbr\u003e5.2.2 Metal Packages \u003cbr\u003e5.2.3 Paper and Paper-based Packages \u003cbr\u003e5.2.4 Glass Packages \u003cbr\u003e5.2.5 Coupled Packages \u003cbr\u003e5.2.6 Smart and Intelligent Packages \u003cbr\u003e5.3 Dairy Products \u003cbr\u003e5.3.1 Plastic Packages \u003cbr\u003e5.3.2 Metal Packages \u003cbr\u003e5.3.3 Paper and Paper-based Packages \u003cbr\u003e5.3.4 Glass Packages \u003cbr\u003e5.3.5 Coupled Packages \u003cbr\u003e5.4 Fish Products \u003cbr\u003e5.4.1 Plastic Packages \u003cbr\u003e5.4.2 Metal Packages \u003cbr\u003e5.4.3 Paper and Paper-based Packages \u003cbr\u003e5.4.4 Glass Packages \u003cbr\u003e5.4.5 Coupled Packages \u003cbr\u003e5.5 Other Food Products \u003cbr\u003e\u003cbr\u003e6 Analytical Methods for Food Products \u003cbr\u003e6.1 Chemical Analyses \u003cbr\u003e6.1.1 The Evaluation of Chemical Risks \u003cbr\u003e6.2 Microbiological Analyses \u003cbr\u003e6.2.1 Total Viable Count \u003cbr\u003e6.2.2 Food Alterations: Microbial Markers \u003cbr\u003e6.2.3 Pathogenic Microorganisms \u003cbr\u003e6.3 Detection of Foreign Substances \u003cbr\u003e6.4 Evaluation of Shelf Life Values \u003cbr\u003e\u003cbr\u003e7 Analytical and Testing Methods for Food Packaging \u003cbr\u003e7.1 Chemical Analyses \u003cbr\u003e7.2 Mechanical Tests \u003cbr\u003e7.3 Thermal Testing - Sterilisation and Other Treatments \u003cbr\u003e7.4 Other Simple Testing Methods \u003cbr\u003e\u003cbr\u003e8 Legal Requirements for Food Products and Packaging Materials in the European Union \u003cbr\u003e8.1 Food Products - Hygiene and Safety Requirements in the European Union \u003cbr\u003e8.2 Food Packaging - Legal Requirements in the European Union \u003cbr\u003e\u003cbr\u003e9 Conceptual Barriers between Packaging Producers and Food Industries: \u003cbr\u003eProposals for a ‘Second Level’ Quality Control \u003cbr\u003e9.1 Food Operators and their Competence in Packaging\u003cbr\u003e9.2 Collaborative Design of Packaging Materials \u003cbr\u003e9.3 Food Industries Needs New Approaches about Quality Control for Accessory Materials \u003cbr\u003e\u003cbr\u003e10 Food Packaging for Dairy Products \u003cbr\u003e10.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e10.1.1 Food Packaging Failures and Food Products: A Short Discussion about the Assessment of Technological Suitability \u003cbr\u003e10.1.2 Food Packaging Failures and Food Products: Sampling Plans and Simplified Advice \u003cbr\u003e10.1.3 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e10.1.3.1 Defective Closure and Sealing (Different Causes and Damages) . \u003cbr\u003e10.1.3.2 Migration of Macroscopic and Microscopic Bodies and Particles from Food Packaging Materials to Foods (Different Causes and Damages) \u003cbr\u003e10.1.3.3 Migration of Printing Inks (Ghosting Effect and Similar Situations) \u003cbr\u003e10.1.3.4 Superficial Damage and Ageing Correlation \u003cbr\u003e10.1.4 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e10.1.4.1 Superficial Damage, Microscopic Fractures, Scratches, Micro-bubbles and Dewetting. \u003cbr\u003e10.1.4.2 Presence of Foreign Bodies (Different Causes) \u003cbr\u003e10.1.4.3 Ghosting Effect \u003cbr\u003e10.1.4.4 Different Colorimetric Variations \u003cbr\u003e10.1.4.5 Workability Failures \u003cbr\u003e10.1.5 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e10.1.5.1 Excessive Rigidity of Cellulosic Materials \u003cbr\u003e10.1.5.2 Colorimetric Variations \u003cbr\u003e10.1.5.3 Paper Wrinkling \u003cbr\u003e10.1.5.4 Ghosting Effect \u003cbr\u003e10.1.5.5 Bleeding Effect \u003cbr\u003e10.1.5.6 Adhesion Defects (or Excessive Dripping) \u003cbr\u003e10.1.5.7 Paper Pulverisation \u003cbr\u003e10.1.5.8 Final Thoughts about Paper Food Packaging Materials \u003cbr\u003e10.1.6 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e10.1.6.1 Micro-bubbling \u003cbr\u003e10.1.6.2 Scratches \u003cbr\u003e10.1.6.3 Micro Fractures \u003cbr\u003e10.1.6.4 Macro Fractures \u003cbr\u003e10.1.6.5 Final Considerations: Other Failures \u003cbr\u003e10.2 Microbiological Contamination \u003cbr\u003e10.3 Hybrid Tests \u003cbr\u003e10.3.1 A Necessary Premise \u003cbr\u003e10.3.2 Workability Testing Methods \u003cbr\u003e10.3.2.1 Abrasion Test according to Parisi - Method for the Evaluation of the Laceration of Rigid Boxes for MAP Packed Cheeses \u003cbr\u003e10.3.2.1.1 Objective \u003cbr\u003e10.3.2.1.2 Preliminary Note \u003cbr\u003e10.3.2.1.3 Materials \u003cbr\u003e10.3.2.1.4 Method \u003cbr\u003e10.3.2.1.5 Evaluation of Results \u003cbr\u003e10.3.2.1.6 Final Observations \u003cbr\u003e10.3.3 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e10.3.3.1 Evaluation of Hydric Apparent Absorption and Related Modifications in Packed Cheeses with Different Food Packaging Materials (Comparison Test) \u003cbr\u003e10.3.3.1.1 Objective \u003cbr\u003e10.3.3.1.2 Preliminary Note \u003cbr\u003e10.3.3.1.3 Materials \u003cbr\u003e10.3.3.1.4 Method \u003cbr\u003e10.3.3.1.5 Evaluation of Results \u003cbr\u003e10.3.3.1.6 Final Observations \u003cbr\u003e10.3.4 Estimation of Shelf Life for Integrated Food Products (Comparison Test) \u003cbr\u003e10.3.4.1 Variation of Shelf Life Values in Packed, Semi-hard Cheeses in Relation to the Use of Different Food Packaging Materials \u003cbr\u003e10.3.4.1.1 Objective \u003cbr\u003e10.3.4.1.2 Preliminary Note \u003cbr\u003e10.3.4.1.3 Materials \u003cbr\u003e10.3.4.1.4 Method \u003cbr\u003e10.3.4.1.5 Evaluation of Results \u003cbr\u003e10.3.4.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e10.3.4.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e10.3.4.1.6 Final Observations\u003cbr\u003e10.4 Digital Image Analysis and Processing \u003cbr\u003e10.4.1 Colorimetry \u003cbr\u003e10.4.2 Digital Acquisition and Interpretation of Pictures \u003cbr\u003e10.4.3 Image Analysis and Processing - Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.4 Image Analysis and Processing - Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e10.4.5 Image Analysis and Processing: Practical Examples\u003cbr\u003e10.4.5.1 Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.5.2 Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e\u003cbr\u003e11 Food Packaging for Meat and Meat-based Foods \u003cbr\u003e11.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e11.1.1 Food Packaging Failures and Meat Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e11.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e11.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e11.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect\u003cbr\u003e11.1.1.4 Possible Fractures of Edible and Plastic Casings \u003cbr\u003e11.1.2 Food Packaging Failures and Meat Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e11.1.2.1 Superficial Damages, Microscopic Fractures, Scratches, Micro-bubbles, Dewetting\u003cbr\u003e11.1.2.2 External Lithography and Related Defects \u003cbr\u003e11.1.3 Food Packaging Failures and Meat Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e11.1.3.1 Colorimetric Variations \u003cbr\u003e11.1.3.2 Paper Pulverisation \u003cbr\u003e11.1.4 Food Packaging Failures and Meat Products - Visually Detectable Failures: Glass-Based Packages \u003cbr\u003e11.1.4.1 Micro-bubbling \u003cbr\u003e11.2 Microbiological Contamination \u003cbr\u003e11.3 Hybrid Tests \u003cbr\u003e11.3.1 Workability Testing Methods \u003cbr\u003e11.3.1.1 Method for the Evaluation of Impact Resistance of Infrangible Glass Containers (Final Use: Pasteurised Meat Preparations) \u003cbr\u003e11.3.1.1.1 Objective \u003cbr\u003e11.3.1.1.2 Preliminary Note \u003cbr\u003e11.3.1.1.3 Materials \u003cbr\u003e11.3.1.1.4 Method \u003cbr\u003e11.3.1.1.5 Evaluation of Results \u003cbr\u003e11.3.1.1.6 Final Observations \u003cbr\u003e11.3.2 ‘Performance’ Estimation for Integrated Food Products\u003cbr\u003e11.3.3 Estimation of the Shelf Life for Integrated Meat Products (Comparison Test) \u003cbr\u003e11.3.3.1 Variation of Shelf Life Values in Modified Atmosphere Packaging Fresh Meats with the Use of Different Food Packaging Materials \u003cbr\u003e11.3.3.1.1 Objective \u003cbr\u003e11.3.3.1.2 Preliminary Note \u003cbr\u003e11.3.3.1.3 Materials \u003cbr\u003e11.3.3.1.4 Method \u003cbr\u003e11.3.3.1.5 Evaluation of Results \u003cbr\u003e11.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e11.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e11.3.3.1.6 Final Observations\u003cbr\u003e\u003cbr\u003e12 Food Packaging for Fish Products \u003cbr\u003e12.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e12.1.1 Food Packaging Failures and Fish Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e12.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e12.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e12.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect \u003cbr\u003e12.1.1.4 Micro-bubbling and Bursting \u003cbr\u003e12.1.2 Food Packaging Failures and Fish Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e12.1.2.1 Canned Fish and Vegetable Products - Specific Colorimetric Variations\u003cbr\u003e12.1.3 Food Packaging Failures and Fish Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e12.1.4 Food Packaging Failures and Fish Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e12.2 Microbiological Contamination \u003cbr\u003e12.3 Hybrid Tests \u003cbr\u003e12.3.1 Workability Testing Methods \u003cbr\u003e12.3.1.1 Delamination Test on Sealable Polycoupled Packages (Easy Peel Pouches) for Tuna Fish \u003cbr\u003ein Water \u003cbr\u003e12.3.1.1.1 Objective \u003cbr\u003e12.3.1.1.2 Preliminary Note \u003cbr\u003e12.3.1.1.3 Materials \u003cbr\u003e12.3.1.1.4 Method \u003cbr\u003e12.3.1.1.5 Evaluation of Results \u003cbr\u003e12.3.1.1.6 Final Observations \u003cbr\u003e12.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e12.3.3 Estimation of Shelf Life for Integrated Fish Products (Comparison Test) \u003cbr\u003e12.3.3.1 Variation of Shelf Life Values in Vacuum Packed and Frozen Fish in Relation to the \u003cbr\u003eUse of Different Food Packaging Materials \u003cbr\u003e12.3.3.1.1 Objective \u003cbr\u003e12.3.3.1.2 Preliminary Note \u003cbr\u003e12.3.3.1.3 Materials \u003cbr\u003e12.3.3.1.4 Method \u003cbr\u003e12.3.3.1.5 Evaluation of Results \u003cbr\u003e12.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value \u003cbr\u003e12.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e12.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e13 Food Packaging for Fruits, Vegetables and Canned Foods \u003cbr\u003e13.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e13.1.1 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e13.1.2 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e13.1.2.1 Specific Colorimetric Variations \u003cbr\u003e13.1.3 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e13.1.4 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e13.2 Microbiological Contamination \u003cbr\u003e13.3 Hybrid Tests \u003cbr\u003e13.3.1 Workability Testing Methods \u003cbr\u003e13.3.1.1 Sterilisation Test on Metal Cans for Double Concentrated Tomato Sauce \u003cbr\u003e13.3.1.1.1 Objective \u003cbr\u003e13.3.1.1.2 Preliminary Note \u003cbr\u003e13.3.1.1.3 Materials \u003cbr\u003e13.3.1.1.4 Method \u003cbr\u003e13.3.1.1.5 Evaluation of Results \u003cbr\u003e13.3.1.1.6 Final Observations \u003cbr\u003e13.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e13.3.3 Estimation of Shelf Life for Integrated Products (Comparison Test) \u003cbr\u003e13.3.3.1 Variation of Shelf Life Values in Canned Peas with Reference to the Use of Different Food Packaging Materials\u003cbr\u003e13.3.3.1.1 Objective\u003cbr\u003e13.3.3.1.2 Preliminary Note \u003cbr\u003e13.3.3.1.3 Materials \u003cbr\u003e13.3.3.1.4 Method \u003cbr\u003e13.3.3.1.5 Evaluation of Results \u003cbr\u003e13.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e14 Food Packaging for Other Food Products \u003cbr\u003e14.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e14.1.1 Smart Packages \u003cbr\u003e14.1.1.1 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (High Sensibility)\u003cbr\u003e14.1.1.1.1 Objective \u003cbr\u003e14.1.1.1.2 Materials \u003cbr\u003e14.1.1.1.3 Method \u003cbr\u003e14.1.1.1.4 Evaluation of Results \u003cbr\u003e14.1.1.2 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (Low Sensibility) \u003cbr\u003e14.1.1.2.1 Objective \u003cbr\u003e14.1.1.2.2 Materials \u003cbr\u003e14.1.1.2.3 Method \u003cbr\u003e14.1.1.2.4 Evaluation of Results \u003cbr\u003e14.2 Microbiological Contamination \u003cbr\u003e14.3 Hybrid Tests \u003cbr\u003e\u003cbr\u003e15 Conclusions \u003cbr\u003e15.1 Food Producers Will Need More Training \u003cbr\u003e15.2 Will Official Regulations Follow Voluntary Testing Methods? \u003cbr\u003e15.3 Performance-Oriented Guidelines - Perspectives for Advanced Training in Academia \u003cbr\u003e15.4 The Viewpoint of Certification Bodies \u003cbr\u003eAppendix 1 List of Accredited Organisations with Recognised Authority \u003cbr\u003e(Analytical Testing Methods)\u003cbr\u003eAbbreviations \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","environment","food","formulation","health","management system","microbiology","p-applications","packaging","polymer","quality","quality control"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378438084,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Food Industry and Packaging Materials - Performance-oriented Guidelines for Users","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356093","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787","options":["Title"],"media":[{"alt":null,"id":354808594525,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9781847356093 \u003cbr\u003e\u003cbr\u003epage 398\n\u003ch5\u003eSummary\u003c\/h5\u003e\nQuality inspection of packaging materials is a difficult task for food producers because the technical tests for packaging are mainly designed to measure the 'performance' of materials in relation to their chemical formulation, processing data, and intended uses. This may be difficult for food producers because their knowledge is essentially orientated to the performance of the final products (the packaged food).\u003cbr\u003e\u003cbr\u003eHowever, the assessment of the suitability of food packaging materials has to be legally demonstrated by food producers in the European Union.\u003cbr\u003e\u003cbr\u003eThis book provides detailed and comprehensible information about Quality Control (QC) in the industry. Different viewpoints are explained in relation to food companies, packaging producers, and technical experts, including regulatory aspects. One of the most important steps is the comprehension of QC failures in relation to the ‘food product’ (food\/packaging).\u003cbr\u003e\u003cbr\u003eThe book also presents a detailed selection of proposals about new testing methods. On the basis of regulatory obligations in the EU about the technological suitability of food packaging materials, a list of ‘performance-oriented’ guidelines is proposed. Food sectors are mentioned in relation to products, related packaging materials, known failures and existing quality control procedures.\u003cbr\u003e\u003cbr\u003eThis volume serves as a practical guide on food packaging and QC methods and a quick reference to food operators, official safety inspectors, public health institutions, Certification bodies, students and researchers from the academia and the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 The Essential Role of Quality Control Procedures: General Principles.\u003cbr\u003e1.1 Basic Concepts for Quality Control \u003cbr\u003e1.1.1 Quality in the Food and Beverage Field \u003cbr\u003e1.1.2 Quality: Management Systems and Control-based Procedures \u003cbr\u003e1.2 Statistical Consideration: Sampling Plans \u003cbr\u003e1.2.1 Influence of Numbers \u003cbr\u003e1.2.2 Influence of Analytical Results \u003cbr\u003e1.3 Quality Control and Economic Sustainability \u003cbr\u003e1.4 The Quality Control Team: Organisation, Duties, and Responsibilities \u003cbr\u003e\u003cbr\u003e2 Differences between Food Companies and Other Industries: Safety Concepts \u003cbr\u003e2.1 Quality in the Food Industry: Hazard Analysis and Critical \u003cbr\u003eControl Points and Different Risk Levels \u003cbr\u003e2.2 Quality in Chemical Industries: The Analytical Approach \u003cbr\u003e2.3 Quality in Manufacturing Industries: The Packaging \u003cbr\u003e2.4 Theory of Food Packaging and Practical Considerations\u003cbr\u003e2.5 Quality in Packaging Industries: Hybrid Testing Methods \u003cbr\u003e\u003cbr\u003e3 Food Industries: Chemistry, Microbiology, and Safety of Related Products \u003cbr\u003e3.1 Chemistry of Food Products - General Considerations \u003cbr\u003e3.1.1 Food Technology of Commerce - Standardisation of Production, Packing and Storage Processes\u003cbr\u003e3.1.2 Relation between Sensory Features and Chemical Composition \u003cbr\u003e3.1.3 Preventive Definition of Chemical and Microbiological Modifications \u003cbr\u003e3.1.4 Evaluation of Food Products - Chemical Contamination \u003cbr\u003e3.2 Microbiology of Food Products - Technological Implications \u003cbr\u003e3.3 Microbiology and Safety \u003cbr\u003e3.3.1 Microbiological Quality: Microbial Markers \u003cbr\u003e3.3.2 Pathogenic Bacteria \u003cbr\u003e3.4 Other Hazard Analysis and Critical Control Points Risks \u003cbr\u003e3.5 Food Alterations: The Problem of Shelf Life Assessment \u003cbr\u003e\u003cbr\u003e4 Packaging Industries: Chemistry and Technology of Packaging Materials \u003cbr\u003e4.1 Plastic Packaging \u003cbr\u003e4.2 Metal Packaging \u003cbr\u003e4.2.1 Metal Packages: General Features \u003cbr\u003e4.2.2 Metal Packaging: Production and Technology \u003cbr\u003e4.2.3 Metal Packages: The Metallic Support \u003cbr\u003e4.2.4 Plastic Coatings \u003cbr\u003e4.3 Paper and Paper-based Packaging \u003cbr\u003e4.4 Glass-based Packages \u003cbr\u003e4.5 Coupled Packages \u003cbr\u003e4.6 Smart and Intelligent Packages \u003cbr\u003e4.6.1 Active Packages \u003cbr\u003e4.6.2 Intelligent Packages \u003cbr\u003e\u003cbr\u003e5 Packaging and Processing Methods in the Food Industry: Most Common Failures \u003cbr\u003e5.1 Vegetables and Canned Foods \u003cbr\u003e5.1.1 Plastic Packages \u003cbr\u003e5.1.2 Metal Packages \u003cbr\u003e5.1.3 Paper and Paper-based Packages \u003cbr\u003e5.1.4 Glass Packages \u003cbr\u003e5.1.5 Polycoupled Packages \u003cbr\u003e5.1.6 Smart Packages \u003cbr\u003e5.2 Meat Foods \u003cbr\u003e5.2.1 Plastic Packages \u003cbr\u003e5.2.2 Metal Packages \u003cbr\u003e5.2.3 Paper and Paper-based Packages \u003cbr\u003e5.2.4 Glass Packages \u003cbr\u003e5.2.5 Coupled Packages \u003cbr\u003e5.2.6 Smart and Intelligent Packages \u003cbr\u003e5.3 Dairy Products \u003cbr\u003e5.3.1 Plastic Packages \u003cbr\u003e5.3.2 Metal Packages \u003cbr\u003e5.3.3 Paper and Paper-based Packages \u003cbr\u003e5.3.4 Glass Packages \u003cbr\u003e5.3.5 Coupled Packages \u003cbr\u003e5.4 Fish Products \u003cbr\u003e5.4.1 Plastic Packages \u003cbr\u003e5.4.2 Metal Packages \u003cbr\u003e5.4.3 Paper and Paper-based Packages \u003cbr\u003e5.4.4 Glass Packages \u003cbr\u003e5.4.5 Coupled Packages \u003cbr\u003e5.5 Other Food Products \u003cbr\u003e\u003cbr\u003e6 Analytical Methods for Food Products \u003cbr\u003e6.1 Chemical Analyses \u003cbr\u003e6.1.1 The Evaluation of Chemical Risks \u003cbr\u003e6.2 Microbiological Analyses \u003cbr\u003e6.2.1 Total Viable Count \u003cbr\u003e6.2.2 Food Alterations: Microbial Markers \u003cbr\u003e6.2.3 Pathogenic Microorganisms \u003cbr\u003e6.3 Detection of Foreign Substances \u003cbr\u003e6.4 Evaluation of Shelf Life Values \u003cbr\u003e\u003cbr\u003e7 Analytical and Testing Methods for Food Packaging \u003cbr\u003e7.1 Chemical Analyses \u003cbr\u003e7.2 Mechanical Tests \u003cbr\u003e7.3 Thermal Testing - Sterilisation and Other Treatments \u003cbr\u003e7.4 Other Simple Testing Methods \u003cbr\u003e\u003cbr\u003e8 Legal Requirements for Food Products and Packaging Materials in the European Union \u003cbr\u003e8.1 Food Products - Hygiene and Safety Requirements in the European Union \u003cbr\u003e8.2 Food Packaging - Legal Requirements in the European Union \u003cbr\u003e\u003cbr\u003e9 Conceptual Barriers between Packaging Producers and Food Industries: \u003cbr\u003eProposals for a ‘Second Level’ Quality Control \u003cbr\u003e9.1 Food Operators and their Competence in Packaging\u003cbr\u003e9.2 Collaborative Design of Packaging Materials \u003cbr\u003e9.3 Food Industries Needs New Approaches about Quality Control for Accessory Materials \u003cbr\u003e\u003cbr\u003e10 Food Packaging for Dairy Products \u003cbr\u003e10.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e10.1.1 Food Packaging Failures and Food Products: A Short Discussion about the Assessment of Technological Suitability \u003cbr\u003e10.1.2 Food Packaging Failures and Food Products: Sampling Plans and Simplified Advice \u003cbr\u003e10.1.3 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e10.1.3.1 Defective Closure and Sealing (Different Causes and Damages) . \u003cbr\u003e10.1.3.2 Migration of Macroscopic and Microscopic Bodies and Particles from Food Packaging Materials to Foods (Different Causes and Damages) \u003cbr\u003e10.1.3.3 Migration of Printing Inks (Ghosting Effect and Similar Situations) \u003cbr\u003e10.1.3.4 Superficial Damage and Ageing Correlation \u003cbr\u003e10.1.4 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e10.1.4.1 Superficial Damage, Microscopic Fractures, Scratches, Micro-bubbles and Dewetting. \u003cbr\u003e10.1.4.2 Presence of Foreign Bodies (Different Causes) \u003cbr\u003e10.1.4.3 Ghosting Effect \u003cbr\u003e10.1.4.4 Different Colorimetric Variations \u003cbr\u003e10.1.4.5 Workability Failures \u003cbr\u003e10.1.5 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e10.1.5.1 Excessive Rigidity of Cellulosic Materials \u003cbr\u003e10.1.5.2 Colorimetric Variations \u003cbr\u003e10.1.5.3 Paper Wrinkling \u003cbr\u003e10.1.5.4 Ghosting Effect \u003cbr\u003e10.1.5.5 Bleeding Effect \u003cbr\u003e10.1.5.6 Adhesion Defects (or Excessive Dripping) \u003cbr\u003e10.1.5.7 Paper Pulverisation \u003cbr\u003e10.1.5.8 Final Thoughts about Paper Food Packaging Materials \u003cbr\u003e10.1.6 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e10.1.6.1 Micro-bubbling \u003cbr\u003e10.1.6.2 Scratches \u003cbr\u003e10.1.6.3 Micro Fractures \u003cbr\u003e10.1.6.4 Macro Fractures \u003cbr\u003e10.1.6.5 Final Considerations: Other Failures \u003cbr\u003e10.2 Microbiological Contamination \u003cbr\u003e10.3 Hybrid Tests \u003cbr\u003e10.3.1 A Necessary Premise \u003cbr\u003e10.3.2 Workability Testing Methods \u003cbr\u003e10.3.2.1 Abrasion Test according to Parisi - Method for the Evaluation of the Laceration of Rigid Boxes for MAP Packed Cheeses \u003cbr\u003e10.3.2.1.1 Objective \u003cbr\u003e10.3.2.1.2 Preliminary Note \u003cbr\u003e10.3.2.1.3 Materials \u003cbr\u003e10.3.2.1.4 Method \u003cbr\u003e10.3.2.1.5 Evaluation of Results \u003cbr\u003e10.3.2.1.6 Final Observations \u003cbr\u003e10.3.3 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e10.3.3.1 Evaluation of Hydric Apparent Absorption and Related Modifications in Packed Cheeses with Different Food Packaging Materials (Comparison Test) \u003cbr\u003e10.3.3.1.1 Objective \u003cbr\u003e10.3.3.1.2 Preliminary Note \u003cbr\u003e10.3.3.1.3 Materials \u003cbr\u003e10.3.3.1.4 Method \u003cbr\u003e10.3.3.1.5 Evaluation of Results \u003cbr\u003e10.3.3.1.6 Final Observations \u003cbr\u003e10.3.4 Estimation of Shelf Life for Integrated Food Products (Comparison Test) \u003cbr\u003e10.3.4.1 Variation of Shelf Life Values in Packed, Semi-hard Cheeses in Relation to the Use of Different Food Packaging Materials \u003cbr\u003e10.3.4.1.1 Objective \u003cbr\u003e10.3.4.1.2 Preliminary Note \u003cbr\u003e10.3.4.1.3 Materials \u003cbr\u003e10.3.4.1.4 Method \u003cbr\u003e10.3.4.1.5 Evaluation of Results \u003cbr\u003e10.3.4.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e10.3.4.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e10.3.4.1.6 Final Observations\u003cbr\u003e10.4 Digital Image Analysis and Processing \u003cbr\u003e10.4.1 Colorimetry \u003cbr\u003e10.4.2 Digital Acquisition and Interpretation of Pictures \u003cbr\u003e10.4.3 Image Analysis and Processing - Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.4 Image Analysis and Processing - Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e10.4.5 Image Analysis and Processing: Practical Examples\u003cbr\u003e10.4.5.1 Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.5.2 Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e\u003cbr\u003e11 Food Packaging for Meat and Meat-based Foods \u003cbr\u003e11.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e11.1.1 Food Packaging Failures and Meat Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e11.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e11.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e11.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect\u003cbr\u003e11.1.1.4 Possible Fractures of Edible and Plastic Casings \u003cbr\u003e11.1.2 Food Packaging Failures and Meat Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e11.1.2.1 Superficial Damages, Microscopic Fractures, Scratches, Micro-bubbles, Dewetting\u003cbr\u003e11.1.2.2 External Lithography and Related Defects \u003cbr\u003e11.1.3 Food Packaging Failures and Meat Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e11.1.3.1 Colorimetric Variations \u003cbr\u003e11.1.3.2 Paper Pulverisation \u003cbr\u003e11.1.4 Food Packaging Failures and Meat Products - Visually Detectable Failures: Glass-Based Packages \u003cbr\u003e11.1.4.1 Micro-bubbling \u003cbr\u003e11.2 Microbiological Contamination \u003cbr\u003e11.3 Hybrid Tests \u003cbr\u003e11.3.1 Workability Testing Methods \u003cbr\u003e11.3.1.1 Method for the Evaluation of Impact Resistance of Infrangible Glass Containers (Final Use: Pasteurised Meat Preparations) \u003cbr\u003e11.3.1.1.1 Objective \u003cbr\u003e11.3.1.1.2 Preliminary Note \u003cbr\u003e11.3.1.1.3 Materials \u003cbr\u003e11.3.1.1.4 Method \u003cbr\u003e11.3.1.1.5 Evaluation of Results \u003cbr\u003e11.3.1.1.6 Final Observations \u003cbr\u003e11.3.2 ‘Performance’ Estimation for Integrated Food Products\u003cbr\u003e11.3.3 Estimation of the Shelf Life for Integrated Meat Products (Comparison Test) \u003cbr\u003e11.3.3.1 Variation of Shelf Life Values in Modified Atmosphere Packaging Fresh Meats with the Use of Different Food Packaging Materials \u003cbr\u003e11.3.3.1.1 Objective \u003cbr\u003e11.3.3.1.2 Preliminary Note \u003cbr\u003e11.3.3.1.3 Materials \u003cbr\u003e11.3.3.1.4 Method \u003cbr\u003e11.3.3.1.5 Evaluation of Results \u003cbr\u003e11.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e11.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e11.3.3.1.6 Final Observations\u003cbr\u003e\u003cbr\u003e12 Food Packaging for Fish Products \u003cbr\u003e12.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e12.1.1 Food Packaging Failures and Fish Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e12.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e12.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e12.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect \u003cbr\u003e12.1.1.4 Micro-bubbling and Bursting \u003cbr\u003e12.1.2 Food Packaging Failures and Fish Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e12.1.2.1 Canned Fish and Vegetable Products - Specific Colorimetric Variations\u003cbr\u003e12.1.3 Food Packaging Failures and Fish Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e12.1.4 Food Packaging Failures and Fish Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e12.2 Microbiological Contamination \u003cbr\u003e12.3 Hybrid Tests \u003cbr\u003e12.3.1 Workability Testing Methods \u003cbr\u003e12.3.1.1 Delamination Test on Sealable Polycoupled Packages (Easy Peel Pouches) for Tuna Fish \u003cbr\u003ein Water \u003cbr\u003e12.3.1.1.1 Objective \u003cbr\u003e12.3.1.1.2 Preliminary Note \u003cbr\u003e12.3.1.1.3 Materials \u003cbr\u003e12.3.1.1.4 Method \u003cbr\u003e12.3.1.1.5 Evaluation of Results \u003cbr\u003e12.3.1.1.6 Final Observations \u003cbr\u003e12.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e12.3.3 Estimation of Shelf Life for Integrated Fish Products (Comparison Test) \u003cbr\u003e12.3.3.1 Variation of Shelf Life Values in Vacuum Packed and Frozen Fish in Relation to the \u003cbr\u003eUse of Different Food Packaging Materials \u003cbr\u003e12.3.3.1.1 Objective \u003cbr\u003e12.3.3.1.2 Preliminary Note \u003cbr\u003e12.3.3.1.3 Materials \u003cbr\u003e12.3.3.1.4 Method \u003cbr\u003e12.3.3.1.5 Evaluation of Results \u003cbr\u003e12.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value \u003cbr\u003e12.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e12.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e13 Food Packaging for Fruits, Vegetables and Canned Foods \u003cbr\u003e13.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e13.1.1 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e13.1.2 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e13.1.2.1 Specific Colorimetric Variations \u003cbr\u003e13.1.3 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e13.1.4 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e13.2 Microbiological Contamination \u003cbr\u003e13.3 Hybrid Tests \u003cbr\u003e13.3.1 Workability Testing Methods \u003cbr\u003e13.3.1.1 Sterilisation Test on Metal Cans for Double Concentrated Tomato Sauce \u003cbr\u003e13.3.1.1.1 Objective \u003cbr\u003e13.3.1.1.2 Preliminary Note \u003cbr\u003e13.3.1.1.3 Materials \u003cbr\u003e13.3.1.1.4 Method \u003cbr\u003e13.3.1.1.5 Evaluation of Results \u003cbr\u003e13.3.1.1.6 Final Observations \u003cbr\u003e13.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e13.3.3 Estimation of Shelf Life for Integrated Products (Comparison Test) \u003cbr\u003e13.3.3.1 Variation of Shelf Life Values in Canned Peas with Reference to the Use of Different Food Packaging Materials\u003cbr\u003e13.3.3.1.1 Objective\u003cbr\u003e13.3.3.1.2 Preliminary Note \u003cbr\u003e13.3.3.1.3 Materials \u003cbr\u003e13.3.3.1.4 Method \u003cbr\u003e13.3.3.1.5 Evaluation of Results \u003cbr\u003e13.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e14 Food Packaging for Other Food Products \u003cbr\u003e14.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e14.1.1 Smart Packages \u003cbr\u003e14.1.1.1 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (High Sensibility)\u003cbr\u003e14.1.1.1.1 Objective \u003cbr\u003e14.1.1.1.2 Materials \u003cbr\u003e14.1.1.1.3 Method \u003cbr\u003e14.1.1.1.4 Evaluation of Results \u003cbr\u003e14.1.1.2 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (Low Sensibility) \u003cbr\u003e14.1.1.2.1 Objective \u003cbr\u003e14.1.1.2.2 Materials \u003cbr\u003e14.1.1.2.3 Method \u003cbr\u003e14.1.1.2.4 Evaluation of Results \u003cbr\u003e14.2 Microbiological Contamination \u003cbr\u003e14.3 Hybrid Tests \u003cbr\u003e\u003cbr\u003e15 Conclusions \u003cbr\u003e15.1 Food Producers Will Need More Training \u003cbr\u003e15.2 Will Official Regulations Follow Voluntary Testing Methods? \u003cbr\u003e15.3 Performance-Oriented Guidelines - Perspectives for Advanced Training in Academia \u003cbr\u003e15.4 The Viewpoint of Certification Bodies \u003cbr\u003eAppendix 1 List of Accredited Organisations with Recognised Authority \u003cbr\u003e(Analytical Testing Methods)\u003cbr\u003eAbbreviations \u003cbr\u003eIndex"}
Food Packaging and Foo...
$205.00
{"id":11242251460,"title":"Food Packaging and Food Alterations: The User-oriented Approach","handle":"9871847356062","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9871847356062 \u003cbr\u003e\u003cbr\u003eSoft or Hard Cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe so-called HACCP (Hazard Analysis and Critical Control Points) acronym is well known in the food industry in relation to the management of microbiological, chemical and physical risks. With relation to HACCP risks, packaging materials should be studied and recognized as one of the key factors affecting food safety.\u003cbr\u003e\u003cbr\u003eHACCP studies seem to highlight the role of food productions. On the other hand, detailed information about packaging materials is needed. This lack of information is very evident for Official Inspectors (Hygiene and Preventive Medicine), Veterinary Auditors and Food Operators. Consequently, the role of food packaging is known but its implications are often difficult to be understood.\u003cbr\u003e\u003cbr\u003eThe first objective of this title is to provide detailed and comprehensible information about packaging materials. Food Operators and Official Inspectors are not accustomed to understanding similar concepts (chemical and physical properties, marketing, QC failures). Consequently, a descriptive approach will be used to explain the world of packaging materials, differences between various packaging categories\/subclasses and regulatory implications (REACH, BRC-IoP, etc.).\u003cbr\u003e\u003cbr\u003eThe second objective is to provide the reader with a detailed selection of food failures and different causes:\u003cbr\u003e\u003cbr\u003e- The incorrect design of package materials, or\u003cbr\u003e\u003cbr\u003e- The incorrect storage and use of package materials, or\u003cbr\u003e\u003cbr\u003e- Lack of technical information, or\u003cbr\u003e\u003cbr\u003e- Synergetic effects (packaging \u0026amp; food-related causes).\u003cbr\u003e\u003cbr\u003eEvery situation is described and analysed with the aim to provide a reliable diagnosis of the problem (microbial spreading, alteration of shelf-life values, unpleasant appearance, possible safety problems).\u003cbr\u003e\u003cbr\u003eThis volume is intended as a practical guide on food packaging and HACCP implications and a quick reference to Official Safety Inspection bodies, students and researchers from academia and industry.","published_at":"2017-06-22T21:15:19-04:00","created_at":"2017-06-22T21:15:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","food","food safety","HACCP","p-applications","package materials","packaging","synergetic affects"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378479428,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Food Packaging and Food Alterations: The User-oriented Approach","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9871847356062","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9871847356062.jpg?v=1499386830"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9871847356062.jpg?v=1499386830","options":["Title"],"media":[{"alt":null,"id":354808660061,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9871847356062.jpg?v=1499386830"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9871847356062.jpg?v=1499386830","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9871847356062 \u003cbr\u003e\u003cbr\u003eSoft or Hard Cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe so-called HACCP (Hazard Analysis and Critical Control Points) acronym is well known in the food industry in relation to the management of microbiological, chemical and physical risks. With relation to HACCP risks, packaging materials should be studied and recognized as one of the key factors affecting food safety.\u003cbr\u003e\u003cbr\u003eHACCP studies seem to highlight the role of food productions. On the other hand, detailed information about packaging materials is needed. This lack of information is very evident for Official Inspectors (Hygiene and Preventive Medicine), Veterinary Auditors and Food Operators. Consequently, the role of food packaging is known but its implications are often difficult to be understood.\u003cbr\u003e\u003cbr\u003eThe first objective of this title is to provide detailed and comprehensible information about packaging materials. Food Operators and Official Inspectors are not accustomed to understanding similar concepts (chemical and physical properties, marketing, QC failures). Consequently, a descriptive approach will be used to explain the world of packaging materials, differences between various packaging categories\/subclasses and regulatory implications (REACH, BRC-IoP, etc.).\u003cbr\u003e\u003cbr\u003eThe second objective is to provide the reader with a detailed selection of food failures and different causes:\u003cbr\u003e\u003cbr\u003e- The incorrect design of package materials, or\u003cbr\u003e\u003cbr\u003e- The incorrect storage and use of package materials, or\u003cbr\u003e\u003cbr\u003e- Lack of technical information, or\u003cbr\u003e\u003cbr\u003e- Synergetic effects (packaging \u0026amp; food-related causes).\u003cbr\u003e\u003cbr\u003eEvery situation is described and analysed with the aim to provide a reliable diagnosis of the problem (microbial spreading, alteration of shelf-life values, unpleasant appearance, possible safety problems).\u003cbr\u003e\u003cbr\u003eThis volume is intended as a practical guide on food packaging and HACCP implications and a quick reference to Official Safety Inspection bodies, students and researchers from academia and industry."}
Geosynthetics
$125.00
{"id":11242214468,"title":"Geosynthetics","handle":"978-1-85957-375-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.I. Cook \u003cbr\u003eISBN 978-1-85957-375-4 \u003cbr\u003e\u003cbr\u003e120 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nGeosynthetics are sheet polymeric materials used in civil engineering. They have been used since the 1970s in geotechnical (soil) structures for functions such as separation, reinforcement, drainage, filtration, liquid containment and as gas barriers. In practice, this has included applications as diverse as reinforcement in the walls of the Pentagon, reservoir liners, canal liners, road reinforcement, retaining walls, sports fields, dams, landfill liners, embankment stabilisation, tree containers, chemical tank liners, and as base and roofing membranes for new buildings. There is an increasing trend to use recyclates in geosynthetics, particularly PET from bottle recovery. \u003cbr\u003e\u003cbr\u003eGeosynthetics often play critical roles in civil engineering and it is important that the materials in use can withstand the physical and chemical pressures of the environment. These range from resistance to leachates from landfill to resistance to root damage in soil liners, as well as standard properties such as resistance to creep, oxidation and UV light, and tensile strength. This has resulted in sets of test standards being developed by the EU, ISO, BSI, and ASTM. Dr. Cook is an expert in the testing of geosynthetics and has covered this area in the review. \u003cbr\u003e\u003cbr\u003eThere are several main categories of geosynthetics: geotextiles, geomembranes, geosynthetic clay liners, geogrids, and geonets. This review discusses the polymers used in each type, production methods, test methods, and applications. \u003cbr\u003e\u003cbr\u003eGeotextiles are permeable fabrics comprising around 75% of all geosynthetics. Globally, 1,400 million square metres are used each year and the trend in consumption is upwards. Polypropylene comprises the bulk of this with polyester as the second most commonly used material, Polymer properties and economics decide on the material choice. Natural fibres are being used where durability is less important. \u003cbr\u003e\u003cbr\u003eGeomembranes are thin flexible sheets with very low permeability. They are used as barriers to the passage of gases of liquids. Butyl rubber was the first material used, but now PVC and polyethylene are the most common materials. Uses include landfill odour control, facing dams and reservoir liners. \u003cbr\u003e\u003cbr\u003eGeosynthetic clay liners are structures containing a clay layer and used as water barriers. Thus the main component is a clay mineral, bentonite. They can be used instead of geomembranes or as a second line of defense to geomembranes. \u003cbr\u003e\u003cbr\u003eGeogrids are sheets of tensile elements with a regular network of apertures, usually constructed of polyethylene, polypropylene or polyester. The most common use is for reinforcement of unstable soil and waste masses. \u003cbr\u003e\u003cbr\u003eGeonets are composite grid constructions used for drainage capabilities. Usually, a geotextile is used as the drainage core with an upper and lower section of geomembrane. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Scope \u003cbr\u003e\u003cbr\u003e2 Introduction to Geosynthetics\u003cbr\u003e2.1 General Description\u003cbr\u003e2.2 History\u003cbr\u003e2.3 Publications \u003cbr\u003e\u003cbr\u003e3 Geotextiles\u003cbr\u003e3.1 Description and Manufacturing\u003cbr\u003e3.1.1 Woven Geotextiles\u003cbr\u003e3.1.2 Non-Woven Geotextiles\u003cbr\u003e3.1.3 Knitted Geotextiles\u003cbr\u003e3.2 Polymers\u003cbr\u003e3.2.1 Polyester\u003cbr\u003e3.2.2 Polypropylene\u003cbr\u003e3.2.3 Polyamide (Nylon)\u003cbr\u003e3.2.4 Polyethylene\u003cbr\u003e3.2.5 Natural Fibres\u003cbr\u003e3.2.6 Comparative Properties\u003cbr\u003e3.3 End Uses\u003cbr\u003e3.4 Testing and Properties of Geotextiles\u003cbr\u003e3.4.1 Tensile and Other Mechanical Properties\u003cbr\u003e3.4.2 Hydraulic Properties\u003cbr\u003e3.4.3 Durability\u003cbr\u003e3.5 Construction Products Directive: CE Marking \u003cbr\u003e\u003cbr\u003e4 Geomembranes\u003cbr\u003e4.1 Description and Manufacturing\u003cbr\u003e4.2 Polymers\u003cbr\u003e4.2.1 Polyethylene\u003cbr\u003e4.2.2 Polyvinyl Chloride (PVC)\u003cbr\u003e4.2.3 Chlorosulfonated Polyethylene (CSPE)\u003cbr\u003e4.2.4 Polypropylene\u003cbr\u003e4.2.5 Ethylene Interpolymer Alloy (EIA)\u003cbr\u003e4.3 End Uses\u003cbr\u003e4.4 Testing and Properties of Geomembranes\u003cbr\u003e4.4.1 Tensile Properties\u003cbr\u003e4.4.2 Durability \u003cbr\u003e\u003cbr\u003e5 Geosynthetic Clay Liners (GCLs)\u003cbr\u003e5.1 Description and Manufacturing\u003cbr\u003e5.2 Polymers and Constituent Materials\u003cbr\u003e5.3 End Uses\u003cbr\u003e5.4 Testing and Properties of GCLs\u003cbr\u003e5.4.1 Hydraulic Conductivity\u003cbr\u003e5.4.2 Friction \u003cbr\u003e\u003cbr\u003e6 Geogrids\u003cbr\u003e6.1 Description and Manufacturing\u003cbr\u003e6.2 Polymers\u003cbr\u003e6.3 End Uses\u003cbr\u003e6.4 Testing and Properties of Geogrids \u003cbr\u003e\u003cbr\u003e7 Geocomposites\u003cbr\u003e7.1 Geonets\u003cbr\u003e7.1.1 End Uses of Geonets\u003cbr\u003e7.1.2 Testing and Properties of Geonets\u003cbr\u003e7.2 Other Geocomposites\u003cbr\u003e7.2.1 Geotextile-Geomembrane Composites\u003cbr\u003e7.2.2 Geomembrane-Geogrid Composites\u003cbr\u003e7.2.3 Geocells\u003cbr\u003e7.2.4 Geotextile-Steel Composites\u003cbr\u003e7.2.5 Geotextile-Bead Composites\u003cbr\u003e7.2.6 Polymeric Fibres\u003cbr\u003e7.2.7 Geofoam\u003cbr\u003e7.2.8 Polyurethane\/Geotextile Composites\u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. David I Cook is a graduate of the Royal Institute of Chemistry. He is a Chartered Chemist and has a PhD in chemistry from UMIST. His career includes work as a Senior Research Scientist for ICI Fibres Ltd., and in the testing of geosynthetics for the British Textile Technology Group for 19 years. He has been a member of the British, European and International geosynthetics standards committee","published_at":"2017-06-22T21:13:22-04:00","created_at":"2017-06-22T21:13:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","acrylic polymers","book","creep","geosynthetics","geotextiles","nylon","oxidation","p-applications","polyamide","polyester","polyethylene","polymeric materials","polymers","polypropylene","soil liners","tensile strength","uses","UV light"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378352324,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Geosynthetics","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-375-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-375-4.jpg?v=1499387007"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-375-4.jpg?v=1499387007","options":["Title"],"media":[{"alt":null,"id":354808922205,"position":1,"preview_image":{"aspect_ratio":0.707,"height":474,"width":335,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-375-4.jpg?v=1499387007"},"aspect_ratio":0.707,"height":474,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-375-4.jpg?v=1499387007","width":335}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.I. Cook \u003cbr\u003eISBN 978-1-85957-375-4 \u003cbr\u003e\u003cbr\u003e120 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nGeosynthetics are sheet polymeric materials used in civil engineering. They have been used since the 1970s in geotechnical (soil) structures for functions such as separation, reinforcement, drainage, filtration, liquid containment and as gas barriers. In practice, this has included applications as diverse as reinforcement in the walls of the Pentagon, reservoir liners, canal liners, road reinforcement, retaining walls, sports fields, dams, landfill liners, embankment stabilisation, tree containers, chemical tank liners, and as base and roofing membranes for new buildings. There is an increasing trend to use recyclates in geosynthetics, particularly PET from bottle recovery. \u003cbr\u003e\u003cbr\u003eGeosynthetics often play critical roles in civil engineering and it is important that the materials in use can withstand the physical and chemical pressures of the environment. These range from resistance to leachates from landfill to resistance to root damage in soil liners, as well as standard properties such as resistance to creep, oxidation and UV light, and tensile strength. This has resulted in sets of test standards being developed by the EU, ISO, BSI, and ASTM. Dr. Cook is an expert in the testing of geosynthetics and has covered this area in the review. \u003cbr\u003e\u003cbr\u003eThere are several main categories of geosynthetics: geotextiles, geomembranes, geosynthetic clay liners, geogrids, and geonets. This review discusses the polymers used in each type, production methods, test methods, and applications. \u003cbr\u003e\u003cbr\u003eGeotextiles are permeable fabrics comprising around 75% of all geosynthetics. Globally, 1,400 million square metres are used each year and the trend in consumption is upwards. Polypropylene comprises the bulk of this with polyester as the second most commonly used material, Polymer properties and economics decide on the material choice. Natural fibres are being used where durability is less important. \u003cbr\u003e\u003cbr\u003eGeomembranes are thin flexible sheets with very low permeability. They are used as barriers to the passage of gases of liquids. Butyl rubber was the first material used, but now PVC and polyethylene are the most common materials. Uses include landfill odour control, facing dams and reservoir liners. \u003cbr\u003e\u003cbr\u003eGeosynthetic clay liners are structures containing a clay layer and used as water barriers. Thus the main component is a clay mineral, bentonite. They can be used instead of geomembranes or as a second line of defense to geomembranes. \u003cbr\u003e\u003cbr\u003eGeogrids are sheets of tensile elements with a regular network of apertures, usually constructed of polyethylene, polypropylene or polyester. The most common use is for reinforcement of unstable soil and waste masses. \u003cbr\u003e\u003cbr\u003eGeonets are composite grid constructions used for drainage capabilities. Usually, a geotextile is used as the drainage core with an upper and lower section of geomembrane. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Scope \u003cbr\u003e\u003cbr\u003e2 Introduction to Geosynthetics\u003cbr\u003e2.1 General Description\u003cbr\u003e2.2 History\u003cbr\u003e2.3 Publications \u003cbr\u003e\u003cbr\u003e3 Geotextiles\u003cbr\u003e3.1 Description and Manufacturing\u003cbr\u003e3.1.1 Woven Geotextiles\u003cbr\u003e3.1.2 Non-Woven Geotextiles\u003cbr\u003e3.1.3 Knitted Geotextiles\u003cbr\u003e3.2 Polymers\u003cbr\u003e3.2.1 Polyester\u003cbr\u003e3.2.2 Polypropylene\u003cbr\u003e3.2.3 Polyamide (Nylon)\u003cbr\u003e3.2.4 Polyethylene\u003cbr\u003e3.2.5 Natural Fibres\u003cbr\u003e3.2.6 Comparative Properties\u003cbr\u003e3.3 End Uses\u003cbr\u003e3.4 Testing and Properties of Geotextiles\u003cbr\u003e3.4.1 Tensile and Other Mechanical Properties\u003cbr\u003e3.4.2 Hydraulic Properties\u003cbr\u003e3.4.3 Durability\u003cbr\u003e3.5 Construction Products Directive: CE Marking \u003cbr\u003e\u003cbr\u003e4 Geomembranes\u003cbr\u003e4.1 Description and Manufacturing\u003cbr\u003e4.2 Polymers\u003cbr\u003e4.2.1 Polyethylene\u003cbr\u003e4.2.2 Polyvinyl Chloride (PVC)\u003cbr\u003e4.2.3 Chlorosulfonated Polyethylene (CSPE)\u003cbr\u003e4.2.4 Polypropylene\u003cbr\u003e4.2.5 Ethylene Interpolymer Alloy (EIA)\u003cbr\u003e4.3 End Uses\u003cbr\u003e4.4 Testing and Properties of Geomembranes\u003cbr\u003e4.4.1 Tensile Properties\u003cbr\u003e4.4.2 Durability \u003cbr\u003e\u003cbr\u003e5 Geosynthetic Clay Liners (GCLs)\u003cbr\u003e5.1 Description and Manufacturing\u003cbr\u003e5.2 Polymers and Constituent Materials\u003cbr\u003e5.3 End Uses\u003cbr\u003e5.4 Testing and Properties of GCLs\u003cbr\u003e5.4.1 Hydraulic Conductivity\u003cbr\u003e5.4.2 Friction \u003cbr\u003e\u003cbr\u003e6 Geogrids\u003cbr\u003e6.1 Description and Manufacturing\u003cbr\u003e6.2 Polymers\u003cbr\u003e6.3 End Uses\u003cbr\u003e6.4 Testing and Properties of Geogrids \u003cbr\u003e\u003cbr\u003e7 Geocomposites\u003cbr\u003e7.1 Geonets\u003cbr\u003e7.1.1 End Uses of Geonets\u003cbr\u003e7.1.2 Testing and Properties of Geonets\u003cbr\u003e7.2 Other Geocomposites\u003cbr\u003e7.2.1 Geotextile-Geomembrane Composites\u003cbr\u003e7.2.2 Geomembrane-Geogrid Composites\u003cbr\u003e7.2.3 Geocells\u003cbr\u003e7.2.4 Geotextile-Steel Composites\u003cbr\u003e7.2.5 Geotextile-Bead Composites\u003cbr\u003e7.2.6 Polymeric Fibres\u003cbr\u003e7.2.7 Geofoam\u003cbr\u003e7.2.8 Polyurethane\/Geotextile Composites\u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. David I Cook is a graduate of the Royal Institute of Chemistry. He is a Chartered Chemist and has a PhD in chemistry from UMIST. His career includes work as a Senior Research Scientist for ICI Fibres Ltd., and in the testing of geosynthetics for the British Textile Technology Group for 19 years. He has been a member of the British, European and International geosynthetics standards committee"}