Addcon World 2000
This 6th successful Addcon World conference discussed the threats, opportunities, and trends in the additives business today. New products and processes were also revealed along with a discussion of legislation and its impact on the additives business. Addcon World conferences are specifically targeted to the plastics additives industry and have been successfully run by Rapra Technology Limited for the past 5 years.
The papers presented at this year’s conference will appeal to suppliers of additives, compounders and end-users along with people who want to learn how to use additives
The papers presented at this year’s conference will appeal to suppliers of additives, compounders and end-users along with people who want to learn how to use additives
List of Papers
Flexible Vinyl Medical Products: Discussion about the Extraction Characteristics of Various Plasticizers
Richard C. Adams, BP Amoco Chemicals, USA
Benzoate Plasticizer for Reducing Plastisol Viscosity and Fusion Temperature
Tom Bohnert, B. Stanhope, K. Gruszecki, S. Pitman, V. Elsworth, Velsicol Chemical Corporation, USA, and Velsicol Chemical Limited, UK
Determination of Phenolic Antioxidant Stabilizers in PP and HDPE by Means of an Oxidative Model Reaction
E. B. Zeinalov 1 , Hartmut F. Schroeder 2* and H. Bahr 2 , 1 Academy of Sciences of Azerbaijan, Institute of Petrochemical Processes (IPCPAcS), Baku, 2 Federal Institute for Materials Research and Testing (BAM), Germany
Achieving More Value From Additives Via New Physical Forms
Corrado Callierotti 1 , Luciano Pallini 1 , Giovanni Sandre 1 , Robert Lee 2 , Ming Wu 2 , Klaus Keck-Antoine 3 & Brian Johnson 3 , 1 Great Lakes Manufacturing Italia, Italy, 2 Great Lakes Chemical Corporation, USA, 3 Great Lakes Technology Belgium, Belgium
Stabilizer Package Development - Importance of the Test Criteria Selection
Ján Malík and Isolde Bachert, Technical Service Polymer Additives, Clariant Huningue SA, France
The Impact of Environmental Issues on the Growth of Plastics Additives
Thomas Galvanek, Fred Gastrock and Louis N. Kattas, BRG Townsend Inc., USA
Evaluation of Stabilizer Performance in Polymers Using Chemiluminescence
Norman C. Billingham, 1 Peter Fearon, 1 David J. Whiteman, Niall Marshall 2 and Stephen P. Bigger 3 , 1 School of Chemistry, Physics and Environmental Science, University of Sussex, UK, 2 Polifin Limited, South Africa, 3 School of Life Sciences and Technology, Victoria University, Australia
Polymer Additives Based on Renewable Materials; Opportunities and Trends
J. van Haveren, Agrotechnological Research Institute, The Netherlands
(Paper unavailable at time of print)
Criteria and Examples of Optimal Choice of Flame Retardants
Achim Litzenburger, Eurobrom BV, Netherlands
New Metal Hydroxides with Improved Performance for Flame Retardancy in Plastics
René Herbiet, alusuisse martinswerk gmbh, Germany
Productivity Gains in BOPP Film Production Through Stabilization with Lactone Technology
Doris Eisermann, Ciba Specialty Chemicals Limited, Switzerland
(Paper unavailable at time of print)
The Role of Market Research in the Additives Business
Richard Beswick, bms AG, Switzerland
Flexible Vinyl Medical Products: Discussion about the Extraction Characteristics of Various Plasticizers
Richard C. Adams, BP Amoco Chemicals, USA
Benzoate Plasticizer for Reducing Plastisol Viscosity and Fusion Temperature
Tom Bohnert, B. Stanhope, K. Gruszecki, S. Pitman, V. Elsworth, Velsicol Chemical Corporation, USA, and Velsicol Chemical Limited, UK
Determination of Phenolic Antioxidant Stabilizers in PP and HDPE by Means of an Oxidative Model Reaction
E. B. Zeinalov 1 , Hartmut F. Schroeder 2* and H. Bahr 2 , 1 Academy of Sciences of Azerbaijan, Institute of Petrochemical Processes (IPCPAcS), Baku, 2 Federal Institute for Materials Research and Testing (BAM), Germany
Achieving More Value From Additives Via New Physical Forms
Corrado Callierotti 1 , Luciano Pallini 1 , Giovanni Sandre 1 , Robert Lee 2 , Ming Wu 2 , Klaus Keck-Antoine 3 & Brian Johnson 3 , 1 Great Lakes Manufacturing Italia, Italy, 2 Great Lakes Chemical Corporation, USA, 3 Great Lakes Technology Belgium, Belgium
Stabilizer Package Development - Importance of the Test Criteria Selection
Ján Malík and Isolde Bachert, Technical Service Polymer Additives, Clariant Huningue SA, France
The Impact of Environmental Issues on the Growth of Plastics Additives
Thomas Galvanek, Fred Gastrock and Louis N. Kattas, BRG Townsend Inc., USA
Evaluation of Stabilizer Performance in Polymers Using Chemiluminescence
Norman C. Billingham, 1 Peter Fearon, 1 David J. Whiteman, Niall Marshall 2 and Stephen P. Bigger 3 , 1 School of Chemistry, Physics and Environmental Science, University of Sussex, UK, 2 Polifin Limited, South Africa, 3 School of Life Sciences and Technology, Victoria University, Australia
Polymer Additives Based on Renewable Materials; Opportunities and Trends
J. van Haveren, Agrotechnological Research Institute, The Netherlands
(Paper unavailable at time of print)
Criteria and Examples of Optimal Choice of Flame Retardants
Achim Litzenburger, Eurobrom BV, Netherlands
New Metal Hydroxides with Improved Performance for Flame Retardancy in Plastics
René Herbiet, alusuisse martinswerk gmbh, Germany
Productivity Gains in BOPP Film Production Through Stabilization with Lactone Technology
Doris Eisermann, Ciba Specialty Chemicals Limited, Switzerland
(Paper unavailable at time of print)
The Role of Market Research in the Additives Business
Richard Beswick, bms AG, Switzerland
Related Products
Blends and Alloys of E...
$72.00
{"id":11242253956,"title":"Blends and Alloys of Engineering Thermoplastics","handle":"978-0-08041744-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: H.T. van de Grampel \u003cbr\u003eISBN 978-0-08041744-8 \u003cbr\u003e\u003cbr\u003eGE Plastics BV\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e132 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report explains the theory of blending materials which may be essentially incompatible, and the properties and applications of commercially available blends of engineering thermoplastics are then described. \u003cbr\u003e\u003cbr\u003eExperimental results and data on commercial materials can be obtained from the accompanying references and abstracts (499).\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:27-04:00","created_at":"2017-06-22T21:15:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1991","alloys","applications","blends","book","morphology","p-structural","physical properties","polymer","thermoplastics"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378488004,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blends and Alloys of Engineering Thermoplastics","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08041744-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446","options":["Title"],"media":[{"alt":null,"id":353915338845,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: H.T. van de Grampel \u003cbr\u003eISBN 978-0-08041744-8 \u003cbr\u003e\u003cbr\u003eGE Plastics BV\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e132 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report explains the theory of blending materials which may be essentially incompatible, and the properties and applications of commercially available blends of engineering thermoplastics are then described. \u003cbr\u003e\u003cbr\u003eExperimental results and data on commercial materials can be obtained from the accompanying references and abstracts (499).\u003cbr\u003e\u003cbr\u003e"}
Cellular Polymers III
$60.00
{"id":11242247172,"title":"Cellular Polymers III","handle":"978-1-85957-038-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-038-8 \u003cbr\u003e\u003cbr\u003e25 papers, softbound\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe material covers all aspects of elastomeric and rigid foams including: Thermal performance of insulating foams; Analysis of fire gases; The progress of CFC-free foams; Recycling and waste management; Gas transfer; Novel additives and synthesis techniques; Manufacturing developments for a range of foamed materials; Impact properties.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Papers: \u003cbr\u003e\u003cbr\u003eUse of the Distributed Parameter Continuum (DIPAC) Model for Estimating the Long Term Thermal Performance of Insulating Foams, Mark T. Bomberg and Mavinkal K Kumaran, National Research Council, Canada \u003cbr\u003e\u003cbr\u003eDevelopment of a Method tor Measuring Radial Creep of District Heating Pipes, H. D. Smidt, Danish Technological Institute, Denmark and L. Amby, Logstor Ror A\/S, Denmark \u003cbr\u003e\u003cbr\u003eUse of FTIR to Analyze Fire Gases from Burning Polyurethane Foams, K.T. Paul, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eCFC-free Thermal Insulation Foams, C.W.F. Yu, D.R. Crump and D. Gardiner, Building Research Establishment, UK \u003cbr\u003e\u003cbr\u003eA Review of Life Cycle Assessment - A Tool for Measuring the Environmental Impact of Cellular Polymers, Dr David Heath, ICI Engineering Technology, UK and Dr. Vanja Markovic, ICI Polyurethanes\/ISOPA, Belgium \u003cbr\u003e\u003cbr\u003e\"CFC-Free\" The Scope of the Achievement so far, P. Ashford, Caleb Management Services, UK \u003cbr\u003e\u003cbr\u003eThe Future of Foam Plastic Insulation in the Light of Climate Chance Legislation, J.G. Abbott, Dow Europe SA., Switzerland \u003cbr\u003e\u003cbr\u003eProcess by which Controls on Chemicals are Introduced into European Community Legislation, J. Neill, European Commission, Belgium \u003cbr\u003e\u003cbr\u003eUtilization of Polymeric Isocyanate Based Binders in Recycling of Automotive Shredder Fluff, K.C. Frisch, A. Sendijarevic, V. Sendijarevic and D. Klempner, University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003eRecovery and Recycling of Polyurethane Foams, E. Weigand, Bayer AG, Germany \u003cbr\u003e\u003cbr\u003eWaste Management of EPS in Europe, T. van Dorp, Shell Chemicals Europe, UK \u003cbr\u003e\u003cbr\u003eRecovery of Value from Waste: The Government View, P. Coombs, Department of Trade and Industry, UK \u003cbr\u003e\u003cbr\u003eCell Structure Development in Compression Molded, Crosslinked Polyethylene and Ethylene-Vinyl Acetate Foam, G.L.A. Sims and C. Khunniteekool, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eThe Influence of Low Molecular Additives on Gas Transport Properties in Polyethylene Films and Foams, W P Nauta and R.H.B. Bouma, University of Twente, J.E.F. Arnauts and H. M. Steuten, DSM Research, The Netherlands \u003cbr\u003e\u003cbr\u003ePolyether Triols,Tetrahydrofurame-Alkyleneoxides Copolymers for Flexible Polyurethane Foams, M. Ionescu, I. Mihalache, V. Zugravu and S. Mihai, Institute of Chemical Research, Romania \u003cbr\u003e\u003cbr\u003eSolubility and Nucleation Phenomena in Rigid PU Foam Expansion by Low Boiling Blowing Agents; a Modelling Approach, Henri J.M. Gruenbauer, Dow Benelux NV, The Netherlands \u003cbr\u003e\u003cbr\u003eLiquid Crystalline Polyurethanes: Synthesis, Properties and Application, B. Szczepaniak and P. Penczek, Industrial Chemistry Research Institute, A. Wolinska-Grabczyk, Institute of Coal Chemistry, and K.C. Frisch University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003ePolyurethane Reactions According to Computational Chemistry, Nelson Malwitz, Sealed Air Corporation, USA \u003cbr\u003e\u003cbr\u003eRigid PVC Foams: A New Twist to an Old Technology, K. Redford, L.T. Hoydal, A. Stori, and K.H. Holm, SINTEF, Norway, A. Jorgensen and J. Grovdal, Dynoplast AS, Norway \u003cbr\u003e\u003cbr\u003eA Solid State Semi-Continuous Process to Make PET Foam Sheets, V. Kumar, University of Washington Seattle, USA and H. G. Schirmer, W. R. Grace Co., USA \u003cbr\u003e\u003cbr\u003eThe CarDio(TM) Process: Industrial Production Experiences, Carlo Florentini, Cannon Afros, Italy, Max Taverna, Cannon Communications, Italy, Barry Collings, Cannon, USA, Tony Griffiths, Cannon Viking, Italy \u003cbr\u003e\u003cbr\u003eThe Manufacture of Flexible Polyurethane Foams by the Variable Pressure Process V.P.F., J. B. Blackwell and G. Buckley, Beamech Group Limited, UK \u003cbr\u003e\u003cbr\u003eThe Balance of Formulation, Processing Conditions in the Manufacture of Crosslinked Polyethylene Foam, G.L.A. Sims and W. Sirithongtaworn, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eInteraction between Microstructure and Mechanical Properties of Flexible Polyurethane Foams, J. M. Williams and J. H. Beynon, University of Leicester, UK \u003cbr\u003e\u003cbr\u003eAnalysis of Impact of Two-Layer Foams, and Evaluation of Body Protectors, A. Gilchrist and N.J. Mills, University of Birmingham, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:06-04:00","created_at":"2017-06-22T21:15:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","additives","book","foam","impact properties","insulation","p-structural","polymer","polyurethane foams","recycling"],"price":6000,"price_min":6000,"price_max":6000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378463108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Cellular Polymers III","public_title":null,"options":["Default Title"],"price":6000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420","options":["Title"],"media":[{"alt":null,"id":353968488541,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-038-8 \u003cbr\u003e\u003cbr\u003e25 papers, softbound\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe material covers all aspects of elastomeric and rigid foams including: Thermal performance of insulating foams; Analysis of fire gases; The progress of CFC-free foams; Recycling and waste management; Gas transfer; Novel additives and synthesis techniques; Manufacturing developments for a range of foamed materials; Impact properties.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Papers: \u003cbr\u003e\u003cbr\u003eUse of the Distributed Parameter Continuum (DIPAC) Model for Estimating the Long Term Thermal Performance of Insulating Foams, Mark T. Bomberg and Mavinkal K Kumaran, National Research Council, Canada \u003cbr\u003e\u003cbr\u003eDevelopment of a Method tor Measuring Radial Creep of District Heating Pipes, H. D. Smidt, Danish Technological Institute, Denmark and L. Amby, Logstor Ror A\/S, Denmark \u003cbr\u003e\u003cbr\u003eUse of FTIR to Analyze Fire Gases from Burning Polyurethane Foams, K.T. Paul, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eCFC-free Thermal Insulation Foams, C.W.F. Yu, D.R. Crump and D. Gardiner, Building Research Establishment, UK \u003cbr\u003e\u003cbr\u003eA Review of Life Cycle Assessment - A Tool for Measuring the Environmental Impact of Cellular Polymers, Dr David Heath, ICI Engineering Technology, UK and Dr. Vanja Markovic, ICI Polyurethanes\/ISOPA, Belgium \u003cbr\u003e\u003cbr\u003e\"CFC-Free\" The Scope of the Achievement so far, P. Ashford, Caleb Management Services, UK \u003cbr\u003e\u003cbr\u003eThe Future of Foam Plastic Insulation in the Light of Climate Chance Legislation, J.G. Abbott, Dow Europe SA., Switzerland \u003cbr\u003e\u003cbr\u003eProcess by which Controls on Chemicals are Introduced into European Community Legislation, J. Neill, European Commission, Belgium \u003cbr\u003e\u003cbr\u003eUtilization of Polymeric Isocyanate Based Binders in Recycling of Automotive Shredder Fluff, K.C. Frisch, A. Sendijarevic, V. Sendijarevic and D. Klempner, University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003eRecovery and Recycling of Polyurethane Foams, E. Weigand, Bayer AG, Germany \u003cbr\u003e\u003cbr\u003eWaste Management of EPS in Europe, T. van Dorp, Shell Chemicals Europe, UK \u003cbr\u003e\u003cbr\u003eRecovery of Value from Waste: The Government View, P. Coombs, Department of Trade and Industry, UK \u003cbr\u003e\u003cbr\u003eCell Structure Development in Compression Molded, Crosslinked Polyethylene and Ethylene-Vinyl Acetate Foam, G.L.A. Sims and C. Khunniteekool, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eThe Influence of Low Molecular Additives on Gas Transport Properties in Polyethylene Films and Foams, W P Nauta and R.H.B. Bouma, University of Twente, J.E.F. Arnauts and H. M. Steuten, DSM Research, The Netherlands \u003cbr\u003e\u003cbr\u003ePolyether Triols,Tetrahydrofurame-Alkyleneoxides Copolymers for Flexible Polyurethane Foams, M. Ionescu, I. Mihalache, V. Zugravu and S. Mihai, Institute of Chemical Research, Romania \u003cbr\u003e\u003cbr\u003eSolubility and Nucleation Phenomena in Rigid PU Foam Expansion by Low Boiling Blowing Agents; a Modelling Approach, Henri J.M. Gruenbauer, Dow Benelux NV, The Netherlands \u003cbr\u003e\u003cbr\u003eLiquid Crystalline Polyurethanes: Synthesis, Properties and Application, B. Szczepaniak and P. Penczek, Industrial Chemistry Research Institute, A. Wolinska-Grabczyk, Institute of Coal Chemistry, and K.C. Frisch University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003ePolyurethane Reactions According to Computational Chemistry, Nelson Malwitz, Sealed Air Corporation, USA \u003cbr\u003e\u003cbr\u003eRigid PVC Foams: A New Twist to an Old Technology, K. Redford, L.T. Hoydal, A. Stori, and K.H. Holm, SINTEF, Norway, A. Jorgensen and J. Grovdal, Dynoplast AS, Norway \u003cbr\u003e\u003cbr\u003eA Solid State Semi-Continuous Process to Make PET Foam Sheets, V. Kumar, University of Washington Seattle, USA and H. G. Schirmer, W. R. Grace Co., USA \u003cbr\u003e\u003cbr\u003eThe CarDio(TM) Process: Industrial Production Experiences, Carlo Florentini, Cannon Afros, Italy, Max Taverna, Cannon Communications, Italy, Barry Collings, Cannon, USA, Tony Griffiths, Cannon Viking, Italy \u003cbr\u003e\u003cbr\u003eThe Manufacture of Flexible Polyurethane Foams by the Variable Pressure Process V.P.F., J. B. Blackwell and G. Buckley, Beamech Group Limited, UK \u003cbr\u003e\u003cbr\u003eThe Balance of Formulation, Processing Conditions in the Manufacture of Crosslinked Polyethylene Foam, G.L.A. Sims and W. Sirithongtaworn, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eInteraction between Microstructure and Mechanical Properties of Flexible Polyurethane Foams, J. M. Williams and J. H. Beynon, University of Leicester, UK \u003cbr\u003e\u003cbr\u003eAnalysis of Impact of Two-Layer Foams, and Evaluation of Body Protectors, A. Gilchrist and N.J. Mills, University of Birmingham, UK\u003cbr\u003e\u003cbr\u003e"}
Composite Materials
$220.00
{"id":11242214084,"title":"Composite Materials","handle":"978-1-84882-830-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Chung, Deborah D. L. \u003cbr\u003eISBN 978-1-84882-830-8 \u003cbr\u003e\u003cbr\u003e2nd ed., 371 p. 210 illus.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProvides a comprehensive treatment of functional composite materials, covering functions related to the thermal, electrical, electromagnetic, thermoelectric, dielectric, optical, magnetic and electrochemical behaviour.\u003cbr\u003e\u003cbr\u003e- The 2nd edition includes an expanded treatment of each topic, particularly in relation to applications and practical considerations.\u003cbr\u003e\u003cbr\u003eThe applications of composite materials continue to be of increasing importance due to the industry’s need for modern analysis and improved performance. The first edition of Composite Materials introduced a new way of looking at composite materials: covering composites in accordance with their functions. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. Although applications are the economical and technological driving force of materials development, processes often determine the feasibility and practicality.\u003cbr\u003e\u003cbr\u003eThis tutorial-style reference book examines both structural composite materials (including their mechanical properties, durability, and degradation) and functional composite materials (including their electrical, piezoresistive, and thermal properties), as needed for a substantial range of applications. The emphasis on application-driven and process-oriented materials development is enhanced by a large amount of experimental results that provide real illustrations of composite materials development.\u003cbr\u003e\u003cbr\u003eComposite Materials is an essential book for researchers and engineers who are interested in materials development for industrial applications. It has a vibrant yet functional approach, making it suitable for both students and practitioners, and provides a full explanation of all of the fundamental concepts related to the structural and functional properties covered.\u003cbr\u003e\u003cbr\u003eThe Engineering Materials and Processes series focuses on all forms of materials and the processes used to synthesise and formulate them as they relate to the various engineering disciplines. The series deals with a diverse range of materials: ceramics; metals (ferrous and non-ferrous); semiconductors; composites, polymers, biomimetics etc. Each monograph in the series is written by a specialist and demonstrates how enhancements in materials and the processes associated with them can improve performance in the field of engineering in which they are used.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nContents \u003cbr\u003e\u003cbr\u003e1 Composite Material Structure and Processing \u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 CompositeMaterialStructure\u003cbr\u003e1.2.1 Continuous Fiber Composites\u003cbr\u003e1.2.2 Carbon–CarbonComposites \u003cbr\u003e1.2.3 Cement-MatrixComposites\u003cbr\u003e\u003cbr\u003e1.3 Processing of Composite Materials\u003cbr\u003e1.3.1 Polymer-MatrixComposites \u003cbr\u003e1.3.2 Metal-MatrixComposites\u003cbr\u003e1.3.3 Carbon-MatrixComposites\u003cbr\u003e1.3.4 Ceramic-MatrixComposites \u003cbr\u003e1.3.5 Cement-MatrixComposites\u003cbr\u003e1.4 Composite Design Concepts\u003cbr\u003e1.5 ApplicationsofCompositeMaterials\u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003e2 Carbon Fibers and Nanofillers \u003cbr\u003e2.1 Carbons\u003cbr\u003e2.2 CarbonFibers \u003cbr\u003e2.3 Nanofillers\u003cbr\u003eReviewQuestions \u003cbr\u003eFurtherReading\u003cbr\u003e\u003cbr\u003e3 Mechanical Properties \u003cbr\u003e3.1 Property Requirements \u003cbr\u003e3.2 Basic Mechanical Properties \u003cbr\u003e3.2.1 Modulus of Elasticity\u003cbr\u003e3.2.2 Strength\u003cbr\u003e3.2.3 Ductility\u003cbr\u003e3.3 Effect of Damage on the Mechanical Properties \u003cbr\u003e3.4 Brittlevs.DuctileMaterials\u003cbr\u003e3.5 Strengthening \u003cbr\u003e3.6 VibrationDampingAbility \u003cbr\u003e3.6.1 Introduction \u003cbr\u003e3.6.2 Viscoelastic Behavior \u003cbr\u003e3.6.3 Pseudoplasticity and Ferroelasticity\u003cbr\u003e3.6.4 Interfacial Damping\u003cbr\u003e3.6.5 Structural Materialsfor Damping\u003cbr\u003e3.6.6 Comparison of Materials Utilized for Damping\u003cbr\u003e3.6.7 Emerging Materials for Damping \u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003e4. Durability and Degradation of Materials\u003cbr\u003e4.1 CorrosionResistance \u003cbr\u003e4.1.1 IntroductiontoElectrochemicalBehavior\u003cbr\u003e4.1.2 CorrosionProtection\u003cbr\u003e4.2 ElevatedTemperatureResistance\u003cbr\u003e4.2.1 TechnologicalRelevance\u003cbr\u003e4.2.2 Effects of ThermalDegradation \u003cbr\u003e4.2.3 Origins of Thermal Degradation\u003cbr\u003e4.2.4 Effects of Temperature on the Composite Microstructure\u003cbr\u003e4.2.5 Improving the Elevated Temperature Resistance \u003cbr\u003e4.2.6 Investigation of Elevated TemperatureResistance \u003cbr\u003e4.3 FatigueResistance\u003cbr\u003e4.3.1 MechanicalFatigue\u003cbr\u003e4.3.2 ThermalFatigue\u003cbr\u003e4.4 Durability\u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading\u003cbr\u003e\u003cbr\u003e5. Materials for Lightweight Structures, Civil Infrastructure, Joining and Repair\u003cbr\u003e5.1 Materials for Light weight Structures \u003cbr\u003e5.1.1 Composites with Polymer,Carbon,Ceramic and Metal Matrices \u003cbr\u003e5.1.2 Cement-MatrixComposites\u003cbr\u003e5.2 Materials for Civil Infrastructure\u003cbr\u003e5.3 Materials for Joining\u003cbr\u003e5.3.1 Sintering or Autohesion \u003cbr\u003e5.3.2 Welding \u003cbr\u003e5.3.3 Brazing and Soldering\u003cbr\u003e5.3.4 Adhesion \u003cbr\u003e5.3.5 CementitiousJoining\u003cbr\u003e5.3.6 Joining Using Inorganic Binders\u003cbr\u003e5.3.7 Joining Using Carbon Binders\u003cbr\u003e5.3.8 Fastening\u003cbr\u003e5.3.9 ExpansionJoints\u003cbr\u003e5.4 Materials Used for Repair \u003cbr\u003e5.4.1 Patching\u003cbr\u003e5.4.2 Wrapping\u003cbr\u003e5.4.3 Self-healing \u003cbr\u003eReview Questions \u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e6 Tailoring Composite Materials\u003cbr\u003e6.1 Tailoring by Component Selection\u003cbr\u003e6.1.1 Polymer-MatrixComposites\u003cbr\u003e6.1.2 Cement-MatrixComposites\u003cbr\u003e6.1.3 Metal-MatrixComposites.\u003cbr\u003e6.2 Tailoring by Interface Modification \u003cbr\u003e6.2.1 Interface Bond Modification \u003cbr\u003e6.2.2 Interface Composition Modification\u003cbr\u003e6.2.3 Interface Microstructure Modification\u003cbr\u003e6.3 Tailoring by Surface Modification\u003cbr\u003e6.4 Tailoring by Microstructure Control \u003cbr\u003e6.4.1 Crystallinity Control\u003cbr\u003e6.4.2 Porosity Control\u003cbr\u003e6.5 Tailoring by Organic–Inorganic Nanoscale Hybridization\u003cbr\u003e6.5.1 Nanocomposites with Organic Solid Nanoparticles Dispersed in an Inorganic Matrix \u003cbr\u003e6.5.2 Nanocomposites with an Organic Component Dispersed in an Inorganic Matrix Where the Organic Component is Added as a Liquid\u003cbr\u003e6.5.3 Nanocomposites Made by Inorganic Component Exfoliation and Subsequent Organic Component Adsorption\u003cbr\u003eReview Questions\u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e7 Electrical Properties \u003cbr\u003e7.1 Origin of Electrical Conduction \u003cbr\u003e7.2 VolumeElectricalResistivity\u003cbr\u003e7.3 Calculating the Volume Electrical Resistivity of a Composite Material\u003cbr\u003e7.3.1 Parallel Configuration\u003cbr\u003e7.3.2 Series Configuration \u003cbr\u003e7.4 Contact Electrical Resistivity \u003cbr\u003e7.5 Electric Power and Resistance Heating \u003cbr\u003e7.5.1 Scientific Basis\u003cbr\u003e7.5.2 Self-Heating Structural Materials \u003cbr\u003e7.6 Effect of Temperature on the Electrical Resistivity\u003cbr\u003e7.6.1 Scientific Basis \u003cbr\u003e7.6.2 Structural Materials Used as Thermistors\u003cbr\u003e7.7 Effect of Strain on the Electrical Resistivity (Piezoresistivity) \u003cbr\u003e7.7.1 Scientific Basis\u003cbr\u003e7.7.2 Effects of Strain and Strain-Induced Damage on the Electrical Resistivity of Polymer-Matrix Structural Composites \u003cbr\u003e7.8 See beck Effect \u003cbr\u003e7.8.1 Scientific Basis \u003cbr\u003e7.8.2 Thermoelectric Composites\u003cbr\u003e7.9 Applications of Conductive Materials \u003cbr\u003e7.9.1 Overview of Applications \u003cbr\u003e7.9.2 Microelectronic Applications\u003cbr\u003e7.9.3 Electrochemical Applications\u003cbr\u003e7.10 Conductive Phase Distribution and Connectivity\u003cbr\u003e7.10.1 Effect of the Conductive Filler Aspect Ratio\u003cbr\u003e7.10.2 Effect of the Nonconductive Thermoplastic Particle Viscosity \u003cbr\u003e7.10.3 Effect of Conductive Particle Size \u003cbr\u003e7.10.4 Effect of Additives \u003cbr\u003e7.10.5 Levels of Percolation \u003cbr\u003e7.11 Electrically Conductive Joints\u003cbr\u003e7.11.1 Mechanically Strong Joints for Electrical Conduction\u003cbr\u003e7.11.2 Mechanically Weak Joints for Electrical Conduction\u003cbr\u003e7.11.3 Electrical Connection Through Pressure Application \u003cbr\u003e7.11.4 Electrical Connection Through aZ-Axis Electrical Conductor\u003cbr\u003e7.12 Porous Conductors \u003cbr\u003e7.12.1 Porous Conductors Without a Nonconductive Filler \u003cbr\u003e7.12.2 Porous Conductors With a Nonconductive \u003cbr\u003eFiller and a Conductive Additive\u003cbr\u003eReview Questions \u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e8. Thermal Properties\u003cbr\u003e8.1 Thermal Expansion\u003cbr\u003e8.2 Specific Heat\u003cbr\u003e8.3 Phase Transformations\u003cbr\u003e8.3.1 Scientific Basis \u003cbr\u003e8.3.2 Shape Memory Effect\u003cbr\u003e8.3.3 Calorimetry\u003cbr\u003e8.4 Thermal Conductivity \u003cbr\u003e8.5 Thermal Conductance of an Interface\u003cbr\u003e8.6 Evaluating the Thermal Conduction \u003cbr\u003e8.6.1 Guarded Hot Plate Method\u003cbr\u003e8.6.2 Laser Flash Method \u003cbr\u003e8.7 Thermal Interface Materials \u003cbr\u003e8.8 Composites Used for Microelectronic Heat Sinks \u003cbr\u003e8.8.1 Metals, Diamond, and Ceramics \u003cbr\u003e8.8.2 Metal-Matrix Composites\u003cbr\u003e8.8.3 Carbon-Matrix Composites \u003cbr\u003e8.8.4 Carbon and Graphite\u003cbr\u003e8.8.5 Ceramic-Matrix Composites \u003cbr\u003e8.8.6 Polymer-Matrix Composites \u003cbr\u003e8.9 Carbon Fiber Polymer-Matrix Composites for Aircraft Heat Dissipation \u003cbr\u003e8.9.1 Interlaminar Interface Nanostructuring \u003cbr\u003e8.9.2 Through-ThicknessThermal Conductivity \u003cbr\u003e8.9.3 Through-Thickness Compressive Properties \u003cbr\u003e8.9.4 FlexuralProperties\u003cbr\u003e8.10 Composites Used for Thermal Insulation \u003cbr\u003eExampleProblems \u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003eAppendix: Test \u003cbr\u003eTestQuestions\u003cbr\u003ePartI(32%) \u003cbr\u003ePartII(68%) \u003cbr\u003eTestSolutions\u003cbr\u003ePartI(32%) \u003cbr\u003ePartII(68%)\u003cbr\u003eIndex \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDeborah D.L. Chung is Professor in the Department of Mechanical and Aerospace Engineering at the University of Buffalo, USA. She has a PhD in Materials Science from the Massachusetts Institute of Technology, USA.","published_at":"2017-06-22T21:13:21-04:00","created_at":"2017-06-22T21:13:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","applications of composite materials","book","composite materials","composite materials structure","funcional composites materials","p-structural","polymer","processing of composite materials","properies of composite materials"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378351172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Composite Materials","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84882-830-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84882-830-8.jpg?v=1499724063"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84882-830-8.jpg?v=1499724063","options":["Title"],"media":[{"alt":null,"id":353964359773,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84882-830-8.jpg?v=1499724063"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84882-830-8.jpg?v=1499724063","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Chung, Deborah D. L. \u003cbr\u003eISBN 978-1-84882-830-8 \u003cbr\u003e\u003cbr\u003e2nd ed., 371 p. 210 illus.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProvides a comprehensive treatment of functional composite materials, covering functions related to the thermal, electrical, electromagnetic, thermoelectric, dielectric, optical, magnetic and electrochemical behaviour.\u003cbr\u003e\u003cbr\u003e- The 2nd edition includes an expanded treatment of each topic, particularly in relation to applications and practical considerations.\u003cbr\u003e\u003cbr\u003eThe applications of composite materials continue to be of increasing importance due to the industry’s need for modern analysis and improved performance. The first edition of Composite Materials introduced a new way of looking at composite materials: covering composites in accordance with their functions. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. Although applications are the economical and technological driving force of materials development, processes often determine the feasibility and practicality.\u003cbr\u003e\u003cbr\u003eThis tutorial-style reference book examines both structural composite materials (including their mechanical properties, durability, and degradation) and functional composite materials (including their electrical, piezoresistive, and thermal properties), as needed for a substantial range of applications. The emphasis on application-driven and process-oriented materials development is enhanced by a large amount of experimental results that provide real illustrations of composite materials development.\u003cbr\u003e\u003cbr\u003eComposite Materials is an essential book for researchers and engineers who are interested in materials development for industrial applications. It has a vibrant yet functional approach, making it suitable for both students and practitioners, and provides a full explanation of all of the fundamental concepts related to the structural and functional properties covered.\u003cbr\u003e\u003cbr\u003eThe Engineering Materials and Processes series focuses on all forms of materials and the processes used to synthesise and formulate them as they relate to the various engineering disciplines. The series deals with a diverse range of materials: ceramics; metals (ferrous and non-ferrous); semiconductors; composites, polymers, biomimetics etc. Each monograph in the series is written by a specialist and demonstrates how enhancements in materials and the processes associated with them can improve performance in the field of engineering in which they are used.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nContents \u003cbr\u003e\u003cbr\u003e1 Composite Material Structure and Processing \u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 CompositeMaterialStructure\u003cbr\u003e1.2.1 Continuous Fiber Composites\u003cbr\u003e1.2.2 Carbon–CarbonComposites \u003cbr\u003e1.2.3 Cement-MatrixComposites\u003cbr\u003e\u003cbr\u003e1.3 Processing of Composite Materials\u003cbr\u003e1.3.1 Polymer-MatrixComposites \u003cbr\u003e1.3.2 Metal-MatrixComposites\u003cbr\u003e1.3.3 Carbon-MatrixComposites\u003cbr\u003e1.3.4 Ceramic-MatrixComposites \u003cbr\u003e1.3.5 Cement-MatrixComposites\u003cbr\u003e1.4 Composite Design Concepts\u003cbr\u003e1.5 ApplicationsofCompositeMaterials\u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003e2 Carbon Fibers and Nanofillers \u003cbr\u003e2.1 Carbons\u003cbr\u003e2.2 CarbonFibers \u003cbr\u003e2.3 Nanofillers\u003cbr\u003eReviewQuestions \u003cbr\u003eFurtherReading\u003cbr\u003e\u003cbr\u003e3 Mechanical Properties \u003cbr\u003e3.1 Property Requirements \u003cbr\u003e3.2 Basic Mechanical Properties \u003cbr\u003e3.2.1 Modulus of Elasticity\u003cbr\u003e3.2.2 Strength\u003cbr\u003e3.2.3 Ductility\u003cbr\u003e3.3 Effect of Damage on the Mechanical Properties \u003cbr\u003e3.4 Brittlevs.DuctileMaterials\u003cbr\u003e3.5 Strengthening \u003cbr\u003e3.6 VibrationDampingAbility \u003cbr\u003e3.6.1 Introduction \u003cbr\u003e3.6.2 Viscoelastic Behavior \u003cbr\u003e3.6.3 Pseudoplasticity and Ferroelasticity\u003cbr\u003e3.6.4 Interfacial Damping\u003cbr\u003e3.6.5 Structural Materialsfor Damping\u003cbr\u003e3.6.6 Comparison of Materials Utilized for Damping\u003cbr\u003e3.6.7 Emerging Materials for Damping \u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003e4. Durability and Degradation of Materials\u003cbr\u003e4.1 CorrosionResistance \u003cbr\u003e4.1.1 IntroductiontoElectrochemicalBehavior\u003cbr\u003e4.1.2 CorrosionProtection\u003cbr\u003e4.2 ElevatedTemperatureResistance\u003cbr\u003e4.2.1 TechnologicalRelevance\u003cbr\u003e4.2.2 Effects of ThermalDegradation \u003cbr\u003e4.2.3 Origins of Thermal Degradation\u003cbr\u003e4.2.4 Effects of Temperature on the Composite Microstructure\u003cbr\u003e4.2.5 Improving the Elevated Temperature Resistance \u003cbr\u003e4.2.6 Investigation of Elevated TemperatureResistance \u003cbr\u003e4.3 FatigueResistance\u003cbr\u003e4.3.1 MechanicalFatigue\u003cbr\u003e4.3.2 ThermalFatigue\u003cbr\u003e4.4 Durability\u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading\u003cbr\u003e\u003cbr\u003e5. Materials for Lightweight Structures, Civil Infrastructure, Joining and Repair\u003cbr\u003e5.1 Materials for Light weight Structures \u003cbr\u003e5.1.1 Composites with Polymer,Carbon,Ceramic and Metal Matrices \u003cbr\u003e5.1.2 Cement-MatrixComposites\u003cbr\u003e5.2 Materials for Civil Infrastructure\u003cbr\u003e5.3 Materials for Joining\u003cbr\u003e5.3.1 Sintering or Autohesion \u003cbr\u003e5.3.2 Welding \u003cbr\u003e5.3.3 Brazing and Soldering\u003cbr\u003e5.3.4 Adhesion \u003cbr\u003e5.3.5 CementitiousJoining\u003cbr\u003e5.3.6 Joining Using Inorganic Binders\u003cbr\u003e5.3.7 Joining Using Carbon Binders\u003cbr\u003e5.3.8 Fastening\u003cbr\u003e5.3.9 ExpansionJoints\u003cbr\u003e5.4 Materials Used for Repair \u003cbr\u003e5.4.1 Patching\u003cbr\u003e5.4.2 Wrapping\u003cbr\u003e5.4.3 Self-healing \u003cbr\u003eReview Questions \u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e6 Tailoring Composite Materials\u003cbr\u003e6.1 Tailoring by Component Selection\u003cbr\u003e6.1.1 Polymer-MatrixComposites\u003cbr\u003e6.1.2 Cement-MatrixComposites\u003cbr\u003e6.1.3 Metal-MatrixComposites.\u003cbr\u003e6.2 Tailoring by Interface Modification \u003cbr\u003e6.2.1 Interface Bond Modification \u003cbr\u003e6.2.2 Interface Composition Modification\u003cbr\u003e6.2.3 Interface Microstructure Modification\u003cbr\u003e6.3 Tailoring by Surface Modification\u003cbr\u003e6.4 Tailoring by Microstructure Control \u003cbr\u003e6.4.1 Crystallinity Control\u003cbr\u003e6.4.2 Porosity Control\u003cbr\u003e6.5 Tailoring by Organic–Inorganic Nanoscale Hybridization\u003cbr\u003e6.5.1 Nanocomposites with Organic Solid Nanoparticles Dispersed in an Inorganic Matrix \u003cbr\u003e6.5.2 Nanocomposites with an Organic Component Dispersed in an Inorganic Matrix Where the Organic Component is Added as a Liquid\u003cbr\u003e6.5.3 Nanocomposites Made by Inorganic Component Exfoliation and Subsequent Organic Component Adsorption\u003cbr\u003eReview Questions\u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e7 Electrical Properties \u003cbr\u003e7.1 Origin of Electrical Conduction \u003cbr\u003e7.2 VolumeElectricalResistivity\u003cbr\u003e7.3 Calculating the Volume Electrical Resistivity of a Composite Material\u003cbr\u003e7.3.1 Parallel Configuration\u003cbr\u003e7.3.2 Series Configuration \u003cbr\u003e7.4 Contact Electrical Resistivity \u003cbr\u003e7.5 Electric Power and Resistance Heating \u003cbr\u003e7.5.1 Scientific Basis\u003cbr\u003e7.5.2 Self-Heating Structural Materials \u003cbr\u003e7.6 Effect of Temperature on the Electrical Resistivity\u003cbr\u003e7.6.1 Scientific Basis \u003cbr\u003e7.6.2 Structural Materials Used as Thermistors\u003cbr\u003e7.7 Effect of Strain on the Electrical Resistivity (Piezoresistivity) \u003cbr\u003e7.7.1 Scientific Basis\u003cbr\u003e7.7.2 Effects of Strain and Strain-Induced Damage on the Electrical Resistivity of Polymer-Matrix Structural Composites \u003cbr\u003e7.8 See beck Effect \u003cbr\u003e7.8.1 Scientific Basis \u003cbr\u003e7.8.2 Thermoelectric Composites\u003cbr\u003e7.9 Applications of Conductive Materials \u003cbr\u003e7.9.1 Overview of Applications \u003cbr\u003e7.9.2 Microelectronic Applications\u003cbr\u003e7.9.3 Electrochemical Applications\u003cbr\u003e7.10 Conductive Phase Distribution and Connectivity\u003cbr\u003e7.10.1 Effect of the Conductive Filler Aspect Ratio\u003cbr\u003e7.10.2 Effect of the Nonconductive Thermoplastic Particle Viscosity \u003cbr\u003e7.10.3 Effect of Conductive Particle Size \u003cbr\u003e7.10.4 Effect of Additives \u003cbr\u003e7.10.5 Levels of Percolation \u003cbr\u003e7.11 Electrically Conductive Joints\u003cbr\u003e7.11.1 Mechanically Strong Joints for Electrical Conduction\u003cbr\u003e7.11.2 Mechanically Weak Joints for Electrical Conduction\u003cbr\u003e7.11.3 Electrical Connection Through Pressure Application \u003cbr\u003e7.11.4 Electrical Connection Through aZ-Axis Electrical Conductor\u003cbr\u003e7.12 Porous Conductors \u003cbr\u003e7.12.1 Porous Conductors Without a Nonconductive Filler \u003cbr\u003e7.12.2 Porous Conductors With a Nonconductive \u003cbr\u003eFiller and a Conductive Additive\u003cbr\u003eReview Questions \u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e\u003cbr\u003e8. Thermal Properties\u003cbr\u003e8.1 Thermal Expansion\u003cbr\u003e8.2 Specific Heat\u003cbr\u003e8.3 Phase Transformations\u003cbr\u003e8.3.1 Scientific Basis \u003cbr\u003e8.3.2 Shape Memory Effect\u003cbr\u003e8.3.3 Calorimetry\u003cbr\u003e8.4 Thermal Conductivity \u003cbr\u003e8.5 Thermal Conductance of an Interface\u003cbr\u003e8.6 Evaluating the Thermal Conduction \u003cbr\u003e8.6.1 Guarded Hot Plate Method\u003cbr\u003e8.6.2 Laser Flash Method \u003cbr\u003e8.7 Thermal Interface Materials \u003cbr\u003e8.8 Composites Used for Microelectronic Heat Sinks \u003cbr\u003e8.8.1 Metals, Diamond, and Ceramics \u003cbr\u003e8.8.2 Metal-Matrix Composites\u003cbr\u003e8.8.3 Carbon-Matrix Composites \u003cbr\u003e8.8.4 Carbon and Graphite\u003cbr\u003e8.8.5 Ceramic-Matrix Composites \u003cbr\u003e8.8.6 Polymer-Matrix Composites \u003cbr\u003e8.9 Carbon Fiber Polymer-Matrix Composites for Aircraft Heat Dissipation \u003cbr\u003e8.9.1 Interlaminar Interface Nanostructuring \u003cbr\u003e8.9.2 Through-ThicknessThermal Conductivity \u003cbr\u003e8.9.3 Through-Thickness Compressive Properties \u003cbr\u003e8.9.4 FlexuralProperties\u003cbr\u003e8.10 Composites Used for Thermal Insulation \u003cbr\u003eExampleProblems \u003cbr\u003eReviewQuestions \u003cbr\u003eReferences \u003cbr\u003eFurtherReading \u003cbr\u003e\u003cbr\u003eAppendix: Test \u003cbr\u003eTestQuestions\u003cbr\u003ePartI(32%) \u003cbr\u003ePartII(68%) \u003cbr\u003eTestSolutions\u003cbr\u003ePartI(32%) \u003cbr\u003ePartII(68%)\u003cbr\u003eIndex \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDeborah D.L. Chung is Professor in the Department of Mechanical and Aerospace Engineering at the University of Buffalo, USA. She has a PhD in Materials Science from the Massachusetts Institute of Technology, USA."}