Research and industrial chemistry requires data which are best utilized in the form of databases. The use of our databases is very simple and does not require any specialized knowledge. Our easily searchable information is so comprehensive that some leading chemical companies use our databases in their technical service departments to serve their customers with regard to their own products. The use of the databases saves time and gives an amount of information not available anywhere else because so much of what we offer is obtained directly from manufacturers according to our spec of data selection.
- Grid List
Filter
Antistatics Database, ...
$250.00
{"id":11242221828,"title":"Antistatics Database, 2nd Edition","handle":"978-1895198-59-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1895198-59-1 \u003cbr\u003e\u003cbr\u003eNumber of antistatics: 827\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDuring the time since the first edition in 2007, many changes occurred in the market resulting in the elimination of a large number of additives and introduction of new products. These changes are recorded in the database, which contains an actual range of used compounds. The Antistatics Database is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; Performance. Information on the selected additive can be accessed by clicking on any of the above tabs. The database has 130 data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains an additive name and its chemical structure (if it is a single compound disclosed by the manufacturer). The data can be viewed on screen and printed in a predefined format.\u003cbr\u003e\u003cbr\u003eIn General information section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonym, Acronym, Empirical formula, Molecular weight, Chemical category, Mixture, Product contents, Moisture content, Silicone content, and EC number\u003cbr\u003e\u003cbr\u003ePhysical properties section contains data on State, Odor, Color (Gardner and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine value, Particle diameter, Particle length, Surface area (BET), Refractive index, Specific gravity, Density, Bulk density, Vapor density, Vapor pressure, pH, Saponification value, Acidity, Viscosity, Kinematic viscosity, Melt index, Surface tension, Solubility in water and solvents, Thermal expansion coefficient, Heat of combustion, Specific heat, Thermal conductivity, Volatility, Volume resistivity, Surface resistivity, Surface resistance, Static decay time, Dielectric constant, Ash contents, Mold shrinkage, Impact strength, Tensile strength, Tensile elongation, Tensile modulus, Flexural strength, Flexural modulus, Drying time, Drying temperature\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on Flash point, Flash point method, Autoignition temperature, Explosive LEL, Explosive UEL, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Food law approvals, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat LC50, Skin irritation, Eye irritation (human), Ingestion, First aid: eyes, skin, and inhalation, Chronic effects, Carcinogenicity, Mutagenicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA)\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biological Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Fathead minnow, and Daphnia magna), Partition coefficients (log Koc, log Kow) \u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Recommended for polymers, Recommended for products, Features \u0026amp; benefits, Processing methods, Additive application method, Recommended dosage, Davies scale, Concentration of active ingredients, Carrier resin\u003cbr\u003e\u003cbr\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search permits finding antistatics by typing the first letter or two of their name which moves list to the location of a searched compound. Antistatics can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual antistatics, antistatics can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of antistatics for which data exist for the selected property. The antistatics properties can be viewed on the screen and used for evaluation of its suitability for the chosen task or its selection for application as well as for comparison with other products. \u003cbr\u003e\u003cbr\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer with Pentium processor (or other processors of similar speed) having a screen with the resolution of at least 600 by 800 operating under Windows NT or higher (including Windows 8). The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of antistatics. The database is an excellent companion to the Handbook of Antistatics because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003cbr\u003e\u003cbr\u003eAn overview of nanotechnology that encompasses scientific, technological, economic and social issues – investigating the potential of nanotechnology to transform whole sectors of industry from healthcare to energy. Jeremy Ramsden provides a blueprint for those involved in the commercialization of nanotechnology. \u003cbr\u003e\u003cbr\u003eIn \u003cb\u003eApplied Nanotechnology\u003c\/b\u003e Professor Ramsden takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring:\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe relationship between nanotechnology and innovation\u003c\/li\u003e\n\u003cli\u003eThe changing economics and business models required to commercialize innovations in nanotechnology\u003c\/li\u003e\n\u003cli\u003eProduct design challenges - investigated through case studies\u003c\/li\u003e\n\u003cli\u003eApplications in various sectors, including composite materials, energy, and agriculture\u003c\/li\u003e\n\u003cli\u003eThe role of government in promoting nanotechnology\u003c\/li\u003e\n\u003cli\u003eThe potential future of molecular self-assembly in industrial production\u003c\/li\u003e\n\u003cli\u003eThe ethics and social implications of nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAs well as providing business models and practical examples of the innovation process, this book offers a vision of the role of nanotechnology in confronting the challenges facing humanity, from healthcare to climate change.\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:48-04:00","created_at":"2017-06-22T21:13:48-04:00","vendor":"Chemtec Publishing","type":"CD","tags":["2013","ACGIH","acidity","additives","antistatic","BET","biodegradation","biological oxygen demand","boiling point","carcinogenicity","cd","CD-ROM","cloud point","color","conductive","database","density","dropping point","ecological properties","eye","freezing point","Gardner","general information","health","inhalatiom","iodine value","irritation","knematic viscosity","melt index","melting point","mutagenicity","nanotechnology","NIOSH","odor","OSH","particle hardness","particles size","pH","physical properties","Platinum-cobalt scales","polymer additives","pour point","refractive index","safety","saponification value","skin","solubility","solvents","specific gravity","surface area","surface tension","teratogenicity","theoretical oxygen demand","thermal expansion","vapor pressure","viscosity","water"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374916,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Antistatics Database, 2nd Edition","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-59-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-59-1.jpg?v=1498187315"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-59-1.jpg?v=1498187315","options":["Title"],"media":[{"alt":null,"id":350148395101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-59-1.jpg?v=1498187315"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-59-1.jpg?v=1498187315","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1895198-59-1 \u003cbr\u003e\u003cbr\u003eNumber of antistatics: 827\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDuring the time since the first edition in 2007, many changes occurred in the market resulting in the elimination of a large number of additives and introduction of new products. These changes are recorded in the database, which contains an actual range of used compounds. The Antistatics Database is divided into five sections: General information, Physical properties, Health and safety, Ecological properties, and Use \u0026amp; Performance. Information on the selected additive can be accessed by clicking on any of the above tabs. The database has 130 data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains an additive name and its chemical structure (if it is a single compound disclosed by the manufacturer). The data can be viewed on screen and printed in a predefined format.\u003cbr\u003e\u003cbr\u003eIn General information section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonym, Acronym, Empirical formula, Molecular weight, Chemical category, Mixture, Product contents, Moisture content, Silicone content, and EC number\u003cbr\u003e\u003cbr\u003ePhysical properties section contains data on State, Odor, Color (Gardner and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine value, Particle diameter, Particle length, Surface area (BET), Refractive index, Specific gravity, Density, Bulk density, Vapor density, Vapor pressure, pH, Saponification value, Acidity, Viscosity, Kinematic viscosity, Melt index, Surface tension, Solubility in water and solvents, Thermal expansion coefficient, Heat of combustion, Specific heat, Thermal conductivity, Volatility, Volume resistivity, Surface resistivity, Surface resistance, Static decay time, Dielectric constant, Ash contents, Mold shrinkage, Impact strength, Tensile strength, Tensile elongation, Tensile modulus, Flexural strength, Flexural modulus, Drying time, Drying temperature\u003cbr\u003e\u003cbr\u003eHealth and safety section contains data on Flash point, Flash point method, Autoignition temperature, Explosive LEL, Explosive UEL, NFPA Classification, NFPA Health, NFPA Flammability, NFPA Reactivity, HMIS Classification, HMIS Health, HMIS Fire, HMIS Reactivity, HMIS Personal protection, UN Risk Phrases, R, UN Safety Phrases, S, DOT Hazard Class, UN\/NA, ICAO\/IATA Class, IMDG Class, TDG class, Proper shipping name, Food law approvals, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Inhalation rat LC50, Skin irritation, Eye irritation (human), Ingestion, First aid: eyes, skin, and inhalation, Chronic effects, Carcinogenicity, Mutagenicity, and TLV - TWA 8h (ACGIH, NIOSH, OSHA)\u003cbr\u003e\u003cbr\u003eEcological properties section contains data on Biological Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Fathead minnow, and Daphnia magna), Partition coefficients (log Koc, log Kow) \u003cbr\u003e\u003cbr\u003eUse \u0026amp; performance section contains information on Manufacturer, Outstanding properties, Recommended for polymers, Recommended for products, Features \u0026amp; benefits, Processing methods, Additive application method, Recommended dosage, Davies scale, Concentration of active ingredients, Carrier resin\u003cbr\u003e\u003cbr\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search permits finding antistatics by typing the first letter or two of their name which moves list to the location of a searched compound. Antistatics can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual antistatics, antistatics can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of antistatics for which data exist for the selected property. The antistatics properties can be viewed on the screen and used for evaluation of its suitability for the chosen task or its selection for application as well as for comparison with other products. \u003cbr\u003e\u003cbr\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer with Pentium processor (or other processors of similar speed) having a screen with the resolution of at least 600 by 800 operating under Windows NT or higher (including Windows 8). The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of antistatics. The database is an excellent companion to the Handbook of Antistatics because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003cbr\u003e\u003cbr\u003eAn overview of nanotechnology that encompasses scientific, technological, economic and social issues – investigating the potential of nanotechnology to transform whole sectors of industry from healthcare to energy. Jeremy Ramsden provides a blueprint for those involved in the commercialization of nanotechnology. \u003cbr\u003e\u003cbr\u003eIn \u003cb\u003eApplied Nanotechnology\u003c\/b\u003e Professor Ramsden takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring:\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe relationship between nanotechnology and innovation\u003c\/li\u003e\n\u003cli\u003eThe changing economics and business models required to commercialize innovations in nanotechnology\u003c\/li\u003e\n\u003cli\u003eProduct design challenges - investigated through case studies\u003c\/li\u003e\n\u003cli\u003eApplications in various sectors, including composite materials, energy, and agriculture\u003c\/li\u003e\n\u003cli\u003eThe role of government in promoting nanotechnology\u003c\/li\u003e\n\u003cli\u003eThe potential future of molecular self-assembly in industrial production\u003c\/li\u003e\n\u003cli\u003eThe ethics and social implications of nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAs well as providing business models and practical examples of the innovation process, this book offers a vision of the role of nanotechnology in confronting the challenges facing humanity, from healthcare to climate change.\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Plasticizers Database
$295.00
{"id":11242211268,"title":"Plasticizers Database","handle":"978-1-895198-57-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1-895198-57-7 \u003cbr\u003e\u003cbr\u003eversion 3.0 \u003cbr\u003eNumber of plasticizers: 1475\u003cbr\u003eNumber of data fields: 105\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePlasticizer Database V.3 is a new edition of database last published in 2004. The new edition has the same structure as the previous database but it is completely updated to the present status of plasticizer production. Since 2004, substantial changes occurred in plasticizer market, caused by health and environmental concerns, which were followed by appropriate regulations. These new regulations and new product developments caused changes in plasticizer production and applications.\u003cbr\u003eSince 2004, 498 plasticizers included in the previous edition of Plasticizer Database were discontinued. Over 200 new plasticizers were added. Also, a number of major plasticizer manufacturers changed from 98 to 85, which shows consolidation of plasticizer production and offering.\u003cbr\u003eAll these changes are clearly reflected in the new edition of Plasticizer Database, which is required by both new readers and owners of the previous edition of the database. Plasticizer Database V.3 is the largest database on plasticizers ever published. The information about its contents is given below.\u003cbr\u003eThe plasticizer database was developed to contain data required in plasticizers application. Attempts were made to include a large number of plasticizers used in various sectors of industry to provide information for all users and to help in finding new solutions and formulations. Plasticizers included in the database can be divided into two categories: generic chemical name compounds and commercial plasticizers which are either mixture of several components, industrial grades of the particular compound, polymeric materials, or products having unknown, complex composition. In most cases, plasticizers differ from solvents by boiling point, which is above 250oC, but some plasticizers are used as temporary plasticizers or are expected to react with other components of the mixture. These substances will not meet the boiling temperature criterion but will still be included since they play the role of plasticizers. A large number of the plasticizers and the data fields makes this database the most comprehensive database on plasticizers ever available in any source.\u003c\/p\u003e\n\u003cp\u003eThe plasticizer database is divided into five general sections: General information, Physical properties, Health \u0026amp; safety, Ecological properties, and Use \u0026amp; performance. Information on the selected plasticizer can be accessed by clicking on any of the above tabs. The database has a large number of data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains plasticizer name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003c\/p\u003e\n\u003cp\u003eIn \u003cb\u003eGeneral Information\u003c\/b\u003e section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical Formula, Molecular mass, RTECS Number, Chemical Category, Mixture, EC number, Ester Content, Phosphorus Content, Bromine Content, Solids Content, Oxirane Oxygen Content, Paraffinic Content, Naphthenic Content, Moisture Content, Chlorine Content, Bound Acrylonitrile, Sulfur Content, Butadiene Content, Aromatic Carbon, Total Aromatic Content, and Hydroxyl Number.\u003cbr\u003ePhysical Properties section contains data on State, Odor, Color (Gardner, Saybolt, and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine Value, Refractive indices at different temperatures, Specific gravity at different temperatures, Density at different temperatures, Vapor pressure at different temperatures, Coefficients of Antoine equation, Temperature range of accuracy of Antoine equation, Vapor Density, Volume Resistivity, Acid number, Acidity(acetic acid), Saponification value, pH, Viscosity at different temperatures, Kinematic viscosity at different temperatures, Absolute viscosity at 25C, Surface tension at different temperatures, Solubility in water, and Water solubility.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eHealth \u0026amp; Safety\u003c\/b\u003e data section contains data on NFPA Classification, Canadian WHMIS Classification, HMIS Personal Protection, OSHA Hazard Class, UN Risk Phrases, US Safety Phrases, UN\/NA Class, DOT Class, ADR\/RIC Class, ICAO\/IATA Class, IMDG Class, Food Approval(s), Autoignition Temperature, Flash Point, Flash Point Method, Explosive LEL, Explosive UEL, TLV - TWA 8h (ACGIH, NIOSH, OSHA), Max Exposure Concentration NIOSH-IDLH, Toxicological Information, acute, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Dermal LD50 (guinea pig), LD50 dermal rat, Inhalation, LC50, (rat, mouse, 4h (mist)), Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, and Mutagenicity.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eEcological Properties\u003c\/b\u003e section includes Biological Oxygen Demand, Chemical Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Sheepshead minnow, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc and log Kow).\u003cbr\u003e\u003cb\u003e\u003cbr\u003eUse \u0026amp; Performance\u003c\/b\u003e section contains the following information: Manufacturer, Recommended for Polymers, Recommended for Products, Outstanding Properties, Limiting Oxygen Index, Tensile Strength at different concentrations of plasticizer, Ultimate Elongation at different concentrations of plasticizer, Elastic Elongation, 100% Modulus at different concentrations of plasticizer, Brittle Temperature at different concentrations of plasticizer, Low Temperature Flexibility at different concentrations of plasticizer, Clash-Berg at different concentrations of plasticizer, Shore A Hardness at different concentrations of plasticizer, and Volatility at different concentrations of plasticizer and different temperatures.\u003c\/p\u003e\n\u003cp\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search finds plasticizers by typing the first letter or two of their name which moves list to the location of a searched compound. Plasticizers can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual plasticizers, plasticizers can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of plasticizers for which data exist for the selected property. The plasticizer property can be viewed on the screen and used for evaluation of plasticizer suitability for the chosen task or plasticizer selection for application as well as plasticizer comparison.\u003c\/p\u003e\n\u003cp\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer operating under Windows XP or higher. The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of plasticizers. The database is an excellent companion to the \u003ca href=\"..\/proddetail.php?prod=1-895198-29-1\"\u003e\u003cb\u003eHandbook of Plasticizers\u003c\/b\u003e\u003c\/a\u003e because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.","published_at":"2017-06-22T21:13:11-04:00","created_at":"2017-06-22T21:13:11-04:00","vendor":"Chemtec Publishing","type":"CD","tags":["2012","abbreviations","absorption","acceptor","acid number","acidity","additives","alectrical conductivity","Antoine equation","autoignition","boiling point","cd","CD-ROM","coefficients","color","combustion","conductivity","density","dissociation","Donor","dor","DOT","EINECS","environment","EPA","ester","explosive","fire","flammability","flash","formula","freezing","Gardner","gravity","Hansen","health","Henry's law","Hildebrand","HMIS","hydroxyl number","iodine value","IUPAC","LEL","melting","moisture","molecular mass","NFPA","OSHA","p-additives","p-properties","pH","phosphorus","pKa","plasticizers","Platinum-cobalt","polarity","polymer","pour","protection","reactivity","refractive","risk phrases","RTECS Number","safety","saponification","solubility","surface","synonyms","tension","UEL","UN","UV","vapor","vaporization","viscosity","volatility","WHMIS"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378334852,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plasticizers Database","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-57-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086","options":["Title"],"media":[{"alt":null,"id":409013289053,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-57-7.jpg?v=1503596086","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna Wypych \u003cbr\u003eISBN 978-1-895198-57-7 \u003cbr\u003e\u003cbr\u003eversion 3.0 \u003cbr\u003eNumber of plasticizers: 1475\u003cbr\u003eNumber of data fields: 105\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePlasticizer Database V.3 is a new edition of database last published in 2004. The new edition has the same structure as the previous database but it is completely updated to the present status of plasticizer production. Since 2004, substantial changes occurred in plasticizer market, caused by health and environmental concerns, which were followed by appropriate regulations. These new regulations and new product developments caused changes in plasticizer production and applications.\u003cbr\u003eSince 2004, 498 plasticizers included in the previous edition of Plasticizer Database were discontinued. Over 200 new plasticizers were added. Also, a number of major plasticizer manufacturers changed from 98 to 85, which shows consolidation of plasticizer production and offering.\u003cbr\u003eAll these changes are clearly reflected in the new edition of Plasticizer Database, which is required by both new readers and owners of the previous edition of the database. Plasticizer Database V.3 is the largest database on plasticizers ever published. The information about its contents is given below.\u003cbr\u003eThe plasticizer database was developed to contain data required in plasticizers application. Attempts were made to include a large number of plasticizers used in various sectors of industry to provide information for all users and to help in finding new solutions and formulations. Plasticizers included in the database can be divided into two categories: generic chemical name compounds and commercial plasticizers which are either mixture of several components, industrial grades of the particular compound, polymeric materials, or products having unknown, complex composition. In most cases, plasticizers differ from solvents by boiling point, which is above 250oC, but some plasticizers are used as temporary plasticizers or are expected to react with other components of the mixture. These substances will not meet the boiling temperature criterion but will still be included since they play the role of plasticizers. A large number of the plasticizers and the data fields makes this database the most comprehensive database on plasticizers ever available in any source.\u003c\/p\u003e\n\u003cp\u003eThe plasticizer database is divided into five general sections: General information, Physical properties, Health \u0026amp; safety, Ecological properties, and Use \u0026amp; performance. Information on the selected plasticizer can be accessed by clicking on any of the above tabs. The database has a large number of data fields to accommodate a variety of data available in source publications. The description of general sections below gives more detail on the composition of information. The displayed information contains plasticizer name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003c\/p\u003e\n\u003cp\u003eIn \u003cb\u003eGeneral Information\u003c\/b\u003e section the following data are displayed: name, CAS #, IUPAC name, Common name, Common synonyms, Acronym, Empirical Formula, Molecular mass, RTECS Number, Chemical Category, Mixture, EC number, Ester Content, Phosphorus Content, Bromine Content, Solids Content, Oxirane Oxygen Content, Paraffinic Content, Naphthenic Content, Moisture Content, Chlorine Content, Bound Acrylonitrile, Sulfur Content, Butadiene Content, Aromatic Carbon, Total Aromatic Content, and Hydroxyl Number.\u003cbr\u003ePhysical Properties section contains data on State, Odor, Color (Gardner, Saybolt, and Platinum-cobalt scales), Boiling point, Melting point, Freezing point, Pour point, Iodine Value, Refractive indices at different temperatures, Specific gravity at different temperatures, Density at different temperatures, Vapor pressure at different temperatures, Coefficients of Antoine equation, Temperature range of accuracy of Antoine equation, Vapor Density, Volume Resistivity, Acid number, Acidity(acetic acid), Saponification value, pH, Viscosity at different temperatures, Kinematic viscosity at different temperatures, Absolute viscosity at 25C, Surface tension at different temperatures, Solubility in water, and Water solubility.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eHealth \u0026amp; Safety\u003c\/b\u003e data section contains data on NFPA Classification, Canadian WHMIS Classification, HMIS Personal Protection, OSHA Hazard Class, UN Risk Phrases, US Safety Phrases, UN\/NA Class, DOT Class, ADR\/RIC Class, ICAO\/IATA Class, IMDG Class, Food Approval(s), Autoignition Temperature, Flash Point, Flash Point Method, Explosive LEL, Explosive UEL, TLV - TWA 8h (ACGIH, NIOSH, OSHA), Max Exposure Concentration NIOSH-IDLH, Toxicological Information, acute, Rat oral LD50, Mouse oral LD50, Rabbit dermal LD50, Dermal LD50 (guinea pig), LD50 dermal rat, Inhalation, LC50, (rat, mouse, 4h (mist)), Skin irritation, Eye irritation (human), Carcinogenicity, Teratogenicity, and Mutagenicity.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eEcological Properties\u003c\/b\u003e section includes Biological Oxygen Demand, Chemical Oxygen Demand, Theoretical Oxygen Demand, Biodegradation probability, Aquatic toxicity LC50 (Rainbow trout, Bluegill sunfish, Sheepshead minnow, Fathead minnow, and Daphnia magna), and Partition coefficients (log Koc and log Kow).\u003cbr\u003e\u003cb\u003e\u003cbr\u003eUse \u0026amp; Performance\u003c\/b\u003e section contains the following information: Manufacturer, Recommended for Polymers, Recommended for Products, Outstanding Properties, Limiting Oxygen Index, Tensile Strength at different concentrations of plasticizer, Ultimate Elongation at different concentrations of plasticizer, Elastic Elongation, 100% Modulus at different concentrations of plasticizer, Brittle Temperature at different concentrations of plasticizer, Low Temperature Flexibility at different concentrations of plasticizer, Clash-Berg at different concentrations of plasticizer, Shore A Hardness at different concentrations of plasticizer, and Volatility at different concentrations of plasticizer and different temperatures.\u003c\/p\u003e\n\u003cp\u003eSearch is a simple process which can be done in several ways. The most common is to search name. In this case, the program searches through the list of synonyms and proposes choices. Search finds plasticizers by typing the first letter or two of their name which moves list to the location of a searched compound. Plasticizers can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list. In addition to searching capability and viewing data on individual plasticizers, plasticizers can be sorted according to values of any property. This operation is accomplished by clicking the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of plasticizers for which data exist for the selected property. The plasticizer property can be viewed on the screen and used for evaluation of plasticizer suitability for the chosen task or plasticizer selection for application as well as plasticizer comparison.\u003c\/p\u003e\n\u003cp\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer operating under Windows XP or higher. The program contains operation manual which explains further details of the operation. In summary, the database is a very powerful tool, because it contains the most extensive data available on a large number of plasticizers. The database is an excellent companion to the \u003ca href=\"..\/proddetail.php?prod=1-895198-29-1\"\u003e\u003cb\u003eHandbook of Plasticizers\u003c\/b\u003e\u003c\/a\u003e because data in the database do not repeat information or data included in the book. The number of data currently available makes a presentation of the data in the traditional format of a printed book unsuitable for fast accessing of the information and in this case difficult to handle.\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment."}
Solvents Database (CD)...
$470.00
{"id":11242201732,"title":"Solvents Database (CD) v.4.0","handle":"978-1-895198-68-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-895198-68-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of solvents: over 1800\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Solvent Database was first developed in 2001 to contain data vital in any solvent application in one comprehensive source. It had initially slightly over 1000 common solvents The fourth edition of the database had total 1627 solvents, consisting about 60% solvents having a generic chemical name and remaining were industrial solvents which were mixtures of component solvents. The solvents in the database belong to 30 groups listed in the table of contents. It is noticeable that 10 new groups of solvents recently included, are for green solvents. \u003cbr\u003eIn addition to the solvent applications, the database is a very useful tool for those who are interested in curatives (for example, a large collection of amines and polyhydric alcohols are included), common monomers also used as solvents, and low boiling liquids used in aerosols. A large number of the solvents and the data fields makes this database with about 90,000 individual data the largest and the most comprehensive database on solvents. This edition contains all-important “green solvents”.\u003cbr\u003eThe solvent database is divided into five sections: General, Physical, Health, Environmental, and Use. Information on the selected solvent can be accessed by clicking on any of the above tabs. The database has 140 data fields. The figures below show real screens available in the database. Each screen contains the solvent name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003cbr\u003e\u003cbr\u003eIn the General section the following data are displayed: Name, CAS number, Acronym, Chemical category, Empirical formula, IUPAC name, Mixture, Moisture contents, Molecular weight, Other properties, Product contents, EC number, RTECS number, and Synonyms 1, 2, 3.\u003cbr\u003e\u003cbr\u003ePhysical section contains data on Name, CAS number, Dielectric constant, Acceptor number, Acid dissociation constant, Aniline point, Antoine temperature range, Antoine constants A, B, and C, Boiling temperature, Coefficient of thermal expansion, Color, Corrosivity, Donor number, Electrical conductivity, Evaporation rates with butyl acetate=1 and ether=1, Freezing temperature, Hansen solubility parameters dD, dP, and dH, Molar volume, Heat of combustion, Enthalpy of vaporization, Enthalpy of vaporization temperature, Henry's law constant, Hildebrand solubility parameter, Kauri butanol number, Odor, Odor threshold, pH, Polarity parameter, ET(30), Refractive index, Solubility in water, Specific gravity, Specific gravity temperature, Specific heat, State, Surface tension, Thermal conductivity, Vapor density, Vapor pressure, Vapor pressure temperature, Viscosity, and Viscosity temperature.\u003cbr\u003e\u003cbr\u003eHealth section contains data on Name, CAS number, Autoignition temperature, Carcinogenicity: IRAC, NTP, OSHA, Mutagenic properties, Reproduction\/developmental toxicity, DOT class, TDG class, ICAO\/IATA class, packaging group, IMDG class, packaging group, UN\/NA hazard class, UN packaging group, Proper shipping name, Explosion limits: lower and upper, Flash point, Flash point method, LD50 dermal (rabbit), LC50 inhalation (rat), LD50 oral (mouse), LD50 oral (rat), Maximum concentration during 30 min exposure (NIOSH-IDLH), Maximum concentration at any time: ACGIH, NIOSH, OSHA, Maximum concentration during continuous exposure for 15 min: ACGIH, NIOSH, OSHA, NFPA flammability, health, reactivity, HMIS flammability, health, reactivity, Route of entry, Ingestion, Skin irritation, Eye irritation, Inhalation, First aid: eyes, skin, inhalation, Chronic effects, Target organs, Threshold limiting value: ACGIH, NIOSH, OSHA, UN number, UN risk phrases, and UN safety phrases. \u003cbr\u003e \u003cbr\u003eEnvironmental section contains data on Name, CAS number, Aquatic toxicity, Bluegill sunfish (96-h LC50), Daphnia magna (96-h LC50) and (48-h LC50), Fathead minnow (96-h LC50), Rainbow trout (96-h LC50), Bioconcentration factor, Biodegradation probability, Biological oxygen demand (20-day test) and (5-day test), Chemical oxygen demand, Atmospheric half-life, Hydroxyl rate constant, Global warming potential, Montreal protocol, Partition coefficient, Ozone depletion potential (CFC11=1), Ozone rate constant, Soil absorption constant, Theoretical oxygen demand, Urban ozone formation potential (C2H4=1), UV absorption.\u003cbr\u003e \u003cbr\u003eUse section contains information on Name, CAS number, Manufacturer, Outstanding properties, Potential substitutes, Recommended for polymers, Features \u0026amp; benefits, Processing methods, Recommended dosage, and Recommended for products.\u003cbr\u003e\u003cbr\u003eSolvent search is a simple process which can be done in the several ways. The most common is search by a solvent name. In this case, the program searches through the list of synonyms and proposes choices. Searching is easy by typing the first letter or two of their name which moves list to the location of solvent. Solvents can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list of solvents. In addition to searching capability and viewing data on individual solvents, solvents can be sorted according to values of any property. This operation is accomplished by clicking on the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of solvents for which data exist for the selected property. The solvent property can be viewed on the screen and used for evaluation of solvent suitability for a chosen task or solvent selection for application as well as solvent comparison. \u003cbr\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer with Pentium processor (or other processors of similar speed) having a screen with a resolution of at least 600 by 800 operating under Windows 2000 or higher. The program contains operation manual which explains further details of the operation. \u003cbr\u003eIn summary, the database is a very powerful tool, considering that it is currently to our knowledge (and it has been for the last 6 years) the largest existing database on solvents. The database is an excellent companion to the Handbook of Solvents because data in the database do not repeat information or data included in the book (Handbook of Solvents also contains a large number of numerical data not included in the database). The printed form of this database would require at least 8000 pages in a book format. This is several times larger volume than was available in any past book containing information on the solvent properties.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Guide to database operation (selection from general menu)\u003cbr\u003e2 Information on the data fields (left click on data field)\u003cbr\u003e3 Solvent groups included\u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Alcohols\u003cbr\u003e3.3 Aldehydes\u003cbr\u003e3.4 Aliphatic hydrocarbons\u003cbr\u003e3.5 Amides\u003cbr\u003e3.6 Amines\u003cbr\u003e3.7 Aromatic hydrocarbons\u003cbr\u003e3.8 Biodegradable solvents\u003cbr\u003e3.9 Biorenewable solvents\u003cbr\u003e3.10 Chlorofluorocarbons \u003cbr\u003e3.11 Deep eutectic solvents\u003cbr\u003e3.12 Esters\u003cbr\u003e3.13 Ethers\u003cbr\u003e3.14 Fatty acid methyl esters\u003cbr\u003e3.15 Generally recognized as safe, GRAS, solvents and their precursors\u003cbr\u003e3.16 Glycol ethers\u003cbr\u003e3.17 Halogenated\u003cbr\u003e3.18 Heterocyclic\u003cbr\u003e3.19 Hydrofluorocarbons\u003cbr\u003e3.20 Hydrofluoroethers\u003cbr\u003e3.21 Ionic liquids\u003cbr\u003e3.22 Ketones\u003cbr\u003e3.23 Miscellaneous\u003cbr\u003e3.24 Nitriles\u003cbr\u003e3.25 Perfluorocarbons\u003cbr\u003e3.26 Polyhydric alcohols\u003cbr\u003e3.27 Siloxanes\u003cbr\u003e3.28 Sulfoxides\u003cbr\u003e3.29 Supercritical fluids\u003cbr\u003e3.30 Terpenes\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eAnna Wypych\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers, 3 databases, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.\u003c\/div\u003e\n\u003cdiv\u003e\u003cb\u003eGeorge Wypych\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:42-04:00","created_at":"2017-06-22T21:12:42-04:00","vendor":"Chemtec Publishing","type":"CD","tags":["2014","autoignition","carcinogenicity","CAS","cd","dosage","DOT","empirical formula","explosion limits","eyes","flammability","flash point","health","HMIS","ICAO\/IATA class","IMDG","inhalation","IRAC","LC50","LD50","lower","mutagenic properties","NTP","OSHA","packaging group","polymers","potential substitutes","reactivity","reproduction","skin","solvent additives","solvent groups","TDG","temperature","UN packaging","UN\/NA hazard","upper"],"price":47000,"price_min":47000,"price_max":47000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Solvents Database (CD) v.4.0","public_title":null,"options":["Default Title"],"price":47000,"weight":1000,"compare_at_price":null,"inventory_quantity":-3,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-68-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-68-3.jpg?v=1504200108"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-68-3.jpg?v=1504200108","options":["Title"],"media":[{"alt":null,"id":413514858589,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-68-3.jpg?v=1504200108"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-68-3.jpg?v=1504200108","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-895198-68-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of solvents: over 1800\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Solvent Database was first developed in 2001 to contain data vital in any solvent application in one comprehensive source. It had initially slightly over 1000 common solvents The fourth edition of the database had total 1627 solvents, consisting about 60% solvents having a generic chemical name and remaining were industrial solvents which were mixtures of component solvents. The solvents in the database belong to 30 groups listed in the table of contents. It is noticeable that 10 new groups of solvents recently included, are for green solvents. \u003cbr\u003eIn addition to the solvent applications, the database is a very useful tool for those who are interested in curatives (for example, a large collection of amines and polyhydric alcohols are included), common monomers also used as solvents, and low boiling liquids used in aerosols. A large number of the solvents and the data fields makes this database with about 90,000 individual data the largest and the most comprehensive database on solvents. This edition contains all-important “green solvents”.\u003cbr\u003eThe solvent database is divided into five sections: General, Physical, Health, Environmental, and Use. Information on the selected solvent can be accessed by clicking on any of the above tabs. The database has 140 data fields. The figures below show real screens available in the database. Each screen contains the solvent name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003cbr\u003e\u003cbr\u003eIn the General section the following data are displayed: Name, CAS number, Acronym, Chemical category, Empirical formula, IUPAC name, Mixture, Moisture contents, Molecular weight, Other properties, Product contents, EC number, RTECS number, and Synonyms 1, 2, 3.\u003cbr\u003e\u003cbr\u003ePhysical section contains data on Name, CAS number, Dielectric constant, Acceptor number, Acid dissociation constant, Aniline point, Antoine temperature range, Antoine constants A, B, and C, Boiling temperature, Coefficient of thermal expansion, Color, Corrosivity, Donor number, Electrical conductivity, Evaporation rates with butyl acetate=1 and ether=1, Freezing temperature, Hansen solubility parameters dD, dP, and dH, Molar volume, Heat of combustion, Enthalpy of vaporization, Enthalpy of vaporization temperature, Henry's law constant, Hildebrand solubility parameter, Kauri butanol number, Odor, Odor threshold, pH, Polarity parameter, ET(30), Refractive index, Solubility in water, Specific gravity, Specific gravity temperature, Specific heat, State, Surface tension, Thermal conductivity, Vapor density, Vapor pressure, Vapor pressure temperature, Viscosity, and Viscosity temperature.\u003cbr\u003e\u003cbr\u003eHealth section contains data on Name, CAS number, Autoignition temperature, Carcinogenicity: IRAC, NTP, OSHA, Mutagenic properties, Reproduction\/developmental toxicity, DOT class, TDG class, ICAO\/IATA class, packaging group, IMDG class, packaging group, UN\/NA hazard class, UN packaging group, Proper shipping name, Explosion limits: lower and upper, Flash point, Flash point method, LD50 dermal (rabbit), LC50 inhalation (rat), LD50 oral (mouse), LD50 oral (rat), Maximum concentration during 30 min exposure (NIOSH-IDLH), Maximum concentration at any time: ACGIH, NIOSH, OSHA, Maximum concentration during continuous exposure for 15 min: ACGIH, NIOSH, OSHA, NFPA flammability, health, reactivity, HMIS flammability, health, reactivity, Route of entry, Ingestion, Skin irritation, Eye irritation, Inhalation, First aid: eyes, skin, inhalation, Chronic effects, Target organs, Threshold limiting value: ACGIH, NIOSH, OSHA, UN number, UN risk phrases, and UN safety phrases. \u003cbr\u003e \u003cbr\u003eEnvironmental section contains data on Name, CAS number, Aquatic toxicity, Bluegill sunfish (96-h LC50), Daphnia magna (96-h LC50) and (48-h LC50), Fathead minnow (96-h LC50), Rainbow trout (96-h LC50), Bioconcentration factor, Biodegradation probability, Biological oxygen demand (20-day test) and (5-day test), Chemical oxygen demand, Atmospheric half-life, Hydroxyl rate constant, Global warming potential, Montreal protocol, Partition coefficient, Ozone depletion potential (CFC11=1), Ozone rate constant, Soil absorption constant, Theoretical oxygen demand, Urban ozone formation potential (C2H4=1), UV absorption.\u003cbr\u003e \u003cbr\u003eUse section contains information on Name, CAS number, Manufacturer, Outstanding properties, Potential substitutes, Recommended for polymers, Features \u0026amp; benefits, Processing methods, Recommended dosage, and Recommended for products.\u003cbr\u003e\u003cbr\u003eSolvent search is a simple process which can be done in the several ways. The most common is search by a solvent name. In this case, the program searches through the list of synonyms and proposes choices. Searching is easy by typing the first letter or two of their name which moves list to the location of solvent. Solvents can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list of solvents. In addition to searching capability and viewing data on individual solvents, solvents can be sorted according to values of any property. This operation is accomplished by clicking on the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of solvents for which data exist for the selected property. The solvent property can be viewed on the screen and used for evaluation of solvent suitability for a chosen task or solvent selection for application as well as solvent comparison. \u003cbr\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer with Pentium processor (or other processors of similar speed) having a screen with a resolution of at least 600 by 800 operating under Windows 2000 or higher. The program contains operation manual which explains further details of the operation. \u003cbr\u003eIn summary, the database is a very powerful tool, considering that it is currently to our knowledge (and it has been for the last 6 years) the largest existing database on solvents. The database is an excellent companion to the Handbook of Solvents because data in the database do not repeat information or data included in the book (Handbook of Solvents also contains a large number of numerical data not included in the database). The printed form of this database would require at least 8000 pages in a book format. This is several times larger volume than was available in any past book containing information on the solvent properties.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Guide to database operation (selection from general menu)\u003cbr\u003e2 Information on the data fields (left click on data field)\u003cbr\u003e3 Solvent groups included\u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Alcohols\u003cbr\u003e3.3 Aldehydes\u003cbr\u003e3.4 Aliphatic hydrocarbons\u003cbr\u003e3.5 Amides\u003cbr\u003e3.6 Amines\u003cbr\u003e3.7 Aromatic hydrocarbons\u003cbr\u003e3.8 Biodegradable solvents\u003cbr\u003e3.9 Biorenewable solvents\u003cbr\u003e3.10 Chlorofluorocarbons \u003cbr\u003e3.11 Deep eutectic solvents\u003cbr\u003e3.12 Esters\u003cbr\u003e3.13 Ethers\u003cbr\u003e3.14 Fatty acid methyl esters\u003cbr\u003e3.15 Generally recognized as safe, GRAS, solvents and their precursors\u003cbr\u003e3.16 Glycol ethers\u003cbr\u003e3.17 Halogenated\u003cbr\u003e3.18 Heterocyclic\u003cbr\u003e3.19 Hydrofluorocarbons\u003cbr\u003e3.20 Hydrofluoroethers\u003cbr\u003e3.21 Ionic liquids\u003cbr\u003e3.22 Ketones\u003cbr\u003e3.23 Miscellaneous\u003cbr\u003e3.24 Nitriles\u003cbr\u003e3.25 Perfluorocarbons\u003cbr\u003e3.26 Polyhydric alcohols\u003cbr\u003e3.27 Siloxanes\u003cbr\u003e3.28 Sulfoxides\u003cbr\u003e3.29 Supercritical fluids\u003cbr\u003e3.30 Terpenes\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eAnna Wypych\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers, 3 databases, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.\u003c\/div\u003e\n\u003cdiv\u003e\u003cb\u003eGeorge Wypych\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}