- Grid List
Filter
Applied Nanotechnology...
$155.00
{"id":11242226308,"title":"Applied Nanotechnology 2nd Ed","handle":"978-1455731893","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jeremy Ramsden \u003cbr\u003eISBN 978-1455731893 \u003cbr\u003e\u003cbr\u003eHardbound, 240 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn overview of nanotechnology that encompasses scientific, technological, economic and social issues – investigating the potential of nanotechnology to transform whole sectors of industry from healthcare to energy. Jeremy Ramsden provides a blueprint for those involved in the commercialization of nanotechnology. \u003cbr\u003e\u003cbr\u003eIn \u003cb\u003eApplied Nanotechnology\u003c\/b\u003e Professor Ramsden takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring:\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe relationship between nanotechnology and innovation\u003c\/li\u003e\n\u003cli\u003eThe changing economics and business models required to commercialize innovations in nanotechnology\u003c\/li\u003e\n\u003cli\u003eProduct design challenges - investigated through case studies\u003c\/li\u003e\n\u003cli\u003eApplications in various sectors, including composite materials, energy, and agriculture\u003c\/li\u003e\n\u003cli\u003eThe role of government in promoting nanotechnology\u003c\/li\u003e\n\u003cli\u003eThe potential future of molecular self-assembly in industrial production\u003c\/li\u003e\n\u003cli\u003eThe ethics and social implications of nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAs well as providing business models and practical examples of the innovation process, this book offers a vision of the role of nanotechnology in confronting the challenges facing humanity, from healthcare to climate change.\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I Technology Basics\u003cbr\u003e\u003cbr\u003e1. What is nanotechnology?\u003cbr\u003e\u003cbr\u003e2. Science, technology, and wealth\u003cbr\u003e\u003cbr\u003e3. Innovation\u003cbr\u003e\u003cbr\u003e4. Why nanotechnology?\u003cbr\u003e\u003cbr\u003ePart II Nanotechnology Products\u003cbr\u003e\u003cbr\u003e5. The nanotechnology business\u003cbr\u003e\u003cbr\u003e6. Miscellaneous applications\u003cbr\u003e\u003cbr\u003e7. Information technologies\u003cbr\u003e\u003cbr\u003e8. Applications to health\u003cbr\u003e\u003cbr\u003ePart III Organizing Nanotechnology Business\u003cbr\u003e\u003cbr\u003e9. The business environment\u003cbr\u003e\u003cbr\u003e10. Assessing demand for nanotechnology\u003cbr\u003e\u003cbr\u003e11. Design of nanotechnology products\u003cbr\u003e\u003cbr\u003ePart IV Wide and Long-Term Issues\u003cbr\u003e\u003cbr\u003e12. The future of nanotechnology\u003cbr\u003e\u003cbr\u003e13. Grand challenges\u003cbr\u003e\u003cbr\u003e14. Ethics and nanotechnology\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Jeremy Ramsden graduated (Natural Sciences) from Cambridge University and obtained his doctorate from the Ecole Polytechnique Federale in Lausanne. He was appointed as Professor of Nanotechnology at Cranfield University in 2002, becoming additionally Director of Research for Bionanotechnology at Cranfield University?s Kitakyushu campus in 2003.","published_at":"2017-06-22T21:14:01-04:00","created_at":"2017-06-22T21:14:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","appilcation","biotechnology","book","MEMS","micro- and nanotechnology","nano"],"price":15500,"price_min":15500,"price_max":15500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391940,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applied Nanotechnology 2nd Ed","public_title":null,"options":["Default Title"],"price":15500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1455731893","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1455731893.jpg?v=1498190869"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1455731893.jpg?v=1498190869","options":["Title"],"media":[{"alt":null,"id":350156292189,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1455731893.jpg?v=1498190869"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1455731893.jpg?v=1498190869","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jeremy Ramsden \u003cbr\u003eISBN 978-1455731893 \u003cbr\u003e\u003cbr\u003eHardbound, 240 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn overview of nanotechnology that encompasses scientific, technological, economic and social issues – investigating the potential of nanotechnology to transform whole sectors of industry from healthcare to energy. Jeremy Ramsden provides a blueprint for those involved in the commercialization of nanotechnology. \u003cbr\u003e\u003cbr\u003eIn \u003cb\u003eApplied Nanotechnology\u003c\/b\u003e Professor Ramsden takes an integrated approach to the scientific, commercial and social aspects of nanotechnology, exploring:\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe relationship between nanotechnology and innovation\u003c\/li\u003e\n\u003cli\u003eThe changing economics and business models required to commercialize innovations in nanotechnology\u003c\/li\u003e\n\u003cli\u003eProduct design challenges - investigated through case studies\u003c\/li\u003e\n\u003cli\u003eApplications in various sectors, including composite materials, energy, and agriculture\u003c\/li\u003e\n\u003cli\u003eThe role of government in promoting nanotechnology\u003c\/li\u003e\n\u003cli\u003eThe potential future of molecular self-assembly in industrial production\u003c\/li\u003e\n\u003cli\u003eThe ethics and social implications of nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAs well as providing business models and practical examples of the innovation process, this book offers a vision of the role of nanotechnology in confronting the challenges facing humanity, from healthcare to climate change.\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I Technology Basics\u003cbr\u003e\u003cbr\u003e1. What is nanotechnology?\u003cbr\u003e\u003cbr\u003e2. Science, technology, and wealth\u003cbr\u003e\u003cbr\u003e3. Innovation\u003cbr\u003e\u003cbr\u003e4. Why nanotechnology?\u003cbr\u003e\u003cbr\u003ePart II Nanotechnology Products\u003cbr\u003e\u003cbr\u003e5. The nanotechnology business\u003cbr\u003e\u003cbr\u003e6. Miscellaneous applications\u003cbr\u003e\u003cbr\u003e7. Information technologies\u003cbr\u003e\u003cbr\u003e8. Applications to health\u003cbr\u003e\u003cbr\u003ePart III Organizing Nanotechnology Business\u003cbr\u003e\u003cbr\u003e9. The business environment\u003cbr\u003e\u003cbr\u003e10. Assessing demand for nanotechnology\u003cbr\u003e\u003cbr\u003e11. Design of nanotechnology products\u003cbr\u003e\u003cbr\u003ePart IV Wide and Long-Term Issues\u003cbr\u003e\u003cbr\u003e12. The future of nanotechnology\u003cbr\u003e\u003cbr\u003e13. Grand challenges\u003cbr\u003e\u003cbr\u003e14. Ethics and nanotechnology\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Jeremy Ramsden graduated (Natural Sciences) from Cambridge University and obtained his doctorate from the Ecole Polytechnique Federale in Lausanne. He was appointed as Professor of Nanotechnology at Cranfield University in 2002, becoming additionally Director of Research for Bionanotechnology at Cranfield University?s Kitakyushu campus in 2003."}
Block Copolymers in Na...
$261.00
{"id":11242200964,"title":"Block Copolymers in Nanoscience","handle":"978-3-527-31309-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Lazzari, Guojun Liu, S. Lecommandoux \u003cbr\u003eISBN \u003cspan\u003e978-3-527-61056-3\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003epages 447, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAn Introduction to Block Copolymer Applications: State-of-the-art and Future Developments. \u003cbr\u003e\u003cbr\u003e2. Guidelines for Synthesizing Block Copolymers. \u003cbr\u003e\u003cbr\u003e3. Block Copolymer Vesicles. \u003cbr\u003e\u003cbr\u003e4. Block Copolymer Micelles for Drug Delivery in Nanoscience. \u003cbr\u003e\u003cbr\u003e5. Stimuli-responsive Block Copolymer Assemblies. \u003cbr\u003e\u003cbr\u003e6. Self-assembly of Linear Polypeptide-based Block Copolymers. \u003cbr\u003e\u003cbr\u003e7. Synthesis, Self-assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers. \u003cbr\u003e\u003cbr\u003e8. Supramolecular Block Polymers Containing Metal-Ligand Binding Sites: From Synthesis to Properties. \u003cbr\u003e\u003cbr\u003e9. Methods for the Alignment and the Large-scale Ordering of Block Copolymer Morphologies. \u003cbr\u003e\u003cbr\u003e10. Block Copolymer Nanofibers and Nanotubes. \u003cbr\u003e\u003cbr\u003e11. Nanostructured Carbons from Block Coplymers. \u003cbr\u003e\u003cbr\u003e12. Block Copolymers at Interfaces. \u003cbr\u003e\u003cbr\u003e13. Block Copolymers as Templates for the Generation of Mesostructured Inorganic Materials. \u003cbr\u003e\u003cbr\u003e14. Mesostructured Polymers-Inorganic Hybrid Materials from Blocked Macromolecular Architectures and Nanoparticles. \u003cbr\u003e\u003cbr\u003e15. Block Ionomers for Fuel Cell Application. \u003cbr\u003e\u003cbr\u003e16. Structure, Properties and Applications of Crystallizable ABA and ABC Triblock Copolymers with Hydrogenated Polybutadiene Blocks. \u003cbr\u003e\u003cbr\u003e17. Basic Understanding of Phase Behavior and Structure of Silicone Block Copolymers and Surfactant-Block Copolymer Mixtures. \u003cbr\u003e\u003cbr\u003eSubject Index.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMassimo Lazzari\u003c\/b\u003e received his PhD in Macromolecular Chemistry at the University of Torino (Italy) under the supervision of Prof. O. Chiantore. After a two years postdoctoral work with Prof. K. Hatada at the Osaka University (Japan), where he learned the secrets of anionic polymerisation, in 1998 he became the assistant professor at the University of Torino, working on the characterisation and degradation of complex polymer systems. After several stays at the University of Santiago de Compostela (Spain), he is actually in the Institute of Technological Investigations. His current research interests are focused on the synthesis of self-assembling block copolymers, with a special attention on their use as templates and for the hierarchical self-assembly of metal nanoparticles. Guojun Liu received his PhD. degree from the University of Toronto in 1989. After 8 months as a post-doctoral fellow in the University of Toronto, he joined McGill University for another post-doctoral year. He was appointed assistant professor at the University of Calgary in 1990, promoted to associate professor in 1995 and full professor in 1999. Since 2004 he has been serving the Department of Chemistry at Queen's University as Tier I (senior) Canada Research Chair in Materials Science. He has published more than 100 papers mostly on block copolymer nanomaterials. Physico-chemist of formation, Sebasstien Lecommandoux has integrated the Centre de Recherche Paul Pascal (group of Professor Franz Hardouin, Bordeaux, France) in 1992 to prepare his Master and his Diploma Thesis in Chemistry and Physics (1996) on Liquid Crystal Polymers. Then, he went to the Material Research Laboratory and the Beckman Institute (University of Illinois at Urbana-Champaign, USA), as a Post-Doc in the group of Professor Samuel I. Stupp, and learned the Art of Supramolecular Chemistry from January to December 1998. He joined the Laboratoire de Chimie des Polymeres Organiques (CNRS, University of Bordeaux, France) as Associate Professor in 1998 and became Professor in 2005. He received the Bronze Medal Award from the CNRS in 2004 for the work he did on the self-assembly of polypeptide-based block copolymers. His current research interests mainly focus on macromolecular engineering via block copolymer self-assembly in solution and in bulk, with a special attention on the relationship between nanostructures and biological functions.","published_at":"2017-06-22T21:12:40-04:00","created_at":"2017-06-22T21:12:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","ABA","ABC","block copolymer","book","membranes","mesostructured","nano","nanofibers","nanolithography","nanotubes. nanostructured carbons interfaces","polybutadiene","polymers","silicone","templates","triblock"],"price":26100,"price_min":26100,"price_max":26100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Block Copolymers in Nanoscience","public_title":null,"options":["Default Title"],"price":26100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-61056-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503","options":["Title"],"media":[{"alt":null,"id":353915371613,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Lazzari, Guojun Liu, S. Lecommandoux \u003cbr\u003eISBN \u003cspan\u003e978-3-527-61056-3\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003epages 447, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAn Introduction to Block Copolymer Applications: State-of-the-art and Future Developments. \u003cbr\u003e\u003cbr\u003e2. Guidelines for Synthesizing Block Copolymers. \u003cbr\u003e\u003cbr\u003e3. Block Copolymer Vesicles. \u003cbr\u003e\u003cbr\u003e4. Block Copolymer Micelles for Drug Delivery in Nanoscience. \u003cbr\u003e\u003cbr\u003e5. Stimuli-responsive Block Copolymer Assemblies. \u003cbr\u003e\u003cbr\u003e6. Self-assembly of Linear Polypeptide-based Block Copolymers. \u003cbr\u003e\u003cbr\u003e7. Synthesis, Self-assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers. \u003cbr\u003e\u003cbr\u003e8. Supramolecular Block Polymers Containing Metal-Ligand Binding Sites: From Synthesis to Properties. \u003cbr\u003e\u003cbr\u003e9. Methods for the Alignment and the Large-scale Ordering of Block Copolymer Morphologies. \u003cbr\u003e\u003cbr\u003e10. Block Copolymer Nanofibers and Nanotubes. \u003cbr\u003e\u003cbr\u003e11. Nanostructured Carbons from Block Coplymers. \u003cbr\u003e\u003cbr\u003e12. Block Copolymers at Interfaces. \u003cbr\u003e\u003cbr\u003e13. Block Copolymers as Templates for the Generation of Mesostructured Inorganic Materials. \u003cbr\u003e\u003cbr\u003e14. Mesostructured Polymers-Inorganic Hybrid Materials from Blocked Macromolecular Architectures and Nanoparticles. \u003cbr\u003e\u003cbr\u003e15. Block Ionomers for Fuel Cell Application. \u003cbr\u003e\u003cbr\u003e16. Structure, Properties and Applications of Crystallizable ABA and ABC Triblock Copolymers with Hydrogenated Polybutadiene Blocks. \u003cbr\u003e\u003cbr\u003e17. Basic Understanding of Phase Behavior and Structure of Silicone Block Copolymers and Surfactant-Block Copolymer Mixtures. \u003cbr\u003e\u003cbr\u003eSubject Index.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMassimo Lazzari\u003c\/b\u003e received his PhD in Macromolecular Chemistry at the University of Torino (Italy) under the supervision of Prof. O. Chiantore. After a two years postdoctoral work with Prof. K. Hatada at the Osaka University (Japan), where he learned the secrets of anionic polymerisation, in 1998 he became the assistant professor at the University of Torino, working on the characterisation and degradation of complex polymer systems. After several stays at the University of Santiago de Compostela (Spain), he is actually in the Institute of Technological Investigations. His current research interests are focused on the synthesis of self-assembling block copolymers, with a special attention on their use as templates and for the hierarchical self-assembly of metal nanoparticles. Guojun Liu received his PhD. degree from the University of Toronto in 1989. After 8 months as a post-doctoral fellow in the University of Toronto, he joined McGill University for another post-doctoral year. He was appointed assistant professor at the University of Calgary in 1990, promoted to associate professor in 1995 and full professor in 1999. Since 2004 he has been serving the Department of Chemistry at Queen's University as Tier I (senior) Canada Research Chair in Materials Science. He has published more than 100 papers mostly on block copolymer nanomaterials. Physico-chemist of formation, Sebasstien Lecommandoux has integrated the Centre de Recherche Paul Pascal (group of Professor Franz Hardouin, Bordeaux, France) in 1992 to prepare his Master and his Diploma Thesis in Chemistry and Physics (1996) on Liquid Crystal Polymers. Then, he went to the Material Research Laboratory and the Beckman Institute (University of Illinois at Urbana-Champaign, USA), as a Post-Doc in the group of Professor Samuel I. Stupp, and learned the Art of Supramolecular Chemistry from January to December 1998. He joined the Laboratoire de Chimie des Polymeres Organiques (CNRS, University of Bordeaux, France) as Associate Professor in 1998 and became Professor in 2005. He received the Bronze Medal Award from the CNRS in 2004 for the work he did on the self-assembly of polypeptide-based block copolymers. His current research interests mainly focus on macromolecular engineering via block copolymer self-assembly in solution and in bulk, with a special attention on the relationship between nanostructures and biological functions."}
Carbon Nanotubes for B...
$159.00
{"id":11242233924,"title":"Carbon Nanotubes for Biomedical Applications","handle":"978-3-642-14801-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Klingeler, Rüdiger; Sim, Robert B. (Eds.) \u003cbr\u003eISBN 978-3-642-14801-9 \u003cbr\u003e\u003cbr\u003e1st Edition., 2011, XX, 280 p. 38 illus. in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003ePart I Fundamental: Synthesis of Multifunctional Nanomaterials and their Potential for Medical Application\u003c\/p\u003e\n\u003cp\u003e1. Physical Properties of Carbon Nanotubes for Therapeutic Application\u003c\/p\u003e\n\u003cp\u003e2. Carbon Nanotubes in Regenerative Medicine\u003c\/p\u003e\n\u003cp\u003e3. Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase\u003c\/p\u003e\n\u003cp\u003e4. Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery\u003c\/p\u003e\n\u003cp\u003ePart II Magnetically Functionalised Carbon Nanotubes for Medical Diagnosis and Therapy\u003c\/p\u003e\n\u003cp\u003e5. Magnetic Nanoparticles for Diagnosis and Medical Therapy\u003c\/p\u003e\n\u003cp\u003e6. Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors\u003c\/p\u003e\n\u003cp\u003e6. Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003ePart III Interaction with Biological Systems\u003c\/p\u003e\n\u003cp\u003e7. Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy\u003c\/p\u003e\n\u003cp\u003e8. Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003e9. Recognition of Carbon Nanotubes by Human Innate Immune System\u003c\/p\u003e\n\u003cp\u003e10. Toxicity and Environmental Impact of Carbon Nanotubes \u003c\/p\u003e\n\u003cp\u003ePart IV Towards Targeted Chemotherapy and Gene Delivery\u003c\/p\u003e\n\u003cp\u003e11. Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment\u003c\/p\u003e\n\u003cp\u003e12. Carbon Nanotubes Filled with Carboplatin: Towards Supported Delivery of Chemotherapeutic Agents\u003c\/p\u003e\n\u003cp\u003e13. Functionalized Carbon Nanotubes for Gene Biodeloivery \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:24-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biocompatibility","biomedical application","book","cellular uptake","intracellular distribution","nano","nantubes","NMR-active substances","toxicity"],"price":15900,"price_min":15900,"price_max":15900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378414596,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Carbon Nanotubes for Biomedical Applications","public_title":null,"options":["Default Title"],"price":15900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-642-14801-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975","options":["Title"],"media":[{"alt":null,"id":353925562461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Klingeler, Rüdiger; Sim, Robert B. (Eds.) \u003cbr\u003eISBN 978-3-642-14801-9 \u003cbr\u003e\u003cbr\u003e1st Edition., 2011, XX, 280 p. 38 illus. in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003ePart I Fundamental: Synthesis of Multifunctional Nanomaterials and their Potential for Medical Application\u003c\/p\u003e\n\u003cp\u003e1. Physical Properties of Carbon Nanotubes for Therapeutic Application\u003c\/p\u003e\n\u003cp\u003e2. Carbon Nanotubes in Regenerative Medicine\u003c\/p\u003e\n\u003cp\u003e3. Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase\u003c\/p\u003e\n\u003cp\u003e4. Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery\u003c\/p\u003e\n\u003cp\u003ePart II Magnetically Functionalised Carbon Nanotubes for Medical Diagnosis and Therapy\u003c\/p\u003e\n\u003cp\u003e5. Magnetic Nanoparticles for Diagnosis and Medical Therapy\u003c\/p\u003e\n\u003cp\u003e6. Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors\u003c\/p\u003e\n\u003cp\u003e6. Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003ePart III Interaction with Biological Systems\u003c\/p\u003e\n\u003cp\u003e7. Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy\u003c\/p\u003e\n\u003cp\u003e8. Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003e9. Recognition of Carbon Nanotubes by Human Innate Immune System\u003c\/p\u003e\n\u003cp\u003e10. Toxicity and Environmental Impact of Carbon Nanotubes \u003c\/p\u003e\n\u003cp\u003ePart IV Towards Targeted Chemotherapy and Gene Delivery\u003c\/p\u003e\n\u003cp\u003e11. Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment\u003c\/p\u003e\n\u003cp\u003e12. Carbon Nanotubes Filled with Carboplatin: Towards Supported Delivery of Chemotherapeutic Agents\u003c\/p\u003e\n\u003cp\u003e13. Functionalized Carbon Nanotubes for Gene Biodeloivery \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Carbon Nanotubes for P...
$189.00
{"id":11242224964,"title":"Carbon Nanotubes for Polymer Reinforcement","handle":"978-1-4398262-1-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peng-Cheng Ma, Jang-Kyo Kim \u003cbr\u003eISBN 978-1-4398262-1-8 \u003cbr\u003e\u003cbr\u003ePages: 224 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDiscovered in the twentieth century, carbon nanotubes (CNT) were an integral part of science and industry by the beginning of the twenty first century, revolutionizing chemistry, physics, and materials science. More recent advances in carbon nanotube production methods have resulted in a tremendous push to incorporate CNTs into polymer matrices. Although many advances have been made, two major obstacles continue unresolved: the enhancement of interfacial adhesion between CNTs and polymer matrix, and the improvement of dispersion of CNTs in polymers. \u003cbr\u003e\u003cbr\u003eBoth substantial original contributors to the field, the authors present Carbon Nanotubes for Polymer Reinforcement, the first monograph on various conventional and innovative techniques to disperse and functionalize carbon nanotubes for polymer reinforcement, elegantly explaining the basic sciences and technologies involved in those processes. Topics covered include:\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eUse of CNTs in fabricating novel polymer composites\u003c\/li\u003e\n\u003cli\u003ePrinciples and mechanisms behind CNT dispersion and functionalization\u003c\/li\u003e\n\u003cli\u003eMethods for the functionalization and dispersion of CNTs in polymer matrices\u003c\/li\u003e\n\u003cli\u003eEffects of CNTs on functional and mechanical properties of polymer composites\u003c\/li\u003e\n\u003cli\u003eOptimization of CNT\/polymer nanocomposite fabrication\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eCarbon Nanotubes for Polymer Reinforcement is a comprehensive treatment and critical review of the new class of polymer nanocomposites, and points to areas of future developments. Composites engineers, scientists, researchers, and students will find the basic knowledge and technical results contained herein informative and useful references for their work, whether for advanced research or for design and manufacture of such composites.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Introduction to carbon nanotubes (CNTs)\u003cbr\u003e1.2 Properties of CNTs\u003cbr\u003e1.2.1 Structure properties\u003cbr\u003e1.2.2 Mechanical properties\u003cbr\u003e1.2.3 Electrical\/electronic properties\u003cbr\u003e1.2.4 Thermal properties\u003cbr\u003e1.2.5 Optical properties\u003cbr\u003e1.2.6 Magnetic properties\u003cbr\u003e1.2.7 Defects on CNTs\u003cbr\u003e1.2.8 Others\u003cbr\u003e1.3 Characterization of CNTs\u003cbr\u003e1.3.1 Structure and morphological characterization of CNTs\u003cbr\u003e1.3.2 Characterization of surface functionalities on CNTs\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e2. Dispersion of CNTs\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Dispersion behavior of CNTs\u003cbr\u003e2.2.1 Dispersion and distribution of CNTs\u003cbr\u003e2.2.2 Surface interactions between CNTs\u003cbr\u003e2.2.3 Aggregation and solubility of CNTs\u003cbr\u003e2.3 Techniques for CNT dispersion\u003cbr\u003e2.3.1 Theoretical analysis on CNT dispersion\u003cbr\u003e2.3.2 Ultrasonication\u003cbr\u003e2.3.3 High speed shear mixing\u003cbr\u003e2.3.4 Calendering\u003cbr\u003e2.3.5 Extrusion\u003cbr\u003e2.3.6 Other techniques\u003cbr\u003e2.4 Characterization of CNT dispersion\u003cbr\u003e2.4.1 Principles on the characterization of CNT dispersion\u003cbr\u003e2.4.2 Microscopic method (Optical and confocal microscopy, SEM, TEM)\u003cbr\u003e2.4.3 Light method (Particle size analyzer, fluorescent method, UV-Vis)\u003cbr\u003e2.4.4 Physical method (Zeta potential)\u003cbr\u003e2.4.5 Qualitative and quantitative evaluation of CNT dispersion\u003cbr\u003e2.5 Dispersion of CNTs in liquid media\u003cbr\u003e2.5.1 Dispersion of CNTs in organic solvents\u003cbr\u003e2.5.2 Dispersion of CNTs in polymers\u003cbr\u003e2.5.3 CNT interactions with biomolecules (DNA, protein, enzyme)\u003cbr\u003e2.6 CNT dispersion using surfactant\u003cbr\u003e2.6.1 Role of surfactant in CNT dispersion\u003cbr\u003e2.6.2 Nonionic surfactant-assisted CNT dispersion\u003cbr\u003e2.6.3 Ionic surfactant-assisted CNT dispersion\u003cbr\u003e2.6.4 Cationic surfactant-assisted CNT dispersion\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e3. Functionalization of CNTs\u003cbr\u003e3.1 Chemistry of CNTs\u003cbr\u003e3.2 Covalent Functionalization of CNTs\u003cbr\u003e3.2.1 Direct side wall functionalization\u003cbr\u003e3.2.2 Defect functionalization\u003cbr\u003e3.3 Non-covalent functionalization of CNTs\u003cbr\u003e3.3.1 Polymer wrapping\u003cbr\u003e3.3.2 Surfactant adsorption\u003cbr\u003e3.3.3 Endohedral method\u003cbr\u003e3.4 CNT functionalization in different phases\u003cbr\u003e3.4.1 CNT functionalization in solid phase (Mechanochemical method)\u003cbr\u003e3.4.2 CNT functionalization in liquid phase (Covalent and non-covalent methods)\u003cbr\u003e3.4.3 CNT functionalization in gas phase (including UV\/03, plasma and halogenations,such as F, Cl and Br)\u003cbr\u003e\u003cbr\u003e3.5 Effects of functionalization on the properties of CNTs\u003cbr\u003e3.5.1 Dispersibility of CNTs\u003cbr\u003e3.5.2 Mechanical properties\u003cbr\u003e3.5.3 Electrical\/electronic properties\u003cbr\u003e3.5.4 Thermal properties\u003cbr\u003e3.5.5 Optical properties\u003cbr\u003e3.5.6 Others\u003cbr\u003e3.6 Metal nanoparticle\/CNT nanohybrids\u003cbr\u003e3.6.1 Fabrication\u003cbr\u003e3.6.2 Applications\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e4. CNT\/Polymer Nanocomposites\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fabrication of CNT\/polymer composites\u003cbr\u003e4.2.1 Solution mixing\u003cbr\u003e4.2.2 Melt blending\u003cbr\u003e4.2.3 In-situ polymerization\u003cbr\u003e4.2.4 Latex technology\u003cbr\u003e4.2.5 Pulverization method\u003cbr\u003e4.2.6 Coagulation spinning method\u003cbr\u003e4.2.7 Others\u003cbr\u003e4.3 Effects of functionalization on the properties of CNT\/polymer nanocomposites\u003cbr\u003e4.3.1 Mechanical properties\u003cbr\u003e4.3.2 Electrical properties\u003cbr\u003e4.3.3 Thermal properties and flammability\u003cbr\u003e4.3.4 Optical properties\u003cbr\u003e4.3.5 Magnetic properties\u003cbr\u003e4.3.6 Ageing properties\u003cbr\u003e4.3.7 Damping properties\u003cbr\u003e4.3.8 Others\u003cbr\u003e4.4 Control of CNT\/polymer interface\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e5. Application of CNT\/Polymer Nanocomposites\u003cbr\u003e5.1 Structural application of CNT \/polymer nanocomposites\u003cbr\u003e5.2 Functional application of CNT\/polymer nanocomposites\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eAppendices\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nPeng-Cheng Ma is currently a Visiting Scholar at the Hong Kong University of Science and Technology. Jang-Kyo Kim is a tenured Professor, Associate Dean of Engineering, and Director of the Nanoscience and Technology Program at the Hong Kong University of Science and Technology.","published_at":"2017-06-22T21:13:57-04:00","created_at":"2017-06-22T21:13:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","carbon nanotubes","CNTs","dispersion","functionalization","nano","polymer nancomposites","properties","structure"],"price":18900,"price_min":18900,"price_max":18900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378390276,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Carbon Nanotubes for Polymer Reinforcement","public_title":null,"options":["Default Title"],"price":18900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4398262-1-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398262-1-8.jpg?v=1499202744"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398262-1-8.jpg?v=1499202744","options":["Title"],"media":[{"alt":null,"id":353925660765,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398262-1-8.jpg?v=1499202744"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4398262-1-8.jpg?v=1499202744","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peng-Cheng Ma, Jang-Kyo Kim \u003cbr\u003eISBN 978-1-4398262-1-8 \u003cbr\u003e\u003cbr\u003ePages: 224 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDiscovered in the twentieth century, carbon nanotubes (CNT) were an integral part of science and industry by the beginning of the twenty first century, revolutionizing chemistry, physics, and materials science. More recent advances in carbon nanotube production methods have resulted in a tremendous push to incorporate CNTs into polymer matrices. Although many advances have been made, two major obstacles continue unresolved: the enhancement of interfacial adhesion between CNTs and polymer matrix, and the improvement of dispersion of CNTs in polymers. \u003cbr\u003e\u003cbr\u003eBoth substantial original contributors to the field, the authors present Carbon Nanotubes for Polymer Reinforcement, the first monograph on various conventional and innovative techniques to disperse and functionalize carbon nanotubes for polymer reinforcement, elegantly explaining the basic sciences and technologies involved in those processes. Topics covered include:\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eUse of CNTs in fabricating novel polymer composites\u003c\/li\u003e\n\u003cli\u003ePrinciples and mechanisms behind CNT dispersion and functionalization\u003c\/li\u003e\n\u003cli\u003eMethods for the functionalization and dispersion of CNTs in polymer matrices\u003c\/li\u003e\n\u003cli\u003eEffects of CNTs on functional and mechanical properties of polymer composites\u003c\/li\u003e\n\u003cli\u003eOptimization of CNT\/polymer nanocomposite fabrication\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eCarbon Nanotubes for Polymer Reinforcement is a comprehensive treatment and critical review of the new class of polymer nanocomposites, and points to areas of future developments. Composites engineers, scientists, researchers, and students will find the basic knowledge and technical results contained herein informative and useful references for their work, whether for advanced research or for design and manufacture of such composites.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Introduction to carbon nanotubes (CNTs)\u003cbr\u003e1.2 Properties of CNTs\u003cbr\u003e1.2.1 Structure properties\u003cbr\u003e1.2.2 Mechanical properties\u003cbr\u003e1.2.3 Electrical\/electronic properties\u003cbr\u003e1.2.4 Thermal properties\u003cbr\u003e1.2.5 Optical properties\u003cbr\u003e1.2.6 Magnetic properties\u003cbr\u003e1.2.7 Defects on CNTs\u003cbr\u003e1.2.8 Others\u003cbr\u003e1.3 Characterization of CNTs\u003cbr\u003e1.3.1 Structure and morphological characterization of CNTs\u003cbr\u003e1.3.2 Characterization of surface functionalities on CNTs\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e2. Dispersion of CNTs\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Dispersion behavior of CNTs\u003cbr\u003e2.2.1 Dispersion and distribution of CNTs\u003cbr\u003e2.2.2 Surface interactions between CNTs\u003cbr\u003e2.2.3 Aggregation and solubility of CNTs\u003cbr\u003e2.3 Techniques for CNT dispersion\u003cbr\u003e2.3.1 Theoretical analysis on CNT dispersion\u003cbr\u003e2.3.2 Ultrasonication\u003cbr\u003e2.3.3 High speed shear mixing\u003cbr\u003e2.3.4 Calendering\u003cbr\u003e2.3.5 Extrusion\u003cbr\u003e2.3.6 Other techniques\u003cbr\u003e2.4 Characterization of CNT dispersion\u003cbr\u003e2.4.1 Principles on the characterization of CNT dispersion\u003cbr\u003e2.4.2 Microscopic method (Optical and confocal microscopy, SEM, TEM)\u003cbr\u003e2.4.3 Light method (Particle size analyzer, fluorescent method, UV-Vis)\u003cbr\u003e2.4.4 Physical method (Zeta potential)\u003cbr\u003e2.4.5 Qualitative and quantitative evaluation of CNT dispersion\u003cbr\u003e2.5 Dispersion of CNTs in liquid media\u003cbr\u003e2.5.1 Dispersion of CNTs in organic solvents\u003cbr\u003e2.5.2 Dispersion of CNTs in polymers\u003cbr\u003e2.5.3 CNT interactions with biomolecules (DNA, protein, enzyme)\u003cbr\u003e2.6 CNT dispersion using surfactant\u003cbr\u003e2.6.1 Role of surfactant in CNT dispersion\u003cbr\u003e2.6.2 Nonionic surfactant-assisted CNT dispersion\u003cbr\u003e2.6.3 Ionic surfactant-assisted CNT dispersion\u003cbr\u003e2.6.4 Cationic surfactant-assisted CNT dispersion\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e3. Functionalization of CNTs\u003cbr\u003e3.1 Chemistry of CNTs\u003cbr\u003e3.2 Covalent Functionalization of CNTs\u003cbr\u003e3.2.1 Direct side wall functionalization\u003cbr\u003e3.2.2 Defect functionalization\u003cbr\u003e3.3 Non-covalent functionalization of CNTs\u003cbr\u003e3.3.1 Polymer wrapping\u003cbr\u003e3.3.2 Surfactant adsorption\u003cbr\u003e3.3.3 Endohedral method\u003cbr\u003e3.4 CNT functionalization in different phases\u003cbr\u003e3.4.1 CNT functionalization in solid phase (Mechanochemical method)\u003cbr\u003e3.4.2 CNT functionalization in liquid phase (Covalent and non-covalent methods)\u003cbr\u003e3.4.3 CNT functionalization in gas phase (including UV\/03, plasma and halogenations,such as F, Cl and Br)\u003cbr\u003e\u003cbr\u003e3.5 Effects of functionalization on the properties of CNTs\u003cbr\u003e3.5.1 Dispersibility of CNTs\u003cbr\u003e3.5.2 Mechanical properties\u003cbr\u003e3.5.3 Electrical\/electronic properties\u003cbr\u003e3.5.4 Thermal properties\u003cbr\u003e3.5.5 Optical properties\u003cbr\u003e3.5.6 Others\u003cbr\u003e3.6 Metal nanoparticle\/CNT nanohybrids\u003cbr\u003e3.6.1 Fabrication\u003cbr\u003e3.6.2 Applications\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e4. CNT\/Polymer Nanocomposites\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fabrication of CNT\/polymer composites\u003cbr\u003e4.2.1 Solution mixing\u003cbr\u003e4.2.2 Melt blending\u003cbr\u003e4.2.3 In-situ polymerization\u003cbr\u003e4.2.4 Latex technology\u003cbr\u003e4.2.5 Pulverization method\u003cbr\u003e4.2.6 Coagulation spinning method\u003cbr\u003e4.2.7 Others\u003cbr\u003e4.3 Effects of functionalization on the properties of CNT\/polymer nanocomposites\u003cbr\u003e4.3.1 Mechanical properties\u003cbr\u003e4.3.2 Electrical properties\u003cbr\u003e4.3.3 Thermal properties and flammability\u003cbr\u003e4.3.4 Optical properties\u003cbr\u003e4.3.5 Magnetic properties\u003cbr\u003e4.3.6 Ageing properties\u003cbr\u003e4.3.7 Damping properties\u003cbr\u003e4.3.8 Others\u003cbr\u003e4.4 Control of CNT\/polymer interface\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e5. Application of CNT\/Polymer Nanocomposites\u003cbr\u003e5.1 Structural application of CNT \/polymer nanocomposites\u003cbr\u003e5.2 Functional application of CNT\/polymer nanocomposites\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eAppendices\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nPeng-Cheng Ma is currently a Visiting Scholar at the Hong Kong University of Science and Technology. Jang-Kyo Kim is a tenured Professor, Associate Dean of Engineering, and Director of the Nanoscience and Technology Program at the Hong Kong University of Science and Technology."}
Dielectric Polymer Nan...
$219.00
{"id":11242243844,"title":"Dielectric Polymer Nanocomposites","handle":"978-1-4419-1590-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Nelson, J. Keith (Ed.) \u003cbr\u003eISBN 978-1-4419-1590-0 \u003cbr\u003e\u003cbr\u003e1st Edition., 380 p., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDielectric Polymer Nanocomposites provides the first in-depth discussion of nano-dielectrics, an emerging and fast moving topic in electrical insulation. The book provides an overview of the background, principles and promise of nanodielectrics, as well as a discussion of the processing of nanocomposites. Special considerations are also given to clay based processes, mechanical, thermal and electric properties and surface properties, as well as erosion resistance. Carbon nanotubes are discussed as a means of creation of nonlinear conductivity. Editor J. Keith Nelson brings together the leading minds in the field, whose contributions to the book also:\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eDiscusses the background, principles and importance of nano-dielectric composites\u003c\/li\u003e\n\u003cli\u003eIncludes complete coverage of nanodielectric composites such as cryogenic applications, high voltage stress grading materials and applications in the capacitor industry\u003c\/li\u003e\n\u003cli\u003eProvides detailed coverage on the processing of nanocomposites\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eDielectric Polymer Nanocomposites is perfect for academics and researchers working in or interested in learning more about this growing field.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nBackground principles and promise of nanodielectrics.- The processing of nanocomposites.- Special considerations for clay-based materials.- The chemistry of the interface region and functionalization.- Mechanical and thermal properties.- Electrical properties.- Surface properties and erosion resistance.- Carbon nanotubes and the creation of non-linear conductivity.- The emerging mechanistic picture.- The industrial applications perspective.","published_at":"2017-06-22T21:14:55-04:00","created_at":"2017-06-22T21:14:55-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","carbon nanotubes","clay-based materials","cryogenic applications","mechanical and thermal properties","nano","nanocomposites","nanodielectrics","non-linear conductivity","polymers","processing of nanocomposites"],"price":21900,"price_min":21900,"price_max":21900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378445252,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Dielectric Polymer Nanocomposites","public_title":null,"options":["Default Title"],"price":21900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4419-1590-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Nelson, J. Keith (Ed.) \u003cbr\u003eISBN 978-1-4419-1590-0 \u003cbr\u003e\u003cbr\u003e1st Edition., 380 p., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDielectric Polymer Nanocomposites provides the first in-depth discussion of nano-dielectrics, an emerging and fast moving topic in electrical insulation. The book provides an overview of the background, principles and promise of nanodielectrics, as well as a discussion of the processing of nanocomposites. Special considerations are also given to clay based processes, mechanical, thermal and electric properties and surface properties, as well as erosion resistance. Carbon nanotubes are discussed as a means of creation of nonlinear conductivity. Editor J. Keith Nelson brings together the leading minds in the field, whose contributions to the book also:\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eDiscusses the background, principles and importance of nano-dielectric composites\u003c\/li\u003e\n\u003cli\u003eIncludes complete coverage of nanodielectric composites such as cryogenic applications, high voltage stress grading materials and applications in the capacitor industry\u003c\/li\u003e\n\u003cli\u003eProvides detailed coverage on the processing of nanocomposites\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eDielectric Polymer Nanocomposites is perfect for academics and researchers working in or interested in learning more about this growing field.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nBackground principles and promise of nanodielectrics.- The processing of nanocomposites.- Special considerations for clay-based materials.- The chemistry of the interface region and functionalization.- Mechanical and thermal properties.- Electrical properties.- Surface properties and erosion resistance.- Carbon nanotubes and the creation of non-linear conductivity.- The emerging mechanistic picture.- The industrial applications perspective."}
Electrospun Nanofibres...
$135.00
{"id":11242230532,"title":"Electrospun Nanofibres and Their Applications","handle":"978-1-84735-145-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ji-Huan He \u003cbr\u003eISBN 978-1-84735-145-6 \u003cbr\u003e\u003cbr\u003eSmithers Rapra Updates\u003cbr\u003eSoft-backed, 152x229mm, 257 pages\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Update covers all aspects of electrospinning as used to produce Nanofibres. It contains an array of colour diagrams, mathematical models, equations and detailed references. It will be invaluable to anyone who is interested in using this technique and also to those interested in finding out more about the subject. \u003cbr\u003e\u003cbr\u003eElectrospinning is the cheapest and the most straightforward way to produce nanomaterials. Electrospun Nanofibres are very important for the scientific and economic revival of developing countries. Electrospinning was developed from electrostatic spraying and now represents an attractive approach for polymer biomaterials processing, with the opportunity for control over morphology, porosity, and composition using simple equipment. Because electrospinning is one of the few techniques to prepare long fibres of nano- to micrometre diameter, great progress has been made in recent years. \u003cbr\u003e\u003cbr\u003eIt is now possible to produce a low-cost, high-value, high-strength fibre from a biodegradable and renewable waste product for easing environmental concerns. For example, electrospun nanofibres can be used in wound dressings, filtration applications, bone tissue engineering, catalyst supports, non-woven fabrics, reinforced fibres, support for enzymes, drug delivery systems, fuel cells, conducting polymers and composites, photonics, medicine, pharmacy, fibre mats serving as reinforcing component in composite systems, and fibre templates for the preparation of functional nanotubes.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1. Introduction\u003c\/b\u003e \u003cbr\u003e1.1 What is nanotechnology? \u003cbr\u003e1.2 What is electrospinning? \u003cbr\u003e1.3 What affects electrospinning? \u003cbr\u003e1.4 Applications \u003cbr\u003e1.5 Global Interest in the field of Electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2. Mathematical Models for Electrospinning Process\u003c\/b\u003e \u003cbr\u003e2.1 One-dimensional Model \u003cbr\u003e2.2 Spivak-Dzenis model \u003cbr\u003e2.3 Wan-Guo-Pan Model \u003cbr\u003e2.4 Modified One-Dimensional Model \u003cbr\u003e2.5 Modified Conservation of Charge \u003cbr\u003e2.6 Reneker's model \u003cbr\u003e2.7 E-Infinity theory \u003cbr\u003e\u003cbr\u003e\u003cb\u003e3. Allometric Scaling in Electrospinning\u003c\/b\u003e \u003cbr\u003e3.1 Allometric Scaling in Nature \u003cbr\u003e3.2 Allometrical Scaling Laws in Electrospinning \u003cbr\u003e3.2.1 Relationship between radius r of jet and the axial distance z \u003cbr\u003e3.2.2 Allometric scaling relationship between current and voltage \u003cbr\u003e3.2.3 Allometric scaling relation between solution flow rate and current \u003cbr\u003e3.2.4 Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibres \u003cbr\u003e3.2.5 Allometric Scaling Law between Average Polymer Molecular Weight and Electrospun Nanofibre Diameter \u003cbr\u003e3.2.6 Effect of voltage on morphology and diameter of electrospun nanofibres \u003cbr\u003e3.2.7 Enlarging Electrospinability by Nonionic Surfactants \u003cbr\u003e3.3 Allometric Scaling Law for Static Fiction of Fibrous Materials \u003cbr\u003e3.4 Allometric scaling in Biology \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4. Application of Vibration Technology to Electrospinning\u003c\/b\u003e \u003cbr\u003e4.1 Effect of viscosity on diameter of electrospun fibre \u003cbr\u003e4.2 Effect of Vibration on Viscosity \u003cbr\u003e4.3 Application of vibration technology to polymer electrospinning \u003cbr\u003e4.4 Effect of solution viscosity on mechanical characters of Electrospun Fibres \u003cbr\u003e4.5 Carbon Nanotube Reinforced Polyacrylonitrile Nanofibres by Vibration-Electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e5. Magneto-electrospinning: Control of the instability\u003c\/b\u003e \u003cbr\u003e5.1 Critical Length of Straight Jet in Electrospinning \u003cbr\u003e5.2 Controlling Stability by Magnetic Field \u003cbr\u003e5.3 Controlling Stability by Temperature \u003cbr\u003e5.4 Siro-electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6. BioMimic Fabrication of Electrospun Nanofibres with High-throughput\u003c\/b\u003e \u003cbr\u003e6.1 Spider-spinning \u003cbr\u003e6.2 Electrospinning of silk fibroin nanofibres \u003cbr\u003e6.3 Mystery in spider-spinning process \u003cbr\u003e6.4 Bubble-electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e7. Controlling Numbers and Sizes of Beads in Electrospun nanofibres\u003c\/b\u003e \u003cbr\u003e7.1 Experiment Observation \u003cbr\u003e7.2 Effects of different solvents \u003cbr\u003e7.3 Effect of the polymer concentration \u003cbr\u003e7.4 Effect of salt additive \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8. Electrospun Nanoporous Microspheres for Nanotechnology\u003c\/b\u003e \u003cbr\u003e8.1 Electrospun nanoporous spheres with Chinese drug \u003cbr\u003e8.2 Electrospinning-dilation \u003cbr\u003e8.3 Single Nanoporous Fibre by Electrospinning \u003cbr\u003e8.4 Micro sphere with nano-porosity \u003cbr\u003e8.5 Micro-composite fibres by electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9. Super-carbon Nanotubes: An E-infinity Approach\u003c\/b\u003e \u003cbr\u003e9.1 E-infinity Nanotechnology \u003cbr\u003e9.2 Application of E-Infinity to Electrospinning \u003cbr\u003e9.3 Super-carbon Nanotubes: An E-infinity Approach \u003cbr\u003e\u003cbr\u003e\u003cb\u003e10. Mechanics in Nano-textile Science\u003c\/b\u003e \u003cbr\u003e10.1 Jet-vortex spinning and Cyclone model \u003cbr\u003e10.2 Two-phase flow of Yarn Motion in High-Speed Air and Micropolar Model \u003cbr\u003e10.3 Mathematical Model for Yarn motion in Tube \u003cbr\u003e10.4 Nano-hydrodynamics \u003cbr\u003e10.5 A New Resistance Formulation for Carbon Nanotubes and Nerve Fibres \u003cbr\u003e10.6 Differential-difference Model for Nanotechnology \u003cbr\u003e\u003cbr\u003e\u003cb\u003e11. Nonlinear Dynamics in Sirofil\/Sirospun Yarn Spinning\u003c\/b\u003e \u003cbr\u003e11.1 Convergent point \u003cbr\u003e11.2 Linear Dynamical Model \u003cbr\u003e11.3 Nonlinear Dynamical Model \u003cbr\u003e11.4 Stable Working Condition for Three-strand Yarn Spinning \u003cbr\u003e11.5 Nano-sirospinning\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:14-04:00","created_at":"2017-06-22T21:14:15-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","electrospinning","electrospun","nano","nanofibers","nanotechnology","polymer biomaterials","vibrational technology"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378401540,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Electrospun Nanofibres and Their Applications","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-145-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-145-6.jpg?v=1499281323"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-145-6.jpg?v=1499281323","options":["Title"],"media":[{"alt":null,"id":354454405213,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-145-6.jpg?v=1499281323"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-145-6.jpg?v=1499281323","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ji-Huan He \u003cbr\u003eISBN 978-1-84735-145-6 \u003cbr\u003e\u003cbr\u003eSmithers Rapra Updates\u003cbr\u003eSoft-backed, 152x229mm, 257 pages\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Update covers all aspects of electrospinning as used to produce Nanofibres. It contains an array of colour diagrams, mathematical models, equations and detailed references. It will be invaluable to anyone who is interested in using this technique and also to those interested in finding out more about the subject. \u003cbr\u003e\u003cbr\u003eElectrospinning is the cheapest and the most straightforward way to produce nanomaterials. Electrospun Nanofibres are very important for the scientific and economic revival of developing countries. Electrospinning was developed from electrostatic spraying and now represents an attractive approach for polymer biomaterials processing, with the opportunity for control over morphology, porosity, and composition using simple equipment. Because electrospinning is one of the few techniques to prepare long fibres of nano- to micrometre diameter, great progress has been made in recent years. \u003cbr\u003e\u003cbr\u003eIt is now possible to produce a low-cost, high-value, high-strength fibre from a biodegradable and renewable waste product for easing environmental concerns. For example, electrospun nanofibres can be used in wound dressings, filtration applications, bone tissue engineering, catalyst supports, non-woven fabrics, reinforced fibres, support for enzymes, drug delivery systems, fuel cells, conducting polymers and composites, photonics, medicine, pharmacy, fibre mats serving as reinforcing component in composite systems, and fibre templates for the preparation of functional nanotubes.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1. Introduction\u003c\/b\u003e \u003cbr\u003e1.1 What is nanotechnology? \u003cbr\u003e1.2 What is electrospinning? \u003cbr\u003e1.3 What affects electrospinning? \u003cbr\u003e1.4 Applications \u003cbr\u003e1.5 Global Interest in the field of Electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2. Mathematical Models for Electrospinning Process\u003c\/b\u003e \u003cbr\u003e2.1 One-dimensional Model \u003cbr\u003e2.2 Spivak-Dzenis model \u003cbr\u003e2.3 Wan-Guo-Pan Model \u003cbr\u003e2.4 Modified One-Dimensional Model \u003cbr\u003e2.5 Modified Conservation of Charge \u003cbr\u003e2.6 Reneker's model \u003cbr\u003e2.7 E-Infinity theory \u003cbr\u003e\u003cbr\u003e\u003cb\u003e3. Allometric Scaling in Electrospinning\u003c\/b\u003e \u003cbr\u003e3.1 Allometric Scaling in Nature \u003cbr\u003e3.2 Allometrical Scaling Laws in Electrospinning \u003cbr\u003e3.2.1 Relationship between radius r of jet and the axial distance z \u003cbr\u003e3.2.2 Allometric scaling relationship between current and voltage \u003cbr\u003e3.2.3 Allometric scaling relation between solution flow rate and current \u003cbr\u003e3.2.4 Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibres \u003cbr\u003e3.2.5 Allometric Scaling Law between Average Polymer Molecular Weight and Electrospun Nanofibre Diameter \u003cbr\u003e3.2.6 Effect of voltage on morphology and diameter of electrospun nanofibres \u003cbr\u003e3.2.7 Enlarging Electrospinability by Nonionic Surfactants \u003cbr\u003e3.3 Allometric Scaling Law for Static Fiction of Fibrous Materials \u003cbr\u003e3.4 Allometric scaling in Biology \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4. Application of Vibration Technology to Electrospinning\u003c\/b\u003e \u003cbr\u003e4.1 Effect of viscosity on diameter of electrospun fibre \u003cbr\u003e4.2 Effect of Vibration on Viscosity \u003cbr\u003e4.3 Application of vibration technology to polymer electrospinning \u003cbr\u003e4.4 Effect of solution viscosity on mechanical characters of Electrospun Fibres \u003cbr\u003e4.5 Carbon Nanotube Reinforced Polyacrylonitrile Nanofibres by Vibration-Electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e5. Magneto-electrospinning: Control of the instability\u003c\/b\u003e \u003cbr\u003e5.1 Critical Length of Straight Jet in Electrospinning \u003cbr\u003e5.2 Controlling Stability by Magnetic Field \u003cbr\u003e5.3 Controlling Stability by Temperature \u003cbr\u003e5.4 Siro-electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6. BioMimic Fabrication of Electrospun Nanofibres with High-throughput\u003c\/b\u003e \u003cbr\u003e6.1 Spider-spinning \u003cbr\u003e6.2 Electrospinning of silk fibroin nanofibres \u003cbr\u003e6.3 Mystery in spider-spinning process \u003cbr\u003e6.4 Bubble-electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e7. Controlling Numbers and Sizes of Beads in Electrospun nanofibres\u003c\/b\u003e \u003cbr\u003e7.1 Experiment Observation \u003cbr\u003e7.2 Effects of different solvents \u003cbr\u003e7.3 Effect of the polymer concentration \u003cbr\u003e7.4 Effect of salt additive \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8. Electrospun Nanoporous Microspheres for Nanotechnology\u003c\/b\u003e \u003cbr\u003e8.1 Electrospun nanoporous spheres with Chinese drug \u003cbr\u003e8.2 Electrospinning-dilation \u003cbr\u003e8.3 Single Nanoporous Fibre by Electrospinning \u003cbr\u003e8.4 Micro sphere with nano-porosity \u003cbr\u003e8.5 Micro-composite fibres by electrospinning \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9. Super-carbon Nanotubes: An E-infinity Approach\u003c\/b\u003e \u003cbr\u003e9.1 E-infinity Nanotechnology \u003cbr\u003e9.2 Application of E-Infinity to Electrospinning \u003cbr\u003e9.3 Super-carbon Nanotubes: An E-infinity Approach \u003cbr\u003e\u003cbr\u003e\u003cb\u003e10. Mechanics in Nano-textile Science\u003c\/b\u003e \u003cbr\u003e10.1 Jet-vortex spinning and Cyclone model \u003cbr\u003e10.2 Two-phase flow of Yarn Motion in High-Speed Air and Micropolar Model \u003cbr\u003e10.3 Mathematical Model for Yarn motion in Tube \u003cbr\u003e10.4 Nano-hydrodynamics \u003cbr\u003e10.5 A New Resistance Formulation for Carbon Nanotubes and Nerve Fibres \u003cbr\u003e10.6 Differential-difference Model for Nanotechnology \u003cbr\u003e\u003cbr\u003e\u003cb\u003e11. Nonlinear Dynamics in Sirofil\/Sirospun Yarn Spinning\u003c\/b\u003e \u003cbr\u003e11.1 Convergent point \u003cbr\u003e11.2 Linear Dynamical Model \u003cbr\u003e11.3 Nonlinear Dynamical Model \u003cbr\u003e11.4 Stable Working Condition for Three-strand Yarn Spinning \u003cbr\u003e11.5 Nano-sirospinning\u003cbr\u003e\u003cbr\u003e"}
Environanotechnology
$175.00
{"id":11242249540,"title":"Environanotechnology","handle":"978-0-08-054820-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited By Maohong Fan, C.P. Huang, Alan E. Bland, Zhonglin Wang, Rachid Slimane \u0026amp; Ian G. Wright \u003cbr\u003eISBN 978-0-08-054820-3 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e310 pages\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features: \u003c\/b\u003ePresents research results from a number of countries with various nanotechnologies in multidisciplinary environmental engineering fields\u003cbr\u003eGives a solid introduction to the basic theories needed for understanding how environanotechnologies can be developed cost-effectively, and when they should be applied in a responsible manner\u003cbr\u003eIncludes worked examples that put environmental problems in context to show the actual connections between nanotechnology and environmental engineering\u003cbr\u003e\u003cb\u003eDescription \u003c\/b\u003eUnderstanding and utilizing the interactions between environment and nanoscale materials is a new way to resolve the increasingly challenging environmental issues we are facing and will continue to face. Environanotechnology is the nanoscale technology developed for monitoring the quality of the environment, treating water and wastewater, as well as controlling air pollutants. Therefore, the applications of nanotechnology in environmental engineering have been of great interest to many fields and consequently, a fair amount of research on the use of nanoscale materials for dealing with environmental issues has been conducted.\u003cbr\u003eThe aim of this book is to report on the results recently achieved in different countries. It provides useful technological information for environmental scientists and will assist them in creating cost-effective nanotechnologies to solve critical environmental problems, including those associated with energy production.\u003cbr\u003eLeadership, graduate students, postgraduate students, researchers and chemical engineers\/environmental engineers\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1.Responses of Ceriodaphnia dubia to Photocatalytic Nano-TiO2 Particles\u003cbr\u003e2. High capacity removal of mercury(II) ions by Poly(hydroxyethyl methacrylate) nanoparticles\u003cbr\u003e3. CO2 response of nanostructured CoSb2O6 synthesized by a non-aqueous co-precipitation method\u003cbr\u003e4. Capture of CO2 by modified multiwalled carbon nanotubes\u003cbr\u003e5. Kinetics, thermodynamics, and regeneration of BTEX adsorption in aqueous solutions via NaOCl oxidized carbon nanotubes\u003cbr\u003e6.Nanostructured Metal Oxide Gas Sensors for Air Quality Monitoring\u003cbr\u003e7.Hydrogen Storage on Carbon Adsorbents: Review\u003cbr\u003e8.Treatment of nanodiamonds in supercritical water\u003cbr\u003e9.Spectrophotometric Flow-Injection System Using Multiwalled Carbon Nanotubes (MWCNT) as Solid Preconcentrator for Copper Monitoring in Water Samples\u003cbr\u003e10. Application of carbon nanotubes as a solid-phase extraction material \u003cbr\u003efor environmental samples\u003cbr\u003e11. Fire retarded environmentally friendly flexible foam materials using nanotechnology\u003cbr\u003e12. Simulation of Hydrogen Purification by Pressure Swing Adsorption for Application in Fuel Cells \u003cbr\u003e13. On the Relationship between Social Ethics and Environmental Nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eIndex","published_at":"2017-06-22T21:15:13-04:00","created_at":"2017-06-22T21:15:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","carbon nantubes","environment","fire retardant","nano"],"price":17500,"price_min":17500,"price_max":17500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378470340,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Environanotechnology","public_title":null,"options":["Default Title"],"price":17500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08-054820-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-054820-3.jpg?v=1499725449"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-054820-3.jpg?v=1499725449","options":["Title"],"media":[{"alt":null,"id":354794766429,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-054820-3.jpg?v=1499725449"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-054820-3.jpg?v=1499725449","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited By Maohong Fan, C.P. Huang, Alan E. Bland, Zhonglin Wang, Rachid Slimane \u0026amp; Ian G. Wright \u003cbr\u003eISBN 978-0-08-054820-3 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e310 pages\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features: \u003c\/b\u003ePresents research results from a number of countries with various nanotechnologies in multidisciplinary environmental engineering fields\u003cbr\u003eGives a solid introduction to the basic theories needed for understanding how environanotechnologies can be developed cost-effectively, and when they should be applied in a responsible manner\u003cbr\u003eIncludes worked examples that put environmental problems in context to show the actual connections between nanotechnology and environmental engineering\u003cbr\u003e\u003cb\u003eDescription \u003c\/b\u003eUnderstanding and utilizing the interactions between environment and nanoscale materials is a new way to resolve the increasingly challenging environmental issues we are facing and will continue to face. Environanotechnology is the nanoscale technology developed for monitoring the quality of the environment, treating water and wastewater, as well as controlling air pollutants. Therefore, the applications of nanotechnology in environmental engineering have been of great interest to many fields and consequently, a fair amount of research on the use of nanoscale materials for dealing with environmental issues has been conducted.\u003cbr\u003eThe aim of this book is to report on the results recently achieved in different countries. It provides useful technological information for environmental scientists and will assist them in creating cost-effective nanotechnologies to solve critical environmental problems, including those associated with energy production.\u003cbr\u003eLeadership, graduate students, postgraduate students, researchers and chemical engineers\/environmental engineers\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1.Responses of Ceriodaphnia dubia to Photocatalytic Nano-TiO2 Particles\u003cbr\u003e2. High capacity removal of mercury(II) ions by Poly(hydroxyethyl methacrylate) nanoparticles\u003cbr\u003e3. CO2 response of nanostructured CoSb2O6 synthesized by a non-aqueous co-precipitation method\u003cbr\u003e4. Capture of CO2 by modified multiwalled carbon nanotubes\u003cbr\u003e5. Kinetics, thermodynamics, and regeneration of BTEX adsorption in aqueous solutions via NaOCl oxidized carbon nanotubes\u003cbr\u003e6.Nanostructured Metal Oxide Gas Sensors for Air Quality Monitoring\u003cbr\u003e7.Hydrogen Storage on Carbon Adsorbents: Review\u003cbr\u003e8.Treatment of nanodiamonds in supercritical water\u003cbr\u003e9.Spectrophotometric Flow-Injection System Using Multiwalled Carbon Nanotubes (MWCNT) as Solid Preconcentrator for Copper Monitoring in Water Samples\u003cbr\u003e10. Application of carbon nanotubes as a solid-phase extraction material \u003cbr\u003efor environmental samples\u003cbr\u003e11. Fire retarded environmentally friendly flexible foam materials using nanotechnology\u003cbr\u003e12. Simulation of Hydrogen Purification by Pressure Swing Adsorption for Application in Fuel Cells \u003cbr\u003e13. On the Relationship between Social Ethics and Environmental Nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eIndex"}
Functional Nanostructu...
$149.00
{"id":11242233604,"title":"Functional Nanostructures, Processing, Characterization, and Applications","handle":"978-0-387-35463-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Sudipta Seal \u003cbr\u003eISBN 978-0-387-35463-7 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003epages approx., 350\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eNanocrystalline materials exhibit outstanding structural and mechanical properties. However, future progress in this emerging field is critically dependent upon the development of new methods of understanding and analyzing the underlying nanoscale and interface effects causing their unique mechanical properties. This exceptionally well- researched volume in Nanostructure Science and Technology serves both as an introduction to structural nanocrystalline materials as well as a monograph providing a systematic overview of the current state-of-the-art of fundamental and applied research in the area. The book provides a unique interdisciplinary approach by incorporating chapters from contributors from various academic disciplines including Engineering, Physics, Chemistry, and Polymer Science. Sudipta Seal integrates the most current and relevant technologies in the field to address the subject. This volume will prove to be indispensable to professionals in the in the field of nanomaterials science and nanotechnologies, from researchers and graduate students to engineers who are involved in production and processing of nanomaterials with enhanced physico-chemical properties.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction\u003c\/p\u003e\n\u003cp\u003e- Nanoceramic and Cermets.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures films.\u003c\/p\u003e\n\u003cp\u003e- NEMS, MEMS, Bio-MEMS.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures Biomaterials.\u003c\/p\u003e\n\u003cp\u003e- Self Assembly in Nanophase separated Polymer and Thin Film.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures, sensor and catalytic properties.\u003c\/p\u003e\n\u003cp\u003e- High-Resolution TEM for nanocharacterization.\u003c\/p\u003e\n\u003cp\u003e- AFM in nanotechnology.\u003c\/p\u003e\n\u003cp\u003e- Concluding Remarks and future trends\u003c\/p\u003e","published_at":"2017-06-22T21:14:23-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","AFM","biomaterials","book","nano","nanostructures","nanotechnolgy","polymer","structure nanophase","TEM"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Nanostructures, Processing, Characterization, and Applications","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-387-35463-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278","options":["Title"],"media":[{"alt":null,"id":354808889437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Sudipta Seal \u003cbr\u003eISBN 978-0-387-35463-7 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003epages approx., 350\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eNanocrystalline materials exhibit outstanding structural and mechanical properties. However, future progress in this emerging field is critically dependent upon the development of new methods of understanding and analyzing the underlying nanoscale and interface effects causing their unique mechanical properties. This exceptionally well- researched volume in Nanostructure Science and Technology serves both as an introduction to structural nanocrystalline materials as well as a monograph providing a systematic overview of the current state-of-the-art of fundamental and applied research in the area. The book provides a unique interdisciplinary approach by incorporating chapters from contributors from various academic disciplines including Engineering, Physics, Chemistry, and Polymer Science. Sudipta Seal integrates the most current and relevant technologies in the field to address the subject. This volume will prove to be indispensable to professionals in the in the field of nanomaterials science and nanotechnologies, from researchers and graduate students to engineers who are involved in production and processing of nanomaterials with enhanced physico-chemical properties.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction\u003c\/p\u003e\n\u003cp\u003e- Nanoceramic and Cermets.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures films.\u003c\/p\u003e\n\u003cp\u003e- NEMS, MEMS, Bio-MEMS.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures Biomaterials.\u003c\/p\u003e\n\u003cp\u003e- Self Assembly in Nanophase separated Polymer and Thin Film.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures, sensor and catalytic properties.\u003c\/p\u003e\n\u003cp\u003e- High-Resolution TEM for nanocharacterization.\u003c\/p\u003e\n\u003cp\u003e- AFM in nanotechnology.\u003c\/p\u003e\n\u003cp\u003e- Concluding Remarks and future trends\u003c\/p\u003e"}
Industry Guide to Poly...
$200.00
{"id":11242245572,"title":"Industry Guide to Polymer Nanocomposites","handle":"978-1-90647-904-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Günter Beyer (Editor) \u003cbr\u003eISBN 978-1-90647-904-6 \u003cbr\u003e\u003cbr\u003e386 pages, Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA truly practical guide, which aims to cut through the hype and show where these new ‘wonder materials’ will really fit into your industry and products.\u003cbr\u003e\u003cbr\u003eThe editor has drawn together contributions from academics, materials suppliers, product manufacturers, NASA and the US army, which show how these materials really perform, and where they are already finding uses. Flame retardancy and barrier properties are key benefits.\u003cbr\u003e\u003cbr\u003ePerformance, however, is only part of the story. To achieve commercial success new materials must also deliver these properties safely and predictably. Processing is a key issue when investment in new equipment may not be an option. There are questions regarding the health impacts of all nanoscale particles. All these topics and more are covered in the following sections:\u003cbr\u003e\u003cbr\u003e• Developments in Commercial Polymer Nanocomposite Materials\u003cbr\u003e\u003cbr\u003e• Working with Polymer Nanocomposite Materials\u003cbr\u003e\u003cbr\u003e• Unique Properties of Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e• Polymer Nanocomposites in Demanding Industrial Applications\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eDevelopments in Commercial Polymer Nanocomposite Materials \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e1. Synthesis, structure, properties, and characterization of organically modified clay minerals by Hendrik Heinz, University of Akron, USA \u003c\/strong\u003e \u003c\/p\u003e\n1.1 Overview of clay minerals \u003cbr\u003e1.2 Synthesis of organically modified clay minerals \u003cbr\u003e1.3 Structure of organically modified clay minerals \u003cbr\u003e1.3.1 Effect of cation density on the surface and the inorganic interface \u003cbr\u003e1.3.2 Low packing density \u003cbr\u003e1.3.3 Medium packing density \u003cbr\u003e1.3.4 High packing density \u003cbr\u003e1.3.5 Non-quantitative ion exchange \u003cbr\u003e1.4 Characterization and properties of organically modified clay minerals \u003cbr\u003e1.4.1 X-ray diffraction, microscopy, and structural properties \u003cbr\u003e1.4.2 DSC, DTG, thermal transitions, and thermal decomposition \u003cbr\u003e1.4.3 IR\/Raman spectroscopy, NMR spectroscopy, and chain conformation \u003cbr\u003e1.4.4 Dielectric, elastic, and tilt angle measurements \u003cbr\u003e1.4.5 Surface tension measurements and cleavage energies \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Polymer nanocomposites formulated with hectorite nanoclays by Günter Beyer, Kabelwerk Eupen AG, Eupen, Belgium \u003c\/strong\u003e\u003c\/p\u003e\n2.1 Introduction \u003cbr\u003e2.2 Thermal stability of hectorite-based nanoclays and nanocomposites \u003cbr\u003e2.2.1 Nanoclay stability \u003cbr\u003e2.2.2. Effect of the nanoclay on the degradation process of the matrix polymer \u003cbr\u003e2.2.3 Thermal stability of the produced nanocomposites \u003cbr\u003e2.3 Flame Retardant properties of hectorite-based nanocomposites \u003cbr\u003e2.4 Barrier properties of hectorite-based nanocomposites \u003cbr\u003e2.5 Nanocomposite foams formulated with hectorite nanoclay \u003cbr\u003e2.6 Nanoclay dispersion in thermoplastics \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e3. Polymer nanocomposites based on carbon nanotubes by Olivier Decroly, Nanocyl SA, Sambreville, Belgium \u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction \u003cbr\u003e3.2 Carbon nanotube nanocomposites \u003cbr\u003e3.2.1 Conductive Carbon nanotube nanocomposites \u003cbr\u003e3.2.2 Structural composite applications \u003cbr\u003e3.2.3 Coatings applications \u003cbr\u003eWorking with Polymer Nanocomposite Materials \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e4. Processing of polymer nanocomposites by Daniel Schmidt, Dept of Plastics Engineering, University of Massachusetts, USA \u003c\/strong\u003e\u003c\/p\u003e\n4.1 What is processing and why is it necessary? \u003cbr\u003e4.2 What is needed to process a polymer nanocomposite? \u003cbr\u003e4.2.1 Enhancing polymer mobility \u003cbr\u003e4.2.2 The consequences of processing \u003cbr\u003e4.2.3 A balanced approach \u003cbr\u003e4.3 Does the polymer have to be a solid at room temperature? \u003cbr\u003e4.4 Do we need to start with a polymer at all? \u003cbr\u003e4.5 Can we do away with the pre-formed nanofiller as well? \u003cbr\u003e4.6 What are our options as far as pre-formed nanofillers? \u003cbr\u003e4.7 What makes a nanofiller disperse in a particular polymer during processing? \u003cbr\u003e4.7.1 The thermodynamics of dispersion: entropy \u003cbr\u003e4.7.2 The thermodynamics of dispersion: enthalpy \u003cbr\u003e4.7.3 Complications: crystallinity \u003cbr\u003e4.7.4 Complications: multi-phase systems \u003cbr\u003e4.7.5 Achieving thermodynamic compatibility – practical considerations \u003cbr\u003e4.7.6 The kinetics of physical dispersion \u003cbr\u003e4.7.7 Dispersion kinetics in the presence of chemical reactions \u003cbr\u003e4.8 What should a “well-processed” polymer nanocomposite look like \u003cbr\u003e4.8.1 The realities of nanocomposite processing \u003cbr\u003e4.9 What are our options for nanocomposite processing? \u003cbr\u003e4.9.1 The importance of pre-processing \u003cbr\u003e4.10 What processing techniques involve just polymer and nanofiller? \u003cbr\u003e4.10.1 Physical mixing\/dry blending \u003cbr\u003e4.10.2 Compaction \u003cbr\u003e4.10.3 Solid state shear processing \u003cbr\u003e4.10.4 Melt blending \u003cbr\u003e4.11 What additional options do we have with solutions \u003cbr\u003e4.11.1 Physical mixing\/“wet blending” \u003cbr\u003e4.12 What about reactive processing? \u003cbr\u003e4.13 Are there any additional considerations? \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e5. Stabilisation of polymer nanocomposites by Rudolf Pfändner, Ciba Lampertheim GmbH, Lampertheim, Germany \u003c\/strong\u003e\u003c\/p\u003e\n5.1 Introduction \u003cbr\u003e5.2 Challenges of stabilisation of filled polymers \u003cbr\u003e5.3 Processing and long-term thermal stabilisation of polymer nanocomposites \u003cbr\u003e5.4 Light stabilisation of polymer nanocomposites \u003cbr\u003e5.5 Summary and outlook \u003cbr\u003eList of stabilisers \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e6. Toxicology of nanoparticles relevant to polymer by Paul Borm, Centre of Expertise Life Sciences (CEL), Hogeschool Zuyd, Heerlen, Netherlands \u003c\/strong\u003e\u003c\/p\u003e\n6.1 Introduction \u003cbr\u003e6.2 Toxicological effects of nanoparticles \u003cbr\u003e6.2.1 Particle definitions \u003cbr\u003e6.2.2 Effects of nanoparticles upon inhalation \u003cbr\u003e6.3 Nanoparticles used in nanocomposites \u003cbr\u003e6.3.1 Carbon nanotubes \u003cbr\u003e6.3.2 Metal oxide particles \u003cbr\u003e6.3.3 Silica and organoclays \u003cbr\u003e6.4 Need for unifying concepts \u003cbr\u003e\n\u003cp\u003eUnique Properties of Polymer Nanocomposites\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e7. Flame retardancy from polymer nanocomposites – from research to technical products by Günter Beyer, Kabelwerk Eupen AG, Eupen, Belgium \u003c\/strong\u003e\u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Organoclay nanocomposites \u003cbr\u003e7.2.1 Processing and structure of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.2 Thermal stability of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.3 Flammability properties of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.4 NMR investigation and FR mechanism of nanocomposites \u003cbr\u003e7.2.5 Intercalation versus exfoliation in EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.6 Combination of the classical flame retardant filler ATH with organoclays \u003cbr\u003e7.3 Cable Applications \u003cbr\u003e7.3.1 Coaxial cable passing UL 1666 fi retest with an organoclay\/ATH-based outer sheath \u003cbr\u003e7.3.2 Medium voltage cables with organoclay\/ATH-based outer sheaths \u003cbr\u003e7.3.4 Energy cables passing prEN 50399 with an organoclay ATH-based outer sheath \u003cbr\u003e7.4 Synergistic effects with halogenated flame retardants \u003cbr\u003e7.5 Commercial examples of nanocomposite-based compounds \u003cbr\u003e7.6 Carbon nanotube composites \u003cbr\u003e7.6.1 General properties of carbon nanotubes \u003cbr\u003e7.6.2 Synthesis and purification of CNTs \u003cbr\u003e7.6.3 Flammability of EVA\/MWCNT compounds and EVA\/MWCNT\/organoclay compounds \u003cbr\u003e7.6.4 Crack density and surface results of charred MWCNT compounds \u003cbr\u003e7.6.5 Flammability of LDPE\/CNT compounds \u003cbr\u003e7.6.6 Cable with the new fire retardant system MWCNT\/organoclay\/ATH \u003cbr\u003e7.7 Outlook \u003cbr\u003e\n\u003cp\u003e7.8 Summary\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e8. Polyhedral oligomeric silsesquioxane flame retardancy by Joseph Lichtenhan, Hybrid Plastics Inc., Hattiesburg, USA \u003c\/strong\u003e \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 POSS chemical technology and unique features \u003cbr\u003e8.3 Successful use of POSS as a fire retardant \u003cbr\u003e8.4 Conventional fire retardants and POSS \u003cbr\u003e8.5 POSS and fire-retardant coatings for textiles \u003cbr\u003e8.6 Commercial applications \u003cbr\u003e8.7 Conclusions \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9. Barrier property enhancement by polymer nanocomposites by Tie Lan and Ying Liang, Nanocor Inc., Hoffman Estates, USA \u003c\/strong\u003e \u003c\/p\u003e\n9.1 Introduction \u003cbr\u003e9.1.1 Organoclay materials \u003cbr\u003e9.2 Formation of polymer-clay nanocomposites \u003cbr\u003e\n\u003cp\u003e9.3 Nano-effects in barrier enhancement \u003c\/p\u003e\n\u003cp\u003e9.4 Summary \u003c\/p\u003e\n\u003cstrong\u003e10. Status of biodegradable polymer nanocomposites for industrial applications by Jo Ann Ratto, Christopher Thellen and Jean Lucciarini, US Army Natick Soldier Research, Development, and Engineering Centre, USA \u003c\/strong\u003e\u003cbr\u003e10.1 Introduction \u003cbr\u003e10.2 Biodegradable polymers \u003cbr\u003e10.3 Nanocomposites \u003cbr\u003e10.3.1 Structure of montmorillonite layered silicates (MLS) \u003cbr\u003e10.3.2 Morphology of polymer\/MLS nanocomposites \u003cbr\u003e10.4 Biodegradable nanocomposites \u003cbr\u003e10.5 Biodegradability \u003cbr\u003e10.5.1 A recent study of PHB nanocomposites \u003cbr\u003e10.6 Processability issues \u003cbr\u003e10.6.1 A recent study of PCL nanocomposites \u003cbr\u003e10.7 Attainable properties \u003cbr\u003e10.7.1 A recent study of PLA\/PCL nanocomposites \u003cbr\u003e10.8 Performance data \u003cbr\u003e10.9 Commercially viable materials \u003cbr\u003e10.9.1 A recent study comparing biodegradable nanocomposites to polyethylene terephthalate (PET) \u003cbr\u003e10.10 Applications \u003cbr\u003e10.10.1 A recent patent on biodegradable polymeric nanocomposite compositions \u003cbr\u003e10.11 The future of biodegradable nanocomposites \u003cbr\u003e10.11.1 Life cycle assessment for biodegradable nanocomposites \u003cbr\u003e10.11.2 Safety of biodegradable nanocomposites \u003cbr\u003e\n\u003cp\u003e10.12 Summary \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e11 Thermal properties of polymers with graphitic nanofibres by Ernst Hammel, Andreas Eder and Xinhe Tang, Electorvac AB, Klosterneuburg, Austria \u003c\/strong\u003e\u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Thermal Interface Materials \u003cbr\u003e11.3 Thermally Conductive Plastics \u003cbr\u003e11.4 Conclusions \u003cbr\u003ePolymer Nanocomposites in Demanding Industrial Applications \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e12. Automotive industry applications of polymer nanocomposites by William Rodgers, General Motors Corp. Research and Development Center, Warren, USA \u003c\/strong\u003e\u003c\/p\u003e\n12.1 Introduction \u003cbr\u003e12.2 Requirements for the automotive industry \u003cbr\u003e12.2.1 Surface appearance \u003cbr\u003e12.2.2 Measurement techniques \u003cbr\u003e12.2.3 Aspect Ratio \u003cbr\u003e12.2.4 Minimization of mass \u003cbr\u003e12.3 Manufacture of nanocomposite systems \u003cbr\u003e12.3.1 In-situ polymerization \u003cbr\u003e12.3.2 Melt processing \u003cbr\u003e12.3.3 Injection moulding \u003cbr\u003e12.4 Applications of nanocomposites in the automotive industry \u003cbr\u003e12.4.1 Applications using carbon nanotubes \u003cbr\u003e12.4.2 Applications of organoclay nanocomposites \u003cbr\u003e12.4.2.1 Underhood applications \u003cbr\u003e12.4.2.2 Exterior applications \u003cbr\u003e12.4.2.3 Interior applications \u003cbr\u003e12.5 The future of nanoclay composites \u003cbr\u003e12.5.1 Alternative conventional filler materials \u003cbr\u003e12.5.2 Exfoliation issues with olefinic resins \u003cbr\u003e12.5.3 New nanomaterials \u003cbr\u003e12.6 Concluding remarks \u003cbr\u003e13. Polymer nanocomposites in aerospace applications by Michael Meador, NASA Glenn Research Centre, Cleveland, USA \u003cbr\u003e3.1 Background \u003cbr\u003e12.3.2 Melt processing \u003cbr\u003e12.3.3 Injection moulding \u003cbr\u003e12.4 Applications of nanocomposites in the automotive industry \u003cbr\u003e12.4.1 Applications using carbon nanotubes \u003cbr\u003e12.4.2 Applications of organoclay nanocomposites \u003cbr\u003e12.4.2.1 Underhood applications \u003cbr\u003e12.4.2.2 Exterior applications \u003cbr\u003e12.4.2.3 Interior applications \u003cbr\u003e12.5 The future of nanoclay composites \u003cbr\u003e12.5.1 Alternative conventional filler materials \u003cbr\u003e12.5.2 Exfoliation issues with olefinic resins \u003cbr\u003e12.5.3 New nanomaterials \u003cbr\u003e12.6 Concluding remarks \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e13. Polymer nanocomposites in aerospace applications by Michael Meador, NASA Glenn Research Centre, Cleveland, USA \u003c\/strong\u003e\u003c\/p\u003e\n13.1 Background \u003cbr\u003e13.2 Clays \u003cbr\u003e13.2.1 Background \u003cbr\u003e13.2.2 Cryotanks \u003cbr\u003e13.2.2.1 Permeability \u003cbr\u003e13.2.2.2 Toughness \u003cbr\u003e13.2.3 Other structures \u003cbr\u003e13.3 Carbon-based nanostructured additives \u003cbr\u003e13.3.1 Carbon nanotubes \u003cbr\u003e13.3.1.1 Synthesis methods \u003cbr\u003e13.3.1.2 Purification \u003cbr\u003e13.3.1.3 Functionalization \u003cbr\u003e13.3.2 Carbon nanotube-based nanocomposites \u003cbr\u003e13.3.2.1 Electrical and thermal conductivity \u003cbr\u003e13.3.2.2 Mechanical properties \u003cbr\u003e13.3.3 Carbon nanotube-based fibres \u003cbr\u003e13.3.4 Other nanoscale carbon additives \u003cbr\u003e13.3.4.1 Expanded graphite and nanocomposites \u003cbr\u003e13.3.4.2 Graphite oxides and nanocomposites \u003cbr\u003e13.3.4.3 Functionalized graphene sheets and nanocomposites \u003cbr\u003e13.4 Conclusions \u003cbr\u003eGlossary of materials and techniques referred to in this chapter \u003cbr\u003eReferences \u003cbr\u003eAppendix \u003cbr\u003eGlossary of abbreviations \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:00-04:00","created_at":"2017-06-22T21:15:00-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","applications","book","carbon nanotubes","nano","nanoclay","nanocomposites","nanofiller","polymer","thermal properties"],"price":20000,"price_min":20000,"price_max":20000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378452036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Industry Guide to Polymer Nanocomposites","public_title":null,"options":["Default Title"],"price":20000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-90647-904-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-90647-904-6.jpg?v=1499724598"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-90647-904-6.jpg?v=1499724598","options":["Title"],"media":[{"alt":null,"id":356459413597,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-90647-904-6.jpg?v=1499724598"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-90647-904-6.jpg?v=1499724598","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Günter Beyer (Editor) \u003cbr\u003eISBN 978-1-90647-904-6 \u003cbr\u003e\u003cbr\u003e386 pages, Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA truly practical guide, which aims to cut through the hype and show where these new ‘wonder materials’ will really fit into your industry and products.\u003cbr\u003e\u003cbr\u003eThe editor has drawn together contributions from academics, materials suppliers, product manufacturers, NASA and the US army, which show how these materials really perform, and where they are already finding uses. Flame retardancy and barrier properties are key benefits.\u003cbr\u003e\u003cbr\u003ePerformance, however, is only part of the story. To achieve commercial success new materials must also deliver these properties safely and predictably. Processing is a key issue when investment in new equipment may not be an option. There are questions regarding the health impacts of all nanoscale particles. All these topics and more are covered in the following sections:\u003cbr\u003e\u003cbr\u003e• Developments in Commercial Polymer Nanocomposite Materials\u003cbr\u003e\u003cbr\u003e• Working with Polymer Nanocomposite Materials\u003cbr\u003e\u003cbr\u003e• Unique Properties of Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e• Polymer Nanocomposites in Demanding Industrial Applications\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eDevelopments in Commercial Polymer Nanocomposite Materials \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e1. Synthesis, structure, properties, and characterization of organically modified clay minerals by Hendrik Heinz, University of Akron, USA \u003c\/strong\u003e \u003c\/p\u003e\n1.1 Overview of clay minerals \u003cbr\u003e1.2 Synthesis of organically modified clay minerals \u003cbr\u003e1.3 Structure of organically modified clay minerals \u003cbr\u003e1.3.1 Effect of cation density on the surface and the inorganic interface \u003cbr\u003e1.3.2 Low packing density \u003cbr\u003e1.3.3 Medium packing density \u003cbr\u003e1.3.4 High packing density \u003cbr\u003e1.3.5 Non-quantitative ion exchange \u003cbr\u003e1.4 Characterization and properties of organically modified clay minerals \u003cbr\u003e1.4.1 X-ray diffraction, microscopy, and structural properties \u003cbr\u003e1.4.2 DSC, DTG, thermal transitions, and thermal decomposition \u003cbr\u003e1.4.3 IR\/Raman spectroscopy, NMR spectroscopy, and chain conformation \u003cbr\u003e1.4.4 Dielectric, elastic, and tilt angle measurements \u003cbr\u003e1.4.5 Surface tension measurements and cleavage energies \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Polymer nanocomposites formulated with hectorite nanoclays by Günter Beyer, Kabelwerk Eupen AG, Eupen, Belgium \u003c\/strong\u003e\u003c\/p\u003e\n2.1 Introduction \u003cbr\u003e2.2 Thermal stability of hectorite-based nanoclays and nanocomposites \u003cbr\u003e2.2.1 Nanoclay stability \u003cbr\u003e2.2.2. Effect of the nanoclay on the degradation process of the matrix polymer \u003cbr\u003e2.2.3 Thermal stability of the produced nanocomposites \u003cbr\u003e2.3 Flame Retardant properties of hectorite-based nanocomposites \u003cbr\u003e2.4 Barrier properties of hectorite-based nanocomposites \u003cbr\u003e2.5 Nanocomposite foams formulated with hectorite nanoclay \u003cbr\u003e2.6 Nanoclay dispersion in thermoplastics \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e3. Polymer nanocomposites based on carbon nanotubes by Olivier Decroly, Nanocyl SA, Sambreville, Belgium \u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction \u003cbr\u003e3.2 Carbon nanotube nanocomposites \u003cbr\u003e3.2.1 Conductive Carbon nanotube nanocomposites \u003cbr\u003e3.2.2 Structural composite applications \u003cbr\u003e3.2.3 Coatings applications \u003cbr\u003eWorking with Polymer Nanocomposite Materials \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e4. Processing of polymer nanocomposites by Daniel Schmidt, Dept of Plastics Engineering, University of Massachusetts, USA \u003c\/strong\u003e\u003c\/p\u003e\n4.1 What is processing and why is it necessary? \u003cbr\u003e4.2 What is needed to process a polymer nanocomposite? \u003cbr\u003e4.2.1 Enhancing polymer mobility \u003cbr\u003e4.2.2 The consequences of processing \u003cbr\u003e4.2.3 A balanced approach \u003cbr\u003e4.3 Does the polymer have to be a solid at room temperature? \u003cbr\u003e4.4 Do we need to start with a polymer at all? \u003cbr\u003e4.5 Can we do away with the pre-formed nanofiller as well? \u003cbr\u003e4.6 What are our options as far as pre-formed nanofillers? \u003cbr\u003e4.7 What makes a nanofiller disperse in a particular polymer during processing? \u003cbr\u003e4.7.1 The thermodynamics of dispersion: entropy \u003cbr\u003e4.7.2 The thermodynamics of dispersion: enthalpy \u003cbr\u003e4.7.3 Complications: crystallinity \u003cbr\u003e4.7.4 Complications: multi-phase systems \u003cbr\u003e4.7.5 Achieving thermodynamic compatibility – practical considerations \u003cbr\u003e4.7.6 The kinetics of physical dispersion \u003cbr\u003e4.7.7 Dispersion kinetics in the presence of chemical reactions \u003cbr\u003e4.8 What should a “well-processed” polymer nanocomposite look like \u003cbr\u003e4.8.1 The realities of nanocomposite processing \u003cbr\u003e4.9 What are our options for nanocomposite processing? \u003cbr\u003e4.9.1 The importance of pre-processing \u003cbr\u003e4.10 What processing techniques involve just polymer and nanofiller? \u003cbr\u003e4.10.1 Physical mixing\/dry blending \u003cbr\u003e4.10.2 Compaction \u003cbr\u003e4.10.3 Solid state shear processing \u003cbr\u003e4.10.4 Melt blending \u003cbr\u003e4.11 What additional options do we have with solutions \u003cbr\u003e4.11.1 Physical mixing\/“wet blending” \u003cbr\u003e4.12 What about reactive processing? \u003cbr\u003e4.13 Are there any additional considerations? \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e5. Stabilisation of polymer nanocomposites by Rudolf Pfändner, Ciba Lampertheim GmbH, Lampertheim, Germany \u003c\/strong\u003e\u003c\/p\u003e\n5.1 Introduction \u003cbr\u003e5.2 Challenges of stabilisation of filled polymers \u003cbr\u003e5.3 Processing and long-term thermal stabilisation of polymer nanocomposites \u003cbr\u003e5.4 Light stabilisation of polymer nanocomposites \u003cbr\u003e5.5 Summary and outlook \u003cbr\u003eList of stabilisers \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e6. Toxicology of nanoparticles relevant to polymer by Paul Borm, Centre of Expertise Life Sciences (CEL), Hogeschool Zuyd, Heerlen, Netherlands \u003c\/strong\u003e\u003c\/p\u003e\n6.1 Introduction \u003cbr\u003e6.2 Toxicological effects of nanoparticles \u003cbr\u003e6.2.1 Particle definitions \u003cbr\u003e6.2.2 Effects of nanoparticles upon inhalation \u003cbr\u003e6.3 Nanoparticles used in nanocomposites \u003cbr\u003e6.3.1 Carbon nanotubes \u003cbr\u003e6.3.2 Metal oxide particles \u003cbr\u003e6.3.3 Silica and organoclays \u003cbr\u003e6.4 Need for unifying concepts \u003cbr\u003e\n\u003cp\u003eUnique Properties of Polymer Nanocomposites\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e7. Flame retardancy from polymer nanocomposites – from research to technical products by Günter Beyer, Kabelwerk Eupen AG, Eupen, Belgium \u003c\/strong\u003e\u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Organoclay nanocomposites \u003cbr\u003e7.2.1 Processing and structure of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.2 Thermal stability of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.3 Flammability properties of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.4 NMR investigation and FR mechanism of nanocomposites \u003cbr\u003e7.2.5 Intercalation versus exfoliation in EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.6 Combination of the classical flame retardant filler ATH with organoclays \u003cbr\u003e7.3 Cable Applications \u003cbr\u003e7.3.1 Coaxial cable passing UL 1666 fi retest with an organoclay\/ATH-based outer sheath \u003cbr\u003e7.3.2 Medium voltage cables with organoclay\/ATH-based outer sheaths \u003cbr\u003e7.3.4 Energy cables passing prEN 50399 with an organoclay ATH-based outer sheath \u003cbr\u003e7.4 Synergistic effects with halogenated flame retardants \u003cbr\u003e7.5 Commercial examples of nanocomposite-based compounds \u003cbr\u003e7.6 Carbon nanotube composites \u003cbr\u003e7.6.1 General properties of carbon nanotubes \u003cbr\u003e7.6.2 Synthesis and purification of CNTs \u003cbr\u003e7.6.3 Flammability of EVA\/MWCNT compounds and EVA\/MWCNT\/organoclay compounds \u003cbr\u003e7.6.4 Crack density and surface results of charred MWCNT compounds \u003cbr\u003e7.6.5 Flammability of LDPE\/CNT compounds \u003cbr\u003e7.6.6 Cable with the new fire retardant system MWCNT\/organoclay\/ATH \u003cbr\u003e7.7 Outlook \u003cbr\u003e\n\u003cp\u003e7.8 Summary\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e8. Polyhedral oligomeric silsesquioxane flame retardancy by Joseph Lichtenhan, Hybrid Plastics Inc., Hattiesburg, USA \u003c\/strong\u003e \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 POSS chemical technology and unique features \u003cbr\u003e8.3 Successful use of POSS as a fire retardant \u003cbr\u003e8.4 Conventional fire retardants and POSS \u003cbr\u003e8.5 POSS and fire-retardant coatings for textiles \u003cbr\u003e8.6 Commercial applications \u003cbr\u003e8.7 Conclusions \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9. Barrier property enhancement by polymer nanocomposites by Tie Lan and Ying Liang, Nanocor Inc., Hoffman Estates, USA \u003c\/strong\u003e \u003c\/p\u003e\n9.1 Introduction \u003cbr\u003e9.1.1 Organoclay materials \u003cbr\u003e9.2 Formation of polymer-clay nanocomposites \u003cbr\u003e\n\u003cp\u003e9.3 Nano-effects in barrier enhancement \u003c\/p\u003e\n\u003cp\u003e9.4 Summary \u003c\/p\u003e\n\u003cstrong\u003e10. Status of biodegradable polymer nanocomposites for industrial applications by Jo Ann Ratto, Christopher Thellen and Jean Lucciarini, US Army Natick Soldier Research, Development, and Engineering Centre, USA \u003c\/strong\u003e\u003cbr\u003e10.1 Introduction \u003cbr\u003e10.2 Biodegradable polymers \u003cbr\u003e10.3 Nanocomposites \u003cbr\u003e10.3.1 Structure of montmorillonite layered silicates (MLS) \u003cbr\u003e10.3.2 Morphology of polymer\/MLS nanocomposites \u003cbr\u003e10.4 Biodegradable nanocomposites \u003cbr\u003e10.5 Biodegradability \u003cbr\u003e10.5.1 A recent study of PHB nanocomposites \u003cbr\u003e10.6 Processability issues \u003cbr\u003e10.6.1 A recent study of PCL nanocomposites \u003cbr\u003e10.7 Attainable properties \u003cbr\u003e10.7.1 A recent study of PLA\/PCL nanocomposites \u003cbr\u003e10.8 Performance data \u003cbr\u003e10.9 Commercially viable materials \u003cbr\u003e10.9.1 A recent study comparing biodegradable nanocomposites to polyethylene terephthalate (PET) \u003cbr\u003e10.10 Applications \u003cbr\u003e10.10.1 A recent patent on biodegradable polymeric nanocomposite compositions \u003cbr\u003e10.11 The future of biodegradable nanocomposites \u003cbr\u003e10.11.1 Life cycle assessment for biodegradable nanocomposites \u003cbr\u003e10.11.2 Safety of biodegradable nanocomposites \u003cbr\u003e\n\u003cp\u003e10.12 Summary \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e11 Thermal properties of polymers with graphitic nanofibres by Ernst Hammel, Andreas Eder and Xinhe Tang, Electorvac AB, Klosterneuburg, Austria \u003c\/strong\u003e\u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Thermal Interface Materials \u003cbr\u003e11.3 Thermally Conductive Plastics \u003cbr\u003e11.4 Conclusions \u003cbr\u003ePolymer Nanocomposites in Demanding Industrial Applications \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e12. Automotive industry applications of polymer nanocomposites by William Rodgers, General Motors Corp. Research and Development Center, Warren, USA \u003c\/strong\u003e\u003c\/p\u003e\n12.1 Introduction \u003cbr\u003e12.2 Requirements for the automotive industry \u003cbr\u003e12.2.1 Surface appearance \u003cbr\u003e12.2.2 Measurement techniques \u003cbr\u003e12.2.3 Aspect Ratio \u003cbr\u003e12.2.4 Minimization of mass \u003cbr\u003e12.3 Manufacture of nanocomposite systems \u003cbr\u003e12.3.1 In-situ polymerization \u003cbr\u003e12.3.2 Melt processing \u003cbr\u003e12.3.3 Injection moulding \u003cbr\u003e12.4 Applications of nanocomposites in the automotive industry \u003cbr\u003e12.4.1 Applications using carbon nanotubes \u003cbr\u003e12.4.2 Applications of organoclay nanocomposites \u003cbr\u003e12.4.2.1 Underhood applications \u003cbr\u003e12.4.2.2 Exterior applications \u003cbr\u003e12.4.2.3 Interior applications \u003cbr\u003e12.5 The future of nanoclay composites \u003cbr\u003e12.5.1 Alternative conventional filler materials \u003cbr\u003e12.5.2 Exfoliation issues with olefinic resins \u003cbr\u003e12.5.3 New nanomaterials \u003cbr\u003e12.6 Concluding remarks \u003cbr\u003e13. Polymer nanocomposites in aerospace applications by Michael Meador, NASA Glenn Research Centre, Cleveland, USA \u003cbr\u003e3.1 Background \u003cbr\u003e12.3.2 Melt processing \u003cbr\u003e12.3.3 Injection moulding \u003cbr\u003e12.4 Applications of nanocomposites in the automotive industry \u003cbr\u003e12.4.1 Applications using carbon nanotubes \u003cbr\u003e12.4.2 Applications of organoclay nanocomposites \u003cbr\u003e12.4.2.1 Underhood applications \u003cbr\u003e12.4.2.2 Exterior applications \u003cbr\u003e12.4.2.3 Interior applications \u003cbr\u003e12.5 The future of nanoclay composites \u003cbr\u003e12.5.1 Alternative conventional filler materials \u003cbr\u003e12.5.2 Exfoliation issues with olefinic resins \u003cbr\u003e12.5.3 New nanomaterials \u003cbr\u003e12.6 Concluding remarks \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e13. Polymer nanocomposites in aerospace applications by Michael Meador, NASA Glenn Research Centre, Cleveland, USA \u003c\/strong\u003e\u003c\/p\u003e\n13.1 Background \u003cbr\u003e13.2 Clays \u003cbr\u003e13.2.1 Background \u003cbr\u003e13.2.2 Cryotanks \u003cbr\u003e13.2.2.1 Permeability \u003cbr\u003e13.2.2.2 Toughness \u003cbr\u003e13.2.3 Other structures \u003cbr\u003e13.3 Carbon-based nanostructured additives \u003cbr\u003e13.3.1 Carbon nanotubes \u003cbr\u003e13.3.1.1 Synthesis methods \u003cbr\u003e13.3.1.2 Purification \u003cbr\u003e13.3.1.3 Functionalization \u003cbr\u003e13.3.2 Carbon nanotube-based nanocomposites \u003cbr\u003e13.3.2.1 Electrical and thermal conductivity \u003cbr\u003e13.3.2.2 Mechanical properties \u003cbr\u003e13.3.3 Carbon nanotube-based fibres \u003cbr\u003e13.3.4 Other nanoscale carbon additives \u003cbr\u003e13.3.4.1 Expanded graphite and nanocomposites \u003cbr\u003e13.3.4.2 Graphite oxides and nanocomposites \u003cbr\u003e13.3.4.3 Functionalized graphene sheets and nanocomposites \u003cbr\u003e13.4 Conclusions \u003cbr\u003eGlossary of materials and techniques referred to in this chapter \u003cbr\u003eReferences \u003cbr\u003eAppendix \u003cbr\u003eGlossary of abbreviations \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Introduction to Nanote...
$155.00
{"id":11242207108,"title":"Introduction to Nanotechnology","handle":"978-0-471-07935-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Charles P. Poole, Jr., Frank J. Owens \u003cbr\u003eISBN 978-0-471-07935-4 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e400 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis self-confessed introduction provides technical administrators and managers with a broad, practical overview of the subject and gives researchers working in different areas an appreciation of developments in nanotechnology outside their own fields of expertise.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003e\u003cbr\u003e1. Introduction. \u003cbr\u003e\u003cbr\u003e2. Introduction to Physics of the Solid State. \u003cbr\u003e\u003cbr\u003e3. Methods of Measuring Properties. \u003cbr\u003e\u003cbr\u003e4. Properties of Individual Nanoparticles. \u003cbr\u003e\u003cbr\u003e5. Carbon Nanostructures. \u003cbr\u003e\u003cbr\u003e6. Bulk Nanostructured Materials. \u003cbr\u003e\u003cbr\u003e7. Nanostructured Ferromagnetism. \u003cbr\u003e\u003cbr\u003e8. Optical and Vibrational Spectroscopy. \u003cbr\u003e\u003cbr\u003e9. Quantum Wells, Wires, and Dots. \u003cbr\u003e\u003cbr\u003e10. Self-Assembly and Catalysis. \u003cbr\u003e\u003cbr\u003e11. Organic Compounds and Polymers. \u003cbr\u003e\u003cbr\u003e12. Biological Materials. \u003cbr\u003e\u003cbr\u003e13. Nanomachines and Nanodevices. \u003cbr\u003e\u003cbr\u003eAppendix A: Formulas for Dimensionality. \u003cbr\u003e\u003cbr\u003eAppendix B: Tabulations of Semiconducting Material Properties. \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eCHARLES P. POOLE Jr., PhD\u003c\/strong\u003e, a professor emeritus in the Department of Physics and Astronomy at the University of South Carolina is a member of the USC nanotechnology center. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFRANK J. OWENS, PhD\u003c\/strong\u003e, is a senior research scientist of the U.S. Army s Armament Research, Development, and Engineering Center, and a professor of physics in the graduate school of Hunter College of the City University of New York.\u003cbr\u003eBoth authors are Fellows of the American Physical Society.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:12:59-04:00","created_at":"2017-06-22T21:12:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","book","nano","nanodevices","nanomachines","nanoparticles","nanostructures","nanotechnology","organic compounds","polymers","semiconducting"],"price":15500,"price_min":15500,"price_max":15500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378324996,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Introduction to Nanotechnology","public_title":null,"options":["Default Title"],"price":15500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-471-07935-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-07935-4.jpg?v=1499623270"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-07935-4.jpg?v=1499623270","options":["Title"],"media":[{"alt":null,"id":358504267869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-07935-4.jpg?v=1499623270"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-07935-4.jpg?v=1499623270","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Charles P. Poole, Jr., Frank J. Owens \u003cbr\u003eISBN 978-0-471-07935-4 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e400 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis self-confessed introduction provides technical administrators and managers with a broad, practical overview of the subject and gives researchers working in different areas an appreciation of developments in nanotechnology outside their own fields of expertise.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003e\u003cbr\u003e1. Introduction. \u003cbr\u003e\u003cbr\u003e2. Introduction to Physics of the Solid State. \u003cbr\u003e\u003cbr\u003e3. Methods of Measuring Properties. \u003cbr\u003e\u003cbr\u003e4. Properties of Individual Nanoparticles. \u003cbr\u003e\u003cbr\u003e5. Carbon Nanostructures. \u003cbr\u003e\u003cbr\u003e6. Bulk Nanostructured Materials. \u003cbr\u003e\u003cbr\u003e7. Nanostructured Ferromagnetism. \u003cbr\u003e\u003cbr\u003e8. Optical and Vibrational Spectroscopy. \u003cbr\u003e\u003cbr\u003e9. Quantum Wells, Wires, and Dots. \u003cbr\u003e\u003cbr\u003e10. Self-Assembly and Catalysis. \u003cbr\u003e\u003cbr\u003e11. Organic Compounds and Polymers. \u003cbr\u003e\u003cbr\u003e12. Biological Materials. \u003cbr\u003e\u003cbr\u003e13. Nanomachines and Nanodevices. \u003cbr\u003e\u003cbr\u003eAppendix A: Formulas for Dimensionality. \u003cbr\u003e\u003cbr\u003eAppendix B: Tabulations of Semiconducting Material Properties. \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eCHARLES P. POOLE Jr., PhD\u003c\/strong\u003e, a professor emeritus in the Department of Physics and Astronomy at the University of South Carolina is a member of the USC nanotechnology center. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFRANK J. OWENS, PhD\u003c\/strong\u003e, is a senior research scientist of the U.S. Army s Armament Research, Development, and Engineering Center, and a professor of physics in the graduate school of Hunter College of the City University of New York.\u003cbr\u003eBoth authors are Fellows of the American Physical Society.\u003cbr\u003e\u003cbr\u003e"}
Minerals as Advanced M...
$219.00
{"id":11242209476,"title":"Minerals as Advanced Materials I","handle":"978-3-540-77122-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Krivovichev, Sergey V. (Ed.) \u003cbr\u003eISBN 978-3-540-77122-7 \u003cbr\u003e\u003cbr\u003e256 p. 90 illus., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book represents a collection of papers presented at the 1st International workshop ‘Minerals as Advanced Materials I’ planned as an exchange of ideas between mineralogists and material scientists. The basic idea of the workshop was to identify minerals and mineral objects that have or potentially have unique physical, chemical and structural properties that are of interest from the viewpoint of applied mineralogy and material science. The topics covered include: zeolites, their natural occurrence, properties and applications; microporous and mesoporous mineral phases; layered mineral structures and composites; natural nanostructures (nanotubes, nanoclusters, nanocomposites, photonic crystals); biological minerals and biocompatible materials; minerals as actinide host matrices and other aspects of interactions between mineralogy and material sciences.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eSergey V. Krivovichev\u003c\/strong\u003e is Professor and Chairman of the Department of Crystallography, Faculty of Geology, St.Petersburg State University. He has co-authored two books and more than 200 scientific papers in the fields of mineralogy, crystallography, and structural chemistry. He has been awarded the Medal for Scientific Excellence by the European Mineralogical Union (2002), Alexander von Humboldt and Lise Meitner Research fellowships, and a number of Russian national distinctions. His activities include services as Associate Editor for leading mineralogical journals such as Canadian Mineralogist, American Mineralogist and Russian Mineralogist (Zapiski RMO).","published_at":"2017-06-22T21:13:06-04:00","created_at":"2017-06-22T21:13:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","biological minerlas","Biominerals","book","Materials","Mineralogy","nano","Nanostructures","Radioactive management","zeolites"],"price":21900,"price_min":21900,"price_max":21900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378330436,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Minerals as Advanced Materials I","public_title":null,"options":["Default Title"],"price":21900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-77122-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-77122-7.jpg?v=1499716431"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-77122-7.jpg?v=1499716431","options":["Title"],"media":[{"alt":null,"id":358512853085,"position":1,"preview_image":{"aspect_ratio":0.703,"height":499,"width":351,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-77122-7.jpg?v=1499716431"},"aspect_ratio":0.703,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-77122-7.jpg?v=1499716431","width":351}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Krivovichev, Sergey V. (Ed.) \u003cbr\u003eISBN 978-3-540-77122-7 \u003cbr\u003e\u003cbr\u003e256 p. 90 illus., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book represents a collection of papers presented at the 1st International workshop ‘Minerals as Advanced Materials I’ planned as an exchange of ideas between mineralogists and material scientists. The basic idea of the workshop was to identify minerals and mineral objects that have or potentially have unique physical, chemical and structural properties that are of interest from the viewpoint of applied mineralogy and material science. The topics covered include: zeolites, their natural occurrence, properties and applications; microporous and mesoporous mineral phases; layered mineral structures and composites; natural nanostructures (nanotubes, nanoclusters, nanocomposites, photonic crystals); biological minerals and biocompatible materials; minerals as actinide host matrices and other aspects of interactions between mineralogy and material sciences.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eSergey V. Krivovichev\u003c\/strong\u003e is Professor and Chairman of the Department of Crystallography, Faculty of Geology, St.Petersburg State University. He has co-authored two books and more than 200 scientific papers in the fields of mineralogy, crystallography, and structural chemistry. He has been awarded the Medal for Scientific Excellence by the European Mineralogical Union (2002), Alexander von Humboldt and Lise Meitner Research fellowships, and a number of Russian national distinctions. His activities include services as Associate Editor for leading mineralogical journals such as Canadian Mineralogist, American Mineralogist and Russian Mineralogist (Zapiski RMO)."}
Multilayer Thin Films:...
$494.00
{"id":11242201988,"title":"Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd Edition","handle":"978-3-527-31648-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gero Decher (Editor), Joe Schlenoff (Editor) \u003cbr\u003eISBN 978-3-527-31648-9 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eHardcover\u003c\/div\u003e\n\u003cdiv\u003e1122 pages\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis second, comprehensive edition of the pioneering book in this field has been completely revised and extended, now stretching to two volumes.\u003cbr\u003e\u003cbr\u003eThe result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin films, covering organic, inorganic, colloidal, macromolecular and biological components, plus the assembly of nanoscale films derived from them on surfaces.\u003cbr\u003e\u003cbr\u003e\u003cb\u003ePraise for the first edition:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\"... highly recommended to anyone interested in the field... and to scientists and researchers active in materials development...\" –Polymer News \u003cbr\u003e\u003cbr\u003eWith contributions by:\u003cbr\u003e\u003cbr\u003eRigoberto Advincula\u003cbr\u003e\u003cbr\u003eMitsuru Akashi\u003cbr\u003e\u003cbr\u003eJun-ichi Anzai\u003cbr\u003e\u003cbr\u003eKatsuhiko Ariga\u003cbr\u003e\u003cbr\u003eMerlin Bruening\u003cbr\u003e\u003cbr\u003eErnesto J. Calvo\u003cbr\u003e\u003cbr\u003eFrank Caruso\u003cbr\u003e\u003cbr\u003eRobert Cohen\u003cbr\u003e\u003cbr\u003eCornelia Cramer-Kellers\u003cbr\u003e\u003cbr\u003eLars Dähne\u003cbr\u003e\u003cbr\u003eGero Decher\u003cbr\u003e\u003cbr\u003eBruno De Geest\u003cbr\u003e\u003cbr\u003eStefaan de Smedt\u003cbr\u003e\u003cbr\u003eAndreas Fery\u003cbr\u003e\u003cbr\u003eKarine Glinel\u003cbr\u003e\u003cbr\u003eJaime Grunlan\u003cbr\u003e\u003cbr\u003eLara Halaoui\u003cbr\u003e\u003cbr\u003ePaula Hammond\u003cbr\u003e\u003cbr\u003eChristiane A. Helm\u003cbr\u003e\u003cbr\u003eRandy Heflin\u003cbr\u003e\u003cbr\u003eJurriaan Huskens\u003cbr\u003e\u003cbr\u003eChaoyang Jiang\u003cbr\u003e\u003cbr\u003eAlain M. Jonas\u003cbr\u003e\u003cbr\u003eRegine von Klitzing\u003cbr\u003e\u003cbr\u003eNicholas Kotov\u003cbr\u003e\u003cbr\u003eIllsoon Lee\u003cbr\u003e\u003cbr\u003eJunbai Li\u003cbr\u003e\u003cbr\u003eYuri Lvov\u003cbr\u003e\u003cbr\u003eDavid M. Lynn\u003cbr\u003e\u003cbr\u003eMarc Michel\u003cbr\u003e\u003cbr\u003eHelmuth Möhwald\u003cbr\u003e\u003cbr\u003eOsvaldo Novais de Oliveira Junior\u003cbr\u003e\u003cbr\u003eCatherine Picart\u003cbr\u003e\u003cbr\u003eDavid Reinhoudt\u003cbr\u003e\u003cbr\u003eMichael Rubner\u003cbr\u003e\u003cbr\u003eMikko Salomaki\u003cbr\u003e\u003cbr\u003eJouko Kankare\u003cbr\u003e\u003cbr\u003eJoseph B. Schlenoff\u003cbr\u003e\u003cbr\u003eMonika Schönhoff\u003cbr\u003e\u003cbr\u003eDmitry Shchukin\u003cbr\u003e\u003cbr\u003eJiacong Shen\u003cbr\u003e\u003cbr\u003eAndré G. Skirtach\u003cbr\u003e\u003cbr\u003eSvetlana Sukhishvili\u003cbr\u003e\u003cbr\u003eGleb Sukhorukov\u003cbr\u003e\u003cbr\u003eJunqi Sun\u003cbr\u003e\u003cbr\u003eBernd Tieke\u003cbr\u003e\u003cbr\u003eDieter Trau\u003cbr\u003e\u003cbr\u003eVladimir Tsukruk\u003cbr\u003e\u003cbr\u003eDmitry V. Volodkin\u003cbr\u003e\u003cbr\u003eLars Wagberg\u003cbr\u003e\u003cbr\u003eFrançoise Winnik\u003cbr\u003e\u003cbr\u003eXi Zhang \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSurface-Initiated Polymerization and Layer-by-Layer Films\n\u003cdiv\u003eStimuli-sensitive Layer-by-Layer Films for Controlled Delivery of Proteins and Drugs\u003cbr\u003eHierarchic Multilayer Thin Films\u003cbr\u003eEngineered Thin Films and Capsules for Biomedical Applications\u003cbr\u003eBiological Active Surfaces on Colloids by Means of the Layer-by-Layer Technology\u003cbr\u003eDegradable Polyelectrolyte Capsules\u003cbr\u003eControlling Mechanics of Freestanding\u003cbr\u003eMultilayers - Towards Programmed Deformation Properties\u003cbr\u003eDomain-Containing Polyelectrolyte Films for the Entrapment of Active Compounds\u003cbr\u003eCarbon Nanotube Based Assemblies\u003cbr\u003eNanostructured Electrodes Assembled from Metal Nanoparticles\u003cbr\u003eMolecular Conformation in and Structural Properties of Polyelectrolyte Multilayers Optoelectronic Materials and Devices\u003cbr\u003eIncorporating Polyelectrolyte Multilayers\u003cbr\u003eNanoconfined Polyelectrolyte Multilayers\u003cbr\u003eAdvanced Nanoscale Composite Materials with Record Properties\u003cbr\u003ePatterned Multilayer Systems and Directed\u003cbr\u003eSelf-assembly of Functional Nano-Bio Materials\u003cbr\u003eAssembly of Multilayer Capsules for Drug Encapsulation and Controlled Release\u003cbr\u003eConverting Poorly Soluble Materials into Stable Aqueous Nanocolloids\u003cbr\u003eSelfrepairing Coatings\u003cbr\u003eRemote Release from Multilayer Capsules and Films\u003cbr\u003eControlled Architectures in Layer-by-Layser Films for Sensing and Biosensing\u003cbr\u003eQuartz Crystal Resonator as a Tool for Following the Buildup of Polyelectrolyte Multilayers\u003cbr\u003eClick Layer-by-Layer \u0026amp; Exponential Growth Mechanism\u003cbr\u003eIons and Small Guest Molecules in Polyelectrolyte Multilayers: Conductivity Spectra, Swelling Properties, and Nanoporosity\u003cbr\u003eLayer-by-layer Assemblies of pH- and Temperature-Responsive Polymers: Molecular Interactions, Exchange with Solution, Film Structure, and Response\u003cbr\u003eStimuli-Responsive Layer-by-Layer Capsules\u003cbr\u003eLayer-by-Layer Assembly of Polymeric Complexes\u003cbr\u003eElectrostatic and Coordinative Supramolecular Assembly of Functional Films for Electronic Applications and Materials Separation\u003cbr\u003eAssembly of Polymer Multilayers from Organic Solvents for Biomolecule Encapsulation\u003cbr\u003eLayer-by-Layer Engineering of Cellulose Surfaces\u003cbr\u003eFrom Conventional to Unconventional Layer-by-Layer Assembly Methods\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eGero Decher\u003c\/b\u003e is Distinguished Professor of Chemistry at the University of Strasbourg, France, a senior member of the Institut Universitaire de France (IUF) and member of the International Center for Frontier Research in Chemistry. His research team is located at CNRS Institut Charles Sadron in Strasbourg where he continues to develop the layer-by-layer assembly method in collaboration with his colleagues Pierre Schaaf and Jean-Claude Voegel. This method is applied in many laboratories world-wide in various scientific disciplines including chemistry, materials science and biotechnology. Gero Decher received numerous awards, including the ECIS-Rhodia prize in 2010 and the Grand Prix of the French \"Académie des Sciences\" for Nanobiotechnology in 2009. \u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eJoseph B. Schlenoff\u003c\/b\u003e is Mandelkern Professor of Polymer Science and Chair of the Department of Chemistry and Biochemistry at the Florida State University, USA. His laboratory is engaged in multidisciplinary research centered on the use of novel structures made from polyelectrolytes that are deposited using the layer-by-layer technique. In 2010 he won an award within the Florida State University Grant Assistance Program aimed at research close to commercialization and is currently working on a large NIH-financed research project to make medical implants safer for in-vivo use by coating with biocompatible polymer layers. In 2011 Joseph Schlenoff received a Gutenberg Chair at the University of Strasbourg.\u003c\/div\u003e\n\u003c\/div\u003e","published_at":"2017-06-22T21:12:43-04:00","created_at":"2017-06-22T21:12:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","biological active surfaces","biomedical application","book","Controlled Release","multilayer thin films","multilayers","nano","nanomaterials","Nanoscale Composite Materials","nanotube","polyelectolite","thin films"],"price":49400,"price_min":49400,"price_max":49400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd Edition","public_title":null,"options":["Default Title"],"price":49400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-31648-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31648-9.jpg?v=1499951539"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31648-9.jpg?v=1499951539","options":["Title"],"media":[{"alt":null,"id":358516654173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31648-9.jpg?v=1499951539"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31648-9.jpg?v=1499951539","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gero Decher (Editor), Joe Schlenoff (Editor) \u003cbr\u003eISBN 978-3-527-31648-9 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eHardcover\u003c\/div\u003e\n\u003cdiv\u003e1122 pages\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis second, comprehensive edition of the pioneering book in this field has been completely revised and extended, now stretching to two volumes.\u003cbr\u003e\u003cbr\u003eThe result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin films, covering organic, inorganic, colloidal, macromolecular and biological components, plus the assembly of nanoscale films derived from them on surfaces.\u003cbr\u003e\u003cbr\u003e\u003cb\u003ePraise for the first edition:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\"... highly recommended to anyone interested in the field... and to scientists and researchers active in materials development...\" –Polymer News \u003cbr\u003e\u003cbr\u003eWith contributions by:\u003cbr\u003e\u003cbr\u003eRigoberto Advincula\u003cbr\u003e\u003cbr\u003eMitsuru Akashi\u003cbr\u003e\u003cbr\u003eJun-ichi Anzai\u003cbr\u003e\u003cbr\u003eKatsuhiko Ariga\u003cbr\u003e\u003cbr\u003eMerlin Bruening\u003cbr\u003e\u003cbr\u003eErnesto J. Calvo\u003cbr\u003e\u003cbr\u003eFrank Caruso\u003cbr\u003e\u003cbr\u003eRobert Cohen\u003cbr\u003e\u003cbr\u003eCornelia Cramer-Kellers\u003cbr\u003e\u003cbr\u003eLars Dähne\u003cbr\u003e\u003cbr\u003eGero Decher\u003cbr\u003e\u003cbr\u003eBruno De Geest\u003cbr\u003e\u003cbr\u003eStefaan de Smedt\u003cbr\u003e\u003cbr\u003eAndreas Fery\u003cbr\u003e\u003cbr\u003eKarine Glinel\u003cbr\u003e\u003cbr\u003eJaime Grunlan\u003cbr\u003e\u003cbr\u003eLara Halaoui\u003cbr\u003e\u003cbr\u003ePaula Hammond\u003cbr\u003e\u003cbr\u003eChristiane A. Helm\u003cbr\u003e\u003cbr\u003eRandy Heflin\u003cbr\u003e\u003cbr\u003eJurriaan Huskens\u003cbr\u003e\u003cbr\u003eChaoyang Jiang\u003cbr\u003e\u003cbr\u003eAlain M. Jonas\u003cbr\u003e\u003cbr\u003eRegine von Klitzing\u003cbr\u003e\u003cbr\u003eNicholas Kotov\u003cbr\u003e\u003cbr\u003eIllsoon Lee\u003cbr\u003e\u003cbr\u003eJunbai Li\u003cbr\u003e\u003cbr\u003eYuri Lvov\u003cbr\u003e\u003cbr\u003eDavid M. Lynn\u003cbr\u003e\u003cbr\u003eMarc Michel\u003cbr\u003e\u003cbr\u003eHelmuth Möhwald\u003cbr\u003e\u003cbr\u003eOsvaldo Novais de Oliveira Junior\u003cbr\u003e\u003cbr\u003eCatherine Picart\u003cbr\u003e\u003cbr\u003eDavid Reinhoudt\u003cbr\u003e\u003cbr\u003eMichael Rubner\u003cbr\u003e\u003cbr\u003eMikko Salomaki\u003cbr\u003e\u003cbr\u003eJouko Kankare\u003cbr\u003e\u003cbr\u003eJoseph B. Schlenoff\u003cbr\u003e\u003cbr\u003eMonika Schönhoff\u003cbr\u003e\u003cbr\u003eDmitry Shchukin\u003cbr\u003e\u003cbr\u003eJiacong Shen\u003cbr\u003e\u003cbr\u003eAndré G. Skirtach\u003cbr\u003e\u003cbr\u003eSvetlana Sukhishvili\u003cbr\u003e\u003cbr\u003eGleb Sukhorukov\u003cbr\u003e\u003cbr\u003eJunqi Sun\u003cbr\u003e\u003cbr\u003eBernd Tieke\u003cbr\u003e\u003cbr\u003eDieter Trau\u003cbr\u003e\u003cbr\u003eVladimir Tsukruk\u003cbr\u003e\u003cbr\u003eDmitry V. Volodkin\u003cbr\u003e\u003cbr\u003eLars Wagberg\u003cbr\u003e\u003cbr\u003eFrançoise Winnik\u003cbr\u003e\u003cbr\u003eXi Zhang \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSurface-Initiated Polymerization and Layer-by-Layer Films\n\u003cdiv\u003eStimuli-sensitive Layer-by-Layer Films for Controlled Delivery of Proteins and Drugs\u003cbr\u003eHierarchic Multilayer Thin Films\u003cbr\u003eEngineered Thin Films and Capsules for Biomedical Applications\u003cbr\u003eBiological Active Surfaces on Colloids by Means of the Layer-by-Layer Technology\u003cbr\u003eDegradable Polyelectrolyte Capsules\u003cbr\u003eControlling Mechanics of Freestanding\u003cbr\u003eMultilayers - Towards Programmed Deformation Properties\u003cbr\u003eDomain-Containing Polyelectrolyte Films for the Entrapment of Active Compounds\u003cbr\u003eCarbon Nanotube Based Assemblies\u003cbr\u003eNanostructured Electrodes Assembled from Metal Nanoparticles\u003cbr\u003eMolecular Conformation in and Structural Properties of Polyelectrolyte Multilayers Optoelectronic Materials and Devices\u003cbr\u003eIncorporating Polyelectrolyte Multilayers\u003cbr\u003eNanoconfined Polyelectrolyte Multilayers\u003cbr\u003eAdvanced Nanoscale Composite Materials with Record Properties\u003cbr\u003ePatterned Multilayer Systems and Directed\u003cbr\u003eSelf-assembly of Functional Nano-Bio Materials\u003cbr\u003eAssembly of Multilayer Capsules for Drug Encapsulation and Controlled Release\u003cbr\u003eConverting Poorly Soluble Materials into Stable Aqueous Nanocolloids\u003cbr\u003eSelfrepairing Coatings\u003cbr\u003eRemote Release from Multilayer Capsules and Films\u003cbr\u003eControlled Architectures in Layer-by-Layser Films for Sensing and Biosensing\u003cbr\u003eQuartz Crystal Resonator as a Tool for Following the Buildup of Polyelectrolyte Multilayers\u003cbr\u003eClick Layer-by-Layer \u0026amp; Exponential Growth Mechanism\u003cbr\u003eIons and Small Guest Molecules in Polyelectrolyte Multilayers: Conductivity Spectra, Swelling Properties, and Nanoporosity\u003cbr\u003eLayer-by-layer Assemblies of pH- and Temperature-Responsive Polymers: Molecular Interactions, Exchange with Solution, Film Structure, and Response\u003cbr\u003eStimuli-Responsive Layer-by-Layer Capsules\u003cbr\u003eLayer-by-Layer Assembly of Polymeric Complexes\u003cbr\u003eElectrostatic and Coordinative Supramolecular Assembly of Functional Films for Electronic Applications and Materials Separation\u003cbr\u003eAssembly of Polymer Multilayers from Organic Solvents for Biomolecule Encapsulation\u003cbr\u003eLayer-by-Layer Engineering of Cellulose Surfaces\u003cbr\u003eFrom Conventional to Unconventional Layer-by-Layer Assembly Methods\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eGero Decher\u003c\/b\u003e is Distinguished Professor of Chemistry at the University of Strasbourg, France, a senior member of the Institut Universitaire de France (IUF) and member of the International Center for Frontier Research in Chemistry. His research team is located at CNRS Institut Charles Sadron in Strasbourg where he continues to develop the layer-by-layer assembly method in collaboration with his colleagues Pierre Schaaf and Jean-Claude Voegel. This method is applied in many laboratories world-wide in various scientific disciplines including chemistry, materials science and biotechnology. Gero Decher received numerous awards, including the ECIS-Rhodia prize in 2010 and the Grand Prix of the French \"Académie des Sciences\" for Nanobiotechnology in 2009. \u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eJoseph B. Schlenoff\u003c\/b\u003e is Mandelkern Professor of Polymer Science and Chair of the Department of Chemistry and Biochemistry at the Florida State University, USA. His laboratory is engaged in multidisciplinary research centered on the use of novel structures made from polyelectrolytes that are deposited using the layer-by-layer technique. In 2010 he won an award within the Florida State University Grant Assistance Program aimed at research close to commercialization and is currently working on a large NIH-financed research project to make medical implants safer for in-vivo use by coating with biocompatible polymer layers. In 2011 Joseph Schlenoff received a Gutenberg Chair at the University of Strasbourg.\u003c\/div\u003e\n\u003c\/div\u003e"}
Nanobiotechnology
$175.00
{"id":11242203332,"title":"Nanobiotechnology","handle":"978-0-12-415769-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jesus M. de la Fuente and V. Grazu \u003cbr\u003eISBN 978-0-12-415769-9 \u003cbr\u003e\u003cbr\u003eInorganic Nanoparticles vs Organic Nanoparticles\n\u003cdiv\u003eHardbound, 538 Pages\u003c\/div\u003e\n\u003cdiv\u003eVolume 4, 1st Edition\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNanotechnology is considered the next big revolution in medicine and biology. For the past 20 years, research groups have been involved in the development of new applications of novel nanomaterials for biotechnological applications. Nanomaterials are also becoming increasingly important in medical applications, with new drugs and diagnostic tools based on nanotechnology. Every year, hundreds of new ideas using nanomaterials are applied in the development of biosensors. An increasing number of new enterprises are also searching for market opportunities using these technologies.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eNanomaterials for biotechnological applications is a very complex field. Thousands of different nanoparticles could potentially be used for these purposes. Some of them are very different; their synthesis, characterization, and potentiality are very diverse. This book aims to establish a route guide for non-erudite researchers in the field, showing the advantages and disadvantages of the different kind of nanomaterials. Particular attention is given to the differences, advantages, and disadvantages of inorganic nanoparticles versus organic nanoparticles when used for biotechnological applications. A tutorial introduction provides the basis for understanding the subsequent specialized chapters.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003ePreface: Jesus M de la Fuente \u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 1.-Synthesis and Characterization of Nanoparticles\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e1.1.- Synthesis and Applications of Gold Nanoparticles, Beatriz Pelaz, and Pablo del Pino\u003cbr\u003e\u003cbr\u003e1.2.- Magnetic Nanoparticles, Gorka Salas, R. Costo and M. Puerto Morales \u003cbr\u003e\u003cbr\u003e1.3.- Synthesis of inorganic nanocrystals for biological fluorescence imaging, Cécile Philippot, and Peter Reiss \u003cbr\u003e\u003cbr\u003e1.4.- Synthesis of Organic Nanoparticles, Gabriela Romero and Sergio E. Moya\u003cbr\u003e\u003cbr\u003e1.5.- Synthetic Strategies to create Dendrimers: Advantages and Drawbacks, Macarena Sánchez-Navarro and Javier Rojo \u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 2.-Biotechnological Applications\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e2.1.- Applications of Inorganic Nanoparticles for Biotechnology, Catherine Berry \u003cbr\u003e\u003cbr\u003e2.2.- Investigating Nanoparticle Internalization Patterns by Quantitative Correlation Analysis of Microscopy Imaging Data, Raimo Hartmann, Susana Carregal-Romero, Wolfgang J. Parak, Pilar Rivera Gil \u003cbr\u003e\u003cbr\u003e2.3 - Organic Nanoparticles, Helene Feracci, Berta Saez Gutierrez, William Hempel, Isabel Segura Gil\u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 3.-Applications in Diagnostics and Biosensing\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e3.1.- Application of Inorganic Nanoparticles for Diagnosis based on MRI, Pedro M Enriquez-Navas and Maria L Garcia-Martin \u003cbr\u003e\u003cbr\u003e3.2.- Biosensors Based on Nanoparticles and Electrochemical Detection, Ester Polo, Sara Puertas and Pilar Batalla\u003cbr\u003e\u003cbr\u003e3.3.- Magnetic Nanoparticles for Application in Biomedical Sensing, David Alcantara and Lee Josephson\u003cbr\u003e\u003cbr\u003e3.4.- Quantum Dot Nanoparticles for In Vitro Sensing, Zongwen Jin and Niko Hildebrandt \u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 4.- Nanoparticles for Therapy \u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e 4.1.- Hyperthermia using Inorganic Nanoparticles, Pablo del Pino and Beatriz Pelaz \u003cbr\u003e\u003cbr\u003e4.2.- Nanocarriers as Nanomedicines: Design Concepts and Recent Advances, Valeria Grazú, Christian Sánchez-Espinel and María Moros \u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 5.-Toxicity and Regulation\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e5.1.- Nanotoxicology, Rosana Simón-Vázquez, Mercedes Peleteiro, Tamara Lozano, Amparo Casal, África González-Fernández \u003cbr\u003e\u003cbr\u003e5.2.- Overview of Nanomedicines Regulation in the European Union, Ignasi Gispert\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eEdited by\u003c\/div\u003e\n\u003cdiv\u003eJesus M. de la Fuente, Instituto de Nanociencia de Aragon, Zaragoza, Spain\u003c\/div\u003e\n\u003cdiv\u003eV. Grazu, Instituto de Nanociencia de Aragon, Zaragoza, Spain\u003c\/div\u003e","published_at":"2017-06-22T21:12:47-04:00","created_at":"2017-06-22T21:12:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","biosensors","biotechnological applications","book","inorganic nanoparticles","magnetic nanopartices","medical applications","nano","nanocrystals","organic nanoparticles","synthesis"],"price":17500,"price_min":17500,"price_max":17500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Nanobiotechnology","public_title":null,"options":["Default Title"],"price":17500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-12-415769-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415769-9.jpg?v=1499951587"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415769-9.jpg?v=1499951587","options":["Title"],"media":[{"alt":null,"id":358516686941,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415769-9.jpg?v=1499951587"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415769-9.jpg?v=1499951587","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jesus M. de la Fuente and V. Grazu \u003cbr\u003eISBN 978-0-12-415769-9 \u003cbr\u003e\u003cbr\u003eInorganic Nanoparticles vs Organic Nanoparticles\n\u003cdiv\u003eHardbound, 538 Pages\u003c\/div\u003e\n\u003cdiv\u003eVolume 4, 1st Edition\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNanotechnology is considered the next big revolution in medicine and biology. For the past 20 years, research groups have been involved in the development of new applications of novel nanomaterials for biotechnological applications. Nanomaterials are also becoming increasingly important in medical applications, with new drugs and diagnostic tools based on nanotechnology. Every year, hundreds of new ideas using nanomaterials are applied in the development of biosensors. An increasing number of new enterprises are also searching for market opportunities using these technologies.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eNanomaterials for biotechnological applications is a very complex field. Thousands of different nanoparticles could potentially be used for these purposes. Some of them are very different; their synthesis, characterization, and potentiality are very diverse. This book aims to establish a route guide for non-erudite researchers in the field, showing the advantages and disadvantages of the different kind of nanomaterials. Particular attention is given to the differences, advantages, and disadvantages of inorganic nanoparticles versus organic nanoparticles when used for biotechnological applications. A tutorial introduction provides the basis for understanding the subsequent specialized chapters.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003ePreface: Jesus M de la Fuente \u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 1.-Synthesis and Characterization of Nanoparticles\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e1.1.- Synthesis and Applications of Gold Nanoparticles, Beatriz Pelaz, and Pablo del Pino\u003cbr\u003e\u003cbr\u003e1.2.- Magnetic Nanoparticles, Gorka Salas, R. Costo and M. Puerto Morales \u003cbr\u003e\u003cbr\u003e1.3.- Synthesis of inorganic nanocrystals for biological fluorescence imaging, Cécile Philippot, and Peter Reiss \u003cbr\u003e\u003cbr\u003e1.4.- Synthesis of Organic Nanoparticles, Gabriela Romero and Sergio E. Moya\u003cbr\u003e\u003cbr\u003e1.5.- Synthetic Strategies to create Dendrimers: Advantages and Drawbacks, Macarena Sánchez-Navarro and Javier Rojo \u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 2.-Biotechnological Applications\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e2.1.- Applications of Inorganic Nanoparticles for Biotechnology, Catherine Berry \u003cbr\u003e\u003cbr\u003e2.2.- Investigating Nanoparticle Internalization Patterns by Quantitative Correlation Analysis of Microscopy Imaging Data, Raimo Hartmann, Susana Carregal-Romero, Wolfgang J. Parak, Pilar Rivera Gil \u003cbr\u003e\u003cbr\u003e2.3 - Organic Nanoparticles, Helene Feracci, Berta Saez Gutierrez, William Hempel, Isabel Segura Gil\u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 3.-Applications in Diagnostics and Biosensing\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e3.1.- Application of Inorganic Nanoparticles for Diagnosis based on MRI, Pedro M Enriquez-Navas and Maria L Garcia-Martin \u003cbr\u003e\u003cbr\u003e3.2.- Biosensors Based on Nanoparticles and Electrochemical Detection, Ester Polo, Sara Puertas and Pilar Batalla\u003cbr\u003e\u003cbr\u003e3.3.- Magnetic Nanoparticles for Application in Biomedical Sensing, David Alcantara and Lee Josephson\u003cbr\u003e\u003cbr\u003e3.4.- Quantum Dot Nanoparticles for In Vitro Sensing, Zongwen Jin and Niko Hildebrandt \u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 4.- Nanoparticles for Therapy \u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e 4.1.- Hyperthermia using Inorganic Nanoparticles, Pablo del Pino and Beatriz Pelaz \u003cbr\u003e\u003cbr\u003e4.2.- Nanocarriers as Nanomedicines: Design Concepts and Recent Advances, Valeria Grazú, Christian Sánchez-Espinel and María Moros \u003cbr\u003e\u003cbr\u003e\u003cb\u003eChapter 5.-Toxicity and Regulation\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e5.1.- Nanotoxicology, Rosana Simón-Vázquez, Mercedes Peleteiro, Tamara Lozano, Amparo Casal, África González-Fernández \u003cbr\u003e\u003cbr\u003e5.2.- Overview of Nanomedicines Regulation in the European Union, Ignasi Gispert\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eEdited by\u003c\/div\u003e\n\u003cdiv\u003eJesus M. de la Fuente, Instituto de Nanociencia de Aragon, Zaragoza, Spain\u003c\/div\u003e\n\u003cdiv\u003eV. Grazu, Instituto de Nanociencia de Aragon, Zaragoza, Spain\u003c\/div\u003e"}
Nanotechnology & Society
$189.00
{"id":11242207556,"title":"Nanotechnology \u0026 Society","handle":"978-1-4020-6208-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Allhoff, Fritz; Lin, Patrick (Eds.) \u003cbr\u003eISBN 978-1-4020-6208-7 \u003cbr\u003e\u003cbr\u003eCurrent and Emerging Ethical Issues\u003cbr\u003e300 p., Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNanotechnology \u0026amp; Society is a collection of sixteen papers focused on the most urgent issues arising from nanotechnology today and in the near future. Written by leading researchers, policy experts, and nanoethics scholars worldwide, the book is divided into five units: foundational issues; risk and regulation; industry and policy; the human condition; and selected global issues. The essays tackle such contentious issues as environmental impact, health dangers, medical benefits, intellectual property, professional code of ethics, privacy, international governance, and more.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nForeword\u003cbr\u003eBiosketches \u003cbr\u003eIntroduction \u003cbr\u003e\u003cstrong\u003ePart I Foundational Issues\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e1 On the Autonomy and Justification of Nanoethics \u003c\/strong\u003e\u003cbr\u003eFritz Allhoff\u003cbr\u003e\u003cstrong\u003e2 The Presumptive Case for Nanotechnology\u003c\/strong\u003e\u003cbr\u003ePaul B. Thompson\u003cbr\u003e\u003cstrong\u003e3 The Bearable Newness of Nanoscience, or: How Not to Get\u003c\/strong\u003e Regulated Out of Business \u003cbr\u003eArthur Zucker\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart II Risk and Regulation\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e4 Ethics, Risk, and Nanotechnology: Responsible Approaches to Dealing with Risk\u003c\/strong\u003e\u003cbr\u003eCommission de l’Éthique de la Science et de la Technologie\u003cbr\u003e\u003cstrong\u003e5 Intuitive Toxicology: The Public Perception of Nanoscience \u003c\/strong\u003e\u003cbr\u003eDavid M. Berube\u003cbr\u003e\u003cstrong\u003e6 Environmental Holism and Nanotechnology\u003c\/strong\u003e\u003cbr\u003eThomas M. Powers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart III Industry and Policy\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e7 Nanotechnology’s Future: Considerations for the Professional\u003c\/strong\u003e\u003cbr\u003eAshley Shew\u003cbr\u003e\u003cstrong\u003e8 The Tangled Web of Tiny Things: Privacy Implications of Nano-electronics\u003c\/strong\u003e\u003cbr\u003eJeroen van den Hoven\u003cbr\u003e\u003cstrong\u003e9 Carbon Nanotube Patent Thickets\u003c\/strong\u003e\u003cbr\u003eDrew L. Harris\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart IV The Human Condition\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e10 Ethical Aspects of Nanomedicine: A Condensed Version of the EGE Opinion 21\u003c\/strong\u003e\u003cbr\u003eEuropean Group on Ethics\u003cbr\u003e\u003cstrong\u003e11 Emerging Issues in Nanomedicine and Ethics\u003c\/strong\u003e\u003cbr\u003eRaj Bawa and Summer Johnson\u003cbr\u003e\u003cstrong\u003e12 Nanoscience, Nanoscientists, and Controversy\u003c\/strong\u003e\u003cbr\u003eJason Scott Robert\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart V Global Issues\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e13 Nanotechnology and the Poor: Opportunities and Risks\u003c\/strong\u003e\u003cbr\u003efor Developing Countries\u003cbr\u003eTodd F. Barker, Leili Fatehi, Michael T. Lesnick, Timothy J. Mealey, and Rex R. Raimond\u003cbr\u003e\u003cstrong\u003e14 Cultural Diversity in Nanotechnology Ethics\u003c\/strong\u003e\u003cbr\u003eJoachim Schummer\u003cbr\u003e\u003cstrong\u003e15 Transnational Nanotechnology Governance:\u003c\/strong\u003e \u003cstrong\u003eA Comparison of the US and China \u003c\/strong\u003e\u003cbr\u003eEvan S. Michelson and David Rejeski\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eFRITZ ALLHOFF, Ph.D.\u003c\/strong\u003e, is an Assistant Professor of Philosophy at Western Michigan University and Research Associate in the Centre for Applied Philosophy and Public Ethics at The Australian National University. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePATRICK LIN, Ph.D.\u003c\/strong\u003e, is a Visiting Assistant Professor of Philosophy at California State Polytechnic University, San Luis Obispo, and has academic appointments at Dartmouth College and Western Michigan University. Both editors are also co-founders of The Nanoethics Group.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:00-04:00","created_at":"2017-06-22T21:13:00-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","environment","envisioning the future","human enhancement","medical benefits","nano","nanoethics","nanomedicine","privacy","risk and regulation"],"price":18900,"price_min":18900,"price_max":18900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378326852,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Nanotechnology \u0026 Society","public_title":null,"options":["Default Title"],"price":18900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4020-6208-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-6208-7.jpg?v=1499951662"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-6208-7.jpg?v=1499951662","options":["Title"],"media":[{"alt":null,"id":358523306077,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-6208-7.jpg?v=1499951662"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-6208-7.jpg?v=1499951662","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Allhoff, Fritz; Lin, Patrick (Eds.) \u003cbr\u003eISBN 978-1-4020-6208-7 \u003cbr\u003e\u003cbr\u003eCurrent and Emerging Ethical Issues\u003cbr\u003e300 p., Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNanotechnology \u0026amp; Society is a collection of sixteen papers focused on the most urgent issues arising from nanotechnology today and in the near future. Written by leading researchers, policy experts, and nanoethics scholars worldwide, the book is divided into five units: foundational issues; risk and regulation; industry and policy; the human condition; and selected global issues. The essays tackle such contentious issues as environmental impact, health dangers, medical benefits, intellectual property, professional code of ethics, privacy, international governance, and more.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nForeword\u003cbr\u003eBiosketches \u003cbr\u003eIntroduction \u003cbr\u003e\u003cstrong\u003ePart I Foundational Issues\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e1 On the Autonomy and Justification of Nanoethics \u003c\/strong\u003e\u003cbr\u003eFritz Allhoff\u003cbr\u003e\u003cstrong\u003e2 The Presumptive Case for Nanotechnology\u003c\/strong\u003e\u003cbr\u003ePaul B. Thompson\u003cbr\u003e\u003cstrong\u003e3 The Bearable Newness of Nanoscience, or: How Not to Get\u003c\/strong\u003e Regulated Out of Business \u003cbr\u003eArthur Zucker\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart II Risk and Regulation\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e4 Ethics, Risk, and Nanotechnology: Responsible Approaches to Dealing with Risk\u003c\/strong\u003e\u003cbr\u003eCommission de l’Éthique de la Science et de la Technologie\u003cbr\u003e\u003cstrong\u003e5 Intuitive Toxicology: The Public Perception of Nanoscience \u003c\/strong\u003e\u003cbr\u003eDavid M. Berube\u003cbr\u003e\u003cstrong\u003e6 Environmental Holism and Nanotechnology\u003c\/strong\u003e\u003cbr\u003eThomas M. Powers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart III Industry and Policy\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e7 Nanotechnology’s Future: Considerations for the Professional\u003c\/strong\u003e\u003cbr\u003eAshley Shew\u003cbr\u003e\u003cstrong\u003e8 The Tangled Web of Tiny Things: Privacy Implications of Nano-electronics\u003c\/strong\u003e\u003cbr\u003eJeroen van den Hoven\u003cbr\u003e\u003cstrong\u003e9 Carbon Nanotube Patent Thickets\u003c\/strong\u003e\u003cbr\u003eDrew L. Harris\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart IV The Human Condition\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e10 Ethical Aspects of Nanomedicine: A Condensed Version of the EGE Opinion 21\u003c\/strong\u003e\u003cbr\u003eEuropean Group on Ethics\u003cbr\u003e\u003cstrong\u003e11 Emerging Issues in Nanomedicine and Ethics\u003c\/strong\u003e\u003cbr\u003eRaj Bawa and Summer Johnson\u003cbr\u003e\u003cstrong\u003e12 Nanoscience, Nanoscientists, and Controversy\u003c\/strong\u003e\u003cbr\u003eJason Scott Robert\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart V Global Issues\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e13 Nanotechnology and the Poor: Opportunities and Risks\u003c\/strong\u003e\u003cbr\u003efor Developing Countries\u003cbr\u003eTodd F. Barker, Leili Fatehi, Michael T. Lesnick, Timothy J. Mealey, and Rex R. Raimond\u003cbr\u003e\u003cstrong\u003e14 Cultural Diversity in Nanotechnology Ethics\u003c\/strong\u003e\u003cbr\u003eJoachim Schummer\u003cbr\u003e\u003cstrong\u003e15 Transnational Nanotechnology Governance:\u003c\/strong\u003e \u003cstrong\u003eA Comparison of the US and China \u003c\/strong\u003e\u003cbr\u003eEvan S. Michelson and David Rejeski\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eFRITZ ALLHOFF, Ph.D.\u003c\/strong\u003e, is an Assistant Professor of Philosophy at Western Michigan University and Research Associate in the Centre for Applied Philosophy and Public Ethics at The Australian National University. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePATRICK LIN, Ph.D.\u003c\/strong\u003e, is a Visiting Assistant Professor of Philosophy at California State Polytechnic University, San Luis Obispo, and has academic appointments at Dartmouth College and Western Michigan University. Both editors are also co-founders of The Nanoethics Group.\u003cbr\u003e\u003cbr\u003e"}
Nanotechnology Cookbook
$120.00
{"id":11242216580,"title":"Nanotechnology Cookbook","handle":"978-0-08-097172-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Andrew Collins \u003cbr\u003eISBN 978-0-08-097172-8 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePractical, Reliable and Jargon-free Experimental Procedures\u003c\/p\u003e\n\u003cp\u003eHardbound, 324 Pages \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe peculiarities of materials at the nanoscale demand an interdisciplinary approach which can be difficult for students and researchers who are trained predominantly in a single field. A chemist might not have experience at working with cell cultures or a physicist may have no idea how to make the gold colloid they need for calibrating an atomic force microscope. The interdisciplinary approach of the book will help you to quickly synthesize information from multiple perspectives.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eNanoscience research is also characterized by rapid movement within disciplines. The amount of time it takes wading through papers and chasing down academics is frustrating and wasteful and our reviewers seem to suggest this work would give an excellent starting point for their work. The current source of published data is either in journal articles, which requires highly advanced knowledge of background information, or books on the subject, which can skim over the essential details of preparations. Having a cookbook to hand to flick through and from which you may select a preparation acts as a good source of contact both to researchers and those who supervise them alike.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThis book, therefore, supports fundamental nanoscience experimentation. It is by intention much more user-friendly than traditionally published works, which too-frequently assumes state of the art knowledge. Moreover, you can pick up this book and find a synthesis to suit your needs without digging through specialist papers or tracking someone down who eventually may or may not be able to help. Once you have used the recipe the book would then act as a reference guide for how to analyze these materials and what to look out for.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eIntroduction \u003c\/b\u003e- An explanation of how to use the book and a brief overview of the areas that will be covered and how they apply to active science today. Sections will be colour coded to make it easy to navigate through the book. Colour coding will also show where the respective disciplines overlap.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eSafety (Red):\u003c\/b\u003e This chapter provides a list of common laboratory hazards and how to handle them. This will include a template COSH form, hazard code listings, and signs. Solvent safety charts with boiling points, flashpoints, and a miscibility comparison chart. Handling spills, solvent, and solid waste. Biohazard safety to level II lab standards and the disposal of biological waste. Special safety considerations for nanomaterials. Laser safety procedures.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eTechniques (Blue):\u003c\/b\u003e A range of sample preparation methods will be presented for electron microscopy, atomic force microscopy, fluorescence spectroscopy, IR, UV-visible and X-ray spectroscopy, nuclear magnetic resonance spectroscopy and dynamic light scattering. Interpretation of biological assays and cell examination. Tables and charts will be included to aid the reader in data interpretation along with the basic theory of the techniques. This chapter will be an overview of the in-depth analysis of samples provided with each recipe.\u003cbr\u003e\u003cbr\u003e\u003cb\u003ePhysics (Green): \u003c\/b\u003eLiquid Crystals. Nanoindentation using an atomic force microscope. How to make a Chemical vapor deposition and replication of template substrates. Making simple MEMS - Deposition of thin metal layers and chemical etching. Electrodeposition on various substrates. Making a circuit board. Making photonic crystals from opal templates and from polymers. Making single walled and multiple walled carbon nanotubes. Making graphene and graphene oxide and what to do with them. Making a thin layer light emitting device. Electrospinning fibres from various polymers. Making a solar cell. Thin sectioning and patterning using ion beam milling. Photoetching on various substrates, Some useful electronic circuits and how to use an oscilloscope. PDMS stamping for replication and making lab on a chip devices.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eChemistry (Yellow):\u003c\/b\u003e Making colloids - Titanium dioxide nanoparticles (including rods and monoliths), cadmium selenide nanoparticles and rods, gold and other metals as nanoparticles and rods. Stabilizing agents you can use and some methods for functionalizing them to target receptors or simply to give them a charge. Making magnetic colloids and ferrofluids. Making core-shell colloidal nanoparticles, ceramic\/ceramic, and metal\/ceramic recipes. Biotemplating - virus and polysaccharide templates for the formation of metal or ceramic duplicates. Sol-gel chemistry for the formation of porous monoliths using surfactants. Using sol-gel chemistry as an inorganic immobilization or encapsulating agent. The production of thin films of polymers and ceramics. The formation of a metal-organic framework (MOF).\u003cbr\u003e\u003cbr\u003e\u003cb\u003eBiology (Purple): \u003c\/b\u003ePreparing a glycerol stock. Making an agar plate. Keeping a bacterial cell culture. Keeping a mammalian cell culture. Performing gel electrophoresis, How to extract and purify DNA. Bioengineering - getting useful plasmids into bacteria. Extracting and isolating a protein. Membrane and vesicle formation from lipids. Common cell assays and how to run them - including LDH and COMET assays. Testing an antibiotic on gram-positive and gram-negative bacteria. How to isolate large protein materials such as silk and collagen. Cell staining with fluorescent dyes and how to use nanoparticles as biomarkers for microscopy.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Andrew Collins, School of Chemistry, University of Bristol, England","published_at":"2017-06-22T21:13:29-04:00","created_at":"2017-06-22T21:13:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","bioengineering","biotemplating","book","colloids","electrodeposition","electrospinning","graphene","liquid crystals","magnetic colloids","MEMS","nano","nanostructured materials","safety","sample preparation","thin films"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378358660,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Nanotechnology Cookbook","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08-097172-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-097172-8.jpg?v=1503423134"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-097172-8.jpg?v=1503423134","options":["Title"],"media":[{"alt":null,"id":407980834909,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-097172-8.jpg?v=1503423134"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-097172-8.jpg?v=1503423134","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Andrew Collins \u003cbr\u003eISBN 978-0-08-097172-8 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePractical, Reliable and Jargon-free Experimental Procedures\u003c\/p\u003e\n\u003cp\u003eHardbound, 324 Pages \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe peculiarities of materials at the nanoscale demand an interdisciplinary approach which can be difficult for students and researchers who are trained predominantly in a single field. A chemist might not have experience at working with cell cultures or a physicist may have no idea how to make the gold colloid they need for calibrating an atomic force microscope. The interdisciplinary approach of the book will help you to quickly synthesize information from multiple perspectives.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eNanoscience research is also characterized by rapid movement within disciplines. The amount of time it takes wading through papers and chasing down academics is frustrating and wasteful and our reviewers seem to suggest this work would give an excellent starting point for their work. The current source of published data is either in journal articles, which requires highly advanced knowledge of background information, or books on the subject, which can skim over the essential details of preparations. Having a cookbook to hand to flick through and from which you may select a preparation acts as a good source of contact both to researchers and those who supervise them alike.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThis book, therefore, supports fundamental nanoscience experimentation. It is by intention much more user-friendly than traditionally published works, which too-frequently assumes state of the art knowledge. Moreover, you can pick up this book and find a synthesis to suit your needs without digging through specialist papers or tracking someone down who eventually may or may not be able to help. Once you have used the recipe the book would then act as a reference guide for how to analyze these materials and what to look out for.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eIntroduction \u003c\/b\u003e- An explanation of how to use the book and a brief overview of the areas that will be covered and how they apply to active science today. Sections will be colour coded to make it easy to navigate through the book. Colour coding will also show where the respective disciplines overlap.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eSafety (Red):\u003c\/b\u003e This chapter provides a list of common laboratory hazards and how to handle them. This will include a template COSH form, hazard code listings, and signs. Solvent safety charts with boiling points, flashpoints, and a miscibility comparison chart. Handling spills, solvent, and solid waste. Biohazard safety to level II lab standards and the disposal of biological waste. Special safety considerations for nanomaterials. Laser safety procedures.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eTechniques (Blue):\u003c\/b\u003e A range of sample preparation methods will be presented for electron microscopy, atomic force microscopy, fluorescence spectroscopy, IR, UV-visible and X-ray spectroscopy, nuclear magnetic resonance spectroscopy and dynamic light scattering. Interpretation of biological assays and cell examination. Tables and charts will be included to aid the reader in data interpretation along with the basic theory of the techniques. This chapter will be an overview of the in-depth analysis of samples provided with each recipe.\u003cbr\u003e\u003cbr\u003e\u003cb\u003ePhysics (Green): \u003c\/b\u003eLiquid Crystals. Nanoindentation using an atomic force microscope. How to make a Chemical vapor deposition and replication of template substrates. Making simple MEMS - Deposition of thin metal layers and chemical etching. Electrodeposition on various substrates. Making a circuit board. Making photonic crystals from opal templates and from polymers. Making single walled and multiple walled carbon nanotubes. Making graphene and graphene oxide and what to do with them. Making a thin layer light emitting device. Electrospinning fibres from various polymers. Making a solar cell. Thin sectioning and patterning using ion beam milling. Photoetching on various substrates, Some useful electronic circuits and how to use an oscilloscope. PDMS stamping for replication and making lab on a chip devices.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eChemistry (Yellow):\u003c\/b\u003e Making colloids - Titanium dioxide nanoparticles (including rods and monoliths), cadmium selenide nanoparticles and rods, gold and other metals as nanoparticles and rods. Stabilizing agents you can use and some methods for functionalizing them to target receptors or simply to give them a charge. Making magnetic colloids and ferrofluids. Making core-shell colloidal nanoparticles, ceramic\/ceramic, and metal\/ceramic recipes. Biotemplating - virus and polysaccharide templates for the formation of metal or ceramic duplicates. Sol-gel chemistry for the formation of porous monoliths using surfactants. Using sol-gel chemistry as an inorganic immobilization or encapsulating agent. The production of thin films of polymers and ceramics. The formation of a metal-organic framework (MOF).\u003cbr\u003e\u003cbr\u003e\u003cb\u003eBiology (Purple): \u003c\/b\u003ePreparing a glycerol stock. Making an agar plate. Keeping a bacterial cell culture. Keeping a mammalian cell culture. Performing gel electrophoresis, How to extract and purify DNA. Bioengineering - getting useful plasmids into bacteria. Extracting and isolating a protein. Membrane and vesicle formation from lipids. Common cell assays and how to run them - including LDH and COMET assays. Testing an antibiotic on gram-positive and gram-negative bacteria. How to isolate large protein materials such as silk and collagen. Cell staining with fluorescent dyes and how to use nanoparticles as biomarkers for microscopy.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Andrew Collins, School of Chemistry, University of Bristol, England"}
Nanotechnology: Enviro...
$173.00
{"id":11242208452,"title":"Nanotechnology: Environmental Implications and Solutions","handle":"978-0-471-69976-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Louis Theodore, Robert G. Kunz \u003cbr\u003eISBN 978-0-471-69976-7 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e448 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn authoritative, in-depth exploration of the environmental consequences of nanotechnology\u003cbr\u003e\u003cbr\u003eNanotechnology is revolutionizing the chemical, telecom, biotech, pharmaceutical, healthcare, aerospace, and computer industries, among others, and many exciting new nanotech applications are envisioned for the near future. While the rapid pace of innovation has been truly inspiring, much remains to be learned about the potential environmental and health risks posed by this nascent technology and its byproducts. So important is this issue that the ultimate success or failure of nanotechnology may well depend on how effectively science and industry address these concerns in the years ahead.\u003cbr\u003e\u003cbr\u003eWritten by two highly accomplished environmental professionals, Nanotechnology: Environmental Implications and Solutions brings scientists, engineers, and policymakers up to speed on the current state of knowledge in this vitally important area. Professor Theodore and Dr. Kunz provide a concise review of nano-fundamentals and explore background issues surrounding nanotechnology and its environmental impact.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThey then follow up with in-depth discussions of:\u003c\/strong\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe control, monitoring, and reduction of nanotech byproducts and their impact on the air, water, and land\u003c\/li\u003e\n\u003cli\u003eHealth risks associated with nanotechnology, and methods to assess and control them\u003c\/li\u003e\n\u003cli\u003e Nanotech hazard risk assessment-including emergency response planning and personnel training\u003c\/li\u003e\n\u003cli\u003eMultimedia approaches that are available for the analysis of the impact of nanotechnology in the chemical, manufacturing, and waste disposal industries\u003c\/li\u003e\n\u003cli\u003eThe future of nanotechnology and the \"Industrial Revolution II\"\u003c\/li\u003e\n\u003cli\u003eThe legal implications of nanotechnology\u003c\/li\u003e\n\u003cli\u003eSocietal and ethical implications of nanotechnology-based materials and processing method\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eAssuming only a basic knowledge of physics, chemistry, and mathematics on behalf of its readers, Nanotechnology: Environmental Implications and Solutions makes fascinating and useful reading for engineers, scientists, administrators, environmental regulatory officials, and public policymakers, as well as students in a range of science and engineering disciplines.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003ePreface. \u003cbr\u003eForeword by Rita D’Aquino. \u003cbr\u003e\u003cstrong\u003e1 NANOTECHNOLOGY\/ENVIRONMENTAL OVERVIEW.\u003c\/strong\u003e\u003cbr\u003e1.1 Introduction. \u003cbr\u003e1.2 Survey of Nanotechnology Applications. \u003cbr\u003e1.3 Legal Considerations for Nanotechnology by A. Calderone. \u003cbr\u003e1.4 Recent Patent Activity. \u003cbr\u003e1.5 Environmental Implications. \u003cbr\u003e1.6 Current Environmental Regulations. \u003cbr\u003e1.7 Classification and Sources of Pollutants. \u003cbr\u003e1.8 Effects of Pollutants. \u003cbr\u003e1.9 Text Contents. \u003cbr\u003e1.10 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e2 NANOTECHNOLOGY: TURNING BASIC SCIENCE INTO REALITY (Suzanne A. Shelley).\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Basic Chemistry and Size-Related Properties. \u003cbr\u003e2.3 Nanotechnology: Prime Materials and Manufacturing Methods. \u003cbr\u003e2.4 Carbon Nanotubes and Buckyballs. \u003cbr\u003e2.5 Current and Future Market Applications. \u003cbr\u003e2.6 Analytical Methods. \u003cbr\u003e2.7 Health and Safety Issues: Ethical, Legal, and Societal Implications. \u003cbr\u003e2.8 Funding Future Developmental Efforts. \u003cbr\u003e2.9 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e3 AIR ISSUES.\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction. \u003cbr\u003e3.2 Air Pollution Control Equipment. \u003cbr\u003e3.3 Atmospheric Dispersion Modeling. \u003cbr\u003e3.4 Stack Design. \u003cbr\u003e3.5 Indoor Air Quality. \u003cbr\u003e3.6 Monitoring Methods. \u003cbr\u003e3.7 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e4 WATER ISSUES.\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction. \u003cbr\u003e4.2 Industrial Wastewater Management. \u003cbr\u003e4.3 Municipal Wastewater Treatment. \u003cbr\u003e4.4 Dispersion Modeling in Water Systems. \u003cbr\u003e4.5 Monitoring Methods. \u003cbr\u003e4.6 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e5 SOLID WASTE ISSUES.\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction. \u003cbr\u003e5.2 Industrial Waste Management. \u003cbr\u003e5.3 Municipal Solid Waste Management. \u003cbr\u003e5.4 Hospital Waste Management. \u003cbr\u003e5.5 Nuclear Waste Management. \u003cbr\u003e5.6 Metals. \u003cbr\u003e5.7 Superfund. \u003cbr\u003e5.8 Monitoring Methods. \u003cbr\u003e5.9 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e6 MULTIMEDIA ANALYSIS.\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction. \u003cbr\u003e6.2 Historical Perspective. \u003cbr\u003e6.3 Multimedia Application: A Chemical Plant. \u003cbr\u003e6.4 Multimedia Application: Products and Services. \u003cbr\u003e6.5 Multimedia Application: A Hazardous Waste Incineration Facility. \u003cbr\u003e6.6 Education and Training. \u003cbr\u003e6.7 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e7 HEALTH RISK ASSESSMENT.\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction. \u003cbr\u003e7.2 Health Risk Assessment Evaluation Process. \u003cbr\u003e7.3 Why Use Risk-Based Decision Making? \u003cbr\u003e7.4 Risk-Based Corrective Action Approach. \u003cbr\u003e7.5 Statutory Requirements Involving Environmental Communication. \u003cbr\u003e7.6 Public Perception of Risk. \u003cbr\u003e7.7 Risk Communication. \u003cbr\u003e7.8 Seven Cardinal Rules of Risk Communication. \u003cbr\u003e7.9 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e8 HAZARD RISK ASSESSMENT.\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction. \u003cbr\u003e8.2 Superfund Amendments and Reauthorization of Act of 1986. \u003cbr\u003e8.3 Need For Emergency Response Planning. \u003cbr\u003e8.4 Emergency Planning. \u003cbr\u003e8.5 Hazards Survey. \u003cbr\u003e8.6 Training of Personnel. \u003cbr\u003e8.7 Hazard Risk Assessment Evaluation Process. \u003cbr\u003e8.8 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e9 ETHICAL CONSIDERATIONS.\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction. \u003cbr\u003e9.2 Air Pollution. \u003cbr\u003e9.3 Water Pollution. \u003cbr\u003e9.4 Solid Waste Pollution. \u003cbr\u003e9.5 Health Concerns. \u003cbr\u003e9.6 Hazard Concerns. \u003cbr\u003e9.7 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e10 FUTURE TRENDS.\u003c\/strong\u003e\u003cbr\u003e10.1 Introduction. \u003cbr\u003e10.2 Air Issues. \u003cbr\u003e10.3 Water Issues. \u003cbr\u003e10.4 Solid Waste Issues. \u003cbr\u003e10.5 Multimedia Concerns and Hazards. \u003cbr\u003e10.6 Health and Hazard Risk Assessment. \u003cbr\u003e10.7 Environmental Ethics. \u003cbr\u003e10.8 Environmental Audits. \u003cbr\u003e10.9 ISO 14000. \u003cbr\u003e10.10 Summary. \u003cbr\u003eReferences. \u003cbr\u003eNAME INDEX. \u003cbr\u003eSUBJECT INDEX.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLOUIS THEODORE, Ph.D.\u003c\/strong\u003e, is Professor in the Chemical Engineering Department of Manhattan College, in New York City. He has received awards from the International Air and Waste Management Association and the American Society for Engineering Education. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eROBERT G. KUNZ, Ph.D.\u003c\/strong\u003e, is an environmental consultant with three decades of experience in the petroleum and chemical industries. He is the recipient of the Water Pollution Control Federation's Harrison Prescott Eddy Medal.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:03-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","application","book","environment","Environmental Implications","ethical consideration","health risks","legal considerations","multimedia analysis","nano","nanotech by products","nanotech hazard risk assessment","nanotechnology","regulations"],"price":17300,"price_min":17300,"price_max":17300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378328388,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Nanotechnology: Environmental Implications and Solutions","public_title":null,"options":["Default Title"],"price":17300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-471-69976-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-69976-7.jpg?v=1499725714"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-69976-7.jpg?v=1499725714","options":["Title"],"media":[{"alt":null,"id":358524518493,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-69976-7.jpg?v=1499725714"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-69976-7.jpg?v=1499725714","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Louis Theodore, Robert G. Kunz \u003cbr\u003eISBN 978-0-471-69976-7 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e448 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn authoritative, in-depth exploration of the environmental consequences of nanotechnology\u003cbr\u003e\u003cbr\u003eNanotechnology is revolutionizing the chemical, telecom, biotech, pharmaceutical, healthcare, aerospace, and computer industries, among others, and many exciting new nanotech applications are envisioned for the near future. While the rapid pace of innovation has been truly inspiring, much remains to be learned about the potential environmental and health risks posed by this nascent technology and its byproducts. So important is this issue that the ultimate success or failure of nanotechnology may well depend on how effectively science and industry address these concerns in the years ahead.\u003cbr\u003e\u003cbr\u003eWritten by two highly accomplished environmental professionals, Nanotechnology: Environmental Implications and Solutions brings scientists, engineers, and policymakers up to speed on the current state of knowledge in this vitally important area. Professor Theodore and Dr. Kunz provide a concise review of nano-fundamentals and explore background issues surrounding nanotechnology and its environmental impact.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThey then follow up with in-depth discussions of:\u003c\/strong\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eThe control, monitoring, and reduction of nanotech byproducts and their impact on the air, water, and land\u003c\/li\u003e\n\u003cli\u003eHealth risks associated with nanotechnology, and methods to assess and control them\u003c\/li\u003e\n\u003cli\u003e Nanotech hazard risk assessment-including emergency response planning and personnel training\u003c\/li\u003e\n\u003cli\u003eMultimedia approaches that are available for the analysis of the impact of nanotechnology in the chemical, manufacturing, and waste disposal industries\u003c\/li\u003e\n\u003cli\u003eThe future of nanotechnology and the \"Industrial Revolution II\"\u003c\/li\u003e\n\u003cli\u003eThe legal implications of nanotechnology\u003c\/li\u003e\n\u003cli\u003eSocietal and ethical implications of nanotechnology-based materials and processing method\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eAssuming only a basic knowledge of physics, chemistry, and mathematics on behalf of its readers, Nanotechnology: Environmental Implications and Solutions makes fascinating and useful reading for engineers, scientists, administrators, environmental regulatory officials, and public policymakers, as well as students in a range of science and engineering disciplines.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003ePreface. \u003cbr\u003eForeword by Rita D’Aquino. \u003cbr\u003e\u003cstrong\u003e1 NANOTECHNOLOGY\/ENVIRONMENTAL OVERVIEW.\u003c\/strong\u003e\u003cbr\u003e1.1 Introduction. \u003cbr\u003e1.2 Survey of Nanotechnology Applications. \u003cbr\u003e1.3 Legal Considerations for Nanotechnology by A. Calderone. \u003cbr\u003e1.4 Recent Patent Activity. \u003cbr\u003e1.5 Environmental Implications. \u003cbr\u003e1.6 Current Environmental Regulations. \u003cbr\u003e1.7 Classification and Sources of Pollutants. \u003cbr\u003e1.8 Effects of Pollutants. \u003cbr\u003e1.9 Text Contents. \u003cbr\u003e1.10 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e2 NANOTECHNOLOGY: TURNING BASIC SCIENCE INTO REALITY (Suzanne A. Shelley).\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Basic Chemistry and Size-Related Properties. \u003cbr\u003e2.3 Nanotechnology: Prime Materials and Manufacturing Methods. \u003cbr\u003e2.4 Carbon Nanotubes and Buckyballs. \u003cbr\u003e2.5 Current and Future Market Applications. \u003cbr\u003e2.6 Analytical Methods. \u003cbr\u003e2.7 Health and Safety Issues: Ethical, Legal, and Societal Implications. \u003cbr\u003e2.8 Funding Future Developmental Efforts. \u003cbr\u003e2.9 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e3 AIR ISSUES.\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction. \u003cbr\u003e3.2 Air Pollution Control Equipment. \u003cbr\u003e3.3 Atmospheric Dispersion Modeling. \u003cbr\u003e3.4 Stack Design. \u003cbr\u003e3.5 Indoor Air Quality. \u003cbr\u003e3.6 Monitoring Methods. \u003cbr\u003e3.7 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e4 WATER ISSUES.\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction. \u003cbr\u003e4.2 Industrial Wastewater Management. \u003cbr\u003e4.3 Municipal Wastewater Treatment. \u003cbr\u003e4.4 Dispersion Modeling in Water Systems. \u003cbr\u003e4.5 Monitoring Methods. \u003cbr\u003e4.6 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e5 SOLID WASTE ISSUES.\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction. \u003cbr\u003e5.2 Industrial Waste Management. \u003cbr\u003e5.3 Municipal Solid Waste Management. \u003cbr\u003e5.4 Hospital Waste Management. \u003cbr\u003e5.5 Nuclear Waste Management. \u003cbr\u003e5.6 Metals. \u003cbr\u003e5.7 Superfund. \u003cbr\u003e5.8 Monitoring Methods. \u003cbr\u003e5.9 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e6 MULTIMEDIA ANALYSIS.\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction. \u003cbr\u003e6.2 Historical Perspective. \u003cbr\u003e6.3 Multimedia Application: A Chemical Plant. \u003cbr\u003e6.4 Multimedia Application: Products and Services. \u003cbr\u003e6.5 Multimedia Application: A Hazardous Waste Incineration Facility. \u003cbr\u003e6.6 Education and Training. \u003cbr\u003e6.7 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e7 HEALTH RISK ASSESSMENT.\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction. \u003cbr\u003e7.2 Health Risk Assessment Evaluation Process. \u003cbr\u003e7.3 Why Use Risk-Based Decision Making? \u003cbr\u003e7.4 Risk-Based Corrective Action Approach. \u003cbr\u003e7.5 Statutory Requirements Involving Environmental Communication. \u003cbr\u003e7.6 Public Perception of Risk. \u003cbr\u003e7.7 Risk Communication. \u003cbr\u003e7.8 Seven Cardinal Rules of Risk Communication. \u003cbr\u003e7.9 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e8 HAZARD RISK ASSESSMENT.\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction. \u003cbr\u003e8.2 Superfund Amendments and Reauthorization of Act of 1986. \u003cbr\u003e8.3 Need For Emergency Response Planning. \u003cbr\u003e8.4 Emergency Planning. \u003cbr\u003e8.5 Hazards Survey. \u003cbr\u003e8.6 Training of Personnel. \u003cbr\u003e8.7 Hazard Risk Assessment Evaluation Process. \u003cbr\u003e8.8 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e9 ETHICAL CONSIDERATIONS.\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction. \u003cbr\u003e9.2 Air Pollution. \u003cbr\u003e9.3 Water Pollution. \u003cbr\u003e9.4 Solid Waste Pollution. \u003cbr\u003e9.5 Health Concerns. \u003cbr\u003e9.6 Hazard Concerns. \u003cbr\u003e9.7 Summary. \u003cbr\u003eReferences. \u003cbr\u003e\u003cstrong\u003e10 FUTURE TRENDS.\u003c\/strong\u003e\u003cbr\u003e10.1 Introduction. \u003cbr\u003e10.2 Air Issues. \u003cbr\u003e10.3 Water Issues. \u003cbr\u003e10.4 Solid Waste Issues. \u003cbr\u003e10.5 Multimedia Concerns and Hazards. \u003cbr\u003e10.6 Health and Hazard Risk Assessment. \u003cbr\u003e10.7 Environmental Ethics. \u003cbr\u003e10.8 Environmental Audits. \u003cbr\u003e10.9 ISO 14000. \u003cbr\u003e10.10 Summary. \u003cbr\u003eReferences. \u003cbr\u003eNAME INDEX. \u003cbr\u003eSUBJECT INDEX.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLOUIS THEODORE, Ph.D.\u003c\/strong\u003e, is Professor in the Chemical Engineering Department of Manhattan College, in New York City. He has received awards from the International Air and Waste Management Association and the American Society for Engineering Education. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eROBERT G. KUNZ, Ph.D.\u003c\/strong\u003e, is an environmental consultant with three decades of experience in the petroleum and chemical industries. He is the recipient of the Water Pollution Control Federation's Harrison Prescott Eddy Medal.\u003cbr\u003e\u003cbr\u003e"}
Nanotechnology: Global...
$128.00
{"id":11242246916,"title":"Nanotechnology: Global Strategies, Industry Trends and Applications","handle":"978-0-470-85400-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jurgen Schulte (Editor) \u003cbr\u003eISBN 978-0-470-85400-6 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e194 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe rapid growth of miniaturisation to meet the demand for increasingly smart devices is driving global investment in a wide range of industries such as IT, electronics, energy, biotechnology, and materials science. \u003cbr\u003e\u003cbr\u003eNanotechnology: Global Strategies, Industry Trends, and Applications, written by experts from Asia, Europe, and the USA, gives a comprehensive and important global perspective on nanotechnology. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThe book is divided into 3 parts:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eNational Nanotechnology Initiatives in Asia, Europe, and the USA explores the current status of nanotechnology in China, Korea, Europe and the USA.\u003c\/li\u003e\n\u003cli\u003eInvesting in Nanotechnology provides practical information about the opportunities and risks involved in nanotechnology and predictions for future growth.\u003c\/li\u003e\n\u003cli\u003eFrontiers of Nanotechnology discusses future applications of the technology and the real-world issues surrounding these.\u003c\/li\u003e\n\u003cli\u003e\n\u003c\/ul\u003e\nOutlining developing trends, emerging opportunities, associated risks and future applications, this book is essential reading for professionals, prospective investors and policy makers who need an accessible introduction to the topic.\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors. \u003cbr\u003e\u003cbr\u003eForeword (Hiroyuki Yoshikawa). \u003cbr\u003e\u003cbr\u003eIntroduction: Movements in Nanotechnology (Jurgen Schulte). \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart One: National Nanotechnology Initiatives in Asia, Europe, and the US.\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1. Scientific Development and Industrial Application of Nanotechnology in China (Hongchen Gu and Jurgen Schulte). \u003cbr\u003e\u003cbr\u003e2. Current Status of Nanotechnology in Korea and Research into Carbon Nanotubes (Jo-Won Lee and Wonbong Choi). \u003cbr\u003e\u003cbr\u003e3. Nanotechnology in Europe (Ottilia Saxl). \u003cbr\u003e\u003cbr\u003e4. The Vision and Strategy of the US National Nanotechnology Initiative (M. C. Roco). \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart Two: Investing in Nanotechnology.\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5. Growth through Nanotechnology Opportunities and Risks (Jurgen Schulte). \u003cbr\u003e\u003cbr\u003e6. Need for a New Type of Venture Capital (Po Chi Wu). \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart Three: Frontiers of Nanotechnology.\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e7. Frontier Nanotechnology for the Next Generation (Tsuneo Nakahara and Takahiro Imai). \u003cbr\u003e\u003cbr\u003e8. Next-Generation Applications for Polymeric Nanofibres (Teik-Cheng Lim and Seeram Ramakrishna). \u003cbr\u003e\u003cbr\u003e9. Nanotechnology Applications in Textiles (David Soane, David Offord, and William Ware). \u003cbr\u003e\u003cbr\u003e10. Measurement Standards for Nanometrology (Isao Kojima and Tetsuya Baba). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:05-04:00","created_at":"2017-06-22T21:15:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","Applications","book","developing trends","Global Strategies","Industry Trends","invesiting","nano","nanofibres","nanometrology","Strategy","vision"],"price":12800,"price_min":12800,"price_max":12800,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378459908,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Nanotechnology: Global Strategies, Industry Trends and Applications","public_title":null,"options":["Default Title"],"price":12800,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-85400-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85400-6.jpg?v=1499951763"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85400-6.jpg?v=1499951763","options":["Title"],"media":[{"alt":null,"id":358524878941,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85400-6.jpg?v=1499951763"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85400-6.jpg?v=1499951763","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jurgen Schulte (Editor) \u003cbr\u003eISBN 978-0-470-85400-6 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e194 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe rapid growth of miniaturisation to meet the demand for increasingly smart devices is driving global investment in a wide range of industries such as IT, electronics, energy, biotechnology, and materials science. \u003cbr\u003e\u003cbr\u003eNanotechnology: Global Strategies, Industry Trends, and Applications, written by experts from Asia, Europe, and the USA, gives a comprehensive and important global perspective on nanotechnology. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThe book is divided into 3 parts:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eNational Nanotechnology Initiatives in Asia, Europe, and the USA explores the current status of nanotechnology in China, Korea, Europe and the USA.\u003c\/li\u003e\n\u003cli\u003eInvesting in Nanotechnology provides practical information about the opportunities and risks involved in nanotechnology and predictions for future growth.\u003c\/li\u003e\n\u003cli\u003eFrontiers of Nanotechnology discusses future applications of the technology and the real-world issues surrounding these.\u003c\/li\u003e\n\u003cli\u003e\n\u003c\/ul\u003e\nOutlining developing trends, emerging opportunities, associated risks and future applications, this book is essential reading for professionals, prospective investors and policy makers who need an accessible introduction to the topic.\u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors. \u003cbr\u003e\u003cbr\u003eForeword (Hiroyuki Yoshikawa). \u003cbr\u003e\u003cbr\u003eIntroduction: Movements in Nanotechnology (Jurgen Schulte). \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart One: National Nanotechnology Initiatives in Asia, Europe, and the US.\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1. Scientific Development and Industrial Application of Nanotechnology in China (Hongchen Gu and Jurgen Schulte). \u003cbr\u003e\u003cbr\u003e2. Current Status of Nanotechnology in Korea and Research into Carbon Nanotubes (Jo-Won Lee and Wonbong Choi). \u003cbr\u003e\u003cbr\u003e3. Nanotechnology in Europe (Ottilia Saxl). \u003cbr\u003e\u003cbr\u003e4. The Vision and Strategy of the US National Nanotechnology Initiative (M. C. Roco). \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart Two: Investing in Nanotechnology.\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5. Growth through Nanotechnology Opportunities and Risks (Jurgen Schulte). \u003cbr\u003e\u003cbr\u003e6. Need for a New Type of Venture Capital (Po Chi Wu). \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePart Three: Frontiers of Nanotechnology.\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e7. Frontier Nanotechnology for the Next Generation (Tsuneo Nakahara and Takahiro Imai). \u003cbr\u003e\u003cbr\u003e8. Next-Generation Applications for Polymeric Nanofibres (Teik-Cheng Lim and Seeram Ramakrishna). \u003cbr\u003e\u003cbr\u003e9. Nanotechnology Applications in Textiles (David Soane, David Offord, and William Ware). \u003cbr\u003e\u003cbr\u003e10. Measurement Standards for Nanometrology (Isao Kojima and Tetsuya Baba). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e"}
Nanotechnology: Volume...
$245.00
{"id":11242207620,"title":"Nanotechnology: Volume 1: Principles and Fundamentals","handle":"978-3-527-31732-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Günter Schmid \u003cbr\u003eISBN 978-3-527-31732-5 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e310 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe ultimate reference book, providing an in-depth introduction to nanotechnology, discussing topics from ethics and philosophy to challenges faced by this up-and-coming industry, all in one comprehensive volume. The topic could not be hotter, Nanotechnology is the new technology drive of the 21st century paired with existing, multibillion dollar markets and fundings. \u003cbr\u003e\u003cbr\u003eThe 2 volumes set gives an excellent, in-depth overview of everything you need to know about nanotechnology and nanoscience with each volume dedicated to a specific topic which is covered in detail by experts from that particular field.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors. \u003cbr\u003e\u003cbr\u003e1. Introduction (Günter Schmid). \u003cbr\u003e\u003cbr\u003e2. The Nature of Nanotechnology (Günter Schmid). \u003cbr\u003e\u003cbr\u003e3. Top-Down Versus Bottom-Up (Wolfgang J. Parak, Friedrich C. Simmel, and Alexander W. Holleitner). \u003cbr\u003e\u003cbr\u003e4. Fundamental Principles of Quantum Dots (Wolfgang J. Parak, Liberato manna, and Thomas Nann). \u003cbr\u003e\u003cbr\u003e5. Fundamentals and Functionality of Inorganic Wires, Rods, and Tubes (Jörg J. Schneider, Alexander Popp, and Jörg Engstler). \u003cbr\u003e\u003cbr\u003e6. Biomolecule-Nanoparticle Hybrid Systems (Maya Zayats and Itamar Willner). \u003cbr\u003e\u003cbr\u003e7. Philosophy of Nanotechnoscience (Alfred Nordmann). \u003cbr\u003e\u003cbr\u003e8. Ethics of Nanotechnology. State of the Art and Challenges Ahead (Armin Grunwald). \u003cbr\u003e\u003cbr\u003e9. Outlook and Consequences (Günter Schmid). \u003cbr\u003e\u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eGunter Schmid\u003c\/strong\u003e, Professor em. at the University of Duisburg-Essen. His research is focused on the interface between chemistry an physics, covering clusters, nanoparticles, and nanosciences. He published about 350 papers and edited several books on nanomaterials and nanotechnology. He acts as a member of several editorial boards, e.g. for Small and Advanced Functional Materials. In 2003 he received the prestigious Wilhelm-Klemm award of the German Chemical Society","published_at":"2017-06-22T21:13:00-04:00","created_at":"2017-06-22T21:13:00-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","biomolecule-nanoparticle","book","ethics","nano","nanotechnology","nanotechnoscience","nature of nanotechnology","philosophy","quantum dots"],"price":24500,"price_min":24500,"price_max":24500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378326916,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Nanotechnology: Volume 1: Principles and Fundamentals","public_title":null,"options":["Default Title"],"price":24500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-31732-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31732-5.jpg?v=1499951786"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31732-5.jpg?v=1499951786","options":["Title"],"media":[{"alt":null,"id":358525239389,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31732-5.jpg?v=1499951786"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31732-5.jpg?v=1499951786","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Günter Schmid \u003cbr\u003eISBN 978-3-527-31732-5 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e310 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe ultimate reference book, providing an in-depth introduction to nanotechnology, discussing topics from ethics and philosophy to challenges faced by this up-and-coming industry, all in one comprehensive volume. The topic could not be hotter, Nanotechnology is the new technology drive of the 21st century paired with existing, multibillion dollar markets and fundings. \u003cbr\u003e\u003cbr\u003eThe 2 volumes set gives an excellent, in-depth overview of everything you need to know about nanotechnology and nanoscience with each volume dedicated to a specific topic which is covered in detail by experts from that particular field.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors. \u003cbr\u003e\u003cbr\u003e1. Introduction (Günter Schmid). \u003cbr\u003e\u003cbr\u003e2. The Nature of Nanotechnology (Günter Schmid). \u003cbr\u003e\u003cbr\u003e3. Top-Down Versus Bottom-Up (Wolfgang J. Parak, Friedrich C. Simmel, and Alexander W. Holleitner). \u003cbr\u003e\u003cbr\u003e4. Fundamental Principles of Quantum Dots (Wolfgang J. Parak, Liberato manna, and Thomas Nann). \u003cbr\u003e\u003cbr\u003e5. Fundamentals and Functionality of Inorganic Wires, Rods, and Tubes (Jörg J. Schneider, Alexander Popp, and Jörg Engstler). \u003cbr\u003e\u003cbr\u003e6. Biomolecule-Nanoparticle Hybrid Systems (Maya Zayats and Itamar Willner). \u003cbr\u003e\u003cbr\u003e7. Philosophy of Nanotechnoscience (Alfred Nordmann). \u003cbr\u003e\u003cbr\u003e8. Ethics of Nanotechnology. State of the Art and Challenges Ahead (Armin Grunwald). \u003cbr\u003e\u003cbr\u003e9. Outlook and Consequences (Günter Schmid). \u003cbr\u003e\u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eGunter Schmid\u003c\/strong\u003e, Professor em. at the University of Duisburg-Essen. His research is focused on the interface between chemistry an physics, covering clusters, nanoparticles, and nanosciences. He published about 350 papers and edited several books on nanomaterials and nanotechnology. He acts as a member of several editorial boards, e.g. for Small and Advanced Functional Materials. In 2003 he received the prestigious Wilhelm-Klemm award of the German Chemical Society"}
Nanotechnology: Volume...
$256.00
{"id":11242207748,"title":"Nanotechnology: Volume 2: Environmental Aspects","handle":"978-3-527-31735-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Harald Krug \u003cbr\u003eISBN 978-3-527-31735-6 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e317 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis cutting-edge reference addresses the impact nanotechnology has on the environment. From risks to benefits covered by leading professionals in the field and aimed at a multitude of skill levels and disciplines. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003e\u003cbr\u003eList of Contributors. \u003cbr\u003e\u003cbr\u003e1. Pollution Prevention and treatment Using Nanotechnology (Bernd Nowack). \u003cbr\u003e\u003cbr\u003e2. Photocatalytic Surfaces: Antipollution and Antimicrobial Effects (Norman S. Allen, Michele Edge, Joanne Verran, John Stratton, Julie Maltby, and Claire Bygott). \u003cbr\u003e\u003cbr\u003e3. Nanosized Photocatalysts in Environmental Remediation (Jess P. Wilcoxon and Billie L. Abrams). \u003cbr\u003e\u003cbr\u003e4. Pollution Treatment, Remediation, and Sensing (Abhilash Sugunan and Joydeep Dutta). \u003cbr\u003e\u003cbr\u003e5. Benefits in Energy Budget (Ian Ivar Suni). \u003cbr\u003e\u003cbr\u003e6. An Industrial Ecology Perspective (Shannon M. Lloyd, Deanna N. Lekas, and Ketra A. Schmitt). \u003cbr\u003e\u003cbr\u003e7. Composition, Transformation and Effects of Nanoparticles in the Atmosphere (Ulrich Pöschl). \u003cbr\u003e\u003cbr\u003e8. Measurement and Detection of Nanoparticles Within the Environment (Thomas A.J. Kuhlbusch, Heinz Fissan, and Christof Asbach). \u003cbr\u003e\u003cbr\u003e9. Epidemiological Studies on Particulate Air Pollution (Irene Brüske-Hohlfeld and Annette Peters). \u003cbr\u003e\u003cbr\u003e10. Impact of Nanotechnological Developments on the Environment (Harald F. Krug and Petra Klug). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eHarald Krug\u003c\/strong\u003e is Head of the Department for Materials Biology interactions of the Empa, St. Gallen. \u003cbr\u003e\u003cbr\u003eHe previously was a Professor at the Institute of Toxicology and Genetics at the research centre Karlsruhe. In his research he investigates the health and genetics at the Research Centre Karlsruhe. in his research he investigates the health and environmental risks of nanotechnology.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:01-04:00","created_at":"2017-06-22T21:13:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","air pollution","book","environmental aspects","epidemiological studies","industrial ecology","nano","nanotechnology","pollution prevention","pollution treatment"],"price":25600,"price_min":25600,"price_max":25600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327044,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Nanotechnology: Volume 2: Environmental Aspects","public_title":null,"options":["Default Title"],"price":25600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-31735-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31735-6.jpg?v=1499951807"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31735-6.jpg?v=1499951807","options":["Title"],"media":[{"alt":null,"id":358525272157,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31735-6.jpg?v=1499951807"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31735-6.jpg?v=1499951807","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Harald Krug \u003cbr\u003eISBN 978-3-527-31735-6 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e317 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis cutting-edge reference addresses the impact nanotechnology has on the environment. From risks to benefits covered by leading professionals in the field and aimed at a multitude of skill levels and disciplines. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003e\u003cbr\u003eList of Contributors. \u003cbr\u003e\u003cbr\u003e1. Pollution Prevention and treatment Using Nanotechnology (Bernd Nowack). \u003cbr\u003e\u003cbr\u003e2. Photocatalytic Surfaces: Antipollution and Antimicrobial Effects (Norman S. Allen, Michele Edge, Joanne Verran, John Stratton, Julie Maltby, and Claire Bygott). \u003cbr\u003e\u003cbr\u003e3. Nanosized Photocatalysts in Environmental Remediation (Jess P. Wilcoxon and Billie L. Abrams). \u003cbr\u003e\u003cbr\u003e4. Pollution Treatment, Remediation, and Sensing (Abhilash Sugunan and Joydeep Dutta). \u003cbr\u003e\u003cbr\u003e5. Benefits in Energy Budget (Ian Ivar Suni). \u003cbr\u003e\u003cbr\u003e6. An Industrial Ecology Perspective (Shannon M. Lloyd, Deanna N. Lekas, and Ketra A. Schmitt). \u003cbr\u003e\u003cbr\u003e7. Composition, Transformation and Effects of Nanoparticles in the Atmosphere (Ulrich Pöschl). \u003cbr\u003e\u003cbr\u003e8. Measurement and Detection of Nanoparticles Within the Environment (Thomas A.J. Kuhlbusch, Heinz Fissan, and Christof Asbach). \u003cbr\u003e\u003cbr\u003e9. Epidemiological Studies on Particulate Air Pollution (Irene Brüske-Hohlfeld and Annette Peters). \u003cbr\u003e\u003cbr\u003e10. Impact of Nanotechnological Developments on the Environment (Harald F. Krug and Petra Klug). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eHarald Krug\u003c\/strong\u003e is Head of the Department for Materials Biology interactions of the Empa, St. Gallen. \u003cbr\u003e\u003cbr\u003eHe previously was a Professor at the Institute of Toxicology and Genetics at the research centre Karlsruhe. In his research he investigates the health and genetics at the Research Centre Karlsruhe. in his research he investigates the health and environmental risks of nanotechnology.\u003cbr\u003e\u003cbr\u003e"}
Optimization of Polyme...
$219.00
{"id":11242229764,"title":"Optimization of Polymer Nanocomposite Properties","handle":"978-3-527-32521-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vikas Mittal (Editor) \u003cbr\u003eISBN 978-3-527-32521-4 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e440 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA one-stop resource for researchers and developers alike, this book covers a plethora of nanocomposite properties and their enhancement mechanisms.\u003cbr\u003eWith contributors from industry as well as academia, each chapter elucidates in detail the mechanisms to achieve a certain functionality of the polymer nanocomposite, such as improved biodegradability, increased chemical resistance, and tribological performance. Special emphasis is laid on the interdependence of the factors that affect the nanocomposite properties such that readers obtain the information necessary to synthesize the polymer materials according to the requirements of their respective applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPolymer Nanocomposites: Synthesis, Microstructure, and Properties \u003cbr\u003eMorphology Development in Thermoset Nanocomposites\u003cbr\u003eMorphology and Interface Development in Rubber-Clay Nanocomposites\u003cbr\u003eMorphology Development in Polyolefin Nanocomposites\u003cbr\u003eRheological Behavior of Polymer Nanocomposites\u003cbr\u003eMechanical Property Enhancement of Polymer Nanocomposites\u003cbr\u003eStress Transfer and Fracture Mechanisms in Carbon Nanotube-Reinforced Polymer Nanocomposites\u003cbr\u003eBarrier-Resistance Generation in Polymer Composites\u003cbr\u003eMechanisms of Thermal Stability Enhancement in Polymer Nanocomposites\u003cbr\u003eMechanisms of Tribological Performance Improvement in Polymer Nanocomposites \u003cbr\u003eMechanisms of Biodegradability Generation in Polymer Nanocomposites\u003cbr\u003eSelf-Healing in Nanoparticle-Reinforced Polymers and other Polymer Systems\u003cbr\u003eCrystallization in Polymer Nanocomposites\u003cbr\u003ePrediction of the Mechanical Properties of Nanocomposites\u003cbr\u003eMorphology Generation in Polymer Nanocomposites Using Various Layered Silicates\u003cbr\u003eThermomechanical Properties of Polymer Nanocomposites\u003cbr\u003eEffect of Processing Conditions on the Morphology and Properties of Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nVikas Mittal is a polymer engineer at BASF Polymer Research in Ludwigshafen, Germany. He obtained his Ph.D. in Polymer and Materials Engineering from the Swiss Federal Institute of Technology in Zurich, Switzerland. Later, he worked as a materials scientist in the Active and Intelligent Coatings section of SunChemical in London, UK. His research interests include polymer nanocomposites, novel filler surface modifications, and thermal stability enhancements. He has authored more than 20 scientific publications and book chapters.","published_at":"2017-06-22T21:14:12-04:00","created_at":"2017-06-22T21:14:12-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","biodegradability","book","crystallization","morphology","nano","Nanocomposite","nanotube","properties","rheology","thermal stability","tribological performance"],"price":21900,"price_min":21900,"price_max":21900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378399300,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Optimization of Polymer Nanocomposite Properties","public_title":null,"options":["Default Title"],"price":21900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-32521-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32521-4.jpg?v=1499951887"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32521-4.jpg?v=1499951887","options":["Title"],"media":[{"alt":null,"id":358526058589,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32521-4.jpg?v=1499951887"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32521-4.jpg?v=1499951887","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vikas Mittal (Editor) \u003cbr\u003eISBN 978-3-527-32521-4 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e440 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA one-stop resource for researchers and developers alike, this book covers a plethora of nanocomposite properties and their enhancement mechanisms.\u003cbr\u003eWith contributors from industry as well as academia, each chapter elucidates in detail the mechanisms to achieve a certain functionality of the polymer nanocomposite, such as improved biodegradability, increased chemical resistance, and tribological performance. Special emphasis is laid on the interdependence of the factors that affect the nanocomposite properties such that readers obtain the information necessary to synthesize the polymer materials according to the requirements of their respective applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPolymer Nanocomposites: Synthesis, Microstructure, and Properties \u003cbr\u003eMorphology Development in Thermoset Nanocomposites\u003cbr\u003eMorphology and Interface Development in Rubber-Clay Nanocomposites\u003cbr\u003eMorphology Development in Polyolefin Nanocomposites\u003cbr\u003eRheological Behavior of Polymer Nanocomposites\u003cbr\u003eMechanical Property Enhancement of Polymer Nanocomposites\u003cbr\u003eStress Transfer and Fracture Mechanisms in Carbon Nanotube-Reinforced Polymer Nanocomposites\u003cbr\u003eBarrier-Resistance Generation in Polymer Composites\u003cbr\u003eMechanisms of Thermal Stability Enhancement in Polymer Nanocomposites\u003cbr\u003eMechanisms of Tribological Performance Improvement in Polymer Nanocomposites \u003cbr\u003eMechanisms of Biodegradability Generation in Polymer Nanocomposites\u003cbr\u003eSelf-Healing in Nanoparticle-Reinforced Polymers and other Polymer Systems\u003cbr\u003eCrystallization in Polymer Nanocomposites\u003cbr\u003ePrediction of the Mechanical Properties of Nanocomposites\u003cbr\u003eMorphology Generation in Polymer Nanocomposites Using Various Layered Silicates\u003cbr\u003eThermomechanical Properties of Polymer Nanocomposites\u003cbr\u003eEffect of Processing Conditions on the Morphology and Properties of Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nVikas Mittal is a polymer engineer at BASF Polymer Research in Ludwigshafen, Germany. He obtained his Ph.D. in Polymer and Materials Engineering from the Swiss Federal Institute of Technology in Zurich, Switzerland. Later, he worked as a materials scientist in the Active and Intelligent Coatings section of SunChemical in London, UK. His research interests include polymer nanocomposites, novel filler surface modifications, and thermal stability enhancements. He has authored more than 20 scientific publications and book chapters."}