
Publications
Polymers, Plastics, Rubbers and Fillers
Databook of Blowing an...
$315.00
{"id":7336328069277,"title":"Databook of Blowing and Auxiliary Agents, 2nd Ed.","handle":"databook-of-blowing-and-auxiliary-agents-2nd-ed","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e\u003cspan data-mce-fragment=\"1\"\u003eGeorge Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-87-1\u003cbr\u003e\u003cspan\u003ePages 460+12\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book is a must-have for manufacturers of blowing agents, manufacturers of products containing blowing agents designed for various purposes, regulating bodies, academia, and research laboratories. The databook contains information, which is complete, timely, up-to-date, and useful in numerous fields of application and for thousands of manufactures and products.\u003cbr\u003e\u003cbr\u003eThe Databook of Blowing and Auxiliary Agents is more useful in combination with the Handbook of Foaming and Blowing Agents. Both books do not overlap but complement each other.\u003cbr\u003e\u003cbr\u003eThe information on over 360 blow molding and auxiliary agents is presented in individual tables for each product (either commercial or generic). The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003cbr\u003e\u003cbr\u003eGeneral Information: name, CAS #, EC #, IUPAC name, common name, common synonyms, acronym, empirical formula, chemical structure, molecular mass, RTECS number, chemical category, product class, product composition, masterbatch, blends, moisture content, solids content.\u003cbr\u003e\u003cbr\u003ePhysical Properties: state, odor, color, platinum-cobalt scale, bulk density, density, specific gravity, pKa, boiling point, melting point, pour point, decomposition temperature, maximum gas yield, total gas yield, TMA, blowing gas content, foam K factor, glass transition temperature, main gas, iodine value, aniline point, refractive index, vapor pressure, vapor density, vapor thermal conductivity, volume resistivity, relative permittivity, ash content, pH, viscosity, absolute viscosity, surface tension, solubility in solvents, solubility in water, the heat of vaporization, the heat of combustion, the heat of decomposition, specific heat, thermal conductivity, Henry’s law constant, particle size, and volatility.\u003cbr\u003e\u003cbr\u003eHealth \u0026amp; Safety: NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN\/NA class, DOT class, ADR\/RIC class, ICAO\/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion, skin irritation, eye irritation, inhalation, first aid eye, skin, and inhalation, carcinogenicity IARC, NTP, OSHA, ACGIH, and mutagenicity.\u003cbr\u003e\u003cbr\u003eEcological Properties: atmospheric lifetime, biological oxygen demand, chemical oxygen demand, theoretical oxygen demand, biodegradation probability, aquatic toxicity algae, Rainbow trout, Sheepshead minnow, Fathead minnow, and Daphnia magna, global warming potential, ozone depletion potential, VOC, Kyoto compliant, and partition coefficient.\u003cbr\u003e\u003cbr\u003eUse \u0026amp; Performance: manufacturer, product feature, recommended for polymers, recommended for products, outstanding properties, a typical reason for use, processing methods, not recommended for, the concentration used, food approval, and R-value.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nActivators\u003cbr data-mce-fragment=\"1\"\u003eAzodicarbonamides\u003cbr data-mce-fragment=\"1\"\u003eCrosslinkers\u003cbr data-mce-fragment=\"1\"\u003eDinitroso pentamethylene tetramines\u003cbr data-mce-fragment=\"1\"\u003eDispersions in polymer carriers\u003cbr data-mce-fragment=\"1\"\u003eFoaming agent mixtures with other additive(s)\u003cbr data-mce-fragment=\"1\"\u003eGases\u003cbr data-mce-fragment=\"1\"\u003eHydrazides\u003cbr data-mce-fragment=\"1\"\u003eHydrocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrochlorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrochlorofluorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrofluorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrofluoroolefins\u003cbr data-mce-fragment=\"1\"\u003eMasterbatches\u003cbr data-mce-fragment=\"1\"\u003eMicrospheres\u003cbr data-mce-fragment=\"1\"\u003eMixtures of foaming agents\u003cbr data-mce-fragment=\"1\"\u003eNucleating agents\u003cbr data-mce-fragment=\"1\"\u003eProprietary\u003cbr data-mce-fragment=\"1\"\u003eSalts of carbonic and polycarbonic acids\u003cbr data-mce-fragment=\"1\"\u003eSodium bicarbonate\u003cbr data-mce-fragment=\"1\"\u003eSulfonylsemicarbazides\u003cbr data-mce-fragment=\"1\"\u003eTetrazoles\u003cbr data-mce-fragment=\"1\"\u003eWater\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T20:26:05-04:00","created_at":"2022-03-31T20:19:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","Antiblocking agents","blow molding","blowing","blowing agents","book","foams","new"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165614772381,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Databook of Blowing and Auxiliary Agents, 2nd Ed.","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-87-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885871-Case.png?v=1648772646"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885871-Case.png?v=1648772646","options":["Title"],"media":[{"alt":null,"id":24734249975965,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885871-Case.png?v=1648772646"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885871-Case.png?v=1648772646","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e\u003cspan data-mce-fragment=\"1\"\u003eGeorge Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-87-1\u003cbr\u003e\u003cspan\u003ePages 460+12\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book is a must-have for manufacturers of blowing agents, manufacturers of products containing blowing agents designed for various purposes, regulating bodies, academia, and research laboratories. The databook contains information, which is complete, timely, up-to-date, and useful in numerous fields of application and for thousands of manufactures and products.\u003cbr\u003e\u003cbr\u003eThe Databook of Blowing and Auxiliary Agents is more useful in combination with the Handbook of Foaming and Blowing Agents. Both books do not overlap but complement each other.\u003cbr\u003e\u003cbr\u003eThe information on over 360 blow molding and auxiliary agents is presented in individual tables for each product (either commercial or generic). The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003cbr\u003e\u003cbr\u003eGeneral Information: name, CAS #, EC #, IUPAC name, common name, common synonyms, acronym, empirical formula, chemical structure, molecular mass, RTECS number, chemical category, product class, product composition, masterbatch, blends, moisture content, solids content.\u003cbr\u003e\u003cbr\u003ePhysical Properties: state, odor, color, platinum-cobalt scale, bulk density, density, specific gravity, pKa, boiling point, melting point, pour point, decomposition temperature, maximum gas yield, total gas yield, TMA, blowing gas content, foam K factor, glass transition temperature, main gas, iodine value, aniline point, refractive index, vapor pressure, vapor density, vapor thermal conductivity, volume resistivity, relative permittivity, ash content, pH, viscosity, absolute viscosity, surface tension, solubility in solvents, solubility in water, the heat of vaporization, the heat of combustion, the heat of decomposition, specific heat, thermal conductivity, Henry’s law constant, particle size, and volatility.\u003cbr\u003e\u003cbr\u003eHealth \u0026amp; Safety: NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN\/NA class, DOT class, ADR\/RIC class, ICAO\/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion, skin irritation, eye irritation, inhalation, first aid eye, skin, and inhalation, carcinogenicity IARC, NTP, OSHA, ACGIH, and mutagenicity.\u003cbr\u003e\u003cbr\u003eEcological Properties: atmospheric lifetime, biological oxygen demand, chemical oxygen demand, theoretical oxygen demand, biodegradation probability, aquatic toxicity algae, Rainbow trout, Sheepshead minnow, Fathead minnow, and Daphnia magna, global warming potential, ozone depletion potential, VOC, Kyoto compliant, and partition coefficient.\u003cbr\u003e\u003cbr\u003eUse \u0026amp; Performance: manufacturer, product feature, recommended for polymers, recommended for products, outstanding properties, a typical reason for use, processing methods, not recommended for, the concentration used, food approval, and R-value.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nActivators\u003cbr data-mce-fragment=\"1\"\u003eAzodicarbonamides\u003cbr data-mce-fragment=\"1\"\u003eCrosslinkers\u003cbr data-mce-fragment=\"1\"\u003eDinitroso pentamethylene tetramines\u003cbr data-mce-fragment=\"1\"\u003eDispersions in polymer carriers\u003cbr data-mce-fragment=\"1\"\u003eFoaming agent mixtures with other additive(s)\u003cbr data-mce-fragment=\"1\"\u003eGases\u003cbr data-mce-fragment=\"1\"\u003eHydrazides\u003cbr data-mce-fragment=\"1\"\u003eHydrocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrochlorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrochlorofluorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrofluorocarbons\u003cbr data-mce-fragment=\"1\"\u003eHydrofluoroolefins\u003cbr data-mce-fragment=\"1\"\u003eMasterbatches\u003cbr data-mce-fragment=\"1\"\u003eMicrospheres\u003cbr data-mce-fragment=\"1\"\u003eMixtures of foaming agents\u003cbr data-mce-fragment=\"1\"\u003eNucleating agents\u003cbr data-mce-fragment=\"1\"\u003eProprietary\u003cbr data-mce-fragment=\"1\"\u003eSalts of carbonic and polycarbonic acids\u003cbr data-mce-fragment=\"1\"\u003eSodium bicarbonate\u003cbr data-mce-fragment=\"1\"\u003eSulfonylsemicarbazides\u003cbr data-mce-fragment=\"1\"\u003eTetrazoles\u003cbr data-mce-fragment=\"1\"\u003eWater\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Databook of Impact Mod...
$285.00
{"id":7336342716573,"title":"Databook of Impact Modifiers","handle":"databook-of-impact-modifiers","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-89-5\u003cbr\u003e\u003cspan\u003ePages 460+12\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThis book is a must-have for manufacturers of impact modifiers, manufacturers of products containing impact modifiers, regulating bodies, academia, and research laboratories. The databook contains information, which is complete, timely, up-to-date, and useful in numerous fields of application and for thousands of manufacturers and products.\u003c\/span\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eImpact modifiers are particularly recommended to improve mechanical and other properties, such as tensile, impact, flexural, stress whitening, stiffness, toughness, fracture behavior, etc., but they also influence adhesion, biodegradability, flammability, optical properties, thermal stability, and other properties of high-performance thermoplastic, polymer blends, and thermoset formulations.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe \u003cstrong\u003eDatabook of Impact Modifiers\u003c\/strong\u003e is more useful in combination with the \u003cstrong\u003eHandbook of Impact Modifiers\u003c\/strong\u003e. Both books do not overlap but complement each other.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe information on over 300 impact modifiers is presented in individual tables for each product (either commercial or generic). The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eGeneral Information\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Name, CAS #, EC #, Acronym, Antioxidant content, Biobased content, Butyl acrylate, Chemical category, Chemical\/polymer name, Chlorine content, Common name, Common synonym, Composition, Core-Shell (CSR) dispersed type, CSR particle size, Diblock content, Empirical formula, EPA code, Epoxide equivalent weight, Ethylene content, Grafting degree, HSBC type, IUPAC name, Methyl acrylate, Molecular mass, Masterbatch, Mixture, Moisture content, Polymer structure, Polystyrene content, Product contents, Purity, RTECS number, Solvent system\/content, Styrene\/rubber ratio, and Total extractables.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: State, Odor, Color, Abrasion resistance, Acid #, Boiling point, Brittleness temperature, Bulk density, Cloud point, Coefficient of thermal expansion, Crystallinity, Crystallization temperature peak, Decomposition temperature, Density, Drying loss, Elongation at break, Flexural modulus, Flexural strength, Flexural stress at break, Flexural stress at yield, Gardner impact, Glass transition temperature, Gloss, Graves tear, Hardness Rockwell, Hardness Shore A, Hardness Shore D, Haze, Heat distortion temperature, Heat of combustion, Impact strength dart drop, Izod impact, Loss on ignition, MAH content, Melt flow rate, Melt viscosity, Melting\/freezing point, Modulus 300%, Moisture absorption, Oxygen index LOI, Particle size, Particle size distribution, Pellets per gram, Permeability coefficient, pH, Refractive index, Relative permittivity, Ring and ball softening point, Set at break, Solubility in water and solvents, Specific gravity, Specific heat, Specific surface area, Spencer impact, Stiffness, Stress at yield, Surface hardness, Surface tension, Tear strength, Tensile elongation ultimate, Tensile impact strength, Tensile modulus, Tensile strain, Tensile strength, Thermal conductivity, Transmission visible, Vapor density, Vapor pressure, Vicat softening point, Viscosity, Viscosity index, Viscosity Mooney, Volatility, Volume resistivity, and Water vapor transmission rate.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth \u0026amp; Safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Autoignition temperature, Carcinogenicity, Dust explosion class, Eye irritation, Flash point, Flash point method, Flame characteristics, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, Hazards, ICAO\/IATA Class, IMDG Class, Mutagenicity, Rat oral LD\u003csub\u003e50\u003c\/sub\u003e, Rabbit dermal LD\u003csub\u003e50\u003c\/sub\u003e, Inhalation rat LC\u003csub\u003e50\u003c\/sub\u003e, Skin irritation, and TLV - TWA 8h (ACGIH and OSHA)\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Aquatic toxicity LC50 (Algae, Bluegill sunfish, Daphnia magna, Rainbow trout), Biodegradation probability, and Partition coefficient (log K\u003csub\u003eoc\u003c\/sub\u003e).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; Performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Manufacturer, Outstanding properties, General characteristics, Recommended for polymers, Recommended for products, Related end-markets Related functions, Processing methods, Concentrations used, Guideline for use, Process temperature, and Food contact.\u003c\/span\u003e\u003c\/p\u003e","published_at":"2022-03-31T20:34:20-04:00","created_at":"2022-03-31T20:26:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","foams","modifiers","new"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165647933597,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Databook of Impact Modifiers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-89-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885895-Case.png?v=1648773220"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885895-Case.png?v=1648773220","options":["Title"],"media":[{"alt":null,"id":24734341464221,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885895-Case.png?v=1648773220"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885895-Case.png?v=1648773220","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-89-5\u003cbr\u003e\u003cspan\u003ePages 460+12\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThis book is a must-have for manufacturers of impact modifiers, manufacturers of products containing impact modifiers, regulating bodies, academia, and research laboratories. The databook contains information, which is complete, timely, up-to-date, and useful in numerous fields of application and for thousands of manufacturers and products.\u003c\/span\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eImpact modifiers are particularly recommended to improve mechanical and other properties, such as tensile, impact, flexural, stress whitening, stiffness, toughness, fracture behavior, etc., but they also influence adhesion, biodegradability, flammability, optical properties, thermal stability, and other properties of high-performance thermoplastic, polymer blends, and thermoset formulations.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe \u003cstrong\u003eDatabook of Impact Modifiers\u003c\/strong\u003e is more useful in combination with the \u003cstrong\u003eHandbook of Impact Modifiers\u003c\/strong\u003e. Both books do not overlap but complement each other.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe information on over 300 impact modifiers is presented in individual tables for each product (either commercial or generic). The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eGeneral Information\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Name, CAS #, EC #, Acronym, Antioxidant content, Biobased content, Butyl acrylate, Chemical category, Chemical\/polymer name, Chlorine content, Common name, Common synonym, Composition, Core-Shell (CSR) dispersed type, CSR particle size, Diblock content, Empirical formula, EPA code, Epoxide equivalent weight, Ethylene content, Grafting degree, HSBC type, IUPAC name, Methyl acrylate, Molecular mass, Masterbatch, Mixture, Moisture content, Polymer structure, Polystyrene content, Product contents, Purity, RTECS number, Solvent system\/content, Styrene\/rubber ratio, and Total extractables.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: State, Odor, Color, Abrasion resistance, Acid #, Boiling point, Brittleness temperature, Bulk density, Cloud point, Coefficient of thermal expansion, Crystallinity, Crystallization temperature peak, Decomposition temperature, Density, Drying loss, Elongation at break, Flexural modulus, Flexural strength, Flexural stress at break, Flexural stress at yield, Gardner impact, Glass transition temperature, Gloss, Graves tear, Hardness Rockwell, Hardness Shore A, Hardness Shore D, Haze, Heat distortion temperature, Heat of combustion, Impact strength dart drop, Izod impact, Loss on ignition, MAH content, Melt flow rate, Melt viscosity, Melting\/freezing point, Modulus 300%, Moisture absorption, Oxygen index LOI, Particle size, Particle size distribution, Pellets per gram, Permeability coefficient, pH, Refractive index, Relative permittivity, Ring and ball softening point, Set at break, Solubility in water and solvents, Specific gravity, Specific heat, Specific surface area, Spencer impact, Stiffness, Stress at yield, Surface hardness, Surface tension, Tear strength, Tensile elongation ultimate, Tensile impact strength, Tensile modulus, Tensile strain, Tensile strength, Thermal conductivity, Transmission visible, Vapor density, Vapor pressure, Vicat softening point, Viscosity, Viscosity index, Viscosity Mooney, Volatility, Volume resistivity, and Water vapor transmission rate.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth \u0026amp; Safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Autoignition temperature, Carcinogenicity, Dust explosion class, Eye irritation, Flash point, Flash point method, Flame characteristics, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, Hazards, ICAO\/IATA Class, IMDG Class, Mutagenicity, Rat oral LD\u003csub\u003e50\u003c\/sub\u003e, Rabbit dermal LD\u003csub\u003e50\u003c\/sub\u003e, Inhalation rat LC\u003csub\u003e50\u003c\/sub\u003e, Skin irritation, and TLV - TWA 8h (ACGIH and OSHA)\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Aquatic toxicity LC50 (Algae, Bluegill sunfish, Daphnia magna, Rainbow trout), Biodegradation probability, and Partition coefficient (log K\u003csub\u003eoc\u003c\/sub\u003e).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; Performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: Manufacturer, Outstanding properties, General characteristics, Recommended for polymers, Recommended for products, Related end-markets Related functions, Processing methods, Concentrations used, Guideline for use, Process temperature, and Food contact.\u003c\/span\u003e\u003c\/p\u003e"}
Databook of Rheologica...
$285.00
{"id":7336361459869,"title":"Databook of Rheological Additives","handle":"databook-of-rheological-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-91-8 \u003cbr\u003ePages 588+xii\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eRheological additives are of interest to many industries, including paints, coatings, cosmetics, mortars, cementitious products, various polymer processing methods, sealants, inks, greases, drilling, packaging, and food products, to name some of the most important. Their selection and applications change and require frequent updates. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe \u003cstrong\u003eDatabook of Rheological Additives\u003c\/strong\u003e is frequently used in combination with the \u003cstrong\u003eHandbook of Rheological Additives\u003c\/strong\u003e. Both books do not overlap but complement each other, providing together comprehensive information on rheological additives.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe information on over 330 organic and inorganic additives is presented in individual tables for each product (either commercial or generic). There are over 30 chemical groups of additives included in this review. The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eGeneral Information\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: name, CAS #, EC #, IUPAC name, common name, common synonyms, acronym, biobased, cellulose functionality, charge, degree of substitution, empirical formula, chemical structure, molecular mass, RTECS number, chemical category, product class, product composition, moisture content, and solids content.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: state, odor, color, bulk density, density, specific gravity, relative density, boiling point, melting point, pour point, decomposition temperature, glass transition temperature, refractive index, vapor pressure, vapor density, volume resistivity, relative permittivity, ash content, pH, viscosity, rheological behavior, absolute viscosity, surface tension, hydration time, solubility in solvents, solubility in water, the heat of combustion, the heat of decomposition, specific heat, thermal conductivity, Henry’s law constant, particle size, and volatility.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth \u0026amp; Safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN\/NA class, DOT class, ADR\/RIC class, ICAO\/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion, skin irritation, eye irritation, inhalation, first aid eye, skin, and inhalation, carcinogenicity IARC, NTP, OSHA, ACGIH, and mutagenicity.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: biological oxygen demand, chemical oxygen demand, theoretical oxygen demand, biodegradation probability, aquatic toxicity algae, \u003cem\u003eRainbow trout\u003c\/em\u003e, \u003cem\u003eSheepshead minnow\u003c\/em\u003e, \u003cem\u003eFathead minnow\u003c\/em\u003e, and \u003cem\u003eDaphnia magna\u003c\/em\u003e, and partition coefficient.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; Performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: manufacturer, product feature, recommended for polymers, recommended for products, outstanding properties, compatibility, limitations, a typical reason for use, processing methods, the concentration used, storage temperature, and food approval.\u003c\/span\u003e\u003c\/p\u003e","published_at":"2022-03-31T20:37:57-04:00","created_at":"2022-03-31T20:34:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","coating","foams","industrial paint","new","paint","painting","paints"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165690204317,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Databook of Rheological Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-91-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885918-Case.png?v=1648773465"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885918-Case.png?v=1648773465","options":["Title"],"media":[{"alt":null,"id":24734374330525,"position":1,"preview_image":{"aspect_ratio":0.705,"height":420,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885918-Case.png?v=1648773465"},"aspect_ratio":0.705,"height":420,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885918-Case.png?v=1648773465","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-927885-91-8 \u003cbr\u003ePages 588+xii\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eRheological additives are of interest to many industries, including paints, coatings, cosmetics, mortars, cementitious products, various polymer processing methods, sealants, inks, greases, drilling, packaging, and food products, to name some of the most important. Their selection and applications change and require frequent updates. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe \u003cstrong\u003eDatabook of Rheological Additives\u003c\/strong\u003e is frequently used in combination with the \u003cstrong\u003eHandbook of Rheological Additives\u003c\/strong\u003e. Both books do not overlap but complement each other, providing together comprehensive information on rheological additives.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe information on over 330 organic and inorganic additives is presented in individual tables for each product (either commercial or generic). There are over 30 chemical groups of additives included in this review. The data are divided into 5 groups, including General Information, Physical Properties, Health \u0026amp; Safety, Ecological Properties, and Use \u0026amp; Performance. The following information is included in each Section if available in the source(s) of data.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eGeneral Information\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: name, CAS #, EC #, IUPAC name, common name, common synonyms, acronym, biobased, cellulose functionality, charge, degree of substitution, empirical formula, chemical structure, molecular mass, RTECS number, chemical category, product class, product composition, moisture content, and solids content.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003ePhysical Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: state, odor, color, bulk density, density, specific gravity, relative density, boiling point, melting point, pour point, decomposition temperature, glass transition temperature, refractive index, vapor pressure, vapor density, volume resistivity, relative permittivity, ash content, pH, viscosity, rheological behavior, absolute viscosity, surface tension, hydration time, solubility in solvents, solubility in water, the heat of combustion, the heat of decomposition, specific heat, thermal conductivity, Henry’s law constant, particle size, and volatility.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eHealth \u0026amp; Safety\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN\/NA class, DOT class, ADR\/RIC class, ICAO\/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion, skin irritation, eye irritation, inhalation, first aid eye, skin, and inhalation, carcinogenicity IARC, NTP, OSHA, ACGIH, and mutagenicity.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eEcological Properties\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: biological oxygen demand, chemical oxygen demand, theoretical oxygen demand, biodegradation probability, aquatic toxicity algae, \u003cem\u003eRainbow trout\u003c\/em\u003e, \u003cem\u003eSheepshead minnow\u003c\/em\u003e, \u003cem\u003eFathead minnow\u003c\/em\u003e, and \u003cem\u003eDaphnia magna\u003c\/em\u003e, and partition coefficient.\u003c\/span\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eUse \u0026amp; Performance\u003c\/span\u003e\u003c\/strong\u003e\u003cspan\u003e: manufacturer, product feature, recommended for polymers, recommended for products, outstanding properties, compatibility, limitations, a typical reason for use, processing methods, the concentration used, storage temperature, and food approval.\u003c\/span\u003e\u003c\/p\u003e"}
Handbook of Foaming an...
$315.00
{"id":7336368570525,"title":"Handbook of Foaming and Blowing Agents, 2nd Edition","handle":"handbook-of-foaming-and-blowing-agents-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-77467-000-2 \u003cbr\u003ePages 300+viii\u003cbr data-mce-fragment=\"1\"\u003eTables 38\u003cbr data-mce-fragment=\"1\"\u003eFigures 194\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe second edition of the \u003cstrong\u003eHandbook of Foaming and Blowing Agents\u003c\/strong\u003e includes the most current information on these additives, which has been published between 2017 and 2021 in the open literature, scientific papers, and patents to complement already included information in the previous edition.\u003c\/p\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, such as the type and amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, the viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other diverse factors. \u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on the mechanisms of action of blowing agents and foaming mechanisms, as well as the dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology, which has been discussed in fourteen chapters, each devoted to a different aspect of foaming processes.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. The typical range of technical performance is given for each group of foaming agents in the tabulated form, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers. This information was compiled based on data for over 300 commercial additives. Here, average values for each group were included, unlike in the \u003cstrong\u003eDatabook\u003c\/strong\u003e \u003cstrong\u003eof Blowing and Auxiliary Agents, \u003c\/strong\u003ewhere full information for individual additives is presented.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by chemical reactions and diagrams placed close to the text of the discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is the subject of Chapter 4, emphasizing the uniformity of foam produced and the foaming process's parameters. Evaluation of the importance of parameters of foaming, included in chapter 5, contains the influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume. \u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain the uniform structure of the foam and reinforce cell walls. Seven different, most frequently used foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including the production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in the production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating is discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eThe selection of foaming agents, their quantity, and the technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, the health and safety, and environmental impacts of foaming processes are discussed. \u003c\/p\u003e\n\u003cp\u003eThis book also has a companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e, which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information, which is repeated in both books. They do compliment each other giving readers comprehensive information on the subject never published before with such breadth.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e1 Introduction\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e2 Chemical origin of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e3 Mechanisms of action of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e4 Dispersion and solubility of foaming agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e5 Parameters of foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e6 Foam stabilization\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e7 Foaming efficiency measures\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e8 Morphology of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e9 Foaming in different processing methods\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e10 Selection of blowing agents for different polymers\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e11 Additives\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e12 Effect of foaming on physical-mechanical properties of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e13 Analytical techniques useful in foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e14 Health and safety and environmental impact of foaming processes\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003eIndex\u003c\/p\u003e\n\u003cbr\u003e","published_at":"2022-03-31T20:41:59-04:00","created_at":"2022-03-31T20:38:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","foam","foaming","foaming agents","foams","new"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165706555549,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Foaming and Blowing Agents, 2nd Edition","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-000-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670002-Case.png?v=1648773883"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670002-Case.png?v=1648773883","options":["Title"],"media":[{"alt":null,"id":24734443438237,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670002-Case.png?v=1648773883"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670002-Case.png?v=1648773883","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-77467-000-2 \u003cbr\u003ePages 300+viii\u003cbr data-mce-fragment=\"1\"\u003eTables 38\u003cbr data-mce-fragment=\"1\"\u003eFigures 194\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe second edition of the \u003cstrong\u003eHandbook of Foaming and Blowing Agents\u003c\/strong\u003e includes the most current information on these additives, which has been published between 2017 and 2021 in the open literature, scientific papers, and patents to complement already included information in the previous edition.\u003c\/p\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, such as the type and amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, the viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other diverse factors. \u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on the mechanisms of action of blowing agents and foaming mechanisms, as well as the dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology, which has been discussed in fourteen chapters, each devoted to a different aspect of foaming processes.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. The typical range of technical performance is given for each group of foaming agents in the tabulated form, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers. This information was compiled based on data for over 300 commercial additives. Here, average values for each group were included, unlike in the \u003cstrong\u003eDatabook\u003c\/strong\u003e \u003cstrong\u003eof Blowing and Auxiliary Agents, \u003c\/strong\u003ewhere full information for individual additives is presented.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by chemical reactions and diagrams placed close to the text of the discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is the subject of Chapter 4, emphasizing the uniformity of foam produced and the foaming process's parameters. Evaluation of the importance of parameters of foaming, included in chapter 5, contains the influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume. \u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain the uniform structure of the foam and reinforce cell walls. Seven different, most frequently used foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including the production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in the production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating is discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eThe selection of foaming agents, their quantity, and the technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, the health and safety, and environmental impacts of foaming processes are discussed. \u003c\/p\u003e\n\u003cp\u003eThis book also has a companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e, which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information, which is repeated in both books. They do compliment each other giving readers comprehensive information on the subject never published before with such breadth.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e1 Introduction\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e2 Chemical origin of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e3 Mechanisms of action of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e4 Dispersion and solubility of foaming agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e5 Parameters of foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e6 Foam stabilization\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e7 Foaming efficiency measures\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e8 Morphology of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e9 Foaming in different processing methods\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e10 Selection of blowing agents for different polymers\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e11 Additives\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e12 Effect of foaming on physical-mechanical properties of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e13 Analytical techniques useful in foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e14 Health and safety and environmental impact of foaming processes\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003eIndex\u003c\/p\u003e\n\u003cbr\u003e"}
Handbook of Impact Mod...
$285.00
{"id":7336384692381,"title":"Handbook of Impact Modifiers","handle":"handbook-of-impact-modifiers","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 77467-004-0\u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 254+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Impact Modifiers provides information on how to modify structure and morphology, improve mechanical performance, and prevent changes during the use of polymeric products by proper selection of impact modifiers. Handbook of Impact Modifiers brings analyses of important publications found in open and patent literature. Special attention is given to the last five years' findings, which brought many new essential developments. \u003cbr\u003e\u003cbr\u003eThe book begins with an analysis of the chemical origin and related properties of impact modifiers, which are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in the companion Databook of Impact Modifiers, which has been published as a separate book to help select products available in the commercial markets and analyze different products. The information included in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe Handbook contains the essential theoretical knowledge required for proper selection and use of impact modifiers, including their morphological structure and distribution in a polymer matrix, the effect on polymer crystallization in the presence and without impact modifiers, important influences on impact modification, mechanisms of modification, and effective methods of incorporation of impact modifiers. \u003cbr\u003e\u003cbr\u003eDetails on selection and performance in different polymers, products, and processing methods are included in three major chapters. Here extensive use is being made of patent literature and research papers available for different applications. \u003cbr\u003e\u003cbr\u003eThe final three chapters discuss the effects of impact modifiers on physical and mechanical properties of materials, essential analytical techniques used to analyze systems containing impact modifiers, and the health and safety and environmental impact of impact modifiers.\u003cbr\u003e\u003cbr\u003eThe only monographic source on the application of impact modifiers was published in 1991. Later published information included chapters on their application in various branches of polymers and their processing. The most recent publication is a marketing report with a world outlook in 2021-2025 that predicts a rapid increase in consumption of impact modifiers. This lack of fundamental information and data requires current specialized publication, the aim which these two books expect to provide. \u003cbr\u003e\u003cbr\u003eIntroduction\u003cbr\u003eMain groups of impact modifiers\u003cbr\u003eGeneral laws describing impact resistance rate of impact, temperature during impact (glass transition temperature of material), and relative humidity (amount of absorbed moisture by the product)\u003cbr\u003eImpact modification mechanisms\u003cbr\u003eCrystallinity and morphology (homogeneity, crystallinity, degradation, internal stress, material form, presence of imperfections on the surface and within the bulk of a material)\u003cbr\u003eEffect of material composition (binder, fillers (their type, hardness, shape, and particle size distribution), interaction of matrix and fillers, crosslink density, plasticizers, impact modifiers, foaming agents, residual solvents), concentrations of additives\u003cbr\u003ePolymer blends (components of the blend and compatibilizers)\u003cbr\u003eEffect of processing on impact strength\u003cbr\u003eSelection of impact modifiers for different polymers\u003cbr\u003eSelection of impact modifiers for different end-products\u003cbr\u003eDurability of impact modification\u003cbr\u003e\u003cbr\u003eGroups of products, which consume most impact modifiers\u003cbr\u003eAdhesive, sealant, hotmelt, pressure-sensitive, bookbinding\u003cbr\u003eAerospace aviation\u003cbr\u003eAutomotive – body panel, accessories, under-the-hood, bumper, motor hosing\u003cbr\u003eBottles\u003cbr\u003eCoatings, paints\u003cbr\u003eCosmetics – fragrance caps, packaging\u003cbr\u003eElectrical – connectors, computer housing, conduit, switch, insulation, TV, monitor, phone\u003cbr\u003eEngineering plastics\u003cbr\u003eFilm\u003cbr\u003eFoam\u003cbr\u003eFootware\u003cbr\u003eFurniture also garden\u003cbr\u003eGeomembrane\u003cbr\u003eGolf balls\u003cbr\u003eHealthcare – medical gloves, medical device, drapery, intravenous bag, respiratory\u003cbr\u003eHouseware – household dinnerware, cabinets, small appliance, flowerpot, refrigerator\u003cbr\u003eInk\u003cbr\u003eMolded parts – containers, handle, grip\u003cbr\u003ePackaging - meat casing, trays, meat, pouches, stretch, milk, tape, cling\u003cbr\u003ePharmaceutical – drug delivery, packaging\u003cbr\u003ePipes and tubes, hose, fitting, fuel line\u003cbr\u003ePlayground running track\u003cbr\u003eProfiles - Windows and doors, fence, deck, rail\u003cbr\u003eRoads, pavement, asphalt modification\u003cbr\u003eRoofing roof sheet, roof covering, corrugated sheet, membrane\u003cbr\u003eSeals gaskets\u003cbr\u003eSheet\u003cbr\u003eSiding\u003cbr\u003eSporting – ski booth\u003cbr\u003eToys\u003cbr\u003eWire and cable\u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T20:52:45-04:00","created_at":"2022-03-31T20:45:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","impact modifiers","modifiers","new"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165743026333,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Impact Modifiers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 77467-004-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670040-Case.png?v=1648774608"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670040-Case.png?v=1648774608","options":["Title"],"media":[{"alt":null,"id":24734578540701,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670040-Case.png?v=1648774608"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670040-Case.png?v=1648774608","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 77467-004-0\u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 254+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Impact Modifiers provides information on how to modify structure and morphology, improve mechanical performance, and prevent changes during the use of polymeric products by proper selection of impact modifiers. Handbook of Impact Modifiers brings analyses of important publications found in open and patent literature. Special attention is given to the last five years' findings, which brought many new essential developments. \u003cbr\u003e\u003cbr\u003eThe book begins with an analysis of the chemical origin and related properties of impact modifiers, which are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in the companion Databook of Impact Modifiers, which has been published as a separate book to help select products available in the commercial markets and analyze different products. The information included in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe Handbook contains the essential theoretical knowledge required for proper selection and use of impact modifiers, including their morphological structure and distribution in a polymer matrix, the effect on polymer crystallization in the presence and without impact modifiers, important influences on impact modification, mechanisms of modification, and effective methods of incorporation of impact modifiers. \u003cbr\u003e\u003cbr\u003eDetails on selection and performance in different polymers, products, and processing methods are included in three major chapters. Here extensive use is being made of patent literature and research papers available for different applications. \u003cbr\u003e\u003cbr\u003eThe final three chapters discuss the effects of impact modifiers on physical and mechanical properties of materials, essential analytical techniques used to analyze systems containing impact modifiers, and the health and safety and environmental impact of impact modifiers.\u003cbr\u003e\u003cbr\u003eThe only monographic source on the application of impact modifiers was published in 1991. Later published information included chapters on their application in various branches of polymers and their processing. The most recent publication is a marketing report with a world outlook in 2021-2025 that predicts a rapid increase in consumption of impact modifiers. This lack of fundamental information and data requires current specialized publication, the aim which these two books expect to provide. \u003cbr\u003e\u003cbr\u003eIntroduction\u003cbr\u003eMain groups of impact modifiers\u003cbr\u003eGeneral laws describing impact resistance rate of impact, temperature during impact (glass transition temperature of material), and relative humidity (amount of absorbed moisture by the product)\u003cbr\u003eImpact modification mechanisms\u003cbr\u003eCrystallinity and morphology (homogeneity, crystallinity, degradation, internal stress, material form, presence of imperfections on the surface and within the bulk of a material)\u003cbr\u003eEffect of material composition (binder, fillers (their type, hardness, shape, and particle size distribution), interaction of matrix and fillers, crosslink density, plasticizers, impact modifiers, foaming agents, residual solvents), concentrations of additives\u003cbr\u003ePolymer blends (components of the blend and compatibilizers)\u003cbr\u003eEffect of processing on impact strength\u003cbr\u003eSelection of impact modifiers for different polymers\u003cbr\u003eSelection of impact modifiers for different end-products\u003cbr\u003eDurability of impact modification\u003cbr\u003e\u003cbr\u003eGroups of products, which consume most impact modifiers\u003cbr\u003eAdhesive, sealant, hotmelt, pressure-sensitive, bookbinding\u003cbr\u003eAerospace aviation\u003cbr\u003eAutomotive – body panel, accessories, under-the-hood, bumper, motor hosing\u003cbr\u003eBottles\u003cbr\u003eCoatings, paints\u003cbr\u003eCosmetics – fragrance caps, packaging\u003cbr\u003eElectrical – connectors, computer housing, conduit, switch, insulation, TV, monitor, phone\u003cbr\u003eEngineering plastics\u003cbr\u003eFilm\u003cbr\u003eFoam\u003cbr\u003eFootware\u003cbr\u003eFurniture also garden\u003cbr\u003eGeomembrane\u003cbr\u003eGolf balls\u003cbr\u003eHealthcare – medical gloves, medical device, drapery, intravenous bag, respiratory\u003cbr\u003eHouseware – household dinnerware, cabinets, small appliance, flowerpot, refrigerator\u003cbr\u003eInk\u003cbr\u003eMolded parts – containers, handle, grip\u003cbr\u003ePackaging - meat casing, trays, meat, pouches, stretch, milk, tape, cling\u003cbr\u003ePharmaceutical – drug delivery, packaging\u003cbr\u003ePipes and tubes, hose, fitting, fuel line\u003cbr\u003ePlayground running track\u003cbr\u003eProfiles - Windows and doors, fence, deck, rail\u003cbr\u003eRoads, pavement, asphalt modification\u003cbr\u003eRoofing roof sheet, roof covering, corrugated sheet, membrane\u003cbr\u003eSeals gaskets\u003cbr\u003eSheet\u003cbr\u003eSiding\u003cbr\u003eSporting – ski booth\u003cbr\u003eToys\u003cbr\u003eWire and cable\u003cbr\u003e\u003c\/p\u003e"}
Handbook of Polymers, ...
$455.00
{"id":7336409235613,"title":"Handbook of Polymers, 3rd Edition","handle":"handbook-of-polymers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T21:01:23-04:00","created_at":"2022-03-31T20:57:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","material","Materials","new","polymer","polymers"],"price":45500,"price_min":45500,"price_max":45500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165789098141,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Polymers, 3rd Edition","public_title":null,"options":["Default Title"],"price":45500,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-95-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885956-Case.png?v=1648774870"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885956-Case.png?v=1648774870","options":["Title"],"media":[{"alt":null,"id":24734620844189,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885956-Case.png?v=1648774870"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885956-Case.png?v=1648774870","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e"}
Atlas of Material Damage
$325.00
{"id":11242221572,"title":"Atlas of Material Damage","handle":"978-1-895198-48-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-48-5 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 310 \u003cbr\u003eChapter 7\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAtlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled. \u003cbr\u003e\u003cbr\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end). \u003cbr\u003e\u003cbr\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, a technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics. \u003cbr\u003e\u003cbr\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality. \u003cbr\u003e\u003cbr\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003cbr\u003e\u003cbr\u003e1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003cbr\u003e2 Analysis of causes of material damage and degradation\u003cbr\u003e3 Effect of processing conditions on material damage\u003cbr\u003e4 Effect of singular and combined action of different degradants on industrial products\u003cbr\u003e5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003cbr\u003e6 Technological steps required to obtain specifically designed morphology required for specific performance \u003cbr\u003e7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003cbr\u003e\u003cbr\u003eThe above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012. \u003cbr\u003e\u003cbr\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003cbr\u003e\u003cbr\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables. \u003cbr\u003e\u003cbr\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003eIn 1981, Carl Hanser Verlag published An Atlas of Polymer Damage by Lothar Engel, Hermann Klingele, Gottfried Ehrenstein, and Helmut Schaper. This unique publication became my favorite book, which I have frequently consulted throughout the last thirty years. \u003cbr\u003e\u003cbr\u003eUsing it I have learned that there are very many applications of this knowledge, such as:\u003cbr\u003e• Materials can be made stronger and more durable with little or no cost by proper use of morphological structure\u003cbr\u003e• In many cases, polymer additives could be eliminated \u003cbr\u003e• Their useful life in product can be extended\u003cbr\u003e• Material damage can be avoided \u003cbr\u003eThese and other findings are discussed in this book, which is meant to be easy to read because it is composed of hundreds of pictures and mechanisms of performance, with a little text just to explain what can be learned from the illustrations. Its description is as close to the observations of the original authors as permitted by the integrity of narration since they have the privilege of knowing more because they have seen the information within a broader scope of their research.\u003cbr\u003e\u003cbr\u003eI hope this book will have many readers because it opens so many unexploited possibilities to make what we use today much better. Many recently introduced products use these principles. Also, a great deal of research concentrates on using specially developed structural features for the betterment of properties of their materials. Many excellent products of today cannot be made without the application of the knowledge discussed in this book.\u003cbr\u003e\u003cbr\u003eUsers of the book will find that most of the research included was done between 2009 and today, which underlines the value of these findings, considering that many problems of the past are no longer important today because they were not only solved but already implemented in product manufacture.\u003cbr\u003e\u003cbr\u003eMy goal was to produce a book which can add value to the previously published volume since so many things have changed in the last thirty years. This book has no boundaries of application because it is clear from the analysis of a large number of research projects that structural knowledge and practical ideas are useful in very different applications. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e2 Material composition, structure, and morphological features\u003cbr\u003e2.1 Materials having predominantly homogeneous structure and composition \u003cbr\u003e2.2 Heterogeneous materials \u003cbr\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e2.2.2 Materials containing insoluble additives \u003cbr\u003e2.2.3 Materials containing immiscible phases \u003cbr\u003e2.2.4 Composites \u003cbr\u003e2.2.5 Multi-component layered materials \u003cbr\u003e2.2.6 Foams, porosity \u003cbr\u003e2.2.7 Compressed solids \u003cbr\u003e2.3 Material surface versus bulk \u003cbr\u003e\u003cbr\u003e3 Effect of processing on material structure \u003cbr\u003e3.1 Temperature \u003cbr\u003e3.2 Pressure \u003cbr\u003e3.3 Time\u003cbr\u003e3.4 Viscosity \u003cbr\u003e3.5 Flow rate (shear rate) \u003cbr\u003e3.6 Deformation \u003cbr\u003e3.7 Orientation \u003cbr\u003e\u003cbr\u003e4 Scale of damage – basic concept \u003cbr\u003e4.1 Atomic \u003cbr\u003e4.2 Microscale \u003cbr\u003e4.3 Macroscale \u003cbr\u003e\u003cbr\u003e5 Microscopic mechanisms of damage caused by degradants \u003cbr\u003e5.1 Bulk (mechanical forces) \u003cbr\u003e5.1.1 Elastic-brittle fracture \u003cbr\u003e5.1.2 Elastic-plastic deformation \u003cbr\u003e5.1.3 Time-related damage \u003cbr\u003e5.1.3.1 Fatigue \u003cbr\u003e5.1.3.2 Creep \u003cbr\u003e5.1.4 Impact damage \u003cbr\u003e5.1.5 Shear fracture \u003cbr\u003e5.16 Compression set \u003cbr\u003e5.1.7 Bending forces \u003cbr\u003e5.1.8 Anisotropic damage \u003cbr\u003e5.2 Electric forces \u003cbr\u003e5.2.1 Tracking \u003cbr\u003e5.2.2 Arcing \u003cbr\u003e5.2.3 Drying out in batteries \u003cbr\u003e5.2.4 Pin-holes \u003cbr\u003e5.2.5 Cracks\u003cbr\u003e5.2.6 Delamination \u003cbr\u003e5.3 Surface-initiated damage \u003cbr\u003e5.3.1 Physical forces \u003cbr\u003e5.3.1.1 Thermal treatment \u003cbr\u003e5.3.1.1.1 Process heat \u003cbr\u003e5.3.1.1.2 Conditions of performance \u003cbr\u003e5.3.1.1.3 Infrared \u003cbr\u003e5.3.1.1.4 Frictional heat \u003cbr\u003e5.3.1.1.5 Low-temperature effects \u003cbr\u003e5.3.1.1.6 Thermal stresses \u003cbr\u003e5.3.1.2 Radiation \u003cbr\u003e5.3.1.2.1 Alpha and beta rays \u003cbr\u003e5.3.1.2.2 Gamma rays \u003cbr\u003e5.3.1.2.3 Laser beam \u003cbr\u003e5.3.1.2.4 Cosmic rays \u003cbr\u003e5.3.1.2.5 Plasma \u003cbr\u003e5.3.1.3 Weathering \u003cbr\u003e5.3.2 Mechanical action \u003cbr\u003e5.3.2.1 Scratching \u003cbr\u003e5.3.2.2 Impact \u003cbr\u003e5.3.2.3 Adhesive failure, sliding, rolling \u003cbr\u003e5.3.3 Chemical reactions \u003cbr\u003e5.3.3.1 Molecular oxygen \u003cbr\u003e5.3.3.2 Ozone \u003cbr\u003e5.3.3.3 Atomic oxygen \u003cbr\u003e5.3.3.4 Sulfur dioxide \u003cbr\u003e5.3.3.5 Particulate matter \u003cbr\u003e5.3.3.6 Other gaseous pollutants \u003cbr\u003e5.4 Combination of degrading elements \u003cbr\u003e5.4.1 Environmental stress cracking \u003cbr\u003e5.4.2 Biodegradation and biodeterioration \u003cbr\u003e5.4.3 Effect of body fluids \u003cbr\u003e5.4.4 Controlled–release substances in pharmaceutical applications \u003cbr\u003e5.4.5 Corrosion\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:47-04:00","created_at":"2017-06-22T21:13:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","analysis","best","biodegradation","book","chemical reactions","cracks","deformation","degradation","demage","humidity","material","mechanical action","methods of analysis","morphology of damaged material","physical forces","polymers","processing and degradation","thermal","weathering"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374596,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Atlas of Material Damage","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-48-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-48-5.jpg?v=1498191053"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-48-5.jpg?v=1498191053","options":["Title"],"media":[{"alt":null,"id":350156750941,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-48-5.jpg?v=1498191053"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-48-5.jpg?v=1498191053","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-48-5 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 310 \u003cbr\u003eChapter 7\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAtlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled. \u003cbr\u003e\u003cbr\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end). \u003cbr\u003e\u003cbr\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, a technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics. \u003cbr\u003e\u003cbr\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality. \u003cbr\u003e\u003cbr\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003cbr\u003e\u003cbr\u003e1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003cbr\u003e2 Analysis of causes of material damage and degradation\u003cbr\u003e3 Effect of processing conditions on material damage\u003cbr\u003e4 Effect of singular and combined action of different degradants on industrial products\u003cbr\u003e5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003cbr\u003e6 Technological steps required to obtain specifically designed morphology required for specific performance \u003cbr\u003e7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003cbr\u003e\u003cbr\u003eThe above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012. \u003cbr\u003e\u003cbr\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003cbr\u003e\u003cbr\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables. \u003cbr\u003e\u003cbr\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003eIn 1981, Carl Hanser Verlag published An Atlas of Polymer Damage by Lothar Engel, Hermann Klingele, Gottfried Ehrenstein, and Helmut Schaper. This unique publication became my favorite book, which I have frequently consulted throughout the last thirty years. \u003cbr\u003e\u003cbr\u003eUsing it I have learned that there are very many applications of this knowledge, such as:\u003cbr\u003e• Materials can be made stronger and more durable with little or no cost by proper use of morphological structure\u003cbr\u003e• In many cases, polymer additives could be eliminated \u003cbr\u003e• Their useful life in product can be extended\u003cbr\u003e• Material damage can be avoided \u003cbr\u003eThese and other findings are discussed in this book, which is meant to be easy to read because it is composed of hundreds of pictures and mechanisms of performance, with a little text just to explain what can be learned from the illustrations. Its description is as close to the observations of the original authors as permitted by the integrity of narration since they have the privilege of knowing more because they have seen the information within a broader scope of their research.\u003cbr\u003e\u003cbr\u003eI hope this book will have many readers because it opens so many unexploited possibilities to make what we use today much better. Many recently introduced products use these principles. Also, a great deal of research concentrates on using specially developed structural features for the betterment of properties of their materials. Many excellent products of today cannot be made without the application of the knowledge discussed in this book.\u003cbr\u003e\u003cbr\u003eUsers of the book will find that most of the research included was done between 2009 and today, which underlines the value of these findings, considering that many problems of the past are no longer important today because they were not only solved but already implemented in product manufacture.\u003cbr\u003e\u003cbr\u003eMy goal was to produce a book which can add value to the previously published volume since so many things have changed in the last thirty years. This book has no boundaries of application because it is clear from the analysis of a large number of research projects that structural knowledge and practical ideas are useful in very different applications. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e2 Material composition, structure, and morphological features\u003cbr\u003e2.1 Materials having predominantly homogeneous structure and composition \u003cbr\u003e2.2 Heterogeneous materials \u003cbr\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e2.2.2 Materials containing insoluble additives \u003cbr\u003e2.2.3 Materials containing immiscible phases \u003cbr\u003e2.2.4 Composites \u003cbr\u003e2.2.5 Multi-component layered materials \u003cbr\u003e2.2.6 Foams, porosity \u003cbr\u003e2.2.7 Compressed solids \u003cbr\u003e2.3 Material surface versus bulk \u003cbr\u003e\u003cbr\u003e3 Effect of processing on material structure \u003cbr\u003e3.1 Temperature \u003cbr\u003e3.2 Pressure \u003cbr\u003e3.3 Time\u003cbr\u003e3.4 Viscosity \u003cbr\u003e3.5 Flow rate (shear rate) \u003cbr\u003e3.6 Deformation \u003cbr\u003e3.7 Orientation \u003cbr\u003e\u003cbr\u003e4 Scale of damage – basic concept \u003cbr\u003e4.1 Atomic \u003cbr\u003e4.2 Microscale \u003cbr\u003e4.3 Macroscale \u003cbr\u003e\u003cbr\u003e5 Microscopic mechanisms of damage caused by degradants \u003cbr\u003e5.1 Bulk (mechanical forces) \u003cbr\u003e5.1.1 Elastic-brittle fracture \u003cbr\u003e5.1.2 Elastic-plastic deformation \u003cbr\u003e5.1.3 Time-related damage \u003cbr\u003e5.1.3.1 Fatigue \u003cbr\u003e5.1.3.2 Creep \u003cbr\u003e5.1.4 Impact damage \u003cbr\u003e5.1.5 Shear fracture \u003cbr\u003e5.16 Compression set \u003cbr\u003e5.1.7 Bending forces \u003cbr\u003e5.1.8 Anisotropic damage \u003cbr\u003e5.2 Electric forces \u003cbr\u003e5.2.1 Tracking \u003cbr\u003e5.2.2 Arcing \u003cbr\u003e5.2.3 Drying out in batteries \u003cbr\u003e5.2.4 Pin-holes \u003cbr\u003e5.2.5 Cracks\u003cbr\u003e5.2.6 Delamination \u003cbr\u003e5.3 Surface-initiated damage \u003cbr\u003e5.3.1 Physical forces \u003cbr\u003e5.3.1.1 Thermal treatment \u003cbr\u003e5.3.1.1.1 Process heat \u003cbr\u003e5.3.1.1.2 Conditions of performance \u003cbr\u003e5.3.1.1.3 Infrared \u003cbr\u003e5.3.1.1.4 Frictional heat \u003cbr\u003e5.3.1.1.5 Low-temperature effects \u003cbr\u003e5.3.1.1.6 Thermal stresses \u003cbr\u003e5.3.1.2 Radiation \u003cbr\u003e5.3.1.2.1 Alpha and beta rays \u003cbr\u003e5.3.1.2.2 Gamma rays \u003cbr\u003e5.3.1.2.3 Laser beam \u003cbr\u003e5.3.1.2.4 Cosmic rays \u003cbr\u003e5.3.1.2.5 Plasma \u003cbr\u003e5.3.1.3 Weathering \u003cbr\u003e5.3.2 Mechanical action \u003cbr\u003e5.3.2.1 Scratching \u003cbr\u003e5.3.2.2 Impact \u003cbr\u003e5.3.2.3 Adhesive failure, sliding, rolling \u003cbr\u003e5.3.3 Chemical reactions \u003cbr\u003e5.3.3.1 Molecular oxygen \u003cbr\u003e5.3.3.2 Ozone \u003cbr\u003e5.3.3.3 Atomic oxygen \u003cbr\u003e5.3.3.4 Sulfur dioxide \u003cbr\u003e5.3.3.5 Particulate matter \u003cbr\u003e5.3.3.6 Other gaseous pollutants \u003cbr\u003e5.4 Combination of degrading elements \u003cbr\u003e5.4.1 Environmental stress cracking \u003cbr\u003e5.4.2 Biodegradation and biodeterioration \u003cbr\u003e5.4.3 Effect of body fluids \u003cbr\u003e5.4.4 Controlled–release substances in pharmaceutical applications \u003cbr\u003e5.4.5 Corrosion\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Fillers
$285.00
{"id":11242220868,"title":"Handbook of Fillers","handle":"978-1-895198-41-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-41-6 \u003cbr\u003e\u003cbr\u003eFigures: 578\u003cbr\u003eTables: 190\u003cbr\u003ePages: 774\u003cbr\u003eThird Edition\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003eOver 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. \u003cbr\u003e Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.\u003cbr\u003e The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. \u003cbr\u003e This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. \u003cbr\u003e To summarize, major features of this handbook are:\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1.1 Expectations from fillers\u003cbr\u003e1.2 Typical filler properties\u003cbr\u003e1.3 Definitions\u003cbr\u003e1.4 Classification\u003cbr\u003e1.5 Markets and trends\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders\u003cbr\u003e2.1.2 Aluminum borate whiskers\u003cbr\u003e2.1.3 Aluminum oxide \u003cbr\u003e2.1.4 Aluminum trihydroxide\u003cbr\u003e2.1.5 Anthracite\u003cbr\u003e2.1.6 Antimonate of sodium\u003cbr\u003e2.1.7 Antimony pentoxide\u003cbr\u003e2.1.8 Antimony trioxide\u003cbr\u003e2.1.9 Ammonium octamolybdate\u003cbr\u003e2.1.10 Apatite\u003cbr\u003e2.1.11 Ash, fly\u003cbr\u003e2.1.12 Attapulgite\u003cbr\u003e2.1.13 Barium metaborate\u003cbr\u003e2.1.14 Barium sulfate\u003cbr\u003e2.1.15 Barium \u0026amp; strontium sulfates\u003cbr\u003e2.1.16 Barium titanate\u003cbr\u003e2.1.17 Bentonite\u003cbr\u003e2.1.18 Beryllium oxide\u003cbr\u003e2.1.19 Boron nitride\u003cbr\u003e2.1.20 Calcium carbonate\u003cbr\u003e2.1.21 Calcium hydroxide\u003cbr\u003e2.1.22 Calcium sulfate\u003cbr\u003e2.1.23 Carbon black \u003cbr\u003e2.1.24 Ceramic beads\u003cbr\u003e2.1.25 Clay\u003cbr\u003e2.1.26 Copper\u003cbr\u003e2.1.27 Cobalt powder\u003cbr\u003e2.1.28 Cristobalite\u003cbr\u003e2.1.29 Diatomaceous earth\u003cbr\u003e2.1.30 Dolomite\u003cbr\u003e2.1.31 Ferrites\u003cbr\u003e2.1.32 Feldspar\u003cbr\u003e2.1.33 Glass beads\u003cbr\u003e2.1.34 Gold\u003cbr\u003e2.1.35 Graphite\u003cbr\u003e2.1.36 Hydrous calcium silicate\u003cbr\u003e2.1.37 Iron oxide \u003cbr\u003e2.1.38 Kaolin \u003cbr\u003e2.1.39 Lithopone \u003cbr\u003e2.1.40 Magnesium oxide \u003cbr\u003e2.1.41 Magnesium hydroxide \u003cbr\u003e2.1.42 Metal-containing conductive materials\u003cbr\u003e2.1.43 Mica\u003cbr\u003e2.1.44 Molybdenum\u003cbr\u003e2.1.45 Molybdenum disulfide\u003cbr\u003e2.1.46 Molybdic oxide\u003cbr\u003e2.1.47 Nanofillers\u003cbr\u003e2.1.48 Nickel\u003cbr\u003e2.1.49 Nickel oxide\u003cbr\u003e2.1.50 Nickel zinc ferrite\u003cbr\u003e2.1.51 Perlite\u003cbr\u003e2.1.52 Polymeric fillers\u003cbr\u003e2.1.53 Potassium hexatitanate whiskers\u003cbr\u003e2.1.54 Pumice\u003cbr\u003e2.1.55 Pyrophyllite\u003cbr\u003e2.1.56 Rubber particles\u003cbr\u003e2.1.57 Sepiolite\u003cbr\u003e2.1.58 Silica \u003cbr\u003e2.1.58.1 Fumed silica\u003cbr\u003e2.1.58.2 Fused silica \u003cbr\u003e2.1.58.3 Precipitated silica\u003cbr\u003e2.1.58.4 Nanosilica\u003cbr\u003e2.1.58.5 Quartz (Tripoli) \u003cbr\u003e2.1.58.6 Sand \u003cbr\u003e2.1.58.7 Silica gel\u003cbr\u003e2.1.59 Silicon carbide\u003cbr\u003e2.1.60 Silicon nitride\u003cbr\u003e2.1.61 Silver powder and flakes\u003cbr\u003e2.1.62 Slate flour \u003cbr\u003e2.1.63 Talc \u003cbr\u003e2.1.64 Titanium dioxide\u003cbr\u003e2.1.65 Tungsten \u003cbr\u003e2.1.66 Vermiculite \u003cbr\u003e2.1.67 Wollastonite \u003cbr\u003e2.1.68 Wood flour and similar materials\u003cbr\u003e2.1.69 Zeolites \u003cbr\u003e2.1.70 Zinc borate \u003cbr\u003e2.1.71 Zinc oxide \u003cbr\u003e2.1.72 Zinc stannate \u003cbr\u003e2.1.73 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers\u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Cellulose fibers \u003cbr\u003e2.2.4 Glass fibers \u003cbr\u003e2.2.5 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e3.1 Filler packaging\u003cbr\u003e3.2 External transportation\u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems\u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 QUALITY CONTROL OF FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e4.1 Absorption coefficient\u003cbr\u003e4.2 Acidity or alkalinity of water extract\u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles\u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area\u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties\u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments\u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties\u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light\u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue\u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area\u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5.1 Density\u003cbr\u003e5.2 Particle size\u003cbr\u003e5.3 Particle size distribution\u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness\u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing\u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure\u003cbr\u003e5.11 Flocculation and sedimentation\u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH\u003cbr\u003e5.15 Zeta-potential\u003cbr\u003e5.16 Surface energy\u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling\u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties\u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties\u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient\u003cbr\u003e5.29 Melting temperature \u003cbr\u003e5.30 Electrical properties \u003cbr\u003e5.31 Magnetic properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e6.1 Reactivity\u003cbr\u003e6.2 Chemical groups on the filler surface\u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties\u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence\u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1 Particle distribution in matrix\u003cbr\u003e7.2 Orientation of filler particles in a matrix\u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction\u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization\u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e8.1 Tensile strength and elongation\u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Elastic modulus \u003cbr\u003e8.4 Flexural strength and modulus \u003cbr\u003e8.5 Impact resistance \u003cbr\u003e8.6 Hardness \u003cbr\u003e8.7 Tear strength\u003cbr\u003e8.8 Compressive strength\u003cbr\u003e8.9 Fracture resistance \u003cbr\u003e8.10 Wear \u003cbr\u003e8.11 Friction \u003cbr\u003e8.12 Abrasion \u003cbr\u003e8.13 Scratch resistance\u003cbr\u003e8.14 Fatigue \u003cbr\u003e8.15 Failure \u003cbr\u003e8.16 Adhesion \u003cbr\u003e8.17 Thermal deformation\u003cbr\u003e8.18 Shrinkage \u003cbr\u003e8.19 Warpage \u003cbr\u003e8.20 Compression set\u003cbr\u003e8.21 Load transfer \u003cbr\u003e8.22 Residual stress \u003cbr\u003e8.23 Creep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e9.1 Viscosity\u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation\u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity\u003cbr\u003e9.6 Dynamic mechanical behavior\u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity\u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e10.1 Crystallinity\u003cbr\u003e10.2 Crystallization behavior\u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity\u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e11.1 Irradiation\u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors\u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 FLAMMABILITY OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e12.1 Definitions\u003cbr\u003e12.2 Limiting oxygen index\u003cbr\u003e12.3 Ignition and flame spread rate\u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion\u003cbr\u003e12.6 Emission of gaseous components\u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e13.1 Adhesion promoters\u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers\u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents\u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e14.1 Physical methods\u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement\u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis\u003cbr\u003e14.1.11 Electric constants determination\u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test\u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index\u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy\u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area\u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis\u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis\u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy\u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy\u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 FILLERS IN COMMERCIAL POLYMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e15.1 Acrylics\u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer\u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Elastomers \u003cbr\u003e15.7 Epoxy resins \u003cbr\u003e15.8 Ethylene vinyl acetate copolymers \u003cbr\u003e15.9 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.10 Ethylene-propylene copolymers \u003cbr\u003e15.11 Ionomers \u003cbr\u003e15.12 Liquid crystalline polymers\u003cbr\u003e15.13 Perfluoroalkoxy resin \u003cbr\u003e15.14 Phenolic resins \u003cbr\u003e15.15 Poly(acrylic acid) \u003cbr\u003e15.16 Polyamides \u003cbr\u003e15.17 Polyamideimide \u003cbr\u003e15.18 Polyamines \u003cbr\u003e15.19 Polyaniline \u003cbr\u003e15.20 Polyaryletherketone\u003cbr\u003e15.21 Poly(butylene terephthalate) \u003cbr\u003e15.22 Polycarbonate \u003cbr\u003e15.23 Polyetheretherketone\u003cbr\u003e15.24 Polyetherimide \u003cbr\u003e15.25 Polyether sulfone \u003cbr\u003e15.26 Polyethylene \u003cbr\u003e15.27 Polyethylene, chlorinated \u003cbr\u003e15.28 Polyethylene, chlorosulfonated \u003cbr\u003e15.29 Poly(ethylene oxide) \u003cbr\u003e15.30 Poly(ethylene terephthalate)\u003cbr\u003e15.31 Polyimide \u003cbr\u003e15.32 Polymethylmethacrylate\u003cbr\u003e15.33 Polyoxymethylene \u003cbr\u003e15.34 Poly(phenylene ether)\u003cbr\u003e15.35 Poly(phenylene sulfide) \u003cbr\u003e15.36 Polypropylene \u003cbr\u003e15.37 Polypyrrole \u003cbr\u003e15.38 Polystyrene \u0026amp; high impact \u003cbr\u003e15.39 Polysulfides \u003cbr\u003e15.40 Polysulfone \u003cbr\u003e15.41 Polytetrafluoroethylene\u003cbr\u003e15.42 Polyurethanes \u003cbr\u003e15.43 Poly(vinyl acetate)\u003cbr\u003e15.44 Poly(vinyl alcohol)\u003cbr\u003e15.45 Poly(vinyl butyral) \u003cbr\u003e15.46 Poly(vinyl chloride) \u003cbr\u003e15.47 Rubbers \u003cbr\u003e15.47.1 Natural rubber\u003cbr\u003e15.47.2 Nitrile rubber \u003cbr\u003e15.47.3 Polybutadiene rubber \u003cbr\u003e15.47.4 Polybutyl rubber \u003cbr\u003e15.47.5 Polychloroprene \u003cbr\u003e15.47.6 Polyisobutylene \u003cbr\u003e15.47.7 Polyisoprene \u003cbr\u003e15.47.8 Styrene-butadiene rubber\u003cbr\u003e15.48 Silicones \u003cbr\u003e15.49 Styrene-acrylonitrile copolymer\u003cbr\u003e15.50 Tetrafluoroethylene-perfluoropropylene\u003cbr\u003e15.51 Unsaturated polyesters \u003cbr\u003e15.52 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 FILLER IN MATERIALS COMBINATIONS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e16.1 Blends, alloys and interpenetrating networks\u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 FORMULATION WITH FILLERS\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e18.1 Blow molding\u003cbr\u003e18.2 Calendering and hot-melt coating\u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding\u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding\u003cbr\u003e18.13 Rotational molding \u003cbr\u003e18.14 Sheet molding \u003cbr\u003e18.15 Thermoforming \u003cbr\u003e18.16 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace\u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints\u003cbr\u003e19.12 Cosmetics and pharmaceutical products\u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed\u003cbr\u003e19.20 Friction materials\u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields\u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication\u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 HAZARDS IN FILLER USE\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:50:53-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","additives for plastics","best","book","calcium carbon","compounding of rubber","fillers additives","fillers and environment","flame retardanst for plastics","graphite","magnesium","mica","nanofillers","p-additives","particular fillers","physical properties","polymer","polymers","quality control","silica"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372804,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Fillers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-41-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-41-6.jpg?v=1499441992"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-41-6.jpg?v=1499441992","options":["Title"],"media":[{"alt":null,"id":355724558429,"position":1,"preview_image":{"aspect_ratio":0.667,"height":499,"width":333,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-41-6.jpg?v=1499441992"},"aspect_ratio":0.667,"height":499,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-41-6.jpg?v=1499441992","width":333}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-41-6 \u003cbr\u003e\u003cbr\u003eFigures: 578\u003cbr\u003eTables: 190\u003cbr\u003ePages: 774\u003cbr\u003eThird Edition\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003eOver 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. \u003cbr\u003e Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.\u003cbr\u003e The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. \u003cbr\u003e This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. \u003cbr\u003e To summarize, major features of this handbook are:\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1.1 Expectations from fillers\u003cbr\u003e1.2 Typical filler properties\u003cbr\u003e1.3 Definitions\u003cbr\u003e1.4 Classification\u003cbr\u003e1.5 Markets and trends\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders\u003cbr\u003e2.1.2 Aluminum borate whiskers\u003cbr\u003e2.1.3 Aluminum oxide \u003cbr\u003e2.1.4 Aluminum trihydroxide\u003cbr\u003e2.1.5 Anthracite\u003cbr\u003e2.1.6 Antimonate of sodium\u003cbr\u003e2.1.7 Antimony pentoxide\u003cbr\u003e2.1.8 Antimony trioxide\u003cbr\u003e2.1.9 Ammonium octamolybdate\u003cbr\u003e2.1.10 Apatite\u003cbr\u003e2.1.11 Ash, fly\u003cbr\u003e2.1.12 Attapulgite\u003cbr\u003e2.1.13 Barium metaborate\u003cbr\u003e2.1.14 Barium sulfate\u003cbr\u003e2.1.15 Barium \u0026amp; strontium sulfates\u003cbr\u003e2.1.16 Barium titanate\u003cbr\u003e2.1.17 Bentonite\u003cbr\u003e2.1.18 Beryllium oxide\u003cbr\u003e2.1.19 Boron nitride\u003cbr\u003e2.1.20 Calcium carbonate\u003cbr\u003e2.1.21 Calcium hydroxide\u003cbr\u003e2.1.22 Calcium sulfate\u003cbr\u003e2.1.23 Carbon black \u003cbr\u003e2.1.24 Ceramic beads\u003cbr\u003e2.1.25 Clay\u003cbr\u003e2.1.26 Copper\u003cbr\u003e2.1.27 Cobalt powder\u003cbr\u003e2.1.28 Cristobalite\u003cbr\u003e2.1.29 Diatomaceous earth\u003cbr\u003e2.1.30 Dolomite\u003cbr\u003e2.1.31 Ferrites\u003cbr\u003e2.1.32 Feldspar\u003cbr\u003e2.1.33 Glass beads\u003cbr\u003e2.1.34 Gold\u003cbr\u003e2.1.35 Graphite\u003cbr\u003e2.1.36 Hydrous calcium silicate\u003cbr\u003e2.1.37 Iron oxide \u003cbr\u003e2.1.38 Kaolin \u003cbr\u003e2.1.39 Lithopone \u003cbr\u003e2.1.40 Magnesium oxide \u003cbr\u003e2.1.41 Magnesium hydroxide \u003cbr\u003e2.1.42 Metal-containing conductive materials\u003cbr\u003e2.1.43 Mica\u003cbr\u003e2.1.44 Molybdenum\u003cbr\u003e2.1.45 Molybdenum disulfide\u003cbr\u003e2.1.46 Molybdic oxide\u003cbr\u003e2.1.47 Nanofillers\u003cbr\u003e2.1.48 Nickel\u003cbr\u003e2.1.49 Nickel oxide\u003cbr\u003e2.1.50 Nickel zinc ferrite\u003cbr\u003e2.1.51 Perlite\u003cbr\u003e2.1.52 Polymeric fillers\u003cbr\u003e2.1.53 Potassium hexatitanate whiskers\u003cbr\u003e2.1.54 Pumice\u003cbr\u003e2.1.55 Pyrophyllite\u003cbr\u003e2.1.56 Rubber particles\u003cbr\u003e2.1.57 Sepiolite\u003cbr\u003e2.1.58 Silica \u003cbr\u003e2.1.58.1 Fumed silica\u003cbr\u003e2.1.58.2 Fused silica \u003cbr\u003e2.1.58.3 Precipitated silica\u003cbr\u003e2.1.58.4 Nanosilica\u003cbr\u003e2.1.58.5 Quartz (Tripoli) \u003cbr\u003e2.1.58.6 Sand \u003cbr\u003e2.1.58.7 Silica gel\u003cbr\u003e2.1.59 Silicon carbide\u003cbr\u003e2.1.60 Silicon nitride\u003cbr\u003e2.1.61 Silver powder and flakes\u003cbr\u003e2.1.62 Slate flour \u003cbr\u003e2.1.63 Talc \u003cbr\u003e2.1.64 Titanium dioxide\u003cbr\u003e2.1.65 Tungsten \u003cbr\u003e2.1.66 Vermiculite \u003cbr\u003e2.1.67 Wollastonite \u003cbr\u003e2.1.68 Wood flour and similar materials\u003cbr\u003e2.1.69 Zeolites \u003cbr\u003e2.1.70 Zinc borate \u003cbr\u003e2.1.71 Zinc oxide \u003cbr\u003e2.1.72 Zinc stannate \u003cbr\u003e2.1.73 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers\u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Cellulose fibers \u003cbr\u003e2.2.4 Glass fibers \u003cbr\u003e2.2.5 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e3.1 Filler packaging\u003cbr\u003e3.2 External transportation\u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems\u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 QUALITY CONTROL OF FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e4.1 Absorption coefficient\u003cbr\u003e4.2 Acidity or alkalinity of water extract\u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles\u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area\u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties\u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments\u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties\u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light\u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue\u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area\u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5.1 Density\u003cbr\u003e5.2 Particle size\u003cbr\u003e5.3 Particle size distribution\u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness\u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing\u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure\u003cbr\u003e5.11 Flocculation and sedimentation\u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH\u003cbr\u003e5.15 Zeta-potential\u003cbr\u003e5.16 Surface energy\u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling\u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties\u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties\u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient\u003cbr\u003e5.29 Melting temperature \u003cbr\u003e5.30 Electrical properties \u003cbr\u003e5.31 Magnetic properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e6.1 Reactivity\u003cbr\u003e6.2 Chemical groups on the filler surface\u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties\u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence\u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1 Particle distribution in matrix\u003cbr\u003e7.2 Orientation of filler particles in a matrix\u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction\u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization\u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e8.1 Tensile strength and elongation\u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Elastic modulus \u003cbr\u003e8.4 Flexural strength and modulus \u003cbr\u003e8.5 Impact resistance \u003cbr\u003e8.6 Hardness \u003cbr\u003e8.7 Tear strength\u003cbr\u003e8.8 Compressive strength\u003cbr\u003e8.9 Fracture resistance \u003cbr\u003e8.10 Wear \u003cbr\u003e8.11 Friction \u003cbr\u003e8.12 Abrasion \u003cbr\u003e8.13 Scratch resistance\u003cbr\u003e8.14 Fatigue \u003cbr\u003e8.15 Failure \u003cbr\u003e8.16 Adhesion \u003cbr\u003e8.17 Thermal deformation\u003cbr\u003e8.18 Shrinkage \u003cbr\u003e8.19 Warpage \u003cbr\u003e8.20 Compression set\u003cbr\u003e8.21 Load transfer \u003cbr\u003e8.22 Residual stress \u003cbr\u003e8.23 Creep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e9.1 Viscosity\u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation\u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity\u003cbr\u003e9.6 Dynamic mechanical behavior\u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity\u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e10.1 Crystallinity\u003cbr\u003e10.2 Crystallization behavior\u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity\u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e11.1 Irradiation\u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors\u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 FLAMMABILITY OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e12.1 Definitions\u003cbr\u003e12.2 Limiting oxygen index\u003cbr\u003e12.3 Ignition and flame spread rate\u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion\u003cbr\u003e12.6 Emission of gaseous components\u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e13.1 Adhesion promoters\u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers\u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents\u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e14.1 Physical methods\u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement\u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis\u003cbr\u003e14.1.11 Electric constants determination\u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test\u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index\u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy\u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area\u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis\u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis\u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy\u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy\u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 FILLERS IN COMMERCIAL POLYMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e15.1 Acrylics\u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer\u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Elastomers \u003cbr\u003e15.7 Epoxy resins \u003cbr\u003e15.8 Ethylene vinyl acetate copolymers \u003cbr\u003e15.9 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.10 Ethylene-propylene copolymers \u003cbr\u003e15.11 Ionomers \u003cbr\u003e15.12 Liquid crystalline polymers\u003cbr\u003e15.13 Perfluoroalkoxy resin \u003cbr\u003e15.14 Phenolic resins \u003cbr\u003e15.15 Poly(acrylic acid) \u003cbr\u003e15.16 Polyamides \u003cbr\u003e15.17 Polyamideimide \u003cbr\u003e15.18 Polyamines \u003cbr\u003e15.19 Polyaniline \u003cbr\u003e15.20 Polyaryletherketone\u003cbr\u003e15.21 Poly(butylene terephthalate) \u003cbr\u003e15.22 Polycarbonate \u003cbr\u003e15.23 Polyetheretherketone\u003cbr\u003e15.24 Polyetherimide \u003cbr\u003e15.25 Polyether sulfone \u003cbr\u003e15.26 Polyethylene \u003cbr\u003e15.27 Polyethylene, chlorinated \u003cbr\u003e15.28 Polyethylene, chlorosulfonated \u003cbr\u003e15.29 Poly(ethylene oxide) \u003cbr\u003e15.30 Poly(ethylene terephthalate)\u003cbr\u003e15.31 Polyimide \u003cbr\u003e15.32 Polymethylmethacrylate\u003cbr\u003e15.33 Polyoxymethylene \u003cbr\u003e15.34 Poly(phenylene ether)\u003cbr\u003e15.35 Poly(phenylene sulfide) \u003cbr\u003e15.36 Polypropylene \u003cbr\u003e15.37 Polypyrrole \u003cbr\u003e15.38 Polystyrene \u0026amp; high impact \u003cbr\u003e15.39 Polysulfides \u003cbr\u003e15.40 Polysulfone \u003cbr\u003e15.41 Polytetrafluoroethylene\u003cbr\u003e15.42 Polyurethanes \u003cbr\u003e15.43 Poly(vinyl acetate)\u003cbr\u003e15.44 Poly(vinyl alcohol)\u003cbr\u003e15.45 Poly(vinyl butyral) \u003cbr\u003e15.46 Poly(vinyl chloride) \u003cbr\u003e15.47 Rubbers \u003cbr\u003e15.47.1 Natural rubber\u003cbr\u003e15.47.2 Nitrile rubber \u003cbr\u003e15.47.3 Polybutadiene rubber \u003cbr\u003e15.47.4 Polybutyl rubber \u003cbr\u003e15.47.5 Polychloroprene \u003cbr\u003e15.47.6 Polyisobutylene \u003cbr\u003e15.47.7 Polyisoprene \u003cbr\u003e15.47.8 Styrene-butadiene rubber\u003cbr\u003e15.48 Silicones \u003cbr\u003e15.49 Styrene-acrylonitrile copolymer\u003cbr\u003e15.50 Tetrafluoroethylene-perfluoropropylene\u003cbr\u003e15.51 Unsaturated polyesters \u003cbr\u003e15.52 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 FILLER IN MATERIALS COMBINATIONS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e16.1 Blends, alloys and interpenetrating networks\u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 FORMULATION WITH FILLERS\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e18.1 Blow molding\u003cbr\u003e18.2 Calendering and hot-melt coating\u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding\u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding\u003cbr\u003e18.13 Rotational molding \u003cbr\u003e18.14 Sheet molding \u003cbr\u003e18.15 Thermoforming \u003cbr\u003e18.16 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace\u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints\u003cbr\u003e19.12 Cosmetics and pharmaceutical products\u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed\u003cbr\u003e19.20 Friction materials\u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields\u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication\u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 HAZARDS IN FILLER USE\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Material W...
$300.00
{"id":11242219780,"title":"Handbook of Material Weathering, 5th Edition","handle":"978-1-895198-62-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-62-1 \u003cbr\u003e\u003cbr\u003e5th Edition\u003cbr\u003ePages: 826\u003cbr\u003eFigures: 795\u003cbr\u003eTables: 64\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 5th edition of Handbook of Material Weathering contains systematic updates of knowledge generated in more than last 25 years when the 1st edition was prepared. \u003cbr\u003e\u003cbr\u003eThe information required for professional use has been growing so rapidly that additional books had to be written to accommodate essential knowledge for implementation in technological processes used to manufacture products, which deteriorate on exposure to weathering stress factors.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThis edition contains 20 chapters, which can be divided into the following groups:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Theory (photophysics and photochemistry)\u003cbr\u003e\u003cbr\u003e• Stress factors (parameters of exposure, measurements in assessment of weathering conditions, and climatic conditions)\u003cbr\u003e\u003cbr\u003e• Methods of weathering (laboratory degradation studies, weathering cycles, sample preparation, weathering data interpretation, lifetime prediction, and artificial weathering versus natural exposure)\u003cbr\u003e\u003cbr\u003e• Methods of testing of weathered samples (effect of weathering on material properties and testing methods of weathered specimens)\u003cbr\u003e\u003cbr\u003e• Weathering of polymers (data on 52 most important polymers, including mechanisms of degradation, effect of thermal history, characteristic changes in properties with graphical illustrations, and tables with numerical data)\u003cbr\u003e\u003cbr\u003e• Weathering of products (data on 42 groups of industrial products, including their required durability, lifetime expectation, relevant degradation mechanisms, and characteristic changes with graphical illustrations)\u003cbr\u003e\u003cbr\u003e• Effect of additives on weathering (12 groups of additives are discussed)\u003cbr\u003e\u003cbr\u003e• Effect of environmental stress cracking (parameters controlling ESC, mechanisms, methods of testing, and effect on materials)\u003cbr\u003e\u003cbr\u003e• Specific topics (suitability of weathered materials for recycling, interrelation between corrosion and weathering, and methods of study and prevention of deterioration of historical monuments made out of stone)\u003cbr\u003e\u003cbr\u003eThe above information is based on the thorough review of published papers, patents, and other relevant sources updated to the most recent data and information.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eIn addition to this book, 3 additional volumes contain supplementary information:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by Falkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThe first two books contain information relevant for protection of materials against biological and environmental stress factors. The Atlas of Material Damage has focus on structure and morphology of commercial materials and methods of damage prevention by tailoring morphology.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis set of monographic sources was prepared for research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products, and students who want to apply their knowledge to real materials. The books are invaluable for regulating agencies and patent and litigating attorneys. \u003cbr\u003e\u003cbr\u003eHandbook of Material Weathering is now used in about 100 countries, although frequently old editions (as seen from citations) are still in use, which do not contain up-to-date information. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe first edition of this book was published by ChemTec Publishing in 1990. The book had 18 chapters and 518 pages filled with the most up-to-date information on the subject of material weathering available in 1990.\u003cbr\u003e\u003cbr\u003eConsidering the size of the book and typesetting, the present edition is at least 3 times larger, in spite of the fact that two chapters were omitted from the fourth edition: Chapter 17. Stabilization and Stabilizers and Chapter 18. Biodegradation. Even without these two chapters the present 5th edition is larger than the previous edition. The reason is quite obvious − the field is systematically growing with new data, methods, and discoveries happening every day.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe reasons for eliminating the two chapters are as follows:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• If these two chapters would still be included in the book, the book would need to have two volumes which makes a book more difficult to use (separate table of contents and indices).\u003cbr\u003e\u003cbr\u003e• In anticipation of the need for specialized monographic sources, the two chapters mentioned above were not updated in the previous edition, so information was already lacking novelty.\u003cbr\u003e\u003cbr\u003e• Short chapters can only present brief review of the subject, whereas in applications detailed information is needed\u003cbr\u003e\u003cbr\u003e• Two handbooks were published by ChemTec Publishing on the subjects of the omitted chapters:\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by \u003cbr\u003e\u003cbr\u003eFalkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eThese two books give much broader and comprehensive information, such as it is required today, especially considering rapid changes which occurred recently because of health and safety concerns (biostabilization) and new discoveries (UV stabilization).\u003cbr\u003e\u003cbr\u003eIn addition, to present volume and the above two books, there is also a new book:\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThis book was written to emphasize importance of the material structure in photodegradation and photostabilization and also to account for the morphological changes which occur when materials degrade. This addition makes narrative of material degradation more comprehensive, showing new ways to deal with unstable materials.\u003cbr\u003e\u003cbr\u003eI hope that the information provided in these four books will help readers to advance their studies on particular subjects of their research and that the results of these studies will be implemented in the future editions of these books, since we try to report current developments to foster future discoveries. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Photophysics \u003cbr\u003e1.1 Nature of radiation \u003cbr\u003e1.1.1 Radiative energy \u003cbr\u003e1.1.2 Radiation intensity \u003cbr\u003e1.1.3 Radiation incidence \u003cbr\u003e1.2 Absorption of radiation by materials \u003cbr\u003e1.2.1 General principles \u003cbr\u003e1.3 Fate and utilization of absorbed energy \u003cbr\u003e1.3.1 Deactivation \u003cbr\u003e1.3.2 Intramolecular energy transfer \u003cbr\u003e1.3.3 Intermolecular energy transfer \u003cbr\u003e1.3.4 Luminescence \u003cbr\u003e1.4 Radiative processes involving dimers \u003cbr\u003e1.5 Modeling and photophysical data \u003cbr\u003eReferences \u003cbr\u003e2 Photochemistry \u003cbr\u003e2.1 Typical routes of photochemical reactions \u003cbr\u003e2.1.1 Photodissociation \u003cbr\u003e2.1.2 Photooxidation \u003cbr\u003e2.1.3 Peroxide and hydroperoxide conversions \u003cbr\u003e2.1.4 Norrish type I and II reactions \u003cbr\u003e2.1.5 Photo-Fries rearrangement \u003cbr\u003e2.1.6 Photo-Fenton \u003cbr\u003e2.1.7 Photosubstitution \u003cbr\u003e2.1.8 Photoaddition \u003cbr\u003e2.1.9 Photoelimination \u003cbr\u003e2.1.10 Photodimerization \u003cbr\u003e2.1.11 Photocondensation \u003cbr\u003e2.1.12 Photoisomerization \u003cbr\u003e2.2 Photochemical reactivity and quantum yield \u003cbr\u003e2.3 Excitation of excited state \u003cbr\u003e2.4 Parameters of photochemical reactions \u003cbr\u003e2.6 Quenchers and photosensitizers \u003cbr\u003eReferences \u003cbr\u003e3 Parameters of Exposure \u003cbr\u003e3.1 Radiation \u003cbr\u003e3.1.1 The source \u003cbr\u003e3.1.2 Solar radiative emission \u003cbr\u003e3.1.3 Effect of orbital variations on energy supply \u003cbr\u003e3.1.4 Interplanetary and near Earth space \u003cbr\u003e3.1.5 Stratosphere \u003cbr\u003e3.1.6 Troposphere \u003cbr\u003e3.2 Temperature \u003cbr\u003e3.3 Water \u003cbr\u003e3.4 Atmosphere composition \u003cbr\u003e3.5 Pollutants \u003cbr\u003e3.5.1 Nitrogen compounds \u003cbr\u003e3.5.2 Oxygen species \u003cbr\u003e3.5.3 Hydrogen species \u003cbr\u003e3.5.4 Carbon oxides \u003cbr\u003e3.5.5 Sulfur-containing components \u003cbr\u003e3.5.6 Chlorine-containing components \u003cbr\u003e3.5.7 Particulate materials \u003cbr\u003e3.6 Biological substances \u003cbr\u003e3.7 Water pollutants \u003cbr\u003e3.8 Stress \u003cbr\u003e3.7 Cooperative action of different parameters \u003cbr\u003eReferences \u003cbr\u003e4 Measurements in Assessment of Weathering Conditions \u003cbr\u003e4.1 Radiation \u003cbr\u003e4.1.1 Measuring equipment and methods of measurement \u003cbr\u003e4.1.2 Standards \u003cbr\u003e4.2 Sunshine duration \u003cbr\u003e4.3 Temperature \u003cbr\u003e4.4 Relative humidity \u003cbr\u003e4.5 Time of wetness \u003cbr\u003e4.5 Rain \u003cbr\u003e4.6 Pollutants \u003cbr\u003e4.6.1 Carbon dioxide \u003cbr\u003e4.6.2 Particulate matter \u003cbr\u003e4.6.3 Sulfur dioxide \u003cbr\u003e4.6.4 Nitrogen oxides \u003cbr\u003e4.6.5 Carbon monoxide \u003cbr\u003e4.6.6 Ozone \u003cbr\u003eReferences \u003cbr\u003e5 Climatic Conditions \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Radiation \u003cbr\u003e5.3 Sunshine duration \u003cbr\u003e5.4 Temperature \u003cbr\u003e5.5 Precipitation \u003cbr\u003e5.6 Relative humidity \u003cbr\u003e5.7 Wetness time \u003cbr\u003e5.8 Pollutants \u003cbr\u003e5.9 Surface soiling \u003cbr\u003eReferences \u003cbr\u003e6 Methods of Outdoor Exposure \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Climatic conditions and degradation rate \u003cbr\u003e6.3 Variability of weather conditions and its impact on the strategy in outdoor \u003cbr\u003eexposures \u003cbr\u003e6.4 Influence of specimen properties \u003cbr\u003e6.5 Typical methods of outdoor exposure \u003cbr\u003e6.5.1 Exposure sites \u003cbr\u003e6.5.2 Exposure racks \u003cbr\u003e6.5.3 Exposure of products and components \u003cbr\u003e6.6 Other parameters of exposure \u003cbr\u003e6.7 Relevant standards \u003cbr\u003eReferences \u003cbr\u003e7 Laboratory Degradation Studies \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Light sources \u003cbr\u003e7.3 Filters \u003cbr\u003e7.4 Radiation: delivery, monitoring and control \u003cbr\u003e7.5 Temperature control \u003cbr\u003e7.6 Humidity control \u003cbr\u003e7.7 Specimen spraying \u003cbr\u003e7.8 Specimen racks and holders \u003cbr\u003e7.9 Weathering equipment \u003cbr\u003e7.10 Correlation between different devices \u003cbr\u003e7.11 Pollutants \u003cbr\u003e7.12 Precision of studies \u003cbr\u003eReferences \u003cbr\u003e8 Weathering Cycles \u003cbr\u003eReferences \u003cbr\u003e9 Sample Preparation \u003cbr\u003eReferences \u003cbr\u003e10 Weathering Data Interpretation. Lifetime Prediction \u003cbr\u003eReferences \u003cbr\u003e11 Artificial Weathering Versus Natural Exposure \u003cbr\u003eReferences \u003cbr\u003e12 Effect of Weathering on Material Properties \u003cbr\u003e12.1 Mass loss \u003cbr\u003e12.2 Depth of degradation \u003cbr\u003e12.3 Mechanical properties \u003cbr\u003e12.4 Changes of color and optical properties \u003cbr\u003e12.5 Surface changes \u003cbr\u003e12.6 Molecular weight \u003cbr\u003e12.7 Chemical composition of surface and bulk \u003cbr\u003e12.8 Morphology and structure of surface layers \u003cbr\u003e12.9 Glass transition temperature \u003cbr\u003e12.10 Self-healing \u003cbr\u003eReferences \u003cbr\u003e13 Testing Methods of Weathered Specimen \u003cbr\u003e13.1 Visual evaluation \u003cbr\u003e13.2 Microscopy \u003cbr\u003e13.3 Imaging techniques \u003cbr\u003e13.4 Gloss \u003cbr\u003e13.5 Color changes \u003cbr\u003e13.6 Visible spectrophotometry \u003cbr\u003e13.7 UV spectrophotometry \u003cbr\u003e13.8 Infrared spectrophotometry \u003cbr\u003e13.9 Near infrared spectroscopy \u003cbr\u003e13.10 Raman spectroscopy \u003cbr\u003e13.11 Nuclear magnetic resonance \u003cbr\u003e13.12 Electron spin resonance \u003cbr\u003e13.13 Mass spectrometry \u003cbr\u003e13.14 Positron annihilation lifetime spectroscopy \u003cbr\u003e13.15 Chemiluminescence, fluorescence, and phosphorescence \u003cbr\u003e13.16 Atomic absorption spectroscopy \u003cbr\u003e13.17 WAXS and SAXS \u003cbr\u003e13.18 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e13.19 X-ray microtomography \u003cbr\u003e13.20 Mass change \u003cbr\u003e13.21 Density \u003cbr\u003e13.22 Contact angle \u003cbr\u003e13.23 Diffusion of gases and water transport in polymer \u003cbr\u003e13.24 Electrical properties \u003cbr\u003e13.25 Ultrasonic measurements \u003cbr\u003e13.26 Thermal analysis \u003cbr\u003e13.27 Rheological properties of materials \u003cbr\u003e13.28 Other physical parameters \u003cbr\u003e13.29 Tensile strength \u003cbr\u003e13.30 Elongation \u003cbr\u003e13.31 Flexural strength \u003cbr\u003e13.32 Impact strength \u003cbr\u003e13.33 Creep and constant strain tests \u003cbr\u003e13.34 Residual stress \u003cbr\u003e13.35 Scratch and mar resistance \u003cbr\u003e13.36 Other mechanical properties \u003cbr\u003e13.37 Surface roughness \u003cbr\u003e13.38 Molecular weight \u003cbr\u003e13.39 Gas and liquid chromatography \u003cbr\u003e13.40 Titrimetry \u003cbr\u003e13.41 Dehydrochlorination rate \u003cbr\u003e13.42 Gel fraction \u003cbr\u003e13.43 Oxygen uptake \u003cbr\u003e13.44 Water absorption, porosity \u003cbr\u003e13.45 Microorganism growth test \u003cbr\u003e13.46 Environmental stress cracking resistance \u003cbr\u003eReferences \u003cbr\u003e14 Data on Specific Polymers \u003cbr\u003e14.1 Acrylonitrile butadiene styrene, ABS \u003cbr\u003e14.2 Acrylonitrile styrene acrylate, ASA \u003cbr\u003e14.3 Alkyd resins \u003cbr\u003e14.4 Acrylic resins \u003cbr\u003e14.5 Cellulose \u003cbr\u003e14.6 Chitosan \u003cbr\u003e14.7 Epoxy resins \u003cbr\u003e14.8 Ethylene propylene rubber, EPR \u003cbr\u003e14.9 Ethylene vinyl acetate copolymer, EVAc \u003cbr\u003e14.10 Ethylene propylene diene monomer, EPDM \u003cbr\u003e14.11 Fluoropolymers \u003cbr\u003e14.12 Melamine resins \u003cbr\u003e14.13 Phenoxy resins \u003cbr\u003e14.14 Polyacrylamide \u003cbr\u003e14.15 Polyacrylonitrile \u003cbr\u003e14.16 Polyamides \u003cbr\u003e14.17 Polyaniline \u003cbr\u003e14.18 Polycarbonates \u003cbr\u003e14.19 Polyesters \u003cbr\u003e14.20 Polyethylene \u003cbr\u003e14.21 Polyethylene, chlorinated \u003cbr\u003e14.22 Poly(ethylene glycol) \u003cbr\u003e14.23 Polyfluorene \u003cbr\u003e14.24 Polyimides \u003cbr\u003e14.25 Poly(lactic acid) \u003cbr\u003e14.26 Polymethylmethacrylate \u003cbr\u003e14.27 Polyoxyethylene \u003cbr\u003e14.28 Polyoxymethylene \u003cbr\u003e14.29 Poly(phenylene oxide) \u003cbr\u003e14.30 Poly(phenylene sulfide) \u003cbr\u003e14.31 Poly(p-phenylene terephthalamide) \u003cbr\u003e14.32 Poly(p-phenylene vinylene) \u003cbr\u003e14.33 Polypropylene \u003cbr\u003e14.34 Polystyrenes \u003cbr\u003e14.35 Polysulfones \u003cbr\u003e14.36 Polytetrafluoroethylene \u003cbr\u003e14.37 Polythiophene \u003cbr\u003e14.38 Polyurethanes \u003cbr\u003e14.39 Polyvinylalcohol \u003cbr\u003e14.40 Polyvinylchloride \u003cbr\u003e14.41 Poly(vinylidene fluoride \u003cbr\u003e14.42 Poly(vinyl methyl ether) \u003cbr\u003e14.43 Styrene acrylonitrile copolymer \u003cbr\u003e14.44 Silicones \u003cbr\u003e14.45 Polymer blends \u003cbr\u003e14.46 Rubbers \u003cbr\u003e14.46.1 Natural rubber \u003cbr\u003e14.46.1 Polybutadiene \u003cbr\u003e14.46.2 Polychloroprene \u003cbr\u003e14.46.3 Polyisoprene \u003cbr\u003e14.46.4 Polyisobutylene \u003cbr\u003e14.46.5 Styrene butadiene rubber \u003cbr\u003e14.46.6 Styrene butadiene styrene rubber \u003cbr\u003eReferences \u003cbr\u003e15 Effect of Additives on Weathering \u003cbr\u003e15.1 Fillers and reinforcing fibers \u003cbr\u003e15.2 Pigments \u003cbr\u003e15.3 Plasticizers \u003cbr\u003e15.4 Solvents and diluents \u003cbr\u003e15.5 Flame retardants \u003cbr\u003e15.6 Impact modifiers \u003cbr\u003e15.7 Thermal stabilizers \u003cbr\u003e15.8 Antioxidants \u003cbr\u003e15.9 Antimicrobial additives \u003cbr\u003e15.10 Curatives, crosslinkers, initiators \u003cbr\u003e15.11 Catalysts \u003cbr\u003e15.12 Compatibilizer \u003cbr\u003e15.12 Impurities \u003cbr\u003e15.13 Summary \u003cbr\u003eReferences \u003cbr\u003e16 Weathering of Compounded Products \u003cbr\u003e16.1 Adhesives \u003cbr\u003e16.2 Aerospace \u003cbr\u003e16.3 Agriculture \u003cbr\u003e16.4 Appliances \u003cbr\u003e16.5 Automotive parts \u003cbr\u003e16.6 Automotive coatings \u003cbr\u003e16.7 Coated fabrics \u003cbr\u003e16.8 Coil coated materials \u003cbr\u003e16.9 Composites \u003cbr\u003e16.10 Concrete \u003cbr\u003e16.11 Conservation \u003cbr\u003e16.12 Construction materials \u003cbr\u003e16.13 Cosmetics \u003cbr\u003e16.14 Dental materials \u003cbr\u003e16.15 Electronics and electrical materials \u003cbr\u003e16.16 Environmental pollutants \u003cbr\u003e16.17 Foams \u003cbr\u003e16.18 Food \u003cbr\u003e16.19 Gel coats \u003cbr\u003e16.20 Geosynthetics \u003cbr\u003e16.21 Glass and glazing materials \u003cbr\u003e16.22 Greenhouse film \u003cbr\u003e16.23 Hair \u003cbr\u003e16.24 Laminates \u003cbr\u003e16.25 Medical equipment and supplies \u003cbr\u003e16.26 Military applications \u003cbr\u003e16.27 Molded materials \u003cbr\u003e16.28 Packaging materials \u003cbr\u003e16.28.1 Bottles \u003cbr\u003e16.28.2 Containers \u003cbr\u003e16.28.3 Crates and trays \u003cbr\u003e16.28.4 Films \u003cbr\u003e16.29 Paints and coatings \u003cbr\u003e16.30 Pavements \u003cbr\u003e16.31 Pharmaceutical products \u003cbr\u003e16.32 Pipes and tubing \u003cbr\u003e16.33 Pulp and paper \u003cbr\u003e16.34 Roofing materials \u003cbr\u003e16.35 Sealants \u003cbr\u003e16.36 Sheet \u003cbr\u003e16.37 Siding \u003cbr\u003e16.38 Solar cells and collectors \u003cbr\u003e16.39 Textiles \u003cbr\u003e16.40 Windows \u003cbr\u003e16.41 Wire and cable \u003cbr\u003e16.42 Wood \u003cbr\u003eReferences \u003cbr\u003e17 Recycling \u003cbr\u003e17.1 Effect of degradation on recycling \u003cbr\u003e17.2 Re-stabilization of material for recycling \u003cbr\u003e17.3 Multilayer materials \u003cbr\u003e17.4 Removable paint \u003cbr\u003e17.5 Chemical recycling \u003cbr\u003eReferences \u003cbr\u003e18 Environmental Stress Cracking \u003cbr\u003e18.1 Definitions \u003cbr\u003e18.2 Parameters controlling ESC \u003cbr\u003e18.2.1 Material composition \u003cbr\u003e18.2.2 Morphology and dimensions \u003cbr\u003e18.2.3 Processing and performance conditions \u003cbr\u003e18.2.4 Solubility parameters of solvents and polymers \u003cbr\u003e18.2.5 Diffusion \u003cbr\u003e18.2.6 Load and internal stress \u003cbr\u003e18.2.7 Time \u003cbr\u003e18.2.8 Temperature \u003cbr\u003e18.3 Mechanisms of environmental stress cracking \u003cbr\u003e18.4 Kinetics of environmental stress cracking \u003cbr\u003e18.5 Effect of ESC on material durability \u003cbr\u003e18.6 Methods of testing \u003cbr\u003eReferences \u003cbr\u003e19 Interrelation Between Corrosion and Weathering \u003cbr\u003eReferences \u003cbr\u003e20 Weathering of Stones \u003cbr\u003eReferences \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:40-04:00","created_at":"2017-06-22T21:13:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","best","book","degradation","degradation depth","environment","laboratory exposures","lifetime prediction","material","methods of measurement","methods of weathering","outdoor exposures","p-testing","polymer degradation","PVC degradation","sustainability of polymers materials","weathering","weathering cycles"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371204,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Material Weathering, 5th Edition","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-62-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-62-1.jpg?v=1499720009"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-62-1.jpg?v=1499720009","options":["Title"],"media":[{"alt":null,"id":355727147101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-62-1.jpg?v=1499720009"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-62-1.jpg?v=1499720009","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-62-1 \u003cbr\u003e\u003cbr\u003e5th Edition\u003cbr\u003ePages: 826\u003cbr\u003eFigures: 795\u003cbr\u003eTables: 64\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 5th edition of Handbook of Material Weathering contains systematic updates of knowledge generated in more than last 25 years when the 1st edition was prepared. \u003cbr\u003e\u003cbr\u003eThe information required for professional use has been growing so rapidly that additional books had to be written to accommodate essential knowledge for implementation in technological processes used to manufacture products, which deteriorate on exposure to weathering stress factors.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThis edition contains 20 chapters, which can be divided into the following groups:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Theory (photophysics and photochemistry)\u003cbr\u003e\u003cbr\u003e• Stress factors (parameters of exposure, measurements in assessment of weathering conditions, and climatic conditions)\u003cbr\u003e\u003cbr\u003e• Methods of weathering (laboratory degradation studies, weathering cycles, sample preparation, weathering data interpretation, lifetime prediction, and artificial weathering versus natural exposure)\u003cbr\u003e\u003cbr\u003e• Methods of testing of weathered samples (effect of weathering on material properties and testing methods of weathered specimens)\u003cbr\u003e\u003cbr\u003e• Weathering of polymers (data on 52 most important polymers, including mechanisms of degradation, effect of thermal history, characteristic changes in properties with graphical illustrations, and tables with numerical data)\u003cbr\u003e\u003cbr\u003e• Weathering of products (data on 42 groups of industrial products, including their required durability, lifetime expectation, relevant degradation mechanisms, and characteristic changes with graphical illustrations)\u003cbr\u003e\u003cbr\u003e• Effect of additives on weathering (12 groups of additives are discussed)\u003cbr\u003e\u003cbr\u003e• Effect of environmental stress cracking (parameters controlling ESC, mechanisms, methods of testing, and effect on materials)\u003cbr\u003e\u003cbr\u003e• Specific topics (suitability of weathered materials for recycling, interrelation between corrosion and weathering, and methods of study and prevention of deterioration of historical monuments made out of stone)\u003cbr\u003e\u003cbr\u003eThe above information is based on the thorough review of published papers, patents, and other relevant sources updated to the most recent data and information.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eIn addition to this book, 3 additional volumes contain supplementary information:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by Falkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThe first two books contain information relevant for protection of materials against biological and environmental stress factors. The Atlas of Material Damage has focus on structure and morphology of commercial materials and methods of damage prevention by tailoring morphology.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis set of monographic sources was prepared for research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products, and students who want to apply their knowledge to real materials. The books are invaluable for regulating agencies and patent and litigating attorneys. \u003cbr\u003e\u003cbr\u003eHandbook of Material Weathering is now used in about 100 countries, although frequently old editions (as seen from citations) are still in use, which do not contain up-to-date information. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe first edition of this book was published by ChemTec Publishing in 1990. The book had 18 chapters and 518 pages filled with the most up-to-date information on the subject of material weathering available in 1990.\u003cbr\u003e\u003cbr\u003eConsidering the size of the book and typesetting, the present edition is at least 3 times larger, in spite of the fact that two chapters were omitted from the fourth edition: Chapter 17. Stabilization and Stabilizers and Chapter 18. Biodegradation. Even without these two chapters the present 5th edition is larger than the previous edition. The reason is quite obvious − the field is systematically growing with new data, methods, and discoveries happening every day.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe reasons for eliminating the two chapters are as follows:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• If these two chapters would still be included in the book, the book would need to have two volumes which makes a book more difficult to use (separate table of contents and indices).\u003cbr\u003e\u003cbr\u003e• In anticipation of the need for specialized monographic sources, the two chapters mentioned above were not updated in the previous edition, so information was already lacking novelty.\u003cbr\u003e\u003cbr\u003e• Short chapters can only present brief review of the subject, whereas in applications detailed information is needed\u003cbr\u003e\u003cbr\u003e• Two handbooks were published by ChemTec Publishing on the subjects of the omitted chapters:\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by \u003cbr\u003e\u003cbr\u003eFalkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eThese two books give much broader and comprehensive information, such as it is required today, especially considering rapid changes which occurred recently because of health and safety concerns (biostabilization) and new discoveries (UV stabilization).\u003cbr\u003e\u003cbr\u003eIn addition, to present volume and the above two books, there is also a new book:\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThis book was written to emphasize importance of the material structure in photodegradation and photostabilization and also to account for the morphological changes which occur when materials degrade. This addition makes narrative of material degradation more comprehensive, showing new ways to deal with unstable materials.\u003cbr\u003e\u003cbr\u003eI hope that the information provided in these four books will help readers to advance their studies on particular subjects of their research and that the results of these studies will be implemented in the future editions of these books, since we try to report current developments to foster future discoveries. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Photophysics \u003cbr\u003e1.1 Nature of radiation \u003cbr\u003e1.1.1 Radiative energy \u003cbr\u003e1.1.2 Radiation intensity \u003cbr\u003e1.1.3 Radiation incidence \u003cbr\u003e1.2 Absorption of radiation by materials \u003cbr\u003e1.2.1 General principles \u003cbr\u003e1.3 Fate and utilization of absorbed energy \u003cbr\u003e1.3.1 Deactivation \u003cbr\u003e1.3.2 Intramolecular energy transfer \u003cbr\u003e1.3.3 Intermolecular energy transfer \u003cbr\u003e1.3.4 Luminescence \u003cbr\u003e1.4 Radiative processes involving dimers \u003cbr\u003e1.5 Modeling and photophysical data \u003cbr\u003eReferences \u003cbr\u003e2 Photochemistry \u003cbr\u003e2.1 Typical routes of photochemical reactions \u003cbr\u003e2.1.1 Photodissociation \u003cbr\u003e2.1.2 Photooxidation \u003cbr\u003e2.1.3 Peroxide and hydroperoxide conversions \u003cbr\u003e2.1.4 Norrish type I and II reactions \u003cbr\u003e2.1.5 Photo-Fries rearrangement \u003cbr\u003e2.1.6 Photo-Fenton \u003cbr\u003e2.1.7 Photosubstitution \u003cbr\u003e2.1.8 Photoaddition \u003cbr\u003e2.1.9 Photoelimination \u003cbr\u003e2.1.10 Photodimerization \u003cbr\u003e2.1.11 Photocondensation \u003cbr\u003e2.1.12 Photoisomerization \u003cbr\u003e2.2 Photochemical reactivity and quantum yield \u003cbr\u003e2.3 Excitation of excited state \u003cbr\u003e2.4 Parameters of photochemical reactions \u003cbr\u003e2.6 Quenchers and photosensitizers \u003cbr\u003eReferences \u003cbr\u003e3 Parameters of Exposure \u003cbr\u003e3.1 Radiation \u003cbr\u003e3.1.1 The source \u003cbr\u003e3.1.2 Solar radiative emission \u003cbr\u003e3.1.3 Effect of orbital variations on energy supply \u003cbr\u003e3.1.4 Interplanetary and near Earth space \u003cbr\u003e3.1.5 Stratosphere \u003cbr\u003e3.1.6 Troposphere \u003cbr\u003e3.2 Temperature \u003cbr\u003e3.3 Water \u003cbr\u003e3.4 Atmosphere composition \u003cbr\u003e3.5 Pollutants \u003cbr\u003e3.5.1 Nitrogen compounds \u003cbr\u003e3.5.2 Oxygen species \u003cbr\u003e3.5.3 Hydrogen species \u003cbr\u003e3.5.4 Carbon oxides \u003cbr\u003e3.5.5 Sulfur-containing components \u003cbr\u003e3.5.6 Chlorine-containing components \u003cbr\u003e3.5.7 Particulate materials \u003cbr\u003e3.6 Biological substances \u003cbr\u003e3.7 Water pollutants \u003cbr\u003e3.8 Stress \u003cbr\u003e3.7 Cooperative action of different parameters \u003cbr\u003eReferences \u003cbr\u003e4 Measurements in Assessment of Weathering Conditions \u003cbr\u003e4.1 Radiation \u003cbr\u003e4.1.1 Measuring equipment and methods of measurement \u003cbr\u003e4.1.2 Standards \u003cbr\u003e4.2 Sunshine duration \u003cbr\u003e4.3 Temperature \u003cbr\u003e4.4 Relative humidity \u003cbr\u003e4.5 Time of wetness \u003cbr\u003e4.5 Rain \u003cbr\u003e4.6 Pollutants \u003cbr\u003e4.6.1 Carbon dioxide \u003cbr\u003e4.6.2 Particulate matter \u003cbr\u003e4.6.3 Sulfur dioxide \u003cbr\u003e4.6.4 Nitrogen oxides \u003cbr\u003e4.6.5 Carbon monoxide \u003cbr\u003e4.6.6 Ozone \u003cbr\u003eReferences \u003cbr\u003e5 Climatic Conditions \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Radiation \u003cbr\u003e5.3 Sunshine duration \u003cbr\u003e5.4 Temperature \u003cbr\u003e5.5 Precipitation \u003cbr\u003e5.6 Relative humidity \u003cbr\u003e5.7 Wetness time \u003cbr\u003e5.8 Pollutants \u003cbr\u003e5.9 Surface soiling \u003cbr\u003eReferences \u003cbr\u003e6 Methods of Outdoor Exposure \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Climatic conditions and degradation rate \u003cbr\u003e6.3 Variability of weather conditions and its impact on the strategy in outdoor \u003cbr\u003eexposures \u003cbr\u003e6.4 Influence of specimen properties \u003cbr\u003e6.5 Typical methods of outdoor exposure \u003cbr\u003e6.5.1 Exposure sites \u003cbr\u003e6.5.2 Exposure racks \u003cbr\u003e6.5.3 Exposure of products and components \u003cbr\u003e6.6 Other parameters of exposure \u003cbr\u003e6.7 Relevant standards \u003cbr\u003eReferences \u003cbr\u003e7 Laboratory Degradation Studies \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Light sources \u003cbr\u003e7.3 Filters \u003cbr\u003e7.4 Radiation: delivery, monitoring and control \u003cbr\u003e7.5 Temperature control \u003cbr\u003e7.6 Humidity control \u003cbr\u003e7.7 Specimen spraying \u003cbr\u003e7.8 Specimen racks and holders \u003cbr\u003e7.9 Weathering equipment \u003cbr\u003e7.10 Correlation between different devices \u003cbr\u003e7.11 Pollutants \u003cbr\u003e7.12 Precision of studies \u003cbr\u003eReferences \u003cbr\u003e8 Weathering Cycles \u003cbr\u003eReferences \u003cbr\u003e9 Sample Preparation \u003cbr\u003eReferences \u003cbr\u003e10 Weathering Data Interpretation. Lifetime Prediction \u003cbr\u003eReferences \u003cbr\u003e11 Artificial Weathering Versus Natural Exposure \u003cbr\u003eReferences \u003cbr\u003e12 Effect of Weathering on Material Properties \u003cbr\u003e12.1 Mass loss \u003cbr\u003e12.2 Depth of degradation \u003cbr\u003e12.3 Mechanical properties \u003cbr\u003e12.4 Changes of color and optical properties \u003cbr\u003e12.5 Surface changes \u003cbr\u003e12.6 Molecular weight \u003cbr\u003e12.7 Chemical composition of surface and bulk \u003cbr\u003e12.8 Morphology and structure of surface layers \u003cbr\u003e12.9 Glass transition temperature \u003cbr\u003e12.10 Self-healing \u003cbr\u003eReferences \u003cbr\u003e13 Testing Methods of Weathered Specimen \u003cbr\u003e13.1 Visual evaluation \u003cbr\u003e13.2 Microscopy \u003cbr\u003e13.3 Imaging techniques \u003cbr\u003e13.4 Gloss \u003cbr\u003e13.5 Color changes \u003cbr\u003e13.6 Visible spectrophotometry \u003cbr\u003e13.7 UV spectrophotometry \u003cbr\u003e13.8 Infrared spectrophotometry \u003cbr\u003e13.9 Near infrared spectroscopy \u003cbr\u003e13.10 Raman spectroscopy \u003cbr\u003e13.11 Nuclear magnetic resonance \u003cbr\u003e13.12 Electron spin resonance \u003cbr\u003e13.13 Mass spectrometry \u003cbr\u003e13.14 Positron annihilation lifetime spectroscopy \u003cbr\u003e13.15 Chemiluminescence, fluorescence, and phosphorescence \u003cbr\u003e13.16 Atomic absorption spectroscopy \u003cbr\u003e13.17 WAXS and SAXS \u003cbr\u003e13.18 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e13.19 X-ray microtomography \u003cbr\u003e13.20 Mass change \u003cbr\u003e13.21 Density \u003cbr\u003e13.22 Contact angle \u003cbr\u003e13.23 Diffusion of gases and water transport in polymer \u003cbr\u003e13.24 Electrical properties \u003cbr\u003e13.25 Ultrasonic measurements \u003cbr\u003e13.26 Thermal analysis \u003cbr\u003e13.27 Rheological properties of materials \u003cbr\u003e13.28 Other physical parameters \u003cbr\u003e13.29 Tensile strength \u003cbr\u003e13.30 Elongation \u003cbr\u003e13.31 Flexural strength \u003cbr\u003e13.32 Impact strength \u003cbr\u003e13.33 Creep and constant strain tests \u003cbr\u003e13.34 Residual stress \u003cbr\u003e13.35 Scratch and mar resistance \u003cbr\u003e13.36 Other mechanical properties \u003cbr\u003e13.37 Surface roughness \u003cbr\u003e13.38 Molecular weight \u003cbr\u003e13.39 Gas and liquid chromatography \u003cbr\u003e13.40 Titrimetry \u003cbr\u003e13.41 Dehydrochlorination rate \u003cbr\u003e13.42 Gel fraction \u003cbr\u003e13.43 Oxygen uptake \u003cbr\u003e13.44 Water absorption, porosity \u003cbr\u003e13.45 Microorganism growth test \u003cbr\u003e13.46 Environmental stress cracking resistance \u003cbr\u003eReferences \u003cbr\u003e14 Data on Specific Polymers \u003cbr\u003e14.1 Acrylonitrile butadiene styrene, ABS \u003cbr\u003e14.2 Acrylonitrile styrene acrylate, ASA \u003cbr\u003e14.3 Alkyd resins \u003cbr\u003e14.4 Acrylic resins \u003cbr\u003e14.5 Cellulose \u003cbr\u003e14.6 Chitosan \u003cbr\u003e14.7 Epoxy resins \u003cbr\u003e14.8 Ethylene propylene rubber, EPR \u003cbr\u003e14.9 Ethylene vinyl acetate copolymer, EVAc \u003cbr\u003e14.10 Ethylene propylene diene monomer, EPDM \u003cbr\u003e14.11 Fluoropolymers \u003cbr\u003e14.12 Melamine resins \u003cbr\u003e14.13 Phenoxy resins \u003cbr\u003e14.14 Polyacrylamide \u003cbr\u003e14.15 Polyacrylonitrile \u003cbr\u003e14.16 Polyamides \u003cbr\u003e14.17 Polyaniline \u003cbr\u003e14.18 Polycarbonates \u003cbr\u003e14.19 Polyesters \u003cbr\u003e14.20 Polyethylene \u003cbr\u003e14.21 Polyethylene, chlorinated \u003cbr\u003e14.22 Poly(ethylene glycol) \u003cbr\u003e14.23 Polyfluorene \u003cbr\u003e14.24 Polyimides \u003cbr\u003e14.25 Poly(lactic acid) \u003cbr\u003e14.26 Polymethylmethacrylate \u003cbr\u003e14.27 Polyoxyethylene \u003cbr\u003e14.28 Polyoxymethylene \u003cbr\u003e14.29 Poly(phenylene oxide) \u003cbr\u003e14.30 Poly(phenylene sulfide) \u003cbr\u003e14.31 Poly(p-phenylene terephthalamide) \u003cbr\u003e14.32 Poly(p-phenylene vinylene) \u003cbr\u003e14.33 Polypropylene \u003cbr\u003e14.34 Polystyrenes \u003cbr\u003e14.35 Polysulfones \u003cbr\u003e14.36 Polytetrafluoroethylene \u003cbr\u003e14.37 Polythiophene \u003cbr\u003e14.38 Polyurethanes \u003cbr\u003e14.39 Polyvinylalcohol \u003cbr\u003e14.40 Polyvinylchloride \u003cbr\u003e14.41 Poly(vinylidene fluoride \u003cbr\u003e14.42 Poly(vinyl methyl ether) \u003cbr\u003e14.43 Styrene acrylonitrile copolymer \u003cbr\u003e14.44 Silicones \u003cbr\u003e14.45 Polymer blends \u003cbr\u003e14.46 Rubbers \u003cbr\u003e14.46.1 Natural rubber \u003cbr\u003e14.46.1 Polybutadiene \u003cbr\u003e14.46.2 Polychloroprene \u003cbr\u003e14.46.3 Polyisoprene \u003cbr\u003e14.46.4 Polyisobutylene \u003cbr\u003e14.46.5 Styrene butadiene rubber \u003cbr\u003e14.46.6 Styrene butadiene styrene rubber \u003cbr\u003eReferences \u003cbr\u003e15 Effect of Additives on Weathering \u003cbr\u003e15.1 Fillers and reinforcing fibers \u003cbr\u003e15.2 Pigments \u003cbr\u003e15.3 Plasticizers \u003cbr\u003e15.4 Solvents and diluents \u003cbr\u003e15.5 Flame retardants \u003cbr\u003e15.6 Impact modifiers \u003cbr\u003e15.7 Thermal stabilizers \u003cbr\u003e15.8 Antioxidants \u003cbr\u003e15.9 Antimicrobial additives \u003cbr\u003e15.10 Curatives, crosslinkers, initiators \u003cbr\u003e15.11 Catalysts \u003cbr\u003e15.12 Compatibilizer \u003cbr\u003e15.12 Impurities \u003cbr\u003e15.13 Summary \u003cbr\u003eReferences \u003cbr\u003e16 Weathering of Compounded Products \u003cbr\u003e16.1 Adhesives \u003cbr\u003e16.2 Aerospace \u003cbr\u003e16.3 Agriculture \u003cbr\u003e16.4 Appliances \u003cbr\u003e16.5 Automotive parts \u003cbr\u003e16.6 Automotive coatings \u003cbr\u003e16.7 Coated fabrics \u003cbr\u003e16.8 Coil coated materials \u003cbr\u003e16.9 Composites \u003cbr\u003e16.10 Concrete \u003cbr\u003e16.11 Conservation \u003cbr\u003e16.12 Construction materials \u003cbr\u003e16.13 Cosmetics \u003cbr\u003e16.14 Dental materials \u003cbr\u003e16.15 Electronics and electrical materials \u003cbr\u003e16.16 Environmental pollutants \u003cbr\u003e16.17 Foams \u003cbr\u003e16.18 Food \u003cbr\u003e16.19 Gel coats \u003cbr\u003e16.20 Geosynthetics \u003cbr\u003e16.21 Glass and glazing materials \u003cbr\u003e16.22 Greenhouse film \u003cbr\u003e16.23 Hair \u003cbr\u003e16.24 Laminates \u003cbr\u003e16.25 Medical equipment and supplies \u003cbr\u003e16.26 Military applications \u003cbr\u003e16.27 Molded materials \u003cbr\u003e16.28 Packaging materials \u003cbr\u003e16.28.1 Bottles \u003cbr\u003e16.28.2 Containers \u003cbr\u003e16.28.3 Crates and trays \u003cbr\u003e16.28.4 Films \u003cbr\u003e16.29 Paints and coatings \u003cbr\u003e16.30 Pavements \u003cbr\u003e16.31 Pharmaceutical products \u003cbr\u003e16.32 Pipes and tubing \u003cbr\u003e16.33 Pulp and paper \u003cbr\u003e16.34 Roofing materials \u003cbr\u003e16.35 Sealants \u003cbr\u003e16.36 Sheet \u003cbr\u003e16.37 Siding \u003cbr\u003e16.38 Solar cells and collectors \u003cbr\u003e16.39 Textiles \u003cbr\u003e16.40 Windows \u003cbr\u003e16.41 Wire and cable \u003cbr\u003e16.42 Wood \u003cbr\u003eReferences \u003cbr\u003e17 Recycling \u003cbr\u003e17.1 Effect of degradation on recycling \u003cbr\u003e17.2 Re-stabilization of material for recycling \u003cbr\u003e17.3 Multilayer materials \u003cbr\u003e17.4 Removable paint \u003cbr\u003e17.5 Chemical recycling \u003cbr\u003eReferences \u003cbr\u003e18 Environmental Stress Cracking \u003cbr\u003e18.1 Definitions \u003cbr\u003e18.2 Parameters controlling ESC \u003cbr\u003e18.2.1 Material composition \u003cbr\u003e18.2.2 Morphology and dimensions \u003cbr\u003e18.2.3 Processing and performance conditions \u003cbr\u003e18.2.4 Solubility parameters of solvents and polymers \u003cbr\u003e18.2.5 Diffusion \u003cbr\u003e18.2.6 Load and internal stress \u003cbr\u003e18.2.7 Time \u003cbr\u003e18.2.8 Temperature \u003cbr\u003e18.3 Mechanisms of environmental stress cracking \u003cbr\u003e18.4 Kinetics of environmental stress cracking \u003cbr\u003e18.5 Effect of ESC on material durability \u003cbr\u003e18.6 Methods of testing \u003cbr\u003eReferences \u003cbr\u003e19 Interrelation Between Corrosion and Weathering \u003cbr\u003eReferences \u003cbr\u003e20 Weathering of Stones \u003cbr\u003eReferences \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymers
$395.00
{"id":11242220932,"title":"Handbook of Polymers","handle":"978-1-895198-47-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:44:36-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","best","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","physical properties","polymeric materials","processing","structure","synthesis","toxicity","weather stability"],"price":39500,"price_min":39500,"price_max":39500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372932,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers","public_title":null,"options":["Default Title"],"price":39500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-47-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-47-8.jpg?v=1499471588"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-47-8.jpg?v=1499471588","options":["Title"],"media":[{"alt":null,"id":356336173149,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-47-8.jpg?v=1499471588"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-895198-47-8.jpg?v=1499471588","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
newsletter
Subscribe for the latest publications and offers.
Who We Are?
ChemTec Publishing contributes to the progress and the application of polymers, plastics, and rubber by delivering the most comprehensive information that fosters advancement in research and application. Our customers work in government, scientific societies, industry, and universities in over 70 countries and we serve them with innovative literature and the most modern techniques for information retrieval such as expertly organized books, searchable CD-ROM products, property modeling software, and on-line editions that are part of large library collections.
