- Grid List
Filter
Biological and Biomedi...
$139.95
{"id":11242202436,"title":"Biological and Biomedical Coatings Handbook, Processing and Characterization, Volume 1","handle":"978-1-43-984995-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-984995-8 \u003cbr\u003e\u003cbr\u003e456 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003e\u003cbr\u003eConsisting of two volumes—Processing and Characterization and Applications—this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine.\u003cbr\u003e\u003cbr\u003eAn exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses:\u003cbr\u003e\n\u003cli\u003eSynthesis, fabrication, and characterization of nanocoatings\u003c\/li\u003e\n\u003cli\u003eThe sol-gel method and electrophoretic deposition\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite and organically modified coatings\u003c\/li\u003e\n\u003cli\u003eBioceramics and bioactive glass-based coatings\u003c\/li\u003e\n\u003cli\u003eHydrothermal crystallization and self-healing effects\u003c\/li\u003e\n\u003cli\u003ePhysical and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eLayered assembled polyelectrolyte filmsWith chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","bioceramic coating","biomedical coatings","biopolymers","book","coatings","nanocoatings","thin films"],"price":13995,"price_min":13995,"price_max":13995,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378311172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biological and Biomedical Coatings Handbook, Processing and Characterization, Volume 1","public_title":null,"options":["Default Title"],"price":13995,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-43-984995-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242","options":["Title"],"media":[{"alt":null,"id":350157242461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-984995-8 \u003cbr\u003e\u003cbr\u003e456 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003e\u003cbr\u003eConsisting of two volumes—Processing and Characterization and Applications—this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine.\u003cbr\u003e\u003cbr\u003eAn exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses:\u003cbr\u003e\n\u003cli\u003eSynthesis, fabrication, and characterization of nanocoatings\u003c\/li\u003e\n\u003cli\u003eThe sol-gel method and electrophoretic deposition\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite and organically modified coatings\u003c\/li\u003e\n\u003cli\u003eBioceramics and bioactive glass-based coatings\u003c\/li\u003e\n\u003cli\u003eHydrothermal crystallization and self-healing effects\u003c\/li\u003e\n\u003cli\u003ePhysical and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eLayered assembled polyelectrolyte filmsWith chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/li\u003e"}
Biological and Biomedi...
$220.00
{"id":11242203140,"title":"Biological and Biomedical Coatings Handbook, Two-Volume Set","handle":"978-1-43-982125-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-982125-1 \u003cbr\u003e\u003cbr\u003e976 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set explores the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003eThe set covers advances in the latest understanding, design, and performance of biological and biomedical coatings for a vast array of material types, including sol-gel, bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the field of regenerative medicine.\u003cbr\u003eTopics include:\u003cbr\u003e\n\u003cli\u003eImplants and implanted devices\u003c\/li\u003e\n\u003cli\u003eOrganically modified coatings\u003c\/li\u003e\n\u003cli\u003eOrthopedic and dental implants\u003c\/li\u003e\n\u003cli\u003eControl of drug release\u003c\/li\u003e\n\u003cli\u003eBiosensing and bioactive coatings\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydrothermal, physical, and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eImpedance spectroscopy\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite nanocoatings\u003cbr\u003e\u003cbr\u003eWith chapters authored by world experts at the forefront of research in their respective areas, this timely set consists of two volumes—Processing and Characterization and Applications—to cover a subject that is truly fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\u003cbr\u003e\u003cbr\u003e\u003cb\u003eVOLUME 2: Applications (K12270)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eSol-Gel Derived Hydroxyapatite Coatings on Metallic Implants: Characterization, In Vitro and In Vivo Analysis, W. Yongsheng\u003cbr\u003e\u003cbr\u003eAmorphous Carbon Coatings for Biological Applications, S.-E. Ong and S. Zhang\u003cbr\u003e\u003cbr\u003eBiomedical Applications of Carbon-Based Materials, S. Alwarappan, S.R. Singh, and A. Kumar\u003cbr\u003e\u003cbr\u003eImpedance Spectroscopy on Carbon-Based Materials for Biological Application, H. Ye and S. Su\u003cbr\u003e\u003cbr\u003eControl of Drug Release from Coatings: Theories and Methodologies, L. Shang, S. Zhang, S.S. Venkatraman, and H. Du\u003cbr\u003e\u003cbr\u003eRelease-Controlled Coatings, J.Z. Tang and N.P. Rhodes\u003cbr\u003e\u003cbr\u003eOrthopedic and Dental Implant Surfaces and Coatings, R.Z. LeGeros, P.G. Coelho, D. Holmes, F. Dimaano, and J.P. LeGeros\u003cbr\u003e\u003cbr\u003ePiezoelectric Zinc Oxide and Aluminum Nitride Films for Microfluidic and Biosensing Applications, Y. Q. Fu, J.K. Luo, A.J. Flewitt, A.J. Walton, M.P.Y. Desmulliez, and W.I. Milne\u003cbr\u003e\u003cbr\u003eMedical Applications of Sputter-Deposited Shape Memory Alloy Thin Films, Y.Q. Fu, W.M. Huang, and S. Miyazaki\u003cbr\u003e\u003cbr\u003eBioactive Coatings for Implanted Devices, S. Venkatraman, X. Yun, H. Yingying, D. Mondal, and L.K. Lin\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/div\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:12:47-04:00","created_at":"2017-06-22T21:12:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","bioactive coatings","biomedical coatings","biopolymers","book","controldrug release","nanocoatings","thin films"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378315908,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biological and Biomedical Coatings Handbook, Two-Volume Set","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-43-982125-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-982125-1.jpg?v=1499724251"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-982125-1.jpg?v=1499724251","options":["Title"],"media":[{"alt":null,"id":350157340765,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-982125-1.jpg?v=1499724251"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-982125-1.jpg?v=1499724251","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-982125-1 \u003cbr\u003e\u003cbr\u003e976 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set explores the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003eThe set covers advances in the latest understanding, design, and performance of biological and biomedical coatings for a vast array of material types, including sol-gel, bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the field of regenerative medicine.\u003cbr\u003eTopics include:\u003cbr\u003e\n\u003cli\u003eImplants and implanted devices\u003c\/li\u003e\n\u003cli\u003eOrganically modified coatings\u003c\/li\u003e\n\u003cli\u003eOrthopedic and dental implants\u003c\/li\u003e\n\u003cli\u003eControl of drug release\u003c\/li\u003e\n\u003cli\u003eBiosensing and bioactive coatings\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydrothermal, physical, and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eImpedance spectroscopy\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite nanocoatings\u003cbr\u003e\u003cbr\u003eWith chapters authored by world experts at the forefront of research in their respective areas, this timely set consists of two volumes—Processing and Characterization and Applications—to cover a subject that is truly fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\u003cbr\u003e\u003cbr\u003e\u003cb\u003eVOLUME 2: Applications (K12270)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eSol-Gel Derived Hydroxyapatite Coatings on Metallic Implants: Characterization, In Vitro and In Vivo Analysis, W. Yongsheng\u003cbr\u003e\u003cbr\u003eAmorphous Carbon Coatings for Biological Applications, S.-E. Ong and S. Zhang\u003cbr\u003e\u003cbr\u003eBiomedical Applications of Carbon-Based Materials, S. Alwarappan, S.R. Singh, and A. Kumar\u003cbr\u003e\u003cbr\u003eImpedance Spectroscopy on Carbon-Based Materials for Biological Application, H. Ye and S. Su\u003cbr\u003e\u003cbr\u003eControl of Drug Release from Coatings: Theories and Methodologies, L. Shang, S. Zhang, S.S. Venkatraman, and H. Du\u003cbr\u003e\u003cbr\u003eRelease-Controlled Coatings, J.Z. Tang and N.P. Rhodes\u003cbr\u003e\u003cbr\u003eOrthopedic and Dental Implant Surfaces and Coatings, R.Z. LeGeros, P.G. Coelho, D. Holmes, F. Dimaano, and J.P. LeGeros\u003cbr\u003e\u003cbr\u003ePiezoelectric Zinc Oxide and Aluminum Nitride Films for Microfluidic and Biosensing Applications, Y. Q. Fu, J.K. Luo, A.J. Flewitt, A.J. Walton, M.P.Y. Desmulliez, and W.I. Milne\u003cbr\u003e\u003cbr\u003eMedical Applications of Sputter-Deposited Shape Memory Alloy Thin Films, Y.Q. Fu, W.M. Huang, and S. Miyazaki\u003cbr\u003e\u003cbr\u003eBioactive Coatings for Implanted Devices, S. Venkatraman, X. Yun, H. Yingying, D. Mondal, and L.K. Lin\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/div\u003e\n\u003c\/li\u003e"}
Biopolymers
$153.00
{"id":11242200836,"title":"Biopolymers","handle":"978-1-85957-379-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.M. Johnson, L.Y. Mwaikambo and N. Tucker \u003cbr\u003eISBN 978-1-85957-379-2 \u003cbr\u003e\u003cbr\u003epages 158\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe earth has finite resources in terms of fossil origin fuel and a finite capacity for disposal of waste. Biopolymers may offer a solution to both these issues in the long-term. The ideal biopolymer is both of renewable biological origin and biodegradable at the end of its life. In some cases material may be of a biological origin and not readily biodegradable, such as thermosets made from cashew nut shell liquid. On the other hand, polyvinyl alcohol is an example of a polymer of a synthetic origin and biodegradable. \u003cbr\u003e\u003cbr\u003eEnvironmental degradation can involve enzymatic pathways and microorganisms such as bacteria and fungi, or chemical pathways such as hydrolysis. It is important that biopolymers have an adequate life span for applications - their biodegradability makes them ideal for use in resorbable medical products such as sutures, in short-term packaging applications for fast foods and fresh groceries, and for sanitary uses. \u003cbr\u003e\u003cbr\u003eThis review sets out to examine the current trends in biopolymer science. The different types of biological polymers are discussed. The chemistry and synthesis of some key biopolymers is described, including cellulose, hemicellulose, starch, polyhydroxyalkanoates (of bacterial origin), tannins (polyphenolic plant products), cashew nut shell liquid, rosins (from tree sap), lignin (from wood), and man made polylactides. Many other biopolymers are also being investigated, for example, alginates from seaweed and algae, and proteins such as casein and soybean. The abstracts at the end of this report cover an extensive range of materials and are fully indexed. \u003cbr\u003e\u003cbr\u003eCommercially, bioplastics have proven to be relatively expensive and available only in small quantities. This has lead to limitations on applications to date. However, there are signs that this is changing, with increasing environmental awareness and more stringent legislation regarding recyclability and restrictions on waste disposal. Cargill Dow has a polylactic acid polymer in production (Natureworks). Metabolix has been working on polyhydroxyalkanoates (Biopol). Several companies have been developing starch products such as Avebe, Biop, Earthshell and Midwest Grain Products Inc. Polyols for polyurethane have been obtained from vegetable oils, etc. \u003cbr\u003e\u003cbr\u003eCertification of compostability is now available from DIN CERTCO. The requirements for this standard are discussed in the report. Additives can compromise the environmentally-friendly status of a polymer and must be chosen with care. Thus natural fibre reinforcements are also discussed briefly here. Biocomposites have been developed comprising natural origin polymer matrices and natural fibres, such as sugar cane bagasse and jute. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by over 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Biopolymers\u003cbr\u003e1.2 Biodisintegratables or Biodeteriorating Polymers\u003cbr\u003e1.3 Biodegradability\u003cbr\u003e1.4 Environmental Impact\u003cbr\u003e1.5 Market Size \u003cbr\u003e2. Synthesis of Biopolymers\u003cbr\u003e2.1 Cellulose\u003cbr\u003e2.2 Starch\u003cbr\u003e2.3 Hemicellulose\u003cbr\u003e2.4 Polyhydroxyalkanoates (PHA)\u003cbr\u003e2.5 Tannins\u003cbr\u003e2.6 Cashew Nut Shell Liquid (CNSL)\u003cbr\u003e2.6.1 The Structure of CNSL\u003cbr\u003e2.6.2 Polymer Synthesis of CNSL\u003cbr\u003e2.7 Rosins\u003cbr\u003e2.8 Lignin\u003cbr\u003e2.9 Polylactic Acids and Polylactides\u003cbr\u003e2.10 Other \u003cbr\u003e3. Commercially Available Biopolymers \u003cbr\u003e4. Uses of Biopolymers\u003cbr\u003e4.1 General Uses\u003cbr\u003e4.2 Uses of Specific Polymer Types \u003cbr\u003e5. Manufacturing Technologies for Biopolymers\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Manufacturing Methods\u003cbr\u003e5.3 Additives\u003cbr\u003e5.3.1 Plasticizers\u003cbr\u003e5.3.2 Lubricants\u003cbr\u003e5.3.3 Colorants\u003cbr\u003e5.3.4 Flame Retardants\u003cbr\u003e5.3.5 Blowing (Foaming) Agents\u003cbr\u003e5.3.6 Crosslinkers\u003cbr\u003e5.3.7 Fillers \u003cbr\u003e6. Fillers and Reinforcement for Biopolymers \u003cbr\u003e7.The Markets and Economics for Biopolymers \u003cbr\u003e8.Compostability Certification \u003cbr\u003e9.The Chemistry and Biology of Polymer Degradation \u003cbr\u003e10.Conclusions\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMark Johnson\u003c\/b\u003e is currently reading for a doctorate in Engineering Business Management (EngD) at the University of Warwick. Prior to this he worked as a production engineer in composite fabrication. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry. \u003cbr\u003e\u003cb\u003e\u003cbr\u003eDr. Leonard Mwaikambo\u003c\/b\u003e\u003cbr\u003eholds the post of Lecturer at the Sokoine University of Agriculture, Tanzania, and is currently a Research Fellow in the Department of Chemistry, University of Warwick. His research concerns the development of sustainably produced, recyclable natural fibre composites. He has keen interest in developing matrices based on polymerised natural oils and fats for composite manufacture. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eNick Tucker\u003c\/b\u003e's interest in biopolymers was started by a request from the Rover Group to examine the potential effect of biodegradable polymers on end-of-life vehicle disposal. His current research portfolio now covers the economic manufacture and application of low environmental impact biodegradable composites from sustainable resources. In parallel with these activities, he runs the Sustainable Composites Network with the Biocomposites Centre at the University of Wales, Bangor.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e","published_at":"2017-06-22T21:12:39-04:00","created_at":"2017-06-22T21:12:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","applications","bacterial origin","biodegradability","biodeteriorating polymers","biodisintegratables","biological origin polymers","biopolymers","book","cashew nut shell liquid","cellulose","environmental impact","hemicellulose","lignin","polyhydroxyalkanoates","polylactides","polyphenolic plant products","product properties environmental\/safety issues each technology area. These papers are not contained main conference book. RAPRA Business Machines Appliances","rosins","starch","synthesis","tannins","tree sap"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378307268,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biopolymers","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-379-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953","options":["Title"],"media":[{"alt":null,"id":353911668829,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.M. Johnson, L.Y. Mwaikambo and N. Tucker \u003cbr\u003eISBN 978-1-85957-379-2 \u003cbr\u003e\u003cbr\u003epages 158\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe earth has finite resources in terms of fossil origin fuel and a finite capacity for disposal of waste. Biopolymers may offer a solution to both these issues in the long-term. The ideal biopolymer is both of renewable biological origin and biodegradable at the end of its life. In some cases material may be of a biological origin and not readily biodegradable, such as thermosets made from cashew nut shell liquid. On the other hand, polyvinyl alcohol is an example of a polymer of a synthetic origin and biodegradable. \u003cbr\u003e\u003cbr\u003eEnvironmental degradation can involve enzymatic pathways and microorganisms such as bacteria and fungi, or chemical pathways such as hydrolysis. It is important that biopolymers have an adequate life span for applications - their biodegradability makes them ideal for use in resorbable medical products such as sutures, in short-term packaging applications for fast foods and fresh groceries, and for sanitary uses. \u003cbr\u003e\u003cbr\u003eThis review sets out to examine the current trends in biopolymer science. The different types of biological polymers are discussed. The chemistry and synthesis of some key biopolymers is described, including cellulose, hemicellulose, starch, polyhydroxyalkanoates (of bacterial origin), tannins (polyphenolic plant products), cashew nut shell liquid, rosins (from tree sap), lignin (from wood), and man made polylactides. Many other biopolymers are also being investigated, for example, alginates from seaweed and algae, and proteins such as casein and soybean. The abstracts at the end of this report cover an extensive range of materials and are fully indexed. \u003cbr\u003e\u003cbr\u003eCommercially, bioplastics have proven to be relatively expensive and available only in small quantities. This has lead to limitations on applications to date. However, there are signs that this is changing, with increasing environmental awareness and more stringent legislation regarding recyclability and restrictions on waste disposal. Cargill Dow has a polylactic acid polymer in production (Natureworks). Metabolix has been working on polyhydroxyalkanoates (Biopol). Several companies have been developing starch products such as Avebe, Biop, Earthshell and Midwest Grain Products Inc. Polyols for polyurethane have been obtained from vegetable oils, etc. \u003cbr\u003e\u003cbr\u003eCertification of compostability is now available from DIN CERTCO. The requirements for this standard are discussed in the report. Additives can compromise the environmentally-friendly status of a polymer and must be chosen with care. Thus natural fibre reinforcements are also discussed briefly here. Biocomposites have been developed comprising natural origin polymer matrices and natural fibres, such as sugar cane bagasse and jute. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by over 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Biopolymers\u003cbr\u003e1.2 Biodisintegratables or Biodeteriorating Polymers\u003cbr\u003e1.3 Biodegradability\u003cbr\u003e1.4 Environmental Impact\u003cbr\u003e1.5 Market Size \u003cbr\u003e2. Synthesis of Biopolymers\u003cbr\u003e2.1 Cellulose\u003cbr\u003e2.2 Starch\u003cbr\u003e2.3 Hemicellulose\u003cbr\u003e2.4 Polyhydroxyalkanoates (PHA)\u003cbr\u003e2.5 Tannins\u003cbr\u003e2.6 Cashew Nut Shell Liquid (CNSL)\u003cbr\u003e2.6.1 The Structure of CNSL\u003cbr\u003e2.6.2 Polymer Synthesis of CNSL\u003cbr\u003e2.7 Rosins\u003cbr\u003e2.8 Lignin\u003cbr\u003e2.9 Polylactic Acids and Polylactides\u003cbr\u003e2.10 Other \u003cbr\u003e3. Commercially Available Biopolymers \u003cbr\u003e4. Uses of Biopolymers\u003cbr\u003e4.1 General Uses\u003cbr\u003e4.2 Uses of Specific Polymer Types \u003cbr\u003e5. Manufacturing Technologies for Biopolymers\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Manufacturing Methods\u003cbr\u003e5.3 Additives\u003cbr\u003e5.3.1 Plasticizers\u003cbr\u003e5.3.2 Lubricants\u003cbr\u003e5.3.3 Colorants\u003cbr\u003e5.3.4 Flame Retardants\u003cbr\u003e5.3.5 Blowing (Foaming) Agents\u003cbr\u003e5.3.6 Crosslinkers\u003cbr\u003e5.3.7 Fillers \u003cbr\u003e6. Fillers and Reinforcement for Biopolymers \u003cbr\u003e7.The Markets and Economics for Biopolymers \u003cbr\u003e8.Compostability Certification \u003cbr\u003e9.The Chemistry and Biology of Polymer Degradation \u003cbr\u003e10.Conclusions\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMark Johnson\u003c\/b\u003e is currently reading for a doctorate in Engineering Business Management (EngD) at the University of Warwick. Prior to this he worked as a production engineer in composite fabrication. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry. \u003cbr\u003e\u003cb\u003e\u003cbr\u003eDr. Leonard Mwaikambo\u003c\/b\u003e\u003cbr\u003eholds the post of Lecturer at the Sokoine University of Agriculture, Tanzania, and is currently a Research Fellow in the Department of Chemistry, University of Warwick. His research concerns the development of sustainably produced, recyclable natural fibre composites. He has keen interest in developing matrices based on polymerised natural oils and fats for composite manufacture. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eNick Tucker\u003c\/b\u003e's interest in biopolymers was started by a request from the Rover Group to examine the potential effect of biodegradable polymers on end-of-life vehicle disposal. His current research portfolio now covers the economic manufacture and application of low environmental impact biodegradable composites from sustainable resources. In parallel with these activities, he runs the Sustainable Composites Network with the Biocomposites Centre at the University of Wales, Bangor.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e"}
Biopolymers, Volume 3b...
$474.00
{"id":11242247492,"title":"Biopolymers, Volume 3b , Polyesters II - Properties and Chemical Synthesis","handle":"978-3-527-30219-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Yoshiharu Doi (Editor), Alexander Steinbüchel (Editor) \u003cbr\u003eISBN 978-3-527-30219-2 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e480 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nVolumes 3a, b and 4 focus on polyesters synthesized by bacteria and eukaryotic organisms as well as all aspects of the biosynthesis and metabolism of these biopolymers together with their production and isolation. In addition, these volumes treat various synthetic polyesters and related polymers synthesized by the chemical industry for the manufacture of biodegradable materials. Topics include: polyhydroxyalkanoates, pha granules, non-storage phas, poly(malic acid), cutin, suberin, polyphosphate, polylactides, polyglycolide, polyanhydrides, polyesteramides, aliphatic organic polyesters and related polymers, in vitro synthesis of polyesters, chemical synthesis, biotechnological production by fermentation, isolation from plants, production in transgenic plants, biodegradation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nMethods for Analysis of Poly(3-hydroxyalkanoate) Composition (T. de Rijk, et al.). \u003cbr\u003e\u003cbr\u003eIntracellular Degradation of PHAs (T. Saito \u0026amp; T. Kobayashi). \u003cbr\u003e\u003cbr\u003eExtracellular Polyhydroxyalkanoate Depolymerases: The Key Enzymes of PHA Degradation (D. Jendrossek). \u003cbr\u003e\u003cbr\u003eMicrobial Degradation of Aliphatic Polyesters (Y. Tokiwa). \u003cbr\u003e\u003cbr\u003eMolecular and Material Design of Biodegradable Poly(hydroxyalkanoate)s (H. Abe \u0026amp; Y. Doi). \u003cbr\u003e\u003cbr\u003eStructure, Composition and Solution Properties of PHAs (N. Yoshie \u0026amp; Y. Inoue). \u003cbr\u003e\u003cbr\u003eCrystallization and Material Properties of Polyhydroxyalkanoates (R. Marchessault \u0026amp; G. Yu). \u003cbr\u003e\u003cbr\u003eStructure and Hydrolysis of Polyester Single Crystals (T. Iwata \u0026amp; Y. Doi). \u003cbr\u003e\u003cbr\u003ePhysical and Processing Properties of Polyhydroxyalkanoate Copolymers (M. Satkowski, et al.). \u003cbr\u003e\u003cbr\u003eFermentative Production of Building Blocks for Chemical Synthesis of Polyesters (S. Lee, et al.). \u003cbr\u003e\u003cbr\u003eGeneral Methodology for Chemical Synthesis of Polyesters (J. Seppälä, et al.). \u003cbr\u003e\u003cbr\u003eMechanisms of Aliphatic Polyester Formation (A. Duda \u0026amp; S. Penczek). \u003cbr\u003e\u003cbr\u003eChemical Synthesis and Properties of Well-defined Oligomeric Esters (I. Taniguchi \u0026amp; Y. Kimura). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:06-04:00","created_at":"2017-06-22T21:15:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","biodegradation","biopolymers","book","coal","humic substances","lignin","metabolism","polyamides","polyesters","polyisoprenoids","polymers","polysaccharides","proteinaceous materials"],"price":47400,"price_min":47400,"price_max":47400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378465284,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biopolymers, Volume 3b , Polyesters II - Properties and Chemical Synthesis","public_title":null,"options":["Default Title"],"price":47400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-30219-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-30219-2.jpg?v=1499187286"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-30219-2.jpg?v=1499187286","options":["Title"],"media":[{"alt":null,"id":353913602141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-30219-2.jpg?v=1499187286"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-30219-2.jpg?v=1499187286","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Yoshiharu Doi (Editor), Alexander Steinbüchel (Editor) \u003cbr\u003eISBN 978-3-527-30219-2 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e480 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nVolumes 3a, b and 4 focus on polyesters synthesized by bacteria and eukaryotic organisms as well as all aspects of the biosynthesis and metabolism of these biopolymers together with their production and isolation. In addition, these volumes treat various synthetic polyesters and related polymers synthesized by the chemical industry for the manufacture of biodegradable materials. Topics include: polyhydroxyalkanoates, pha granules, non-storage phas, poly(malic acid), cutin, suberin, polyphosphate, polylactides, polyglycolide, polyanhydrides, polyesteramides, aliphatic organic polyesters and related polymers, in vitro synthesis of polyesters, chemical synthesis, biotechnological production by fermentation, isolation from plants, production in transgenic plants, biodegradation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nMethods for Analysis of Poly(3-hydroxyalkanoate) Composition (T. de Rijk, et al.). \u003cbr\u003e\u003cbr\u003eIntracellular Degradation of PHAs (T. Saito \u0026amp; T. Kobayashi). \u003cbr\u003e\u003cbr\u003eExtracellular Polyhydroxyalkanoate Depolymerases: The Key Enzymes of PHA Degradation (D. Jendrossek). \u003cbr\u003e\u003cbr\u003eMicrobial Degradation of Aliphatic Polyesters (Y. Tokiwa). \u003cbr\u003e\u003cbr\u003eMolecular and Material Design of Biodegradable Poly(hydroxyalkanoate)s (H. Abe \u0026amp; Y. Doi). \u003cbr\u003e\u003cbr\u003eStructure, Composition and Solution Properties of PHAs (N. Yoshie \u0026amp; Y. Inoue). \u003cbr\u003e\u003cbr\u003eCrystallization and Material Properties of Polyhydroxyalkanoates (R. Marchessault \u0026amp; G. Yu). \u003cbr\u003e\u003cbr\u003eStructure and Hydrolysis of Polyester Single Crystals (T. Iwata \u0026amp; Y. Doi). \u003cbr\u003e\u003cbr\u003ePhysical and Processing Properties of Polyhydroxyalkanoate Copolymers (M. Satkowski, et al.). \u003cbr\u003e\u003cbr\u003eFermentative Production of Building Blocks for Chemical Synthesis of Polyesters (S. Lee, et al.). \u003cbr\u003e\u003cbr\u003eGeneral Methodology for Chemical Synthesis of Polyesters (J. Seppälä, et al.). \u003cbr\u003e\u003cbr\u003eMechanisms of Aliphatic Polyester Formation (A. Duda \u0026amp; S. Penczek). \u003cbr\u003e\u003cbr\u003eChemical Synthesis and Properties of Well-defined Oligomeric Esters (I. Taniguchi \u0026amp; Y. Kimura). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e"}
Biopolymers: Biomedica...
$216.00
{"id":11242204420,"title":"Biopolymers: Biomedical and Environmental Applications","handle":"978-0-470-63923-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Susheel Kalia, Luc Avérous \u003cbr\u003eISBN 978-0-470-63923-8 \u003cbr\u003e\u003cbr\u003e\u003cspan style=\"font-family: Arial, Helvetica, sans-serif; font-size: 12px;\" class=\"Apple-style-span\"\u003eHardcover\u003c\/span\u003e\n\u003cdiv class=\"productDetail-format\"\u003e\n\u003cdiv class=\"productDetail-format\"\u003e642 pages\u003c\/div\u003e\n\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook focuses on biopolymers for both environmental and biomedical applications. It shows recent advances in technology in all areas from chemical synthesis or biosynthesis to end use applications. These areas have not been covered in a single book before and they include biopolymers for chemical and biotechnological modifications, material structures, characterization, processing, properties, and applications.\u003cbr\u003eAfter the introduction which summarizes the importance of biopolymer in the market, the book covers almost all the topics related to polysaccharides, biofibers, bioplastics, biocomposites, natural rubber, gums, bacterial and blood compatible polymers, and applications of biopolymers in various fields.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroductory Preface.\u003cbr\u003e\u003cbr\u003eAbout the Editors.\u003cbr\u003e\u003cbr\u003ePart I. Polysaccharides.\u003cbr\u003e\u003cbr\u003e1. Hyaluronic Acid: A Natural Biopolymer (Juergen Schiller, Nicola Volpi, Eva Hrabárova, and Ladislav Soltes).\u003cbr\u003e\u003cbr\u003e2. Polysaccharide Graft Copolymers Synthesis, Properties and Applications (B. S. Kaith, Hemant Mittal, Jaspreet Kaur Bhatia, and Susheel Kalia).\u003cbr\u003e\u003cbr\u003e3. Natural Polysaccharides: From Membranes to Active Food Packaging (Keith J. Fahnestock, Marjorie S. Austero, and Caroline L. Schauer).\u003cbr\u003e\u003cbr\u003e4. Starch as Source of Polymeric Materials (Antonio A. J. Carvalho).\u003cbr\u003e\u003cbr\u003e5. Grafted Polysaccharides: Smart Materials of Future, Synthesis and Applications (Gautam Sen, Ashoke Sharon, and Sagar Pal).\u003cbr\u003e\u003cbr\u003e6. Chitosan: The Marine based Biopolymer for Applications (Debasish Sahoo, and P. L. Nayak).\u003cbr\u003e\u003cbr\u003ePart II. Bioplastics and Biocomposites.\u003cbr\u003e\u003cbr\u003e7. Biopolymers Based-on Carboxylic Acids Derived from Renewable Resources (Sushil Kumar, Nikhil Prakash, and Dipaloy Datta).\u003cbr\u003e\u003cbr\u003e8. Characteristics and Applications of PLA (Sandra Domenek, Cecile Courgneau, and Violette Ducruet).\u003cbr\u003e\u003cbr\u003e9. Biobased Composites \u0026amp; Applications (Smita Mohanty, and Sanjay K. Nayak).\u003cbr\u003e\u003cbr\u003ePart III. Miscellaneous Biopolymers.\u003cbr\u003e\u003cbr\u003e10. Cassia Seed Gums: A Renewable Reservoir for Synthesizing High Performance Materials for Water Remediation (Vandana Singh, and Pramendra Kumar).\u003cbr\u003e\u003cbr\u003e11. Bacterial Polymers: Resources, Synthesis and Applications (GVN Rathna, and Sutapa Gosh).\u003cbr\u003e\u003cbr\u003e12. Gum Arabica: A Natural Biopolymer (A. Sarkar).\u003cbr\u003e\u003cbr\u003e13. Gluten: A Natural Biopolymer (S. Georgiev, and Tereza Dekova).\u003cbr\u003e\u003cbr\u003e14. Natural Rubber: Production, Properties, and Applications (Thomas Kurian, and N. M. Mathew).\u003cbr\u003e\u003cbr\u003e15. Electronic Structures and Conduction Properties of Biopolymers (Mohsineen Wazir, Vinita Arora, and A. K. Bakhshi).\u003cbr\u003e\u003cbr\u003ePart IV. Biopolymers for Specific Applications.\u003cbr\u003e\u003cbr\u003e16. Applications of Biopolymers in Agriculture with Special Reference to Role of Plant Derived Biopolymers in Crop Protection (S. Niranjan Raj, S. N. Lavanya, J, Sudisha, and H. Shekar Shetty).\u003cbr\u003e\u003cbr\u003e17. Modified Cellulose Fibers as a Biosorbent for the Organic Pollutants (Sami Boufi, and Sabrine Alila).\u003cbr\u003e\u003cbr\u003e18. Polymers and Biopolymers in Pharmaceutical Technology (István Erös).\u003cbr\u003e\u003cbr\u003e19. Biopolymers Employed in Drug Delivery (Betina Giehl Zanetti Ramos).\u003cbr\u003e\u003cbr\u003e20. Natural Polymeric Vectors in Gene Therapy (Patit P. Kundu, and Kishor Sarkar).\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eSusheel Kalia is Assistant Professor in the Department of Chemistry, Bahra University (Shimla Hills), India. He received his PhD from Punjab Technical University Jalandhar, India. He has 33 research papers to his credit in international journals along with 45 publications in proceedings of national \u0026amp; international conferences as well as several book chapters. He is a life member of the Asian Polymer Association and Indian Cryogenics Council. He has edited the book, Cellulose Fibers, Bio- and Nano- Polymer Composites (Springer 2011). He is currently working in the field of polymer composites, cellulose nanofibers, hydrogels and cryogenics.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eLuc Avérous is Director of the Laboratory of Engineering Polymers for Advanced Technologies at the University of Strasbourg, France. He obtained his PhD in science and polymer engineering from the School of Mines of Paris in 1995. For the last 15 years his major research projects have dealt with multiphase systems (blends, multilayers, biocomposites, and nano-biocomposites) based on agro-resources (starch, lignins, chitosan, cellulose etc.) and biopolyesters (PLA, PHA, PCL etc.). He has been particularly involved in the study of the materials-process-properties chain. He has published more than 60 journal articles, 15 book chapters, has 2 patents to his name, and has co-edited 3 books. With his expertise in starch-based materials, and more generally in biopolymers, he is regularly invited to organise symposia and conferences.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:50-04:00","created_at":"2017-06-22T21:12:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biomedical","biopolymers","boiosynthesis","book","environment","gluten","gum arabic","natural rubber","polysaccharides"],"price":21600,"price_min":21600,"price_max":21600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378318724,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biopolymers: Biomedical and Environmental Applications","public_title":null,"options":["Default Title"],"price":21600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-63923-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-63923-8.jpg?v=1499189395"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-63923-8.jpg?v=1499189395","options":["Title"],"media":[{"alt":null,"id":353915175005,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-63923-8.jpg?v=1499189395"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-63923-8.jpg?v=1499189395","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Susheel Kalia, Luc Avérous \u003cbr\u003eISBN 978-0-470-63923-8 \u003cbr\u003e\u003cbr\u003e\u003cspan style=\"font-family: Arial, Helvetica, sans-serif; font-size: 12px;\" class=\"Apple-style-span\"\u003eHardcover\u003c\/span\u003e\n\u003cdiv class=\"productDetail-format\"\u003e\n\u003cdiv class=\"productDetail-format\"\u003e642 pages\u003c\/div\u003e\n\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook focuses on biopolymers for both environmental and biomedical applications. It shows recent advances in technology in all areas from chemical synthesis or biosynthesis to end use applications. These areas have not been covered in a single book before and they include biopolymers for chemical and biotechnological modifications, material structures, characterization, processing, properties, and applications.\u003cbr\u003eAfter the introduction which summarizes the importance of biopolymer in the market, the book covers almost all the topics related to polysaccharides, biofibers, bioplastics, biocomposites, natural rubber, gums, bacterial and blood compatible polymers, and applications of biopolymers in various fields.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroductory Preface.\u003cbr\u003e\u003cbr\u003eAbout the Editors.\u003cbr\u003e\u003cbr\u003ePart I. Polysaccharides.\u003cbr\u003e\u003cbr\u003e1. Hyaluronic Acid: A Natural Biopolymer (Juergen Schiller, Nicola Volpi, Eva Hrabárova, and Ladislav Soltes).\u003cbr\u003e\u003cbr\u003e2. Polysaccharide Graft Copolymers Synthesis, Properties and Applications (B. S. Kaith, Hemant Mittal, Jaspreet Kaur Bhatia, and Susheel Kalia).\u003cbr\u003e\u003cbr\u003e3. Natural Polysaccharides: From Membranes to Active Food Packaging (Keith J. Fahnestock, Marjorie S. Austero, and Caroline L. Schauer).\u003cbr\u003e\u003cbr\u003e4. Starch as Source of Polymeric Materials (Antonio A. J. Carvalho).\u003cbr\u003e\u003cbr\u003e5. Grafted Polysaccharides: Smart Materials of Future, Synthesis and Applications (Gautam Sen, Ashoke Sharon, and Sagar Pal).\u003cbr\u003e\u003cbr\u003e6. Chitosan: The Marine based Biopolymer for Applications (Debasish Sahoo, and P. L. Nayak).\u003cbr\u003e\u003cbr\u003ePart II. Bioplastics and Biocomposites.\u003cbr\u003e\u003cbr\u003e7. Biopolymers Based-on Carboxylic Acids Derived from Renewable Resources (Sushil Kumar, Nikhil Prakash, and Dipaloy Datta).\u003cbr\u003e\u003cbr\u003e8. Characteristics and Applications of PLA (Sandra Domenek, Cecile Courgneau, and Violette Ducruet).\u003cbr\u003e\u003cbr\u003e9. Biobased Composites \u0026amp; Applications (Smita Mohanty, and Sanjay K. Nayak).\u003cbr\u003e\u003cbr\u003ePart III. Miscellaneous Biopolymers.\u003cbr\u003e\u003cbr\u003e10. Cassia Seed Gums: A Renewable Reservoir for Synthesizing High Performance Materials for Water Remediation (Vandana Singh, and Pramendra Kumar).\u003cbr\u003e\u003cbr\u003e11. Bacterial Polymers: Resources, Synthesis and Applications (GVN Rathna, and Sutapa Gosh).\u003cbr\u003e\u003cbr\u003e12. Gum Arabica: A Natural Biopolymer (A. Sarkar).\u003cbr\u003e\u003cbr\u003e13. Gluten: A Natural Biopolymer (S. Georgiev, and Tereza Dekova).\u003cbr\u003e\u003cbr\u003e14. Natural Rubber: Production, Properties, and Applications (Thomas Kurian, and N. M. Mathew).\u003cbr\u003e\u003cbr\u003e15. Electronic Structures and Conduction Properties of Biopolymers (Mohsineen Wazir, Vinita Arora, and A. K. Bakhshi).\u003cbr\u003e\u003cbr\u003ePart IV. Biopolymers for Specific Applications.\u003cbr\u003e\u003cbr\u003e16. Applications of Biopolymers in Agriculture with Special Reference to Role of Plant Derived Biopolymers in Crop Protection (S. Niranjan Raj, S. N. Lavanya, J, Sudisha, and H. Shekar Shetty).\u003cbr\u003e\u003cbr\u003e17. Modified Cellulose Fibers as a Biosorbent for the Organic Pollutants (Sami Boufi, and Sabrine Alila).\u003cbr\u003e\u003cbr\u003e18. Polymers and Biopolymers in Pharmaceutical Technology (István Erös).\u003cbr\u003e\u003cbr\u003e19. Biopolymers Employed in Drug Delivery (Betina Giehl Zanetti Ramos).\u003cbr\u003e\u003cbr\u003e20. Natural Polymeric Vectors in Gene Therapy (Patit P. Kundu, and Kishor Sarkar).\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eSusheel Kalia is Assistant Professor in the Department of Chemistry, Bahra University (Shimla Hills), India. He received his PhD from Punjab Technical University Jalandhar, India. He has 33 research papers to his credit in international journals along with 45 publications in proceedings of national \u0026amp; international conferences as well as several book chapters. He is a life member of the Asian Polymer Association and Indian Cryogenics Council. He has edited the book, Cellulose Fibers, Bio- and Nano- Polymer Composites (Springer 2011). He is currently working in the field of polymer composites, cellulose nanofibers, hydrogels and cryogenics.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eLuc Avérous is Director of the Laboratory of Engineering Polymers for Advanced Technologies at the University of Strasbourg, France. He obtained his PhD in science and polymer engineering from the School of Mines of Paris in 1995. For the last 15 years his major research projects have dealt with multiphase systems (blends, multilayers, biocomposites, and nano-biocomposites) based on agro-resources (starch, lignins, chitosan, cellulose etc.) and biopolyesters (PLA, PHA, PCL etc.). He has been particularly involved in the study of the materials-process-properties chain. He has published more than 60 journal articles, 15 book chapters, has 2 patents to his name, and has co-edited 3 books. With his expertise in starch-based materials, and more generally in biopolymers, he is regularly invited to organise symposia and conferences.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Easy Identification of...
$125.00
{"id":11242227332,"title":"Easy Identification of Plastics and Rubbers","handle":"978-1-85957-268-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G.A.L. Verleye, N.P.G. Roeges and M.O. De Moor \u003cbr\u003eISBN 978-1-85957-268-9 \u003cbr\u003e\u003cbr\u003epages 174\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers are found in every aspect of our daily lives. Materials must be carefully selected to ensure that properties match performance requirements. \u003cbr\u003e\u003cbr\u003eIt is often necessary to understand the chemical nature of a material to determine whether it is suitable for a particular application. This book gives guidance on the simple identification of different polymeric materials. Flow charts describe a step-by-step approach to determining the chemical nature of an unknown specimen, starting with simple studies of behaviour on heating and ranging to preparing samples for infrared spectroscopy. The infrared spectra of standard polymers are included for reference. \u003cbr\u003e\u003cbr\u003eThe book contains sections on: \u003cbr\u003e-Test methods \u003cbr\u003e-Interpreting infrared spectra \u003cbr\u003e-Flow charts for the identification of unknown samples \u003cbr\u003e-Thermoplastics \u003cbr\u003e-Thermosets \u003cbr\u003e-Elastomers \u003cbr\u003eCharacteristics of individual polymeric materials are described, including chemical structures, behaviour in tests, common applications and trade names. The infrared spectrum for each polymer is included together with an interpretation of the peaks seen. \u003cbr\u003e\u003cbr\u003eThe authors of this book are experts in the field of polymer identification. Professor De Moor has been working in industrial organic chemistry since 1979. Noel Roeges has published a renowned book on the interpretation of infrared spectra of organic structures. Verleye Guenaelle is a chemical engineer working in the polymer industry. \u003cbr\u003e\u003cbr\u003ePolymer technologists, researchers, scientists, technicians, and students of polymer science will all find this a useful text. It is written in a very practical, easy to follow style. Undergraduate students tested the methodology, bringing samples from waste to identify in the laboratories.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e\u003cbr\u003e2. Tests for the Identification of Plastics and Rubbers\u003cbr\u003e2.1 Simple tests\u003cbr\u003e2.2 Recording an IR spectrum\u003cbr\u003e2.3 The identification flow charts \u003cbr\u003e\u003cbr\u003e3. Thermoplastics\u003cbr\u003e3.1 What is a thermoplastic?\u003cbr\u003e3.2 Thermoplastic homopolymers\u003cbr\u003e3.3 Thermoplastic copolymers\u003cbr\u003e3.4 Characteristics of individual thermoplastic materials \u003cbr\u003e\u003cbr\u003e4. Cellulose and Starch\u003cbr\u003e4.1 Introduction to biopolymers\u003cbr\u003e4.2 Characteristics of individual biopolymers \u003cbr\u003e5. Thermosets\u003cbr\u003e5.1 What is a thermoset?\u003cbr\u003e5.2 Sample preparation for recording an IR-spectrum\u003cbr\u003e5.3 Thermoset materials\u003cbr\u003e5.4 Characteristics of individual thermoset materials \u003cbr\u003e\u003cbr\u003e6. Elastomers\u003cbr\u003e6.1 What is an elastomer?\u003cbr\u003e6.2 Recording an IR-spectrum\u003cbr\u003e6.3 The Burchfield colour reaction\u003cbr\u003e6.4 The Liebermann-Storch-Morawski reaction\u003cbr\u003e6.5 Elastomeric materials\u003cbr\u003e6.6 Characteristics of individual elastomers\u003cbr\u003e\u003cbr\u003e7. Chemical Products Required \u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Organic solvents and reagents\u003cbr\u003e7.3 Inorganic products, acids and bases\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.","published_at":"2017-06-22T21:14:04-04:00","created_at":"2017-06-22T21:14:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","acids","bases","biopolymers","book","cellulose","elastomers","flow charts","health","IR spectrum","p-testing","plastics","polymer","rubber","safety","solvents","starch","thermoplastic","toxicity"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394820,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Easy Identification of Plastics and Rubbers","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-268-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-268-9.jpg?v=1499281031"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-268-9.jpg?v=1499281031","options":["Title"],"media":[{"alt":null,"id":354453684317,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-268-9.jpg?v=1499281031"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-268-9.jpg?v=1499281031","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G.A.L. Verleye, N.P.G. Roeges and M.O. De Moor \u003cbr\u003eISBN 978-1-85957-268-9 \u003cbr\u003e\u003cbr\u003epages 174\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers are found in every aspect of our daily lives. Materials must be carefully selected to ensure that properties match performance requirements. \u003cbr\u003e\u003cbr\u003eIt is often necessary to understand the chemical nature of a material to determine whether it is suitable for a particular application. This book gives guidance on the simple identification of different polymeric materials. Flow charts describe a step-by-step approach to determining the chemical nature of an unknown specimen, starting with simple studies of behaviour on heating and ranging to preparing samples for infrared spectroscopy. The infrared spectra of standard polymers are included for reference. \u003cbr\u003e\u003cbr\u003eThe book contains sections on: \u003cbr\u003e-Test methods \u003cbr\u003e-Interpreting infrared spectra \u003cbr\u003e-Flow charts for the identification of unknown samples \u003cbr\u003e-Thermoplastics \u003cbr\u003e-Thermosets \u003cbr\u003e-Elastomers \u003cbr\u003eCharacteristics of individual polymeric materials are described, including chemical structures, behaviour in tests, common applications and trade names. The infrared spectrum for each polymer is included together with an interpretation of the peaks seen. \u003cbr\u003e\u003cbr\u003eThe authors of this book are experts in the field of polymer identification. Professor De Moor has been working in industrial organic chemistry since 1979. Noel Roeges has published a renowned book on the interpretation of infrared spectra of organic structures. Verleye Guenaelle is a chemical engineer working in the polymer industry. \u003cbr\u003e\u003cbr\u003ePolymer technologists, researchers, scientists, technicians, and students of polymer science will all find this a useful text. It is written in a very practical, easy to follow style. Undergraduate students tested the methodology, bringing samples from waste to identify in the laboratories.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e\u003cbr\u003e2. Tests for the Identification of Plastics and Rubbers\u003cbr\u003e2.1 Simple tests\u003cbr\u003e2.2 Recording an IR spectrum\u003cbr\u003e2.3 The identification flow charts \u003cbr\u003e\u003cbr\u003e3. Thermoplastics\u003cbr\u003e3.1 What is a thermoplastic?\u003cbr\u003e3.2 Thermoplastic homopolymers\u003cbr\u003e3.3 Thermoplastic copolymers\u003cbr\u003e3.4 Characteristics of individual thermoplastic materials \u003cbr\u003e\u003cbr\u003e4. Cellulose and Starch\u003cbr\u003e4.1 Introduction to biopolymers\u003cbr\u003e4.2 Characteristics of individual biopolymers \u003cbr\u003e5. Thermosets\u003cbr\u003e5.1 What is a thermoset?\u003cbr\u003e5.2 Sample preparation for recording an IR-spectrum\u003cbr\u003e5.3 Thermoset materials\u003cbr\u003e5.4 Characteristics of individual thermoset materials \u003cbr\u003e\u003cbr\u003e6. Elastomers\u003cbr\u003e6.1 What is an elastomer?\u003cbr\u003e6.2 Recording an IR-spectrum\u003cbr\u003e6.3 The Burchfield colour reaction\u003cbr\u003e6.4 The Liebermann-Storch-Morawski reaction\u003cbr\u003e6.5 Elastomeric materials\u003cbr\u003e6.6 Characteristics of individual elastomers\u003cbr\u003e\u003cbr\u003e7. Chemical Products Required \u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Organic solvents and reagents\u003cbr\u003e7.3 Inorganic products, acids and bases\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees."}
Food Contact Polymers ...
$180.00
{"id":11242236868,"title":"Food Contact Polymers 2009 Conference Proceedings","handle":"978-1-84735-390-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-390-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e21-22 April 2009, Brussels, Belgium\u003c\/p\u003e\n\u003cp\u003e18 papers\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe worldwide food contact polymers market has seen the enormous change in recent years, a trend in part due to the shifting regulatory landscape. It is important, perhaps now more than ever, to keep abreast of regulatory matters and to identify the provisions that are legally necessary.\u003cbr\u003e\u003cbr\u003eWith these challenges in mind, Food Contact Polymers, 2009 brought together partners from the food processing and packaging supply chain. New materials and innovations in food manufacturing processes and packaging were discussed in detail. Material selection, testing and the all important legislation applicable to all types of food contact materials was also covered.\u003cbr\u003e\u003cbr\u003eAll technical papers presented at this conference are included ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eSESSION 1 THE REGULATORY LANDSCAPE\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKEY NOTE PRESENTATION\u003cbr\u003e\u003cbr\u003ePaper 1 An update on the EU regulations relating to food contact materials\u003cbr\u003eDr. Annette Schäfer, European Commission Health and Consumers Directorate General, Belgium\u003cbr\u003e\u003cbr\u003ePaper 2 Main legislations relating to colorants, inks, and adhesives\u003cbr\u003eDr. Luigi Rossi, Keller \u0026amp; Heckman LLP, Belgium\u003cbr\u003e\u003cbr\u003ePaper 3 Risk assessment by EFSA\u003cbr\u003eDr. Laurence Castle, Central Science laboratory, UK\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 4 Coatings code of practice and results of the FACET project\u003cbr\u003eDr. Peter Oldring, Valspar Europe, UK\u003cbr\u003e\u003cbr\u003ePaper 5 Enforcing the EU legislation on phthalate plasticisers\u003cbr\u003eDr. Jens Højslev Petersen, DTU-Food, National Food Institute, Denmark\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2 MIGRATION RESEARCH\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 6 Assessment of intakes of packaged foods per kg body weight\u003cbr\u003eDr. Emma Foster, Newcastle University, UK\u003cbr\u003e\u003cbr\u003ePaper 7 Elastomeric materials in contact with food- legislation and testing\u003cbr\u003eJohn Sidwell, Sidwell Consulting and Analytical Services Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 8 Safety assessment of FCM migrants using advanced bio-analytical strategies and the TTC principle\u003cbr\u003eWilliam D van Dongen, Sander Koster, M A J Rennen, L Coulier, L van Stee \u0026amp; G F Houben, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 9 DESI\/DART-MS: One minute migration testing?\u003cbr\u003eDr. Sander Koster, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 10 Food safety from the packaging manufacturer's perspective\u003cbr\u003eRobert Broughton, Alcan Packaging UK Ltd, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 ACTIVE \u0026amp; INTELLIGENT PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Testing protocols and developments in active and intelligent packaging\u003cbr\u003eLynneric Potter, Campden BRI, UK\u003cbr\u003e\u003cbr\u003ePaper 12 Study of an active packaging with antioxidant properties\u003cbr\u003eDr. Consuelo Fernández, Dr. Ana Galet \u0026amp; Dr. José María Bermúdez, ITENE, Spain\u003cbr\u003e\u003cbr\u003ePaper 13 Production and properties of multilayer active polyester films for food packaging applications\u003cbr\u003eDr. Maria Rosaria Galdi, Valeria Nicolais, Luciano Di Maio \u0026amp; Loredana Incarnato, University of Salerno, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Special injection technologies applied to the development of active packaging\u003cbr\u003eSerafin Garcia Navarro, AIMPLAS, Spain\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 INNOVATION IN FOOD PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 15 Innovative packaging design for the wine industry\u003cbr\u003eAthanasios Manavis, Ali Mousli, Vaya Dinopoulou \u0026amp; Panagiotis Kyrastsis, Technological Educational Institution of West Macedonia, Greece\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical and oxygen barrier properties of biaxially oriented polypropylene zinc oxide nanocomposites for food packaging applications\u003cbr\u003eDr. Nadia Lepot, Hasselt University, Belgium \u0026amp; Xios Hogeschool Limburg, Belgium; M K Van Bael \u0026amp; H Van den Rul, Hasselt University, Belgium \u0026amp; IMEC vzw, Belgium; J D Haen \u0026amp; J Mullens, Hasselt University, Belgium; R Peters \u0026amp; D Franco, Xios Hogeschool Limburg, Belgium\u003cbr\u003e\u003cbr\u003ePaper 17 Multilayer PP\/EVOH\/PP barrier tray containing O2 scavenger for retort applications\u003cbr\u003eDidier Houssier, EVAL Europe nv, Belgium; Benjamin Bourbon, RPC Barrier Containers, France\u003cbr\u003e\u003cbr\u003ePaper 18 Mater bi biopolymers, packaging applications: Multilayer structures, film lamination \u0026amp; coating \"Compostable packaging\"\u003cbr\u003eStefano Facco, Novamont SpA, Italy\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:14:33-04:00","created_at":"2017-06-22T21:14:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","antioxidants","biopolymers","book","EU regulations","films","food safety","migration","nanocomposites","p-applications","packaging","polyester films","polymer","zinc oxide"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423748,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Food Contact Polymers 2009 Conference Proceedings","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-390-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336","options":["Title"],"media":[{"alt":null,"id":354808234077,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-390-0.jpg?v=1499726336","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-390-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e21-22 April 2009, Brussels, Belgium\u003c\/p\u003e\n\u003cp\u003e18 papers\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe worldwide food contact polymers market has seen the enormous change in recent years, a trend in part due to the shifting regulatory landscape. It is important, perhaps now more than ever, to keep abreast of regulatory matters and to identify the provisions that are legally necessary.\u003cbr\u003e\u003cbr\u003eWith these challenges in mind, Food Contact Polymers, 2009 brought together partners from the food processing and packaging supply chain. New materials and innovations in food manufacturing processes and packaging were discussed in detail. Material selection, testing and the all important legislation applicable to all types of food contact materials was also covered.\u003cbr\u003e\u003cbr\u003eAll technical papers presented at this conference are included ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eSESSION 1 THE REGULATORY LANDSCAPE\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKEY NOTE PRESENTATION\u003cbr\u003e\u003cbr\u003ePaper 1 An update on the EU regulations relating to food contact materials\u003cbr\u003eDr. Annette Schäfer, European Commission Health and Consumers Directorate General, Belgium\u003cbr\u003e\u003cbr\u003ePaper 2 Main legislations relating to colorants, inks, and adhesives\u003cbr\u003eDr. Luigi Rossi, Keller \u0026amp; Heckman LLP, Belgium\u003cbr\u003e\u003cbr\u003ePaper 3 Risk assessment by EFSA\u003cbr\u003eDr. Laurence Castle, Central Science laboratory, UK\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 4 Coatings code of practice and results of the FACET project\u003cbr\u003eDr. Peter Oldring, Valspar Europe, UK\u003cbr\u003e\u003cbr\u003ePaper 5 Enforcing the EU legislation on phthalate plasticisers\u003cbr\u003eDr. Jens Højslev Petersen, DTU-Food, National Food Institute, Denmark\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2 MIGRATION RESEARCH\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 6 Assessment of intakes of packaged foods per kg body weight\u003cbr\u003eDr. Emma Foster, Newcastle University, UK\u003cbr\u003e\u003cbr\u003ePaper 7 Elastomeric materials in contact with food- legislation and testing\u003cbr\u003eJohn Sidwell, Sidwell Consulting and Analytical Services Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 8 Safety assessment of FCM migrants using advanced bio-analytical strategies and the TTC principle\u003cbr\u003eWilliam D van Dongen, Sander Koster, M A J Rennen, L Coulier, L van Stee \u0026amp; G F Houben, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 9 DESI\/DART-MS: One minute migration testing?\u003cbr\u003eDr. Sander Koster, TNO Quality of Life, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 10 Food safety from the packaging manufacturer's perspective\u003cbr\u003eRobert Broughton, Alcan Packaging UK Ltd, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 ACTIVE \u0026amp; INTELLIGENT PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Testing protocols and developments in active and intelligent packaging\u003cbr\u003eLynneric Potter, Campden BRI, UK\u003cbr\u003e\u003cbr\u003ePaper 12 Study of an active packaging with antioxidant properties\u003cbr\u003eDr. Consuelo Fernández, Dr. Ana Galet \u0026amp; Dr. José María Bermúdez, ITENE, Spain\u003cbr\u003e\u003cbr\u003ePaper 13 Production and properties of multilayer active polyester films for food packaging applications\u003cbr\u003eDr. Maria Rosaria Galdi, Valeria Nicolais, Luciano Di Maio \u0026amp; Loredana Incarnato, University of Salerno, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Special injection technologies applied to the development of active packaging\u003cbr\u003eSerafin Garcia Navarro, AIMPLAS, Spain\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 INNOVATION IN FOOD PACKAGING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 15 Innovative packaging design for the wine industry\u003cbr\u003eAthanasios Manavis, Ali Mousli, Vaya Dinopoulou \u0026amp; Panagiotis Kyrastsis, Technological Educational Institution of West Macedonia, Greece\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical and oxygen barrier properties of biaxially oriented polypropylene zinc oxide nanocomposites for food packaging applications\u003cbr\u003eDr. Nadia Lepot, Hasselt University, Belgium \u0026amp; Xios Hogeschool Limburg, Belgium; M K Van Bael \u0026amp; H Van den Rul, Hasselt University, Belgium \u0026amp; IMEC vzw, Belgium; J D Haen \u0026amp; J Mullens, Hasselt University, Belgium; R Peters \u0026amp; D Franco, Xios Hogeschool Limburg, Belgium\u003cbr\u003e\u003cbr\u003ePaper 17 Multilayer PP\/EVOH\/PP barrier tray containing O2 scavenger for retort applications\u003cbr\u003eDidier Houssier, EVAL Europe nv, Belgium; Benjamin Bourbon, RPC Barrier Containers, France\u003cbr\u003e\u003cbr\u003ePaper 18 Mater bi biopolymers, packaging applications: Multilayer structures, film lamination \u0026amp; coating \"Compostable packaging\"\u003cbr\u003eStefano Facco, Novamont SpA, Italy\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e"}
Handbook of Biodegrada...
$198.00
{"id":11242212484,"title":"Handbook of Biodegradable Polymers","handle":"978-1-85957-389-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Bastioli \u003cbr\u003eISBN 978-1-85957-389-1 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 533\u003c\/p\u003e\n\u003cp\u003eSoftcover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers are niche market materials finding focused applications, including agricultural applications such as mulch films, flowerpots and controlled-release fertilisers and packaging items such as carrier bags and food wrapping and containers. They have the potential to provide a solution to a range of environmental concerns: decreasing availability of landfill space, declining petrochemical sources, and also offer an alternative option to recycling. Rapra's Handbook of Biodegradable Polymers is a complete guide to the subject of biodegradable polymers and is ideal for those new to the subject or those wanting to supplement their existing knowledge. The book covers the mechanisms of degradation in various environments, by both biological and non-biological means, and the methods for measuring biodegradation. The degree and rate of biodegradation is dependent on the chemical composition of the polymer and its working environment, and so there is no single optimal method for determining biodegradation. This handbook provides discussion of international and national standards and certification procedures developed to ensure accurate communication of a material's biodegradability between producers, authorities and consumers. The book goes on to consider the characteristics, processability and application areas for biodegradable polymers, with key polymer family groups discussed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Biodegradability of Polymers – Mechanisms and Evaluation Methods\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Background\u003cbr\u003e1.3 Defining Biodegradability\u003cbr\u003e1.4 Mechanisms of Polymer Degradation\u003cbr\u003e1.4.1 Non-biological Degradation of Polymers\u003cbr\u003e1.4.2 Biological Degradation of Polymers\u003cbr\u003e1.5 Measuring Biodegradation of Polymers\u003cbr\u003e1.5.1 Enzyme Assays\u003cbr\u003e1.5.2 Plate Tests\u003cbr\u003e1.5.3 Respiration Tests\u003cbr\u003e1.5.4 Gas (CO2 or CH4) Evolution Tests\u003cbr\u003e1.5.5 Radioactively Labelled Polymers\u003cbr\u003e1.5.6 Laboratory-scale Simulated Accelerating Environments\u003cbr\u003e1.5.7 Natural Environments – Field Trials\u003cbr\u003e1.6 Factors Affecting Biodegradability\u003cbr\u003e1.7 Conclusions \u003cbr\u003e\u003cbr\u003e2 Biodegradation Behaviour of Polymers in Liquid Environments\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Degradation in Real Liquid Environments\u003cbr\u003e2.2.1 Degradation in Sweet Water and Marine Environment\u003cbr\u003e2.3 Degradation in Laboratory Tests Simulating Real Aquatic Environments\u003cbr\u003e2.3.1 Aerobic Liquid Environments\u003cbr\u003e2.3.2 Anaerobic Liquid Environments\u003cbr\u003e2.4 Degradation in Laboratory Tests with Optimised and Defined Liquid Media\u003cbr\u003e2.5 Standard Tests for Biodegradable Polymers Using Liquid Media\u003cbr\u003e2.6 Summary \u003cbr\u003e\u003cbr\u003e3 Biodegradation Behaviour of Polymers in the Soil\u003cbr\u003e3.1 I Introduction\u003cbr\u003e3.1.1 Biodegradable Polymers and the Environment\u003cbr\u003e3.1.2 Biodegradable Polymers and Soil\u003cbr\u003e3.2 How Polymers Reach Soil\u003cbr\u003e3.2.1 Intentional Delivery\u003cbr\u003e3.2.2 Unintentional Delivery: Littering\u003cbr\u003e3.3 The Soil Environment\u003cbr\u003e3.3.1 Surface Factors\u003cbr\u003e3.3.2 Underground Factors\u003cbr\u003e3.4 Degradability of Polymers in Soil\u003cbr\u003e3.4.1 The Standardisation Approach\u003cbr\u003e3.4.2 T Test Methods and Criteria\u003cbr\u003e3.5 Effects of Biodegradable Polymers on Soil Living Organisms\u003cbr\u003e3.5.1 Performing the Assessment: Transient and Permanent Effects\u003cbr\u003e3.5.2 Test Material Concentration\u003cbr\u003e3.5.3 Preparation of the Soil Sample Ready for Ecotoxicity Testing\u003cbr\u003e3.5.4 Test Methods\u003cbr\u003e3.6 Biodegradability of Materials in Soil: A Survey of the Literature \u003cbr\u003e\u003cbr\u003e4 Ecotoxicological Aspects in the Biodegradation Process of Polymers\u003cbr\u003e4.1 The Need of Ecotoxicity Analysis for Biodegradable Materials\u003cbr\u003e4.1.1 Standards and Regulations for Testing of Biodegradable Polymers\u003cbr\u003e4.1.2 Detection of the Influences on an Ecosystem Caused by the Biodegradation of Polymers\u003cbr\u003e4.1.3 Potential Influences of Polymers After Composting\u003cbr\u003e4.1.4 Potential Influences of Polymers During and After Biodegradation in Soil and Sediment\u003cbr\u003e4.2 A Short Introduction to Ecotoxicology\u003cbr\u003e4.2.1 Theory of Dose-Response Relationships\u003cbr\u003e4.2.2 Test Design in Ecotoxicology\u003cbr\u003e4.2.3 Toxicity Tests and Bioassays\u003cbr\u003e4.2.4 Ecotoxicity Profile Analysis\u003cbr\u003e4.3 Recommendations and Standard Procedures for Biotests\u003cbr\u003e4.3.1 Bioassays with Higher Plants\u003cbr\u003e4.3.2 Bioassays with Earthworms (Eisenia foetida)\u003cbr\u003e4.3 Preparation of Elutriates for Aquatic Ecotoxicity Tests\u003cbr\u003e4.3.4 Bioassays with Algae\u003cbr\u003e4.3.5 Bioassays with Luminescent Bacteria\u003cbr\u003e4.3.6 Bioassays with Daphnia\u003cbr\u003e4.3.7 Evaluation of Bioassay Results Obtained from Samples of Complex Composition\u003cbr\u003e4.3.8 Testing of Sediments\u003cbr\u003e4.4 Special Prerequisites to be Considered when Applying Bioassays for Biodegradable Polymers\u003cbr\u003e4.4.1 Nutrients in the Sample\u003cbr\u003e4.4.2 Biodegradation Intermediates\u003cbr\u003e4.4.3 Diversity of the Microorganism Population\u003cbr\u003e4.4.4 Humic Substances\u003cbr\u003e4.4.5 Evaluation of Test Results and Limits of Bioassays\u003cbr\u003e4.5 Research Results for Ecotoxicity Testing of Biodegradable Polymers\u003cbr\u003e4.5.1 The Relationship Between Chemical Structure, Biodegradation Pathways and Formation of Potentially Ecotoxic Metabolites\u003cbr\u003e4.5.2 Ecotoxicity of the Polymers\u003cbr\u003e4.5.3 Ecotoxic Effects Appearing After Degradation in Compost or After Anaerobic Digestion\u003cbr\u003e4.5.4 Ecotoxic Effects Appearing During Degradation in Soil\u003cbr\u003e4.6 Conclusion\u003cbr\u003e4.6.1 Consequences for Test Schemes for Investigations on Biodegradable Polymers\u003cbr\u003e4.6.2 Conclusion \u003cbr\u003e\u003cbr\u003e5 International and National Norms on Biodegradability and Certification Procedures\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Organisations for Standardisation\u003cbr\u003e5.3 Norms\u003cbr\u003e5.3.1 Aquatic, Aerobic Biodegradation Tests\u003cbr\u003e5.3.2 Compost Biodegradation Tests\u003cbr\u003e5.3.3 Compostability Norms\u003cbr\u003e5.3.4 Compost Disintegration Tests\u003cbr\u003e5.3.5 Soil Biodegradation Tests\u003cbr\u003e5.3.6 Aquatic, Anaerobic Biodegradation Tests\u003cbr\u003e5.3.7 High-Solids, Anaerobic Biodegradation Tests\u003cbr\u003e5.3.8 Marine Biodegradation Tests\u003cbr\u003e5.3.9 Other Biodegradation Tests\u003cbr\u003e5.4 Certification\u003cbr\u003e5.4.1 Introduction\u003cbr\u003e5.4.2 Different Certification Systems \u003cbr\u003e\u003cbr\u003e6 General Characteristics, Processability, Industrial Applications and Market Evolution of Biodegradable Polymers\u003cbr\u003e6.1 General Characteristics\u003cbr\u003e6.1.1 Polymer Biodegradation Mechanisms\u003cbr\u003e6.1.2 Polymer Molecular Size, Structure and Chemical Composition\u003cbr\u003e6.1.3 Biodegradable Polymer Classes\u003cbr\u003e6.1.4 Naturally Biodegradable Polymers\u003cbr\u003e6.1.5 Synthetic Biodegradable Polymers\u003cbr\u003e6.1.6 Modified Naturally Biodegradable Polymers\u003cbr\u003e6.2 Processability\u003cbr\u003e6.2.1 Extrusion\u003cbr\u003e6.2.2 Film Blowing and Casting\u003cbr\u003e6.2.3 Moulding\u003cbr\u003e6.2.4 Fibre Spinning\u003cbr\u003e6.3 Industrial Applications\u003cbr\u003e6.3.1 Loose-Fill Packaging\u003cbr\u003e6.3.2 Compost Bags\u003cbr\u003e6.3.3 Other Applications\u003cbr\u003e6.4 Market Evolution \u003cbr\u003e\u003cbr\u003e7 Polyhydroxyalkanoates\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 The Various Types of PHA\u003cbr\u003e7.2.1 Poly[R-3-hydroxybutyrate] (P[3HB])\u003cbr\u003e7.2.2 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (P[3HB-co-3HV])\u003cbr\u003e7.2.3 Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] (P[3HB-co-4HB])\u003cbr\u003e7.2.4 Other PHA Copolymers with Interesting Physical Properties\u003cbr\u003e7.2.5 Uncommon PHA Constituents\u003cbr\u003e7.3 Mechanisms of PHA Biosynthesis\u003cbr\u003e7.3.1 Conditions that Promote the Biosynthesis and Accumulation of PHA in Microorganisms\u003cbr\u003e7.3.2 Carbon Sources for the Production of PHA\u003cbr\u003e7.3.3 Biochemical Pathways Involved in the Metabolism of PHA\u003cbr\u003e7.3.4 The Key Enzyme of PHA Biosynthesis, PHA Synthase\u003cbr\u003e7.4 Genetically Modified Systems and Other Methods for the Production of PHA\u003cbr\u003e7.4.1 Recombinant Escherichia coli\u003cbr\u003e7.4.2 Transgenic Plants\u003cbr\u003e7.4.3 In vitro Production of PHA\u003cbr\u003e7.5 Biodegradation of PHA\u003cbr\u003e7.6 Applications of PHA\u003cbr\u003e7.7 Conclusions and Outlook \u003cbr\u003e\u003cbr\u003e8 Starch-Based Technology\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Starch Polymer\u003cbr\u003e8.3 Starch-filled Plastics\u003cbr\u003e8.4 Thermoplastic Starch\u003cbr\u003e8.5 Starch-Based Materials on the Market\u003cbr\u003e8.6 Conclusions \u003cbr\u003e\u003cbr\u003e9 Poly(Lactic Acid) and Copolyesters\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Synthesis\u003cbr\u003e9.2.1 Homopolymers\u003cbr\u003e9.2.2 Copolymers\u003cbr\u003e9.2.3 Functionalised Polymers\u003cbr\u003e9.3 Structure, Properties, Degradation, and Applications\u003cbr\u003e9.3.1 Physical Properties\u003cbr\u003e9.3.2 Chemical Properties\u003cbr\u003e9.3.3 Applications\u003cbr\u003e9.4 Conclusions \u003cbr\u003e\u003cbr\u003e10 Aliphatic-Aromatic Polyesters\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Development of Biodegradable Aliphatic-Aromatic Copolyesters\u003cbr\u003e10.3 Degradability and Degradation Mechanism\u003cbr\u003e10.3.1 General Mechanism\/Definition\u003cbr\u003e10.3.2 Degradation of Pure Aromatic Polyesters\u003cbr\u003e10.3.3 Degradation of Aliphatic-Aromatic Copolyesters\u003cbr\u003e10.4 Commercial Products and Characteristic Material Data\u003cbr\u003e10.4.1 Ecoflex\u003cbr\u003e10.4.2 Eastar Bio\u003cbr\u003e10.4.3 Biomax\u003cbr\u003e10.4.4 EnPol\u003cbr\u003e10.4.5 Characteristic Material Data \u003cbr\u003e\u003cbr\u003e11 Material Formed from Proteins\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Structure of Material Proteins\u003cbr\u003e11.3 Protein-Based Materials\u003cbr\u003e11.4 Formation of Protein-Based Materials\u003cbr\u003e11.4.1 ‘Solvent Process’\u003cbr\u003e11.4.2 ‘Thermoplastic Process’\u003cbr\u003e11.5 Properties of Protein-Based Materials\u003cbr\u003e11.6 Applications \u003cbr\u003e\u003cbr\u003e12 Enzyme Catalysis in the Synthesis of Biodegradable Polymers\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 Polyester Synthesis\u003cbr\u003e12.2.1 Polycondensation of Hydroxyacids and Esters\u003cbr\u003e12.2.2 Polymerisation of Dicarboxylic Acids or Their Activated Derivatives with Glycols\u003cbr\u003e12.2.3 Ring Opening Polymerisation of Carbonates and Other Cyclic Monomers\u003cbr\u003e12.2.4 Ring Opening Polymerisation and Copolymerisation of Lactones\u003cbr\u003e12.3 Oxidative Polymerisation of Phenol and Derivatives of Phenol\u003cbr\u003e12.4 Enzymatic Polymerisation of Polysaccharides\u003cbr\u003e12.5 Conclusions \u003cbr\u003e\u003cbr\u003e13 Environmental Life Cycle Comparisons of Biodegradable Plastics\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Methodology of LCA\u003cbr\u003e13.3 Presentation of Comparative Data\u003cbr\u003e13.3.1 Starch Polymers\u003cbr\u003e13.3.2 Polyhydroxyalkanoates\u003cbr\u003e13.3.3 Polylactides (PLA)\u003cbr\u003e13.3.4 Other Biodegradable Polymers\u003cbr\u003e13.4 Summarising Comparison\u003cbr\u003e13.5 Discussion\u003cbr\u003e13.6 Conclusions\u003cbr\u003eAppendix 13.1 Overview of environmental life cycle comparisons or biodegradable polymers included in this review\u003cbr\u003eAppendix 13.2 Checklist for the preparation of an LCA for biodegradable plastics\u003cbr\u003eAppendix 13.3 List of abbreviations \u003cbr\u003e\u003cbr\u003e14 Biodegradable Polymers and the Optimisation of Models for Source Separation and Composting of Municipal Solid Waste\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.1.1 The Development of Composting and Schemes for Source Separation of Biowaste in Europe: A Matter of Quality\u003cbr\u003e14.2 The Driving Forces for Composting in the EU\u003cbr\u003e14.2.1 The Directive on the Landfill of Waste\u003cbr\u003e14.2.2 The Proposed Directive on Biological Treatment of Biodegradable Waste\u003cbr\u003e14.3 Source Separation of Organic Waste in Mediterranean Countries: An Overview\u003cbr\u003e14.5 ‘Biowaste’, ‘VGF’ and ‘Food Waste’: Relevance of a Definition on Performances of the Waste Management System\u003cbr\u003e14.6 The Importance of Biobags\u003cbr\u003e14.6.1 Features of ‘Biobags’: The Importance of Biodegradability and its Cost-Efficiency\u003cbr\u003e14.7 Cost Assessment of Optimised Schemes\u003cbr\u003e14.7.1 Tools to Optimise the Schemes and their Suitability in Different Situations\u003cbr\u003e14.8 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003eContributors\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCatia Bastioli is the Managing Director and Research Manager of Novamont, a leading innovation company in the sector of bioplastics. She is the author of more than 90 papers on various scientific and industrial subjects published in International Journals, Proceedings of International Conferences and books. She has filed more than 50 patents and patent applications in the sectors of synthetic and natural polymers. The patents in the sector of starch-based materials are a significant part of the Novamont patent portfolio.","published_at":"2017-06-22T21:13:16-04:00","created_at":"2017-06-22T21:13:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","applications","aquatic","assays","biodegradable polymers","biopolymers","biowaste","book","copolymers","degradation","environment","enzyme","evolution","food waste","gas","homopolymers","landfill","measuring biodegradation","physical properties","plate tests","properties","radioactively labelled Simulated","respiration tests","soil","structure","VGF","waste"],"price":19800,"price_min":19800,"price_max":19800,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378341764,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biodegradable Polymers","public_title":null,"options":["Default Title"],"price":19800,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-389-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-389-1.jpg?v=1499725547"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-389-1.jpg?v=1499725547","options":["Title"],"media":[{"alt":null,"id":354809708637,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-389-1.jpg?v=1499725547"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-389-1.jpg?v=1499725547","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Bastioli \u003cbr\u003eISBN 978-1-85957-389-1 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 533\u003c\/p\u003e\n\u003cp\u003eSoftcover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers are niche market materials finding focused applications, including agricultural applications such as mulch films, flowerpots and controlled-release fertilisers and packaging items such as carrier bags and food wrapping and containers. They have the potential to provide a solution to a range of environmental concerns: decreasing availability of landfill space, declining petrochemical sources, and also offer an alternative option to recycling. Rapra's Handbook of Biodegradable Polymers is a complete guide to the subject of biodegradable polymers and is ideal for those new to the subject or those wanting to supplement their existing knowledge. The book covers the mechanisms of degradation in various environments, by both biological and non-biological means, and the methods for measuring biodegradation. The degree and rate of biodegradation is dependent on the chemical composition of the polymer and its working environment, and so there is no single optimal method for determining biodegradation. This handbook provides discussion of international and national standards and certification procedures developed to ensure accurate communication of a material's biodegradability between producers, authorities and consumers. The book goes on to consider the characteristics, processability and application areas for biodegradable polymers, with key polymer family groups discussed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Biodegradability of Polymers – Mechanisms and Evaluation Methods\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Background\u003cbr\u003e1.3 Defining Biodegradability\u003cbr\u003e1.4 Mechanisms of Polymer Degradation\u003cbr\u003e1.4.1 Non-biological Degradation of Polymers\u003cbr\u003e1.4.2 Biological Degradation of Polymers\u003cbr\u003e1.5 Measuring Biodegradation of Polymers\u003cbr\u003e1.5.1 Enzyme Assays\u003cbr\u003e1.5.2 Plate Tests\u003cbr\u003e1.5.3 Respiration Tests\u003cbr\u003e1.5.4 Gas (CO2 or CH4) Evolution Tests\u003cbr\u003e1.5.5 Radioactively Labelled Polymers\u003cbr\u003e1.5.6 Laboratory-scale Simulated Accelerating Environments\u003cbr\u003e1.5.7 Natural Environments – Field Trials\u003cbr\u003e1.6 Factors Affecting Biodegradability\u003cbr\u003e1.7 Conclusions \u003cbr\u003e\u003cbr\u003e2 Biodegradation Behaviour of Polymers in Liquid Environments\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Degradation in Real Liquid Environments\u003cbr\u003e2.2.1 Degradation in Sweet Water and Marine Environment\u003cbr\u003e2.3 Degradation in Laboratory Tests Simulating Real Aquatic Environments\u003cbr\u003e2.3.1 Aerobic Liquid Environments\u003cbr\u003e2.3.2 Anaerobic Liquid Environments\u003cbr\u003e2.4 Degradation in Laboratory Tests with Optimised and Defined Liquid Media\u003cbr\u003e2.5 Standard Tests for Biodegradable Polymers Using Liquid Media\u003cbr\u003e2.6 Summary \u003cbr\u003e\u003cbr\u003e3 Biodegradation Behaviour of Polymers in the Soil\u003cbr\u003e3.1 I Introduction\u003cbr\u003e3.1.1 Biodegradable Polymers and the Environment\u003cbr\u003e3.1.2 Biodegradable Polymers and Soil\u003cbr\u003e3.2 How Polymers Reach Soil\u003cbr\u003e3.2.1 Intentional Delivery\u003cbr\u003e3.2.2 Unintentional Delivery: Littering\u003cbr\u003e3.3 The Soil Environment\u003cbr\u003e3.3.1 Surface Factors\u003cbr\u003e3.3.2 Underground Factors\u003cbr\u003e3.4 Degradability of Polymers in Soil\u003cbr\u003e3.4.1 The Standardisation Approach\u003cbr\u003e3.4.2 T Test Methods and Criteria\u003cbr\u003e3.5 Effects of Biodegradable Polymers on Soil Living Organisms\u003cbr\u003e3.5.1 Performing the Assessment: Transient and Permanent Effects\u003cbr\u003e3.5.2 Test Material Concentration\u003cbr\u003e3.5.3 Preparation of the Soil Sample Ready for Ecotoxicity Testing\u003cbr\u003e3.5.4 Test Methods\u003cbr\u003e3.6 Biodegradability of Materials in Soil: A Survey of the Literature \u003cbr\u003e\u003cbr\u003e4 Ecotoxicological Aspects in the Biodegradation Process of Polymers\u003cbr\u003e4.1 The Need of Ecotoxicity Analysis for Biodegradable Materials\u003cbr\u003e4.1.1 Standards and Regulations for Testing of Biodegradable Polymers\u003cbr\u003e4.1.2 Detection of the Influences on an Ecosystem Caused by the Biodegradation of Polymers\u003cbr\u003e4.1.3 Potential Influences of Polymers After Composting\u003cbr\u003e4.1.4 Potential Influences of Polymers During and After Biodegradation in Soil and Sediment\u003cbr\u003e4.2 A Short Introduction to Ecotoxicology\u003cbr\u003e4.2.1 Theory of Dose-Response Relationships\u003cbr\u003e4.2.2 Test Design in Ecotoxicology\u003cbr\u003e4.2.3 Toxicity Tests and Bioassays\u003cbr\u003e4.2.4 Ecotoxicity Profile Analysis\u003cbr\u003e4.3 Recommendations and Standard Procedures for Biotests\u003cbr\u003e4.3.1 Bioassays with Higher Plants\u003cbr\u003e4.3.2 Bioassays with Earthworms (Eisenia foetida)\u003cbr\u003e4.3 Preparation of Elutriates for Aquatic Ecotoxicity Tests\u003cbr\u003e4.3.4 Bioassays with Algae\u003cbr\u003e4.3.5 Bioassays with Luminescent Bacteria\u003cbr\u003e4.3.6 Bioassays with Daphnia\u003cbr\u003e4.3.7 Evaluation of Bioassay Results Obtained from Samples of Complex Composition\u003cbr\u003e4.3.8 Testing of Sediments\u003cbr\u003e4.4 Special Prerequisites to be Considered when Applying Bioassays for Biodegradable Polymers\u003cbr\u003e4.4.1 Nutrients in the Sample\u003cbr\u003e4.4.2 Biodegradation Intermediates\u003cbr\u003e4.4.3 Diversity of the Microorganism Population\u003cbr\u003e4.4.4 Humic Substances\u003cbr\u003e4.4.5 Evaluation of Test Results and Limits of Bioassays\u003cbr\u003e4.5 Research Results for Ecotoxicity Testing of Biodegradable Polymers\u003cbr\u003e4.5.1 The Relationship Between Chemical Structure, Biodegradation Pathways and Formation of Potentially Ecotoxic Metabolites\u003cbr\u003e4.5.2 Ecotoxicity of the Polymers\u003cbr\u003e4.5.3 Ecotoxic Effects Appearing After Degradation in Compost or After Anaerobic Digestion\u003cbr\u003e4.5.4 Ecotoxic Effects Appearing During Degradation in Soil\u003cbr\u003e4.6 Conclusion\u003cbr\u003e4.6.1 Consequences for Test Schemes for Investigations on Biodegradable Polymers\u003cbr\u003e4.6.2 Conclusion \u003cbr\u003e\u003cbr\u003e5 International and National Norms on Biodegradability and Certification Procedures\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Organisations for Standardisation\u003cbr\u003e5.3 Norms\u003cbr\u003e5.3.1 Aquatic, Aerobic Biodegradation Tests\u003cbr\u003e5.3.2 Compost Biodegradation Tests\u003cbr\u003e5.3.3 Compostability Norms\u003cbr\u003e5.3.4 Compost Disintegration Tests\u003cbr\u003e5.3.5 Soil Biodegradation Tests\u003cbr\u003e5.3.6 Aquatic, Anaerobic Biodegradation Tests\u003cbr\u003e5.3.7 High-Solids, Anaerobic Biodegradation Tests\u003cbr\u003e5.3.8 Marine Biodegradation Tests\u003cbr\u003e5.3.9 Other Biodegradation Tests\u003cbr\u003e5.4 Certification\u003cbr\u003e5.4.1 Introduction\u003cbr\u003e5.4.2 Different Certification Systems \u003cbr\u003e\u003cbr\u003e6 General Characteristics, Processability, Industrial Applications and Market Evolution of Biodegradable Polymers\u003cbr\u003e6.1 General Characteristics\u003cbr\u003e6.1.1 Polymer Biodegradation Mechanisms\u003cbr\u003e6.1.2 Polymer Molecular Size, Structure and Chemical Composition\u003cbr\u003e6.1.3 Biodegradable Polymer Classes\u003cbr\u003e6.1.4 Naturally Biodegradable Polymers\u003cbr\u003e6.1.5 Synthetic Biodegradable Polymers\u003cbr\u003e6.1.6 Modified Naturally Biodegradable Polymers\u003cbr\u003e6.2 Processability\u003cbr\u003e6.2.1 Extrusion\u003cbr\u003e6.2.2 Film Blowing and Casting\u003cbr\u003e6.2.3 Moulding\u003cbr\u003e6.2.4 Fibre Spinning\u003cbr\u003e6.3 Industrial Applications\u003cbr\u003e6.3.1 Loose-Fill Packaging\u003cbr\u003e6.3.2 Compost Bags\u003cbr\u003e6.3.3 Other Applications\u003cbr\u003e6.4 Market Evolution \u003cbr\u003e\u003cbr\u003e7 Polyhydroxyalkanoates\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 The Various Types of PHA\u003cbr\u003e7.2.1 Poly[R-3-hydroxybutyrate] (P[3HB])\u003cbr\u003e7.2.2 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (P[3HB-co-3HV])\u003cbr\u003e7.2.3 Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] (P[3HB-co-4HB])\u003cbr\u003e7.2.4 Other PHA Copolymers with Interesting Physical Properties\u003cbr\u003e7.2.5 Uncommon PHA Constituents\u003cbr\u003e7.3 Mechanisms of PHA Biosynthesis\u003cbr\u003e7.3.1 Conditions that Promote the Biosynthesis and Accumulation of PHA in Microorganisms\u003cbr\u003e7.3.2 Carbon Sources for the Production of PHA\u003cbr\u003e7.3.3 Biochemical Pathways Involved in the Metabolism of PHA\u003cbr\u003e7.3.4 The Key Enzyme of PHA Biosynthesis, PHA Synthase\u003cbr\u003e7.4 Genetically Modified Systems and Other Methods for the Production of PHA\u003cbr\u003e7.4.1 Recombinant Escherichia coli\u003cbr\u003e7.4.2 Transgenic Plants\u003cbr\u003e7.4.3 In vitro Production of PHA\u003cbr\u003e7.5 Biodegradation of PHA\u003cbr\u003e7.6 Applications of PHA\u003cbr\u003e7.7 Conclusions and Outlook \u003cbr\u003e\u003cbr\u003e8 Starch-Based Technology\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Starch Polymer\u003cbr\u003e8.3 Starch-filled Plastics\u003cbr\u003e8.4 Thermoplastic Starch\u003cbr\u003e8.5 Starch-Based Materials on the Market\u003cbr\u003e8.6 Conclusions \u003cbr\u003e\u003cbr\u003e9 Poly(Lactic Acid) and Copolyesters\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Synthesis\u003cbr\u003e9.2.1 Homopolymers\u003cbr\u003e9.2.2 Copolymers\u003cbr\u003e9.2.3 Functionalised Polymers\u003cbr\u003e9.3 Structure, Properties, Degradation, and Applications\u003cbr\u003e9.3.1 Physical Properties\u003cbr\u003e9.3.2 Chemical Properties\u003cbr\u003e9.3.3 Applications\u003cbr\u003e9.4 Conclusions \u003cbr\u003e\u003cbr\u003e10 Aliphatic-Aromatic Polyesters\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Development of Biodegradable Aliphatic-Aromatic Copolyesters\u003cbr\u003e10.3 Degradability and Degradation Mechanism\u003cbr\u003e10.3.1 General Mechanism\/Definition\u003cbr\u003e10.3.2 Degradation of Pure Aromatic Polyesters\u003cbr\u003e10.3.3 Degradation of Aliphatic-Aromatic Copolyesters\u003cbr\u003e10.4 Commercial Products and Characteristic Material Data\u003cbr\u003e10.4.1 Ecoflex\u003cbr\u003e10.4.2 Eastar Bio\u003cbr\u003e10.4.3 Biomax\u003cbr\u003e10.4.4 EnPol\u003cbr\u003e10.4.5 Characteristic Material Data \u003cbr\u003e\u003cbr\u003e11 Material Formed from Proteins\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Structure of Material Proteins\u003cbr\u003e11.3 Protein-Based Materials\u003cbr\u003e11.4 Formation of Protein-Based Materials\u003cbr\u003e11.4.1 ‘Solvent Process’\u003cbr\u003e11.4.2 ‘Thermoplastic Process’\u003cbr\u003e11.5 Properties of Protein-Based Materials\u003cbr\u003e11.6 Applications \u003cbr\u003e\u003cbr\u003e12 Enzyme Catalysis in the Synthesis of Biodegradable Polymers\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 Polyester Synthesis\u003cbr\u003e12.2.1 Polycondensation of Hydroxyacids and Esters\u003cbr\u003e12.2.2 Polymerisation of Dicarboxylic Acids or Their Activated Derivatives with Glycols\u003cbr\u003e12.2.3 Ring Opening Polymerisation of Carbonates and Other Cyclic Monomers\u003cbr\u003e12.2.4 Ring Opening Polymerisation and Copolymerisation of Lactones\u003cbr\u003e12.3 Oxidative Polymerisation of Phenol and Derivatives of Phenol\u003cbr\u003e12.4 Enzymatic Polymerisation of Polysaccharides\u003cbr\u003e12.5 Conclusions \u003cbr\u003e\u003cbr\u003e13 Environmental Life Cycle Comparisons of Biodegradable Plastics\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Methodology of LCA\u003cbr\u003e13.3 Presentation of Comparative Data\u003cbr\u003e13.3.1 Starch Polymers\u003cbr\u003e13.3.2 Polyhydroxyalkanoates\u003cbr\u003e13.3.3 Polylactides (PLA)\u003cbr\u003e13.3.4 Other Biodegradable Polymers\u003cbr\u003e13.4 Summarising Comparison\u003cbr\u003e13.5 Discussion\u003cbr\u003e13.6 Conclusions\u003cbr\u003eAppendix 13.1 Overview of environmental life cycle comparisons or biodegradable polymers included in this review\u003cbr\u003eAppendix 13.2 Checklist for the preparation of an LCA for biodegradable plastics\u003cbr\u003eAppendix 13.3 List of abbreviations \u003cbr\u003e\u003cbr\u003e14 Biodegradable Polymers and the Optimisation of Models for Source Separation and Composting of Municipal Solid Waste\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.1.1 The Development of Composting and Schemes for Source Separation of Biowaste in Europe: A Matter of Quality\u003cbr\u003e14.2 The Driving Forces for Composting in the EU\u003cbr\u003e14.2.1 The Directive on the Landfill of Waste\u003cbr\u003e14.2.2 The Proposed Directive on Biological Treatment of Biodegradable Waste\u003cbr\u003e14.3 Source Separation of Organic Waste in Mediterranean Countries: An Overview\u003cbr\u003e14.5 ‘Biowaste’, ‘VGF’ and ‘Food Waste’: Relevance of a Definition on Performances of the Waste Management System\u003cbr\u003e14.6 The Importance of Biobags\u003cbr\u003e14.6.1 Features of ‘Biobags’: The Importance of Biodegradability and its Cost-Efficiency\u003cbr\u003e14.7 Cost Assessment of Optimised Schemes\u003cbr\u003e14.7.1 Tools to Optimise the Schemes and their Suitability in Different Situations\u003cbr\u003e14.8 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003eContributors\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCatia Bastioli is the Managing Director and Research Manager of Novamont, a leading innovation company in the sector of bioplastics. She is the author of more than 90 papers on various scientific and industrial subjects published in International Journals, Proceedings of International Conferences and books. She has filed more than 50 patents and patent applications in the sectors of synthetic and natural polymers. The patents in the sector of starch-based materials are a significant part of the Novamont patent portfolio."}
Handbook of Biodegrada...
$215.00
{"id":11242201604,"title":"Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications","handle":"978-3-527-32441-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Andreas Lendlein (Editor), Adam Sisson (Editor) \u003cbr\u003eISBN 978-3-527-32441-5 \u003cbr\u003e\u003cbr\u003e426 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA comprehensive overview of biodegradable polymers, covering everything from synthesis, characterization, and degradation mechanisms while also introducing useful applications, such as drug delivery systems and biomaterial-based regenerative therapies. An introductory section deals with such fundamentals as basic chemical reactions during degradation, the complexity of biological environments and experimental methods for monitoring degradation processes.\u003cbr\u003e\u003cbr\u003eThe result is a reliable reference source for those wanting to learn more about this important class of polymer materials, as well as scientists in the field seeking a deeper insight.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface.\u003cbr\u003eList of Contributors.\u003cbr\u003e\u003cb\u003e1 Polyesters (Adam L. Sisson, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e1.1 Historical Background.\u003cbr\u003e1.2 Preparative Methods.\u003cbr\u003e1.3 Physical Properties.\u003cbr\u003e1.4 Degradation Mechanisms.\u003cbr\u003e1.5 Beyond Classical Poly(Hydroxycarboxylic Acids).\u003cbr\u003e\u003cb\u003e2 Biotechnologically Produced Biodegradable Polyesters (Jaciane Lutz Ienczak and Gláucia Maria Falcão de Aragão).\u003c\/b\u003e\u003cbr\u003e2.1 Introduction.\u003cbr\u003e2.2 History.\u003cbr\u003e2.3 Polyhydroxyalkanoates – Granules Morphology.\u003cbr\u003e2.4 Biosynthesis and Biodegradability of Poly(3-Hydroxybutyrate) and Other Polyhydroxyalkanoates.\u003cbr\u003e2.5 Extraction and Recovery.\u003cbr\u003e2.6 Physical, Mechanical, and Thermal Properties of Polyhydroxyalkanoates.\u003cbr\u003e2.7 Future Directions.\u003cbr\u003e\u003cb\u003e3 Polyanhydrides (Avi Domb, Jay Prakash Jain, and Neeraj Kumar).\u003c\/b\u003e\u003cbr\u003e3.1 Introduction.\u003cbr\u003e3.2 Types of Polyanhydride.\u003cbr\u003e3.3 Synthesis.\u003cbr\u003e3.4 Properties.\u003cbr\u003e3.5 In Vitro Degradation and Erosion of Polyanhydrides.\u003cbr\u003e3.6 In Vivo Degradation and Elimination of Polyanhydrides.\u003cbr\u003e3.7 Toxicological Aspects of Polyanhydrides.\u003cbr\u003e3.8 Fabrication of Delivery Systems.\u003cbr\u003e3.9 Production and World Market.\u003cbr\u003e3.10 Biomedical Applications.\u003cbr\u003e\u003cb\u003e4 Poly(Ortho Esters) (Jorge Heller).\u003c\/b\u003e\u003cbr\u003e4.1 Introduction.\u003cbr\u003e4.2 POE II.\u003cbr\u003e4.3 POE IV.\u003cbr\u003e4.4 Solid Polymers.\u003cbr\u003e4.5 Gel-Like Materials.\u003cbr\u003e4.6 Polymers Based on an Alternate Diketene Acetal.\u003cbr\u003e4.7 Conclusions.\u003cbr\u003e\u003cb\u003e5 Biodegradable Polymers Composed of Naturally Occurring α-Amino Acids (Ramaz Katsarava and Zaza Gomurashvili).\u003c\/b\u003e\u003cbr\u003e5.1 Introduction.\u003cbr\u003e5.2 Amino Acid-Based Biodegradable Polymers (AABBPs).\u003cbr\u003e5.3 Conclusion and Perspectives.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e6 Biodegradable Polyurethanes and Poly(ester amide)s (Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e6.1 Chemistry and Properties of Biodegradable Polyurethanes.\u003cbr\u003e6.2 Biodegradation Mechanisms of Polyurethanes.\u003cbr\u003e6.3 Applications of Biodegradable Polyurethanes.\u003cbr\u003e6.4 New Polymerization Trends to Obtain Degradable Polyurethanes.\u003cbr\u003e6.5 Aliphatic Poly(ester amide)s: A Family of Biodegradable Thermoplastics with Interest as New Biomaterials.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e7 Carbohydrates (Gerald Dräger, Andreas Krause, Lena Möller, and Severian Dumitriu).\u003c\/b\u003e\u003cbr\u003e7.1 Introduction.\u003cbr\u003e7.2 Alginate.\u003cbr\u003e7.3 Carrageenan.\u003cbr\u003e7.4 Cellulose and Its Derivatives.\u003cbr\u003e7.5 Microbial Cellulose.\u003cbr\u003e7.6 Chitin and Chitosan.\u003cbr\u003e7.7 Dextran.\u003cbr\u003e7.8 Gellan.\u003cbr\u003e7.9 Guar Gum.\u003cbr\u003e7.10 Hyaluronic Acid (Hyaluronan).\u003cbr\u003e7.11 Pullulan.\u003cbr\u003e7.12 Scleroglucan.\u003cbr\u003e7.13 Xanthan.\u003cbr\u003e7.14 Summary.\u003cbr\u003eAcknowledgments.\u003cbr\u003eIn Memoriam.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e8 Biodegradable Shape-Memory Polymers (Marc Behl, Jörg Zotzmann, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e8.1 Introduction.\u003cbr\u003e8.2 General Concept of SMPs.\u003cbr\u003e8.3 Classes of Degradable SMPs.\u003cbr\u003e8.4 Applications of Biodegradable SMPs.\u003cbr\u003e\u003cb\u003e9 Biodegradable Elastic Hydrogels for Tissue Expander Application (Thanh Huyen Tran, John Garner, Yourong Fu, Kinam Park, and Kang Moo Huh).\u003c\/b\u003e\u003cbr\u003e9.1 Introduction.\u003cbr\u003e9.2 Synthesis of Elastic Hydrogels.\u003cbr\u003e9.3 Physical Properties of Elastic Hydrogels.\u003cbr\u003e9.4 Applications of Elastic Hydrogels.\u003cbr\u003e9.5 Elastic Hydrogels for Tissue Expander Applications.\u003cbr\u003e9.6 Conclusion.\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003e10 Biodegradable Dendrimers and Dendritic Polymers (Jayant Khandare and Sanjay Kumar).\u003c\/b\u003e\u003cbr\u003e10.1 Introduction.\u003cbr\u003e10.2 Challenges for Designing Biodegradable Dendrimers.\u003cbr\u003e10.3 Design of Self-Immolative Biodegradable Dendrimers.\u003cbr\u003e10.4 Biological Implications of Biodegradable Dendrimers.\u003cbr\u003e10.5 Future Perspectives of Biodegradable Dendrimers.\u003cbr\u003e10.6 Concluding Remarks.\u003cbr\u003e\u003cb\u003e11 Analytical Methods for Monitoring Biodegradation Processes of Environmentally Degradable Polymers (Maarten van der Zee).\u003c\/b\u003e\u003cbr\u003e11.1 Introduction.\u003cbr\u003e11.2 Some Background.\u003cbr\u003e11.3 Defining Biodegradability.\u003cbr\u003e11.4 Mechanisms of Polymer Degradation.\u003cbr\u003e11.5 Measuring Biodegradation of Polymers.\u003cbr\u003e11.6 Conclusions.\u003cbr\u003e\u003cb\u003e12 Modeling and Simulation of Microbial Depolymerization Processes of Xenobiotic Polymers (Masaji Watanabe and Fusako Kawai).\u003c\/b\u003e\u003cbr\u003e12.1 Introduction.\u003cbr\u003e12.2 Analysis of Exogenous Depolymerization.\u003cbr\u003e12.3 Materials and Methods.\u003cbr\u003e12.4 Analysis of Endogenous Depolymerization.\u003cbr\u003e12.5 Discussion.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e13 Regenerative Medicine: Reconstruction of Tracheal and Pharyngeal Mucosal Defects in Head and Neck Surgery (Dorothee Rickert, Bernhard Hiebl, Rosemarie Fuhrmann, Friedrich Jung, Andreas Lendlein, and Ralf-Peter Franke).\u003c\/b\u003e\u003cbr\u003e13.1 Introduction.\u003cbr\u003e13.2 Regenerative Medicine for the Reconstruction of the Upper Aerodigestive Tract.\u003cbr\u003e13.3 Methods and Novel Therapeutical Options in Head and Neck Surgery.\u003cbr\u003e13.4 Vascularization of Tissue-Engineered Constructs.\u003cbr\u003e13.5 Application of Stem Cells in Regenerative Medicine.\u003cbr\u003e13.6 Conclusion.\u003cbr\u003e\u003cb\u003e14 Biodegradable Polymers as Scaffolds for Tissue Engineering (Yoshito Ikada).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e14.1 Introduction.\u003cbr\u003e14.2 Short Overview of Regenerative Biology.\u003cbr\u003e14.3 Minimum Requirements for Tissue Engineering.\u003cbr\u003e14.4 Structure of Scaffolds.\u003cbr\u003e14.5 Biodegradable Polymers for Tissue Engineering.\u003cbr\u003e14.6 Some Examples of Clinical Application of Scaffold.\u003cbr\u003e\u003cb\u003e15 Drug Delivery Systems (Kevin M. Shakesheff).\u003c\/b\u003e\u003cbr\u003e15.1 Introduction.\u003cbr\u003e15.2 The Clinical Need for Drug Delivery Systems.\u003cbr\u003e15.3 Poly(α-Hydroxyl Acids).\u003cbr\u003e15.4 Polyanhydrides.\u003cbr\u003e15.5 Manufacturing Routes.\u003cbr\u003e15.6 Examples of Biodegradable Polymer Drug Delivery Systems Under Development.\u003cbr\u003e15.7 Concluding Remarks.\u003cbr\u003e\u003cb\u003e16 Oxo-biodegradable Polymers: Present Status and Future Perspectives (Emo Chiellini, Andrea Corti, Salvatore D’Antone, and David Mckeen Wiles).\u003c\/b\u003e\u003cbr\u003e16.1 Introduction.\u003cbr\u003e16.2 Controlled – Lifetime Plastics.\u003cbr\u003e16.3 The Abiotic Oxidation of Polyolefins.\u003cbr\u003e16.4 Enhanced Oxo-biodegradation of Polyolefins.\u003cbr\u003e16.5 Processability and Recovery of Oxo-biodegradable Polyolefins.\u003cbr\u003e16.6 Concluding Remarks.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003eIndex.\u003c\/b\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eAndreas Lendlein\u003c\/b\u003e is Director of the Institute of Polymer Research at Helmholtz-Zentrum\u003c\/div\u003e\n\u003cdiv\u003eGeesthacht in Teltow, Germany, and serves on the Board of Directors of the Berlin-Brandenburg\u003c\/div\u003e\n\u003cdiv\u003eCenter for Regenerative Therapies, Berlin. He is Professor of Materials in Life Sciences\u003c\/div\u003e\n\u003cdiv\u003eat University of Potsdam and Professor in Chemistry at the Freie Universitat Berlin as well as\u003c\/div\u003e\n\u003cdiv\u003ethe member of the medical faculty of Charite University Medicine Berlin. His research interests in\u003c\/div\u003e\n\u003cdiv\u003emacromolecular chemistry and material science are polymer-based biomaterials with special\u003c\/div\u003e\n\u003cdiv\u003eemphasis given to multifunctional materials, stimuli-sensitive polymers, especially shape-memory\u003c\/div\u003e\n\u003cdiv\u003epolymers, and biomimetic polymers. Furthermore, he explores potential applications of\u003c\/div\u003e\n\u003cdiv\u003esuch biomaterials in biofunctional implants, controlled drug delivery systems, and regenerative\u003c\/div\u003e\n\u003cdiv\u003etherapies. He completed his habilitation in Macromolecular Chemistry in 2002 at the RWTH\u003c\/div\u003e\n\u003cdiv\u003eAachen University worked as a visiting scientist at the Massachusetts Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003eand received his doctoral degree in Materials Science from Swiss Federal Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e(ETH) in Zurich in 1996. Andreas Lendlein received more than 20 awards for his scientific\u003c\/div\u003e\n\u003cdiv\u003ework, and his achievements as an entrepreneur including the BioFUTURE Award in 1998, the\u003c\/div\u003e\n\u003cdiv\u003e2000 Hermann-Schnell Award and the World Technology Network Award in the category\u003c\/div\u003e\n\u003cdiv\u003eHealth \u0026amp; Medicine in 2005. He has published more than 220 papers in journals and books,\u003c\/div\u003e\n\u003cdiv\u003eand is an inventor of more than 250 published patents and patent applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eAdam Sisson\u003c\/b\u003e received his PhD in Supramolecular Chemistry in 2005 under the guidance of\u003c\/div\u003e\n\u003cdiv\u003eProfessor Anthony Davis at the University of Bristol, UK. Following this, he moved into the\u003c\/div\u003e\n\u003cdiv\u003egroup of Professor Stefan Matile at the University of Geneva, Switzerland, to conduct postdoctoral\u003c\/div\u003e\n\u003cdiv\u003eresearch in self-assembling nanomaterials. In 2007 he embarked upon research into\u003c\/div\u003e\n\u003cdiv\u003epolymeric nanogels as an Alexander von Humboldt Stiftung sponsored research fellow with\u003c\/div\u003e\n\u003cdiv\u003eProfessor Rainer Haag at the Free University of Berlin, Germany. Since 2010 he is leading a\u003c\/div\u003e\n\u003cdiv\u003eJunior research group ?Cell and Tissue Specifi c Materials? at the Berlin-Brandenburg Center\u003c\/div\u003e\n\u003cdiv\u003efor Regenerative Therapies, Helmholtz-Zentrum Geesthacht in Teltow, Germany. His research\u003c\/div\u003e\n\u003cdiv\u003einterests focus on studying and manipulating the interactions of synthetic materials with various\u003c\/div\u003e\n\u003cdiv\u003ebiological moieties in a range of applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:41-04:00","created_at":"2017-06-22T21:12:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biodegradable polymers","biodegradation processes","biomaterials","biopolymers","biopolymers in drug delivery system","book","degradation","drug delivery systems","polymers"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309124,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-32441-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604","options":["Title"],"media":[{"alt":null,"id":354809774173,"position":1,"preview_image":{"aspect_ratio":0.711,"height":499,"width":355,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604"},"aspect_ratio":0.711,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604","width":355}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Andreas Lendlein (Editor), Adam Sisson (Editor) \u003cbr\u003eISBN 978-3-527-32441-5 \u003cbr\u003e\u003cbr\u003e426 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA comprehensive overview of biodegradable polymers, covering everything from synthesis, characterization, and degradation mechanisms while also introducing useful applications, such as drug delivery systems and biomaterial-based regenerative therapies. An introductory section deals with such fundamentals as basic chemical reactions during degradation, the complexity of biological environments and experimental methods for monitoring degradation processes.\u003cbr\u003e\u003cbr\u003eThe result is a reliable reference source for those wanting to learn more about this important class of polymer materials, as well as scientists in the field seeking a deeper insight.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface.\u003cbr\u003eList of Contributors.\u003cbr\u003e\u003cb\u003e1 Polyesters (Adam L. Sisson, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e1.1 Historical Background.\u003cbr\u003e1.2 Preparative Methods.\u003cbr\u003e1.3 Physical Properties.\u003cbr\u003e1.4 Degradation Mechanisms.\u003cbr\u003e1.5 Beyond Classical Poly(Hydroxycarboxylic Acids).\u003cbr\u003e\u003cb\u003e2 Biotechnologically Produced Biodegradable Polyesters (Jaciane Lutz Ienczak and Gláucia Maria Falcão de Aragão).\u003c\/b\u003e\u003cbr\u003e2.1 Introduction.\u003cbr\u003e2.2 History.\u003cbr\u003e2.3 Polyhydroxyalkanoates – Granules Morphology.\u003cbr\u003e2.4 Biosynthesis and Biodegradability of Poly(3-Hydroxybutyrate) and Other Polyhydroxyalkanoates.\u003cbr\u003e2.5 Extraction and Recovery.\u003cbr\u003e2.6 Physical, Mechanical, and Thermal Properties of Polyhydroxyalkanoates.\u003cbr\u003e2.7 Future Directions.\u003cbr\u003e\u003cb\u003e3 Polyanhydrides (Avi Domb, Jay Prakash Jain, and Neeraj Kumar).\u003c\/b\u003e\u003cbr\u003e3.1 Introduction.\u003cbr\u003e3.2 Types of Polyanhydride.\u003cbr\u003e3.3 Synthesis.\u003cbr\u003e3.4 Properties.\u003cbr\u003e3.5 In Vitro Degradation and Erosion of Polyanhydrides.\u003cbr\u003e3.6 In Vivo Degradation and Elimination of Polyanhydrides.\u003cbr\u003e3.7 Toxicological Aspects of Polyanhydrides.\u003cbr\u003e3.8 Fabrication of Delivery Systems.\u003cbr\u003e3.9 Production and World Market.\u003cbr\u003e3.10 Biomedical Applications.\u003cbr\u003e\u003cb\u003e4 Poly(Ortho Esters) (Jorge Heller).\u003c\/b\u003e\u003cbr\u003e4.1 Introduction.\u003cbr\u003e4.2 POE II.\u003cbr\u003e4.3 POE IV.\u003cbr\u003e4.4 Solid Polymers.\u003cbr\u003e4.5 Gel-Like Materials.\u003cbr\u003e4.6 Polymers Based on an Alternate Diketene Acetal.\u003cbr\u003e4.7 Conclusions.\u003cbr\u003e\u003cb\u003e5 Biodegradable Polymers Composed of Naturally Occurring α-Amino Acids (Ramaz Katsarava and Zaza Gomurashvili).\u003c\/b\u003e\u003cbr\u003e5.1 Introduction.\u003cbr\u003e5.2 Amino Acid-Based Biodegradable Polymers (AABBPs).\u003cbr\u003e5.3 Conclusion and Perspectives.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e6 Biodegradable Polyurethanes and Poly(ester amide)s (Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e6.1 Chemistry and Properties of Biodegradable Polyurethanes.\u003cbr\u003e6.2 Biodegradation Mechanisms of Polyurethanes.\u003cbr\u003e6.3 Applications of Biodegradable Polyurethanes.\u003cbr\u003e6.4 New Polymerization Trends to Obtain Degradable Polyurethanes.\u003cbr\u003e6.5 Aliphatic Poly(ester amide)s: A Family of Biodegradable Thermoplastics with Interest as New Biomaterials.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e7 Carbohydrates (Gerald Dräger, Andreas Krause, Lena Möller, and Severian Dumitriu).\u003c\/b\u003e\u003cbr\u003e7.1 Introduction.\u003cbr\u003e7.2 Alginate.\u003cbr\u003e7.3 Carrageenan.\u003cbr\u003e7.4 Cellulose and Its Derivatives.\u003cbr\u003e7.5 Microbial Cellulose.\u003cbr\u003e7.6 Chitin and Chitosan.\u003cbr\u003e7.7 Dextran.\u003cbr\u003e7.8 Gellan.\u003cbr\u003e7.9 Guar Gum.\u003cbr\u003e7.10 Hyaluronic Acid (Hyaluronan).\u003cbr\u003e7.11 Pullulan.\u003cbr\u003e7.12 Scleroglucan.\u003cbr\u003e7.13 Xanthan.\u003cbr\u003e7.14 Summary.\u003cbr\u003eAcknowledgments.\u003cbr\u003eIn Memoriam.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e8 Biodegradable Shape-Memory Polymers (Marc Behl, Jörg Zotzmann, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e8.1 Introduction.\u003cbr\u003e8.2 General Concept of SMPs.\u003cbr\u003e8.3 Classes of Degradable SMPs.\u003cbr\u003e8.4 Applications of Biodegradable SMPs.\u003cbr\u003e\u003cb\u003e9 Biodegradable Elastic Hydrogels for Tissue Expander Application (Thanh Huyen Tran, John Garner, Yourong Fu, Kinam Park, and Kang Moo Huh).\u003c\/b\u003e\u003cbr\u003e9.1 Introduction.\u003cbr\u003e9.2 Synthesis of Elastic Hydrogels.\u003cbr\u003e9.3 Physical Properties of Elastic Hydrogels.\u003cbr\u003e9.4 Applications of Elastic Hydrogels.\u003cbr\u003e9.5 Elastic Hydrogels for Tissue Expander Applications.\u003cbr\u003e9.6 Conclusion.\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003e10 Biodegradable Dendrimers and Dendritic Polymers (Jayant Khandare and Sanjay Kumar).\u003c\/b\u003e\u003cbr\u003e10.1 Introduction.\u003cbr\u003e10.2 Challenges for Designing Biodegradable Dendrimers.\u003cbr\u003e10.3 Design of Self-Immolative Biodegradable Dendrimers.\u003cbr\u003e10.4 Biological Implications of Biodegradable Dendrimers.\u003cbr\u003e10.5 Future Perspectives of Biodegradable Dendrimers.\u003cbr\u003e10.6 Concluding Remarks.\u003cbr\u003e\u003cb\u003e11 Analytical Methods for Monitoring Biodegradation Processes of Environmentally Degradable Polymers (Maarten van der Zee).\u003c\/b\u003e\u003cbr\u003e11.1 Introduction.\u003cbr\u003e11.2 Some Background.\u003cbr\u003e11.3 Defining Biodegradability.\u003cbr\u003e11.4 Mechanisms of Polymer Degradation.\u003cbr\u003e11.5 Measuring Biodegradation of Polymers.\u003cbr\u003e11.6 Conclusions.\u003cbr\u003e\u003cb\u003e12 Modeling and Simulation of Microbial Depolymerization Processes of Xenobiotic Polymers (Masaji Watanabe and Fusako Kawai).\u003c\/b\u003e\u003cbr\u003e12.1 Introduction.\u003cbr\u003e12.2 Analysis of Exogenous Depolymerization.\u003cbr\u003e12.3 Materials and Methods.\u003cbr\u003e12.4 Analysis of Endogenous Depolymerization.\u003cbr\u003e12.5 Discussion.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e13 Regenerative Medicine: Reconstruction of Tracheal and Pharyngeal Mucosal Defects in Head and Neck Surgery (Dorothee Rickert, Bernhard Hiebl, Rosemarie Fuhrmann, Friedrich Jung, Andreas Lendlein, and Ralf-Peter Franke).\u003c\/b\u003e\u003cbr\u003e13.1 Introduction.\u003cbr\u003e13.2 Regenerative Medicine for the Reconstruction of the Upper Aerodigestive Tract.\u003cbr\u003e13.3 Methods and Novel Therapeutical Options in Head and Neck Surgery.\u003cbr\u003e13.4 Vascularization of Tissue-Engineered Constructs.\u003cbr\u003e13.5 Application of Stem Cells in Regenerative Medicine.\u003cbr\u003e13.6 Conclusion.\u003cbr\u003e\u003cb\u003e14 Biodegradable Polymers as Scaffolds for Tissue Engineering (Yoshito Ikada).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e14.1 Introduction.\u003cbr\u003e14.2 Short Overview of Regenerative Biology.\u003cbr\u003e14.3 Minimum Requirements for Tissue Engineering.\u003cbr\u003e14.4 Structure of Scaffolds.\u003cbr\u003e14.5 Biodegradable Polymers for Tissue Engineering.\u003cbr\u003e14.6 Some Examples of Clinical Application of Scaffold.\u003cbr\u003e\u003cb\u003e15 Drug Delivery Systems (Kevin M. Shakesheff).\u003c\/b\u003e\u003cbr\u003e15.1 Introduction.\u003cbr\u003e15.2 The Clinical Need for Drug Delivery Systems.\u003cbr\u003e15.3 Poly(α-Hydroxyl Acids).\u003cbr\u003e15.4 Polyanhydrides.\u003cbr\u003e15.5 Manufacturing Routes.\u003cbr\u003e15.6 Examples of Biodegradable Polymer Drug Delivery Systems Under Development.\u003cbr\u003e15.7 Concluding Remarks.\u003cbr\u003e\u003cb\u003e16 Oxo-biodegradable Polymers: Present Status and Future Perspectives (Emo Chiellini, Andrea Corti, Salvatore D’Antone, and David Mckeen Wiles).\u003c\/b\u003e\u003cbr\u003e16.1 Introduction.\u003cbr\u003e16.2 Controlled – Lifetime Plastics.\u003cbr\u003e16.3 The Abiotic Oxidation of Polyolefins.\u003cbr\u003e16.4 Enhanced Oxo-biodegradation of Polyolefins.\u003cbr\u003e16.5 Processability and Recovery of Oxo-biodegradable Polyolefins.\u003cbr\u003e16.6 Concluding Remarks.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003eIndex.\u003c\/b\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eAndreas Lendlein\u003c\/b\u003e is Director of the Institute of Polymer Research at Helmholtz-Zentrum\u003c\/div\u003e\n\u003cdiv\u003eGeesthacht in Teltow, Germany, and serves on the Board of Directors of the Berlin-Brandenburg\u003c\/div\u003e\n\u003cdiv\u003eCenter for Regenerative Therapies, Berlin. He is Professor of Materials in Life Sciences\u003c\/div\u003e\n\u003cdiv\u003eat University of Potsdam and Professor in Chemistry at the Freie Universitat Berlin as well as\u003c\/div\u003e\n\u003cdiv\u003ethe member of the medical faculty of Charite University Medicine Berlin. His research interests in\u003c\/div\u003e\n\u003cdiv\u003emacromolecular chemistry and material science are polymer-based biomaterials with special\u003c\/div\u003e\n\u003cdiv\u003eemphasis given to multifunctional materials, stimuli-sensitive polymers, especially shape-memory\u003c\/div\u003e\n\u003cdiv\u003epolymers, and biomimetic polymers. Furthermore, he explores potential applications of\u003c\/div\u003e\n\u003cdiv\u003esuch biomaterials in biofunctional implants, controlled drug delivery systems, and regenerative\u003c\/div\u003e\n\u003cdiv\u003etherapies. He completed his habilitation in Macromolecular Chemistry in 2002 at the RWTH\u003c\/div\u003e\n\u003cdiv\u003eAachen University worked as a visiting scientist at the Massachusetts Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003eand received his doctoral degree in Materials Science from Swiss Federal Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e(ETH) in Zurich in 1996. Andreas Lendlein received more than 20 awards for his scientific\u003c\/div\u003e\n\u003cdiv\u003ework, and his achievements as an entrepreneur including the BioFUTURE Award in 1998, the\u003c\/div\u003e\n\u003cdiv\u003e2000 Hermann-Schnell Award and the World Technology Network Award in the category\u003c\/div\u003e\n\u003cdiv\u003eHealth \u0026amp; Medicine in 2005. He has published more than 220 papers in journals and books,\u003c\/div\u003e\n\u003cdiv\u003eand is an inventor of more than 250 published patents and patent applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eAdam Sisson\u003c\/b\u003e received his PhD in Supramolecular Chemistry in 2005 under the guidance of\u003c\/div\u003e\n\u003cdiv\u003eProfessor Anthony Davis at the University of Bristol, UK. Following this, he moved into the\u003c\/div\u003e\n\u003cdiv\u003egroup of Professor Stefan Matile at the University of Geneva, Switzerland, to conduct postdoctoral\u003c\/div\u003e\n\u003cdiv\u003eresearch in self-assembling nanomaterials. In 2007 he embarked upon research into\u003c\/div\u003e\n\u003cdiv\u003epolymeric nanogels as an Alexander von Humboldt Stiftung sponsored research fellow with\u003c\/div\u003e\n\u003cdiv\u003eProfessor Rainer Haag at the Free University of Berlin, Germany. Since 2010 he is leading a\u003c\/div\u003e\n\u003cdiv\u003eJunior research group ?Cell and Tissue Specifi c Materials? at the Berlin-Brandenburg Center\u003c\/div\u003e\n\u003cdiv\u003efor Regenerative Therapies, Helmholtz-Zentrum Geesthacht in Teltow, Germany. His research\u003c\/div\u003e\n\u003cdiv\u003einterests focus on studying and manipulating the interactions of synthetic materials with various\u003c\/div\u003e\n\u003cdiv\u003ebiological moieties in a range of applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Handbook of Biodegrada...
$285.00
{"id":11242208772,"title":"Handbook of Biodegradation, Biodeterioration, and Biostabilization, 2nd Edition","handle":"978-1-895198-87-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Falkiewicz-Dulik, M; Janda, K; Wypych, G \u003cbr\u003eISBN 978-1-895198-87-4 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages 464\u003c\/div\u003e\n\u003cdiv\u003eTables 208\u003c\/div\u003e\n\u003cdiv\u003eFigures 85\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is about protection of materials and products against colonization and subsequent degradation of their properties. The book contains 11 chapters each devoted to essential aspects related to biodegradation and biostabilization.\u003cbr\u003e\u003cbr\u003eThe introductory chapter gives the historical note on chronological developments in the field, presents the classification of biocidal products, and defines essential terms which are frequently used in the subject of the book.\u003cbr\u003e\u003cbr\u003eMicroorganisms involved in biodegradation and biodeterioration of materials are presented within the framework of their classification, based on the most recent findings and conclusions. Information on 13 groups of bacteria 7 groups of fungi and 4 groups of protozoa involved in biodegradative processes are discussed in Chapter 2. \u003cbr\u003e\u003cbr\u003eChapter 3 is devoted to industrial biocides. In this discussion, biocides are divided into 19 groups and properties of stabilizers for each group are given in the tabular form. Only stabilizers permitted for use in European Union and the USA are included in the discussion. The selection is based on the most current lists of approved substances. Information on different biocides is followed by sections discussing principles of selection of biostabilizers and methods of stabilizers delivery (bulk addition, nanoparticles, delayed delivery, surface coating, and reaction with functionalized polymer).\u003cbr\u003e\u003cbr\u003eChapter 4 contains discussion on the influence of material properties on biodeterioration. The following topics are discussed in this chapter: surface properties, crystalline structure, pH, the effect of oxidation prior to biodegradation, and effect of pigments.\u003cbr\u003e\u003cbr\u003eChapter 5 aims at the discussion of mechanism and kinetics of biostabilizers action. Among many other topics influence of biomass adhesion, resistance to the biocide, biocide leaching rate, and longevity of biostabilized materials are discussed.\u003cbr\u003e\u003cbr\u003eChapter 6 contains information on biodegradation, biodeterioration, and biostabilization of industrial products. For each group of products, relevant microorganisms, essential product components, mechanisms of biodegradation and biodeterioration, results of biodeterioration, biostabilization, and used formulations are given. 22 groups of industrial products are included in the evaluation. This, the most important chapter, discusses also, more than 28 groups of polymers in separate sections.\u003cbr\u003e\u003cbr\u003eChapter 7 contains information on standard and frequently used analytical methods in the field of the biodegradation, biodeterioration, and biostabilization of materials.\u003cbr\u003e\u003cbr\u003eChapter 8 contains the evaluation of health and safety aspects of biocide application, including topics, such as toxic substance control, carcinogenic effect, workplace exposure limits, and food regulatory acts.\u003cbr\u003e\u003cbr\u003eChapter 9 contains the most current information on the environmental fate of biostabilizers, including their concentrations, toxicity, and the rates of decay. The discussion is based on the data to give a real picture of the current situation.\u003cbr\u003e\u003cbr\u003eChapter 10 contains information on regulations developed in European Union, by world organizations, and in the USA to give a comprehensive background of legislative measures. The last chapter is on the protection of workers who use biocides in their work.\u003cbr\u003e\u003cbr\u003eThis comprehensive source of fundamental information and data is based on thousands of papers, patents, and information from biocide manufacturers. The above contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.\u003cbr\u003e\u003cbr\u003eVery drastic changes in biocides which can be used according to regulations make most of the very informative books published in past misleading because regulations eliminated many products, which they discuss. This book only looks at future applications, giving ideas on how to protect materials in today’s environment.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Microorganism involved in biodegradation of materials \u003cbr\u003e3 Industrial biocides\u003cbr\u003e4 Effect of material properties on biodeterioration\u003cbr\u003e5 Mechanisms and kinetics\u003cbr\u003e6 Biodegradation, biodeterioration, and biostabilization of industrial products\u003cbr\u003e7 Analytical methods in biodegradation, biodeterioration, and biostabilization \u003cbr\u003e8 Biostabilizers - health \u0026amp; safety \u003cbr\u003e9 Environmental fates of biostabilizers \u003cbr\u003e10 Legislation \u003cbr\u003e11 Personal protection\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMichalina Falkiewicz-Dulik\u003c\/strong\u003e has an M.Sc. degree in experimental physics and thirty years of experience in leather products manufacture with special reference to research, development, and technology implementation on an industrial scale. She coauthored 2 books: Microbiology of materials (Technical University of ?ód? Press) and Light industry - management and organization of production, materials science, technology, and design, (Kazimierz Pu?aski Technical University of Radom Press). She has published 24 scientific papers, 3 know-how manuals, 87 articles and reports in Medical Mycology, Advances in Dermatology and Allergology, Przegl?d Skórzany, Przegl?d W?ókienniczy WOS, Ochrona Przed Korozj?. She has been awarded four prizes by Polish Federation of Engineering Associations NOT for technologies of manufacturing synthetic materials and one prize by National Fund for Environmental Protection and Water Management for the project “Recycling Technology – Technology Recycling”. She is also a forensic expert in the area of leather and leather goods, raw materials, plastic and rubber, and leather processing and footwear as well as an auditor of Quality Management System according to ISO 9001.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. Eng. Katarzyna Janda\u003c\/strong\u003e is an associate professor at the Faculty of Environmental Management and Agriculture in the West Pomeranian University of Technology in Szczecin. She has been teaching in the area of preservation, storage, processing, and evaluation of commodity plant materials. Dr. Janda conducts research on enzymatic activity and effects of fungi, especially those colonizing plant materials, on storage stability of various materials. She has published 47 research papers and coauthored a book entitled Microbiology of Materials published by the Technical University of Lodz Press, with the contribution on biodeterioration of petroleum products.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych has a Ph. D.\u003c\/strong\u003e in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 15 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:04-04:00","created_at":"2017-06-22T21:13:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","biodegradable plastics","Biodegradation","Biodeterioration","biopolymers","Biostabilization","biostabilizers","book","environmental","industrial biocides","mechanism of biodegradation"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378329028,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biodegradation, Biodeterioration, and Biostabilization, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-87-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-87-4.jpg?v=1499387642"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-87-4.jpg?v=1499387642","options":["Title"],"media":[{"alt":null,"id":354809806941,"position":1,"preview_image":{"aspect_ratio":0.704,"height":450,"width":317,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-87-4.jpg?v=1499387642"},"aspect_ratio":0.704,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-87-4.jpg?v=1499387642","width":317}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Falkiewicz-Dulik, M; Janda, K; Wypych, G \u003cbr\u003eISBN 978-1-895198-87-4 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages 464\u003c\/div\u003e\n\u003cdiv\u003eTables 208\u003c\/div\u003e\n\u003cdiv\u003eFigures 85\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is about protection of materials and products against colonization and subsequent degradation of their properties. The book contains 11 chapters each devoted to essential aspects related to biodegradation and biostabilization.\u003cbr\u003e\u003cbr\u003eThe introductory chapter gives the historical note on chronological developments in the field, presents the classification of biocidal products, and defines essential terms which are frequently used in the subject of the book.\u003cbr\u003e\u003cbr\u003eMicroorganisms involved in biodegradation and biodeterioration of materials are presented within the framework of their classification, based on the most recent findings and conclusions. Information on 13 groups of bacteria 7 groups of fungi and 4 groups of protozoa involved in biodegradative processes are discussed in Chapter 2. \u003cbr\u003e\u003cbr\u003eChapter 3 is devoted to industrial biocides. In this discussion, biocides are divided into 19 groups and properties of stabilizers for each group are given in the tabular form. Only stabilizers permitted for use in European Union and the USA are included in the discussion. The selection is based on the most current lists of approved substances. Information on different biocides is followed by sections discussing principles of selection of biostabilizers and methods of stabilizers delivery (bulk addition, nanoparticles, delayed delivery, surface coating, and reaction with functionalized polymer).\u003cbr\u003e\u003cbr\u003eChapter 4 contains discussion on the influence of material properties on biodeterioration. The following topics are discussed in this chapter: surface properties, crystalline structure, pH, the effect of oxidation prior to biodegradation, and effect of pigments.\u003cbr\u003e\u003cbr\u003eChapter 5 aims at the discussion of mechanism and kinetics of biostabilizers action. Among many other topics influence of biomass adhesion, resistance to the biocide, biocide leaching rate, and longevity of biostabilized materials are discussed.\u003cbr\u003e\u003cbr\u003eChapter 6 contains information on biodegradation, biodeterioration, and biostabilization of industrial products. For each group of products, relevant microorganisms, essential product components, mechanisms of biodegradation and biodeterioration, results of biodeterioration, biostabilization, and used formulations are given. 22 groups of industrial products are included in the evaluation. This, the most important chapter, discusses also, more than 28 groups of polymers in separate sections.\u003cbr\u003e\u003cbr\u003eChapter 7 contains information on standard and frequently used analytical methods in the field of the biodegradation, biodeterioration, and biostabilization of materials.\u003cbr\u003e\u003cbr\u003eChapter 8 contains the evaluation of health and safety aspects of biocide application, including topics, such as toxic substance control, carcinogenic effect, workplace exposure limits, and food regulatory acts.\u003cbr\u003e\u003cbr\u003eChapter 9 contains the most current information on the environmental fate of biostabilizers, including their concentrations, toxicity, and the rates of decay. The discussion is based on the data to give a real picture of the current situation.\u003cbr\u003e\u003cbr\u003eChapter 10 contains information on regulations developed in European Union, by world organizations, and in the USA to give a comprehensive background of legislative measures. The last chapter is on the protection of workers who use biocides in their work.\u003cbr\u003e\u003cbr\u003eThis comprehensive source of fundamental information and data is based on thousands of papers, patents, and information from biocide manufacturers. The above contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.\u003cbr\u003e\u003cbr\u003eVery drastic changes in biocides which can be used according to regulations make most of the very informative books published in past misleading because regulations eliminated many products, which they discuss. This book only looks at future applications, giving ideas on how to protect materials in today’s environment.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Microorganism involved in biodegradation of materials \u003cbr\u003e3 Industrial biocides\u003cbr\u003e4 Effect of material properties on biodeterioration\u003cbr\u003e5 Mechanisms and kinetics\u003cbr\u003e6 Biodegradation, biodeterioration, and biostabilization of industrial products\u003cbr\u003e7 Analytical methods in biodegradation, biodeterioration, and biostabilization \u003cbr\u003e8 Biostabilizers - health \u0026amp; safety \u003cbr\u003e9 Environmental fates of biostabilizers \u003cbr\u003e10 Legislation \u003cbr\u003e11 Personal protection\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMichalina Falkiewicz-Dulik\u003c\/strong\u003e has an M.Sc. degree in experimental physics and thirty years of experience in leather products manufacture with special reference to research, development, and technology implementation on an industrial scale. She coauthored 2 books: Microbiology of materials (Technical University of ?ód? Press) and Light industry - management and organization of production, materials science, technology, and design, (Kazimierz Pu?aski Technical University of Radom Press). She has published 24 scientific papers, 3 know-how manuals, 87 articles and reports in Medical Mycology, Advances in Dermatology and Allergology, Przegl?d Skórzany, Przegl?d W?ókienniczy WOS, Ochrona Przed Korozj?. She has been awarded four prizes by Polish Federation of Engineering Associations NOT for technologies of manufacturing synthetic materials and one prize by National Fund for Environmental Protection and Water Management for the project “Recycling Technology – Technology Recycling”. She is also a forensic expert in the area of leather and leather goods, raw materials, plastic and rubber, and leather processing and footwear as well as an auditor of Quality Management System according to ISO 9001.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. Eng. Katarzyna Janda\u003c\/strong\u003e is an associate professor at the Faculty of Environmental Management and Agriculture in the West Pomeranian University of Technology in Szczecin. She has been teaching in the area of preservation, storage, processing, and evaluation of commodity plant materials. Dr. Janda conducts research on enzymatic activity and effects of fungi, especially those colonizing plant materials, on storage stability of various materials. She has published 47 research papers and coauthored a book entitled Microbiology of Materials published by the Technical University of Lodz Press, with the contribution on biodeterioration of petroleum products.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych has a Ph. D.\u003c\/strong\u003e in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 15 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Biopolymer...
$249.00
{"id":11242202820,"title":"Handbook of Biopolymers and Biodegradable Plastics, Properties, Processing and Applications","handle":"978-1-4557-2834-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ebnesajjad \u003cbr\u003eISBN 978-1-4557-2834-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e448 Pages \u003c\/p\u003e\n\u003cp\u003e1st edition\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEssential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics.\u003cbr\u003eIncludes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds.\u003cbr\u003eCoverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBiopolymers and Biodegradable Plastics are a hot issue across the Plastics industry and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction industry to the automotive sector.\u003cbr\u003eThis book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers.\u003cbr\u003eTopics covered include preparation, fabrication, applications, and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed.\u003cbr\u003eDr. Ebnesajjad provides readers with an in-depth reference for the plastics industry - material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators - and for industry sectors utilizing biopolymers - automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, product designers, packaging engineers and materials scientists, medical device and packaging designers and users; polymer and coatings chemists; producers and users of biopolymers; Sectors: food, beverage and pharmaceutical packaging, medical devices, chemical processing, construction, automotive\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1: Overview of Plant Polymers - Resources, Demands, and Sustainability\u003cbr\u003e\u003cbr\u003eby: Xiuzhi S. Sun\u003cbr\u003e\u003cbr\u003ePART I. MATERIALS\u003cbr\u003e\u003cbr\u003eChapter 2: The State of the Art of Renewable Resources\u003cbr\u003e\u003cbr\u003eby: A. Gandini and M. N. Belgacem\u003cbr\u003e\u003cbr\u003eChapter 3: Polymeric Biomaterials\u003cbr\u003e\u003cbr\u003eby: W. He and R. Benson\u003cbr\u003e\u003cbr\u003eChapter 4: Biodegradable and Biobased Polymers\u003cbr\u003e\u003cbr\u003eby: L. Jiang, X. Liu and J. Zhang\u003cbr\u003e\u003cbr\u003eChapter 5: Starch: Major Sources, Properties, and Applications of Thermoplastic Materials\u003cbr\u003e\u003cbr\u003eby: A. J.F. Carvalho\u003cbr\u003e\u003cbr\u003eChapter 6: Cellulose-Based Composites and Nanocomposites\u003cbr\u003e\u003cbr\u003eby: A. Dufresne\u003cbr\u003e\u003cbr\u003eChapter 7: Polylactic Acid: Synthesis, Properties, and Applications\u003cbr\u003e\u003cbr\u003eby: L. Avérous\u003cbr\u003e\u003cbr\u003eChapter 8: Properties of Poly(lactic acid)\u003cbr\u003e\u003cbr\u003eby: A. R. Rahmat et al\u003cbr\u003e\u003cbr\u003eChapter 9: Compostable polymer materials definitions, structures, and methods of preparation\u003cbr\u003e\u003cbr\u003eby: E. Rudnik\u003cbr\u003e\u003cbr\u003eChapter 10: Biodegradability testing of compostable polymer materials\u003cbr\u003e\u003cbr\u003eby: E. Rudnik\u003cbr\u003e\u003cbr\u003ePART II. APPLICATIONS\u003cbr\u003e\u003cbr\u003eChapter 11: Pressure-Sensitive Adhesives, Elastomers, and Coatings from plant Oil\u003cbr\u003e\u003cbr\u003eby: R. P. Wool\u003cbr\u003e\u003cbr\u003eChapter 12: Biopolymer Films and Composite Coatings\u003cbr\u003e\u003cbr\u003eby: A. Nussinovitch\u003cbr\u003e\u003cbr\u003eChapter 13: Biopolymers in Controlled-Release Delivery Systems\u003cbr\u003e\u003cbr\u003eby: K. Pal\u003cbr\u003e\u003cbr\u003eChapter 14: Hydrocolloids and Medicinal Chemistry Applications\u003cbr\u003e\u003cbr\u003eby: L. M. Grover and A. M. Smith\u003cbr\u003e\u003cbr\u003eChapter 15: Natural Polymers in tissue engineering applications\u003cbr\u003e\u003cbr\u003eby: Gomez et al.\u003cbr\u003e\u003cbr\u003eChapter 16: Fabrication of Tissue Engineering Scaffolds\u003cbr\u003e\u003cbr\u003eby: A. Kramschuster \u0026amp; L.S. Turng\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAreas of Expertise\u003c\/div\u003e\n\u003cdiv\u003eFluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:45-04:00","created_at":"2017-06-22T21:12:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","biodegradable polymers","biopolymer films","biopolymers","book","coating","composite","films","nanocomposite","p-applications","polymers"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378313476,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biopolymers and Biodegradable Plastics, Properties, Processing and Applications","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2834-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2834-3.jpg?v=1499387728"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2834-3.jpg?v=1499387728","options":["Title"],"media":[{"alt":null,"id":354809839709,"position":1,"preview_image":{"aspect_ratio":0.784,"height":499,"width":391,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2834-3.jpg?v=1499387728"},"aspect_ratio":0.784,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2834-3.jpg?v=1499387728","width":391}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ebnesajjad \u003cbr\u003eISBN 978-1-4557-2834-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e448 Pages \u003c\/p\u003e\n\u003cp\u003e1st edition\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEssential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics.\u003cbr\u003eIncludes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds.\u003cbr\u003eCoverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBiopolymers and Biodegradable Plastics are a hot issue across the Plastics industry and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction industry to the automotive sector.\u003cbr\u003eThis book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers.\u003cbr\u003eTopics covered include preparation, fabrication, applications, and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed.\u003cbr\u003eDr. Ebnesajjad provides readers with an in-depth reference for the plastics industry - material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators - and for industry sectors utilizing biopolymers - automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, product designers, packaging engineers and materials scientists, medical device and packaging designers and users; polymer and coatings chemists; producers and users of biopolymers; Sectors: food, beverage and pharmaceutical packaging, medical devices, chemical processing, construction, automotive\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1: Overview of Plant Polymers - Resources, Demands, and Sustainability\u003cbr\u003e\u003cbr\u003eby: Xiuzhi S. Sun\u003cbr\u003e\u003cbr\u003ePART I. MATERIALS\u003cbr\u003e\u003cbr\u003eChapter 2: The State of the Art of Renewable Resources\u003cbr\u003e\u003cbr\u003eby: A. Gandini and M. N. Belgacem\u003cbr\u003e\u003cbr\u003eChapter 3: Polymeric Biomaterials\u003cbr\u003e\u003cbr\u003eby: W. He and R. Benson\u003cbr\u003e\u003cbr\u003eChapter 4: Biodegradable and Biobased Polymers\u003cbr\u003e\u003cbr\u003eby: L. Jiang, X. Liu and J. Zhang\u003cbr\u003e\u003cbr\u003eChapter 5: Starch: Major Sources, Properties, and Applications of Thermoplastic Materials\u003cbr\u003e\u003cbr\u003eby: A. J.F. Carvalho\u003cbr\u003e\u003cbr\u003eChapter 6: Cellulose-Based Composites and Nanocomposites\u003cbr\u003e\u003cbr\u003eby: A. Dufresne\u003cbr\u003e\u003cbr\u003eChapter 7: Polylactic Acid: Synthesis, Properties, and Applications\u003cbr\u003e\u003cbr\u003eby: L. Avérous\u003cbr\u003e\u003cbr\u003eChapter 8: Properties of Poly(lactic acid)\u003cbr\u003e\u003cbr\u003eby: A. R. Rahmat et al\u003cbr\u003e\u003cbr\u003eChapter 9: Compostable polymer materials definitions, structures, and methods of preparation\u003cbr\u003e\u003cbr\u003eby: E. Rudnik\u003cbr\u003e\u003cbr\u003eChapter 10: Biodegradability testing of compostable polymer materials\u003cbr\u003e\u003cbr\u003eby: E. Rudnik\u003cbr\u003e\u003cbr\u003ePART II. APPLICATIONS\u003cbr\u003e\u003cbr\u003eChapter 11: Pressure-Sensitive Adhesives, Elastomers, and Coatings from plant Oil\u003cbr\u003e\u003cbr\u003eby: R. P. Wool\u003cbr\u003e\u003cbr\u003eChapter 12: Biopolymer Films and Composite Coatings\u003cbr\u003e\u003cbr\u003eby: A. Nussinovitch\u003cbr\u003e\u003cbr\u003eChapter 13: Biopolymers in Controlled-Release Delivery Systems\u003cbr\u003e\u003cbr\u003eby: K. Pal\u003cbr\u003e\u003cbr\u003eChapter 14: Hydrocolloids and Medicinal Chemistry Applications\u003cbr\u003e\u003cbr\u003eby: L. M. Grover and A. M. Smith\u003cbr\u003e\u003cbr\u003eChapter 15: Natural Polymers in tissue engineering applications\u003cbr\u003e\u003cbr\u003eby: Gomez et al.\u003cbr\u003e\u003cbr\u003eChapter 16: Fabrication of Tissue Engineering Scaffolds\u003cbr\u003e\u003cbr\u003eby: A. Kramschuster \u0026amp; L.S. Turng\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAreas of Expertise\u003c\/div\u003e\n\u003cdiv\u003eFluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Handbook of Material B...
$265.00
{"id":11242208644,"title":"Handbook of Material Biodegradation, Biodeterioration, and Biostabilization","handle":"978-1-895198-44-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Falkiewicz-Dulik, M; Janda, K; Wypych, G \u003cbr\u003eISBN 978-1-895198-44-7 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages: 368\u003cbr\u003eFigures: 63\u003cbr\u003eTables: 188\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is about protection of materials and products against colonization and subsequent degradation of their properties. The book contains 9 chapters each devoted to essential aspects related to biodegradation and biostabilization.\u003cbr\u003eThe introductory chapter gives historical note on chronological developments in the field, presents classification of biocidal products, and defines essential terms which are frequently used in the subject of the book.\u003cbr\u003e\u003cbr\u003eMicroorganisms involved in biodegradation and biodeterioration of materials are presented within the framework of their classification, based on the most recent developments and agreements. Information on 13 groups of bacteria 7 groups of fungi, and 4 groups of protozoa are discussed in Chapter 2, which also contains discussion of major mechanisms of biodegradation and biodeterioration, including biofilm formation and its effects on biostabilization of materials.\u003cbr\u003e\u003cbr\u003eChapter 3 is devoted to industrial biocides. It begins with discussion of mechanisms of biostabilization followed by discussion of types of biostabilizers. In this discussion, biocides are divided into 19 groups and properties of stabilizers for each group are given in the tabular form. Only stabilizers permitted for use in European Union and the USA are included in the discussion. The selection is based on the current in 2010 lists of approved substances.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on biodegradation, biodeterioration and biostabilization of industrial products. For each group of products, relevant microorganisms, essential product components, mechanisms of biodegradation and biodeterioration, results of biodeterioration, biostabilization, and used formulations are given. Twenty two groups of industrial products are included in evaluation. Also, 24 groups of polymers are discussed here in separate sections.\u003cbr\u003e\u003cbr\u003eChapter 5 contains information on standard and other frequently used analytical methods in the field of the book. Chapter 6 contains evaluation of health and safety aspects of biocide application. Chapter 7 contains the most current information on environmental fate of biostabilizers, including their concentrations, toxicity, and the rates of decay. Discussion is based on the most current data (current decade) to give real picture of current situation.\u003cbr\u003e\u003cbr\u003eChapter 8 contains information on regulations developed in European Union, by world organizations, and in the USA to give a comprehensive background of legislative measures. The last chapter is on protection of workers who use biocides in their work.\u003cbr\u003eThis comprehensive source of fundamental information and data is based on thousands of papers, patents, and information from biocide manufacturers. The above contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.\u003cbr\u003e\u003cbr\u003eVery drastic changes in biocides which can be used according to regulations make most of the very informative books published in past misleading because regulations eliminated many products, which they discuss. This book only looks to future applications, giving ideas on how to protect materials in today’s environment.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction \u003c\/strong\u003e\u003cbr\u003e1.1 Short historical note\u003cbr\u003e1.2 Classification\u003cbr\u003e1.3 Definitions\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2 Microorganism involved in biodegradation of materials \u003c\/strong\u003e\u003c\/p\u003e\n2.1 General classifications of living things\u003cbr\u003e2.2 Bacteria\u003cbr\u003e2.2.1 Actinobacteria\u003cbr\u003e2.2.2 Bacteroidetes\/Chlorobi\u003cbr\u003e2.2.3 Chlamydiae\/Verrucomicrobiae\u003cbr\u003e2.2.4 Chloroflexi\u003cbr\u003e2.2.5 Cyanobacteria\u003cbr\u003e2.2.6 Fibrobacteres\/Acidobacteria\u003cbr\u003e2.2.7 Firmicutes\u003cbr\u003e2.2.8 Fusobacteria\u003cbr\u003e2.2.9 Nitrospirae\u003cbr\u003e2.2.10 Planctomycetes\u003cbr\u003e2.2.11 Proteobacteria\u003cbr\u003e2.2.12 Thermodesulfobacteria\u003cbr\u003e2.2.13 Thermotogae\u003cbr\u003e2.3 Fungi\u003cbr\u003e2.3.1 Ascomycota\u003cbr\u003e2.3.2 Basidiomycota\u003cbr\u003e2.3.3 Blastocladiomycota\u003cbr\u003e2.3.4 Chytridiomycota\u003cbr\u003e2.3.5 Glomeromycota\u003cbr\u003e2.3.6 Microsporidia\u003cbr\u003e2.3.7 Neocallimastigomycota\u003cbr\u003e2.4 Protozoa\u003cbr\u003e2.5 Biodegradation \u0026amp; biodeterioration mechanisms\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e3 Industrial biocides\u003c\/strong\u003e\u003c\/p\u003e\n3.1 General mechanisms of biostabilization\u003cbr\u003e3.2 Chemical types of biostabilizers\u003cbr\u003e3.2.1 Acetal aldehyde-releasing compounds\u003cbr\u003e3.2.2 Acid esters\u003cbr\u003e3.2.3 Acids\u003cbr\u003e3.2.4 Active halogen products\u003cbr\u003e3.2.5 Alcohols\u003cbr\u003e3.2.6 Aldehydes\u003cbr\u003e3.2.7 Amides\u003cbr\u003e3.2.8 Azoles\u003cbr\u003e3.2.9 Carbamates\u003cbr\u003e3.2.10 Formaldehyde-releasing compounds\u003cbr\u003e3.2.11 Haloalkylthio compounds\u003cbr\u003e3.2.12 Heterocyclic N,S-compounds\u003cbr\u003e3.2.13 Metal-containing products\u003cbr\u003e3.2.14 Oxidizing agents\u003cbr\u003e3.2.15 Phenolics\u003cbr\u003e3.2.16 Polymeric materials\u003cbr\u003e3.2.17 Pyridine derivatives\u003cbr\u003e3.2.18 Quaternary ammonium compounds and other surface active agents\u003cbr\u003e3.2.19 Other (not included) products\u003cbr\u003e3.3 Principles of selection of biostabilizers\u003cbr\u003e3.4 Longevity of biostabilized materials\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e4 Biodegradation, biodeterioration, and biostabilization of industrial products\u003c\/strong\u003e\u003c\/p\u003e\n4.1 Building products \u003cbr\u003e4.2 Coatings and paints \u003cbr\u003e4.3 Cultural heritage excluding stone building and monuments\u003cbr\u003e4.4 Dental materials\u003cbr\u003e4.5 Electrical and electronic products \u003cbr\u003e4.6 Fibers and textiles \u003cbr\u003e4.7 Leather and leather products \u003cbr\u003e4.8 Marine transport\u003cbr\u003e4.9 Medical applications\u003cbr\u003e4.10 Metals\u003cbr\u003e4.11 Mineral dispersions\u003cbr\u003e4.12 Petroleum products (fuels and lubricants)\u003cbr\u003e4.13 Pharmaceuticals, cosmetics, and toiletries \u003cbr\u003e4.14 Polymers\u003cbr\u003e4.15 Pulp and paper \u003cbr\u003e4.16 Roofing materials\u003cbr\u003e4.17 Rubber\u003cbr\u003e4.18 Sealants and adhesives\u003cbr\u003e4.19 Stones and other building materials\u003cbr\u003e4.21 Swimming pools\u003cbr\u003e4.22 Water\u003cbr\u003e4.23 Wood\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Analytical methods in biodegradation, biodeterioration, and biostabilization \u003c\/strong\u003e\u003cbr\u003e5.1 Standards\u003cbr\u003e5.1.1 Adhesives and sealants\u003cbr\u003e5.1.2 Antifouling coatings\u003cbr\u003e5.1.3 Antiseptic drugs and handwash\u003cbr\u003e5.1.4 Chemical materials in general\u003cbr\u003e5.1.5 Coatings and paints\u003cbr\u003e5.1.6 Cooling water systems\u003cbr\u003e5.1.7 Detergents\u003cbr\u003e5.1.8 Fuels and fuels systems\u003cbr\u003e5.1.9 Geomembranes and geotextiles\u003cbr\u003e5.1.10 Hydraulic fluids\u003cbr\u003e5.1.11 Lubricants\u003cbr\u003e5.1.12 Lumber, pallets, and wood boxes\u003cbr\u003e5.1.13 Metalworking fluids\u003cbr\u003e5.1.14 Oilfield and refinery\u003cbr\u003e5.1.15 Oil spill response\u003cbr\u003e5.1.16 Packaging\u003cbr\u003e5.1.17 Paper\u003cbr\u003e5.1.18 Plastics and polymers\u003cbr\u003e5.1.19 Stone consolidants\u003cbr\u003e5.1.20 Surgical implants and medical devices\u003cbr\u003e5.1.21 Water systems\u003cbr\u003e5.2 Non-conventional analysis\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e6 Biostabilizers - health \u0026amp; safety \u003c\/strong\u003e\u003cbr\u003e6.1 Toxic substance control\u003cbr\u003e6.2 Carcinogenic effects\u003cbr\u003e6.3 Workplace exposure limits\u003cbr\u003e6.4 Food regulatory acts\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e7 Environmental fates of biostabilizers \u003c\/strong\u003e\u003c\/p\u003e\n7.1 Concentration\u003cbr\u003e7.2 Toxicity\u003cbr\u003e7.3 Decay\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e8 Legislation \u003c\/strong\u003e\u003c\/p\u003e\n8.1 European Union\u003cbr\u003e8.2 International\u003cbr\u003e8.3 USA\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9 Personal protection \u003c\/strong\u003e\u003c\/p\u003e\n9.1 Clothing\u003cbr\u003e9.2 Gloves\u003cbr\u003e9.3 Eye protection\u003cbr\u003e9.4 Respiratory protection\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMichalina Falkiewicz-Dulik\u003c\/strong\u003e has a M.Sc. degree in experimental physics and thirty years of experience in leather products manufacture with special reference to research, development, and technology implementation on industrial scale. She coauthored 2 books: Microbiology of materials (Technical University of Łódź Press) and Light industry - management and organization of production, materials science, technology and design, (Kazimierz Pułaski Technical University of Radom Press). She has published 24 scientific papers, 3 know-how manuals, 87 articles and reports in: Medical Mycology, Advances in Dermatology and Allergology, Przegląd Skórzany, Przegląd Włókienniczy WOS, Ochrona Przed Korozją. She has been awarded four prizes by Polish Federation of Engineering Associations NOT for technologies of manufacturing synthetic materials and one prize by National Fund for Environmental Protection and Water Management for the project “Recycling Technology – Technology Recycling”. She is also forensic expert in the area of leather and leather goods, raw materials, plastic and rubber, and leather processing and footwear as well as an auditor of Quality Management System according to ISO 9001.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003eDr. Eng. Katarzyna Janda\u003c\/strong\u003e is an associate professor at the Faculty of Environmental Management and Agriculture in West Pomeranian University of Technology in Szczecin. She has been teaching in the area of preservation, storage, processing, and evaluation of commodity plant materials. Dr. Janda conducts research on enzymatic activity and effects of fungi, especially those colonizing plant materials, on storage stability of various materials. She has published 47 research papers and coauthored a book entitled Microbiology of Materials published by the Technical University of Lodz Press, with contribution on biodeterioration of petroleum products.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003ehas a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 15 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:04-04:00","created_at":"2017-06-22T21:13:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","biodegradable plastics","Biodegradation","Biodeterioration","biopolymers","Biostabilization","biostabilizers","book","industrial biocides","mechanism of biodegradation"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378328580,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Material Biodegradation, Biodeterioration, and Biostabilization","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-44-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-44-7.jpg?v=1499887695"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-44-7.jpg?v=1499887695","options":["Title"],"media":[{"alt":null,"id":355726131293,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-44-7.jpg?v=1499887695"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-44-7.jpg?v=1499887695","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Falkiewicz-Dulik, M; Janda, K; Wypych, G \u003cbr\u003eISBN 978-1-895198-44-7 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages: 368\u003cbr\u003eFigures: 63\u003cbr\u003eTables: 188\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is about protection of materials and products against colonization and subsequent degradation of their properties. The book contains 9 chapters each devoted to essential aspects related to biodegradation and biostabilization.\u003cbr\u003eThe introductory chapter gives historical note on chronological developments in the field, presents classification of biocidal products, and defines essential terms which are frequently used in the subject of the book.\u003cbr\u003e\u003cbr\u003eMicroorganisms involved in biodegradation and biodeterioration of materials are presented within the framework of their classification, based on the most recent developments and agreements. Information on 13 groups of bacteria 7 groups of fungi, and 4 groups of protozoa are discussed in Chapter 2, which also contains discussion of major mechanisms of biodegradation and biodeterioration, including biofilm formation and its effects on biostabilization of materials.\u003cbr\u003e\u003cbr\u003eChapter 3 is devoted to industrial biocides. It begins with discussion of mechanisms of biostabilization followed by discussion of types of biostabilizers. In this discussion, biocides are divided into 19 groups and properties of stabilizers for each group are given in the tabular form. Only stabilizers permitted for use in European Union and the USA are included in the discussion. The selection is based on the current in 2010 lists of approved substances.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on biodegradation, biodeterioration and biostabilization of industrial products. For each group of products, relevant microorganisms, essential product components, mechanisms of biodegradation and biodeterioration, results of biodeterioration, biostabilization, and used formulations are given. Twenty two groups of industrial products are included in evaluation. Also, 24 groups of polymers are discussed here in separate sections.\u003cbr\u003e\u003cbr\u003eChapter 5 contains information on standard and other frequently used analytical methods in the field of the book. Chapter 6 contains evaluation of health and safety aspects of biocide application. Chapter 7 contains the most current information on environmental fate of biostabilizers, including their concentrations, toxicity, and the rates of decay. Discussion is based on the most current data (current decade) to give real picture of current situation.\u003cbr\u003e\u003cbr\u003eChapter 8 contains information on regulations developed in European Union, by world organizations, and in the USA to give a comprehensive background of legislative measures. The last chapter is on protection of workers who use biocides in their work.\u003cbr\u003eThis comprehensive source of fundamental information and data is based on thousands of papers, patents, and information from biocide manufacturers. The above contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.\u003cbr\u003e\u003cbr\u003eVery drastic changes in biocides which can be used according to regulations make most of the very informative books published in past misleading because regulations eliminated many products, which they discuss. This book only looks to future applications, giving ideas on how to protect materials in today’s environment.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction \u003c\/strong\u003e\u003cbr\u003e1.1 Short historical note\u003cbr\u003e1.2 Classification\u003cbr\u003e1.3 Definitions\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2 Microorganism involved in biodegradation of materials \u003c\/strong\u003e\u003c\/p\u003e\n2.1 General classifications of living things\u003cbr\u003e2.2 Bacteria\u003cbr\u003e2.2.1 Actinobacteria\u003cbr\u003e2.2.2 Bacteroidetes\/Chlorobi\u003cbr\u003e2.2.3 Chlamydiae\/Verrucomicrobiae\u003cbr\u003e2.2.4 Chloroflexi\u003cbr\u003e2.2.5 Cyanobacteria\u003cbr\u003e2.2.6 Fibrobacteres\/Acidobacteria\u003cbr\u003e2.2.7 Firmicutes\u003cbr\u003e2.2.8 Fusobacteria\u003cbr\u003e2.2.9 Nitrospirae\u003cbr\u003e2.2.10 Planctomycetes\u003cbr\u003e2.2.11 Proteobacteria\u003cbr\u003e2.2.12 Thermodesulfobacteria\u003cbr\u003e2.2.13 Thermotogae\u003cbr\u003e2.3 Fungi\u003cbr\u003e2.3.1 Ascomycota\u003cbr\u003e2.3.2 Basidiomycota\u003cbr\u003e2.3.3 Blastocladiomycota\u003cbr\u003e2.3.4 Chytridiomycota\u003cbr\u003e2.3.5 Glomeromycota\u003cbr\u003e2.3.6 Microsporidia\u003cbr\u003e2.3.7 Neocallimastigomycota\u003cbr\u003e2.4 Protozoa\u003cbr\u003e2.5 Biodegradation \u0026amp; biodeterioration mechanisms\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e3 Industrial biocides\u003c\/strong\u003e\u003c\/p\u003e\n3.1 General mechanisms of biostabilization\u003cbr\u003e3.2 Chemical types of biostabilizers\u003cbr\u003e3.2.1 Acetal aldehyde-releasing compounds\u003cbr\u003e3.2.2 Acid esters\u003cbr\u003e3.2.3 Acids\u003cbr\u003e3.2.4 Active halogen products\u003cbr\u003e3.2.5 Alcohols\u003cbr\u003e3.2.6 Aldehydes\u003cbr\u003e3.2.7 Amides\u003cbr\u003e3.2.8 Azoles\u003cbr\u003e3.2.9 Carbamates\u003cbr\u003e3.2.10 Formaldehyde-releasing compounds\u003cbr\u003e3.2.11 Haloalkylthio compounds\u003cbr\u003e3.2.12 Heterocyclic N,S-compounds\u003cbr\u003e3.2.13 Metal-containing products\u003cbr\u003e3.2.14 Oxidizing agents\u003cbr\u003e3.2.15 Phenolics\u003cbr\u003e3.2.16 Polymeric materials\u003cbr\u003e3.2.17 Pyridine derivatives\u003cbr\u003e3.2.18 Quaternary ammonium compounds and other surface active agents\u003cbr\u003e3.2.19 Other (not included) products\u003cbr\u003e3.3 Principles of selection of biostabilizers\u003cbr\u003e3.4 Longevity of biostabilized materials\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e4 Biodegradation, biodeterioration, and biostabilization of industrial products\u003c\/strong\u003e\u003c\/p\u003e\n4.1 Building products \u003cbr\u003e4.2 Coatings and paints \u003cbr\u003e4.3 Cultural heritage excluding stone building and monuments\u003cbr\u003e4.4 Dental materials\u003cbr\u003e4.5 Electrical and electronic products \u003cbr\u003e4.6 Fibers and textiles \u003cbr\u003e4.7 Leather and leather products \u003cbr\u003e4.8 Marine transport\u003cbr\u003e4.9 Medical applications\u003cbr\u003e4.10 Metals\u003cbr\u003e4.11 Mineral dispersions\u003cbr\u003e4.12 Petroleum products (fuels and lubricants)\u003cbr\u003e4.13 Pharmaceuticals, cosmetics, and toiletries \u003cbr\u003e4.14 Polymers\u003cbr\u003e4.15 Pulp and paper \u003cbr\u003e4.16 Roofing materials\u003cbr\u003e4.17 Rubber\u003cbr\u003e4.18 Sealants and adhesives\u003cbr\u003e4.19 Stones and other building materials\u003cbr\u003e4.21 Swimming pools\u003cbr\u003e4.22 Water\u003cbr\u003e4.23 Wood\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Analytical methods in biodegradation, biodeterioration, and biostabilization \u003c\/strong\u003e\u003cbr\u003e5.1 Standards\u003cbr\u003e5.1.1 Adhesives and sealants\u003cbr\u003e5.1.2 Antifouling coatings\u003cbr\u003e5.1.3 Antiseptic drugs and handwash\u003cbr\u003e5.1.4 Chemical materials in general\u003cbr\u003e5.1.5 Coatings and paints\u003cbr\u003e5.1.6 Cooling water systems\u003cbr\u003e5.1.7 Detergents\u003cbr\u003e5.1.8 Fuels and fuels systems\u003cbr\u003e5.1.9 Geomembranes and geotextiles\u003cbr\u003e5.1.10 Hydraulic fluids\u003cbr\u003e5.1.11 Lubricants\u003cbr\u003e5.1.12 Lumber, pallets, and wood boxes\u003cbr\u003e5.1.13 Metalworking fluids\u003cbr\u003e5.1.14 Oilfield and refinery\u003cbr\u003e5.1.15 Oil spill response\u003cbr\u003e5.1.16 Packaging\u003cbr\u003e5.1.17 Paper\u003cbr\u003e5.1.18 Plastics and polymers\u003cbr\u003e5.1.19 Stone consolidants\u003cbr\u003e5.1.20 Surgical implants and medical devices\u003cbr\u003e5.1.21 Water systems\u003cbr\u003e5.2 Non-conventional analysis\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e6 Biostabilizers - health \u0026amp; safety \u003c\/strong\u003e\u003cbr\u003e6.1 Toxic substance control\u003cbr\u003e6.2 Carcinogenic effects\u003cbr\u003e6.3 Workplace exposure limits\u003cbr\u003e6.4 Food regulatory acts\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e7 Environmental fates of biostabilizers \u003c\/strong\u003e\u003c\/p\u003e\n7.1 Concentration\u003cbr\u003e7.2 Toxicity\u003cbr\u003e7.3 Decay\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e8 Legislation \u003c\/strong\u003e\u003c\/p\u003e\n8.1 European Union\u003cbr\u003e8.2 International\u003cbr\u003e8.3 USA\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9 Personal protection \u003c\/strong\u003e\u003c\/p\u003e\n9.1 Clothing\u003cbr\u003e9.2 Gloves\u003cbr\u003e9.3 Eye protection\u003cbr\u003e9.4 Respiratory protection\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMichalina Falkiewicz-Dulik\u003c\/strong\u003e has a M.Sc. degree in experimental physics and thirty years of experience in leather products manufacture with special reference to research, development, and technology implementation on industrial scale. She coauthored 2 books: Microbiology of materials (Technical University of Łódź Press) and Light industry - management and organization of production, materials science, technology and design, (Kazimierz Pułaski Technical University of Radom Press). She has published 24 scientific papers, 3 know-how manuals, 87 articles and reports in: Medical Mycology, Advances in Dermatology and Allergology, Przegląd Skórzany, Przegląd Włókienniczy WOS, Ochrona Przed Korozją. She has been awarded four prizes by Polish Federation of Engineering Associations NOT for technologies of manufacturing synthetic materials and one prize by National Fund for Environmental Protection and Water Management for the project “Recycling Technology – Technology Recycling”. She is also forensic expert in the area of leather and leather goods, raw materials, plastic and rubber, and leather processing and footwear as well as an auditor of Quality Management System according to ISO 9001.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003eDr. Eng. Katarzyna Janda\u003c\/strong\u003e is an associate professor at the Faculty of Environmental Management and Agriculture in West Pomeranian University of Technology in Szczecin. She has been teaching in the area of preservation, storage, processing, and evaluation of commodity plant materials. Dr. Janda conducts research on enzymatic activity and effects of fungi, especially those colonizing plant materials, on storage stability of various materials. She has published 47 research papers and coauthored a book entitled Microbiology of Materials published by the Technical University of Lodz Press, with contribution on biodeterioration of petroleum products.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003ehas a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 15 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003cbr\u003e\u003cbr\u003e"}
Introduction to Plasti...
$120.00
{"id":11242216068,"title":"Introduction to Plastics Recycling, 2nd Edition","handle":"978-1-84735-078-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-078-7 \u003cbr\u003e\u003cbr\u003eSoft-backed, 173 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAlthough recycling has a long history, it is only relatively recently that environmental protection and waste management issues have come to the forefront of both public and political awareness. Outside the fields of expertise, generally little is known about either plastics or their recyclability. \u003cbr\u003e\u003cbr\u003eAs in the successful first edition, this book provides straightforward information on plastic materials and technology, including the options for recycling plastics, with a special focus on mechanical recycling. It touches on all the major problems associated with recovering and recycling plastics at a level intended to be accessible to any reader with an interest in this field, whatever their background. It also looks at some of the broader issues surrounding successful waste management of plastics. \u003cbr\u003e\u003cbr\u003eThis new edition reflects the great strides that have been made to increase recycling rates worldwide in recent years. It considers the expansion of infrastructure in the UK to support plastic recycling and major achievements that have been made in gaining widespread public support and participation for recycling schemes; specifically the need to manage waste on an individual household level. Current issues surrounding council recycling of plastic bottles, and the practice of providing free plastic carrier bags by supermarkets, are also considered. \u003cbr\u003e\u003cbr\u003eBiopolymers are expected to have a major impact on plastic markets in the future and therefore some of the issues of biodegradability versus recycling are expanded in this second edition, as is the wider context of life cycle analysis and legislation. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features...\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eClear, easy to understand text\u003c\/li\u003e\n\u003cli\u003eWritten for a broad audience both within and outside the polymer industry\u003c\/li\u003e\n\u003cli\u003eGood introduction to plastic materials and technology with useful illustrations\u003c\/li\u003e\n\u003cli\u003eExplains recycling terminology, technology, and material quality issues\u003c\/li\u003e\n\u003cli\u003eUp-to-date information on the plastics recycling infrastructure and recent developments\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nReviewed.\u003cbr\u003e\u003cbr\u003eAbout the 1st Edition\u003cbr\u003e\"...This book has been well written and great care is taken to make the information accessible. The lucid style and numerous internet based references should help any reader explore a promising area, and should, by design, lead to many returns.\" \u003cbr\u003e\u003cbr\u003eProf Roger C Hiorns \u003cbr\u003e[DOI: 10.1002\/pi.1471] \u003cbr\u003e2004 Society of Chemical Industry. Polymer International 0959–8103\/2004\u003cbr\u003e\u003cbr\u003ePreface \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e1. Introduction \u003cbr\u003e\u003cbr\u003e2. Back to Basics\u003c\/strong\u003e \u003cbr\u003e2.1 Polymers \u003cbr\u003e2.2 Thermoplastics \u003cbr\u003e2.2.1 Polyolefins \u003cbr\u003e2.2.2 Polyamides \u003cbr\u003e2.3 Thermosets \u003cbr\u003e2.4 The Formulation of Plastics \u003cbr\u003e2.5 Why Does Recyclate Always Seem to be Black? \u003cbr\u003e2.6 What Are Recyclates Used For? \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. The Effects of Processing on Thermoplastics\u003c\/strong\u003e \u003cbr\u003e3.1 Rheology \u003cbr\u003e3.2 Heat \u003cbr\u003e3.3 Physical and Chemical Changes \u003cbr\u003e3.4 Assessing Property Deterioration Caused by Repeated Cycling by Injection Moulding \u003cbr\u003e3.5 Short-Term Mechanical Testing \u003cbr\u003e3.5.1 Tensile Testing \u003cbr\u003e3.5.2 Impact Testing \u003cbr\u003e3.5.3 Tensile and Impact Testing of Recycled Expanded Polystyrene \u003cbr\u003e\u003cbr\u003e4. Why Plastics Need to be Sorted \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Reprocessing of Thermoplastic Recyclates\u003c\/strong\u003e \u003cbr\u003e5.1 Contaminants \u003cbr\u003e5.2 Recycling Techniques \u003cbr\u003e5.3 Size Reduction \u003cbr\u003e5.4 Washing \u003cbr\u003e5.5 Identification and Sorting of Plastics \u003cbr\u003e5.6 Agglomeration \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Processing Techniques\u003c\/strong\u003e \u003cbr\u003e6.1 Extrusion \u003cbr\u003e6.1.1 Introduction \u003cbr\u003e6.1.2 Compounding \u003cbr\u003e6.1.3 Single-Screw Extruders \u003cbr\u003e6.1.4 Twin-Screw Extruders \u003cbr\u003e6.1.5 Co-Extrusion \u003cbr\u003e6.2 Supply Chains for Compounds \u003cbr\u003e6.3 Injection Moulding \u003cbr\u003e6.3.1 Waste During the Injection Moulding Process \u003cbr\u003e6.3.2 Co-Injection Moulding \u003cbr\u003e6.4 Blow Moulding \u003cbr\u003e6.4.1 Extrusion Blow Moulding \u003cbr\u003e6.4.2 Injection Blow Moulding \u003cbr\u003e6.5 Weld Lines \u003cbr\u003e6.6 Film Blowing \u003cbr\u003e6.7 Compression Moulding \u003cbr\u003e6.8 Thermoforming \u003cbr\u003e6.9 Processes for Incorporating Mixed Plastic Waste \u003cbr\u003e6.9.1 Intrusion Moulding \u003cbr\u003e6.9.2 Transfer Moulding \u003cbr\u003e6.9.3 Sinter Moulding \u003cbr\u003e6.10 Conclusion \u003cbr\u003e6.11 Case Study: Plastic Lumber \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Additives for Recyclates\u003c\/strong\u003e \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 The Degradation of Plastics \u003cbr\u003e7.3 Restabilisation of Recyclates \u003cbr\u003e7.4 Testing the Effects of Stabilisers \u003cbr\u003e7.4.1 Processing Stability \u003cbr\u003e7.4.2 Heat Stability \u003cbr\u003e7.4.3 Light Stability \u003cbr\u003e7.5 Stabilisers \u003cbr\u003e7.5.1 Thermal Stabilisation \u003cbr\u003e7.5.2 Light Stabilisation \u003cbr\u003e7.5.3 Additive Combinations for Specific Purposes \u003cbr\u003e7.6 Modifying the Properties of Plastics Through Incorporation of Miscellaneous Additives \u003cbr\u003e7.6.1 Degradable Plastics \u003cbr\u003e7.6.2 Compatibilisers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Other Methods of Recycling and Waste Disposal Options\u003c\/strong\u003e \u003cbr\u003e8.1 The Case of Thermosets \u003cbr\u003e8.2 Chemical Recycling \u003cbr\u003e8.3 Thermal Conversion Technologies \u003cbr\u003e8.3.1 Pyrolysis \u003cbr\u003e8.3.2 Hydrogenation \u003cbr\u003e8.3.3 Gasification \u003cbr\u003e8.4 Energy Recovery \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9. Creation of a Recycling and Recovery Infrastructure for Plastics \u003cbr\u003e\u003c\/strong\u003e9.1 Development \u003cbr\u003e9.2 Design for Disassembly and Recycling \u003cbr\u003e9.3 Developing Recyclate Markets \u003cbr\u003e9.4 Logistics \u003cbr\u003e9.5 Quality \u003cbr\u003e9.6 Education \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10. The Problem in Perspective: Europe\u003c\/strong\u003e \u003cbr\u003e10.1 Case Study: Packaging \u003cbr\u003e10.2 Integrated Product Policy \u003cbr\u003e10.2.1 Waste Electrical and Electronic Equipment Directive (WEEE) 2002\/96\/EC \u003cbr\u003e10.2.2 End of Life Vehicles Directive (ELV) 200\/53\/EC \u003cbr\u003e10.3 Conclusion \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11. Rise of the Biopolymers: Recycling versus Degradation\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eGlossary \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. She has now worked in the field of polymer processing for over twenty-four years and has published work on a variety of plastic related subjects.","published_at":"2017-06-22T21:13:28-04:00","created_at":"2017-06-22T21:13:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additives","biopolymers","book","plastics","polymer","processing","recycling","reprocessing","thermoplastics","waste disposal"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378356036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Introduction to Plastics Recycling, 2nd Edition","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-078-7 \u003cbr\u003e\u003cbr\u003eSoft-backed, 173 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAlthough recycling has a long history, it is only relatively recently that environmental protection and waste management issues have come to the forefront of both public and political awareness. Outside the fields of expertise, generally little is known about either plastics or their recyclability. \u003cbr\u003e\u003cbr\u003eAs in the successful first edition, this book provides straightforward information on plastic materials and technology, including the options for recycling plastics, with a special focus on mechanical recycling. It touches on all the major problems associated with recovering and recycling plastics at a level intended to be accessible to any reader with an interest in this field, whatever their background. It also looks at some of the broader issues surrounding successful waste management of plastics. \u003cbr\u003e\u003cbr\u003eThis new edition reflects the great strides that have been made to increase recycling rates worldwide in recent years. It considers the expansion of infrastructure in the UK to support plastic recycling and major achievements that have been made in gaining widespread public support and participation for recycling schemes; specifically the need to manage waste on an individual household level. Current issues surrounding council recycling of plastic bottles, and the practice of providing free plastic carrier bags by supermarkets, are also considered. \u003cbr\u003e\u003cbr\u003eBiopolymers are expected to have a major impact on plastic markets in the future and therefore some of the issues of biodegradability versus recycling are expanded in this second edition, as is the wider context of life cycle analysis and legislation. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features...\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eClear, easy to understand text\u003c\/li\u003e\n\u003cli\u003eWritten for a broad audience both within and outside the polymer industry\u003c\/li\u003e\n\u003cli\u003eGood introduction to plastic materials and technology with useful illustrations\u003c\/li\u003e\n\u003cli\u003eExplains recycling terminology, technology, and material quality issues\u003c\/li\u003e\n\u003cli\u003eUp-to-date information on the plastics recycling infrastructure and recent developments\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nReviewed.\u003cbr\u003e\u003cbr\u003eAbout the 1st Edition\u003cbr\u003e\"...This book has been well written and great care is taken to make the information accessible. The lucid style and numerous internet based references should help any reader explore a promising area, and should, by design, lead to many returns.\" \u003cbr\u003e\u003cbr\u003eProf Roger C Hiorns \u003cbr\u003e[DOI: 10.1002\/pi.1471] \u003cbr\u003e2004 Society of Chemical Industry. Polymer International 0959–8103\/2004\u003cbr\u003e\u003cbr\u003ePreface \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e1. Introduction \u003cbr\u003e\u003cbr\u003e2. Back to Basics\u003c\/strong\u003e \u003cbr\u003e2.1 Polymers \u003cbr\u003e2.2 Thermoplastics \u003cbr\u003e2.2.1 Polyolefins \u003cbr\u003e2.2.2 Polyamides \u003cbr\u003e2.3 Thermosets \u003cbr\u003e2.4 The Formulation of Plastics \u003cbr\u003e2.5 Why Does Recyclate Always Seem to be Black? \u003cbr\u003e2.6 What Are Recyclates Used For? \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. The Effects of Processing on Thermoplastics\u003c\/strong\u003e \u003cbr\u003e3.1 Rheology \u003cbr\u003e3.2 Heat \u003cbr\u003e3.3 Physical and Chemical Changes \u003cbr\u003e3.4 Assessing Property Deterioration Caused by Repeated Cycling by Injection Moulding \u003cbr\u003e3.5 Short-Term Mechanical Testing \u003cbr\u003e3.5.1 Tensile Testing \u003cbr\u003e3.5.2 Impact Testing \u003cbr\u003e3.5.3 Tensile and Impact Testing of Recycled Expanded Polystyrene \u003cbr\u003e\u003cbr\u003e4. Why Plastics Need to be Sorted \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Reprocessing of Thermoplastic Recyclates\u003c\/strong\u003e \u003cbr\u003e5.1 Contaminants \u003cbr\u003e5.2 Recycling Techniques \u003cbr\u003e5.3 Size Reduction \u003cbr\u003e5.4 Washing \u003cbr\u003e5.5 Identification and Sorting of Plastics \u003cbr\u003e5.6 Agglomeration \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Processing Techniques\u003c\/strong\u003e \u003cbr\u003e6.1 Extrusion \u003cbr\u003e6.1.1 Introduction \u003cbr\u003e6.1.2 Compounding \u003cbr\u003e6.1.3 Single-Screw Extruders \u003cbr\u003e6.1.4 Twin-Screw Extruders \u003cbr\u003e6.1.5 Co-Extrusion \u003cbr\u003e6.2 Supply Chains for Compounds \u003cbr\u003e6.3 Injection Moulding \u003cbr\u003e6.3.1 Waste During the Injection Moulding Process \u003cbr\u003e6.3.2 Co-Injection Moulding \u003cbr\u003e6.4 Blow Moulding \u003cbr\u003e6.4.1 Extrusion Blow Moulding \u003cbr\u003e6.4.2 Injection Blow Moulding \u003cbr\u003e6.5 Weld Lines \u003cbr\u003e6.6 Film Blowing \u003cbr\u003e6.7 Compression Moulding \u003cbr\u003e6.8 Thermoforming \u003cbr\u003e6.9 Processes for Incorporating Mixed Plastic Waste \u003cbr\u003e6.9.1 Intrusion Moulding \u003cbr\u003e6.9.2 Transfer Moulding \u003cbr\u003e6.9.3 Sinter Moulding \u003cbr\u003e6.10 Conclusion \u003cbr\u003e6.11 Case Study: Plastic Lumber \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Additives for Recyclates\u003c\/strong\u003e \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 The Degradation of Plastics \u003cbr\u003e7.3 Restabilisation of Recyclates \u003cbr\u003e7.4 Testing the Effects of Stabilisers \u003cbr\u003e7.4.1 Processing Stability \u003cbr\u003e7.4.2 Heat Stability \u003cbr\u003e7.4.3 Light Stability \u003cbr\u003e7.5 Stabilisers \u003cbr\u003e7.5.1 Thermal Stabilisation \u003cbr\u003e7.5.2 Light Stabilisation \u003cbr\u003e7.5.3 Additive Combinations for Specific Purposes \u003cbr\u003e7.6 Modifying the Properties of Plastics Through Incorporation of Miscellaneous Additives \u003cbr\u003e7.6.1 Degradable Plastics \u003cbr\u003e7.6.2 Compatibilisers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Other Methods of Recycling and Waste Disposal Options\u003c\/strong\u003e \u003cbr\u003e8.1 The Case of Thermosets \u003cbr\u003e8.2 Chemical Recycling \u003cbr\u003e8.3 Thermal Conversion Technologies \u003cbr\u003e8.3.1 Pyrolysis \u003cbr\u003e8.3.2 Hydrogenation \u003cbr\u003e8.3.3 Gasification \u003cbr\u003e8.4 Energy Recovery \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9. Creation of a Recycling and Recovery Infrastructure for Plastics \u003cbr\u003e\u003c\/strong\u003e9.1 Development \u003cbr\u003e9.2 Design for Disassembly and Recycling \u003cbr\u003e9.3 Developing Recyclate Markets \u003cbr\u003e9.4 Logistics \u003cbr\u003e9.5 Quality \u003cbr\u003e9.6 Education \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10. The Problem in Perspective: Europe\u003c\/strong\u003e \u003cbr\u003e10.1 Case Study: Packaging \u003cbr\u003e10.2 Integrated Product Policy \u003cbr\u003e10.2.1 Waste Electrical and Electronic Equipment Directive (WEEE) 2002\/96\/EC \u003cbr\u003e10.2.2 End of Life Vehicles Directive (ELV) 200\/53\/EC \u003cbr\u003e10.3 Conclusion \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11. Rise of the Biopolymers: Recycling versus Degradation\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eGlossary \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. She has now worked in the field of polymer processing for over twenty-four years and has published work on a variety of plastic related subjects."}
Liquid Chromatography
$165.00
{"id":11242203460,"title":"Liquid Chromatography","handle":"978-0-12-415807-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds; Fanali; Haddad; Poole; Schoenmakers; Lloyd \u003cbr\u003eISBN 978-0-12-415807-8 \u003cbr\u003e\u003cbr\u003eHardbound, 516 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eA single source of authoritative information on all aspects of the practice of modern liquid chromatography suitable for advanced students and professionals working in a laboratory or managerial capacity\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePractitioners of distillation and separation science looking for a quick access to the newest knowledge; graduate students searching for special applications; chemists; professional scientists in academia, industry and government laboratories; environmental engineers; mechanical engineers\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nMilestones in the Development of Liquid Chromatography\u003cbr\u003e\u003cbr\u003eKinetic Theory of Liquid Chromatography\u003cbr\u003e\u003cbr\u003eColumn Technology in Liquid Chromatography\u003cbr\u003e\u003cbr\u003eReversed-phase Liquid Chromatography\u003cbr\u003e\u003cbr\u003eSecondary Chemical Equilibria in Reversed-Phase Liquid Chromatography\u003cbr\u003e\u003cbr\u003eHydrophilic Interaction Liquid Chromatography\u003cbr\u003e\u003cbr\u003eHydrophobic Interaction Liquid Chromatography\u003cbr\u003e\u003cbr\u003eLiquid-Solid Chromatography\u003cbr\u003e\u003cbr\u003eIon Chromatography\u003cbr\u003e\u003cbr\u003eSize-exclusion chromatography\u003cbr\u003e\u003cbr\u003eSolvent Selection for Liquid Chromatography\u003cbr\u003e\u003cbr\u003eMethod development in Liquid Chromatography\u003cbr\u003e\u003cbr\u003eTheory and Practice of Gradient Elution Liquid Chromatography\u003cbr\u003e\u003cbr\u003eCoupled-Column Liquid Chromatography\u003cbr\u003e\u003cbr\u003eGeneral Instrumentation\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: Mass Spectrometry\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: FTIR and Raman\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: Nuclear Magnetic Resonance\u003cbr\u003e\u003cbr\u003eData Analysis Methods\u003cbr\u003e\u003cbr\u003eQuantitative Structure-Retention and Property Relationships\u003cbr\u003e\u003cbr\u003eModeling of Preparative Liquid Chromatography\u003cbr\u003e\u003cbr\u003eProcess Concepts in Preparative Liquid Chromatography\u003cbr\u003e\u003cbr\u003ePreparative Chromatography of Biopolymers\u003cbr\u003e\u003cbr\u003eMiniaturization and Microfluidics\u003cbr\u003e\u003cbr\u003eCapillary Electrochromatography\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eEdited by\u003c\/div\u003e\n\u003cdiv\u003eSalvatore Fanali, Istituto di Metodologie, CNR, Rome, Italy\u003c\/div\u003e\n\u003cdiv\u003ePaul R. Haddad, School of Chemistry, Univ. of Tasmania, Hobart, Australia\u003c\/div\u003e\n\u003cdiv\u003eColin Poole, Wayne State University, Detroit, MI, USA\u003c\/div\u003e\n\u003cdiv\u003ePeter Schoenmakers, University of Amsterdam, The Netherlands\u003c\/div\u003e\n\u003cdiv\u003eDavid Lloyd, Bristol-Myers Squibb, New Brunswick, NJ, USA\u003c\/div\u003e","published_at":"2017-06-22T21:12:48-04:00","created_at":"2017-06-22T21:12:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","advanced apectroscopic detectors","biopolymers","book","electrochromatography","liquid chromatography","p-chemical","polymer"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316292,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Liquid Chromatography","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-12-415807-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415807-8.jpg?v=1499624163"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415807-8.jpg?v=1499624163","options":["Title"],"media":[{"alt":null,"id":358509019229,"position":1,"preview_image":{"aspect_ratio":0.729,"height":499,"width":364,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415807-8.jpg?v=1499624163"},"aspect_ratio":0.729,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415807-8.jpg?v=1499624163","width":364}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds; Fanali; Haddad; Poole; Schoenmakers; Lloyd \u003cbr\u003eISBN 978-0-12-415807-8 \u003cbr\u003e\u003cbr\u003eHardbound, 516 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eA single source of authoritative information on all aspects of the practice of modern liquid chromatography suitable for advanced students and professionals working in a laboratory or managerial capacity\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePractitioners of distillation and separation science looking for a quick access to the newest knowledge; graduate students searching for special applications; chemists; professional scientists in academia, industry and government laboratories; environmental engineers; mechanical engineers\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nMilestones in the Development of Liquid Chromatography\u003cbr\u003e\u003cbr\u003eKinetic Theory of Liquid Chromatography\u003cbr\u003e\u003cbr\u003eColumn Technology in Liquid Chromatography\u003cbr\u003e\u003cbr\u003eReversed-phase Liquid Chromatography\u003cbr\u003e\u003cbr\u003eSecondary Chemical Equilibria in Reversed-Phase Liquid Chromatography\u003cbr\u003e\u003cbr\u003eHydrophilic Interaction Liquid Chromatography\u003cbr\u003e\u003cbr\u003eHydrophobic Interaction Liquid Chromatography\u003cbr\u003e\u003cbr\u003eLiquid-Solid Chromatography\u003cbr\u003e\u003cbr\u003eIon Chromatography\u003cbr\u003e\u003cbr\u003eSize-exclusion chromatography\u003cbr\u003e\u003cbr\u003eSolvent Selection for Liquid Chromatography\u003cbr\u003e\u003cbr\u003eMethod development in Liquid Chromatography\u003cbr\u003e\u003cbr\u003eTheory and Practice of Gradient Elution Liquid Chromatography\u003cbr\u003e\u003cbr\u003eCoupled-Column Liquid Chromatography\u003cbr\u003e\u003cbr\u003eGeneral Instrumentation\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: Mass Spectrometry\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: FTIR and Raman\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: Nuclear Magnetic Resonance\u003cbr\u003e\u003cbr\u003eData Analysis Methods\u003cbr\u003e\u003cbr\u003eQuantitative Structure-Retention and Property Relationships\u003cbr\u003e\u003cbr\u003eModeling of Preparative Liquid Chromatography\u003cbr\u003e\u003cbr\u003eProcess Concepts in Preparative Liquid Chromatography\u003cbr\u003e\u003cbr\u003ePreparative Chromatography of Biopolymers\u003cbr\u003e\u003cbr\u003eMiniaturization and Microfluidics\u003cbr\u003e\u003cbr\u003eCapillary Electrochromatography\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eEdited by\u003c\/div\u003e\n\u003cdiv\u003eSalvatore Fanali, Istituto di Metodologie, CNR, Rome, Italy\u003c\/div\u003e\n\u003cdiv\u003ePaul R. Haddad, School of Chemistry, Univ. of Tasmania, Hobart, Australia\u003c\/div\u003e\n\u003cdiv\u003eColin Poole, Wayne State University, Detroit, MI, USA\u003c\/div\u003e\n\u003cdiv\u003ePeter Schoenmakers, University of Amsterdam, The Netherlands\u003c\/div\u003e\n\u003cdiv\u003eDavid Lloyd, Bristol-Myers Squibb, New Brunswick, NJ, USA\u003c\/div\u003e"}
Nanostructured Soft Ma...
$219.00
{"id":11242232772,"title":"Nanostructured Soft Matter","handle":"978-1-4020-6329-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. A.V. Zvelindovsky \u003cbr\u003eISBN 978-1-4020-6329-9 \u003cbr\u003e\u003cbr\u003eExperiment, Theory, Simulation and Perspectives \u003cbr\u003e\u003cbr\u003eSpringer, pages 620, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles. The book considers several fundamental questions, including how self-assembly of various soft materials with the internal structure at the nanoscale can be understood, controlled and in future used in the newly emerging field of soft nanotechnology. The book offers readers a view on the subject from different perspectives, combining modern experimental approaches from physical chemistry and physics with various theoretical techniques from physics, mathematics and the most advanced computer modeling. It is the first book of this sort in the field. All chapters are written by leading international experts, bringing together experience from Canada, Germany, Great Britain, Japan, the Netherlands, Russia, Singapore, Spain and the USA. The book is oriented towards active researchers as well as undergraduate and graduate students.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003ePart I: Experimental Advances.\u003c\/strong\u003e\u003cbr\u003eMicroemulsion Templating; \u003cem\u003eW.F.C. Sager\u003c\/em\u003e. Nanofabrication of Block Copolymer Bulk and Thin Films: Microdomain Structures as Templates; \u003cem\u003eTakeji Hashimoto and Kenji Fukunaga\u003c\/em\u003e. Characterization of Surfactant Water Systems by X-Ray Scattering and \u003csup\u003e2\u003c\/sup\u003eH NMR; \u003cem\u003eMichael C. Holmes\u003c\/em\u003e. Polyelectrolyte Diblock Copolymer Micelles: Small Angle Scattering Estimates of the Charge Ordering in the Coronal Layer; \u003cem\u003eJohan R.C. van der Maarel\u003c\/em\u003e. Structure and Shear-Induced Order in Blends of a Diblock Copolymer with the Corresponding Homopolymers; \u003cem\u003eI.W. Hamley, V. Castelletto, and Z. Yang\u003c\/em\u003e. Electric Field Alignment of Diblock Copolymer Thin Films; \u003cem\u003eT. Xu, J. Wang, and T.P. Russell\u003c\/em\u003e. Control of Block Copolymer Microdomain Orientation from Solution Using Electric Fields: Governing Parameters and Mechanisms; \u003cem\u003eAlexander Böker\u003c\/em\u003e. Structure and Dynamics of Cylinder-Forming Block Copolymers in Thin Films; \u003cem\u003eLarissa Tsarkova\u003c\/em\u003e.\u003cbr\u003e\u003cstrong\u003ePart II: Mathematical and Theoretical Approaches.\u003cbr\u003e\u003c\/strong\u003eMathematical Description of Nanostructures with Minkowski Functionals; \u003cem\u003eG.J.A. Sevink\u003c\/em\u003e. Scaling Theory of Polyelectrolyte and Polyampholyte Micelles; \u003cem\u003eNadezhda P. Shusharina and Michael Rubinstein\u003c\/em\u003e. The Latest Development of the Weak Segregation Theory of Microphase Separation in Block Copolymers; \u003cem\u003eI.Ya. Erukhimovich\u003c\/em\u003e. Coarse-Grained Modeling of Mesophase Dynamics in Block Copolymers; \u003cem\u003eZhi-Feng Huang and Jorge Viñals\u003c\/em\u003e. Effective Interactions in Soft Materials; \u003cem\u003eAlan R. Denton\u003c\/em\u003e. \u003cbr\u003e\u003cstrong\u003ePart III: Computer Simulations.\u003cbr\u003e\u003c\/strong\u003eAb-Initio Coarse-Graining of Entangled Polymer Systems; \u003cem\u003eJ.T. Padding and W.J. Briels\u003c\/em\u003e. Computer Simulations of Nano-Scale Phenomena Based on the Dynamic Density Functional Theories: Applications of SUSHI in the OCTA System; \u003cem\u003eTakashi Honda and Toshihiro Kawakatsu\u003c\/em\u003e. Monte Carlo Simulations of Nano-Confined Block Copolymers; \u003cem\u003eQiang Wang\u003c\/em\u003e. Understanding Vesicles and Bio-Inspired Systems with Dissipative Particle Dynamics; \u003cem\u003eJulian C. Shillcock\u003c\/em\u003e. Theoretical Study of Nanostructured Biopolymers Using Molecular Dynamics Simulations: a Practical Introduction; \u003cem\u003eDanilo Roccatano\u003c\/em\u003e. Understanding Liquid\/Colloids Composites with Mesoscopic Simulations; \u003cem\u003eIgnacio Pogonabarraga\u003c\/em\u003e.\u003cbr\u003eIndex.\u003c\/p\u003e","published_at":"2018-02-08T11:49:46-05:00","created_at":"2017-06-22T21:14:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","amphiphilic","bio-inspired systems","biopolymers","block copolymers","colloids","composites","computer simulations","microemulsions","microphase separation","nanostructure","proteins","soft materials","soft nanotechnology","SUSHI","tin films","vesicles","weak segregation"],"price":21900,"price_min":21900,"price_max":21900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413060,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Nanostructured Soft Matter","public_title":null,"options":["Default Title"],"price":21900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-6329-9.jpg?v=1499951635"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-6329-9.jpg?v=1499951635","options":["Title"],"media":[{"alt":null,"id":358517669981,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-6329-9.jpg?v=1499951635"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-6329-9.jpg?v=1499951635","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. A.V. Zvelindovsky \u003cbr\u003eISBN 978-1-4020-6329-9 \u003cbr\u003e\u003cbr\u003eExperiment, Theory, Simulation and Perspectives \u003cbr\u003e\u003cbr\u003eSpringer, pages 620, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book covers materials ranging from short amphiphilic molecules to block copolymers, proteins, colloids and their composites, microemulsions and bio-inspired systems such as vesicles. The book considers several fundamental questions, including how self-assembly of various soft materials with the internal structure at the nanoscale can be understood, controlled and in future used in the newly emerging field of soft nanotechnology. The book offers readers a view on the subject from different perspectives, combining modern experimental approaches from physical chemistry and physics with various theoretical techniques from physics, mathematics and the most advanced computer modeling. It is the first book of this sort in the field. All chapters are written by leading international experts, bringing together experience from Canada, Germany, Great Britain, Japan, the Netherlands, Russia, Singapore, Spain and the USA. The book is oriented towards active researchers as well as undergraduate and graduate students.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003ePart I: Experimental Advances.\u003c\/strong\u003e\u003cbr\u003eMicroemulsion Templating; \u003cem\u003eW.F.C. Sager\u003c\/em\u003e. Nanofabrication of Block Copolymer Bulk and Thin Films: Microdomain Structures as Templates; \u003cem\u003eTakeji Hashimoto and Kenji Fukunaga\u003c\/em\u003e. Characterization of Surfactant Water Systems by X-Ray Scattering and \u003csup\u003e2\u003c\/sup\u003eH NMR; \u003cem\u003eMichael C. Holmes\u003c\/em\u003e. Polyelectrolyte Diblock Copolymer Micelles: Small Angle Scattering Estimates of the Charge Ordering in the Coronal Layer; \u003cem\u003eJohan R.C. van der Maarel\u003c\/em\u003e. Structure and Shear-Induced Order in Blends of a Diblock Copolymer with the Corresponding Homopolymers; \u003cem\u003eI.W. Hamley, V. Castelletto, and Z. Yang\u003c\/em\u003e. Electric Field Alignment of Diblock Copolymer Thin Films; \u003cem\u003eT. Xu, J. Wang, and T.P. Russell\u003c\/em\u003e. Control of Block Copolymer Microdomain Orientation from Solution Using Electric Fields: Governing Parameters and Mechanisms; \u003cem\u003eAlexander Böker\u003c\/em\u003e. Structure and Dynamics of Cylinder-Forming Block Copolymers in Thin Films; \u003cem\u003eLarissa Tsarkova\u003c\/em\u003e.\u003cbr\u003e\u003cstrong\u003ePart II: Mathematical and Theoretical Approaches.\u003cbr\u003e\u003c\/strong\u003eMathematical Description of Nanostructures with Minkowski Functionals; \u003cem\u003eG.J.A. Sevink\u003c\/em\u003e. Scaling Theory of Polyelectrolyte and Polyampholyte Micelles; \u003cem\u003eNadezhda P. Shusharina and Michael Rubinstein\u003c\/em\u003e. The Latest Development of the Weak Segregation Theory of Microphase Separation in Block Copolymers; \u003cem\u003eI.Ya. Erukhimovich\u003c\/em\u003e. Coarse-Grained Modeling of Mesophase Dynamics in Block Copolymers; \u003cem\u003eZhi-Feng Huang and Jorge Viñals\u003c\/em\u003e. Effective Interactions in Soft Materials; \u003cem\u003eAlan R. Denton\u003c\/em\u003e. \u003cbr\u003e\u003cstrong\u003ePart III: Computer Simulations.\u003cbr\u003e\u003c\/strong\u003eAb-Initio Coarse-Graining of Entangled Polymer Systems; \u003cem\u003eJ.T. Padding and W.J. Briels\u003c\/em\u003e. Computer Simulations of Nano-Scale Phenomena Based on the Dynamic Density Functional Theories: Applications of SUSHI in the OCTA System; \u003cem\u003eTakashi Honda and Toshihiro Kawakatsu\u003c\/em\u003e. Monte Carlo Simulations of Nano-Confined Block Copolymers; \u003cem\u003eQiang Wang\u003c\/em\u003e. Understanding Vesicles and Bio-Inspired Systems with Dissipative Particle Dynamics; \u003cem\u003eJulian C. Shillcock\u003c\/em\u003e. Theoretical Study of Nanostructured Biopolymers Using Molecular Dynamics Simulations: a Practical Introduction; \u003cem\u003eDanilo Roccatano\u003c\/em\u003e. Understanding Liquid\/Colloids Composites with Mesoscopic Simulations; \u003cem\u003eIgnacio Pogonabarraga\u003c\/em\u003e.\u003cbr\u003eIndex.\u003c\/p\u003e"}
Surface Engineering of...
$205.00
{"id":11242240068,"title":"Surface Engineering of Polymeric Biomaterials","handle":"9781847356581","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Todorka G Vladkova \u003cbr\u003eISBN 9781847356581 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003ctable width=\"100%\" border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd class=\"pmore\"\u003ePublished: 2013\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\nHardcover Pages: 590\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties.\u003cbr\u003e\u003cbr\u003eThis book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered.\u003cbr\u003e\u003cbr\u003eThe theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials is presented. The book also includes information on the most used conventional and advanced surface engineering methods.\u003cbr\u003e\u003cbr\u003eThe book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e1.1 Specific Objectives of Biomaterial Surface Engineering \u003cbr\u003e1.2 Theoretical Basis of Biomaterial Surface Engineering \u003cbr\u003e1.2.1 Protein Adsorption \u003cbr\u003e1.2.1.1 Specific Protein Adsorption \u003cbr\u003e1.2.1.2 Non-specific Protein Adsorption \u003cbr\u003e1.2.2 Initial Cell\/Biomaterial Surface Interactions \u003cbr\u003e1.3 Biomaterial Surface Engineering Approaches \u003cbr\u003e\u003cbr\u003e2 Surface Engineering Methods \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Physicochemical Methods \u003cbr\u003e2.2.1 Blending\u003cbr\u003e2.2.2 Acid Etching \u003cbr\u003e2.2.3 Surface Grafting \u003cbr\u003e2.2.3.1 Graft Polymerisation \u003cbr\u003e2.2.3.2 Polymer Brushes. \u003cbr\u003e2.2.4 Plasma Techniques \u003cbr\u003e2.2.5 Photon Irradiation \u003cbr\u003e2.2.6 Ion-beam Modification \u003cbr\u003e2.2.7 Adsorption from Solution (Thin Film\/Coating Preparation Methods) \u003cbr\u003e2.2.7.1 Dip Coating\u003cbr\u003e2.2.7.2 Spin Coating \u003cbr\u003e2.2.7.3 Langmuir–Blodgett Films \u003cbr\u003e2.2.7.4 Self-assembled Monolayers \u003cbr\u003e2.2.7.5 Self-assembled Monolayers with Molecular Gradients \u003cbr\u003e2.2.7.6 Layer-by-Layer Assembly \u003cbr\u003e2.3 Biological Methods \u003cbr\u003e2.3.1 Biomolecule Immobilisation by Physical Adsorption \u003cbr\u003e2.3.2 Biomolecule Immobilisation by Blending \u003cbr\u003e2.3.3 Electrostatic Attachment of Biomolecules \u003cbr\u003e2.3.3.1 LbL Technique using Polyelectrolytes\u003cbr\u003e2.3.3.2 Electrochemical Polymerisation Using Conducting Polymers \u003cbr\u003e2.3.4 Covalent Bonding of Biomolecules \u003cbr\u003e2.3.4.1 Thiol-mediated Bonding\u003cbr\u003e2.3.4.2 Hydroxyl Group-Mediated Bonding \u003cbr\u003e2.3.4.3 Carboxylate Group-Mediated Bonding\u003cbr\u003e2.3.4.4 Photoinitiated Coupling of Biomolecules \u003cbr\u003e2.3.4.5 Enzymic Coagulation of Biomolecules\u003cbr\u003e2.3.4.6 iomolecules Bonding with ‘Click’ Reactions\u003cbr\u003e2.4 Surface Micro- and Nano-structuring \u003cbr\u003e2.4.1 Photolithography\u003cbr\u003e2.4.2 Ion Lithography and Focused Ion Beam Lithography\u003cbr\u003e2.4.3 Electron Lithography \u003cbr\u003e2.4.4 Soft Lithography\u003cbr\u003e2.4.5 Dip Pen Nanolithography \u003cbr\u003e2.4.6 Near-field Scanning Methods\u003cbr\u003e2.4.7 General Methods of Nano- and Micro-bioarray Patterning \u003cbr\u003e\u003cbr\u003e3 Surface Engineering of Biomaterials Reducing Protein Adsorption\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Surface Engineering of Biomaterials to Reduce Undesirable\/Uncontrolled Responses to Implants and Extracorporeal Devices \u003cbr\u003e3.2.1 Polyethylene Glycol-coated Surfaces \u003cbr\u003e3.2.1.1 Photopolymerised or Photocrosslinked Coatings\u003cbr\u003e3.2.1.2 Chemical Coupling of PEG \u003cbr\u003e3.2.1.2.1 \u003cspan\u003eChemical Coupling based on the Reactivity of the Terminal Hydroxyl Groups \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e3.2.1.2.2 \u003cspan\u003eCovalent Attachment by Employment of Functionalised\u003c\/span\u003e\u003cbr\u003e\u003cspan\u003ePEG (Derivative Terminal OH Groups)\u003c\/span\u003e\u003cbr\u003e3.2.1.3 Non-covalent Immobilisation\u003cbr\u003e3.2.2 Non-PEGylated Hydrophilic Surfaces \u003cbr\u003e3.2.3 Zwitterionic Polymer Thin Layers \u003cbr\u003e3.2.4 Hydrophilic Surfaces of Hyperbranched Polymers \u003cbr\u003e3.2.5 Multi-layer Thin Films \u003cbr\u003e3.2.6 Hydrogels and Hydrogel Coatings \u003cbr\u003e3.2.6.1 PEG-based Hydrogel Coatings \u003cbr\u003e3.2.6.2 Hydrogel Coatings of Other Polymers \u003cbr\u003e3.2.6.3 Hydrogels of Zwitterionic Polymers \u003cbr\u003e3.2.7 Patterned Surfaces\u003cbr\u003e3.2.7.1 Backfill Non-fouling Polymers and Procedures \u003cbr\u003e3.2.7.2 Micro- and Nano-patterning Techniques\u003cbr\u003e3.3 Surface Engineering of Biomaterial Surfaces\u003cbr\u003eReducing\/Eliminating Non-specific Adsorption on\u003cbr\u003eBiosensors and Bioassays \u003cbr\u003e3.4 Surface Engineering of Microfluidic Devices \u003cbr\u003e3.4.1 Dynamic Coating \u003cbr\u003e3.4.2 Permanent Coatings\u003cbr\u003e3.4.2.1 Plasma Treatments\u003cbr\u003e3.4.2.2 Laser Treatments.\u003cbr\u003e3.4.2.3 Surface Graft Polymerisation\u003cbr\u003e3.4.2.4 Patterning of Microfluidics\u003cbr\u003e3.4.2.5 Covalent Modification\u003cbr\u003e3.4.2.6 Self-assembled Monolayers\u003cbr\u003e3.4.2.7 Polyelectrolyte Multi-layer Coatings\u003cbr\u003e\u003cbr\u003e4 Surface Engineering of\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Strongly Hydrophilic and Strongly Hydrophobic Surfaces \u003cbr\u003e4.2.1 Strongly Hydrophilic Surfaces\u003cbr\u003e4.2.2 Strongly Hydrophobic Surfaces \u003cbr\u003e4.3 Biomaterials with Micro- and Nano-domain Surfaces\u003cbr\u003e4.4 The Immobilisation of Heparin and Other Bioactive Molecules \u003cbr\u003e4.4.1 Heparinised Surfaces \u003cbr\u003e4.4.2 Immobilisation of Other Bioactive Molecules \u003cbr\u003e4.5 Albumin Coating \u003cbr\u003e4.6 Endothelial Cells Attachment \u003cbr\u003e4.7 Natural Biomembrane Mimetic Surfaces\u003cbr\u003e4.8 Polyelectrolyte Multi-layers \u003cbr\u003e4.9 Micro- and Nanostructured Blood Contacting Surfaces \u003cbr\u003e\u003cbr\u003e5 Surface Engineering of Bio-interactive Biomaterials \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Surface Engineering of Biomaterials Promoting Cell Attachment\/Adhesion \u003cbr\u003e5.2.1 Cell\/Biomaterial Surface Interaction\u003cbr\u003e5.2.2 Surface Engineering of Cell Adhesive Biomaterials\u003cbr\u003evia Physicochemical Modification \u003cbr\u003e5.2.2.1 Control the Surface Energy (Hydrophilic\/Hydrophobic Balance) \u003cbr\u003eBlood Contacting Polymeric Biomaterials \u003cbr\u003e5.2.2.2 Creation of Positively Charged Surfaces\u003cbr\u003e5.2.2.3 Surface Micro-architecture Manipulation\u003cbr\u003e5.2.2.4 Creation of Polyelectrolyte Multi-layers \u003cbr\u003e5.2.2.5 Temperature-responsive Polymer Coatings \u003cbr\u003e5.2.2.6 Other Functional Polymer Coatings \u003cbr\u003e5.2.2.7 Multi-layer Thin Films for Cell\u003cbr\u003eEncapsulation \u003cbr\u003e5.2.3 Surface\u003cbr\u003evia Biomolecule Immobilisation \u003cbr\u003eEngineering of Cell Adhesive Biomaterials\u003cbr\u003e5.2.3.1 Cell Adhesion Ligands \u003cbr\u003e5.2.3.2 Non-covalent Immobilisation of Biomolecules \u003cbr\u003e5.2.3.3 Covalent Bonding of Biomolecules \u003cbr\u003e5.2.3.4 Patterning of Biomolecules on Biomaterial Surfaces \u003cbr\u003e5.3 Surface Engineering of Drug Delivery Systems \u003cbr\u003e5.3.1 Drug Delivery Systems \u003cbr\u003e5.3.1.1 Hydrogel Controlled Release Formulations \u003cbr\u003e5.3.1.2 Functionalised Electrospun Nanofibres Drug Delivery Carriers\u003cbr\u003e5.3.1.3 Drug Loaded Micro- and Nano-particles \u003cbr\u003e5.3.1.4 Drug Loaded Magnetic Nanoparticles\u003cbr\u003e5.3.1.5 Electrostimulated Drug Release Systems \u003cbr\u003e5.3.2 Polymeric Thin Films and Coatings for Drug and Gene Delivery\u003cbr\u003e5.3.3 Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.1 Matrices and Scaffolds for Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.2 Bioactive Proteins and Peptides \u003cbr\u003e5.3.3.3 Strategies for Bioactive Factors Controlled Delivery \u003cbr\u003eSurface Engineering of Polymeric Biomaterials\u003cbr\u003e5.4 Surface Engineering of Biomaterials Reducing Bacterial Adhesion\u003cbr\u003e5.4.1 Biomaterials Resistant to Bacterial Adhesion\u003cbr\u003e5.4.2 Nanocomposite Polymer Coatings Containing Inorganic Biocides\u003cbr\u003e5.4.3 Antibiotic Conjugated Polymer Coatings \u003cbr\u003e5.4.4 Biomimetic Antibacterial Coatings\u003cbr\u003e5.4.5 Antibacterial Coatings Based on Cationic Polymers \u003cbr\u003e\u003cbr\u003e6 Biomaterial Surface Characterisation \u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Surface Morphology Observation\u003cbr\u003e6.3 Contact Angle Measurements \u003cbr\u003e6.3.1 Surface Tension and Determination of its Components \u003cbr\u003e6.3.2 Methods of Contact Angle Measurement\u003cbr\u003e6.3.2.1 Drop and Bubble Methods for Contact Angle Measurement \u003cbr\u003e6.3.2.2 Wilhelmy Plate Method \u003cbr\u003e6.4 Surface Forces Measurement\u003cbr\u003e6.5 Ellipsometry Measurements \u003cbr\u003e6.6 Surface Chemical Composition Characterisation \u003cbr\u003e6.6.1 Spectroscopy Methods (ATR-FTIR, TOF-SIMS, and XPS) \u003cbr\u003e6.6.2 Colorimetric Determination of Surface Functional Groups Density \u003cbr\u003e6.6.3 Radiotracer Method \u003cbr\u003e6.6.4 Estimating the Thickness of Grafted Polymer Layers \u003cbr\u003e6.7 Characterisation of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.1 Estimating the Density and Thickness of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.2 Characterisation of Biomolecules Attachment to\/Detachment from Biomaterial Surfaces \u003cbr\u003e6.7.3 Bioactivity Evaluation of Proteins Immobilised on Biomaterial Surface\u003cbr\u003e6.7.4 Spatial Distribution of Proteins and Adhering Cell Characterisation\u003cbr\u003e6.8 Evaluation of Cell Behaviour on Biomaterial Surfaces. 500 \u003cbr\u003e6.8.1 Cell Proliferation\u003cbr\u003e6.8.2 Cell Imaging\u003cbr\u003e6.8.3 Cell Migration\u003cbr\u003e6.8.4 Cell Function Analysis\u003cbr\u003e6.9 Tests for Biocompatibility\u003cbr\u003e\u003cbr\u003e7 Summary and Outlook \u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:43-04:00","created_at":"2017-06-22T21:14:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","bioactive","biocides","biomaterials","biopolymer","biopolymers","book","coatings","drug delivery","micro- and nano-particles","polymeric biomaterials","polymers","surface","tin films"],"price":20500,"price_min":20500,"price_max":25000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433412,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"9781847356581","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Surface Engineering of Polymeric Biomaterials - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":25000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356581","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50451906692,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"9781847356581","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Surface Engineering of Polymeric Biomaterials - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":20500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356581","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107","options":["Cover"],"media":[{"alt":null,"id":358775554141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Todorka G Vladkova \u003cbr\u003eISBN 9781847356581 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003ctable width=\"100%\" border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd class=\"pmore\"\u003ePublished: 2013\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\nHardcover Pages: 590\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties.\u003cbr\u003e\u003cbr\u003eThis book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered.\u003cbr\u003e\u003cbr\u003eThe theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials is presented. The book also includes information on the most used conventional and advanced surface engineering methods.\u003cbr\u003e\u003cbr\u003eThe book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e1.1 Specific Objectives of Biomaterial Surface Engineering \u003cbr\u003e1.2 Theoretical Basis of Biomaterial Surface Engineering \u003cbr\u003e1.2.1 Protein Adsorption \u003cbr\u003e1.2.1.1 Specific Protein Adsorption \u003cbr\u003e1.2.1.2 Non-specific Protein Adsorption \u003cbr\u003e1.2.2 Initial Cell\/Biomaterial Surface Interactions \u003cbr\u003e1.3 Biomaterial Surface Engineering Approaches \u003cbr\u003e\u003cbr\u003e2 Surface Engineering Methods \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Physicochemical Methods \u003cbr\u003e2.2.1 Blending\u003cbr\u003e2.2.2 Acid Etching \u003cbr\u003e2.2.3 Surface Grafting \u003cbr\u003e2.2.3.1 Graft Polymerisation \u003cbr\u003e2.2.3.2 Polymer Brushes. \u003cbr\u003e2.2.4 Plasma Techniques \u003cbr\u003e2.2.5 Photon Irradiation \u003cbr\u003e2.2.6 Ion-beam Modification \u003cbr\u003e2.2.7 Adsorption from Solution (Thin Film\/Coating Preparation Methods) \u003cbr\u003e2.2.7.1 Dip Coating\u003cbr\u003e2.2.7.2 Spin Coating \u003cbr\u003e2.2.7.3 Langmuir–Blodgett Films \u003cbr\u003e2.2.7.4 Self-assembled Monolayers \u003cbr\u003e2.2.7.5 Self-assembled Monolayers with Molecular Gradients \u003cbr\u003e2.2.7.6 Layer-by-Layer Assembly \u003cbr\u003e2.3 Biological Methods \u003cbr\u003e2.3.1 Biomolecule Immobilisation by Physical Adsorption \u003cbr\u003e2.3.2 Biomolecule Immobilisation by Blending \u003cbr\u003e2.3.3 Electrostatic Attachment of Biomolecules \u003cbr\u003e2.3.3.1 LbL Technique using Polyelectrolytes\u003cbr\u003e2.3.3.2 Electrochemical Polymerisation Using Conducting Polymers \u003cbr\u003e2.3.4 Covalent Bonding of Biomolecules \u003cbr\u003e2.3.4.1 Thiol-mediated Bonding\u003cbr\u003e2.3.4.2 Hydroxyl Group-Mediated Bonding \u003cbr\u003e2.3.4.3 Carboxylate Group-Mediated Bonding\u003cbr\u003e2.3.4.4 Photoinitiated Coupling of Biomolecules \u003cbr\u003e2.3.4.5 Enzymic Coagulation of Biomolecules\u003cbr\u003e2.3.4.6 iomolecules Bonding with ‘Click’ Reactions\u003cbr\u003e2.4 Surface Micro- and Nano-structuring \u003cbr\u003e2.4.1 Photolithography\u003cbr\u003e2.4.2 Ion Lithography and Focused Ion Beam Lithography\u003cbr\u003e2.4.3 Electron Lithography \u003cbr\u003e2.4.4 Soft Lithography\u003cbr\u003e2.4.5 Dip Pen Nanolithography \u003cbr\u003e2.4.6 Near-field Scanning Methods\u003cbr\u003e2.4.7 General Methods of Nano- and Micro-bioarray Patterning \u003cbr\u003e\u003cbr\u003e3 Surface Engineering of Biomaterials Reducing Protein Adsorption\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Surface Engineering of Biomaterials to Reduce Undesirable\/Uncontrolled Responses to Implants and Extracorporeal Devices \u003cbr\u003e3.2.1 Polyethylene Glycol-coated Surfaces \u003cbr\u003e3.2.1.1 Photopolymerised or Photocrosslinked Coatings\u003cbr\u003e3.2.1.2 Chemical Coupling of PEG \u003cbr\u003e3.2.1.2.1 \u003cspan\u003eChemical Coupling based on the Reactivity of the Terminal Hydroxyl Groups \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e3.2.1.2.2 \u003cspan\u003eCovalent Attachment by Employment of Functionalised\u003c\/span\u003e\u003cbr\u003e\u003cspan\u003ePEG (Derivative Terminal OH Groups)\u003c\/span\u003e\u003cbr\u003e3.2.1.3 Non-covalent Immobilisation\u003cbr\u003e3.2.2 Non-PEGylated Hydrophilic Surfaces \u003cbr\u003e3.2.3 Zwitterionic Polymer Thin Layers \u003cbr\u003e3.2.4 Hydrophilic Surfaces of Hyperbranched Polymers \u003cbr\u003e3.2.5 Multi-layer Thin Films \u003cbr\u003e3.2.6 Hydrogels and Hydrogel Coatings \u003cbr\u003e3.2.6.1 PEG-based Hydrogel Coatings \u003cbr\u003e3.2.6.2 Hydrogel Coatings of Other Polymers \u003cbr\u003e3.2.6.3 Hydrogels of Zwitterionic Polymers \u003cbr\u003e3.2.7 Patterned Surfaces\u003cbr\u003e3.2.7.1 Backfill Non-fouling Polymers and Procedures \u003cbr\u003e3.2.7.2 Micro- and Nano-patterning Techniques\u003cbr\u003e3.3 Surface Engineering of Biomaterial Surfaces\u003cbr\u003eReducing\/Eliminating Non-specific Adsorption on\u003cbr\u003eBiosensors and Bioassays \u003cbr\u003e3.4 Surface Engineering of Microfluidic Devices \u003cbr\u003e3.4.1 Dynamic Coating \u003cbr\u003e3.4.2 Permanent Coatings\u003cbr\u003e3.4.2.1 Plasma Treatments\u003cbr\u003e3.4.2.2 Laser Treatments.\u003cbr\u003e3.4.2.3 Surface Graft Polymerisation\u003cbr\u003e3.4.2.4 Patterning of Microfluidics\u003cbr\u003e3.4.2.5 Covalent Modification\u003cbr\u003e3.4.2.6 Self-assembled Monolayers\u003cbr\u003e3.4.2.7 Polyelectrolyte Multi-layer Coatings\u003cbr\u003e\u003cbr\u003e4 Surface Engineering of\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Strongly Hydrophilic and Strongly Hydrophobic Surfaces \u003cbr\u003e4.2.1 Strongly Hydrophilic Surfaces\u003cbr\u003e4.2.2 Strongly Hydrophobic Surfaces \u003cbr\u003e4.3 Biomaterials with Micro- and Nano-domain Surfaces\u003cbr\u003e4.4 The Immobilisation of Heparin and Other Bioactive Molecules \u003cbr\u003e4.4.1 Heparinised Surfaces \u003cbr\u003e4.4.2 Immobilisation of Other Bioactive Molecules \u003cbr\u003e4.5 Albumin Coating \u003cbr\u003e4.6 Endothelial Cells Attachment \u003cbr\u003e4.7 Natural Biomembrane Mimetic Surfaces\u003cbr\u003e4.8 Polyelectrolyte Multi-layers \u003cbr\u003e4.9 Micro- and Nanostructured Blood Contacting Surfaces \u003cbr\u003e\u003cbr\u003e5 Surface Engineering of Bio-interactive Biomaterials \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Surface Engineering of Biomaterials Promoting Cell Attachment\/Adhesion \u003cbr\u003e5.2.1 Cell\/Biomaterial Surface Interaction\u003cbr\u003e5.2.2 Surface Engineering of Cell Adhesive Biomaterials\u003cbr\u003evia Physicochemical Modification \u003cbr\u003e5.2.2.1 Control the Surface Energy (Hydrophilic\/Hydrophobic Balance) \u003cbr\u003eBlood Contacting Polymeric Biomaterials \u003cbr\u003e5.2.2.2 Creation of Positively Charged Surfaces\u003cbr\u003e5.2.2.3 Surface Micro-architecture Manipulation\u003cbr\u003e5.2.2.4 Creation of Polyelectrolyte Multi-layers \u003cbr\u003e5.2.2.5 Temperature-responsive Polymer Coatings \u003cbr\u003e5.2.2.6 Other Functional Polymer Coatings \u003cbr\u003e5.2.2.7 Multi-layer Thin Films for Cell\u003cbr\u003eEncapsulation \u003cbr\u003e5.2.3 Surface\u003cbr\u003evia Biomolecule Immobilisation \u003cbr\u003eEngineering of Cell Adhesive Biomaterials\u003cbr\u003e5.2.3.1 Cell Adhesion Ligands \u003cbr\u003e5.2.3.2 Non-covalent Immobilisation of Biomolecules \u003cbr\u003e5.2.3.3 Covalent Bonding of Biomolecules \u003cbr\u003e5.2.3.4 Patterning of Biomolecules on Biomaterial Surfaces \u003cbr\u003e5.3 Surface Engineering of Drug Delivery Systems \u003cbr\u003e5.3.1 Drug Delivery Systems \u003cbr\u003e5.3.1.1 Hydrogel Controlled Release Formulations \u003cbr\u003e5.3.1.2 Functionalised Electrospun Nanofibres Drug Delivery Carriers\u003cbr\u003e5.3.1.3 Drug Loaded Micro- and Nano-particles \u003cbr\u003e5.3.1.4 Drug Loaded Magnetic Nanoparticles\u003cbr\u003e5.3.1.5 Electrostimulated Drug Release Systems \u003cbr\u003e5.3.2 Polymeric Thin Films and Coatings for Drug and Gene Delivery\u003cbr\u003e5.3.3 Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.1 Matrices and Scaffolds for Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.2 Bioactive Proteins and Peptides \u003cbr\u003e5.3.3.3 Strategies for Bioactive Factors Controlled Delivery \u003cbr\u003eSurface Engineering of Polymeric Biomaterials\u003cbr\u003e5.4 Surface Engineering of Biomaterials Reducing Bacterial Adhesion\u003cbr\u003e5.4.1 Biomaterials Resistant to Bacterial Adhesion\u003cbr\u003e5.4.2 Nanocomposite Polymer Coatings Containing Inorganic Biocides\u003cbr\u003e5.4.3 Antibiotic Conjugated Polymer Coatings \u003cbr\u003e5.4.4 Biomimetic Antibacterial Coatings\u003cbr\u003e5.4.5 Antibacterial Coatings Based on Cationic Polymers \u003cbr\u003e\u003cbr\u003e6 Biomaterial Surface Characterisation \u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Surface Morphology Observation\u003cbr\u003e6.3 Contact Angle Measurements \u003cbr\u003e6.3.1 Surface Tension and Determination of its Components \u003cbr\u003e6.3.2 Methods of Contact Angle Measurement\u003cbr\u003e6.3.2.1 Drop and Bubble Methods for Contact Angle Measurement \u003cbr\u003e6.3.2.2 Wilhelmy Plate Method \u003cbr\u003e6.4 Surface Forces Measurement\u003cbr\u003e6.5 Ellipsometry Measurements \u003cbr\u003e6.6 Surface Chemical Composition Characterisation \u003cbr\u003e6.6.1 Spectroscopy Methods (ATR-FTIR, TOF-SIMS, and XPS) \u003cbr\u003e6.6.2 Colorimetric Determination of Surface Functional Groups Density \u003cbr\u003e6.6.3 Radiotracer Method \u003cbr\u003e6.6.4 Estimating the Thickness of Grafted Polymer Layers \u003cbr\u003e6.7 Characterisation of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.1 Estimating the Density and Thickness of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.2 Characterisation of Biomolecules Attachment to\/Detachment from Biomaterial Surfaces \u003cbr\u003e6.7.3 Bioactivity Evaluation of Proteins Immobilised on Biomaterial Surface\u003cbr\u003e6.7.4 Spatial Distribution of Proteins and Adhering Cell Characterisation\u003cbr\u003e6.8 Evaluation of Cell Behaviour on Biomaterial Surfaces. 500 \u003cbr\u003e6.8.1 Cell Proliferation\u003cbr\u003e6.8.2 Cell Imaging\u003cbr\u003e6.8.3 Cell Migration\u003cbr\u003e6.8.4 Cell Function Analysis\u003cbr\u003e6.9 Tests for Biocompatibility\u003cbr\u003e\u003cbr\u003e7 Summary and Outlook \u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}