- Grid List
Filter
Addcon World 2000
$177.00
{"id":11242235652,"title":"Addcon World 2000","handle":"978-1-85957-242-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-242-9 \u003cbr\u003e\u003cbr\u003ePublished: 2000\u003cbr\u003ePages 168\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 6th successful Addcon World conference discussed the threats, opportunities, and trends in the additives business today. New products and processes were also revealed along with a discussion of legislation and its impact on the additives business. Addcon World conferences are specifically targeted to the plastics additives industry and have been successfully run by Rapra Technology Limited for the past 5 years. \u003cbr\u003e\u003cbr\u003eThe papers presented at this year’s conference will appeal to suppliers of additives, compounders and end-users along with people who want to learn how to use additives\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eFlexible Vinyl Medical Products: Discussion about the Extraction Characteristics of Various Plasticizers\u003cbr\u003eRichard C. Adams, BP Amoco Chemicals, USA \u003cbr\u003eBenzoate Plasticizer for Reducing Plastisol Viscosity and Fusion Temperature\u003cbr\u003eTom Bohnert, B. Stanhope, K. Gruszecki, S. Pitman, V. Elsworth, Velsicol Chemical Corporation, USA, and Velsicol Chemical Limited, UK \u003cbr\u003e\u003cbr\u003eDetermination of Phenolic Antioxidant Stabilizers in PP and HDPE by Means of an Oxidative Model Reaction\u003cbr\u003eE. B. Zeinalov 1 , Hartmut F. Schroeder 2* and H. Bahr 2 , 1 Academy of Sciences of Azerbaijan, Institute of Petrochemical Processes (IPCPAcS), Baku, 2 Federal Institute for Materials Research and Testing (BAM), Germany \u003cbr\u003e\u003cbr\u003eAchieving More Value From Additives Via New Physical Forms\u003cbr\u003eCorrado Callierotti 1 , Luciano Pallini 1 , Giovanni Sandre 1 , Robert Lee 2 , Ming Wu 2 , Klaus Keck-Antoine 3 \u0026amp; Brian Johnson 3 , 1 Great Lakes Manufacturing Italia, Italy, 2 Great Lakes Chemical Corporation, USA, 3 Great Lakes Technology Belgium, Belgium \u003cbr\u003e\u003cbr\u003eStabilizer Package Development - Importance of the Test Criteria Selection\u003cbr\u003eJán Malík and Isolde Bachert, Technical Service Polymer Additives, Clariant Huningue SA, France \u003cbr\u003eThe Impact of Environmental Issues on the Growth of Plastics Additives\u003cbr\u003eThomas Galvanek, Fred Gastrock and Louis N. Kattas, BRG Townsend Inc., USA \u003cbr\u003eEvaluation of Stabilizer Performance in Polymers Using Chemiluminescence\u003cbr\u003eNorman C. Billingham, 1 Peter Fearon, 1 David J. Whiteman, Niall Marshall 2 and Stephen P. Bigger 3 , 1 School of Chemistry, Physics and Environmental Science, University of Sussex, UK, 2 Polifin Limited, South Africa, 3 School of Life Sciences and Technology, Victoria University, Australia \u003cbr\u003e\u003cbr\u003ePolymer Additives Based on Renewable Materials; Opportunities and Trends\u003cbr\u003eJ. van Haveren, Agrotechnological Research Institute, The Netherlands\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eCriteria and Examples of Optimal Choice of Flame Retardants\u003cbr\u003eAchim Litzenburger, Eurobrom BV, Netherlands \u003cbr\u003eNew Metal Hydroxides with Improved Performance for Flame Retardancy in Plastics\u003cbr\u003eRené Herbiet, alusuisse martinswerk gmbh, Germany \u003cbr\u003eProductivity Gains in BOPP Film Production Through Stabilization with Lactone Technology\u003cbr\u003eDoris Eisermann, Ciba Specialty Chemicals Limited, Switzerland\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eThe Role of Market Research in the Additives Business\u003cbr\u003eRichard Beswick, bms AG, Switzerland\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:30-04:00","created_at":"2017-06-22T21:14:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","additives","air monitoring","book","electronics","environment","health","p-structural","plastic","plastics","polymer","rubber","safety","stabilizers"],"price":17700,"price_min":17700,"price_max":17700,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378419716,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Addcon World 2000","public_title":null,"options":["Default Title"],"price":17700,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-242-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-242-9.jpg?v=1498183879"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-242-9.jpg?v=1498183879","options":["Title"],"media":[{"alt":null,"id":350137614429,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-242-9.jpg?v=1498183879"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-242-9.jpg?v=1498183879","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-242-9 \u003cbr\u003e\u003cbr\u003ePublished: 2000\u003cbr\u003ePages 168\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 6th successful Addcon World conference discussed the threats, opportunities, and trends in the additives business today. New products and processes were also revealed along with a discussion of legislation and its impact on the additives business. Addcon World conferences are specifically targeted to the plastics additives industry and have been successfully run by Rapra Technology Limited for the past 5 years. \u003cbr\u003e\u003cbr\u003eThe papers presented at this year’s conference will appeal to suppliers of additives, compounders and end-users along with people who want to learn how to use additives\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eFlexible Vinyl Medical Products: Discussion about the Extraction Characteristics of Various Plasticizers\u003cbr\u003eRichard C. Adams, BP Amoco Chemicals, USA \u003cbr\u003eBenzoate Plasticizer for Reducing Plastisol Viscosity and Fusion Temperature\u003cbr\u003eTom Bohnert, B. Stanhope, K. Gruszecki, S. Pitman, V. Elsworth, Velsicol Chemical Corporation, USA, and Velsicol Chemical Limited, UK \u003cbr\u003e\u003cbr\u003eDetermination of Phenolic Antioxidant Stabilizers in PP and HDPE by Means of an Oxidative Model Reaction\u003cbr\u003eE. B. Zeinalov 1 , Hartmut F. Schroeder 2* and H. Bahr 2 , 1 Academy of Sciences of Azerbaijan, Institute of Petrochemical Processes (IPCPAcS), Baku, 2 Federal Institute for Materials Research and Testing (BAM), Germany \u003cbr\u003e\u003cbr\u003eAchieving More Value From Additives Via New Physical Forms\u003cbr\u003eCorrado Callierotti 1 , Luciano Pallini 1 , Giovanni Sandre 1 , Robert Lee 2 , Ming Wu 2 , Klaus Keck-Antoine 3 \u0026amp; Brian Johnson 3 , 1 Great Lakes Manufacturing Italia, Italy, 2 Great Lakes Chemical Corporation, USA, 3 Great Lakes Technology Belgium, Belgium \u003cbr\u003e\u003cbr\u003eStabilizer Package Development - Importance of the Test Criteria Selection\u003cbr\u003eJán Malík and Isolde Bachert, Technical Service Polymer Additives, Clariant Huningue SA, France \u003cbr\u003eThe Impact of Environmental Issues on the Growth of Plastics Additives\u003cbr\u003eThomas Galvanek, Fred Gastrock and Louis N. Kattas, BRG Townsend Inc., USA \u003cbr\u003eEvaluation of Stabilizer Performance in Polymers Using Chemiluminescence\u003cbr\u003eNorman C. Billingham, 1 Peter Fearon, 1 David J. Whiteman, Niall Marshall 2 and Stephen P. Bigger 3 , 1 School of Chemistry, Physics and Environmental Science, University of Sussex, UK, 2 Polifin Limited, South Africa, 3 School of Life Sciences and Technology, Victoria University, Australia \u003cbr\u003e\u003cbr\u003ePolymer Additives Based on Renewable Materials; Opportunities and Trends\u003cbr\u003eJ. van Haveren, Agrotechnological Research Institute, The Netherlands\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eCriteria and Examples of Optimal Choice of Flame Retardants\u003cbr\u003eAchim Litzenburger, Eurobrom BV, Netherlands \u003cbr\u003eNew Metal Hydroxides with Improved Performance for Flame Retardancy in Plastics\u003cbr\u003eRené Herbiet, alusuisse martinswerk gmbh, Germany \u003cbr\u003eProductivity Gains in BOPP Film Production Through Stabilization with Lactone Technology\u003cbr\u003eDoris Eisermann, Ciba Specialty Chemicals Limited, Switzerland\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eThe Role of Market Research in the Additives Business\u003cbr\u003eRichard Beswick, bms AG, Switzerland\u003cbr\u003e\u003cbr\u003e"}
Blends and Alloys of E...
$72.00
{"id":11242253956,"title":"Blends and Alloys of Engineering Thermoplastics","handle":"978-0-08041744-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: H.T. van de Grampel \u003cbr\u003eISBN 978-0-08041744-8 \u003cbr\u003e\u003cbr\u003eGE Plastics BV\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e132 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report explains the theory of blending materials which may be essentially incompatible, and the properties and applications of commercially available blends of engineering thermoplastics are then described. \u003cbr\u003e\u003cbr\u003eExperimental results and data on commercial materials can be obtained from the accompanying references and abstracts (499).\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:27-04:00","created_at":"2017-06-22T21:15:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1991","alloys","applications","blends","book","morphology","p-structural","physical properties","polymer","thermoplastics"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378488004,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blends and Alloys of Engineering Thermoplastics","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08041744-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446","options":["Title"],"media":[{"alt":null,"id":353915338845,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: H.T. van de Grampel \u003cbr\u003eISBN 978-0-08041744-8 \u003cbr\u003e\u003cbr\u003eGE Plastics BV\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e132 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report explains the theory of blending materials which may be essentially incompatible, and the properties and applications of commercially available blends of engineering thermoplastics are then described. \u003cbr\u003e\u003cbr\u003eExperimental results and data on commercial materials can be obtained from the accompanying references and abstracts (499).\u003cbr\u003e\u003cbr\u003e"}
Cellular Polymers III
$60.00
{"id":11242247172,"title":"Cellular Polymers III","handle":"978-1-85957-038-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-038-8 \u003cbr\u003e\u003cbr\u003e25 papers, softbound\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe material covers all aspects of elastomeric and rigid foams including: Thermal performance of insulating foams; Analysis of fire gases; The progress of CFC-free foams; Recycling and waste management; Gas transfer; Novel additives and synthesis techniques; Manufacturing developments for a range of foamed materials; Impact properties.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Papers: \u003cbr\u003e\u003cbr\u003eUse of the Distributed Parameter Continuum (DIPAC) Model for Estimating the Long Term Thermal Performance of Insulating Foams, Mark T. Bomberg and Mavinkal K Kumaran, National Research Council, Canada \u003cbr\u003e\u003cbr\u003eDevelopment of a Method tor Measuring Radial Creep of District Heating Pipes, H. D. Smidt, Danish Technological Institute, Denmark and L. Amby, Logstor Ror A\/S, Denmark \u003cbr\u003e\u003cbr\u003eUse of FTIR to Analyze Fire Gases from Burning Polyurethane Foams, K.T. Paul, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eCFC-free Thermal Insulation Foams, C.W.F. Yu, D.R. Crump and D. Gardiner, Building Research Establishment, UK \u003cbr\u003e\u003cbr\u003eA Review of Life Cycle Assessment - A Tool for Measuring the Environmental Impact of Cellular Polymers, Dr David Heath, ICI Engineering Technology, UK and Dr. Vanja Markovic, ICI Polyurethanes\/ISOPA, Belgium \u003cbr\u003e\u003cbr\u003e\"CFC-Free\" The Scope of the Achievement so far, P. Ashford, Caleb Management Services, UK \u003cbr\u003e\u003cbr\u003eThe Future of Foam Plastic Insulation in the Light of Climate Chance Legislation, J.G. Abbott, Dow Europe SA., Switzerland \u003cbr\u003e\u003cbr\u003eProcess by which Controls on Chemicals are Introduced into European Community Legislation, J. Neill, European Commission, Belgium \u003cbr\u003e\u003cbr\u003eUtilization of Polymeric Isocyanate Based Binders in Recycling of Automotive Shredder Fluff, K.C. Frisch, A. Sendijarevic, V. Sendijarevic and D. Klempner, University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003eRecovery and Recycling of Polyurethane Foams, E. Weigand, Bayer AG, Germany \u003cbr\u003e\u003cbr\u003eWaste Management of EPS in Europe, T. van Dorp, Shell Chemicals Europe, UK \u003cbr\u003e\u003cbr\u003eRecovery of Value from Waste: The Government View, P. Coombs, Department of Trade and Industry, UK \u003cbr\u003e\u003cbr\u003eCell Structure Development in Compression Molded, Crosslinked Polyethylene and Ethylene-Vinyl Acetate Foam, G.L.A. Sims and C. Khunniteekool, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eThe Influence of Low Molecular Additives on Gas Transport Properties in Polyethylene Films and Foams, W P Nauta and R.H.B. Bouma, University of Twente, J.E.F. Arnauts and H. M. Steuten, DSM Research, The Netherlands \u003cbr\u003e\u003cbr\u003ePolyether Triols,Tetrahydrofurame-Alkyleneoxides Copolymers for Flexible Polyurethane Foams, M. Ionescu, I. Mihalache, V. Zugravu and S. Mihai, Institute of Chemical Research, Romania \u003cbr\u003e\u003cbr\u003eSolubility and Nucleation Phenomena in Rigid PU Foam Expansion by Low Boiling Blowing Agents; a Modelling Approach, Henri J.M. Gruenbauer, Dow Benelux NV, The Netherlands \u003cbr\u003e\u003cbr\u003eLiquid Crystalline Polyurethanes: Synthesis, Properties and Application, B. Szczepaniak and P. Penczek, Industrial Chemistry Research Institute, A. Wolinska-Grabczyk, Institute of Coal Chemistry, and K.C. Frisch University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003ePolyurethane Reactions According to Computational Chemistry, Nelson Malwitz, Sealed Air Corporation, USA \u003cbr\u003e\u003cbr\u003eRigid PVC Foams: A New Twist to an Old Technology, K. Redford, L.T. Hoydal, A. Stori, and K.H. Holm, SINTEF, Norway, A. Jorgensen and J. Grovdal, Dynoplast AS, Norway \u003cbr\u003e\u003cbr\u003eA Solid State Semi-Continuous Process to Make PET Foam Sheets, V. Kumar, University of Washington Seattle, USA and H. G. Schirmer, W. R. Grace Co., USA \u003cbr\u003e\u003cbr\u003eThe CarDio(TM) Process: Industrial Production Experiences, Carlo Florentini, Cannon Afros, Italy, Max Taverna, Cannon Communications, Italy, Barry Collings, Cannon, USA, Tony Griffiths, Cannon Viking, Italy \u003cbr\u003e\u003cbr\u003eThe Manufacture of Flexible Polyurethane Foams by the Variable Pressure Process V.P.F., J. B. Blackwell and G. Buckley, Beamech Group Limited, UK \u003cbr\u003e\u003cbr\u003eThe Balance of Formulation, Processing Conditions in the Manufacture of Crosslinked Polyethylene Foam, G.L.A. Sims and W. Sirithongtaworn, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eInteraction between Microstructure and Mechanical Properties of Flexible Polyurethane Foams, J. M. Williams and J. H. Beynon, University of Leicester, UK \u003cbr\u003e\u003cbr\u003eAnalysis of Impact of Two-Layer Foams, and Evaluation of Body Protectors, A. Gilchrist and N.J. Mills, University of Birmingham, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:06-04:00","created_at":"2017-06-22T21:15:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","additives","book","foam","impact properties","insulation","p-structural","polymer","polyurethane foams","recycling"],"price":6000,"price_min":6000,"price_max":6000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378463108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Cellular Polymers III","public_title":null,"options":["Default Title"],"price":6000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420","options":["Title"],"media":[{"alt":null,"id":353968488541,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-038-8 \u003cbr\u003e\u003cbr\u003e25 papers, softbound\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe material covers all aspects of elastomeric and rigid foams including: Thermal performance of insulating foams; Analysis of fire gases; The progress of CFC-free foams; Recycling and waste management; Gas transfer; Novel additives and synthesis techniques; Manufacturing developments for a range of foamed materials; Impact properties.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Papers: \u003cbr\u003e\u003cbr\u003eUse of the Distributed Parameter Continuum (DIPAC) Model for Estimating the Long Term Thermal Performance of Insulating Foams, Mark T. Bomberg and Mavinkal K Kumaran, National Research Council, Canada \u003cbr\u003e\u003cbr\u003eDevelopment of a Method tor Measuring Radial Creep of District Heating Pipes, H. D. Smidt, Danish Technological Institute, Denmark and L. Amby, Logstor Ror A\/S, Denmark \u003cbr\u003e\u003cbr\u003eUse of FTIR to Analyze Fire Gases from Burning Polyurethane Foams, K.T. Paul, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eCFC-free Thermal Insulation Foams, C.W.F. Yu, D.R. Crump and D. Gardiner, Building Research Establishment, UK \u003cbr\u003e\u003cbr\u003eA Review of Life Cycle Assessment - A Tool for Measuring the Environmental Impact of Cellular Polymers, Dr David Heath, ICI Engineering Technology, UK and Dr. Vanja Markovic, ICI Polyurethanes\/ISOPA, Belgium \u003cbr\u003e\u003cbr\u003e\"CFC-Free\" The Scope of the Achievement so far, P. Ashford, Caleb Management Services, UK \u003cbr\u003e\u003cbr\u003eThe Future of Foam Plastic Insulation in the Light of Climate Chance Legislation, J.G. Abbott, Dow Europe SA., Switzerland \u003cbr\u003e\u003cbr\u003eProcess by which Controls on Chemicals are Introduced into European Community Legislation, J. Neill, European Commission, Belgium \u003cbr\u003e\u003cbr\u003eUtilization of Polymeric Isocyanate Based Binders in Recycling of Automotive Shredder Fluff, K.C. Frisch, A. Sendijarevic, V. Sendijarevic and D. Klempner, University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003eRecovery and Recycling of Polyurethane Foams, E. Weigand, Bayer AG, Germany \u003cbr\u003e\u003cbr\u003eWaste Management of EPS in Europe, T. van Dorp, Shell Chemicals Europe, UK \u003cbr\u003e\u003cbr\u003eRecovery of Value from Waste: The Government View, P. Coombs, Department of Trade and Industry, UK \u003cbr\u003e\u003cbr\u003eCell Structure Development in Compression Molded, Crosslinked Polyethylene and Ethylene-Vinyl Acetate Foam, G.L.A. Sims and C. Khunniteekool, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eThe Influence of Low Molecular Additives on Gas Transport Properties in Polyethylene Films and Foams, W P Nauta and R.H.B. Bouma, University of Twente, J.E.F. Arnauts and H. M. Steuten, DSM Research, The Netherlands \u003cbr\u003e\u003cbr\u003ePolyether Triols,Tetrahydrofurame-Alkyleneoxides Copolymers for Flexible Polyurethane Foams, M. Ionescu, I. Mihalache, V. Zugravu and S. Mihai, Institute of Chemical Research, Romania \u003cbr\u003e\u003cbr\u003eSolubility and Nucleation Phenomena in Rigid PU Foam Expansion by Low Boiling Blowing Agents; a Modelling Approach, Henri J.M. Gruenbauer, Dow Benelux NV, The Netherlands \u003cbr\u003e\u003cbr\u003eLiquid Crystalline Polyurethanes: Synthesis, Properties and Application, B. Szczepaniak and P. Penczek, Industrial Chemistry Research Institute, A. Wolinska-Grabczyk, Institute of Coal Chemistry, and K.C. Frisch University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003ePolyurethane Reactions According to Computational Chemistry, Nelson Malwitz, Sealed Air Corporation, USA \u003cbr\u003e\u003cbr\u003eRigid PVC Foams: A New Twist to an Old Technology, K. Redford, L.T. Hoydal, A. Stori, and K.H. Holm, SINTEF, Norway, A. Jorgensen and J. Grovdal, Dynoplast AS, Norway \u003cbr\u003e\u003cbr\u003eA Solid State Semi-Continuous Process to Make PET Foam Sheets, V. Kumar, University of Washington Seattle, USA and H. G. Schirmer, W. R. Grace Co., USA \u003cbr\u003e\u003cbr\u003eThe CarDio(TM) Process: Industrial Production Experiences, Carlo Florentini, Cannon Afros, Italy, Max Taverna, Cannon Communications, Italy, Barry Collings, Cannon, USA, Tony Griffiths, Cannon Viking, Italy \u003cbr\u003e\u003cbr\u003eThe Manufacture of Flexible Polyurethane Foams by the Variable Pressure Process V.P.F., J. B. Blackwell and G. Buckley, Beamech Group Limited, UK \u003cbr\u003e\u003cbr\u003eThe Balance of Formulation, Processing Conditions in the Manufacture of Crosslinked Polyethylene Foam, G.L.A. Sims and W. Sirithongtaworn, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eInteraction between Microstructure and Mechanical Properties of Flexible Polyurethane Foams, J. M. Williams and J. H. Beynon, University of Leicester, UK \u003cbr\u003e\u003cbr\u003eAnalysis of Impact of Two-Layer Foams, and Evaluation of Body Protectors, A. Gilchrist and N.J. Mills, University of Birmingham, UK\u003cbr\u003e\u003cbr\u003e"}
Composite Materials
$220.00
{"id":11242214084,"title":"Composite Materials","handle":"978-1-84882-830-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Chung, Deborah D. L. \u003cbr\u003eISBN 978-1-84882-830-8 \u003cbr\u003e\u003cbr\u003e2nd ed., 371 p. 210 illus.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProvides a comprehensive treatment of functional composite materials, covering functions related to the thermal, electrical, electromagnetic, thermoelectric, dielectric, optical, magnetic and electrochemical behaviour.\u003cbr\u003e\u003cbr\u003e- The 2nd edition includes an expanded treatment of each topic, particularly in relation to applications and practical considerations.\u003cbr\u003e\u003cbr\u003eThe applications of composite materials continue to be of increasing importance due to the industry’s need for modern analysis and improved performance. The first edition of Composite Materials introduced a new way of looking at composite materials: covering composites in accordance with their functions. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. Although applications are the economical and technological driving force of materials development, processes often determine the feasibility and practicality.\u003cbr\u003e\u003cbr\u003eThis tutorial-style reference book examines both structural composite materials (including their mechanical properties, durability, and degradation) and functional composite materials (including their electrical, piezoresistive, and thermal properties), as needed for a substantial range of applications. The emphasis on application-driven and process-oriented materials development is enhanced by a large amount of experimental results that provide real illustrations of composite materials development.\u003cbr\u003e\u003cbr\u003eComposite Materials is an essential book for researchers and engineers who are interested in materials development for industrial applications. It has a vibrant yet functional approach, making it suitable for both students and practitioners, and provides a full explanation of all of the fundamental concepts related to the structural and functional properties covered.\u003cbr\u003e\u003cbr\u003eThe Engineering Materials and Processes series focuses on all forms of materials and the processes used to synthesise and formulate them as they relate to the various engineering disciplines. The series deals with a diverse range of materials: ceramics; metals (ferrous and non-ferrous); semiconductors; composites, polymers, biomimetics etc. Each monograph in the series is written by a specialist and demonstrates how enhancements in materials and the processes associated with them can improve performance in the field of engineering in which they are used.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nContents \u003cbr\u003e\u003cbr\u003e1 Composite Material Structure and Processing \u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 CompositeMaterialStructure\u003cbr\u003e1.2.1 Continuous Fiber Composites\u003cbr\u003e1.2.2 Carbon–CarbonComposites \u003cbr\u003e1.2.3 Cement-MatrixComposites\u003cbr\u003e\u003cbr\u003e1.3 Processing of Composite Materials\u003cbr\u003e1.3.1 Polymer-MatrixComposites \u003cbr\u003e1.3.2 Metal-MatrixComposites\u003cbr\u003e1.3.3 Carbon-MatrixComposites\u003cbr\u003e1.3.4 Ceramic-MatrixComposites \u003cbr\u003e1.3.5 Cement-MatrixComposites\u003cbr\u003e1.4 Composite Design Concepts\u003cbr\u003e1.5 ApplicationsofCompositeMaterials\u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003e2 Carbon Fibers and Nanofillers \u003cbr\u003e2.1 Carbons\u003cbr\u003e2.2 CarbonFibers \u003cbr\u003e2.3 Nanofillers\u003cbr\u003eReviewQuestions \u003cbr\u003eFurtherReading\u003cbr\u003e\u003cbr\u003e3 Mechanical Properties \u003cbr\u003e3.1 Property Requirements \u003cbr\u003e3.2 Basic Mechanical Properties \u003cbr\u003e3.2.1 Modulus of Elasticity\u003cbr\u003e3.2.2 Strength\u003cbr\u003e3.2.3 Ductility\u003cbr\u003e3.3 Effect of Damage on the Mechanical Properties \u003cbr\u003e3.4 Brittlevs.DuctileMaterials\u003cbr\u003e3.5 Strengthening \u003cbr\u003e3.6 VibrationDampingAbility \u003cbr\u003e3.6.1 Introduction \u003cbr\u003e3.6.2 Viscoelastic Behavior \u003cbr\u003e3.6.3 Pseudoplasticity and Ferroelasticity\u003cbr\u003e3.6.4 Interfacial Damping\u003cbr\u003e3.6.5 Structural Materialsfor Damping\u003cbr\u003e3.6.6 Comparison of Materials Utilized for Damping\u003cbr\u003e3.6.7 Emerging Materials for Damping \u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003e4. Durability and Degradation of Materials\u003cbr\u003e4.1 CorrosionResistance \u003cbr\u003e4.1.1 IntroductiontoElectrochemicalBehavior\u003cbr\u003e4.1.2 CorrosionProtection\u003cbr\u003e4.2 ElevatedTemperatureResistance\u003cbr\u003e4.2.1 TechnologicalRelevance\u003cbr\u003e4.2.2 Effects of ThermalDegradation \u003cbr\u003e4.2.3 Origins of Thermal Degradation\u003cbr\u003e4.2.4 Effects of Temperature on the Composite Microstructure\u003cbr\u003e4.2.5 Improving the Elevated Temperature Resistance \u003cbr\u003e4.2.6 Investigation of Elevated TemperatureResistance \u003cbr\u003e4.3 FatigueResistance\u003cbr\u003e4.3.1 MechanicalFatigue\u003cbr\u003e4.3.2 ThermalFatigue\u003cbr\u003e4.4 Durability\u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading\u003cbr\u003e\u003cbr\u003e5. Materials for Lightweight Structures, Civil Infrastructure, Joining and Repair\u003cbr\u003e5.1 Materials for Light weight Structures \u003cbr\u003e5.1.1 Composites with Polymer,Carbon,Ceramic and Metal Matrices \u003cbr\u003e5.1.2 Cement-MatrixComposites\u003cbr\u003e5.2 Materials for Civil Infrastructure\u003cbr\u003e5.3 Materials for Joining\u003cbr\u003e5.3.1 Sintering or Autohesion \u003cbr\u003e5.3.2 Welding \u003cbr\u003e5.3.3 Brazing and Soldering\u003cbr\u003e5.3.4 Adhesion \u003cbr\u003e5.3.5 CementitiousJoining\u003cbr\u003e5.3.6 Joining Using Inorganic Binders\u003cbr\u003e5.3.7 Joining Using Carbon Binders\u003cbr\u003e5.3.8 Fastening\u003cbr\u003e5.3.9 ExpansionJoints\u003cbr\u003e5.4 Materials Used for Repair \u003cbr\u003e5.4.1 Patching\u003cbr\u003e5.4.2 Wrapping\u003cbr\u003e5.4.3 Self-healing \u003cbr\u003eReview Questions \u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e6 Tailoring Composite Materials\u003cbr\u003e6.1 Tailoring by Component Selection\u003cbr\u003e6.1.1 Polymer-MatrixComposites\u003cbr\u003e6.1.2 Cement-MatrixComposites\u003cbr\u003e6.1.3 Metal-MatrixComposites.\u003cbr\u003e6.2 Tailoring by Interface Modification \u003cbr\u003e6.2.1 Interface Bond Modification \u003cbr\u003e6.2.2 Interface Composition Modification\u003cbr\u003e6.2.3 Interface Microstructure Modification\u003cbr\u003e6.3 Tailoring by Surface Modification\u003cbr\u003e6.4 Tailoring by Microstructure Control \u003cbr\u003e6.4.1 Crystallinity Control\u003cbr\u003e6.4.2 Porosity Control\u003cbr\u003e6.5 Tailoring by Organic–Inorganic Nanoscale Hybridization\u003cbr\u003e6.5.1 Nanocomposites with Organic Solid Nanoparticles Dispersed in an Inorganic Matrix \u003cbr\u003e6.5.2 Nanocomposites with an Organic Component Dispersed in an Inorganic Matrix Where the Organic Component is Added as a Liquid\u003cbr\u003e6.5.3 Nanocomposites Made by Inorganic Component Exfoliation and Subsequent Organic Component Adsorption\u003cbr\u003eReview Questions\u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e7 Electrical Properties \u003cbr\u003e7.1 Origin of Electrical Conduction \u003cbr\u003e7.2 VolumeElectricalResistivity\u003cbr\u003e7.3 Calculating the Volume Electrical Resistivity of a Composite Material\u003cbr\u003e7.3.1 Parallel Configuration\u003cbr\u003e7.3.2 Series Configuration \u003cbr\u003e7.4 Contact Electrical Resistivity \u003cbr\u003e7.5 Electric Power and Resistance Heating \u003cbr\u003e7.5.1 Scientific Basis\u003cbr\u003e7.5.2 Self-Heating Structural Materials \u003cbr\u003e7.6 Effect of Temperature on the Electrical Resistivity\u003cbr\u003e7.6.1 Scientific Basis \u003cbr\u003e7.6.2 Structural Materials Used as Thermistors\u003cbr\u003e7.7 Effect of Strain on the Electrical Resistivity (Piezoresistivity) \u003cbr\u003e7.7.1 Scientific Basis\u003cbr\u003e7.7.2 Effects of Strain and Strain-Induced Damage on the Electrical Resistivity of Polymer-Matrix Structural Composites \u003cbr\u003e7.8 See beck Effect \u003cbr\u003e7.8.1 Scientific Basis \u003cbr\u003e7.8.2 Thermoelectric Composites\u003cbr\u003e7.9 Applications of Conductive Materials \u003cbr\u003e7.9.1 Overview of Applications \u003cbr\u003e7.9.2 Microelectronic Applications\u003cbr\u003e7.9.3 Electrochemical Applications\u003cbr\u003e7.10 Conductive Phase Distribution and Connectivity\u003cbr\u003e7.10.1 Effect of the Conductive Filler Aspect Ratio\u003cbr\u003e7.10.2 Effect of the Nonconductive Thermoplastic Particle Viscosity \u003cbr\u003e7.10.3 Effect of Conductive Particle Size \u003cbr\u003e7.10.4 Effect of Additives \u003cbr\u003e7.10.5 Levels of Percolation \u003cbr\u003e7.11 Electrically Conductive Joints\u003cbr\u003e7.11.1 Mechanically Strong Joints for Electrical Conduction\u003cbr\u003e7.11.2 Mechanically Weak Joints for Electrical Conduction\u003cbr\u003e7.11.3 Electrical Connection Through Pressure Application \u003cbr\u003e7.11.4 Electrical Connection Through aZ-Axis Electrical Conductor\u003cbr\u003e7.12 Porous Conductors \u003cbr\u003e7.12.1 Porous Conductors Without a Nonconductive Filler \u003cbr\u003e7.12.2 Porous Conductors With a Nonconductive \u003cbr\u003eFiller and a Conductive Additive\u003cbr\u003eReview Questions \u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e8. Thermal Properties\u003cbr\u003e8.1 Thermal Expansion\u003cbr\u003e8.2 Specific Heat\u003cbr\u003e8.3 Phase Transformations\u003cbr\u003e8.3.1 Scientific Basis \u003cbr\u003e8.3.2 Shape Memory Effect\u003cbr\u003e8.3.3 Calorimetry\u003cbr\u003e8.4 Thermal Conductivity \u003cbr\u003e8.5 Thermal Conductance of an Interface\u003cbr\u003e8.6 Evaluating the Thermal Conduction \u003cbr\u003e8.6.1 Guarded Hot Plate Method\u003cbr\u003e8.6.2 Laser Flash Method \u003cbr\u003e8.7 Thermal Interface Materials \u003cbr\u003e8.8 Composites Used for Microelectronic Heat Sinks \u003cbr\u003e8.8.1 Metals, Diamond, and Ceramics \u003cbr\u003e8.8.2 Metal-Matrix Composites\u003cbr\u003e8.8.3 Carbon-Matrix Composites \u003cbr\u003e8.8.4 Carbon and Graphite\u003cbr\u003e8.8.5 Ceramic-Matrix Composites \u003cbr\u003e8.8.6 Polymer-Matrix Composites \u003cbr\u003e8.9 Carbon Fiber Polymer-Matrix Composites for Aircraft Heat Dissipation \u003cbr\u003e8.9.1 Interlaminar Interface Nanostructuring \u003cbr\u003e8.9.2 Through-ThicknessThermal Conductivity \u003cbr\u003e8.9.3 Through-Thickness Compressive Properties \u003cbr\u003e8.9.4 FlexuralProperties\u003cbr\u003e8.10 Composites Used for Thermal Insulation \u003cbr\u003eExampleProblems \u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003eAppendix: Test \u003cbr\u003eTestQuestions\u003cbr\u003ePartI(32%) \u003cbr\u003ePartII(68%) \u003cbr\u003eTestSolutions\u003cbr\u003ePartI(32%) \u003cbr\u003ePartII(68%)\u003cbr\u003eIndex \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDeborah D.L. Chung is Professor in the Department of Mechanical and Aerospace Engineering at the University of Buffalo, USA. She has a PhD in Materials Science from the Massachusetts Institute of Technology, USA.","published_at":"2017-06-22T21:13:21-04:00","created_at":"2017-06-22T21:13:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","applications of composite materials","book","composite materials","composite materials structure","funcional composites materials","p-structural","polymer","processing of composite materials","properies of composite materials"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378351172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Composite Materials","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84882-830-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84882-830-8.jpg?v=1499724063"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84882-830-8.jpg?v=1499724063","options":["Title"],"media":[{"alt":null,"id":353964359773,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84882-830-8.jpg?v=1499724063"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84882-830-8.jpg?v=1499724063","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Chung, Deborah D. L. \u003cbr\u003eISBN 978-1-84882-830-8 \u003cbr\u003e\u003cbr\u003e2nd ed., 371 p. 210 illus.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProvides a comprehensive treatment of functional composite materials, covering functions related to the thermal, electrical, electromagnetic, thermoelectric, dielectric, optical, magnetic and electrochemical behaviour.\u003cbr\u003e\u003cbr\u003e- The 2nd edition includes an expanded treatment of each topic, particularly in relation to applications and practical considerations.\u003cbr\u003e\u003cbr\u003eThe applications of composite materials continue to be of increasing importance due to the industry’s need for modern analysis and improved performance. The first edition of Composite Materials introduced a new way of looking at composite materials: covering composites in accordance with their functions. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. Although applications are the economical and technological driving force of materials development, processes often determine the feasibility and practicality.\u003cbr\u003e\u003cbr\u003eThis tutorial-style reference book examines both structural composite materials (including their mechanical properties, durability, and degradation) and functional composite materials (including their electrical, piezoresistive, and thermal properties), as needed for a substantial range of applications. The emphasis on application-driven and process-oriented materials development is enhanced by a large amount of experimental results that provide real illustrations of composite materials development.\u003cbr\u003e\u003cbr\u003eComposite Materials is an essential book for researchers and engineers who are interested in materials development for industrial applications. It has a vibrant yet functional approach, making it suitable for both students and practitioners, and provides a full explanation of all of the fundamental concepts related to the structural and functional properties covered.\u003cbr\u003e\u003cbr\u003eThe Engineering Materials and Processes series focuses on all forms of materials and the processes used to synthesise and formulate them as they relate to the various engineering disciplines. The series deals with a diverse range of materials: ceramics; metals (ferrous and non-ferrous); semiconductors; composites, polymers, biomimetics etc. Each monograph in the series is written by a specialist and demonstrates how enhancements in materials and the processes associated with them can improve performance in the field of engineering in which they are used.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nContents \u003cbr\u003e\u003cbr\u003e1 Composite Material Structure and Processing \u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 CompositeMaterialStructure\u003cbr\u003e1.2.1 Continuous Fiber Composites\u003cbr\u003e1.2.2 Carbon–CarbonComposites \u003cbr\u003e1.2.3 Cement-MatrixComposites\u003cbr\u003e\u003cbr\u003e1.3 Processing of Composite Materials\u003cbr\u003e1.3.1 Polymer-MatrixComposites \u003cbr\u003e1.3.2 Metal-MatrixComposites\u003cbr\u003e1.3.3 Carbon-MatrixComposites\u003cbr\u003e1.3.4 Ceramic-MatrixComposites \u003cbr\u003e1.3.5 Cement-MatrixComposites\u003cbr\u003e1.4 Composite Design Concepts\u003cbr\u003e1.5 ApplicationsofCompositeMaterials\u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003e2 Carbon Fibers and Nanofillers \u003cbr\u003e2.1 Carbons\u003cbr\u003e2.2 CarbonFibers \u003cbr\u003e2.3 Nanofillers\u003cbr\u003eReviewQuestions \u003cbr\u003eFurtherReading\u003cbr\u003e\u003cbr\u003e3 Mechanical Properties \u003cbr\u003e3.1 Property Requirements \u003cbr\u003e3.2 Basic Mechanical Properties \u003cbr\u003e3.2.1 Modulus of Elasticity\u003cbr\u003e3.2.2 Strength\u003cbr\u003e3.2.3 Ductility\u003cbr\u003e3.3 Effect of Damage on the Mechanical Properties \u003cbr\u003e3.4 Brittlevs.DuctileMaterials\u003cbr\u003e3.5 Strengthening \u003cbr\u003e3.6 VibrationDampingAbility \u003cbr\u003e3.6.1 Introduction \u003cbr\u003e3.6.2 Viscoelastic Behavior \u003cbr\u003e3.6.3 Pseudoplasticity and Ferroelasticity\u003cbr\u003e3.6.4 Interfacial Damping\u003cbr\u003e3.6.5 Structural Materialsfor Damping\u003cbr\u003e3.6.6 Comparison of Materials Utilized for Damping\u003cbr\u003e3.6.7 Emerging Materials for Damping \u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003e4. Durability and Degradation of Materials\u003cbr\u003e4.1 CorrosionResistance \u003cbr\u003e4.1.1 IntroductiontoElectrochemicalBehavior\u003cbr\u003e4.1.2 CorrosionProtection\u003cbr\u003e4.2 ElevatedTemperatureResistance\u003cbr\u003e4.2.1 TechnologicalRelevance\u003cbr\u003e4.2.2 Effects of ThermalDegradation \u003cbr\u003e4.2.3 Origins of Thermal Degradation\u003cbr\u003e4.2.4 Effects of Temperature on the Composite Microstructure\u003cbr\u003e4.2.5 Improving the Elevated Temperature Resistance \u003cbr\u003e4.2.6 Investigation of Elevated TemperatureResistance \u003cbr\u003e4.3 FatigueResistance\u003cbr\u003e4.3.1 MechanicalFatigue\u003cbr\u003e4.3.2 ThermalFatigue\u003cbr\u003e4.4 Durability\u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading\u003cbr\u003e\u003cbr\u003e5. Materials for Lightweight Structures, Civil Infrastructure, Joining and Repair\u003cbr\u003e5.1 Materials for Light weight Structures \u003cbr\u003e5.1.1 Composites with Polymer,Carbon,Ceramic and Metal Matrices \u003cbr\u003e5.1.2 Cement-MatrixComposites\u003cbr\u003e5.2 Materials for Civil Infrastructure\u003cbr\u003e5.3 Materials for Joining\u003cbr\u003e5.3.1 Sintering or Autohesion \u003cbr\u003e5.3.2 Welding \u003cbr\u003e5.3.3 Brazing and Soldering\u003cbr\u003e5.3.4 Adhesion \u003cbr\u003e5.3.5 CementitiousJoining\u003cbr\u003e5.3.6 Joining Using Inorganic Binders\u003cbr\u003e5.3.7 Joining Using Carbon Binders\u003cbr\u003e5.3.8 Fastening\u003cbr\u003e5.3.9 ExpansionJoints\u003cbr\u003e5.4 Materials Used for Repair \u003cbr\u003e5.4.1 Patching\u003cbr\u003e5.4.2 Wrapping\u003cbr\u003e5.4.3 Self-healing \u003cbr\u003eReview Questions \u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e6 Tailoring Composite Materials\u003cbr\u003e6.1 Tailoring by Component Selection\u003cbr\u003e6.1.1 Polymer-MatrixComposites\u003cbr\u003e6.1.2 Cement-MatrixComposites\u003cbr\u003e6.1.3 Metal-MatrixComposites.\u003cbr\u003e6.2 Tailoring by Interface Modification \u003cbr\u003e6.2.1 Interface Bond Modification \u003cbr\u003e6.2.2 Interface Composition Modification\u003cbr\u003e6.2.3 Interface Microstructure Modification\u003cbr\u003e6.3 Tailoring by Surface Modification\u003cbr\u003e6.4 Tailoring by Microstructure Control \u003cbr\u003e6.4.1 Crystallinity Control\u003cbr\u003e6.4.2 Porosity Control\u003cbr\u003e6.5 Tailoring by Organic–Inorganic Nanoscale Hybridization\u003cbr\u003e6.5.1 Nanocomposites with Organic Solid Nanoparticles Dispersed in an Inorganic Matrix \u003cbr\u003e6.5.2 Nanocomposites with an Organic Component Dispersed in an Inorganic Matrix Where the Organic Component is Added as a Liquid\u003cbr\u003e6.5.3 Nanocomposites Made by Inorganic Component Exfoliation and Subsequent Organic Component Adsorption\u003cbr\u003eReview Questions\u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e7 Electrical Properties \u003cbr\u003e7.1 Origin of Electrical Conduction \u003cbr\u003e7.2 VolumeElectricalResistivity\u003cbr\u003e7.3 Calculating the Volume Electrical Resistivity of a Composite Material\u003cbr\u003e7.3.1 Parallel Configuration\u003cbr\u003e7.3.2 Series Configuration \u003cbr\u003e7.4 Contact Electrical Resistivity \u003cbr\u003e7.5 Electric Power and Resistance Heating \u003cbr\u003e7.5.1 Scientific Basis\u003cbr\u003e7.5.2 Self-Heating Structural Materials \u003cbr\u003e7.6 Effect of Temperature on the Electrical Resistivity\u003cbr\u003e7.6.1 Scientific Basis \u003cbr\u003e7.6.2 Structural Materials Used as Thermistors\u003cbr\u003e7.7 Effect of Strain on the Electrical Resistivity (Piezoresistivity) \u003cbr\u003e7.7.1 Scientific Basis\u003cbr\u003e7.7.2 Effects of Strain and Strain-Induced Damage on the Electrical Resistivity of Polymer-Matrix Structural Composites \u003cbr\u003e7.8 See beck Effect \u003cbr\u003e7.8.1 Scientific Basis \u003cbr\u003e7.8.2 Thermoelectric Composites\u003cbr\u003e7.9 Applications of Conductive Materials \u003cbr\u003e7.9.1 Overview of Applications \u003cbr\u003e7.9.2 Microelectronic Applications\u003cbr\u003e7.9.3 Electrochemical Applications\u003cbr\u003e7.10 Conductive Phase Distribution and Connectivity\u003cbr\u003e7.10.1 Effect of the Conductive Filler Aspect Ratio\u003cbr\u003e7.10.2 Effect of the Nonconductive Thermoplastic Particle Viscosity \u003cbr\u003e7.10.3 Effect of Conductive Particle Size \u003cbr\u003e7.10.4 Effect of Additives \u003cbr\u003e7.10.5 Levels of Percolation \u003cbr\u003e7.11 Electrically Conductive Joints\u003cbr\u003e7.11.1 Mechanically Strong Joints for Electrical Conduction\u003cbr\u003e7.11.2 Mechanically Weak Joints for Electrical Conduction\u003cbr\u003e7.11.3 Electrical Connection Through Pressure Application \u003cbr\u003e7.11.4 Electrical Connection Through aZ-Axis Electrical Conductor\u003cbr\u003e7.12 Porous Conductors \u003cbr\u003e7.12.1 Porous Conductors Without a Nonconductive Filler \u003cbr\u003e7.12.2 Porous Conductors With a Nonconductive \u003cbr\u003eFiller and a Conductive Additive\u003cbr\u003eReview Questions \u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e8. Thermal Properties\u003cbr\u003e8.1 Thermal Expansion\u003cbr\u003e8.2 Specific Heat\u003cbr\u003e8.3 Phase Transformations\u003cbr\u003e8.3.1 Scientific Basis \u003cbr\u003e8.3.2 Shape Memory Effect\u003cbr\u003e8.3.3 Calorimetry\u003cbr\u003e8.4 Thermal Conductivity \u003cbr\u003e8.5 Thermal Conductance of an Interface\u003cbr\u003e8.6 Evaluating the Thermal Conduction \u003cbr\u003e8.6.1 Guarded Hot Plate Method\u003cbr\u003e8.6.2 Laser Flash Method \u003cbr\u003e8.7 Thermal Interface Materials \u003cbr\u003e8.8 Composites Used for Microelectronic Heat Sinks \u003cbr\u003e8.8.1 Metals, Diamond, and Ceramics \u003cbr\u003e8.8.2 Metal-Matrix Composites\u003cbr\u003e8.8.3 Carbon-Matrix Composites \u003cbr\u003e8.8.4 Carbon and Graphite\u003cbr\u003e8.8.5 Ceramic-Matrix Composites \u003cbr\u003e8.8.6 Polymer-Matrix Composites \u003cbr\u003e8.9 Carbon Fiber Polymer-Matrix Composites for Aircraft Heat Dissipation \u003cbr\u003e8.9.1 Interlaminar Interface Nanostructuring \u003cbr\u003e8.9.2 Through-ThicknessThermal Conductivity \u003cbr\u003e8.9.3 Through-Thickness Compressive Properties \u003cbr\u003e8.9.4 FlexuralProperties\u003cbr\u003e8.10 Composites Used for Thermal Insulation \u003cbr\u003eExampleProblems \u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003eAppendix: Test \u003cbr\u003eTestQuestions\u003cbr\u003ePartI(32%) \u003cbr\u003ePartII(68%) \u003cbr\u003eTestSolutions\u003cbr\u003ePartI(32%) \u003cbr\u003ePartII(68%)\u003cbr\u003eIndex \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDeborah D.L. Chung is Professor in the Department of Mechanical and Aerospace Engineering at the University of Buffalo, USA. She has a PhD in Materials Science from the Massachusetts Institute of Technology, USA."}
Handbook of Polymer Foams
$190.00
{"id":11242213380,"title":"Handbook of Polymer Foams","handle":"978-1-85957-388-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Eaves \u003cbr\u003eISBN 978-1-85957-388-6 \u003cbr\u003e\u003cbr\u003epages 274\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymer foams is extremely widespread. Indeed, it is hard to think of any industries where polymer foams do not have a part to play. They can be found for example in sports and leisure products, in military applications, in vehicles, in aircraft, and in the home. Most people will encounter polymer foams every day in one form or another, whether it be in furniture, in packaging, in their car, in refrigerator insulation, or in some other common application. \u003cbr\u003e\u003cbr\u003eAlthough naturally occurring polymer foams have been known for a long time, (e.g., sponges, cork), synthetic polymer foams have only been introduced to the market over the last fifty years or so. The development of a new polymer has usually been quickly followed by its production in an expanded or foam form owing to the unique and useful properties, which can be realised in the expanded state. \u003cbr\u003e\u003cbr\u003eThis Handbook reviews the chemistry, manufacturing methods, properties and applications of the synthetic polymer foams used in most applications. In addition, a chapter is included on the fundamental principles, which apply to all polymer foams. There is also a chapter on the blowing agents used to expand polymers, blowing agents having undergone considerable change and development in recent years in order to meet the requirements of the Montreal Protocol in relation to the reduction and elimination of chloroflurocarbons (CFC) and other ozone depleting agents. A chapter is also included on microcellular foams - a relatively new development where applications are still being explored. Most chapters have references to facilitate further exploration of the topics. The chapters are all written by experts in the field. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to those just embarking upon an exploration of the subject of foams, whether in industry or academia. But this will be equally useful to those already working in the field, who need to know about different types of foam.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Foam Fundamentals (David Eaves, Independent Consultant)\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Foam Structure\u003cbr\u003e1.3 Foam Properties\u003cbr\u003e1.3.1 Compression Properties\u003cbr\u003e1.3.2 Energy Absorption Properties\u003cbr\u003e1.3.3 Thermal Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Blowing Agents (Sachida Singh, Huntsman Polyurethanes)\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Physical Blowing Agents\u003cbr\u003e2.2.1 Selection Criteria for Physical Blowing Agents\u003cbr\u003e2.2.2 Halogenated Hydrocarbons\u003cbr\u003e2.2.3 Hydrocarbons (HC)\u003cbr\u003e2.2.4 Inert Gases\u003cbr\u003e2.2.5 Other Physical Blowing Agents\u003cbr\u003e2.2.6 Blends of Physical Blowing Agents\u003cbr\u003e2.2.7 Encapsulated Physical Blowing Agents\u003cbr\u003e2.2.8 Physical Blowing Agent by Foam Type and Application\u003cbr\u003e2.3 Chemical Blowing Agents\u003cbr\u003e2.3.1 Selection Criteria for Chemical Blowing Agent\u003cbr\u003e2.3.2 Exothermic CBA\u003cbr\u003e2.3.3 Endothermic CBA\u003cbr\u003e2.3.4 Endo\/Exo Blends\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 Expanded Polystyrene: Development, Processing, Applications and Key Issues (Andrew Barnetson, BPF)\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.1.1 Development of Expanded Polystyrene (EPS)\u003cbr\u003e3.2 Manufacture of Expanded Polystyrene Mouldings\u003cbr\u003e3.3 Applications for Expanded Polystyrene Packaging\u003cbr\u003e3.3.1 Packaging\u003cbr\u003e3.3.2 Construction\u003cbr\u003e3.3.3 Other Applications\u003cbr\u003e3.3.4 Novel Applications\u003cbr\u003e3.4 Properties of EPS\u003cbr\u003e3.4.1 Mechanical Performance\u003cbr\u003e3.4.2 Thermal Insulation\u003cbr\u003e3.4.3 Chemical Properties\u003cbr\u003e3.4.4 Recent Research on Properties of EPS: Value for Fruit and Vegetables\u003cbr\u003e3.5 Global Structure of Markets and Companies\u003cbr\u003e3.5.1 Europe\u003cbr\u003e3.5.2 Asia\u003cbr\u003e3.5.3 USA\u003cbr\u003e3.6 Key Issues Facing the EPS Industry\u003cbr\u003e3.6.1 Fire\u003cbr\u003e3.6.2 Recycling\u003cbr\u003e3.6.2 Alternatives to Mechanical Recycling\u003cbr\u003eFurther Information \u003cbr\u003e\u003cbr\u003e4 Rigid Polyurethane Foams (David Eaves, Independent Consultant)\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Materials\u003cbr\u003e4.2.1 Polyols\u003cbr\u003e4.2.2 Isocyanates\u003cbr\u003e4.2.3 Blowing Agents\u003cbr\u003e4.2.4 Other Additives\u003cbr\u003e4.3 Manufacturing Processes for Rigid Polyurethane Foam\u003cbr\u003e4.4 Recycling Processes for Rigid Polyurethane Foam\u003cbr\u003e4.5 Properties of Rigid Polyurethane Foams\u003cbr\u003e4.6 Applications\u003cbr\u003e4.6.1 Applications in Construction\u003cbr\u003e4.6.2 Applications in the Appliance Industry\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Flexible Polyurethane Foam (Tyler Housel, Inolex Chemical Company)\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Chemistry\u003cbr\u003e5.3 Starting Materials\u003cbr\u003e5.3.1 Isocyanate\u003cbr\u003e5.3.2 Polyol\u003cbr\u003e5.3.3 Water\u003cbr\u003e5.3.4 Surfactant\u003cbr\u003e5.3.5 Catalyst\u003cbr\u003e5.3.6 Colorants\u003cbr\u003e5.3.7 Antioxidants\u003cbr\u003e5.3.8 Light Stabilisers\u003cbr\u003e5.3.9 Flame Retardants\u003cbr\u003e5.3.10 Adhesion Promoters\u003cbr\u003e5.3.11 Other Additives\u003cbr\u003e5.4 The Foaming Process\u003cbr\u003e5.4.1 Raw Material Conditioning\u003cbr\u003e5.4.2 Mixing\u003cbr\u003e5.4.3 Growth\u003cbr\u003e5.4.4 Cell Opening\u003cbr\u003e5.4.5 Cure\u003cbr\u003e5.5 Manufacturing Equipment\u003cbr\u003e5.5.1 Storage and Delivery\u003cbr\u003e5.5.2 Mixing\u003cbr\u003e5.5.3 Foam Rise and Cure\u003cbr\u003e5.5.4 Innovations\u003cbr\u003e5.6 Foam Characterisation\u003cbr\u003e5.6.1 Density\u003cbr\u003e5.6.2 Hardness\u003cbr\u003e5.6.3 Resilience\u003cbr\u003e5.6.4 Porosity\u003cbr\u003e5.6.5 Strength Properties\u003cbr\u003e5.6.6 Cell Structure\u003cbr\u003e5.6.7 Environmental Stability\u003cbr\u003e5.6.8 Fatigue\u003cbr\u003e5.6.9 Compression Set\u003cbr\u003e5.6.10 Flammability\u003cbr\u003e5.7 FPF Markets\u003cbr\u003e5.7.1 Transportation\u003cbr\u003e5.7.2 Comfort\u003cbr\u003e5.7.3 Carpet Cushion\u003cbr\u003e5.7.4 Packaging\u003cbr\u003e5.7.5 Specialty Applications\u003cbr\u003e5.8 Environmental Issues\u003cbr\u003e5.9 Organisations\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Rigid PVC Foam (Noreen Thomas, University of Loughborough)\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Foam Extrusion\u003cbr\u003e6.2.1 Basic Principles\u003cbr\u003e6.2.2 Extrusion Processes\u003cbr\u003e6.2.3 Effect of Processing Conditions\u003cbr\u003e6.3 Foam Formulation Technology\u003cbr\u003e6.3.1 Blowing Agents\u003cbr\u003e6.3.2 Processing Aids\u003cbr\u003e6.3.3 Type of PVC\u003cbr\u003e6.3.4 Stabilisers\u003cbr\u003e6.3.5 Lubricants\u003cbr\u003e6.3.6 Typical Formulations\u003cbr\u003e6.4 Properties\u003cbr\u003e6.5 Novel Processes and Applications\u003cbr\u003e6.5.1 Recycling\u003cbr\u003e6.5.2 Microcellular Foam\u003cbr\u003e6.5.3 Foamed Composites\u003cbr\u003e6.6 Summary\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Flexible PVC Foams (Chris Howick, EVC)\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Flexible Foam Types and PVC Types\u003cbr\u003e7.2.1 Flexible Foams Based on Suspension PVC\u003cbr\u003e7.2.2 Flexible Foams Based on Dispersion or Paste Resins\u003cbr\u003e7.2.3 Chemically Blown Foams from PVC Plastisols: Fundamentals\u003cbr\u003e7.2.4 PVC Resins used in Plastisol Foam Formation\u003cbr\u003e7.2.5 Mineral Fillers\u003cbr\u003e7.2.6 Pigments\u003cbr\u003e7.2.7 Liquid Plasticiser\u003cbr\u003e7.2.8 Blowing Agent Type and Level\u003cbr\u003e7.3 Products Utilising Foamed Plastisols\u003cbr\u003e7.3.1 Floorings and Carpet Backings\u003cbr\u003e7.3.2 Wallcoverings\u003cbr\u003e7.3.3 Synthetic Leather\u003cbr\u003e7.3.4 General Foams\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Polyolefin Foams (David Eaves, Independent Consultant)\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Manufacturing Processes and Materials\u003cbr\u003e8.2.1 Extruded Non-Crosslinked Foam\u003cbr\u003e8.2.2 Expanded (Non-Crosslinked) Polyolefin Beads\u003cbr\u003e8.2.3 Extruded Crosslinked Foam - Processes\u003cbr\u003e8.2.4 Press Moulded Crosslinked Foam Process\u003cbr\u003e8.2.5 Injection Moulded Foam Process\u003cbr\u003e8.2.6 The Nitrogen Autoclave Process\u003cbr\u003e8.2.7 Recycling Processes\u003cbr\u003e8.2.8 Post Manufacturing Operations\u003cbr\u003e8.3 Properties of Polyolefin Foams\u003cbr\u003e8.4 Applications\u003cbr\u003e8.5 Foam Specifications\u003cbr\u003e8.5.1 Packaging\u003cbr\u003e8.5.2 Automotive\u003cbr\u003e8.5.3 Furnishings\u003cbr\u003e8.5.4 Buoyancy\u003cbr\u003e8.5.5 Aerospace\u003cbr\u003e8.5.6 Construction\u003cbr\u003e8.5.7 Toys\u003cbr\u003e8.5.8 Food contact\u003cbr\u003e8.6 Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Latex Foam (Rani Joseph, Cochin University)\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Dunlop Process\u003cbr\u003e9.2.1 Batch Process\u003cbr\u003e9.2.2 Selecting a Formulation for Latex Compounds\u003cbr\u003e9.2.3 Selection of Other Compounding Ingredients\u003cbr\u003e9.2.4 Continuous Process for Latex Foam Production\u003cbr\u003e9.3 Talalay Process\u003cbr\u003e9.4 Trouble Shooting in Latex Foam Manufacture\u003cbr\u003e9.5 Testing\u003cbr\u003e9.5.1 Compression Set\u003cbr\u003e9.5.2 Indentation Hardness\u003cbr\u003e9.5.3 Flexing Resistance\u003cbr\u003e9.5.4 Density\u003cbr\u003e9.5.5 Metallic Impurities\u003cbr\u003e9.6 Important Uses of Latex Foam\u003cbr\u003e9.6.1 Transportation\u003cbr\u003e9.6.2 Furniture\u003cbr\u003e9.6.3 Special Uses\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Microcellular Foams (Vipin Kumar, University of Washington \u0026amp; Krishna Nadella, University of Washington)\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Processing of Microcellular Foams\u003cbr\u003e10.2.1 The Solid-State Batch Process\u003cbr\u003e10.2.2 The Semi-Continuous Process\u003cbr\u003e10.2.3 Extrusion and other Processing Methods\u003cbr\u003e10.3 Properties of Microcellular Foams\u003cbr\u003e10.4 Current Research Directions\u003cbr\u003e10.4.1 Microcellular Materials for Construction\u003cbr\u003e11.4.2 Open-Cell (Porous) Microcellular Foams\u003cbr\u003e10.4.3 Sub-Micron Foams and Nanofoams\u003cbr\u003e10.5 Commercial Opportunities\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Eaves studied polymer chemistry at the University in Birmingham and completed his doctorate in 1958. He then joined Dunlop in their Central Research and Development Laboratories in Birmingham, later going out to Ireland (Cork) and Japan (Kobe) to establish and manage overseas satellite research centres. In 1984 he left Dunlop and joined BP Chemicals' polyethylene foam operation in Croydon as Technical Manager. He was part of the management buy-out team in 1992 when the company was renamed 'Zotefoams', and retired in 1998 as Technical Director. He has published many papers on aspects of polymer and polymer foam technology and is the author of the Rapra report 'Polymer Foams: Trends in Use and Technology.","published_at":"2017-06-22T21:13:18-04:00","created_at":"2017-06-22T21:13:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","aerospace","automotive","blends","blowing agents","book","construction","fire","foams","food","furnishing","hydrocarbons","inert gases","insulation","molding","moulding","p-structural","packaging","polymer","polymers","polystyrene","properties","recycling","structure","toys"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350212,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Foams","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-388-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663","options":["Title"],"media":[{"alt":null,"id":355732226141,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Eaves \u003cbr\u003eISBN 978-1-85957-388-6 \u003cbr\u003e\u003cbr\u003epages 274\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymer foams is extremely widespread. Indeed, it is hard to think of any industries where polymer foams do not have a part to play. They can be found for example in sports and leisure products, in military applications, in vehicles, in aircraft, and in the home. Most people will encounter polymer foams every day in one form or another, whether it be in furniture, in packaging, in their car, in refrigerator insulation, or in some other common application. \u003cbr\u003e\u003cbr\u003eAlthough naturally occurring polymer foams have been known for a long time, (e.g., sponges, cork), synthetic polymer foams have only been introduced to the market over the last fifty years or so. The development of a new polymer has usually been quickly followed by its production in an expanded or foam form owing to the unique and useful properties, which can be realised in the expanded state. \u003cbr\u003e\u003cbr\u003eThis Handbook reviews the chemistry, manufacturing methods, properties and applications of the synthetic polymer foams used in most applications. In addition, a chapter is included on the fundamental principles, which apply to all polymer foams. There is also a chapter on the blowing agents used to expand polymers, blowing agents having undergone considerable change and development in recent years in order to meet the requirements of the Montreal Protocol in relation to the reduction and elimination of chloroflurocarbons (CFC) and other ozone depleting agents. A chapter is also included on microcellular foams - a relatively new development where applications are still being explored. Most chapters have references to facilitate further exploration of the topics. The chapters are all written by experts in the field. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to those just embarking upon an exploration of the subject of foams, whether in industry or academia. But this will be equally useful to those already working in the field, who need to know about different types of foam.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Foam Fundamentals (David Eaves, Independent Consultant)\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Foam Structure\u003cbr\u003e1.3 Foam Properties\u003cbr\u003e1.3.1 Compression Properties\u003cbr\u003e1.3.2 Energy Absorption Properties\u003cbr\u003e1.3.3 Thermal Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Blowing Agents (Sachida Singh, Huntsman Polyurethanes)\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Physical Blowing Agents\u003cbr\u003e2.2.1 Selection Criteria for Physical Blowing Agents\u003cbr\u003e2.2.2 Halogenated Hydrocarbons\u003cbr\u003e2.2.3 Hydrocarbons (HC)\u003cbr\u003e2.2.4 Inert Gases\u003cbr\u003e2.2.5 Other Physical Blowing Agents\u003cbr\u003e2.2.6 Blends of Physical Blowing Agents\u003cbr\u003e2.2.7 Encapsulated Physical Blowing Agents\u003cbr\u003e2.2.8 Physical Blowing Agent by Foam Type and Application\u003cbr\u003e2.3 Chemical Blowing Agents\u003cbr\u003e2.3.1 Selection Criteria for Chemical Blowing Agent\u003cbr\u003e2.3.2 Exothermic CBA\u003cbr\u003e2.3.3 Endothermic CBA\u003cbr\u003e2.3.4 Endo\/Exo Blends\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 Expanded Polystyrene: Development, Processing, Applications and Key Issues (Andrew Barnetson, BPF)\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.1.1 Development of Expanded Polystyrene (EPS)\u003cbr\u003e3.2 Manufacture of Expanded Polystyrene Mouldings\u003cbr\u003e3.3 Applications for Expanded Polystyrene Packaging\u003cbr\u003e3.3.1 Packaging\u003cbr\u003e3.3.2 Construction\u003cbr\u003e3.3.3 Other Applications\u003cbr\u003e3.3.4 Novel Applications\u003cbr\u003e3.4 Properties of EPS\u003cbr\u003e3.4.1 Mechanical Performance\u003cbr\u003e3.4.2 Thermal Insulation\u003cbr\u003e3.4.3 Chemical Properties\u003cbr\u003e3.4.4 Recent Research on Properties of EPS: Value for Fruit and Vegetables\u003cbr\u003e3.5 Global Structure of Markets and Companies\u003cbr\u003e3.5.1 Europe\u003cbr\u003e3.5.2 Asia\u003cbr\u003e3.5.3 USA\u003cbr\u003e3.6 Key Issues Facing the EPS Industry\u003cbr\u003e3.6.1 Fire\u003cbr\u003e3.6.2 Recycling\u003cbr\u003e3.6.2 Alternatives to Mechanical Recycling\u003cbr\u003eFurther Information \u003cbr\u003e\u003cbr\u003e4 Rigid Polyurethane Foams (David Eaves, Independent Consultant)\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Materials\u003cbr\u003e4.2.1 Polyols\u003cbr\u003e4.2.2 Isocyanates\u003cbr\u003e4.2.3 Blowing Agents\u003cbr\u003e4.2.4 Other Additives\u003cbr\u003e4.3 Manufacturing Processes for Rigid Polyurethane Foam\u003cbr\u003e4.4 Recycling Processes for Rigid Polyurethane Foam\u003cbr\u003e4.5 Properties of Rigid Polyurethane Foams\u003cbr\u003e4.6 Applications\u003cbr\u003e4.6.1 Applications in Construction\u003cbr\u003e4.6.2 Applications in the Appliance Industry\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Flexible Polyurethane Foam (Tyler Housel, Inolex Chemical Company)\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Chemistry\u003cbr\u003e5.3 Starting Materials\u003cbr\u003e5.3.1 Isocyanate\u003cbr\u003e5.3.2 Polyol\u003cbr\u003e5.3.3 Water\u003cbr\u003e5.3.4 Surfactant\u003cbr\u003e5.3.5 Catalyst\u003cbr\u003e5.3.6 Colorants\u003cbr\u003e5.3.7 Antioxidants\u003cbr\u003e5.3.8 Light Stabilisers\u003cbr\u003e5.3.9 Flame Retardants\u003cbr\u003e5.3.10 Adhesion Promoters\u003cbr\u003e5.3.11 Other Additives\u003cbr\u003e5.4 The Foaming Process\u003cbr\u003e5.4.1 Raw Material Conditioning\u003cbr\u003e5.4.2 Mixing\u003cbr\u003e5.4.3 Growth\u003cbr\u003e5.4.4 Cell Opening\u003cbr\u003e5.4.5 Cure\u003cbr\u003e5.5 Manufacturing Equipment\u003cbr\u003e5.5.1 Storage and Delivery\u003cbr\u003e5.5.2 Mixing\u003cbr\u003e5.5.3 Foam Rise and Cure\u003cbr\u003e5.5.4 Innovations\u003cbr\u003e5.6 Foam Characterisation\u003cbr\u003e5.6.1 Density\u003cbr\u003e5.6.2 Hardness\u003cbr\u003e5.6.3 Resilience\u003cbr\u003e5.6.4 Porosity\u003cbr\u003e5.6.5 Strength Properties\u003cbr\u003e5.6.6 Cell Structure\u003cbr\u003e5.6.7 Environmental Stability\u003cbr\u003e5.6.8 Fatigue\u003cbr\u003e5.6.9 Compression Set\u003cbr\u003e5.6.10 Flammability\u003cbr\u003e5.7 FPF Markets\u003cbr\u003e5.7.1 Transportation\u003cbr\u003e5.7.2 Comfort\u003cbr\u003e5.7.3 Carpet Cushion\u003cbr\u003e5.7.4 Packaging\u003cbr\u003e5.7.5 Specialty Applications\u003cbr\u003e5.8 Environmental Issues\u003cbr\u003e5.9 Organisations\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Rigid PVC Foam (Noreen Thomas, University of Loughborough)\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Foam Extrusion\u003cbr\u003e6.2.1 Basic Principles\u003cbr\u003e6.2.2 Extrusion Processes\u003cbr\u003e6.2.3 Effect of Processing Conditions\u003cbr\u003e6.3 Foam Formulation Technology\u003cbr\u003e6.3.1 Blowing Agents\u003cbr\u003e6.3.2 Processing Aids\u003cbr\u003e6.3.3 Type of PVC\u003cbr\u003e6.3.4 Stabilisers\u003cbr\u003e6.3.5 Lubricants\u003cbr\u003e6.3.6 Typical Formulations\u003cbr\u003e6.4 Properties\u003cbr\u003e6.5 Novel Processes and Applications\u003cbr\u003e6.5.1 Recycling\u003cbr\u003e6.5.2 Microcellular Foam\u003cbr\u003e6.5.3 Foamed Composites\u003cbr\u003e6.6 Summary\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Flexible PVC Foams (Chris Howick, EVC)\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Flexible Foam Types and PVC Types\u003cbr\u003e7.2.1 Flexible Foams Based on Suspension PVC\u003cbr\u003e7.2.2 Flexible Foams Based on Dispersion or Paste Resins\u003cbr\u003e7.2.3 Chemically Blown Foams from PVC Plastisols: Fundamentals\u003cbr\u003e7.2.4 PVC Resins used in Plastisol Foam Formation\u003cbr\u003e7.2.5 Mineral Fillers\u003cbr\u003e7.2.6 Pigments\u003cbr\u003e7.2.7 Liquid Plasticiser\u003cbr\u003e7.2.8 Blowing Agent Type and Level\u003cbr\u003e7.3 Products Utilising Foamed Plastisols\u003cbr\u003e7.3.1 Floorings and Carpet Backings\u003cbr\u003e7.3.2 Wallcoverings\u003cbr\u003e7.3.3 Synthetic Leather\u003cbr\u003e7.3.4 General Foams\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Polyolefin Foams (David Eaves, Independent Consultant)\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Manufacturing Processes and Materials\u003cbr\u003e8.2.1 Extruded Non-Crosslinked Foam\u003cbr\u003e8.2.2 Expanded (Non-Crosslinked) Polyolefin Beads\u003cbr\u003e8.2.3 Extruded Crosslinked Foam - Processes\u003cbr\u003e8.2.4 Press Moulded Crosslinked Foam Process\u003cbr\u003e8.2.5 Injection Moulded Foam Process\u003cbr\u003e8.2.6 The Nitrogen Autoclave Process\u003cbr\u003e8.2.7 Recycling Processes\u003cbr\u003e8.2.8 Post Manufacturing Operations\u003cbr\u003e8.3 Properties of Polyolefin Foams\u003cbr\u003e8.4 Applications\u003cbr\u003e8.5 Foam Specifications\u003cbr\u003e8.5.1 Packaging\u003cbr\u003e8.5.2 Automotive\u003cbr\u003e8.5.3 Furnishings\u003cbr\u003e8.5.4 Buoyancy\u003cbr\u003e8.5.5 Aerospace\u003cbr\u003e8.5.6 Construction\u003cbr\u003e8.5.7 Toys\u003cbr\u003e8.5.8 Food contact\u003cbr\u003e8.6 Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Latex Foam (Rani Joseph, Cochin University)\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Dunlop Process\u003cbr\u003e9.2.1 Batch Process\u003cbr\u003e9.2.2 Selecting a Formulation for Latex Compounds\u003cbr\u003e9.2.3 Selection of Other Compounding Ingredients\u003cbr\u003e9.2.4 Continuous Process for Latex Foam Production\u003cbr\u003e9.3 Talalay Process\u003cbr\u003e9.4 Trouble Shooting in Latex Foam Manufacture\u003cbr\u003e9.5 Testing\u003cbr\u003e9.5.1 Compression Set\u003cbr\u003e9.5.2 Indentation Hardness\u003cbr\u003e9.5.3 Flexing Resistance\u003cbr\u003e9.5.4 Density\u003cbr\u003e9.5.5 Metallic Impurities\u003cbr\u003e9.6 Important Uses of Latex Foam\u003cbr\u003e9.6.1 Transportation\u003cbr\u003e9.6.2 Furniture\u003cbr\u003e9.6.3 Special Uses\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Microcellular Foams (Vipin Kumar, University of Washington \u0026amp; Krishna Nadella, University of Washington)\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Processing of Microcellular Foams\u003cbr\u003e10.2.1 The Solid-State Batch Process\u003cbr\u003e10.2.2 The Semi-Continuous Process\u003cbr\u003e10.2.3 Extrusion and other Processing Methods\u003cbr\u003e10.3 Properties of Microcellular Foams\u003cbr\u003e10.4 Current Research Directions\u003cbr\u003e10.4.1 Microcellular Materials for Construction\u003cbr\u003e11.4.2 Open-Cell (Porous) Microcellular Foams\u003cbr\u003e10.4.3 Sub-Micron Foams and Nanofoams\u003cbr\u003e10.5 Commercial Opportunities\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Eaves studied polymer chemistry at the University in Birmingham and completed his doctorate in 1958. He then joined Dunlop in their Central Research and Development Laboratories in Birmingham, later going out to Ireland (Cork) and Japan (Kobe) to establish and manage overseas satellite research centres. In 1984 he left Dunlop and joined BP Chemicals' polyethylene foam operation in Croydon as Technical Manager. He was part of the management buy-out team in 1992 when the company was renamed 'Zotefoams', and retired in 1998 as Technical Director. He has published many papers on aspects of polymer and polymer foam technology and is the author of the Rapra report 'Polymer Foams: Trends in Use and Technology."}
Introduction to Automo...
$144.00
{"id":11242224580,"title":"Introduction to Automotive Composites","handle":"978-1-85957-279-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Tucker WMG, Warwick, and K. Lindsey, Gibbs Technology Ltd., Nuneaton \u003cbr\u003eISBN 978-1-85957-279-5 \u003cbr\u003e\u003cbr\u003epages: 200\n\u003ch5\u003eSummary\u003c\/h5\u003e\nComposites are being used more and more in the automotive industry, because of their strength, weight, quality and cost advantages. In 1998-1999, to further knowledge of composites, the Rover Group in conjunction with the Warwick Manufacturing Group devised a Composite Awareness course. This book is an updated and expanded version of the course notes. \u003cbr\u003e\u003cbr\u003eThis book is intended to give readers an appreciation of composites, materials properties, manufacturing technologies and the wider implications of using composites in the automotive sector. It will be useful for those already working with composites in automotive applications and for those who are considering using them in the future.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 What are Composites? \u003cbr\u003eThis chapter deals with the properties of composites, the types of composite commonly used for automotive applications and reinforcement with fibres. \u003cbr\u003e\u003cbr\u003e2 Polymer Chemistry and Physics \u003cbr\u003eThis chapter explains how polymers are formed and how the structure affects the physical and chemical properties of the resulting composite. \u003cbr\u003e\u003cbr\u003e3 Composite Ingredients \u003cbr\u003eThe differences between thermoplastics and thermosets are discussed. \u003cbr\u003e\u003cbr\u003e4 General Properties of Composites \u003cbr\u003eThe physical properties of composites, stiffness, strength, and toughness are explained and how these properties influence what sort of composite is obtained. Test methods and manufacturing methods are also covered. \u003cbr\u003e\u003cbr\u003e5 How can we use Composites in Car Manufacture? \u003cbr\u003eThe reasons for using composites are discussed. Examples are given of the use of composites in specific automotive examples. \u003cbr\u003e\u003cbr\u003e6 Manufacturing with Thermoset Composites. \u003cbr\u003eThis chapter covers manufacturing methods, such as resin infusion, pre-pregging, resin transfer moulding, structural reaction injection moulding, filament winding, and pultrusion. \u003cbr\u003e\u003cbr\u003e7 Manufacturing with Thermoplastic Composites \u003cbr\u003eThis chapter discusses manufacturing methods such as log fibre GMT and short fibre injection moulding. \u003cbr\u003e\u003cbr\u003e8 Economics of Composites Manufacture \u003cbr\u003eCovers cost analysis, comparison of materials costs and parts integration and modules. \u003cbr\u003e\u003cbr\u003e9 What to do with Composites at the end of Vehicle Life. \u003cbr\u003eMechanical and chemical recycling, thermal conversion and energy recovery are all covered in this chapter. \u003cbr\u003e\u003cbr\u003e10 The Future of Composites. \u003cbr\u003eThis chapter discusses the advantages of using composites, hypercars, and gives examples of future uses of composites indoors, bonnets and other automotive structures. \u003cbr\u003e\u003cbr\u003e11 Design Guidelines for Composites. \u003cbr\u003eThis chapter covers designing for composites, including choice of materials.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNick Tucker's first involvement in composites was a teenager, making canoes and motorcycle parts, after several adventures in further and higher education he started his industrial career in minerals processing. After reading for a Ph.D. at the University of Bradford based on the control of a reaction injection moulding (RIM) machine, he worked as a contract researcher at PERA. He then manufactured fire-resistant polyurethane foam articles including prison mattresses and the insulating linings for the air conditioning system in Hong Kong International Airport, before moving to the Warwick Manufacturing Group, where he is now the Faraday research fellow. He is now working to provide research and development facilities for small to medium sized enterprises and researching into the manufacture of composites from sustainable origin materials. \u003cbr\u003e\u003cbr\u003eKevin Lindsey studied at Brunel University, where he gained a first-class degree in materials science. After graduation, he took up a position at ICI in the acrylics business group. During this time Kevin started work on developing resin systems for improved mechanical properties, in particular, he developed techniques investigation of fibre\/matrix interface adhesion. Kevin continued his studies in this subject at the University of Nottingham where he gained a Ph.D. in mechanical engineering. He then joined the Rover Group where he worked on research projects investigating low mass materials for vehicle bodies, including the SALVO projects with the Warwick Manufacturing Group. He is now a Principal Engineer with Gibbs Technologies Ltd., working on the development of a novel niche vehicle.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:55-04:00","created_at":"2017-06-22T21:13:55-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","composites","fiber","filament winding","injection moulding","materials properties","molding","p-structural","plastic","polymer","pultrusion","rubber","technology"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378385476,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Introduction to Automotive Composites","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-279-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5_2f35f4e9-dfca-42a9-8766-e7f32404fb5a.jpg?v=1499724646"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5_2f35f4e9-dfca-42a9-8766-e7f32404fb5a.jpg?v=1499724646","options":["Title"],"media":[{"alt":null,"id":356471701597,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5_2f35f4e9-dfca-42a9-8766-e7f32404fb5a.jpg?v=1499724646"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5_2f35f4e9-dfca-42a9-8766-e7f32404fb5a.jpg?v=1499724646","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Tucker WMG, Warwick, and K. Lindsey, Gibbs Technology Ltd., Nuneaton \u003cbr\u003eISBN 978-1-85957-279-5 \u003cbr\u003e\u003cbr\u003epages: 200\n\u003ch5\u003eSummary\u003c\/h5\u003e\nComposites are being used more and more in the automotive industry, because of their strength, weight, quality and cost advantages. In 1998-1999, to further knowledge of composites, the Rover Group in conjunction with the Warwick Manufacturing Group devised a Composite Awareness course. This book is an updated and expanded version of the course notes. \u003cbr\u003e\u003cbr\u003eThis book is intended to give readers an appreciation of composites, materials properties, manufacturing technologies and the wider implications of using composites in the automotive sector. It will be useful for those already working with composites in automotive applications and for those who are considering using them in the future.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 What are Composites? \u003cbr\u003eThis chapter deals with the properties of composites, the types of composite commonly used for automotive applications and reinforcement with fibres. \u003cbr\u003e\u003cbr\u003e2 Polymer Chemistry and Physics \u003cbr\u003eThis chapter explains how polymers are formed and how the structure affects the physical and chemical properties of the resulting composite. \u003cbr\u003e\u003cbr\u003e3 Composite Ingredients \u003cbr\u003eThe differences between thermoplastics and thermosets are discussed. \u003cbr\u003e\u003cbr\u003e4 General Properties of Composites \u003cbr\u003eThe physical properties of composites, stiffness, strength, and toughness are explained and how these properties influence what sort of composite is obtained. Test methods and manufacturing methods are also covered. \u003cbr\u003e\u003cbr\u003e5 How can we use Composites in Car Manufacture? \u003cbr\u003eThe reasons for using composites are discussed. Examples are given of the use of composites in specific automotive examples. \u003cbr\u003e\u003cbr\u003e6 Manufacturing with Thermoset Composites. \u003cbr\u003eThis chapter covers manufacturing methods, such as resin infusion, pre-pregging, resin transfer moulding, structural reaction injection moulding, filament winding, and pultrusion. \u003cbr\u003e\u003cbr\u003e7 Manufacturing with Thermoplastic Composites \u003cbr\u003eThis chapter discusses manufacturing methods such as log fibre GMT and short fibre injection moulding. \u003cbr\u003e\u003cbr\u003e8 Economics of Composites Manufacture \u003cbr\u003eCovers cost analysis, comparison of materials costs and parts integration and modules. \u003cbr\u003e\u003cbr\u003e9 What to do with Composites at the end of Vehicle Life. \u003cbr\u003eMechanical and chemical recycling, thermal conversion and energy recovery are all covered in this chapter. \u003cbr\u003e\u003cbr\u003e10 The Future of Composites. \u003cbr\u003eThis chapter discusses the advantages of using composites, hypercars, and gives examples of future uses of composites indoors, bonnets and other automotive structures. \u003cbr\u003e\u003cbr\u003e11 Design Guidelines for Composites. \u003cbr\u003eThis chapter covers designing for composites, including choice of materials.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNick Tucker's first involvement in composites was a teenager, making canoes and motorcycle parts, after several adventures in further and higher education he started his industrial career in minerals processing. After reading for a Ph.D. at the University of Bradford based on the control of a reaction injection moulding (RIM) machine, he worked as a contract researcher at PERA. He then manufactured fire-resistant polyurethane foam articles including prison mattresses and the insulating linings for the air conditioning system in Hong Kong International Airport, before moving to the Warwick Manufacturing Group, where he is now the Faraday research fellow. He is now working to provide research and development facilities for small to medium sized enterprises and researching into the manufacture of composites from sustainable origin materials. \u003cbr\u003e\u003cbr\u003eKevin Lindsey studied at Brunel University, where he gained a first-class degree in materials science. After graduation, he took up a position at ICI in the acrylics business group. During this time Kevin started work on developing resin systems for improved mechanical properties, in particular, he developed techniques investigation of fibre\/matrix interface adhesion. Kevin continued his studies in this subject at the University of Nottingham where he gained a Ph.D. in mechanical engineering. He then joined the Rover Group where he worked on research projects investigating low mass materials for vehicle bodies, including the SALVO projects with the Warwick Manufacturing Group. He is now a Principal Engineer with Gibbs Technologies Ltd., working on the development of a novel niche vehicle.\u003cbr\u003e\u003cbr\u003e"}
Polymer Blends and All...
$120.00
{"id":11242253444,"title":"Polymer Blends and Alloys. Japanese Patent Content, 1975-85","handle":"1-895198-21-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Reiji Mezaki and Guang-Hui Ma \u003cbr\u003e10-ISBN 1-895198-21-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-21-8\u003c\/span\u003e\u003cbr\u003eMitsubishi Research Institute \u0026amp; Tokyo University of Agriculture and Technology, Tokyo, Japan\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNearly 55% of world patents in polymer blends and alloys are issued in Japan, and only a fraction of those is ever available in English translation (Chemical Abstracts, the most extensive source, includes short notes on less than 80% Japanese Patents). This creates two problems: inventors from countries other than Japan do not have sufficient information on new developments and many inventions are contested because they infringe on already given rights. Japanese consumer products have a dominant position in various areas of the world market. It is less recognized that this competitive advantage is partly due to a leadership position in materials used. Cars, radios, cameras, computers, etc., have a high content of the engineering plastics - the subject of the book. Due to a large number of patents issued in Japan on polymer blends, several volumes were already published with the aim to report currently filed applications. The currently available volumes are listed below. Each volume contains a complete review of patent applications in Japan in the area of blends. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eEach patent is described according to the same pattern, including:\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePatent number\u003cbr\u003eDate of laid open\u003cbr\u003eDate of application\u003cbr\u003eNames of inventors\u003cbr\u003eName of company\u003cbr\u003eTitle\u003cbr\u003eComposition of materials and methods of components preparation\u003cbr\u003eMethod of blend production\u003cbr\u003eMethods of blend processing in applications\u003cbr\u003eIntended applications\u003cbr\u003eAdvantages of blend.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eFollowing this consistent pattern of presentation and precise indexing system results in book easy to use (required information can be retrieved in minutes). Chemical formulas allow easy comparison with other similar products. Many other searches are possible. For example, polymers and polymer combinations used for particular application, the activity of a particular company in polymer blends and the direction of their efforts, advantages of blending with various polymers, etc. The volumes contain a description of from 800 to over 1000 patents issued in a current year. \u003cbr\u003e\u003cbr\u003eExpected readership includes the specialists in academia and industry in polymer chemistry, synthesis, technology, and processing, material science, molding, extrusion, new final product development, product design. The book is an invaluable source for patent offices and lawyers.\u003cbr\u003e\u003cbr\u003e","published_at":"2018-02-10T08:45:59-05:00","created_at":"2017-06-22T21:15:25-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1975-85","alloys","blends","book","japan","japanese patnet","p-structural","polymer","polymers"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378485060,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Blends and Alloys. Japanese Patent Content, 1975-85","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-21-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Reiji Mezaki and Guang-Hui Ma \u003cbr\u003e10-ISBN 1-895198-21-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-21-8\u003c\/span\u003e\u003cbr\u003eMitsubishi Research Institute \u0026amp; Tokyo University of Agriculture and Technology, Tokyo, Japan\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNearly 55% of world patents in polymer blends and alloys are issued in Japan, and only a fraction of those is ever available in English translation (Chemical Abstracts, the most extensive source, includes short notes on less than 80% Japanese Patents). This creates two problems: inventors from countries other than Japan do not have sufficient information on new developments and many inventions are contested because they infringe on already given rights. Japanese consumer products have a dominant position in various areas of the world market. It is less recognized that this competitive advantage is partly due to a leadership position in materials used. Cars, radios, cameras, computers, etc., have a high content of the engineering plastics - the subject of the book. Due to a large number of patents issued in Japan on polymer blends, several volumes were already published with the aim to report currently filed applications. The currently available volumes are listed below. Each volume contains a complete review of patent applications in Japan in the area of blends. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eEach patent is described according to the same pattern, including:\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePatent number\u003cbr\u003eDate of laid open\u003cbr\u003eDate of application\u003cbr\u003eNames of inventors\u003cbr\u003eName of company\u003cbr\u003eTitle\u003cbr\u003eComposition of materials and methods of components preparation\u003cbr\u003eMethod of blend production\u003cbr\u003eMethods of blend processing in applications\u003cbr\u003eIntended applications\u003cbr\u003eAdvantages of blend.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eFollowing this consistent pattern of presentation and precise indexing system results in book easy to use (required information can be retrieved in minutes). Chemical formulas allow easy comparison with other similar products. Many other searches are possible. For example, polymers and polymer combinations used for particular application, the activity of a particular company in polymer blends and the direction of their efforts, advantages of blending with various polymers, etc. The volumes contain a description of from 800 to over 1000 patents issued in a current year. \u003cbr\u003e\u003cbr\u003eExpected readership includes the specialists in academia and industry in polymer chemistry, synthesis, technology, and processing, material science, molding, extrusion, new final product development, product design. The book is an invaluable source for patent offices and lawyers.\u003cbr\u003e\u003cbr\u003e"}
Polymer Blends and All...
$120.00
{"id":11242252996,"title":"Polymer Blends and Alloys. Japanese Patent Content, 1991","handle":"1-895198-10-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Reiji Mezaki \u003cbr\u003e10-ISBN 1-895198-10-0 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-10-2\u003c\/span\u003e\u003cbr\u003e291 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNearly 55% of world patents in polymer blends and alloys are issued in Japan, and only a fraction of those is ever available in English translation (Chemical Abstracts, the most extensive source, includes short notes on less than 80% Japanese Patents). This creates two problems: inventors from countries other than Japan do not have sufficient information on new developments and many inventions are contested because they infringe on already given rights. Japanese consumer products have a dominant position in various areas of the world market. It is less recognized that this competitive advantage is partly due to a leadership position in materials used. Cars, radios, cameras, computers, etc., have a high content of the engineering plastics - the subject of the book. Due to a large number of patents issued in Japan on polymer blends, several volumes were already published with aim to report currently filed applications. The currently available volumes are listed below. Each volume contains a complete review of patent applications in Japan in the area of blends. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eEach patent is described according to the same pattern, including:\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePatent number\u003cbr\u003eDate of laid open\u003cbr\u003eDate of application\u003cbr\u003eNames of inventors\u003cbr\u003eName of company\u003cbr\u003eTitle\u003cbr\u003eComposition of materials and methods of components preparation\u003cbr\u003eMethod of blend production\u003cbr\u003eMethods of blend processing in applications\u003cbr\u003eIntended applications\u003cbr\u003eAdvantages of blend.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eFollowing this consistent pattern of presentation and precise indexing system results in book easy to use (required information can be retrieved in minutes). Chemical formulas allow easy comparison with other similar products. Many other searches are possible. For example, polymers and polymer combinations used for particular application, the activity of a particular company in polymer blends and the direction of their efforts, advantages of blending with various polymers, etc. The volumes contain a description of from 800 to over 1000 patents issued in a current year. \u003cbr\u003e\u003cbr\u003eExpected readership includes the specialists in academia and industry in polymer chemistry, synthesis, technology, and processing, material science, molding, extrusion, new final product development, product design. The book is an invaluable source for patent offices and lawyers.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:23-04:00","created_at":"2017-06-22T21:15:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1991","acrylic polymers","alloys","blends","book","japan","japanese patnet","p-structural","polymers"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378482692,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Blends and Alloys. Japanese Patent Content, 1991","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-10-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Reiji Mezaki \u003cbr\u003e10-ISBN 1-895198-10-0 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-10-2\u003c\/span\u003e\u003cbr\u003e291 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNearly 55% of world patents in polymer blends and alloys are issued in Japan, and only a fraction of those is ever available in English translation (Chemical Abstracts, the most extensive source, includes short notes on less than 80% Japanese Patents). This creates two problems: inventors from countries other than Japan do not have sufficient information on new developments and many inventions are contested because they infringe on already given rights. Japanese consumer products have a dominant position in various areas of the world market. It is less recognized that this competitive advantage is partly due to a leadership position in materials used. Cars, radios, cameras, computers, etc., have a high content of the engineering plastics - the subject of the book. Due to a large number of patents issued in Japan on polymer blends, several volumes were already published with aim to report currently filed applications. The currently available volumes are listed below. Each volume contains a complete review of patent applications in Japan in the area of blends. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eEach patent is described according to the same pattern, including:\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePatent number\u003cbr\u003eDate of laid open\u003cbr\u003eDate of application\u003cbr\u003eNames of inventors\u003cbr\u003eName of company\u003cbr\u003eTitle\u003cbr\u003eComposition of materials and methods of components preparation\u003cbr\u003eMethod of blend production\u003cbr\u003eMethods of blend processing in applications\u003cbr\u003eIntended applications\u003cbr\u003eAdvantages of blend.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eFollowing this consistent pattern of presentation and precise indexing system results in book easy to use (required information can be retrieved in minutes). Chemical formulas allow easy comparison with other similar products. Many other searches are possible. For example, polymers and polymer combinations used for particular application, the activity of a particular company in polymer blends and the direction of their efforts, advantages of blending with various polymers, etc. The volumes contain a description of from 800 to over 1000 patents issued in a current year. \u003cbr\u003e\u003cbr\u003eExpected readership includes the specialists in academia and industry in polymer chemistry, synthesis, technology, and processing, material science, molding, extrusion, new final product development, product design. The book is an invaluable source for patent offices and lawyers.\u003cbr\u003e\u003cbr\u003e"}
Polymer Blends and All...
$120.00
{"id":11242253060,"title":"Polymer Blends and Alloys. Japanese Patent Content, 1992","handle":"1-895198-13-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Reiji Mezaki \u003cbr\u003e10-ISBN 1-895198-13-5 \u003cbr\u003e13-ISBN 978-1-895198-13-3\u003cbr\u003e415 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNearly 55% of world patents in polymer blends and alloys are issued in Japan, and only a fraction of those is ever available in English translation (Chemical Abstracts, the most extensive source, includes short notes on less than 80% Japanese Patents). This creates two problems: inventors from countries other than Japan do not have sufficient information on new developments and many inventions are contested because they infringe on already given rights. Japanese consumer products have a dominant position in various areas of the world market. It is less recognized that this competitive advantage is partly due to a leadership position in materials used. Cars, radios, cameras, computers, etc., have a high content of the engineering plastics - the subject of the book. Due to a large number of patents issued in Japan on polymer blends, several volumes were already published with the aim to report currently filed applications. The currently available volumes are listed below. Each volume contains a complete review of patent applications in Japan in the area of blends. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eEach patent is described according to the same pattern, including:\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePatent number\u003cbr\u003eDate of laid open\u003cbr\u003eDate of application\u003cbr\u003eNames of inventors\u003cbr\u003eName of company\u003cbr\u003eTitle\u003cbr\u003eComposition of materials and methods of components preparation\u003cbr\u003eMethod of blend production\u003cbr\u003eMethods of blend processing in applications\u003cbr\u003eIntended applications\u003cbr\u003eAdvantages of blend.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eFollowing this consistent pattern of presentation and precise indexing system results in book easy to use (required information can be retrieved in minutes). Chemical formulas allow easy comparison with other similar products. Many other searches are possible. For example, polymers and polymer combinations used for particular application, the activity of a particular company in polymer blends and the direction of their efforts, advantages of blending with various polymers, etc. The volumes contain a description of from 800 to over 1000 patents issued in a current year. \u003cbr\u003e\u003cbr\u003eExpected readership includes the specialists in academia and industry in polymer chemistry, synthesis, technology, and processing, material science, molding, extrusion, new final product development, product design. The book is an invaluable source for patent offices and lawyers.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:24-04:00","created_at":"2017-06-22T21:15:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1992","alloys","blends","book","japan","japanese patnet","p-structural","polymer","polymers"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378483140,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Blends and Alloys. Japanese Patent Content, 1992","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-13-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Reiji Mezaki \u003cbr\u003e10-ISBN 1-895198-13-5 \u003cbr\u003e13-ISBN 978-1-895198-13-3\u003cbr\u003e415 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNearly 55% of world patents in polymer blends and alloys are issued in Japan, and only a fraction of those is ever available in English translation (Chemical Abstracts, the most extensive source, includes short notes on less than 80% Japanese Patents). This creates two problems: inventors from countries other than Japan do not have sufficient information on new developments and many inventions are contested because they infringe on already given rights. Japanese consumer products have a dominant position in various areas of the world market. It is less recognized that this competitive advantage is partly due to a leadership position in materials used. Cars, radios, cameras, computers, etc., have a high content of the engineering plastics - the subject of the book. Due to a large number of patents issued in Japan on polymer blends, several volumes were already published with the aim to report currently filed applications. The currently available volumes are listed below. Each volume contains a complete review of patent applications in Japan in the area of blends. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eEach patent is described according to the same pattern, including:\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePatent number\u003cbr\u003eDate of laid open\u003cbr\u003eDate of application\u003cbr\u003eNames of inventors\u003cbr\u003eName of company\u003cbr\u003eTitle\u003cbr\u003eComposition of materials and methods of components preparation\u003cbr\u003eMethod of blend production\u003cbr\u003eMethods of blend processing in applications\u003cbr\u003eIntended applications\u003cbr\u003eAdvantages of blend.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eFollowing this consistent pattern of presentation and precise indexing system results in book easy to use (required information can be retrieved in minutes). Chemical formulas allow easy comparison with other similar products. Many other searches are possible. For example, polymers and polymer combinations used for particular application, the activity of a particular company in polymer blends and the direction of their efforts, advantages of blending with various polymers, etc. The volumes contain a description of from 800 to over 1000 patents issued in a current year. \u003cbr\u003e\u003cbr\u003eExpected readership includes the specialists in academia and industry in polymer chemistry, synthesis, technology, and processing, material science, molding, extrusion, new final product development, product design. The book is an invaluable source for patent offices and lawyers.\u003cbr\u003e\u003cbr\u003e"}
Polyolefin Foams
$125.00
{"id":11242224644,"title":"Polyolefin Foams","handle":"978-1-85957-434-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N.J. Mills \u003cbr\u003eISBN 978-1-85957-434-8 \u003cbr\u003e\u003cbr\u003ePublished: 2004\u003cbr\u003epages 138\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer Foams are used in many different types of applications and it is hard to find an area where they are not utilised. Polyolefin Foams are a relatively recent development compared to the other types of foam. The Polyolefin foam processes were developed in the 1960s and 1970s.\u003cbr\u003eThis Review starts with a brief history of the subject and then reports on the current situation regarding Polyolefin Foams. The section on processing discusses the properties required for successful foam production. The polymer section then describes the molecular structures necessary to produce the required properties and then considers novel polymer that can be used for foams. The properties section covers the mechanical and thermal properties and how these can be used to best advantage, while the applications section discusses how these properties can be used.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Polymers\u003cbr\u003e2.1 Polyethylenes\u003cbr\u003e2.1.1 Blends\u003cbr\u003e2.2 Ethylene-Styrene ‘Interpolymers’\u003cbr\u003e2.3 EPDM\u003cbr\u003e2.4 Polypropylenes \u003cbr\u003e3 Processing\u003cbr\u003e3.1 Melt Rheology Suitable for Foaming\u003cbr\u003e3.2 Foam Expansion\u003cbr\u003e3.2.1 Control of Cell Size and Cell Stability\u003cbr\u003e3.2.2 Control of Density\u003cbr\u003e3.3 Post-Extrusion Shrinkage\u003cbr\u003e3.4 Rotomoulding\u003cbr\u003e3.5 Microcellular Foams\u003cbr\u003e3.6 Oriented PP Foams – Strandfoam \u0026lt; \u003cbr\u003e4 Mechanical Properties\u003cbr\u003e4.1 Initial Response in Compression\u003cbr\u003e4.2 Bulk Modulus\u003cbr\u003e4.3 Compressive Collapse\u003cbr\u003e4.4 High Strain Compressive Response\u003cbr\u003e4.5 Heat Transfer from Gas to Polymer During High Strain Compression\u003cbr\u003e4.6 Creep Response and Air Loss from Cells\u003cbr\u003e4.7 Recovery After Creep\u003cbr\u003e4.8 Fatigue\u003cbr\u003e4.9 Cushion Curves for Impact Response\u003cbr\u003e4.10 Impact Response in Shear or Shear Plus Compression\u003cbr\u003e4.11 Recovery After Impact\u003cbr\u003e4.12 Multiple Impacts \u003cbr\u003e5 Thermal Properties\u003cbr\u003e5.1 Dynamic Mechanical Thermal Analysis (DMTA)\u003cbr\u003e5.2 Thermal Expansion\u003cbr\u003e5.3 Thermal Conductivity \u003cbr\u003e6 Applications\u003cbr\u003e6.1 Packaging Against Impact Damage\u003cbr\u003e6.2 EVA in Running Shoe Midsoles\u003cbr\u003e6.3 Body Armour\u003cbr\u003e6.4 Helmets\u003cbr\u003e6.5 Soccer Shin Protectors\u003cbr\u003e6.6 Automotive \u003cbr\u003e7 Market Growth\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNigel Mills, D.Eng., Ph. D, F.I.M. graduated in Natural Sciences from Kings College, Cambridge, and then worked for ICI Petrochemical and Polymer Laboratory in Runcorn from 1964 to 1970. Since then he has been at Birmingham University, where he is currently Reader in Polymer Engineering, in the Metallurgy and Materials Department. His research interests include modeling and testing the mechanical properties of polymer foams, and the testing and design of protective helmets, clothing, and shoes. The latter involves linking injury criteria to product performance tests. His research group is equipped for impact, creep and fracture testing of foams and plastics, and testing of helmets and sports equipment. He is chairman of the British Standards committee for motorcycle helmets. He has published 140 papers on foam and polymer properties and applications.","published_at":"2017-06-22T21:13:56-04:00","created_at":"2017-06-22T21:13:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","automotive","blends","book","cells","conductivity","creep","expansion","fatigue","foams","helmets","impact","market growth","p-structural","packaging","polymer","polymers","polyolefin","response","shear","soccer","thermal"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378386180,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polyolefin Foams","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-434-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381","options":["Title"],"media":[{"alt":null,"id":358708510813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N.J. Mills \u003cbr\u003eISBN 978-1-85957-434-8 \u003cbr\u003e\u003cbr\u003ePublished: 2004\u003cbr\u003epages 138\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer Foams are used in many different types of applications and it is hard to find an area where they are not utilised. Polyolefin Foams are a relatively recent development compared to the other types of foam. The Polyolefin foam processes were developed in the 1960s and 1970s.\u003cbr\u003eThis Review starts with a brief history of the subject and then reports on the current situation regarding Polyolefin Foams. The section on processing discusses the properties required for successful foam production. The polymer section then describes the molecular structures necessary to produce the required properties and then considers novel polymer that can be used for foams. The properties section covers the mechanical and thermal properties and how these can be used to best advantage, while the applications section discusses how these properties can be used.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Polymers\u003cbr\u003e2.1 Polyethylenes\u003cbr\u003e2.1.1 Blends\u003cbr\u003e2.2 Ethylene-Styrene ‘Interpolymers’\u003cbr\u003e2.3 EPDM\u003cbr\u003e2.4 Polypropylenes \u003cbr\u003e3 Processing\u003cbr\u003e3.1 Melt Rheology Suitable for Foaming\u003cbr\u003e3.2 Foam Expansion\u003cbr\u003e3.2.1 Control of Cell Size and Cell Stability\u003cbr\u003e3.2.2 Control of Density\u003cbr\u003e3.3 Post-Extrusion Shrinkage\u003cbr\u003e3.4 Rotomoulding\u003cbr\u003e3.5 Microcellular Foams\u003cbr\u003e3.6 Oriented PP Foams – Strandfoam \u0026lt; \u003cbr\u003e4 Mechanical Properties\u003cbr\u003e4.1 Initial Response in Compression\u003cbr\u003e4.2 Bulk Modulus\u003cbr\u003e4.3 Compressive Collapse\u003cbr\u003e4.4 High Strain Compressive Response\u003cbr\u003e4.5 Heat Transfer from Gas to Polymer During High Strain Compression\u003cbr\u003e4.6 Creep Response and Air Loss from Cells\u003cbr\u003e4.7 Recovery After Creep\u003cbr\u003e4.8 Fatigue\u003cbr\u003e4.9 Cushion Curves for Impact Response\u003cbr\u003e4.10 Impact Response in Shear or Shear Plus Compression\u003cbr\u003e4.11 Recovery After Impact\u003cbr\u003e4.12 Multiple Impacts \u003cbr\u003e5 Thermal Properties\u003cbr\u003e5.1 Dynamic Mechanical Thermal Analysis (DMTA)\u003cbr\u003e5.2 Thermal Expansion\u003cbr\u003e5.3 Thermal Conductivity \u003cbr\u003e6 Applications\u003cbr\u003e6.1 Packaging Against Impact Damage\u003cbr\u003e6.2 EVA in Running Shoe Midsoles\u003cbr\u003e6.3 Body Armour\u003cbr\u003e6.4 Helmets\u003cbr\u003e6.5 Soccer Shin Protectors\u003cbr\u003e6.6 Automotive \u003cbr\u003e7 Market Growth\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNigel Mills, D.Eng., Ph. D, F.I.M. graduated in Natural Sciences from Kings College, Cambridge, and then worked for ICI Petrochemical and Polymer Laboratory in Runcorn from 1964 to 1970. Since then he has been at Birmingham University, where he is currently Reader in Polymer Engineering, in the Metallurgy and Materials Department. His research interests include modeling and testing the mechanical properties of polymer foams, and the testing and design of protective helmets, clothing, and shoes. The latter involves linking injury criteria to product performance tests. His research group is equipped for impact, creep and fracture testing of foams and plastics, and testing of helmets and sports equipment. He is chairman of the British Standards committee for motorcycle helmets. He has published 140 papers on foam and polymer properties and applications."}
Processing and Propert...
$125.00
{"id":11242238340,"title":"Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends","handle":"1-895198-04-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. D. Acierno, Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-04-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-04-1\u003c\/span\u003e\u003cbr\u003eUniversity of Salerno and University of Palermo, Italy\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e230 pages, 11 tables, 152 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nLiquid crystalline polymers receive a great deal of attention for their impact on polymer structure and morphology understanding and their practical applications. \u003cbr\u003ePractical benefits of LPCs use are numerous:\u003cbr\u003e\u003cbr\u003eA small addition (5%) reduces blend viscosity they are excellent processing aids LCPs can be blended with common thermoplasts using the existing process technology in situ composites produced in simple process small additions act as a reinforcing phase ultra-high moduli, characteristic for high performance materials, are due to a high degree of crystallinity and molecular orientation materials of high mechanical stiffness result LCP particles elongate into fibrils, oriented in machine direction LCPs lower polymer melting temperature that allows to process polymers whose high processing temperature represents severe restriction.\u003cbr\u003eThe above mentioned and other important phenomena are discussed and illustrated by numerous examples in this book.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStructure and rheology of Aramid solutions: relation to the Aramid fiber modulus. S. J. Picken, M. G. Northold, and S. van der Zwaag \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMechanical\/thermal pretreatment of LCP melts and its influence on the rheological behavior of these polymers. K. Geiger \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSynthesis, processing, and properties of semirigid, thermotropic LC copolymers. U. Pedretti, A. Roggero, V. Citta, E. Montani, F. P. La Mantia, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe rheology of LCP blends. M. Hawksworth, J. B. Hull, and A. A. Collyer \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMulticomponent blends based of LCP. V. Kulichikhin, A. Bilibin, M. Zabugina, A. Semakov, and R. Zakharyan \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMelt rheology and morphology of in situ composites. M. Kozlowski \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThermotropic polymer composites. E. Suokas, P. Jarvela, and P. Tormala \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eCharacterization of blends of poly(phenylene sulfide) with LC copolyesteramide. L. I. Minkova, S. De Petris, M. Paci, M. Pracella, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of polycarbonate with LCP. A. Valenza, V. Citta, U. Pedretti, F. P. La Mantia, M. Paci, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends based on engineering polymers: the effect of the inclusion of thermotropic LCPs on the physical properties of the matrix. M. R. Nobile, L. Incarnato, G. Marino, and D. Acierno \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eFormation and stability of LCP fibers in a thermoplastic elastomeric matrix. H. Verhoogt, C. R. J. Willems, H. C. Langelaan, J. van Dam, and A. Posthuma de Boer \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","applications","blends","book","crystalline","crystallinity","fibers","fibrils","LCP","liquid","melts","morphology","p-structural","polymer","polymerization","polymers","process","rheology","stability","stiffness","structure","viscosity"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428100,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-04-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768","options":["Title"],"media":[{"alt":null,"id":412803629149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. D. Acierno, Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-04-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-04-1\u003c\/span\u003e\u003cbr\u003eUniversity of Salerno and University of Palermo, Italy\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e230 pages, 11 tables, 152 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nLiquid crystalline polymers receive a great deal of attention for their impact on polymer structure and morphology understanding and their practical applications. \u003cbr\u003ePractical benefits of LPCs use are numerous:\u003cbr\u003e\u003cbr\u003eA small addition (5%) reduces blend viscosity they are excellent processing aids LCPs can be blended with common thermoplasts using the existing process technology in situ composites produced in simple process small additions act as a reinforcing phase ultra-high moduli, characteristic for high performance materials, are due to a high degree of crystallinity and molecular orientation materials of high mechanical stiffness result LCP particles elongate into fibrils, oriented in machine direction LCPs lower polymer melting temperature that allows to process polymers whose high processing temperature represents severe restriction.\u003cbr\u003eThe above mentioned and other important phenomena are discussed and illustrated by numerous examples in this book.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStructure and rheology of Aramid solutions: relation to the Aramid fiber modulus. S. J. Picken, M. G. Northold, and S. van der Zwaag \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMechanical\/thermal pretreatment of LCP melts and its influence on the rheological behavior of these polymers. K. Geiger \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSynthesis, processing, and properties of semirigid, thermotropic LC copolymers. U. Pedretti, A. Roggero, V. Citta, E. Montani, F. P. La Mantia, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe rheology of LCP blends. M. Hawksworth, J. B. Hull, and A. A. Collyer \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMulticomponent blends based of LCP. V. Kulichikhin, A. Bilibin, M. Zabugina, A. Semakov, and R. Zakharyan \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMelt rheology and morphology of in situ composites. M. Kozlowski \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThermotropic polymer composites. E. Suokas, P. Jarvela, and P. Tormala \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eCharacterization of blends of poly(phenylene sulfide) with LC copolyesteramide. L. I. Minkova, S. De Petris, M. Paci, M. Pracella, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of polycarbonate with LCP. A. Valenza, V. Citta, U. Pedretti, F. P. La Mantia, M. Paci, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends based on engineering polymers: the effect of the inclusion of thermotropic LCPs on the physical properties of the matrix. M. R. Nobile, L. Incarnato, G. Marino, and D. Acierno \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eFormation and stability of LCP fibers in a thermoplastic elastomeric matrix. H. Verhoogt, C. R. J. Willems, H. C. Langelaan, J. van Dam, and A. Posthuma de Boer \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Reinforced Thermoplast...
$75.00
{"id":11242254404,"title":"Reinforced Thermoplastics - Composition, Processing and Applications","handle":"978-0-902348-78-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.G. Kelleher \u003cbr\u003eISBN 978-0-902348-78-3 \u003cbr\u003e\u003cbr\u003eNew Jersey Polymer Extension Center\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003eReview Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report covers semi and non-crystalline thermoplastics, polymer blends, and various classes of reinforcing fibers and their properties which determine their suitability for specific applications. The long-term properties are discussed and effect of external forces, heat, weathering, chemical attack, and frictional wear. The uses in telecommunication, medical devices, sporting goods, and automotive applications provide an indication of the potential of these materials. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFibers:\u003c\/strong\u003e glass, ceramic, wollastonite, asbestos, carbon-graphite, aramid, UHMWPE, rigid rod \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Content:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eReinforcing Fibers\u003c\/li\u003e\n\u003cli\u003eEffect of Reinforcement\u003c\/li\u003e\n\u003cli\u003eTime-dependent Properties\u003c\/li\u003e\n\u003cli\u003eFactors Affecting Properties\u003c\/li\u003e\n\u003cli\u003eInjection Molding\u003c\/li\u003e\n\u003cli\u003eInfluence of Processing on Morphology\u003c\/li\u003e\n\u003cli\u003eApplications of Thermoplastic Composites\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:15:28-04:00","created_at":"2017-06-22T21:15:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","aramid","asbestos","book","carbon-graphite","ceramic","composition","glass","p-structural","polymer","processing","rigid rod","thermoplastics","UHMWPE","wollastonite"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378489860,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Reinforced Thermoplastics - Composition, Processing and Applications","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-902348-78-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-902348-78-3.jpg?v=1499954163"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-902348-78-3.jpg?v=1499954163","options":["Title"],"media":[{"alt":null,"id":358734430301,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-902348-78-3.jpg?v=1499954163"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-902348-78-3.jpg?v=1499954163","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.G. Kelleher \u003cbr\u003eISBN 978-0-902348-78-3 \u003cbr\u003e\u003cbr\u003eNew Jersey Polymer Extension Center\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003eReview Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report covers semi and non-crystalline thermoplastics, polymer blends, and various classes of reinforcing fibers and their properties which determine their suitability for specific applications. The long-term properties are discussed and effect of external forces, heat, weathering, chemical attack, and frictional wear. The uses in telecommunication, medical devices, sporting goods, and automotive applications provide an indication of the potential of these materials. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFibers:\u003c\/strong\u003e glass, ceramic, wollastonite, asbestos, carbon-graphite, aramid, UHMWPE, rigid rod \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Content:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eReinforcing Fibers\u003c\/li\u003e\n\u003cli\u003eEffect of Reinforcement\u003c\/li\u003e\n\u003cli\u003eTime-dependent Properties\u003c\/li\u003e\n\u003cli\u003eFactors Affecting Properties\u003c\/li\u003e\n\u003cli\u003eInjection Molding\u003c\/li\u003e\n\u003cli\u003eInfluence of Processing on Morphology\u003c\/li\u003e\n\u003cli\u003eApplications of Thermoplastic Composites\u003c\/li\u003e\n\u003c\/ul\u003e"}
Shape Memory Polymers:...
$205.00
{"id":11242241156,"title":"Shape Memory Polymers: Fundamentals, Advances and Applications","handle":"9781909030329","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","blends","book","mechanical properties","medical applications","modelling","morphology","p-applications","p-structural","polymer","polymer composite","polymers","shape-memory","structure","textile applications"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Shape Memory Polymers: Fundamentals, Advances and Applications","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781909030329","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","options":["Title"],"media":[{"alt":null,"id":358743539805,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}
Structure and Properti...
$205.00
{"id":11242242948,"title":"Structure and Properties of Crosslinked Polymers","handle":"978-1-84735-559-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","crosslinked polymers","epoxy polymers","nanocomposites","p-additives","p-structural","polymer","supersegmental structure"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Structure and Properties of Crosslinked Polymers","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-559-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","options":["Title"],"media":[{"alt":null,"id":358766608477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Wood-polymers Composites
$230.00
{"id":11242206468,"title":"Wood-polymers Composites","handle":"978-1-4200761-1-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Oksman, M. Sain \u003cbr\u003eISBN 978-1-4200761-1-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWood-polymer composites (WPC) are materials in which wood is impregnated with monomers that are then polymerized in the wood to tailor the material for special applications. The resulting properties of these materials, from lightness and enhanced mechanical properties to greater sustainability, has meant a growing number of applications in such areas as building, construction and automotive engineering. This important book reviews the manufacture of wood-polymer composites, how their properties can be assessed and improved and their range of uses. \u003cbr\u003e\u003cbr\u003eAfter an introductory chapter, the book reviews key aspects of manufacture, including raw materials, manufacturing technologies and interactions between wood and synthetic polymers. Building on this foundation, the following group of chapters discusses mechanical and other properties such as durability, creep behavior and processing performance. The book concludes by looking at orientated wood-polymer composites, wood-polymer composite foams, at ways of assessing performance and at the range of current and future applications. \u003cbr\u003e\u003cbr\u003eWith its distinguished editors and international team of contributors, Wood-polymer composites will be a valuable reference for all those using and studying these important materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eIntroduction\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Oksman Niska Luleå University of Technology, Sweden and M Sain University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eRaw Materials for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eC Clemons, USDA Forest Service, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Polymers: structure and properties\u003cbr\u003e\u003cbr\u003e- Wood: structure and properties\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAdditives for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eD V Satov, Canada Colors and Chemicals Limited, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Lubricants and rheology control additives for thermoplastic composites\u003cbr\u003e\u003cbr\u003e- Coupling agents\u003cbr\u003e\u003cbr\u003e- Stabilizers\u003cbr\u003e\u003cbr\u003e- Fillers\u003cbr\u003e\u003cbr\u003e- Density reduction additives\u003cbr\u003e\u003cbr\u003e- Biocides\u003cbr\u003e\u003cbr\u003e- Product aesthetics additives\u003cbr\u003e\u003cbr\u003e- Flame retardants and smoke suppressants\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eInteractions Between Wood and Synthetic Polymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Oksman Niska and A Sanadi, Luleå University of Technology, Sweden\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- The interface and interphase in composites\u003cbr\u003e\u003cbr\u003e- Wetting, adhesion and dispersion\u003cbr\u003e\u003cbr\u003e- Techniques to evaluate interfacial interactions and adhesion\u003cbr\u003e\u003cbr\u003e- Improving interface interactions in wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Interphase effects on other properties\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eManufacturing Technologies for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eD Schwendemann, Coperion Werner \u0026amp; Pfleiderer GmbH \u0026amp; Co. KG, Germany\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Raw material handling\u003cbr\u003e\u003cbr\u003e- Compounding technologies\u003cbr\u003e\u003cbr\u003e- Pelletizing systems\u003cbr\u003e\u003cbr\u003e- Profile extrusion\u003cbr\u003e\u003cbr\u003e- Injection moulding\u003cbr\u003e\u003cbr\u003e- Sheet extrusion\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMechanical Properties of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eM Sain and M Pervaiz, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Mechanical performance of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- General mechanical properties of wood-polymer composites and test methods\u003cbr\u003e\u003cbr\u003e- Critical parameters affecting mechanical properties of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMicromechanical Modelling of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eR C Neagu, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland and E K Gamstedt, Kungliga Tekniska Högskolan (KTH), Sweden\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Elastic properties\u003cbr\u003e\u003cbr\u003e- Hygroexpansion\u003cbr\u003e\u003cbr\u003e- Strength\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eOutdoor Durability of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eN Stark, USDA Forest Service and D Gardner, University of Maine, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Characteristics of raw materials\u003cbr\u003e\u003cbr\u003e- Changes in composite properties with exposure\u003cbr\u003e\u003cbr\u003e- Methods for protection\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- Sources of further information and advice\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCreep Behaviour and Damage of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eN Marcovich and M I Aranguren, Universidad Nacional de Mar del Plata, Argentina\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Viscoelasticity and creep\u003cbr\u003e\u003cbr\u003e- Creep in wood-plastic composites\u003cbr\u003e\u003cbr\u003e- Creep failure and material damage\u003cbr\u003e\u003cbr\u003e- Conclusions and future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eProcessing Performance of Extruded Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Englund with M Wolcott, Washington State University, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Current extrusion processing methods for natural fiber thermoplastic composites\u003cbr\u003e\u003cbr\u003e- Rheology of a wood fiber-filled thermoplastic\u003cbr\u003e\u003cbr\u003e- Commercial wood-polymer composites\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eOriented Wood-Polymer Composites and Related Materials\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eF W Maine, Frank Maine Consulting Ltd, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Orientation of polymers\u003cbr\u003e\u003cbr\u003e- Applications\u003cbr\u003e\u003cbr\u003e- Current developments\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWood-Polymer Composite Foams\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eG Guo, University of Southern California, USA, G Rizvi, University of Ontario Institute of Technology and C B Park, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Structure and characterization of wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Critical issues in production of wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Fundamental mechanisms in blowing agent-based foaming of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with chemical blowing agents\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with physical blowing agents\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with heat expandable microspheres\u003cbr\u003e\u003cbr\u003e- Void formation in wood-polymer composites using stretching technology\u003cbr\u003e\u003cbr\u003e- Effects of additives on wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Summary and future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePerformance Measurement and Construction Applications of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eR J Tichy, Washington State University, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Performance measures and building codes\u003cbr\u003e\u003cbr\u003e- Wood-polymer composite properties\u003cbr\u003e\u003cbr\u003e- Building construction applications\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eLife Cycle Assessment (LCA) of Wood-Polymer Composites: a Case-Study\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eT Thamae and C Baillie, Queens University, Canada\u003cbr\u003e\u003cbr\u003e- Introduction: comparing wood-polymer and glass-fibre reinforced polypropylene car door panels\u003cbr\u003e\u003cbr\u003e- The life cycle assessment process\u003cbr\u003e\u003cbr\u003e- Goal and scope definition\u003cbr\u003e\u003cbr\u003e- Inventory\u003cbr\u003e\u003cbr\u003e- Impact assessment\u003cbr\u003e\u003cbr\u003e- Interpretation\u003cbr\u003e\u003cbr\u003e- The possible effect of European Union legislation on end-of-life vehicles\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- Acknowledgements\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMarket and Future Trends for Wood-Polymer Composites In Europe: The Example Of Germany\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eM Carus and C Gahle, nova-Institut and H Korte, Innovationsberatung Holz \u0026amp; Fasern, Germany\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- The development of the European market: the example of Germany\u003cbr\u003e\u003cbr\u003e- The most significant wood-polymer composite products in the European market\u003cbr\u003e\u003cbr\u003e- Future trends: markets\u003cbr\u003e\u003cbr\u003e- Future trends: processing and materials\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- Wood-polymer composite codes, standards, research and manufacturing in Europe\u003cbr\u003e\u003cbr\u003e- The nova-Institut and Innovationsberatung Holz und Fasern\u003cbr\u003e\u003cbr\u003e- Examples of wood polymer-composite products\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eImproving Wood-Polymer Composite Products: A Case Study\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA Klyosov, MIR International Inc., USA\u003cbr\u003e\u003cbr\u003e- Introduction: wood-polymer composite decking\u003cbr\u003e\u003cbr\u003e- Brands and manufacturers\u003cbr\u003e\u003cbr\u003e- Improving the performance of wood-polymer composite decking\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eK. Oksman, Luea University of Technology, Sweden\u003c\/p\u003e\n\u003cp\u003eM. Sain, University of Toronto, Canada\u003c\/p\u003e","published_at":"2017-06-22T21:12:57-04:00","created_at":"2017-06-22T21:12:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","applications","book","composites","creep","durability","extrusion","foaming","foams","p-structural","polymer","properties","rheology","wood-polymer"],"price":23000,"price_min":23000,"price_max":23000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378322052,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Wood-polymers Composites","public_title":null,"options":["Default Title"],"price":23000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4200761-1-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4200761-1-0_ede969c6-3b9b-4199-864f-50be71b810c3.jpg?v=1499957381"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4200761-1-0_ede969c6-3b9b-4199-864f-50be71b810c3.jpg?v=1499957381","options":["Title"],"media":[{"alt":null,"id":358844006493,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4200761-1-0_ede969c6-3b9b-4199-864f-50be71b810c3.jpg?v=1499957381"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4200761-1-0_ede969c6-3b9b-4199-864f-50be71b810c3.jpg?v=1499957381","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Oksman, M. Sain \u003cbr\u003eISBN 978-1-4200761-1-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWood-polymer composites (WPC) are materials in which wood is impregnated with monomers that are then polymerized in the wood to tailor the material for special applications. The resulting properties of these materials, from lightness and enhanced mechanical properties to greater sustainability, has meant a growing number of applications in such areas as building, construction and automotive engineering. This important book reviews the manufacture of wood-polymer composites, how their properties can be assessed and improved and their range of uses. \u003cbr\u003e\u003cbr\u003eAfter an introductory chapter, the book reviews key aspects of manufacture, including raw materials, manufacturing technologies and interactions between wood and synthetic polymers. Building on this foundation, the following group of chapters discusses mechanical and other properties such as durability, creep behavior and processing performance. The book concludes by looking at orientated wood-polymer composites, wood-polymer composite foams, at ways of assessing performance and at the range of current and future applications. \u003cbr\u003e\u003cbr\u003eWith its distinguished editors and international team of contributors, Wood-polymer composites will be a valuable reference for all those using and studying these important materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eIntroduction\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Oksman Niska Luleå University of Technology, Sweden and M Sain University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eRaw Materials for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eC Clemons, USDA Forest Service, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Polymers: structure and properties\u003cbr\u003e\u003cbr\u003e- Wood: structure and properties\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAdditives for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eD V Satov, Canada Colors and Chemicals Limited, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Lubricants and rheology control additives for thermoplastic composites\u003cbr\u003e\u003cbr\u003e- Coupling agents\u003cbr\u003e\u003cbr\u003e- Stabilizers\u003cbr\u003e\u003cbr\u003e- Fillers\u003cbr\u003e\u003cbr\u003e- Density reduction additives\u003cbr\u003e\u003cbr\u003e- Biocides\u003cbr\u003e\u003cbr\u003e- Product aesthetics additives\u003cbr\u003e\u003cbr\u003e- Flame retardants and smoke suppressants\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eInteractions Between Wood and Synthetic Polymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Oksman Niska and A Sanadi, Luleå University of Technology, Sweden\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- The interface and interphase in composites\u003cbr\u003e\u003cbr\u003e- Wetting, adhesion and dispersion\u003cbr\u003e\u003cbr\u003e- Techniques to evaluate interfacial interactions and adhesion\u003cbr\u003e\u003cbr\u003e- Improving interface interactions in wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Interphase effects on other properties\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eManufacturing Technologies for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eD Schwendemann, Coperion Werner \u0026amp; Pfleiderer GmbH \u0026amp; Co. KG, Germany\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Raw material handling\u003cbr\u003e\u003cbr\u003e- Compounding technologies\u003cbr\u003e\u003cbr\u003e- Pelletizing systems\u003cbr\u003e\u003cbr\u003e- Profile extrusion\u003cbr\u003e\u003cbr\u003e- Injection moulding\u003cbr\u003e\u003cbr\u003e- Sheet extrusion\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMechanical Properties of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eM Sain and M Pervaiz, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Mechanical performance of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- General mechanical properties of wood-polymer composites and test methods\u003cbr\u003e\u003cbr\u003e- Critical parameters affecting mechanical properties of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMicromechanical Modelling of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eR C Neagu, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland and E K Gamstedt, Kungliga Tekniska Högskolan (KTH), Sweden\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Elastic properties\u003cbr\u003e\u003cbr\u003e- Hygroexpansion\u003cbr\u003e\u003cbr\u003e- Strength\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eOutdoor Durability of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eN Stark, USDA Forest Service and D Gardner, University of Maine, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Characteristics of raw materials\u003cbr\u003e\u003cbr\u003e- Changes in composite properties with exposure\u003cbr\u003e\u003cbr\u003e- Methods for protection\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- Sources of further information and advice\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCreep Behaviour and Damage of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eN Marcovich and M I Aranguren, Universidad Nacional de Mar del Plata, Argentina\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Viscoelasticity and creep\u003cbr\u003e\u003cbr\u003e- Creep in wood-plastic composites\u003cbr\u003e\u003cbr\u003e- Creep failure and material damage\u003cbr\u003e\u003cbr\u003e- Conclusions and future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eProcessing Performance of Extruded Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Englund with M Wolcott, Washington State University, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Current extrusion processing methods for natural fiber thermoplastic composites\u003cbr\u003e\u003cbr\u003e- Rheology of a wood fiber-filled thermoplastic\u003cbr\u003e\u003cbr\u003e- Commercial wood-polymer composites\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eOriented Wood-Polymer Composites and Related Materials\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eF W Maine, Frank Maine Consulting Ltd, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Orientation of polymers\u003cbr\u003e\u003cbr\u003e- Applications\u003cbr\u003e\u003cbr\u003e- Current developments\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWood-Polymer Composite Foams\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eG Guo, University of Southern California, USA, G Rizvi, University of Ontario Institute of Technology and C B Park, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Structure and characterization of wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Critical issues in production of wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Fundamental mechanisms in blowing agent-based foaming of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with chemical blowing agents\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with physical blowing agents\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with heat expandable microspheres\u003cbr\u003e\u003cbr\u003e- Void formation in wood-polymer composites using stretching technology\u003cbr\u003e\u003cbr\u003e- Effects of additives on wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Summary and future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePerformance Measurement and Construction Applications of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eR J Tichy, Washington State University, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Performance measures and building codes\u003cbr\u003e\u003cbr\u003e- Wood-polymer composite properties\u003cbr\u003e\u003cbr\u003e- Building construction applications\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eLife Cycle Assessment (LCA) of Wood-Polymer Composites: a Case-Study\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eT Thamae and C Baillie, Queens University, Canada\u003cbr\u003e\u003cbr\u003e- Introduction: comparing wood-polymer and glass-fibre reinforced polypropylene car door panels\u003cbr\u003e\u003cbr\u003e- The life cycle assessment process\u003cbr\u003e\u003cbr\u003e- Goal and scope definition\u003cbr\u003e\u003cbr\u003e- Inventory\u003cbr\u003e\u003cbr\u003e- Impact assessment\u003cbr\u003e\u003cbr\u003e- Interpretation\u003cbr\u003e\u003cbr\u003e- The possible effect of European Union legislation on end-of-life vehicles\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- Acknowledgements\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMarket and Future Trends for Wood-Polymer Composites In Europe: The Example Of Germany\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eM Carus and C Gahle, nova-Institut and H Korte, Innovationsberatung Holz \u0026amp; Fasern, Germany\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- The development of the European market: the example of Germany\u003cbr\u003e\u003cbr\u003e- The most significant wood-polymer composite products in the European market\u003cbr\u003e\u003cbr\u003e- Future trends: markets\u003cbr\u003e\u003cbr\u003e- Future trends: processing and materials\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- Wood-polymer composite codes, standards, research and manufacturing in Europe\u003cbr\u003e\u003cbr\u003e- The nova-Institut and Innovationsberatung Holz und Fasern\u003cbr\u003e\u003cbr\u003e- Examples of wood polymer-composite products\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eImproving Wood-Polymer Composite Products: A Case Study\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA Klyosov, MIR International Inc., USA\u003cbr\u003e\u003cbr\u003e- Introduction: wood-polymer composite decking\u003cbr\u003e\u003cbr\u003e- Brands and manufacturers\u003cbr\u003e\u003cbr\u003e- Improving the performance of wood-polymer composite decking\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eK. Oksman, Luea University of Technology, Sweden\u003c\/p\u003e\n\u003cp\u003eM. Sain, University of Toronto, Canada\u003c\/p\u003e"}