- Grid List
Filter
Adhesion and Bonding t...
$144.00
{"id":11242229316,"title":"Adhesion and Bonding to Polyolefins","handle":"978-1-85957-323-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.M. Brewis and I. Mathieson, Loughborough University \u003cbr\u003eISBN 978-1-85957-323-5 \u003cbr\u003e\u003cbr\u003epages: 132, figures: 9, tables: 12\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyolefins have many and varied applications. Polyethylene is the most widely used plastic and olefinic elastomers, such as natural rubber and styrene-butadiene copolymers, predominate in many key components such as tires. \u003cbr\u003e\u003cbr\u003eMany applications of polyolefins require good adhesion to other substrates such as adhesive bonding, lamination, painting, printing, and metallisation. However, polyolefins have very poor bonding properties except where a diffusion mechanism operates, such as during the welding together of two pieces of polyolefin. Theories of adhesion are briefly described. \u003cbr\u003e\u003cbr\u003eThis review discusses ways of improving adhesion to substrates. A variety of pretreatments and primers have been developed for altering the surface properties of polyolefins to enhance adhesion. These include corona discharge, flame and low-pressure plasma treatment for plastics, and the use of a chlorine donor for elastomers. Each method has advantages and disadvantages, which are discussed in this report. \u003cbr\u003e\u003cbr\u003eA number of different analytical methods have been used to characterize the surface of polyolefins before and after treatment. These include X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS) and Fourier transfer infrared spectroscopy (FTIR). These techniques are described and examples of the information obtained are included. \u003cbr\u003e\u003cbr\u003eMany experiments have been performed globally to investigate ways of improving the bonding of polyolefins. Data from some of the key work on different treatment methods are included, together with a discussion of the effectiveness of the treatments. \u003cbr\u003e\u003cbr\u003eThis overview is written by two of the most prominent researchers in this field. It is clearly written and will be of use to those in industry and academia who are working on adhesion and bonding to polyolefins, both in practical situations and in the laboratory. \u003cbr\u003e\u003cbr\u003eThe extensive reference section contains a unique set of abstracts from the Polymer Library at Rapra, including papers on the issues of bonding of polyolefin in composites.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Principles \u003cbr\u003e2.1 Theories of Adhesion \u003cbr\u003e2.2 Wettability \u003cbr\u003e2.3 Diffusion \u003cbr\u003e3 Methods Used to Study Surfaces \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 X-Ray Photoelectron Spectroscopy XPS \u003cbr\u003e3.3 Static Secondary Ion Mass Spectrometry \u003cbr\u003e3.4 Reflection IR \u003cbr\u003e4 Pretreatments and Primers for Polyolefin Plastics \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Flame Treatment \u003cbr\u003e4.3 Corona Treatment \u003cbr\u003e4.4 Low-Pressure Plasma Treatment \u003cbr\u003e4.5 Chromic Acid Treatment \u003cbr\u003e5 Polyolefin Elastomers \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Ethylene-Propylene Copolymers \u003cbr\u003e5.3 Butyl Rubber \u003cbr\u003e5.4 Unsaturated Hydrocarbon Elastomers \u003cbr\u003e5.4.1 Natural Rubber \u003cbr\u003e5.4.2 Styrene-Butadiene Copolymers \u003cbr\u003e6 Discussion \u003cbr\u003e7 Conclusions \u003cbr\u003eReferences \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nThe authors are part of the Institute for Surface Science and Technology at Loughborough University. Dr. Brewis has carried out research in the field of polyolefin adhesion over several decades and has published extensively. Dr. Mathieson has recently completed a doctoral thesis on this topic.","published_at":"2017-06-22T21:14:11-04:00","created_at":"2017-06-22T21:14:11-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","analytical methods","book","Fourier transfer infrared spectroscopy","FTIR","p-testing","plastic","polymer","polyolefins","SSIMS","static secondary ion mass spectrometry","surface analysis techniques","theories of adhesion","X-ray photoelectron spectroscopy","XPS"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378398148,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Adhesion and Bonding to Polyolefins","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-323-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-323-5.jpg?v=1498185165"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-323-5.jpg?v=1498185165","options":["Title"],"media":[{"alt":null,"id":350140235869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-323-5.jpg?v=1498185165"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-323-5.jpg?v=1498185165","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.M. Brewis and I. Mathieson, Loughborough University \u003cbr\u003eISBN 978-1-85957-323-5 \u003cbr\u003e\u003cbr\u003epages: 132, figures: 9, tables: 12\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyolefins have many and varied applications. Polyethylene is the most widely used plastic and olefinic elastomers, such as natural rubber and styrene-butadiene copolymers, predominate in many key components such as tires. \u003cbr\u003e\u003cbr\u003eMany applications of polyolefins require good adhesion to other substrates such as adhesive bonding, lamination, painting, printing, and metallisation. However, polyolefins have very poor bonding properties except where a diffusion mechanism operates, such as during the welding together of two pieces of polyolefin. Theories of adhesion are briefly described. \u003cbr\u003e\u003cbr\u003eThis review discusses ways of improving adhesion to substrates. A variety of pretreatments and primers have been developed for altering the surface properties of polyolefins to enhance adhesion. These include corona discharge, flame and low-pressure plasma treatment for plastics, and the use of a chlorine donor for elastomers. Each method has advantages and disadvantages, which are discussed in this report. \u003cbr\u003e\u003cbr\u003eA number of different analytical methods have been used to characterize the surface of polyolefins before and after treatment. These include X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectrometry (SSIMS) and Fourier transfer infrared spectroscopy (FTIR). These techniques are described and examples of the information obtained are included. \u003cbr\u003e\u003cbr\u003eMany experiments have been performed globally to investigate ways of improving the bonding of polyolefins. Data from some of the key work on different treatment methods are included, together with a discussion of the effectiveness of the treatments. \u003cbr\u003e\u003cbr\u003eThis overview is written by two of the most prominent researchers in this field. It is clearly written and will be of use to those in industry and academia who are working on adhesion and bonding to polyolefins, both in practical situations and in the laboratory. \u003cbr\u003e\u003cbr\u003eThe extensive reference section contains a unique set of abstracts from the Polymer Library at Rapra, including papers on the issues of bonding of polyolefin in composites.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Principles \u003cbr\u003e2.1 Theories of Adhesion \u003cbr\u003e2.2 Wettability \u003cbr\u003e2.3 Diffusion \u003cbr\u003e3 Methods Used to Study Surfaces \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 X-Ray Photoelectron Spectroscopy XPS \u003cbr\u003e3.3 Static Secondary Ion Mass Spectrometry \u003cbr\u003e3.4 Reflection IR \u003cbr\u003e4 Pretreatments and Primers for Polyolefin Plastics \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Flame Treatment \u003cbr\u003e4.3 Corona Treatment \u003cbr\u003e4.4 Low-Pressure Plasma Treatment \u003cbr\u003e4.5 Chromic Acid Treatment \u003cbr\u003e5 Polyolefin Elastomers \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Ethylene-Propylene Copolymers \u003cbr\u003e5.3 Butyl Rubber \u003cbr\u003e5.4 Unsaturated Hydrocarbon Elastomers \u003cbr\u003e5.4.1 Natural Rubber \u003cbr\u003e5.4.2 Styrene-Butadiene Copolymers \u003cbr\u003e6 Discussion \u003cbr\u003e7 Conclusions \u003cbr\u003eReferences \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nThe authors are part of the Institute for Surface Science and Technology at Loughborough University. Dr. Brewis has carried out research in the field of polyolefin adhesion over several decades and has published extensively. Dr. Mathieson has recently completed a doctoral thesis on this topic."}
Analysis of Thermoset ...
$125.00
{"id":11242215300,"title":"Analysis of Thermoset Materials, Precursors and Products.","handle":"978-1-85957-390-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. M.J. Forrest \u003cbr\u003eISBN 978-1-85957-390-7 \u003cbr\u003e\u003cbr\u003epages 160\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermosets comprise around 25% of world plastic consumption. The use of thermosets dates back over 100 years to the advent of phenolics. Today, a large range of different reactive chemicals is used in the synthesis of these resins. Common thermoset systems include phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, resorcinol-formaldehyde, epoxy, polyurethane, polyalkyd, silicone, polyester, acrylic, furan, and polyimide. \u003cbr\u003e\u003cbr\u003eA variety of additives are found in thermosets. Plasticizer-type compounds are used to promote the flow of high viscosity compounds such as epoxy resins. Particulate fillers are used to reduce cost or improve properties and fibrous materials for increased strength and rigidity. Other additives include anti-degradants, curing agents (hardeners and accelerators), flame retardants and lubricants. \u003cbr\u003e\u003cbr\u003eThermosets are used in a wide range of applications from moldings and composites to adhesives. Analysis of thermosets is carried out to determine the reasons for failure, for quality control, to measure residual monomer, to detect contaminants, to monitor the extent of cure and for deformulation. Materials based on thermosets present the analyst with considerable challenges due to their complexity and the wide range of polymer types and additives available. The author of this review has many years of experience in the Polymer Analysis division at Rapra Technology Limited. He has a practical understanding of the usefulness and feasibility of the many techniques on offer to the chemist. \u003cbr\u003e\u003cbr\u003eWet chemistry techniques were mainly used historically. One example is the spectrophotometric titration of epoxy groups using a halogen acid and 2,4-dinitrobenzene sulfonate as the chromophore. \u003cbr\u003e\u003cbr\u003eSpectroscopic techniques include infrared spectroscopy, ultraviolet, nuclear magnetic resonance, atomic absorption, X-ray fluorescence and Raman spectroscopy. \u003cbr\u003e\u003cbr\u003eChromatographic techniques include gas chromatography-mass spectrometry, HPLC, liquid chromatography-mass spectrometry, gel permeation chromatography, thin layer chromatography and supercritical fluid chromatography. \u003cbr\u003e\u003cbr\u003eThermal techniques used to analyze thermosets include differential scanning calorimetry, dynamic mechanical thermal analysis, thermal mechanical analysis, thermogravimetric analysis and dielectric analysis. \u003cbr\u003e\u003cbr\u003eThere are many other analytical techniques covered in this review, which describes their specific uses and even set up details for some analytical techniques. The references at the end of the report describe many specific instances of the analysis of thermoset materials published over the last 10 years. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e\u003cbr\u003e2. Thermoset Products \u003cbr\u003e2.1 Thermoset Polymer Systems \u003cbr\u003e2.2 Basic Chemistry \u003cbr\u003e2.3 Additives Used in Thermosets \u003cbr\u003e2.3.1 Organic Modifiers \u003cbr\u003e2.3.2 Fillers \u003cbr\u003e2.3.3 Antidegradants\/Stabilisers \u003cbr\u003e2.3.4 Curing Species (e.g., Hardeners and Accelerators) \u003cbr\u003e2.3.5 Flame Retardants \u003cbr\u003e2.3.6 Lubricants \u003cbr\u003e2.3.7 Miscellaneous Additives \u003cbr\u003e\u003cbr\u003e3. Overview of Analytical Techniques \u003cbr\u003e3.1 Wet Chemistry Techniques \u003cbr\u003e3.2 Spectroscopic Techniques \u003cbr\u003e3.2.1 Infrared Spectroscopy (IR) \u003cbr\u003e3.2.2 Ultraviolet Light Spectroscopy (UV) \u003cbr\u003e3.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) \u003cbr\u003e3.2.4 Atomic Absorption Spectroscopy (AAS) \u003cbr\u003e3.2.5 X-Ray Fluorescence Spectroscopy (XRF) \u003cbr\u003e3.2.6 Raman Spectroscopy \u003cbr\u003e3.3 Chromatographic Techniques \u003cbr\u003e3.3.1 Gas Chromatography-Mass Spectrometry (GC-MS) \u003cbr\u003e3.3.2 Gas Chromatography (GC) \u003cbr\u003e3.3.3 High Performance Liquid Chromatography (HPLC) \u003cbr\u003e3.3.4 Liquid Chromatography-Mass Spectroscopy (LC-MS) \u003cbr\u003e3.3.5 Gel Permeation Chromatography (GPC) \u003cbr\u003e3.3.6 Thin Layer Chromatography (TLC) \u003cbr\u003e3.3.7 Supercritical Fluid Chromatography (SFC) \u003cbr\u003e3.4 Thermal Techniques \u003cbr\u003e3.4.1 Differential Scanning Calorimetry (DSC) \u003cbr\u003e3.4.2 Dynamic Mechanical Thermal Analysis (DMTA) \u003cbr\u003e3.4.3 Thermal Mechanical Analysis (TMA) \u003cbr\u003e3.4.4 Thermogravimetric Analysis (TGA) \u003cbr\u003e3.4.5 Dielectric Analysis (DEA) \u003cbr\u003e3.5 Elemental Techniques \u003cbr\u003e3.6 Microscopy Techniques \u003cbr\u003e3.7 Miscellaneous Techniques \u003cbr\u003e\u003cbr\u003e4. Characterisation of Thermoset Polymers and their Precursors \u003cbr\u003e4.1 Determination of the Molecular Weight of Thermoset Precursors and the Separation of their Oligomers \u003cbr\u003e4.1.1 Gel Permeation Chromatography \u003cbr\u003e4.1.2 Liquid Chromatography Techniques \u003cbr\u003e4.1.3 Epoxy Resins \u003cbr\u003e4.1.4 Polyurethane \u003cbr\u003e4.1.5 Microbore-GPC \u003cbr\u003e4.1.6 Other Techniques \u003cbr\u003e4.2 Polymer Type and Microstructure \u003cbr\u003e4.2.1 Infrared Spectroscopy \u003cbr\u003e4.2.2 NMR Spectroscopy \u003cbr\u003e4.2.3 Identifying Functional Groups \u003cbr\u003e4.2.4 Pyrolysis Gas Chromatography \u003cbr\u003e4.2.5 Thermal Analysis Techniques \u003cbr\u003e\u003cbr\u003e5. Determination of Organic Modifiers and Fillers in Thermoset Products \u003cbr\u003e5.1 Determination of Organic Modifiers \u003cbr\u003e5.2 Determination of Fillers \u003cbr\u003e5.2.1 Particulate Fillers \u003cbr\u003e5.2.2 Fibrous Fillers \u003cbr\u003e\u003cbr\u003e6. Determination of Functional Additives in Thermoset Products \u003cbr\u003e6.1 Antidegradants \u003cbr\u003e6.2 Flow Promoters and Flexibilisers \u003cbr\u003e6.3 Pigments \u003cbr\u003e6.4 Blowing Agents \u003cbr\u003e6.5 Flame Retardants \u003cbr\u003e6.6 Curing Systems \u003cbr\u003e\u003cbr\u003e7. Cure Behavior Studies \u003cbr\u003e7.1 Dielectric Analysis \u003cbr\u003e7.2 Differential Scanning Calorimetry \u003cbr\u003e7.3 Dynamic Mechanical Thermal Analysis\/Dynamic Mechanical Analysis \u003cbr\u003e7.4 Thermal Mechanical Analysis \u003cbr\u003e7.5 Scanning Vibrating Needle Curemeter \u003cbr\u003e7.6 Chromatography Techniques \u003cbr\u003e7.7 Spectroscopy Techniques \u003cbr\u003e7.8 Thermally Stimulated Depolarisation \u003cbr\u003e7.9 Wet Chemistry Techniques \u003cbr\u003e\u003cbr\u003e8. Surface Analysis of Thermosets \u003cbr\u003e8.1 X-Ray Photoelectron Spectroscopy (XPS) \u003cbr\u003e8.2 Laser Induced Mass Analysis (LIMA) \u003cbr\u003e8.3 Secondary Ion Mass Spectroscopy (SIMS) \u003cbr\u003e\u003cbr\u003e9. Failure Diagnosis \u003cbr\u003e9.1 Compositional Problems \u003cbr\u003e9.2 Heat Ageing \u003cbr\u003e9.3 Contamination Problems \u003cbr\u003e9.3.1 Solid Contaminants \u003cbr\u003e9.3.2 Liquid Contaminants \u003cbr\u003e9.4 Odor and Emissions Problems \u003cbr\u003e\u003cbr\u003e10.Conclusion\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest has worked in the Polymer Analysis Section at Rapra for fifteen years. He is currently a Principal Consultant, a position he has held for the past four years. He has experience in the analysis of a wide variety of polymers and polymer products using an extensive range of techniques. He is one of the main contacts at Rapra for consultancy and research projects that involve polymer analysis techniques and procedures.","published_at":"2017-06-22T21:13:25-04:00","created_at":"2017-06-22T21:13:25-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","acrylic","book","calorimetry","chromatography","epoxy","furan","melamine-formaldehyde","p-testing","phenol-formaldehyde","polyalkyd","polyester","polyimide","polymer","polyurethane","resorcinol-formaldehyde","silicone","spectroscopy","thermoset systems","thermosets","urea-formaldehyde"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354948,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Analysis of Thermoset Materials, Precursors and Products.","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-390-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-390-7.jpg?v=1498187164"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-390-7.jpg?v=1498187164","options":["Title"],"media":[{"alt":null,"id":350147838045,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-390-7.jpg?v=1498187164"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-390-7.jpg?v=1498187164","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. M.J. Forrest \u003cbr\u003eISBN 978-1-85957-390-7 \u003cbr\u003e\u003cbr\u003epages 160\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermosets comprise around 25% of world plastic consumption. The use of thermosets dates back over 100 years to the advent of phenolics. Today, a large range of different reactive chemicals is used in the synthesis of these resins. Common thermoset systems include phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, resorcinol-formaldehyde, epoxy, polyurethane, polyalkyd, silicone, polyester, acrylic, furan, and polyimide. \u003cbr\u003e\u003cbr\u003eA variety of additives are found in thermosets. Plasticizer-type compounds are used to promote the flow of high viscosity compounds such as epoxy resins. Particulate fillers are used to reduce cost or improve properties and fibrous materials for increased strength and rigidity. Other additives include anti-degradants, curing agents (hardeners and accelerators), flame retardants and lubricants. \u003cbr\u003e\u003cbr\u003eThermosets are used in a wide range of applications from moldings and composites to adhesives. Analysis of thermosets is carried out to determine the reasons for failure, for quality control, to measure residual monomer, to detect contaminants, to monitor the extent of cure and for deformulation. Materials based on thermosets present the analyst with considerable challenges due to their complexity and the wide range of polymer types and additives available. The author of this review has many years of experience in the Polymer Analysis division at Rapra Technology Limited. He has a practical understanding of the usefulness and feasibility of the many techniques on offer to the chemist. \u003cbr\u003e\u003cbr\u003eWet chemistry techniques were mainly used historically. One example is the spectrophotometric titration of epoxy groups using a halogen acid and 2,4-dinitrobenzene sulfonate as the chromophore. \u003cbr\u003e\u003cbr\u003eSpectroscopic techniques include infrared spectroscopy, ultraviolet, nuclear magnetic resonance, atomic absorption, X-ray fluorescence and Raman spectroscopy. \u003cbr\u003e\u003cbr\u003eChromatographic techniques include gas chromatography-mass spectrometry, HPLC, liquid chromatography-mass spectrometry, gel permeation chromatography, thin layer chromatography and supercritical fluid chromatography. \u003cbr\u003e\u003cbr\u003eThermal techniques used to analyze thermosets include differential scanning calorimetry, dynamic mechanical thermal analysis, thermal mechanical analysis, thermogravimetric analysis and dielectric analysis. \u003cbr\u003e\u003cbr\u003eThere are many other analytical techniques covered in this review, which describes their specific uses and even set up details for some analytical techniques. The references at the end of the report describe many specific instances of the analysis of thermoset materials published over the last 10 years. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e\u003cbr\u003e2. Thermoset Products \u003cbr\u003e2.1 Thermoset Polymer Systems \u003cbr\u003e2.2 Basic Chemistry \u003cbr\u003e2.3 Additives Used in Thermosets \u003cbr\u003e2.3.1 Organic Modifiers \u003cbr\u003e2.3.2 Fillers \u003cbr\u003e2.3.3 Antidegradants\/Stabilisers \u003cbr\u003e2.3.4 Curing Species (e.g., Hardeners and Accelerators) \u003cbr\u003e2.3.5 Flame Retardants \u003cbr\u003e2.3.6 Lubricants \u003cbr\u003e2.3.7 Miscellaneous Additives \u003cbr\u003e\u003cbr\u003e3. Overview of Analytical Techniques \u003cbr\u003e3.1 Wet Chemistry Techniques \u003cbr\u003e3.2 Spectroscopic Techniques \u003cbr\u003e3.2.1 Infrared Spectroscopy (IR) \u003cbr\u003e3.2.2 Ultraviolet Light Spectroscopy (UV) \u003cbr\u003e3.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) \u003cbr\u003e3.2.4 Atomic Absorption Spectroscopy (AAS) \u003cbr\u003e3.2.5 X-Ray Fluorescence Spectroscopy (XRF) \u003cbr\u003e3.2.6 Raman Spectroscopy \u003cbr\u003e3.3 Chromatographic Techniques \u003cbr\u003e3.3.1 Gas Chromatography-Mass Spectrometry (GC-MS) \u003cbr\u003e3.3.2 Gas Chromatography (GC) \u003cbr\u003e3.3.3 High Performance Liquid Chromatography (HPLC) \u003cbr\u003e3.3.4 Liquid Chromatography-Mass Spectroscopy (LC-MS) \u003cbr\u003e3.3.5 Gel Permeation Chromatography (GPC) \u003cbr\u003e3.3.6 Thin Layer Chromatography (TLC) \u003cbr\u003e3.3.7 Supercritical Fluid Chromatography (SFC) \u003cbr\u003e3.4 Thermal Techniques \u003cbr\u003e3.4.1 Differential Scanning Calorimetry (DSC) \u003cbr\u003e3.4.2 Dynamic Mechanical Thermal Analysis (DMTA) \u003cbr\u003e3.4.3 Thermal Mechanical Analysis (TMA) \u003cbr\u003e3.4.4 Thermogravimetric Analysis (TGA) \u003cbr\u003e3.4.5 Dielectric Analysis (DEA) \u003cbr\u003e3.5 Elemental Techniques \u003cbr\u003e3.6 Microscopy Techniques \u003cbr\u003e3.7 Miscellaneous Techniques \u003cbr\u003e\u003cbr\u003e4. Characterisation of Thermoset Polymers and their Precursors \u003cbr\u003e4.1 Determination of the Molecular Weight of Thermoset Precursors and the Separation of their Oligomers \u003cbr\u003e4.1.1 Gel Permeation Chromatography \u003cbr\u003e4.1.2 Liquid Chromatography Techniques \u003cbr\u003e4.1.3 Epoxy Resins \u003cbr\u003e4.1.4 Polyurethane \u003cbr\u003e4.1.5 Microbore-GPC \u003cbr\u003e4.1.6 Other Techniques \u003cbr\u003e4.2 Polymer Type and Microstructure \u003cbr\u003e4.2.1 Infrared Spectroscopy \u003cbr\u003e4.2.2 NMR Spectroscopy \u003cbr\u003e4.2.3 Identifying Functional Groups \u003cbr\u003e4.2.4 Pyrolysis Gas Chromatography \u003cbr\u003e4.2.5 Thermal Analysis Techniques \u003cbr\u003e\u003cbr\u003e5. Determination of Organic Modifiers and Fillers in Thermoset Products \u003cbr\u003e5.1 Determination of Organic Modifiers \u003cbr\u003e5.2 Determination of Fillers \u003cbr\u003e5.2.1 Particulate Fillers \u003cbr\u003e5.2.2 Fibrous Fillers \u003cbr\u003e\u003cbr\u003e6. Determination of Functional Additives in Thermoset Products \u003cbr\u003e6.1 Antidegradants \u003cbr\u003e6.2 Flow Promoters and Flexibilisers \u003cbr\u003e6.3 Pigments \u003cbr\u003e6.4 Blowing Agents \u003cbr\u003e6.5 Flame Retardants \u003cbr\u003e6.6 Curing Systems \u003cbr\u003e\u003cbr\u003e7. Cure Behavior Studies \u003cbr\u003e7.1 Dielectric Analysis \u003cbr\u003e7.2 Differential Scanning Calorimetry \u003cbr\u003e7.3 Dynamic Mechanical Thermal Analysis\/Dynamic Mechanical Analysis \u003cbr\u003e7.4 Thermal Mechanical Analysis \u003cbr\u003e7.5 Scanning Vibrating Needle Curemeter \u003cbr\u003e7.6 Chromatography Techniques \u003cbr\u003e7.7 Spectroscopy Techniques \u003cbr\u003e7.8 Thermally Stimulated Depolarisation \u003cbr\u003e7.9 Wet Chemistry Techniques \u003cbr\u003e\u003cbr\u003e8. Surface Analysis of Thermosets \u003cbr\u003e8.1 X-Ray Photoelectron Spectroscopy (XPS) \u003cbr\u003e8.2 Laser Induced Mass Analysis (LIMA) \u003cbr\u003e8.3 Secondary Ion Mass Spectroscopy (SIMS) \u003cbr\u003e\u003cbr\u003e9. Failure Diagnosis \u003cbr\u003e9.1 Compositional Problems \u003cbr\u003e9.2 Heat Ageing \u003cbr\u003e9.3 Contamination Problems \u003cbr\u003e9.3.1 Solid Contaminants \u003cbr\u003e9.3.2 Liquid Contaminants \u003cbr\u003e9.4 Odor and Emissions Problems \u003cbr\u003e\u003cbr\u003e10.Conclusion\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest has worked in the Polymer Analysis Section at Rapra for fifteen years. He is currently a Principal Consultant, a position he has held for the past four years. He has experience in the analysis of a wide variety of polymers and polymer products using an extensive range of techniques. He is one of the main contacts at Rapra for consultancy and research projects that involve polymer analysis techniques and procedures."}
Colorimetry: Understan...
$180.00
{"id":11242222404,"title":"Colorimetry: Understanding the CIE System","handle":"978-0-470-04904-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed., J. Schanda \u003cbr\u003eISBN 978-0-470-04904-4 \u003cbr\u003e\u003cbr\u003epages 459, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eColorimetry: Understanding the CIE System summarizes and explains the standards of CIE colorimetry in one comprehensive source.\u003c\/li\u003e\n\u003cli\u003ePresents the material in a tutorial form, for easy understanding by students and engineers dealing with colorimetry.\u003c\/li\u003e\n\u003cli\u003eProvides an overview of the area of CIE colorimetry, including colorimetric principles, the historical background of colorimetric measurements, uncertainty analysis, open problems of colorimetry and their possible solutions, etc.\u003c\/li\u003e\n\u003cli\u003eIncludes several appendices, which provide a listing of CIE colorimetric tables as well as an annotated list of CIE publications.\u003c\/li\u003e\n\u003cli\u003eCommemorates the 75th anniversary of the CIE's System of Colorimetry.\u003c\/li\u003e\n\u003c\/ul\u003e\n \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003eContributors and Referees. \u003cbr\u003e\u003cb\u003ePart I: Historic Retrospection.\u003c\/b\u003e \u003cbr\u003e1. Translation of CIE 1931 Resolutions on Colorimetry (Translated by P. Bodrogi). \u003cbr\u003e2. Professor Wright’s Paper from the Golden Jubilee Book: The Historical and Experimental Background to the 1931 CIE System of Colorimetry (W. D. Wright). \u003cbr\u003e3. CIE Colorimetry (János Schanda). \u003cbr\u003e4. CIE Color Difference Metrics (Klaus Witt). \u003cbr\u003e5. Spectral Color Measurement (Yoshi Ohno). \u003cbr\u003e6. Tristimulus Color Measurement of Self-Luminous Sources (János Schanda, George Eppeldauer, and Georg Sauter). \u003cbr\u003e7. Color Management (Ján Morovic and Johan Lammens). \u003cbr\u003e8. Color Rendering of Light Sources (János Schanda). \u003cbr\u003e\u003cb\u003ePart III: Advances in Colorimetry.\u003c\/b\u003e \u003cbr\u003e9. Color-Matching Functions: Physiological Basis (Francoise Vienot and Pieter Walraven). \u003cbr\u003e10. Open Problems on the Validity of Grassmann's Laws (Michael H. Brill and Alan R. Robertson). \u003cbr\u003e11. CIE Color Appearance Models and Associated Color Spaces (M. Ronnier Luo and Changjun Li). \u003cbr\u003e12. Image Appearance Modeling (Garrett M. Johnson and Mark D. Fairchild). \u003cbr\u003e13. Spatial and Temporal Problems of Colorimetry (Eugenio Martinez–Uriegas). \u003cbr\u003e14. The Future of Colorimetry in the CIE (Robert W.G. Hunt). \u003cbr\u003e\u003cbr\u003eAppendix 1: Measurement Uncertainty (Georg Sauter). \u003cbr\u003e\u003cbr\u003eAppendix 2: Uncertainties in Spectral Color Measurement (James L. Gardner). \u003cbr\u003e\u003cbr\u003eAppendix 3: Use of CIE Colorimetry in the Pulp, Paper, and Textile Industries (Robert Hirschler and Joanne Zwinkels). \u003cbr\u003e\u003cbr\u003eAppendix 4: List of CIE Publications. \u003cbr\u003e\u003cbr\u003eGlossary. \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJanos Schanda, PhD, is Professor Emeritus of the University of Pannonia in Hungary, where he taught colorimetry and visual ergonomics. He headed the Department of Image Processing and Neurocomputing between 1996 and 2000, and served as secretary of the CIE. He is a member of the advisory boards of Color Research and Application, Lighting Research and Technology, Light and Engineering, and Journal of Light and Visual Environment","published_at":"2017-06-22T21:13:50-04:00","created_at":"2017-06-22T21:13:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","book","CIE","color","color difference","color-matching","colorimetry","light sources","measurement","p-testing","paper","polymer","pulp","self-luminous","spectral","textile"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378376196,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Colorimetry: Understanding the CIE System","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-04904-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-04904-4.jpg?v=1499211133"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-04904-4.jpg?v=1499211133","options":["Title"],"media":[{"alt":null,"id":353961246813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-04904-4.jpg?v=1499211133"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-04904-4.jpg?v=1499211133","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed., J. Schanda \u003cbr\u003eISBN 978-0-470-04904-4 \u003cbr\u003e\u003cbr\u003epages 459, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eColorimetry: Understanding the CIE System summarizes and explains the standards of CIE colorimetry in one comprehensive source.\u003c\/li\u003e\n\u003cli\u003ePresents the material in a tutorial form, for easy understanding by students and engineers dealing with colorimetry.\u003c\/li\u003e\n\u003cli\u003eProvides an overview of the area of CIE colorimetry, including colorimetric principles, the historical background of colorimetric measurements, uncertainty analysis, open problems of colorimetry and their possible solutions, etc.\u003c\/li\u003e\n\u003cli\u003eIncludes several appendices, which provide a listing of CIE colorimetric tables as well as an annotated list of CIE publications.\u003c\/li\u003e\n\u003cli\u003eCommemorates the 75th anniversary of the CIE's System of Colorimetry.\u003c\/li\u003e\n\u003c\/ul\u003e\n \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003eContributors and Referees. \u003cbr\u003e\u003cb\u003ePart I: Historic Retrospection.\u003c\/b\u003e \u003cbr\u003e1. Translation of CIE 1931 Resolutions on Colorimetry (Translated by P. Bodrogi). \u003cbr\u003e2. Professor Wright’s Paper from the Golden Jubilee Book: The Historical and Experimental Background to the 1931 CIE System of Colorimetry (W. D. Wright). \u003cbr\u003e3. CIE Colorimetry (János Schanda). \u003cbr\u003e4. CIE Color Difference Metrics (Klaus Witt). \u003cbr\u003e5. Spectral Color Measurement (Yoshi Ohno). \u003cbr\u003e6. Tristimulus Color Measurement of Self-Luminous Sources (János Schanda, George Eppeldauer, and Georg Sauter). \u003cbr\u003e7. Color Management (Ján Morovic and Johan Lammens). \u003cbr\u003e8. Color Rendering of Light Sources (János Schanda). \u003cbr\u003e\u003cb\u003ePart III: Advances in Colorimetry.\u003c\/b\u003e \u003cbr\u003e9. Color-Matching Functions: Physiological Basis (Francoise Vienot and Pieter Walraven). \u003cbr\u003e10. Open Problems on the Validity of Grassmann's Laws (Michael H. Brill and Alan R. Robertson). \u003cbr\u003e11. CIE Color Appearance Models and Associated Color Spaces (M. Ronnier Luo and Changjun Li). \u003cbr\u003e12. Image Appearance Modeling (Garrett M. Johnson and Mark D. Fairchild). \u003cbr\u003e13. Spatial and Temporal Problems of Colorimetry (Eugenio Martinez–Uriegas). \u003cbr\u003e14. The Future of Colorimetry in the CIE (Robert W.G. Hunt). \u003cbr\u003e\u003cbr\u003eAppendix 1: Measurement Uncertainty (Georg Sauter). \u003cbr\u003e\u003cbr\u003eAppendix 2: Uncertainties in Spectral Color Measurement (James L. Gardner). \u003cbr\u003e\u003cbr\u003eAppendix 3: Use of CIE Colorimetry in the Pulp, Paper, and Textile Industries (Robert Hirschler and Joanne Zwinkels). \u003cbr\u003e\u003cbr\u003eAppendix 4: List of CIE Publications. \u003cbr\u003e\u003cbr\u003eGlossary. \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJanos Schanda, PhD, is Professor Emeritus of the University of Pannonia in Hungary, where he taught colorimetry and visual ergonomics. He headed the Department of Image Processing and Neurocomputing between 1996 and 2000, and served as secretary of the CIE. He is a member of the advisory boards of Color Research and Application, Lighting Research and Technology, Light and Engineering, and Journal of Light and Visual Environment"}
Cure Assessment by Phy...
$72.00
{"id":11242255556,"title":"Cure Assessment by Physical and Chemical Techniques","handle":"978-1-85957-000-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: B.G. Willoughby \u003cbr\u003eISBN 978-1-85957-000-5 \u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e122 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCure process description is used for the review of the theory and implementation of a wide range of measuring techniques. Techniques include: modulus, hardness, viscosity \u0026amp; swelling, dielectric \u0026amp; ultrasonic techniques, IR, NMR, GC, DSC, and wet analytical techniques. There is also an index section of over 500 abstracts of relevant papers.","published_at":"2017-06-22T21:15:31-04:00","created_at":"2017-06-22T21:15:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","book","cure assessment","dielectric ultrasonic techniques","DSC","GC","hardness","IR","modulus","NMR","p-testing","polymer","polymers","viscosity swelling","wet analytical techniques"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378492804,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Cure Assessment by Physical and Chemical Techniques","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-000-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-000-5.jpg?v=1499212058"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-000-5.jpg?v=1499212058","options":["Title"],"media":[{"alt":null,"id":353967702109,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-000-5.jpg?v=1499212058"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-000-5.jpg?v=1499212058","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: B.G. Willoughby \u003cbr\u003eISBN 978-1-85957-000-5 \u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e122 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCure process description is used for the review of the theory and implementation of a wide range of measuring techniques. Techniques include: modulus, hardness, viscosity \u0026amp; swelling, dielectric \u0026amp; ultrasonic techniques, IR, NMR, GC, DSC, and wet analytical techniques. There is also an index section of over 500 abstracts of relevant papers."}
Cure Monitoring for Co...
$125.00
{"id":11242214596,"title":"Cure Monitoring for Composites and Adhesives","handle":"978-1-85957-393-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Mulligan, National Physical Laboratory \u003cbr\u003eISBN 978-1-85957-393-8 \u003cbr\u003e\u003cbr\u003epages 112\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCure monitoring techniques are used to improve the efficiency of processing, for quality assurance and to study the curing process. Such cure studies can prevent wastage due to failure of resin to react, use of incorrect proportions of resin components, poor mixing of resin, or incorrect processing conditions. This review focuses on in-line cure monitoring as a key way of optimising production. \u003cbr\u003e\u003cbr\u003eComposite manufacturing methods vary from labour intensive techniques such as hand lay-up to capital intensive techniques such as autoclaving. The basic curing process is the same in each case: the liquid resin first gels and then becomes a glassy solid. If the curing process carries on for too long, degradation of the material can occur. On the other hand, if it does not proceed for long enough or at too low a temperature, insufficient curing takes place and the material properties are inadequate. \u003cbr\u003e\u003cbr\u003eIt is critical that the material remains in a more fluid state during the initial stages so that it can be readily manipulated, for example, in mould filling. Thus it is useful to know when gelation occurs and viscosity increases. Property measurement is a basis of many key techniques for monitoring cure. As well as viscosity, the glass transition temperature increases with the degree of crosslinking of the material. It is important that whatever is measured as a degree of cure relates to the final properties and thus quality of the end material. \u003cbr\u003e\u003cbr\u003eDifficulties arise when cure is not uniform across a curing product. In this instance, some sections may be overcured and degrade whilst others are still undercured. This can typically happen when the curing reaction is strongly exothermic - local heat degrades the cured material. The solution is to undertake the main cure cycle using a relatively low temperature. This situation highlights the importance of good siting of cure monitoring sensors - a single location may not detect variations across a part. \u003cbr\u003e\u003cbr\u003eThe different methods used to monitor cure in-line are discussed in this review, from temperature measurement, through ultrasound, to fibre optics. Laboratory analysis is also briefly described, but the emphasis of this work is on practical application. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by over 300 abstracts from the Polymer Library database on cure monitoring of thermosets and adhesives. This allows the reader to study the subject in greater depth. The abstracts are fully indexed with both subject and\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Aims and Scope\u003cbr\u003e1.2 Cure of Composites and Adhesives\u003cbr\u003e1.3 Benefits of Cure Monitoring\u003cbr\u003e\u003cbr\u003e2 Techniques Monitoring Thermal Properties\u003cbr\u003e2.1 Temperature\u003cbr\u003e2.2 Thermal Conductivity\u003cbr\u003e\u003cbr\u003e3 Techniques Monitoring Mechanical Properties\u003cbr\u003e3.1 Ultrasonic\u003cbr\u003e3.2 Acoustic\u003cbr\u003e3.3 Fibre Optic\u003cbr\u003e3.3.1 Extrinsic Fabry-Pérot Sensor\u003cbr\u003e3.3.2 Fibre Bragg Grating Sensor\u003cbr\u003e3.4 Piezoelectric\u003cbr\u003e\u003cbr\u003e4 Techniques Monitoring Electrical Properties\u003cbr\u003e4.1 Electrical Techniques\u003cbr\u003e4.2 Dielectric Sensors\u003cbr\u003e4.3 Interpretation of Dielectric Data\u003cbr\u003e\u003cbr\u003e5 Techniques Monitoring Optical Properties\u003cbr\u003e5.1 Refractive Index\u003cbr\u003e5.2 Spectroscopic\u003cbr\u003e5.2.1 Infrared Spectroscopy\u003cbr\u003e5.2.2 Fluorescence\u003cbr\u003e5.2.3 Raman Spectroscopy\u003cbr\u003e5.2.4 Comparison of Optical Sensors\u003cbr\u003e\u003cbr\u003e6 Implementation of Cure Monitoring\u003cbr\u003e6.1 Process Modelling and Control\u003cbr\u003e6.2 Off-line Cure Assessment\u003cbr\u003e6.2.1 Physical Property Measurements\u003cbr\u003e6.2.2 Chemical Property Measurements\u003cbr\u003e6.2.3 Comparison of Off-line Techniques\u003cbr\u003e6.3 Quality Assurance\u003cbr\u003e6.4 Comparison of Techniques\u003cbr\u003e6.4.1 Technical Considerations\u003cbr\u003e6.4.2 Practical Considerations\u003cbr\u003e\u003cbr\u003e7 The Way Ahead for Cure Monitoring\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr David Mulligan is currently Project Manager in the Materials Centre of the National Physical Laboratory. His current work includes a Department of Trade and Industry sponsored study of 'Cure Monitoring for Shorter Cycle Times'. David holds a doctorate in structure-property relationships in short-fibre materials and has worked as an applications scientist in industry. \u003cbr\u003e\u003cbr\u003eNPL is a world leading centre in the development and application of highly accurate measurement techniques. As the UK's national standards laboratory, NPL underpins the national measurement system, ensuring consistency and traceability of measurements throughout the UK. Other areas of expertise include the design and characterisation of engineering materials, and mathematical software, especially its application to measurement and instrumentation","published_at":"2017-06-22T21:13:23-04:00","created_at":"2017-06-22T21:13:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","acoustic","adhesives","book","composites","electrical properties","extrinsic Fabry-Pérot sensor","Fibre Bragg grating sensor","fibre optic","mechanical properties","optical properties","p-testing","piezoelectric","polymer","thermal properties","ultrasonic"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378352964,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Cure Monitoring for Composites and Adhesives","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-393-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-393-8.jpg?v=1499212143"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-393-8.jpg?v=1499212143","options":["Title"],"media":[{"alt":null,"id":353967800413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-393-8.jpg?v=1499212143"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-393-8.jpg?v=1499212143","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Mulligan, National Physical Laboratory \u003cbr\u003eISBN 978-1-85957-393-8 \u003cbr\u003e\u003cbr\u003epages 112\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCure monitoring techniques are used to improve the efficiency of processing, for quality assurance and to study the curing process. Such cure studies can prevent wastage due to failure of resin to react, use of incorrect proportions of resin components, poor mixing of resin, or incorrect processing conditions. This review focuses on in-line cure monitoring as a key way of optimising production. \u003cbr\u003e\u003cbr\u003eComposite manufacturing methods vary from labour intensive techniques such as hand lay-up to capital intensive techniques such as autoclaving. The basic curing process is the same in each case: the liquid resin first gels and then becomes a glassy solid. If the curing process carries on for too long, degradation of the material can occur. On the other hand, if it does not proceed for long enough or at too low a temperature, insufficient curing takes place and the material properties are inadequate. \u003cbr\u003e\u003cbr\u003eIt is critical that the material remains in a more fluid state during the initial stages so that it can be readily manipulated, for example, in mould filling. Thus it is useful to know when gelation occurs and viscosity increases. Property measurement is a basis of many key techniques for monitoring cure. As well as viscosity, the glass transition temperature increases with the degree of crosslinking of the material. It is important that whatever is measured as a degree of cure relates to the final properties and thus quality of the end material. \u003cbr\u003e\u003cbr\u003eDifficulties arise when cure is not uniform across a curing product. In this instance, some sections may be overcured and degrade whilst others are still undercured. This can typically happen when the curing reaction is strongly exothermic - local heat degrades the cured material. The solution is to undertake the main cure cycle using a relatively low temperature. This situation highlights the importance of good siting of cure monitoring sensors - a single location may not detect variations across a part. \u003cbr\u003e\u003cbr\u003eThe different methods used to monitor cure in-line are discussed in this review, from temperature measurement, through ultrasound, to fibre optics. Laboratory analysis is also briefly described, but the emphasis of this work is on practical application. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by over 300 abstracts from the Polymer Library database on cure monitoring of thermosets and adhesives. This allows the reader to study the subject in greater depth. The abstracts are fully indexed with both subject and\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Aims and Scope\u003cbr\u003e1.2 Cure of Composites and Adhesives\u003cbr\u003e1.3 Benefits of Cure Monitoring\u003cbr\u003e\u003cbr\u003e2 Techniques Monitoring Thermal Properties\u003cbr\u003e2.1 Temperature\u003cbr\u003e2.2 Thermal Conductivity\u003cbr\u003e\u003cbr\u003e3 Techniques Monitoring Mechanical Properties\u003cbr\u003e3.1 Ultrasonic\u003cbr\u003e3.2 Acoustic\u003cbr\u003e3.3 Fibre Optic\u003cbr\u003e3.3.1 Extrinsic Fabry-Pérot Sensor\u003cbr\u003e3.3.2 Fibre Bragg Grating Sensor\u003cbr\u003e3.4 Piezoelectric\u003cbr\u003e\u003cbr\u003e4 Techniques Monitoring Electrical Properties\u003cbr\u003e4.1 Electrical Techniques\u003cbr\u003e4.2 Dielectric Sensors\u003cbr\u003e4.3 Interpretation of Dielectric Data\u003cbr\u003e\u003cbr\u003e5 Techniques Monitoring Optical Properties\u003cbr\u003e5.1 Refractive Index\u003cbr\u003e5.2 Spectroscopic\u003cbr\u003e5.2.1 Infrared Spectroscopy\u003cbr\u003e5.2.2 Fluorescence\u003cbr\u003e5.2.3 Raman Spectroscopy\u003cbr\u003e5.2.4 Comparison of Optical Sensors\u003cbr\u003e\u003cbr\u003e6 Implementation of Cure Monitoring\u003cbr\u003e6.1 Process Modelling and Control\u003cbr\u003e6.2 Off-line Cure Assessment\u003cbr\u003e6.2.1 Physical Property Measurements\u003cbr\u003e6.2.2 Chemical Property Measurements\u003cbr\u003e6.2.3 Comparison of Off-line Techniques\u003cbr\u003e6.3 Quality Assurance\u003cbr\u003e6.4 Comparison of Techniques\u003cbr\u003e6.4.1 Technical Considerations\u003cbr\u003e6.4.2 Practical Considerations\u003cbr\u003e\u003cbr\u003e7 The Way Ahead for Cure Monitoring\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr David Mulligan is currently Project Manager in the Materials Centre of the National Physical Laboratory. His current work includes a Department of Trade and Industry sponsored study of 'Cure Monitoring for Shorter Cycle Times'. David holds a doctorate in structure-property relationships in short-fibre materials and has worked as an applications scientist in industry. \u003cbr\u003e\u003cbr\u003eNPL is a world leading centre in the development and application of highly accurate measurement techniques. As the UK's national standards laboratory, NPL underpins the national measurement system, ensuring consistency and traceability of measurements throughout the UK. Other areas of expertise include the design and characterisation of engineering materials, and mathematical software, especially its application to measurement and instrumentation"}
Easy Identification of...
$125.00
{"id":11242227332,"title":"Easy Identification of Plastics and Rubbers","handle":"978-1-85957-268-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G.A.L. Verleye, N.P.G. Roeges and M.O. De Moor \u003cbr\u003eISBN 978-1-85957-268-9 \u003cbr\u003e\u003cbr\u003epages 174\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers are found in every aspect of our daily lives. Materials must be carefully selected to ensure that properties match performance requirements. \u003cbr\u003e\u003cbr\u003eIt is often necessary to understand the chemical nature of a material to determine whether it is suitable for a particular application. This book gives guidance on the simple identification of different polymeric materials. Flow charts describe a step-by-step approach to determining the chemical nature of an unknown specimen, starting with simple studies of behaviour on heating and ranging to preparing samples for infrared spectroscopy. The infrared spectra of standard polymers are included for reference. \u003cbr\u003e\u003cbr\u003eThe book contains sections on: \u003cbr\u003e-Test methods \u003cbr\u003e-Interpreting infrared spectra \u003cbr\u003e-Flow charts for the identification of unknown samples \u003cbr\u003e-Thermoplastics \u003cbr\u003e-Thermosets \u003cbr\u003e-Elastomers \u003cbr\u003eCharacteristics of individual polymeric materials are described, including chemical structures, behaviour in tests, common applications and trade names. The infrared spectrum for each polymer is included together with an interpretation of the peaks seen. \u003cbr\u003e\u003cbr\u003eThe authors of this book are experts in the field of polymer identification. Professor De Moor has been working in industrial organic chemistry since 1979. Noel Roeges has published a renowned book on the interpretation of infrared spectra of organic structures. Verleye Guenaelle is a chemical engineer working in the polymer industry. \u003cbr\u003e\u003cbr\u003ePolymer technologists, researchers, scientists, technicians, and students of polymer science will all find this a useful text. It is written in a very practical, easy to follow style. Undergraduate students tested the methodology, bringing samples from waste to identify in the laboratories.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e\u003cbr\u003e2. Tests for the Identification of Plastics and Rubbers\u003cbr\u003e2.1 Simple tests\u003cbr\u003e2.2 Recording an IR spectrum\u003cbr\u003e2.3 The identification flow charts \u003cbr\u003e\u003cbr\u003e3. Thermoplastics\u003cbr\u003e3.1 What is a thermoplastic?\u003cbr\u003e3.2 Thermoplastic homopolymers\u003cbr\u003e3.3 Thermoplastic copolymers\u003cbr\u003e3.4 Characteristics of individual thermoplastic materials \u003cbr\u003e\u003cbr\u003e4. Cellulose and Starch\u003cbr\u003e4.1 Introduction to biopolymers\u003cbr\u003e4.2 Characteristics of individual biopolymers \u003cbr\u003e5. Thermosets\u003cbr\u003e5.1 What is a thermoset?\u003cbr\u003e5.2 Sample preparation for recording an IR-spectrum\u003cbr\u003e5.3 Thermoset materials\u003cbr\u003e5.4 Characteristics of individual thermoset materials \u003cbr\u003e\u003cbr\u003e6. Elastomers\u003cbr\u003e6.1 What is an elastomer?\u003cbr\u003e6.2 Recording an IR-spectrum\u003cbr\u003e6.3 The Burchfield colour reaction\u003cbr\u003e6.4 The Liebermann-Storch-Morawski reaction\u003cbr\u003e6.5 Elastomeric materials\u003cbr\u003e6.6 Characteristics of individual elastomers\u003cbr\u003e\u003cbr\u003e7. Chemical Products Required \u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Organic solvents and reagents\u003cbr\u003e7.3 Inorganic products, acids and bases\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.","published_at":"2017-06-22T21:14:04-04:00","created_at":"2017-06-22T21:14:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","acids","bases","biopolymers","book","cellulose","elastomers","flow charts","health","IR spectrum","p-testing","plastics","polymer","rubber","safety","solvents","starch","thermoplastic","toxicity"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394820,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Easy Identification of Plastics and Rubbers","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-268-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-268-9.jpg?v=1499281031"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-268-9.jpg?v=1499281031","options":["Title"],"media":[{"alt":null,"id":354453684317,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-268-9.jpg?v=1499281031"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-268-9.jpg?v=1499281031","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G.A.L. Verleye, N.P.G. Roeges and M.O. De Moor \u003cbr\u003eISBN 978-1-85957-268-9 \u003cbr\u003e\u003cbr\u003epages 174\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers are found in every aspect of our daily lives. Materials must be carefully selected to ensure that properties match performance requirements. \u003cbr\u003e\u003cbr\u003eIt is often necessary to understand the chemical nature of a material to determine whether it is suitable for a particular application. This book gives guidance on the simple identification of different polymeric materials. Flow charts describe a step-by-step approach to determining the chemical nature of an unknown specimen, starting with simple studies of behaviour on heating and ranging to preparing samples for infrared spectroscopy. The infrared spectra of standard polymers are included for reference. \u003cbr\u003e\u003cbr\u003eThe book contains sections on: \u003cbr\u003e-Test methods \u003cbr\u003e-Interpreting infrared spectra \u003cbr\u003e-Flow charts for the identification of unknown samples \u003cbr\u003e-Thermoplastics \u003cbr\u003e-Thermosets \u003cbr\u003e-Elastomers \u003cbr\u003eCharacteristics of individual polymeric materials are described, including chemical structures, behaviour in tests, common applications and trade names. The infrared spectrum for each polymer is included together with an interpretation of the peaks seen. \u003cbr\u003e\u003cbr\u003eThe authors of this book are experts in the field of polymer identification. Professor De Moor has been working in industrial organic chemistry since 1979. Noel Roeges has published a renowned book on the interpretation of infrared spectra of organic structures. Verleye Guenaelle is a chemical engineer working in the polymer industry. \u003cbr\u003e\u003cbr\u003ePolymer technologists, researchers, scientists, technicians, and students of polymer science will all find this a useful text. It is written in a very practical, easy to follow style. Undergraduate students tested the methodology, bringing samples from waste to identify in the laboratories.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e\u003cbr\u003e2. Tests for the Identification of Plastics and Rubbers\u003cbr\u003e2.1 Simple tests\u003cbr\u003e2.2 Recording an IR spectrum\u003cbr\u003e2.3 The identification flow charts \u003cbr\u003e\u003cbr\u003e3. Thermoplastics\u003cbr\u003e3.1 What is a thermoplastic?\u003cbr\u003e3.2 Thermoplastic homopolymers\u003cbr\u003e3.3 Thermoplastic copolymers\u003cbr\u003e3.4 Characteristics of individual thermoplastic materials \u003cbr\u003e\u003cbr\u003e4. Cellulose and Starch\u003cbr\u003e4.1 Introduction to biopolymers\u003cbr\u003e4.2 Characteristics of individual biopolymers \u003cbr\u003e5. Thermosets\u003cbr\u003e5.1 What is a thermoset?\u003cbr\u003e5.2 Sample preparation for recording an IR-spectrum\u003cbr\u003e5.3 Thermoset materials\u003cbr\u003e5.4 Characteristics of individual thermoset materials \u003cbr\u003e\u003cbr\u003e6. Elastomers\u003cbr\u003e6.1 What is an elastomer?\u003cbr\u003e6.2 Recording an IR-spectrum\u003cbr\u003e6.3 The Burchfield colour reaction\u003cbr\u003e6.4 The Liebermann-Storch-Morawski reaction\u003cbr\u003e6.5 Elastomeric materials\u003cbr\u003e6.6 Characteristics of individual elastomers\u003cbr\u003e\u003cbr\u003e7. Chemical Products Required \u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Organic solvents and reagents\u003cbr\u003e7.3 Inorganic products, acids and bases\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees."}
Encyclopedia of Polyme...
$350.00
{"id":8325682987165,"title":"Encyclopedia of Polymer Degradation","handle":"encyclopedia-of-polymer-degradation","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-048-4\u003cbr\u003e\u003cbr\u003eHard copy\u003cbr\u003ePages 240+viii\u003cbr\u003ePublished: Jan 2025\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"p1\"\u003eThe Encyclopedia takes a different approach to analyzing the effects of degradants on the degradation of materials as compared to the classical methods commonly used in weathering studies. Here are the key points:\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eLimitations of Typical Weathering Studies:\u003c\/strong\u003e Conventional weathering studies often take place in natural outdoor environments where weathering parameters are not controlled. This lack of control makes it difficult to separate and understand the individual effects of different degradants on the material. Moreover, exposure sites may be in locations that do not fully represent real-life performance (e.g., no exposure to certain degradants found in urban environments). The resulting sample condition after exposure depends on the combined effects of multiple degradants, and it is hard to repeat or precisely measure all these effects. Also, in many cases, samples are too contaminated to be studied by instrumental methods.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eChallenges in Laboratory Weathering Studies: \u003c\/strong\u003eWeathering studies conducted in laboratory equipment often control specific factors such as UV energy, humidity, artificial rain, and temperature during exposure. However, the studied samples are still exposed to a combination of degradants, making it challenging to isolate the partial effects of individual degradants. The typical approach involves grading damage vs. duration and analyzing composition changes vs. duration of exposure, which does not provide a complete understanding of the mechanisms and interactions among different degradants.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eImportance of Understanding Degradation Mechanisms: \u003c\/strong\u003eTo effectively use different polymeric materials, it is essential to understand the specific mechanisms caused by different degradants. This understanding permits the selection of the most resistant materials for specific applications and the development of effective stabilization strategies to protect materials against degradation. Degradation and stabilization should be described through chemical equations to identify the specific reactions involved and their sequence.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eEncyclopedia's Approach: \u003c\/strong\u003eThe book aims to compile research results for the most important and commonly used polymers. The focus is on identifying the unitary degradative chemical reactions, including the fate of products resulting from primary degradation, which can influence further degradation mechanisms and rates. Based on these data, the book proposes potential mechanisms of reactions (chemical descriptions of the sequence of events) for each degradation mode.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eTransition to Knowledge-Based Utilization:\u003c\/strong\u003e While complete answers may be difficult to provide, the book recognizes the need to start with available data. By shifting from comparative methods to knowledge-based utilization of existing resources, the book aims to facilitate more effective prevention of waste and environmental pollution caused by material failures.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003eIn summary, the book aims to provide a more comprehensive and mechanistic understanding of material degradation caused by various degradants, helping researchers and professionals select suitable materials and develop effective strategies to prevent degradation and environmental pollution.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction. Outdoor stability of materials (life expectance)\u003cbr\u003e2 Testing according to standards. Methods of exposure\u003cbr\u003e3 Testing according to standards. Stability measures\u003cbr\u003e4 Real-life material damage. Typical examples\u003cbr\u003e5 Examples of a combination of degradants for some real materials (encountered degrading\u003cbr\u003e environments, typical polymers used for production, and examples of performance)\u003cbr\u003e5.1 Adhesives and sealants\u003cbr\u003e5.2 Aerospace\u003cbr\u003e5.3 Automotive coatings\u003cbr\u003e5.4 Composites\u003cbr\u003e5.5 Geosynthetics\u003cbr\u003e5.6 Paints and coatings\u003cbr\u003e5.7 Roofing\u003cbr\u003e5.8 Solar cells and collectors\u003cbr\u003e5.9 Textiles\u003cbr\u003e5.10 Wood\u003cbr\u003e6 Polymer degradation. Available data (important data characterizing each polymer, reactions of degradation caused by any degradant known for this particular polymer, sequence of events which is known to be part of degradation mechanism for each degradant affecting polymer, and the major results illustrating mechanisms of degradation, products of degradation, and results of testing.)\u003cbr\u003e6.1 Acrylic resins\u003cbr\u003e6.2 Cellulose \u003cbr\u003e6.3 Epoxy resins\u003cbr\u003e6.4 Ethylene-propylene diene monomer, EPDM\u003cbr\u003e6.5 Fluorinated ethylene-propylene copolymer, FEP\u003cbr\u003e6.6 Polybutadiene\u003cbr\u003e6.7 Polycarbonate\u003cbr\u003e6.8 Polydimethylsiloxane\u003cbr\u003e6.9 Polyethylene\u003cbr\u003e6.10 Poly(ethylene terephthalate)\u003cbr\u003e6.11 Poly(lactic acid)\u003cbr\u003e6.12 Polymethylmethacrylate\u003cbr\u003e6.13 Polyoxymethylene\u003cbr\u003e6.14 Polypropylene\u003cbr\u003e6.15 Polystyrene\u003cbr\u003e6.16 Polytetrafluorethylene\u003cbr\u003e6.17 Polyurethane\u003cbr\u003e6.18 Polyvinylchloride\u003cbr\u003e6.19 Poly(vinylidene chloride)\u003cbr\u003e6.20 Rubber\u003cbr\u003e7 General testing requirements\u003cbr\u003e7.1 What to test\u003cbr\u003e7.2 Methods of study of deterioration rate\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003c\/p\u003e","published_at":"2024-06-12T09:31:49-04:00","created_at":"2024-06-12T09:06:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2025","additives","book","chromatography","extraction techniques","latex polymers","mass spectrometry","monomers","natural synthetic","new","p-testing","plasticisers","plastics","polymer","polymers","rubbers","scanning calorimetry","spectroscopy","stabilisers","testing"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45528543592605,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":null,"requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Encyclopedia of Polymer Degradation","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-048-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/files\/9781774670484-Case02.jpg?v=1718198209"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670484-Case02.jpg?v=1718198209","options":["Title"],"media":[{"alt":null,"id":29565439672477,"position":1,"preview_image":{"aspect_ratio":0.649,"height":450,"width":292,"src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670484-Case02.jpg?v=1718198209"},"aspect_ratio":0.649,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670484-Case02.jpg?v=1718198209","width":292}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-048-4\u003cbr\u003e\u003cbr\u003eHard copy\u003cbr\u003ePages 240+viii\u003cbr\u003ePublished: Jan 2025\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"p1\"\u003eThe Encyclopedia takes a different approach to analyzing the effects of degradants on the degradation of materials as compared to the classical methods commonly used in weathering studies. Here are the key points:\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eLimitations of Typical Weathering Studies:\u003c\/strong\u003e Conventional weathering studies often take place in natural outdoor environments where weathering parameters are not controlled. This lack of control makes it difficult to separate and understand the individual effects of different degradants on the material. Moreover, exposure sites may be in locations that do not fully represent real-life performance (e.g., no exposure to certain degradants found in urban environments). The resulting sample condition after exposure depends on the combined effects of multiple degradants, and it is hard to repeat or precisely measure all these effects. Also, in many cases, samples are too contaminated to be studied by instrumental methods.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eChallenges in Laboratory Weathering Studies: \u003c\/strong\u003eWeathering studies conducted in laboratory equipment often control specific factors such as UV energy, humidity, artificial rain, and temperature during exposure. However, the studied samples are still exposed to a combination of degradants, making it challenging to isolate the partial effects of individual degradants. The typical approach involves grading damage vs. duration and analyzing composition changes vs. duration of exposure, which does not provide a complete understanding of the mechanisms and interactions among different degradants.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eImportance of Understanding Degradation Mechanisms: \u003c\/strong\u003eTo effectively use different polymeric materials, it is essential to understand the specific mechanisms caused by different degradants. This understanding permits the selection of the most resistant materials for specific applications and the development of effective stabilization strategies to protect materials against degradation. Degradation and stabilization should be described through chemical equations to identify the specific reactions involved and their sequence.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eEncyclopedia's Approach: \u003c\/strong\u003eThe book aims to compile research results for the most important and commonly used polymers. The focus is on identifying the unitary degradative chemical reactions, including the fate of products resulting from primary degradation, which can influence further degradation mechanisms and rates. Based on these data, the book proposes potential mechanisms of reactions (chemical descriptions of the sequence of events) for each degradation mode.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003e\u003cstrong\u003eTransition to Knowledge-Based Utilization:\u003c\/strong\u003e While complete answers may be difficult to provide, the book recognizes the need to start with available data. By shifting from comparative methods to knowledge-based utilization of existing resources, the book aims to facilitate more effective prevention of waste and environmental pollution caused by material failures.\u003c\/p\u003e\n\u003cp class=\"p1\"\u003eIn summary, the book aims to provide a more comprehensive and mechanistic understanding of material degradation caused by various degradants, helping researchers and professionals select suitable materials and develop effective strategies to prevent degradation and environmental pollution.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction. Outdoor stability of materials (life expectance)\u003cbr\u003e2 Testing according to standards. Methods of exposure\u003cbr\u003e3 Testing according to standards. Stability measures\u003cbr\u003e4 Real-life material damage. Typical examples\u003cbr\u003e5 Examples of a combination of degradants for some real materials (encountered degrading\u003cbr\u003e environments, typical polymers used for production, and examples of performance)\u003cbr\u003e5.1 Adhesives and sealants\u003cbr\u003e5.2 Aerospace\u003cbr\u003e5.3 Automotive coatings\u003cbr\u003e5.4 Composites\u003cbr\u003e5.5 Geosynthetics\u003cbr\u003e5.6 Paints and coatings\u003cbr\u003e5.7 Roofing\u003cbr\u003e5.8 Solar cells and collectors\u003cbr\u003e5.9 Textiles\u003cbr\u003e5.10 Wood\u003cbr\u003e6 Polymer degradation. Available data (important data characterizing each polymer, reactions of degradation caused by any degradant known for this particular polymer, sequence of events which is known to be part of degradation mechanism for each degradant affecting polymer, and the major results illustrating mechanisms of degradation, products of degradation, and results of testing.)\u003cbr\u003e6.1 Acrylic resins\u003cbr\u003e6.2 Cellulose \u003cbr\u003e6.3 Epoxy resins\u003cbr\u003e6.4 Ethylene-propylene diene monomer, EPDM\u003cbr\u003e6.5 Fluorinated ethylene-propylene copolymer, FEP\u003cbr\u003e6.6 Polybutadiene\u003cbr\u003e6.7 Polycarbonate\u003cbr\u003e6.8 Polydimethylsiloxane\u003cbr\u003e6.9 Polyethylene\u003cbr\u003e6.10 Poly(ethylene terephthalate)\u003cbr\u003e6.11 Poly(lactic acid)\u003cbr\u003e6.12 Polymethylmethacrylate\u003cbr\u003e6.13 Polyoxymethylene\u003cbr\u003e6.14 Polypropylene\u003cbr\u003e6.15 Polystyrene\u003cbr\u003e6.16 Polytetrafluorethylene\u003cbr\u003e6.17 Polyurethane\u003cbr\u003e6.18 Polyvinylchloride\u003cbr\u003e6.19 Poly(vinylidene chloride)\u003cbr\u003e6.20 Rubber\u003cbr\u003e7 General testing requirements\u003cbr\u003e7.1 What to test\u003cbr\u003e7.2 Methods of study of deterioration rate\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003c\/p\u003e"}
Handbook of Material W...
$300.00
{"id":11242219780,"title":"Handbook of Material Weathering, 5th Edition","handle":"978-1-895198-62-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-62-1 \u003cbr\u003e\u003cbr\u003e5th Edition\u003cbr\u003ePages: 826\u003cbr\u003eFigures: 795\u003cbr\u003eTables: 64\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 5th edition of Handbook of Material Weathering contains systematic updates of knowledge generated in more than last 25 years when the 1st edition was prepared. \u003cbr\u003e\u003cbr\u003eThe information required for professional use has been growing so rapidly that additional books had to be written to accommodate essential knowledge for implementation in technological processes used to manufacture products, which deteriorate on exposure to weathering stress factors.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThis edition contains 20 chapters, which can be divided into the following groups:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Theory (photophysics and photochemistry)\u003cbr\u003e\u003cbr\u003e• Stress factors (parameters of exposure, measurements in assessment of weathering conditions, and climatic conditions)\u003cbr\u003e\u003cbr\u003e• Methods of weathering (laboratory degradation studies, weathering cycles, sample preparation, weathering data interpretation, lifetime prediction, and artificial weathering versus natural exposure)\u003cbr\u003e\u003cbr\u003e• Methods of testing of weathered samples (effect of weathering on material properties and testing methods of weathered specimens)\u003cbr\u003e\u003cbr\u003e• Weathering of polymers (data on 52 most important polymers, including mechanisms of degradation, effect of thermal history, characteristic changes in properties with graphical illustrations, and tables with numerical data)\u003cbr\u003e\u003cbr\u003e• Weathering of products (data on 42 groups of industrial products, including their required durability, lifetime expectation, relevant degradation mechanisms, and characteristic changes with graphical illustrations)\u003cbr\u003e\u003cbr\u003e• Effect of additives on weathering (12 groups of additives are discussed)\u003cbr\u003e\u003cbr\u003e• Effect of environmental stress cracking (parameters controlling ESC, mechanisms, methods of testing, and effect on materials)\u003cbr\u003e\u003cbr\u003e• Specific topics (suitability of weathered materials for recycling, interrelation between corrosion and weathering, and methods of study and prevention of deterioration of historical monuments made out of stone)\u003cbr\u003e\u003cbr\u003eThe above information is based on the thorough review of published papers, patents, and other relevant sources updated to the most recent data and information.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eIn addition to this book, 3 additional volumes contain supplementary information:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by Falkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThe first two books contain information relevant for protection of materials against biological and environmental stress factors. The Atlas of Material Damage has focus on structure and morphology of commercial materials and methods of damage prevention by tailoring morphology.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis set of monographic sources was prepared for research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products, and students who want to apply their knowledge to real materials. The books are invaluable for regulating agencies and patent and litigating attorneys. \u003cbr\u003e\u003cbr\u003eHandbook of Material Weathering is now used in about 100 countries, although frequently old editions (as seen from citations) are still in use, which do not contain up-to-date information. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe first edition of this book was published by ChemTec Publishing in 1990. The book had 18 chapters and 518 pages filled with the most up-to-date information on the subject of material weathering available in 1990.\u003cbr\u003e\u003cbr\u003eConsidering the size of the book and typesetting, the present edition is at least 3 times larger, in spite of the fact that two chapters were omitted from the fourth edition: Chapter 17. Stabilization and Stabilizers and Chapter 18. Biodegradation. Even without these two chapters the present 5th edition is larger than the previous edition. The reason is quite obvious − the field is systematically growing with new data, methods, and discoveries happening every day.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe reasons for eliminating the two chapters are as follows:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• If these two chapters would still be included in the book, the book would need to have two volumes which makes a book more difficult to use (separate table of contents and indices).\u003cbr\u003e\u003cbr\u003e• In anticipation of the need for specialized monographic sources, the two chapters mentioned above were not updated in the previous edition, so information was already lacking novelty.\u003cbr\u003e\u003cbr\u003e• Short chapters can only present brief review of the subject, whereas in applications detailed information is needed\u003cbr\u003e\u003cbr\u003e• Two handbooks were published by ChemTec Publishing on the subjects of the omitted chapters:\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by \u003cbr\u003e\u003cbr\u003eFalkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eThese two books give much broader and comprehensive information, such as it is required today, especially considering rapid changes which occurred recently because of health and safety concerns (biostabilization) and new discoveries (UV stabilization).\u003cbr\u003e\u003cbr\u003eIn addition, to present volume and the above two books, there is also a new book:\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThis book was written to emphasize importance of the material structure in photodegradation and photostabilization and also to account for the morphological changes which occur when materials degrade. This addition makes narrative of material degradation more comprehensive, showing new ways to deal with unstable materials.\u003cbr\u003e\u003cbr\u003eI hope that the information provided in these four books will help readers to advance their studies on particular subjects of their research and that the results of these studies will be implemented in the future editions of these books, since we try to report current developments to foster future discoveries. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Photophysics \u003cbr\u003e1.1 Nature of radiation \u003cbr\u003e1.1.1 Radiative energy \u003cbr\u003e1.1.2 Radiation intensity \u003cbr\u003e1.1.3 Radiation incidence \u003cbr\u003e1.2 Absorption of radiation by materials \u003cbr\u003e1.2.1 General principles \u003cbr\u003e1.3 Fate and utilization of absorbed energy \u003cbr\u003e1.3.1 Deactivation \u003cbr\u003e1.3.2 Intramolecular energy transfer \u003cbr\u003e1.3.3 Intermolecular energy transfer \u003cbr\u003e1.3.4 Luminescence \u003cbr\u003e1.4 Radiative processes involving dimers \u003cbr\u003e1.5 Modeling and photophysical data \u003cbr\u003eReferences \u003cbr\u003e2 Photochemistry \u003cbr\u003e2.1 Typical routes of photochemical reactions \u003cbr\u003e2.1.1 Photodissociation \u003cbr\u003e2.1.2 Photooxidation \u003cbr\u003e2.1.3 Peroxide and hydroperoxide conversions \u003cbr\u003e2.1.4 Norrish type I and II reactions \u003cbr\u003e2.1.5 Photo-Fries rearrangement \u003cbr\u003e2.1.6 Photo-Fenton \u003cbr\u003e2.1.7 Photosubstitution \u003cbr\u003e2.1.8 Photoaddition \u003cbr\u003e2.1.9 Photoelimination \u003cbr\u003e2.1.10 Photodimerization \u003cbr\u003e2.1.11 Photocondensation \u003cbr\u003e2.1.12 Photoisomerization \u003cbr\u003e2.2 Photochemical reactivity and quantum yield \u003cbr\u003e2.3 Excitation of excited state \u003cbr\u003e2.4 Parameters of photochemical reactions \u003cbr\u003e2.6 Quenchers and photosensitizers \u003cbr\u003eReferences \u003cbr\u003e3 Parameters of Exposure \u003cbr\u003e3.1 Radiation \u003cbr\u003e3.1.1 The source \u003cbr\u003e3.1.2 Solar radiative emission \u003cbr\u003e3.1.3 Effect of orbital variations on energy supply \u003cbr\u003e3.1.4 Interplanetary and near Earth space \u003cbr\u003e3.1.5 Stratosphere \u003cbr\u003e3.1.6 Troposphere \u003cbr\u003e3.2 Temperature \u003cbr\u003e3.3 Water \u003cbr\u003e3.4 Atmosphere composition \u003cbr\u003e3.5 Pollutants \u003cbr\u003e3.5.1 Nitrogen compounds \u003cbr\u003e3.5.2 Oxygen species \u003cbr\u003e3.5.3 Hydrogen species \u003cbr\u003e3.5.4 Carbon oxides \u003cbr\u003e3.5.5 Sulfur-containing components \u003cbr\u003e3.5.6 Chlorine-containing components \u003cbr\u003e3.5.7 Particulate materials \u003cbr\u003e3.6 Biological substances \u003cbr\u003e3.7 Water pollutants \u003cbr\u003e3.8 Stress \u003cbr\u003e3.7 Cooperative action of different parameters \u003cbr\u003eReferences \u003cbr\u003e4 Measurements in Assessment of Weathering Conditions \u003cbr\u003e4.1 Radiation \u003cbr\u003e4.1.1 Measuring equipment and methods of measurement \u003cbr\u003e4.1.2 Standards \u003cbr\u003e4.2 Sunshine duration \u003cbr\u003e4.3 Temperature \u003cbr\u003e4.4 Relative humidity \u003cbr\u003e4.5 Time of wetness \u003cbr\u003e4.5 Rain \u003cbr\u003e4.6 Pollutants \u003cbr\u003e4.6.1 Carbon dioxide \u003cbr\u003e4.6.2 Particulate matter \u003cbr\u003e4.6.3 Sulfur dioxide \u003cbr\u003e4.6.4 Nitrogen oxides \u003cbr\u003e4.6.5 Carbon monoxide \u003cbr\u003e4.6.6 Ozone \u003cbr\u003eReferences \u003cbr\u003e5 Climatic Conditions \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Radiation \u003cbr\u003e5.3 Sunshine duration \u003cbr\u003e5.4 Temperature \u003cbr\u003e5.5 Precipitation \u003cbr\u003e5.6 Relative humidity \u003cbr\u003e5.7 Wetness time \u003cbr\u003e5.8 Pollutants \u003cbr\u003e5.9 Surface soiling \u003cbr\u003eReferences \u003cbr\u003e6 Methods of Outdoor Exposure \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Climatic conditions and degradation rate \u003cbr\u003e6.3 Variability of weather conditions and its impact on the strategy in outdoor \u003cbr\u003eexposures \u003cbr\u003e6.4 Influence of specimen properties \u003cbr\u003e6.5 Typical methods of outdoor exposure \u003cbr\u003e6.5.1 Exposure sites \u003cbr\u003e6.5.2 Exposure racks \u003cbr\u003e6.5.3 Exposure of products and components \u003cbr\u003e6.6 Other parameters of exposure \u003cbr\u003e6.7 Relevant standards \u003cbr\u003eReferences \u003cbr\u003e7 Laboratory Degradation Studies \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Light sources \u003cbr\u003e7.3 Filters \u003cbr\u003e7.4 Radiation: delivery, monitoring and control \u003cbr\u003e7.5 Temperature control \u003cbr\u003e7.6 Humidity control \u003cbr\u003e7.7 Specimen spraying \u003cbr\u003e7.8 Specimen racks and holders \u003cbr\u003e7.9 Weathering equipment \u003cbr\u003e7.10 Correlation between different devices \u003cbr\u003e7.11 Pollutants \u003cbr\u003e7.12 Precision of studies \u003cbr\u003eReferences \u003cbr\u003e8 Weathering Cycles \u003cbr\u003eReferences \u003cbr\u003e9 Sample Preparation \u003cbr\u003eReferences \u003cbr\u003e10 Weathering Data Interpretation. Lifetime Prediction \u003cbr\u003eReferences \u003cbr\u003e11 Artificial Weathering Versus Natural Exposure \u003cbr\u003eReferences \u003cbr\u003e12 Effect of Weathering on Material Properties \u003cbr\u003e12.1 Mass loss \u003cbr\u003e12.2 Depth of degradation \u003cbr\u003e12.3 Mechanical properties \u003cbr\u003e12.4 Changes of color and optical properties \u003cbr\u003e12.5 Surface changes \u003cbr\u003e12.6 Molecular weight \u003cbr\u003e12.7 Chemical composition of surface and bulk \u003cbr\u003e12.8 Morphology and structure of surface layers \u003cbr\u003e12.9 Glass transition temperature \u003cbr\u003e12.10 Self-healing \u003cbr\u003eReferences \u003cbr\u003e13 Testing Methods of Weathered Specimen \u003cbr\u003e13.1 Visual evaluation \u003cbr\u003e13.2 Microscopy \u003cbr\u003e13.3 Imaging techniques \u003cbr\u003e13.4 Gloss \u003cbr\u003e13.5 Color changes \u003cbr\u003e13.6 Visible spectrophotometry \u003cbr\u003e13.7 UV spectrophotometry \u003cbr\u003e13.8 Infrared spectrophotometry \u003cbr\u003e13.9 Near infrared spectroscopy \u003cbr\u003e13.10 Raman spectroscopy \u003cbr\u003e13.11 Nuclear magnetic resonance \u003cbr\u003e13.12 Electron spin resonance \u003cbr\u003e13.13 Mass spectrometry \u003cbr\u003e13.14 Positron annihilation lifetime spectroscopy \u003cbr\u003e13.15 Chemiluminescence, fluorescence, and phosphorescence \u003cbr\u003e13.16 Atomic absorption spectroscopy \u003cbr\u003e13.17 WAXS and SAXS \u003cbr\u003e13.18 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e13.19 X-ray microtomography \u003cbr\u003e13.20 Mass change \u003cbr\u003e13.21 Density \u003cbr\u003e13.22 Contact angle \u003cbr\u003e13.23 Diffusion of gases and water transport in polymer \u003cbr\u003e13.24 Electrical properties \u003cbr\u003e13.25 Ultrasonic measurements \u003cbr\u003e13.26 Thermal analysis \u003cbr\u003e13.27 Rheological properties of materials \u003cbr\u003e13.28 Other physical parameters \u003cbr\u003e13.29 Tensile strength \u003cbr\u003e13.30 Elongation \u003cbr\u003e13.31 Flexural strength \u003cbr\u003e13.32 Impact strength \u003cbr\u003e13.33 Creep and constant strain tests \u003cbr\u003e13.34 Residual stress \u003cbr\u003e13.35 Scratch and mar resistance \u003cbr\u003e13.36 Other mechanical properties \u003cbr\u003e13.37 Surface roughness \u003cbr\u003e13.38 Molecular weight \u003cbr\u003e13.39 Gas and liquid chromatography \u003cbr\u003e13.40 Titrimetry \u003cbr\u003e13.41 Dehydrochlorination rate \u003cbr\u003e13.42 Gel fraction \u003cbr\u003e13.43 Oxygen uptake \u003cbr\u003e13.44 Water absorption, porosity \u003cbr\u003e13.45 Microorganism growth test \u003cbr\u003e13.46 Environmental stress cracking resistance \u003cbr\u003eReferences \u003cbr\u003e14 Data on Specific Polymers \u003cbr\u003e14.1 Acrylonitrile butadiene styrene, ABS \u003cbr\u003e14.2 Acrylonitrile styrene acrylate, ASA \u003cbr\u003e14.3 Alkyd resins \u003cbr\u003e14.4 Acrylic resins \u003cbr\u003e14.5 Cellulose \u003cbr\u003e14.6 Chitosan \u003cbr\u003e14.7 Epoxy resins \u003cbr\u003e14.8 Ethylene propylene rubber, EPR \u003cbr\u003e14.9 Ethylene vinyl acetate copolymer, EVAc \u003cbr\u003e14.10 Ethylene propylene diene monomer, EPDM \u003cbr\u003e14.11 Fluoropolymers \u003cbr\u003e14.12 Melamine resins \u003cbr\u003e14.13 Phenoxy resins \u003cbr\u003e14.14 Polyacrylamide \u003cbr\u003e14.15 Polyacrylonitrile \u003cbr\u003e14.16 Polyamides \u003cbr\u003e14.17 Polyaniline \u003cbr\u003e14.18 Polycarbonates \u003cbr\u003e14.19 Polyesters \u003cbr\u003e14.20 Polyethylene \u003cbr\u003e14.21 Polyethylene, chlorinated \u003cbr\u003e14.22 Poly(ethylene glycol) \u003cbr\u003e14.23 Polyfluorene \u003cbr\u003e14.24 Polyimides \u003cbr\u003e14.25 Poly(lactic acid) \u003cbr\u003e14.26 Polymethylmethacrylate \u003cbr\u003e14.27 Polyoxyethylene \u003cbr\u003e14.28 Polyoxymethylene \u003cbr\u003e14.29 Poly(phenylene oxide) \u003cbr\u003e14.30 Poly(phenylene sulfide) \u003cbr\u003e14.31 Poly(p-phenylene terephthalamide) \u003cbr\u003e14.32 Poly(p-phenylene vinylene) \u003cbr\u003e14.33 Polypropylene \u003cbr\u003e14.34 Polystyrenes \u003cbr\u003e14.35 Polysulfones \u003cbr\u003e14.36 Polytetrafluoroethylene \u003cbr\u003e14.37 Polythiophene \u003cbr\u003e14.38 Polyurethanes \u003cbr\u003e14.39 Polyvinylalcohol \u003cbr\u003e14.40 Polyvinylchloride \u003cbr\u003e14.41 Poly(vinylidene fluoride \u003cbr\u003e14.42 Poly(vinyl methyl ether) \u003cbr\u003e14.43 Styrene acrylonitrile copolymer \u003cbr\u003e14.44 Silicones \u003cbr\u003e14.45 Polymer blends \u003cbr\u003e14.46 Rubbers \u003cbr\u003e14.46.1 Natural rubber \u003cbr\u003e14.46.1 Polybutadiene \u003cbr\u003e14.46.2 Polychloroprene \u003cbr\u003e14.46.3 Polyisoprene \u003cbr\u003e14.46.4 Polyisobutylene \u003cbr\u003e14.46.5 Styrene butadiene rubber \u003cbr\u003e14.46.6 Styrene butadiene styrene rubber \u003cbr\u003eReferences \u003cbr\u003e15 Effect of Additives on Weathering \u003cbr\u003e15.1 Fillers and reinforcing fibers \u003cbr\u003e15.2 Pigments \u003cbr\u003e15.3 Plasticizers \u003cbr\u003e15.4 Solvents and diluents \u003cbr\u003e15.5 Flame retardants \u003cbr\u003e15.6 Impact modifiers \u003cbr\u003e15.7 Thermal stabilizers \u003cbr\u003e15.8 Antioxidants \u003cbr\u003e15.9 Antimicrobial additives \u003cbr\u003e15.10 Curatives, crosslinkers, initiators \u003cbr\u003e15.11 Catalysts \u003cbr\u003e15.12 Compatibilizer \u003cbr\u003e15.12 Impurities \u003cbr\u003e15.13 Summary \u003cbr\u003eReferences \u003cbr\u003e16 Weathering of Compounded Products \u003cbr\u003e16.1 Adhesives \u003cbr\u003e16.2 Aerospace \u003cbr\u003e16.3 Agriculture \u003cbr\u003e16.4 Appliances \u003cbr\u003e16.5 Automotive parts \u003cbr\u003e16.6 Automotive coatings \u003cbr\u003e16.7 Coated fabrics \u003cbr\u003e16.8 Coil coated materials \u003cbr\u003e16.9 Composites \u003cbr\u003e16.10 Concrete \u003cbr\u003e16.11 Conservation \u003cbr\u003e16.12 Construction materials \u003cbr\u003e16.13 Cosmetics \u003cbr\u003e16.14 Dental materials \u003cbr\u003e16.15 Electronics and electrical materials \u003cbr\u003e16.16 Environmental pollutants \u003cbr\u003e16.17 Foams \u003cbr\u003e16.18 Food \u003cbr\u003e16.19 Gel coats \u003cbr\u003e16.20 Geosynthetics \u003cbr\u003e16.21 Glass and glazing materials \u003cbr\u003e16.22 Greenhouse film \u003cbr\u003e16.23 Hair \u003cbr\u003e16.24 Laminates \u003cbr\u003e16.25 Medical equipment and supplies \u003cbr\u003e16.26 Military applications \u003cbr\u003e16.27 Molded materials \u003cbr\u003e16.28 Packaging materials \u003cbr\u003e16.28.1 Bottles \u003cbr\u003e16.28.2 Containers \u003cbr\u003e16.28.3 Crates and trays \u003cbr\u003e16.28.4 Films \u003cbr\u003e16.29 Paints and coatings \u003cbr\u003e16.30 Pavements \u003cbr\u003e16.31 Pharmaceutical products \u003cbr\u003e16.32 Pipes and tubing \u003cbr\u003e16.33 Pulp and paper \u003cbr\u003e16.34 Roofing materials \u003cbr\u003e16.35 Sealants \u003cbr\u003e16.36 Sheet \u003cbr\u003e16.37 Siding \u003cbr\u003e16.38 Solar cells and collectors \u003cbr\u003e16.39 Textiles \u003cbr\u003e16.40 Windows \u003cbr\u003e16.41 Wire and cable \u003cbr\u003e16.42 Wood \u003cbr\u003eReferences \u003cbr\u003e17 Recycling \u003cbr\u003e17.1 Effect of degradation on recycling \u003cbr\u003e17.2 Re-stabilization of material for recycling \u003cbr\u003e17.3 Multilayer materials \u003cbr\u003e17.4 Removable paint \u003cbr\u003e17.5 Chemical recycling \u003cbr\u003eReferences \u003cbr\u003e18 Environmental Stress Cracking \u003cbr\u003e18.1 Definitions \u003cbr\u003e18.2 Parameters controlling ESC \u003cbr\u003e18.2.1 Material composition \u003cbr\u003e18.2.2 Morphology and dimensions \u003cbr\u003e18.2.3 Processing and performance conditions \u003cbr\u003e18.2.4 Solubility parameters of solvents and polymers \u003cbr\u003e18.2.5 Diffusion \u003cbr\u003e18.2.6 Load and internal stress \u003cbr\u003e18.2.7 Time \u003cbr\u003e18.2.8 Temperature \u003cbr\u003e18.3 Mechanisms of environmental stress cracking \u003cbr\u003e18.4 Kinetics of environmental stress cracking \u003cbr\u003e18.5 Effect of ESC on material durability \u003cbr\u003e18.6 Methods of testing \u003cbr\u003eReferences \u003cbr\u003e19 Interrelation Between Corrosion and Weathering \u003cbr\u003eReferences \u003cbr\u003e20 Weathering of Stones \u003cbr\u003eReferences \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:40-04:00","created_at":"2017-06-22T21:13:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","degradation","degradation depth","environment","laboratory exposures","lifetime prediction","material","methods of measurement","methods of weathering","outdoor exposures","p-testing","polymer degradation","PVC degradation","sustainability of polymers materials","weathering","weathering cycles"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371204,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Material Weathering, 5th Edition","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-62-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009","options":["Title"],"media":[{"alt":null,"id":355727147101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-62-1 \u003cbr\u003e\u003cbr\u003e5th Edition\u003cbr\u003ePages: 826\u003cbr\u003eFigures: 795\u003cbr\u003eTables: 64\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 5th edition of Handbook of Material Weathering contains systematic updates of knowledge generated in more than last 25 years when the 1st edition was prepared. \u003cbr\u003e\u003cbr\u003eThe information required for professional use has been growing so rapidly that additional books had to be written to accommodate essential knowledge for implementation in technological processes used to manufacture products, which deteriorate on exposure to weathering stress factors.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThis edition contains 20 chapters, which can be divided into the following groups:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Theory (photophysics and photochemistry)\u003cbr\u003e\u003cbr\u003e• Stress factors (parameters of exposure, measurements in assessment of weathering conditions, and climatic conditions)\u003cbr\u003e\u003cbr\u003e• Methods of weathering (laboratory degradation studies, weathering cycles, sample preparation, weathering data interpretation, lifetime prediction, and artificial weathering versus natural exposure)\u003cbr\u003e\u003cbr\u003e• Methods of testing of weathered samples (effect of weathering on material properties and testing methods of weathered specimens)\u003cbr\u003e\u003cbr\u003e• Weathering of polymers (data on 52 most important polymers, including mechanisms of degradation, effect of thermal history, characteristic changes in properties with graphical illustrations, and tables with numerical data)\u003cbr\u003e\u003cbr\u003e• Weathering of products (data on 42 groups of industrial products, including their required durability, lifetime expectation, relevant degradation mechanisms, and characteristic changes with graphical illustrations)\u003cbr\u003e\u003cbr\u003e• Effect of additives on weathering (12 groups of additives are discussed)\u003cbr\u003e\u003cbr\u003e• Effect of environmental stress cracking (parameters controlling ESC, mechanisms, methods of testing, and effect on materials)\u003cbr\u003e\u003cbr\u003e• Specific topics (suitability of weathered materials for recycling, interrelation between corrosion and weathering, and methods of study and prevention of deterioration of historical monuments made out of stone)\u003cbr\u003e\u003cbr\u003eThe above information is based on the thorough review of published papers, patents, and other relevant sources updated to the most recent data and information.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eIn addition to this book, 3 additional volumes contain supplementary information:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by Falkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThe first two books contain information relevant for protection of materials against biological and environmental stress factors. The Atlas of Material Damage has focus on structure and morphology of commercial materials and methods of damage prevention by tailoring morphology.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis set of monographic sources was prepared for research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products, and students who want to apply their knowledge to real materials. The books are invaluable for regulating agencies and patent and litigating attorneys. \u003cbr\u003e\u003cbr\u003eHandbook of Material Weathering is now used in about 100 countries, although frequently old editions (as seen from citations) are still in use, which do not contain up-to-date information. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe first edition of this book was published by ChemTec Publishing in 1990. The book had 18 chapters and 518 pages filled with the most up-to-date information on the subject of material weathering available in 1990.\u003cbr\u003e\u003cbr\u003eConsidering the size of the book and typesetting, the present edition is at least 3 times larger, in spite of the fact that two chapters were omitted from the fourth edition: Chapter 17. Stabilization and Stabilizers and Chapter 18. Biodegradation. Even without these two chapters the present 5th edition is larger than the previous edition. The reason is quite obvious − the field is systematically growing with new data, methods, and discoveries happening every day.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe reasons for eliminating the two chapters are as follows:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• If these two chapters would still be included in the book, the book would need to have two volumes which makes a book more difficult to use (separate table of contents and indices).\u003cbr\u003e\u003cbr\u003e• In anticipation of the need for specialized monographic sources, the two chapters mentioned above were not updated in the previous edition, so information was already lacking novelty.\u003cbr\u003e\u003cbr\u003e• Short chapters can only present brief review of the subject, whereas in applications detailed information is needed\u003cbr\u003e\u003cbr\u003e• Two handbooks were published by ChemTec Publishing on the subjects of the omitted chapters:\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by \u003cbr\u003e\u003cbr\u003eFalkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eThese two books give much broader and comprehensive information, such as it is required today, especially considering rapid changes which occurred recently because of health and safety concerns (biostabilization) and new discoveries (UV stabilization).\u003cbr\u003e\u003cbr\u003eIn addition, to present volume and the above two books, there is also a new book:\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThis book was written to emphasize importance of the material structure in photodegradation and photostabilization and also to account for the morphological changes which occur when materials degrade. This addition makes narrative of material degradation more comprehensive, showing new ways to deal with unstable materials.\u003cbr\u003e\u003cbr\u003eI hope that the information provided in these four books will help readers to advance their studies on particular subjects of their research and that the results of these studies will be implemented in the future editions of these books, since we try to report current developments to foster future discoveries. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Photophysics \u003cbr\u003e1.1 Nature of radiation \u003cbr\u003e1.1.1 Radiative energy \u003cbr\u003e1.1.2 Radiation intensity \u003cbr\u003e1.1.3 Radiation incidence \u003cbr\u003e1.2 Absorption of radiation by materials \u003cbr\u003e1.2.1 General principles \u003cbr\u003e1.3 Fate and utilization of absorbed energy \u003cbr\u003e1.3.1 Deactivation \u003cbr\u003e1.3.2 Intramolecular energy transfer \u003cbr\u003e1.3.3 Intermolecular energy transfer \u003cbr\u003e1.3.4 Luminescence \u003cbr\u003e1.4 Radiative processes involving dimers \u003cbr\u003e1.5 Modeling and photophysical data \u003cbr\u003eReferences \u003cbr\u003e2 Photochemistry \u003cbr\u003e2.1 Typical routes of photochemical reactions \u003cbr\u003e2.1.1 Photodissociation \u003cbr\u003e2.1.2 Photooxidation \u003cbr\u003e2.1.3 Peroxide and hydroperoxide conversions \u003cbr\u003e2.1.4 Norrish type I and II reactions \u003cbr\u003e2.1.5 Photo-Fries rearrangement \u003cbr\u003e2.1.6 Photo-Fenton \u003cbr\u003e2.1.7 Photosubstitution \u003cbr\u003e2.1.8 Photoaddition \u003cbr\u003e2.1.9 Photoelimination \u003cbr\u003e2.1.10 Photodimerization \u003cbr\u003e2.1.11 Photocondensation \u003cbr\u003e2.1.12 Photoisomerization \u003cbr\u003e2.2 Photochemical reactivity and quantum yield \u003cbr\u003e2.3 Excitation of excited state \u003cbr\u003e2.4 Parameters of photochemical reactions \u003cbr\u003e2.6 Quenchers and photosensitizers \u003cbr\u003eReferences \u003cbr\u003e3 Parameters of Exposure \u003cbr\u003e3.1 Radiation \u003cbr\u003e3.1.1 The source \u003cbr\u003e3.1.2 Solar radiative emission \u003cbr\u003e3.1.3 Effect of orbital variations on energy supply \u003cbr\u003e3.1.4 Interplanetary and near Earth space \u003cbr\u003e3.1.5 Stratosphere \u003cbr\u003e3.1.6 Troposphere \u003cbr\u003e3.2 Temperature \u003cbr\u003e3.3 Water \u003cbr\u003e3.4 Atmosphere composition \u003cbr\u003e3.5 Pollutants \u003cbr\u003e3.5.1 Nitrogen compounds \u003cbr\u003e3.5.2 Oxygen species \u003cbr\u003e3.5.3 Hydrogen species \u003cbr\u003e3.5.4 Carbon oxides \u003cbr\u003e3.5.5 Sulfur-containing components \u003cbr\u003e3.5.6 Chlorine-containing components \u003cbr\u003e3.5.7 Particulate materials \u003cbr\u003e3.6 Biological substances \u003cbr\u003e3.7 Water pollutants \u003cbr\u003e3.8 Stress \u003cbr\u003e3.7 Cooperative action of different parameters \u003cbr\u003eReferences \u003cbr\u003e4 Measurements in Assessment of Weathering Conditions \u003cbr\u003e4.1 Radiation \u003cbr\u003e4.1.1 Measuring equipment and methods of measurement \u003cbr\u003e4.1.2 Standards \u003cbr\u003e4.2 Sunshine duration \u003cbr\u003e4.3 Temperature \u003cbr\u003e4.4 Relative humidity \u003cbr\u003e4.5 Time of wetness \u003cbr\u003e4.5 Rain \u003cbr\u003e4.6 Pollutants \u003cbr\u003e4.6.1 Carbon dioxide \u003cbr\u003e4.6.2 Particulate matter \u003cbr\u003e4.6.3 Sulfur dioxide \u003cbr\u003e4.6.4 Nitrogen oxides \u003cbr\u003e4.6.5 Carbon monoxide \u003cbr\u003e4.6.6 Ozone \u003cbr\u003eReferences \u003cbr\u003e5 Climatic Conditions \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Radiation \u003cbr\u003e5.3 Sunshine duration \u003cbr\u003e5.4 Temperature \u003cbr\u003e5.5 Precipitation \u003cbr\u003e5.6 Relative humidity \u003cbr\u003e5.7 Wetness time \u003cbr\u003e5.8 Pollutants \u003cbr\u003e5.9 Surface soiling \u003cbr\u003eReferences \u003cbr\u003e6 Methods of Outdoor Exposure \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Climatic conditions and degradation rate \u003cbr\u003e6.3 Variability of weather conditions and its impact on the strategy in outdoor \u003cbr\u003eexposures \u003cbr\u003e6.4 Influence of specimen properties \u003cbr\u003e6.5 Typical methods of outdoor exposure \u003cbr\u003e6.5.1 Exposure sites \u003cbr\u003e6.5.2 Exposure racks \u003cbr\u003e6.5.3 Exposure of products and components \u003cbr\u003e6.6 Other parameters of exposure \u003cbr\u003e6.7 Relevant standards \u003cbr\u003eReferences \u003cbr\u003e7 Laboratory Degradation Studies \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Light sources \u003cbr\u003e7.3 Filters \u003cbr\u003e7.4 Radiation: delivery, monitoring and control \u003cbr\u003e7.5 Temperature control \u003cbr\u003e7.6 Humidity control \u003cbr\u003e7.7 Specimen spraying \u003cbr\u003e7.8 Specimen racks and holders \u003cbr\u003e7.9 Weathering equipment \u003cbr\u003e7.10 Correlation between different devices \u003cbr\u003e7.11 Pollutants \u003cbr\u003e7.12 Precision of studies \u003cbr\u003eReferences \u003cbr\u003e8 Weathering Cycles \u003cbr\u003eReferences \u003cbr\u003e9 Sample Preparation \u003cbr\u003eReferences \u003cbr\u003e10 Weathering Data Interpretation. Lifetime Prediction \u003cbr\u003eReferences \u003cbr\u003e11 Artificial Weathering Versus Natural Exposure \u003cbr\u003eReferences \u003cbr\u003e12 Effect of Weathering on Material Properties \u003cbr\u003e12.1 Mass loss \u003cbr\u003e12.2 Depth of degradation \u003cbr\u003e12.3 Mechanical properties \u003cbr\u003e12.4 Changes of color and optical properties \u003cbr\u003e12.5 Surface changes \u003cbr\u003e12.6 Molecular weight \u003cbr\u003e12.7 Chemical composition of surface and bulk \u003cbr\u003e12.8 Morphology and structure of surface layers \u003cbr\u003e12.9 Glass transition temperature \u003cbr\u003e12.10 Self-healing \u003cbr\u003eReferences \u003cbr\u003e13 Testing Methods of Weathered Specimen \u003cbr\u003e13.1 Visual evaluation \u003cbr\u003e13.2 Microscopy \u003cbr\u003e13.3 Imaging techniques \u003cbr\u003e13.4 Gloss \u003cbr\u003e13.5 Color changes \u003cbr\u003e13.6 Visible spectrophotometry \u003cbr\u003e13.7 UV spectrophotometry \u003cbr\u003e13.8 Infrared spectrophotometry \u003cbr\u003e13.9 Near infrared spectroscopy \u003cbr\u003e13.10 Raman spectroscopy \u003cbr\u003e13.11 Nuclear magnetic resonance \u003cbr\u003e13.12 Electron spin resonance \u003cbr\u003e13.13 Mass spectrometry \u003cbr\u003e13.14 Positron annihilation lifetime spectroscopy \u003cbr\u003e13.15 Chemiluminescence, fluorescence, and phosphorescence \u003cbr\u003e13.16 Atomic absorption spectroscopy \u003cbr\u003e13.17 WAXS and SAXS \u003cbr\u003e13.18 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e13.19 X-ray microtomography \u003cbr\u003e13.20 Mass change \u003cbr\u003e13.21 Density \u003cbr\u003e13.22 Contact angle \u003cbr\u003e13.23 Diffusion of gases and water transport in polymer \u003cbr\u003e13.24 Electrical properties \u003cbr\u003e13.25 Ultrasonic measurements \u003cbr\u003e13.26 Thermal analysis \u003cbr\u003e13.27 Rheological properties of materials \u003cbr\u003e13.28 Other physical parameters \u003cbr\u003e13.29 Tensile strength \u003cbr\u003e13.30 Elongation \u003cbr\u003e13.31 Flexural strength \u003cbr\u003e13.32 Impact strength \u003cbr\u003e13.33 Creep and constant strain tests \u003cbr\u003e13.34 Residual stress \u003cbr\u003e13.35 Scratch and mar resistance \u003cbr\u003e13.36 Other mechanical properties \u003cbr\u003e13.37 Surface roughness \u003cbr\u003e13.38 Molecular weight \u003cbr\u003e13.39 Gas and liquid chromatography \u003cbr\u003e13.40 Titrimetry \u003cbr\u003e13.41 Dehydrochlorination rate \u003cbr\u003e13.42 Gel fraction \u003cbr\u003e13.43 Oxygen uptake \u003cbr\u003e13.44 Water absorption, porosity \u003cbr\u003e13.45 Microorganism growth test \u003cbr\u003e13.46 Environmental stress cracking resistance \u003cbr\u003eReferences \u003cbr\u003e14 Data on Specific Polymers \u003cbr\u003e14.1 Acrylonitrile butadiene styrene, ABS \u003cbr\u003e14.2 Acrylonitrile styrene acrylate, ASA \u003cbr\u003e14.3 Alkyd resins \u003cbr\u003e14.4 Acrylic resins \u003cbr\u003e14.5 Cellulose \u003cbr\u003e14.6 Chitosan \u003cbr\u003e14.7 Epoxy resins \u003cbr\u003e14.8 Ethylene propylene rubber, EPR \u003cbr\u003e14.9 Ethylene vinyl acetate copolymer, EVAc \u003cbr\u003e14.10 Ethylene propylene diene monomer, EPDM \u003cbr\u003e14.11 Fluoropolymers \u003cbr\u003e14.12 Melamine resins \u003cbr\u003e14.13 Phenoxy resins \u003cbr\u003e14.14 Polyacrylamide \u003cbr\u003e14.15 Polyacrylonitrile \u003cbr\u003e14.16 Polyamides \u003cbr\u003e14.17 Polyaniline \u003cbr\u003e14.18 Polycarbonates \u003cbr\u003e14.19 Polyesters \u003cbr\u003e14.20 Polyethylene \u003cbr\u003e14.21 Polyethylene, chlorinated \u003cbr\u003e14.22 Poly(ethylene glycol) \u003cbr\u003e14.23 Polyfluorene \u003cbr\u003e14.24 Polyimides \u003cbr\u003e14.25 Poly(lactic acid) \u003cbr\u003e14.26 Polymethylmethacrylate \u003cbr\u003e14.27 Polyoxyethylene \u003cbr\u003e14.28 Polyoxymethylene \u003cbr\u003e14.29 Poly(phenylene oxide) \u003cbr\u003e14.30 Poly(phenylene sulfide) \u003cbr\u003e14.31 Poly(p-phenylene terephthalamide) \u003cbr\u003e14.32 Poly(p-phenylene vinylene) \u003cbr\u003e14.33 Polypropylene \u003cbr\u003e14.34 Polystyrenes \u003cbr\u003e14.35 Polysulfones \u003cbr\u003e14.36 Polytetrafluoroethylene \u003cbr\u003e14.37 Polythiophene \u003cbr\u003e14.38 Polyurethanes \u003cbr\u003e14.39 Polyvinylalcohol \u003cbr\u003e14.40 Polyvinylchloride \u003cbr\u003e14.41 Poly(vinylidene fluoride \u003cbr\u003e14.42 Poly(vinyl methyl ether) \u003cbr\u003e14.43 Styrene acrylonitrile copolymer \u003cbr\u003e14.44 Silicones \u003cbr\u003e14.45 Polymer blends \u003cbr\u003e14.46 Rubbers \u003cbr\u003e14.46.1 Natural rubber \u003cbr\u003e14.46.1 Polybutadiene \u003cbr\u003e14.46.2 Polychloroprene \u003cbr\u003e14.46.3 Polyisoprene \u003cbr\u003e14.46.4 Polyisobutylene \u003cbr\u003e14.46.5 Styrene butadiene rubber \u003cbr\u003e14.46.6 Styrene butadiene styrene rubber \u003cbr\u003eReferences \u003cbr\u003e15 Effect of Additives on Weathering \u003cbr\u003e15.1 Fillers and reinforcing fibers \u003cbr\u003e15.2 Pigments \u003cbr\u003e15.3 Plasticizers \u003cbr\u003e15.4 Solvents and diluents \u003cbr\u003e15.5 Flame retardants \u003cbr\u003e15.6 Impact modifiers \u003cbr\u003e15.7 Thermal stabilizers \u003cbr\u003e15.8 Antioxidants \u003cbr\u003e15.9 Antimicrobial additives \u003cbr\u003e15.10 Curatives, crosslinkers, initiators \u003cbr\u003e15.11 Catalysts \u003cbr\u003e15.12 Compatibilizer \u003cbr\u003e15.12 Impurities \u003cbr\u003e15.13 Summary \u003cbr\u003eReferences \u003cbr\u003e16 Weathering of Compounded Products \u003cbr\u003e16.1 Adhesives \u003cbr\u003e16.2 Aerospace \u003cbr\u003e16.3 Agriculture \u003cbr\u003e16.4 Appliances \u003cbr\u003e16.5 Automotive parts \u003cbr\u003e16.6 Automotive coatings \u003cbr\u003e16.7 Coated fabrics \u003cbr\u003e16.8 Coil coated materials \u003cbr\u003e16.9 Composites \u003cbr\u003e16.10 Concrete \u003cbr\u003e16.11 Conservation \u003cbr\u003e16.12 Construction materials \u003cbr\u003e16.13 Cosmetics \u003cbr\u003e16.14 Dental materials \u003cbr\u003e16.15 Electronics and electrical materials \u003cbr\u003e16.16 Environmental pollutants \u003cbr\u003e16.17 Foams \u003cbr\u003e16.18 Food \u003cbr\u003e16.19 Gel coats \u003cbr\u003e16.20 Geosynthetics \u003cbr\u003e16.21 Glass and glazing materials \u003cbr\u003e16.22 Greenhouse film \u003cbr\u003e16.23 Hair \u003cbr\u003e16.24 Laminates \u003cbr\u003e16.25 Medical equipment and supplies \u003cbr\u003e16.26 Military applications \u003cbr\u003e16.27 Molded materials \u003cbr\u003e16.28 Packaging materials \u003cbr\u003e16.28.1 Bottles \u003cbr\u003e16.28.2 Containers \u003cbr\u003e16.28.3 Crates and trays \u003cbr\u003e16.28.4 Films \u003cbr\u003e16.29 Paints and coatings \u003cbr\u003e16.30 Pavements \u003cbr\u003e16.31 Pharmaceutical products \u003cbr\u003e16.32 Pipes and tubing \u003cbr\u003e16.33 Pulp and paper \u003cbr\u003e16.34 Roofing materials \u003cbr\u003e16.35 Sealants \u003cbr\u003e16.36 Sheet \u003cbr\u003e16.37 Siding \u003cbr\u003e16.38 Solar cells and collectors \u003cbr\u003e16.39 Textiles \u003cbr\u003e16.40 Windows \u003cbr\u003e16.41 Wire and cable \u003cbr\u003e16.42 Wood \u003cbr\u003eReferences \u003cbr\u003e17 Recycling \u003cbr\u003e17.1 Effect of degradation on recycling \u003cbr\u003e17.2 Re-stabilization of material for recycling \u003cbr\u003e17.3 Multilayer materials \u003cbr\u003e17.4 Removable paint \u003cbr\u003e17.5 Chemical recycling \u003cbr\u003eReferences \u003cbr\u003e18 Environmental Stress Cracking \u003cbr\u003e18.1 Definitions \u003cbr\u003e18.2 Parameters controlling ESC \u003cbr\u003e18.2.1 Material composition \u003cbr\u003e18.2.2 Morphology and dimensions \u003cbr\u003e18.2.3 Processing and performance conditions \u003cbr\u003e18.2.4 Solubility parameters of solvents and polymers \u003cbr\u003e18.2.5 Diffusion \u003cbr\u003e18.2.6 Load and internal stress \u003cbr\u003e18.2.7 Time \u003cbr\u003e18.2.8 Temperature \u003cbr\u003e18.3 Mechanisms of environmental stress cracking \u003cbr\u003e18.4 Kinetics of environmental stress cracking \u003cbr\u003e18.5 Effect of ESC on material durability \u003cbr\u003e18.6 Methods of testing \u003cbr\u003eReferences \u003cbr\u003e19 Interrelation Between Corrosion and Weathering \u003cbr\u003eReferences \u003cbr\u003e20 Weathering of Stones \u003cbr\u003eReferences \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymer Te...
$144.00
{"id":11242227204,"title":"Handbook of Polymer Testing - Short-Term Mechanical Tests","handle":"978-1-85957-324-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R. Brown \u003cbr\u003eISBN 978-1-85957-324-2 \u003cbr\u003e\u003cbr\u003epages 208\n\u003ch5\u003eSummary\u003c\/h5\u003e\nKnowledge of the properties of plastics is essential for designing products, specifying the material to be used, carrying out quality control on finished products, failure analysis and for understanding the structure and behaviour of new materials. \u003cbr\u003e\u003cbr\u003eEach class of materials has its own specific test procedures, which have developed as the material has evolved. This book concentrates on one area of testing – short-term mechanical tests. These are defined as tests of mechanical properties where the effects of long periods of time and cycling are ignored. This group of tests includes hardness, tensile, compression, shear, flexing, impact, and tear and in this book, it is also taken to include density and dimensional measurement together with test piece preparation and conditioning.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThe topics covered in this book, include:\u003c\/strong\u003e \u003cbr\u003e1. Introduction\u003cbr\u003eReasons for Testing, Source, and Condition of Test Pieces, Test Conditions, Limitations of Results, Sampling, Standards, Quality Control of Testing, Test Equipment, Product Testing, and Modes of Stressing. \u003cbr\u003e2. Test Piece Preparation\u003cbr\u003eMixing, Moulding, Stamping from Sheet or Film, and Machining. \u003cbr\u003e3. Conditioning\u003cbr\u003eStorage, Conditioning, Heat Treatment, Mechanical Conditioning, Test Conditions, and Apparatus for Conditioning. \u003cbr\u003e4. Mass, Density, and Dimensions\u003cbr\u003eMeasurement of Mass, of Density, and of Dimensions. \u003cbr\u003e5. Hardness\u003cbr\u003eRelationships, Standard Methods, and Other Methods. \u003cbr\u003e6. Tensile Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e7. Compression Stress-Strain\u003cbr\u003eTest Apparatus, Standard, and Other Tests. \u003cbr\u003e8. Shear Properties\u003cbr\u003eStandard, and Other Tests. \u003cbr\u003e9. Flexural Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e10. Impact Strength\u003cbr\u003eGeneral, and Specific Tests. \u003cbr\u003e11. Tear Properties\u003cbr\u003eTest Piece Geometry, Standard, and Other Tests \u003cbr\u003e12. Fracture Toughness\u003cbr\u003eStandard, and Other Methods. \u003cbr\u003eThis book will be useful to all those who are already involved in the testing of polymers and it is an ideal guide to those just starting out in the field, whether in academia or industry.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e1 Introduction \u003cbr\u003e1.1 Scope \u003cbr\u003e1.2 Reasons for Testing \u003cbr\u003e1.3 Source and Condition of Test Pieces \u003cbr\u003e1.3 Test Conditions \u003cbr\u003e1.4 Limitations of Results \u003cbr\u003e1.6 Sampling \u003cbr\u003e1.7 Standards \u003cbr\u003e1.8 Quality Control of Testing 1.9 Test Equipment \u003cbr\u003e1.10 Product Testing \u003cbr\u003e1.11 Modes of Stressing References \u003cbr\u003e\u003cbr\u003e2 Test Piece Preparation \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Mixing \u003cbr\u003e2.3 Moulding \u003cbr\u003e2.4 Stamping from Sheet or Film \u003cbr\u003e2.5 Machining References \u003cbr\u003e\u003cbr\u003e3 Conditioning \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Storage \u003cbr\u003e3.3 Conditioning \u003cbr\u003e3.4 Heat Treatment 3.5 Mechanical Conditioning \u003cbr\u003e3.5.1 Test Conditions \u003cbr\u003e3.6 Apparatus for Conditioning \u003cbr\u003e3.6.1 Air-Conditioned Rooms \u003cbr\u003e3.6.2 Enclosures\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e3.6.3 Hygrometers \u003cbr\u003e3.6.4 Thermometers \u003cbr\u003e3.6.5 Apparatus for Elevated and Sub-Ambient Temperature References Appendix A – Tables of Thermal Equilibrium Times \u003cbr\u003e\u003cbr\u003e4 Mass, Density, and Dimensions \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Measurement of Mass \u003cbr\u003e4.3 Measurement of Density \u003cbr\u003e4.4 Measurement of Dimensions \u003cbr\u003e4.4.1 General \u003cbr\u003e4.4.2 ‘Standard’ Laboratory Procedures \u003cbr\u003e4.4.3 Other Procedures \u003cbr\u003e4.4.4 Surface Roughness \u003cbr\u003e4.4.5 Extensometry \u003cbr\u003e4.4.6 Dimensional Stability \u003cbr\u003e4.4.7 Dispersion References \u003cbr\u003e\u003cbr\u003e5 Hardness \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Relationships \u003cbr\u003e5.3 Standard Methods \u003cbr\u003e5.3.1 Shore Durometer \u003cbr\u003e5.3.2 Ball Indentation \u003cbr\u003e5.3.3 Rockwell \u003cbr\u003e5.3.4 Softness 5.3.5 Barcol Hardness \u003cbr\u003e5.4 Other Methods References \u003cbr\u003e\u003cbr\u003e6 Tensile Stress-Strain \u003cbr\u003e6.1 General Considerations \u003cbr\u003e6.1.1 Tough Materials with a Yield Stress Greater than the Failure Stress \u003cbr\u003e6.1.2 Tough Materials with a Yield Stress Lower than the Failure Stress \u003cbr\u003e6.1.3 Tough Materials with the same Yield and Failure Stress\u003cbr\u003e6.1.4 Brittle Materials \u003cbr\u003e6.2 Test Methods \u003cbr\u003e6.2.1 Standard Methods \u003cbr\u003e6.2.2 Test Apparatus \u003cbr\u003e6.2.3 Test Pieces \u003cbr\u003e6.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e7 Compression Stress-Strain \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Test Apparatus \u003cbr\u003e7.3 Standard Tests \u003cbr\u003e7.3 Other Tests References \u003cbr\u003e\u003cbr\u003e8 Shear Properties \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Standard Tests \u003cbr\u003e8.3 Other Tests References \u003cbr\u003e\u003cbr\u003e9 Flexural Stress-Strain \u003cbr\u003e9.1 General Considerations \u003cbr\u003e9.2 Test Methods \u003cbr\u003e9.2.1 Standard Methods \u003cbr\u003e9.2.2 Test Apparatus \u003cbr\u003e9.2.3 Test Pieces \u003cbr\u003e9.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e10 Impact Strength \u003cbr\u003e10.1 General Considerations \u003cbr\u003e10.1.1 Introduction \u003cbr\u003e10.1.2 Modes of Failure\u003cbr\u003e10.1.3 Factors Affecting the Impact Strength \u003cbr\u003e10.2 Specific Tests \u003cbr\u003e10.2.1 Pendulum Methods \u003cbr\u003e10.2.2 Drop Methods References \u003cbr\u003e\u003cbr\u003e11 Tear Properties \u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Test Piece Geometry \u003cbr\u003e11.3 Standard Tests \u003cbr\u003e11.4 Other Tests References \u003cbr\u003e\u003cbr\u003e12 Fracture Toughness \u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Standard Methods \u003cbr\u003e12.3 Other Methods References\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.","published_at":"2017-06-22T21:14:04-04:00","created_at":"2017-06-22T21:14:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","compression","density","flexing","hardness","impact","mass","mixing","molding","moulding","p-testing","plastics","poly","properties","quality control","shear","stamping","stress-strain","tear","tensile","testing"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394372,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Testing - Short-Term Mechanical Tests","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-324-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522","options":["Title"],"media":[{"alt":null,"id":356335976541,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R. Brown \u003cbr\u003eISBN 978-1-85957-324-2 \u003cbr\u003e\u003cbr\u003epages 208\n\u003ch5\u003eSummary\u003c\/h5\u003e\nKnowledge of the properties of plastics is essential for designing products, specifying the material to be used, carrying out quality control on finished products, failure analysis and for understanding the structure and behaviour of new materials. \u003cbr\u003e\u003cbr\u003eEach class of materials has its own specific test procedures, which have developed as the material has evolved. This book concentrates on one area of testing – short-term mechanical tests. These are defined as tests of mechanical properties where the effects of long periods of time and cycling are ignored. This group of tests includes hardness, tensile, compression, shear, flexing, impact, and tear and in this book, it is also taken to include density and dimensional measurement together with test piece preparation and conditioning.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThe topics covered in this book, include:\u003c\/strong\u003e \u003cbr\u003e1. Introduction\u003cbr\u003eReasons for Testing, Source, and Condition of Test Pieces, Test Conditions, Limitations of Results, Sampling, Standards, Quality Control of Testing, Test Equipment, Product Testing, and Modes of Stressing. \u003cbr\u003e2. Test Piece Preparation\u003cbr\u003eMixing, Moulding, Stamping from Sheet or Film, and Machining. \u003cbr\u003e3. Conditioning\u003cbr\u003eStorage, Conditioning, Heat Treatment, Mechanical Conditioning, Test Conditions, and Apparatus for Conditioning. \u003cbr\u003e4. Mass, Density, and Dimensions\u003cbr\u003eMeasurement of Mass, of Density, and of Dimensions. \u003cbr\u003e5. Hardness\u003cbr\u003eRelationships, Standard Methods, and Other Methods. \u003cbr\u003e6. Tensile Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e7. Compression Stress-Strain\u003cbr\u003eTest Apparatus, Standard, and Other Tests. \u003cbr\u003e8. Shear Properties\u003cbr\u003eStandard, and Other Tests. \u003cbr\u003e9. Flexural Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e10. Impact Strength\u003cbr\u003eGeneral, and Specific Tests. \u003cbr\u003e11. Tear Properties\u003cbr\u003eTest Piece Geometry, Standard, and Other Tests \u003cbr\u003e12. Fracture Toughness\u003cbr\u003eStandard, and Other Methods. \u003cbr\u003eThis book will be useful to all those who are already involved in the testing of polymers and it is an ideal guide to those just starting out in the field, whether in academia or industry.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e1 Introduction \u003cbr\u003e1.1 Scope \u003cbr\u003e1.2 Reasons for Testing \u003cbr\u003e1.3 Source and Condition of Test Pieces \u003cbr\u003e1.3 Test Conditions \u003cbr\u003e1.4 Limitations of Results \u003cbr\u003e1.6 Sampling \u003cbr\u003e1.7 Standards \u003cbr\u003e1.8 Quality Control of Testing 1.9 Test Equipment \u003cbr\u003e1.10 Product Testing \u003cbr\u003e1.11 Modes of Stressing References \u003cbr\u003e\u003cbr\u003e2 Test Piece Preparation \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Mixing \u003cbr\u003e2.3 Moulding \u003cbr\u003e2.4 Stamping from Sheet or Film \u003cbr\u003e2.5 Machining References \u003cbr\u003e\u003cbr\u003e3 Conditioning \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Storage \u003cbr\u003e3.3 Conditioning \u003cbr\u003e3.4 Heat Treatment 3.5 Mechanical Conditioning \u003cbr\u003e3.5.1 Test Conditions \u003cbr\u003e3.6 Apparatus for Conditioning \u003cbr\u003e3.6.1 Air-Conditioned Rooms \u003cbr\u003e3.6.2 Enclosures\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e3.6.3 Hygrometers \u003cbr\u003e3.6.4 Thermometers \u003cbr\u003e3.6.5 Apparatus for Elevated and Sub-Ambient Temperature References Appendix A – Tables of Thermal Equilibrium Times \u003cbr\u003e\u003cbr\u003e4 Mass, Density, and Dimensions \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Measurement of Mass \u003cbr\u003e4.3 Measurement of Density \u003cbr\u003e4.4 Measurement of Dimensions \u003cbr\u003e4.4.1 General \u003cbr\u003e4.4.2 ‘Standard’ Laboratory Procedures \u003cbr\u003e4.4.3 Other Procedures \u003cbr\u003e4.4.4 Surface Roughness \u003cbr\u003e4.4.5 Extensometry \u003cbr\u003e4.4.6 Dimensional Stability \u003cbr\u003e4.4.7 Dispersion References \u003cbr\u003e\u003cbr\u003e5 Hardness \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Relationships \u003cbr\u003e5.3 Standard Methods \u003cbr\u003e5.3.1 Shore Durometer \u003cbr\u003e5.3.2 Ball Indentation \u003cbr\u003e5.3.3 Rockwell \u003cbr\u003e5.3.4 Softness 5.3.5 Barcol Hardness \u003cbr\u003e5.4 Other Methods References \u003cbr\u003e\u003cbr\u003e6 Tensile Stress-Strain \u003cbr\u003e6.1 General Considerations \u003cbr\u003e6.1.1 Tough Materials with a Yield Stress Greater than the Failure Stress \u003cbr\u003e6.1.2 Tough Materials with a Yield Stress Lower than the Failure Stress \u003cbr\u003e6.1.3 Tough Materials with the same Yield and Failure Stress\u003cbr\u003e6.1.4 Brittle Materials \u003cbr\u003e6.2 Test Methods \u003cbr\u003e6.2.1 Standard Methods \u003cbr\u003e6.2.2 Test Apparatus \u003cbr\u003e6.2.3 Test Pieces \u003cbr\u003e6.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e7 Compression Stress-Strain \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Test Apparatus \u003cbr\u003e7.3 Standard Tests \u003cbr\u003e7.3 Other Tests References \u003cbr\u003e\u003cbr\u003e8 Shear Properties \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Standard Tests \u003cbr\u003e8.3 Other Tests References \u003cbr\u003e\u003cbr\u003e9 Flexural Stress-Strain \u003cbr\u003e9.1 General Considerations \u003cbr\u003e9.2 Test Methods \u003cbr\u003e9.2.1 Standard Methods \u003cbr\u003e9.2.2 Test Apparatus \u003cbr\u003e9.2.3 Test Pieces \u003cbr\u003e9.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e10 Impact Strength \u003cbr\u003e10.1 General Considerations \u003cbr\u003e10.1.1 Introduction \u003cbr\u003e10.1.2 Modes of Failure\u003cbr\u003e10.1.3 Factors Affecting the Impact Strength \u003cbr\u003e10.2 Specific Tests \u003cbr\u003e10.2.1 Pendulum Methods \u003cbr\u003e10.2.2 Drop Methods References \u003cbr\u003e\u003cbr\u003e11 Tear Properties \u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Test Piece Geometry \u003cbr\u003e11.3 Standard Tests \u003cbr\u003e11.4 Other Tests References \u003cbr\u003e\u003cbr\u003e12 Fracture Toughness \u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Standard Methods \u003cbr\u003e12.3 Other Methods References\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees."}
Imaging and Image Anal...
$215.00
{"id":11242232132,"title":"Imaging and Image Analysis Applications for Plastics","handle":"1-884207-81-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Behnam Pourdeyhimi \u003cbr\u003eISBN 1-884207-81-2 \u003cbr\u003e\u003cbr\u003e308 pages, 224 figures, 36 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is of interest for all functions in research, development, new product implementation, production, product engineering in industries which process polymers and plastics. Those who already made use of image analysis in their practice will find useful hints on how to improve and better utilize their methods. Others who did not use these methods so far will find that these inexpensive techniques can provide answers to many important technical problems which are not resolved because just a few years ago these methods were not available or too expensive to apply. Only several years ago, these observations were either not quantified at all or various graphical standards were used for comparison to develop a point scale to assign observed images. This was not precise and confusing. The advent of high-speed digital cameras working with image processing software is changing this situation. The list of some topics included in the book shows the wealth of opportunities. This book presents results of studies in which imaging and image analyses were used to quantify many important determinants of production technology and product performance such as flow and mixing behavior, optimization of equipment configuration and material homogenization, morphology of plastics, size of polymers domains in blends, compatibilization methods and conditions, effects of grafting, reasons for surface roughness, scratch and mar resistance, fiber orientation, improved barrier properties, improved magnetic permeability, improved mechanical properties, distribution of voids in laminates, determination of cell sizes in cellular plastics, formation of crazes during fatigue, fiber radius determination during spinning, blister formation and adhesion, effects of glass fiber orientation on weld strength, analysis of welding process, dispersion of agglomerates formed by additives and the effect of mixing and transport conditions, formation of gels and impurities, particles structure and distribution, rate of crystallization, and many others. Having numerical data it is possible to optimize the processes to increase output, decrease a reject rate, save materials, and improve product properties.\u003cbr\u003eConsidering that every product must appeal to a customer and perform under conditions of its use, these studies are the most important for optimizing numerous conflicting properties. For example in one research, product performance is combined with high output rate and requirement of low weight. The potential applications of image analysis allow following these interrelations to optimize a product which is why research and production are eager to apply this emerging technology. The number of research reports on this subject is systematically growing. The methods of observation, such as various forms of microscopy, tracers, and lasers, are simple and in most cases available in most facilities.\u003cbr\u003e\u003cbr\u003eThe book contains references to various applications already in use, methods of image capture, data processing, hardware and software required. The examples of processes discussed include: extrusion, extruding reactors, injection molding, impregnation, foam production, film manufacture, compression molding, vulcanization, melt spinning, reactive blending, welding, blow molding, conveying, composite manufacture, compounding, and thermosetting. The examples of studies and improvements include: increased homogeneity of dye, pigment and filler mixing, improved fiber orientation, increased tooth stiffness in composite gears, the rate of spherulites growth, optimization of screw configuration, increased miscibility in polymer blends, study of polymer crystallization rate, melt flow analysis, void content, particle size in polymer blends, pore size and shape in foams, cell density in foams, modifier dispersion, improvement of bidirectional properties, effect of low molecular additives on morphology, interparticle distance, effect of mixing conditions and geometry on morphology, crack formation during fatigue testing, mechanism of crazing, chemical resistance, oil penetration, kinetic measurement of fiber diameter, stress profile, quantified flow visualization, effect of compatibilization, domain distribution, correlation of morphology with mechanical performance, analysis of melt fracture aids, surface roughness, droplet\/fiber transition, barrier properties, effect of orientation on electric conductivity, peel adhesion, fiber length after processing, fractal dimension, nucleation, thermography, thermal imaging, failure analysis, agglomerate dispersion, and impurity monitoring. The large variety of processing methods, possible studies and improvements show that this book is of interest to the entire cross-section of plastic manufacturing industry. It offers data which not only allow to better understand materials and processing methods but the book helps in process optimization and development of processes having higher throughput and superior performance.\u003cbr\u003eThis book is about the design and processing of various materials rather than algorithms and design of image analysis equipment. But by showing actual research and data in a form familiar to any technologist in the plastics industry, it demonstrates benefits and capabilities of the methods.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e• The Optimized Performance of Linear Vibration Welded Nylon 6 and Nylon 66 Butt Joints\u003cbr\u003e• Image Analysis of Polypropylene Melt Fiber Stretching\u003cbr\u003e• The Effect of Fiber Orientation on Distribution on the Tooth Stiffness of a Polymer Composite Gear\u003cbr\u003e• Novel Processing and Performance of Aligned Discontinuous Fiber Polymer Composites\u003cbr\u003e• Characterization of Kneading Block Performance on Co-Rotating Twin Screw Extruders\u003cbr\u003e• A Quantitative Description of the Effects of Molecular Weight and Atactic Level on the Spherulite Growth Rate of Ziegler-Natta Isotactic Polypropylene\u003cbr\u003e• Miscibility and Co-Continuous Morphology of Polypropylene-Polyethylene Blends\u003cbr\u003e• Flow Visualization for Extensional Viscosity Assessment\u003cbr\u003e• PP\/LLDPE\/EDPM Blends: Effect of Elastomer Viscosity on Impact\u003cbr\u003e• Mixing of a Low Molecular Weight Additive in a Co-Rotating TSE: Morphological Analysis of a HDPE\/PDMS Systems\u003cbr\u003e• The in situ Compatibilization of HDPE\/PET Blends\u003cbr\u003e• Evaluation of Process Aids for Controlling Surface Roughness of Extruded LLDPE\u003cbr\u003e• Evaluation of Scratch and Mar Resistance in Automotive Coatings: Nanoscratching by Atomic Force Microscope\u003cbr\u003e• Study of the Morphology and Tensile Mechanical Properties of Biaxially Oriented PET\/PP Blends\u003cbr\u003e• Improved Barrier and Mechanical Properties of Laminar Polymer Blends\u003cbr\u003e• Relative Magnetic Permeability of Injection Molded Composites as Affected by the Flow Induced Orientation of Ferromagnetic Particles\u003cbr\u003e• Processing-Structure-Property Relations in PS\/PE Blends: Compression versus Injection Molding\u003cbr\u003e• Polyetherimide Epoxy-Based Prepreg Systems with Variable Temperature Cure Capability\u003cbr\u003e• CO 2 Blown PETG Foams\u003cbr\u003e• Tear Strength Enhancement Mechanisms in TPO Films\u003cbr\u003e• Morphological Study of Fatigue Induced Damage in Semicrystalline Polymers\u003cbr\u003e• The Effect of Several Kinds of Oils on the Oil Resistance Behavior of Polystyrenic Thermoplastic Vulcanizate\u003cbr\u003e• Visualization of Polymer Melt Convergent Flows in Extrusion\u003cbr\u003e• Evaluation of the Constrained Blister Test for Measurement of an Intrinsic Adhesion\u003cbr\u003e• Fractal Analysis and Radiographic Inspection of Microwave Welded HDPE Bars\u003cbr\u003e• Application of Thermography for the Optimization of the Blow Molding Process\u003cbr\u003e• The Use of Video and the Development of Solids Conveying Theory\u003cbr\u003e• Microcellular PET Foams Produced by the Solid State Process\u003cbr\u003e• Thermal Wave Imaging of Propagating Cracks in Polypropylene and a Thermoplastic Olefin\u003cbr\u003e• The Division of Agglomerates in Molten Environment of Polymers: A Physical Model for Mathematical Description\u003cbr\u003e• A New On-Line Technique for Morphology Analysis and Residence Time Measurement in a Twin-Screw Extruder\u003cbr\u003e• Controlled Order Thermosets for Electronic Packaging\u003cbr\u003e• Fatigue Fracture in Polypropylene with Different Spherulitic Sizes\u003cbr\u003e• Brittle-Ductile Transition of PP\/Rubber\/Filler Hybrids\u003cbr\u003e• Index\u003c\/p\u003e","published_at":"2017-06-22T21:14:19-04:00","created_at":"2017-06-22T21:14:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","agglomerates","automotive","blister test","book","coatings","composite gears","cracks","crystallization rate","environment","fatigue","fibers","foams","imaging","increased miscibility polymer blends","LLDPE","magnetic permeability","Mar resistance","melt flow analysis","morphology","optimization screw configuration","p-testing","particle size","PET\/PP","polymer","polymer blends","PS\/PE","rate spherulites growth","scratch","semicrystalline","tear strength","tensile"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412420,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Imaging and Image Analysis Applications for Plastics","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-81-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805","options":["Title"],"media":[{"alt":null,"id":356441260125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Behnam Pourdeyhimi \u003cbr\u003eISBN 1-884207-81-2 \u003cbr\u003e\u003cbr\u003e308 pages, 224 figures, 36 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is of interest for all functions in research, development, new product implementation, production, product engineering in industries which process polymers and plastics. Those who already made use of image analysis in their practice will find useful hints on how to improve and better utilize their methods. Others who did not use these methods so far will find that these inexpensive techniques can provide answers to many important technical problems which are not resolved because just a few years ago these methods were not available or too expensive to apply. Only several years ago, these observations were either not quantified at all or various graphical standards were used for comparison to develop a point scale to assign observed images. This was not precise and confusing. The advent of high-speed digital cameras working with image processing software is changing this situation. The list of some topics included in the book shows the wealth of opportunities. This book presents results of studies in which imaging and image analyses were used to quantify many important determinants of production technology and product performance such as flow and mixing behavior, optimization of equipment configuration and material homogenization, morphology of plastics, size of polymers domains in blends, compatibilization methods and conditions, effects of grafting, reasons for surface roughness, scratch and mar resistance, fiber orientation, improved barrier properties, improved magnetic permeability, improved mechanical properties, distribution of voids in laminates, determination of cell sizes in cellular plastics, formation of crazes during fatigue, fiber radius determination during spinning, blister formation and adhesion, effects of glass fiber orientation on weld strength, analysis of welding process, dispersion of agglomerates formed by additives and the effect of mixing and transport conditions, formation of gels and impurities, particles structure and distribution, rate of crystallization, and many others. Having numerical data it is possible to optimize the processes to increase output, decrease a reject rate, save materials, and improve product properties.\u003cbr\u003eConsidering that every product must appeal to a customer and perform under conditions of its use, these studies are the most important for optimizing numerous conflicting properties. For example in one research, product performance is combined with high output rate and requirement of low weight. The potential applications of image analysis allow following these interrelations to optimize a product which is why research and production are eager to apply this emerging technology. The number of research reports on this subject is systematically growing. The methods of observation, such as various forms of microscopy, tracers, and lasers, are simple and in most cases available in most facilities.\u003cbr\u003e\u003cbr\u003eThe book contains references to various applications already in use, methods of image capture, data processing, hardware and software required. The examples of processes discussed include: extrusion, extruding reactors, injection molding, impregnation, foam production, film manufacture, compression molding, vulcanization, melt spinning, reactive blending, welding, blow molding, conveying, composite manufacture, compounding, and thermosetting. The examples of studies and improvements include: increased homogeneity of dye, pigment and filler mixing, improved fiber orientation, increased tooth stiffness in composite gears, the rate of spherulites growth, optimization of screw configuration, increased miscibility in polymer blends, study of polymer crystallization rate, melt flow analysis, void content, particle size in polymer blends, pore size and shape in foams, cell density in foams, modifier dispersion, improvement of bidirectional properties, effect of low molecular additives on morphology, interparticle distance, effect of mixing conditions and geometry on morphology, crack formation during fatigue testing, mechanism of crazing, chemical resistance, oil penetration, kinetic measurement of fiber diameter, stress profile, quantified flow visualization, effect of compatibilization, domain distribution, correlation of morphology with mechanical performance, analysis of melt fracture aids, surface roughness, droplet\/fiber transition, barrier properties, effect of orientation on electric conductivity, peel adhesion, fiber length after processing, fractal dimension, nucleation, thermography, thermal imaging, failure analysis, agglomerate dispersion, and impurity monitoring. The large variety of processing methods, possible studies and improvements show that this book is of interest to the entire cross-section of plastic manufacturing industry. It offers data which not only allow to better understand materials and processing methods but the book helps in process optimization and development of processes having higher throughput and superior performance.\u003cbr\u003eThis book is about the design and processing of various materials rather than algorithms and design of image analysis equipment. But by showing actual research and data in a form familiar to any technologist in the plastics industry, it demonstrates benefits and capabilities of the methods.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e• The Optimized Performance of Linear Vibration Welded Nylon 6 and Nylon 66 Butt Joints\u003cbr\u003e• Image Analysis of Polypropylene Melt Fiber Stretching\u003cbr\u003e• The Effect of Fiber Orientation on Distribution on the Tooth Stiffness of a Polymer Composite Gear\u003cbr\u003e• Novel Processing and Performance of Aligned Discontinuous Fiber Polymer Composites\u003cbr\u003e• Characterization of Kneading Block Performance on Co-Rotating Twin Screw Extruders\u003cbr\u003e• A Quantitative Description of the Effects of Molecular Weight and Atactic Level on the Spherulite Growth Rate of Ziegler-Natta Isotactic Polypropylene\u003cbr\u003e• Miscibility and Co-Continuous Morphology of Polypropylene-Polyethylene Blends\u003cbr\u003e• Flow Visualization for Extensional Viscosity Assessment\u003cbr\u003e• PP\/LLDPE\/EDPM Blends: Effect of Elastomer Viscosity on Impact\u003cbr\u003e• Mixing of a Low Molecular Weight Additive in a Co-Rotating TSE: Morphological Analysis of a HDPE\/PDMS Systems\u003cbr\u003e• The in situ Compatibilization of HDPE\/PET Blends\u003cbr\u003e• Evaluation of Process Aids for Controlling Surface Roughness of Extruded LLDPE\u003cbr\u003e• Evaluation of Scratch and Mar Resistance in Automotive Coatings: Nanoscratching by Atomic Force Microscope\u003cbr\u003e• Study of the Morphology and Tensile Mechanical Properties of Biaxially Oriented PET\/PP Blends\u003cbr\u003e• Improved Barrier and Mechanical Properties of Laminar Polymer Blends\u003cbr\u003e• Relative Magnetic Permeability of Injection Molded Composites as Affected by the Flow Induced Orientation of Ferromagnetic Particles\u003cbr\u003e• Processing-Structure-Property Relations in PS\/PE Blends: Compression versus Injection Molding\u003cbr\u003e• Polyetherimide Epoxy-Based Prepreg Systems with Variable Temperature Cure Capability\u003cbr\u003e• CO 2 Blown PETG Foams\u003cbr\u003e• Tear Strength Enhancement Mechanisms in TPO Films\u003cbr\u003e• Morphological Study of Fatigue Induced Damage in Semicrystalline Polymers\u003cbr\u003e• The Effect of Several Kinds of Oils on the Oil Resistance Behavior of Polystyrenic Thermoplastic Vulcanizate\u003cbr\u003e• Visualization of Polymer Melt Convergent Flows in Extrusion\u003cbr\u003e• Evaluation of the Constrained Blister Test for Measurement of an Intrinsic Adhesion\u003cbr\u003e• Fractal Analysis and Radiographic Inspection of Microwave Welded HDPE Bars\u003cbr\u003e• Application of Thermography for the Optimization of the Blow Molding Process\u003cbr\u003e• The Use of Video and the Development of Solids Conveying Theory\u003cbr\u003e• Microcellular PET Foams Produced by the Solid State Process\u003cbr\u003e• Thermal Wave Imaging of Propagating Cracks in Polypropylene and a Thermoplastic Olefin\u003cbr\u003e• The Division of Agglomerates in Molten Environment of Polymers: A Physical Model for Mathematical Description\u003cbr\u003e• A New On-Line Technique for Morphology Analysis and Residence Time Measurement in a Twin-Screw Extruder\u003cbr\u003e• Controlled Order Thermosets for Electronic Packaging\u003cbr\u003e• Fatigue Fracture in Polypropylene with Different Spherulitic Sizes\u003cbr\u003e• Brittle-Ductile Transition of PP\/Rubber\/Filler Hybrids\u003cbr\u003e• Index\u003c\/p\u003e"}
Plastics Analysis
$120.00
{"id":11242215108,"title":"Plastics Analysis","handle":"978-1-85957-333-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.J. Forrest, Rapra Technology Ltd \u003cbr\u003eISBN 978-1-85957-333-4 \u003cbr\u003e\u003cbr\u003epages: 110, figures: 15\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics can present a very difficult challenge to the analyst. The plastic may contain a variety of additives, including other polymers, which are used to enhance the properties of the plastic compound. For example, plasticisers, inorganic fillers, antidegradants, fire retardants, and specialist additives such as antistatic agents and cross-linkers. It is unlikely that more than 90-95% of a complex formulation can be determined by analysis alone. Compounds may contain over 10 different ingredients, some present at very low levels. It is evident that a good plastics analyst must have a working knowledge of plastics technology to succeed. \u003cbr\u003e\u003cbr\u003ePlastics analysis is used for a variety of purposes such as quality control, reverse engineering (deformulation) and to determine causes of failure. \u003cbr\u003e\u003cbr\u003eA wide variety of techniques can be used to discover different facts about a plastic compound. For example, the elemental analysis may be required, or an instrumental method to determine the material's resistance to oxidation. \u003cbr\u003e\u003cbr\u003eMany spectroscopic techniques are employed in plastics analysis including infrared spectroscopy, ultraviolet light spectroscopy, NMR spectroscopy, atomic absorption spectroscopy, X-ray fluorescence spectroscopy, Raman spectroscopy, and energy dispersive analysis. Chromatographic methods include gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), gel permeation chromatography (GPC) and thin layer chromatography (TLC). Thermal techniques include differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). \u003cbr\u003e\u003cbr\u003eThis review outlines each technique used in plastics analysis and then illustrates which methods are applied to obtain a particular result or piece of compositional information. For example, polymer and filler identification, molecular weight determination, antidegradant quantification and surface analysis study methods are all included. \u003cbr\u003e\u003cbr\u003eThe review also includes useful sections on specific areas, such as tests for plastics in contact with food, analysis of plastic laminates and fibres, and stabilisers in PVC \u003cbr\u003e\u003cbr\u003eThis text is a good introduction to a very complex subject area and will enable the reader to understand the basic concepts of plastics analysis. \u003cbr\u003e\u003cbr\u003eAround 400 abstracts from the Polymer Library database accompany this review, to facilitate further reading. These include core original references together with abstracts from some of the latest papers on plastics analysis. These give examples of applications of the different techniques and some new developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Analytical Techniques \u003cbr\u003e2.1 Wet Chemistry Techniques \u003cbr\u003e2.2 Spectroscopic Techniques \u003cbr\u003e2.2.1 Infrared Spectroscopy (IR) \u003cbr\u003e2.2.2 Ultraviolet Light Spectroscopy (UV) \u003cbr\u003e2.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) \u003cbr\u003e2.2.4 Atomic Absorption Spectroscopy (AAS) \u003cbr\u003e2.2.5 X-Ray Fluorescence Spectroscopy (XRF) \u003cbr\u003e2.2.6 Raman Spectroscopy \u003cbr\u003e2.3 Chromatographic Techniques \u003cbr\u003e2.3.1 Gas Chromatography-Mass Spectrometry (GC-MS) \u003cbr\u003e2.3.2 Gas Chromatography (GC) \u003cbr\u003e2.3.3 High Performance Liquid Chromatography (HPLC) \u003cbr\u003e2.3.4 Liquid Chromatography-Mass Spectroscopy (LC-MS) \u003cbr\u003e2.3.5 Gel Permeation Chromatography (GPC) \u003cbr\u003e2.3.6 Thin Layer Chromatography (TLC) \u003cbr\u003e2.4 Thermal Techniques \u003cbr\u003e2.4.1 Differential Scanning Calorimetry (DSC) \u003cbr\u003e2.4.2 Dynamic Mechanical Thermal Analysis (DMTA) \u003cbr\u003e2.4.3 Thermogravimetric Analysis (TGA) \u003cbr\u003e2.5 Elemental Techniques \u003cbr\u003e2.6 Microscopy Techniques \u003cbr\u003e2.7 Miscellaneous Techniques \u003cbr\u003e3 Determination of Molecular Weight and Microstructure of Plastic Polymers \u003cbr\u003e3.1 Determination of Molecular Weight \u003cbr\u003e3.1.1 Gel Permeation Chromatography (GPC) \u003cbr\u003e3.1.2 Viscosity \u003cbr\u003e3.1.3 Osmometry \u003cbr\u003e3.1.4 Light Scattering \u003cbr\u003e3.1.5 Other Methods \u003cbr\u003e3.2 Monomer Types and Microstructure \u003cbr\u003e4 Determination of Polymer Type \u003cbr\u003e5 Determination of the Plasticiser and Filler in a Plastic Compound \u003cbr\u003e5.1 Determination of Plasticiser \u003cbr\u003e5.2 Determination of Fillers \u003cbr\u003e5.2.1 Particulate Fillers \u003cbr\u003e5.2.2 Fibrous Fillers \u003cbr\u003e6 Determination of Stabilisers in a Plastics Compound \u003cbr\u003e6.1 UV Stabilisers \u003cbr\u003e6.2 Antioxidants \u003cbr\u003e7 Determination of Functional Additives \u003cbr\u003e7.1 Process Aids and Lubricants \u003cbr\u003e7.2 Slip Additives \u003cbr\u003e7.3 Pigments \u003cbr\u003e7.4 Antistatic Agents \u003cbr\u003e7.5 Crosslinking Agents and Co-Agents \u003cbr\u003e7.6 Blowing Agents \u003cbr\u003e7.7 Flame Retardants \u003cbr\u003e7.8 Impact Modifiers \u003cbr\u003e8 Analysis of Plastics for Food Contact Use \u003cbr\u003e8.1 Global Migration Tests \u003cbr\u003e8.2 Specific Migration and Residual Monomer Tests \u003cbr\u003e9 Determination of Stabilisers in PVC \u003cbr\u003e10 Analysis of Plastic Laminates and Fibres \u003cbr\u003e11 Surface Analysis of Plastics \u003cbr\u003e11.1 X-Ray Photoelectron Spectroscopy (XPS) \u003cbr\u003e11.2 Laser Induced Mass Analysis (LIMA) \u003cbr\u003e11.3 Secondary Ion Mass Spectroscopy (SIMS) \u003cbr\u003e12 Failure Diagnosis \u003cbr\u003e12.1 Common Compositional Problems \u003cbr\u003e12.2 Environmental Stress Cracking \u003cbr\u003e12.3 Contamination Problems \u003cbr\u003e12.4 Odour and Emissions Problems \u003cbr\u003e13 Conclusion \u003cbr\u003eAppendix 1 Solubility Parameters of Plastics, Plasticisers and Typical Solvents \u003cbr\u003eAppendix 2 Specific Gravities of Plastics and Compound Ingredients \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest has worked in the Analysis Section at Rapra for over fourteen years. He is currently Principal Consultant Analyst, a position he has held for the past four years. He has experience in the analysis of a wide variety of polymers and polymer products using a range of techniques. He is one of the principal contacts at Rapra for projects involving plastics analysis. \u003cbr\u003e\u003cbr\u003eRapra has been serving the polymer community for over 80 years and was formerly known as the Rubber and Plastics Research Association of Great Britain. Rapra provides comprehensive analytical services to industry, research organisations and individuals using spectroscopic (FT-IR, infrared microspectroscopy, UV\/vis spectroscopy),chromatographic (LC-MS, HPLC, GPC including triple detection, GC, GC-MS), thermal (DSC, TGA, DMTA, thermal diffusivity) and a range of wet chemical and other general and specialist techniques.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:25-04:00","created_at":"2017-06-22T21:13:25-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","AAS","additives","agents","analysis","antioxidants","antistatic","bags","blowing","book","bubble","calorimetry","chromatography","closures","DSC","fillers","flame retardantsies","flexibility","fluorescence","GC","GC-MS","gel","glass transition","HPLC","impact","infrared","IR","labelling","light scattering","liquid","lubricants","magnetic resonance","mechanical","microscopy","molecular weight","NMR","osmometry","p-testing","pigments","plasticiser","plastics","polymer","pouches","printing","Raman","rigidity","shrink","slip","spectroscopy","stabilisers","strength","stretch","surface","temperature","tensile strength","thermal","thin layer","TLC","ultraviolet light","UV","viscosity","wrap","X-Ray","XRF"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354756,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics Analysis","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-333-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-333-4.jpg?v=1499952414"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-333-4.jpg?v=1499952414","options":["Title"],"media":[{"alt":null,"id":358534873181,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-333-4.jpg?v=1499952414"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-333-4.jpg?v=1499952414","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.J. Forrest, Rapra Technology Ltd \u003cbr\u003eISBN 978-1-85957-333-4 \u003cbr\u003e\u003cbr\u003epages: 110, figures: 15\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics can present a very difficult challenge to the analyst. The plastic may contain a variety of additives, including other polymers, which are used to enhance the properties of the plastic compound. For example, plasticisers, inorganic fillers, antidegradants, fire retardants, and specialist additives such as antistatic agents and cross-linkers. It is unlikely that more than 90-95% of a complex formulation can be determined by analysis alone. Compounds may contain over 10 different ingredients, some present at very low levels. It is evident that a good plastics analyst must have a working knowledge of plastics technology to succeed. \u003cbr\u003e\u003cbr\u003ePlastics analysis is used for a variety of purposes such as quality control, reverse engineering (deformulation) and to determine causes of failure. \u003cbr\u003e\u003cbr\u003eA wide variety of techniques can be used to discover different facts about a plastic compound. For example, the elemental analysis may be required, or an instrumental method to determine the material's resistance to oxidation. \u003cbr\u003e\u003cbr\u003eMany spectroscopic techniques are employed in plastics analysis including infrared spectroscopy, ultraviolet light spectroscopy, NMR spectroscopy, atomic absorption spectroscopy, X-ray fluorescence spectroscopy, Raman spectroscopy, and energy dispersive analysis. Chromatographic methods include gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), gel permeation chromatography (GPC) and thin layer chromatography (TLC). Thermal techniques include differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). \u003cbr\u003e\u003cbr\u003eThis review outlines each technique used in plastics analysis and then illustrates which methods are applied to obtain a particular result or piece of compositional information. For example, polymer and filler identification, molecular weight determination, antidegradant quantification and surface analysis study methods are all included. \u003cbr\u003e\u003cbr\u003eThe review also includes useful sections on specific areas, such as tests for plastics in contact with food, analysis of plastic laminates and fibres, and stabilisers in PVC \u003cbr\u003e\u003cbr\u003eThis text is a good introduction to a very complex subject area and will enable the reader to understand the basic concepts of plastics analysis. \u003cbr\u003e\u003cbr\u003eAround 400 abstracts from the Polymer Library database accompany this review, to facilitate further reading. These include core original references together with abstracts from some of the latest papers on plastics analysis. These give examples of applications of the different techniques and some new developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Analytical Techniques \u003cbr\u003e2.1 Wet Chemistry Techniques \u003cbr\u003e2.2 Spectroscopic Techniques \u003cbr\u003e2.2.1 Infrared Spectroscopy (IR) \u003cbr\u003e2.2.2 Ultraviolet Light Spectroscopy (UV) \u003cbr\u003e2.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) \u003cbr\u003e2.2.4 Atomic Absorption Spectroscopy (AAS) \u003cbr\u003e2.2.5 X-Ray Fluorescence Spectroscopy (XRF) \u003cbr\u003e2.2.6 Raman Spectroscopy \u003cbr\u003e2.3 Chromatographic Techniques \u003cbr\u003e2.3.1 Gas Chromatography-Mass Spectrometry (GC-MS) \u003cbr\u003e2.3.2 Gas Chromatography (GC) \u003cbr\u003e2.3.3 High Performance Liquid Chromatography (HPLC) \u003cbr\u003e2.3.4 Liquid Chromatography-Mass Spectroscopy (LC-MS) \u003cbr\u003e2.3.5 Gel Permeation Chromatography (GPC) \u003cbr\u003e2.3.6 Thin Layer Chromatography (TLC) \u003cbr\u003e2.4 Thermal Techniques \u003cbr\u003e2.4.1 Differential Scanning Calorimetry (DSC) \u003cbr\u003e2.4.2 Dynamic Mechanical Thermal Analysis (DMTA) \u003cbr\u003e2.4.3 Thermogravimetric Analysis (TGA) \u003cbr\u003e2.5 Elemental Techniques \u003cbr\u003e2.6 Microscopy Techniques \u003cbr\u003e2.7 Miscellaneous Techniques \u003cbr\u003e3 Determination of Molecular Weight and Microstructure of Plastic Polymers \u003cbr\u003e3.1 Determination of Molecular Weight \u003cbr\u003e3.1.1 Gel Permeation Chromatography (GPC) \u003cbr\u003e3.1.2 Viscosity \u003cbr\u003e3.1.3 Osmometry \u003cbr\u003e3.1.4 Light Scattering \u003cbr\u003e3.1.5 Other Methods \u003cbr\u003e3.2 Monomer Types and Microstructure \u003cbr\u003e4 Determination of Polymer Type \u003cbr\u003e5 Determination of the Plasticiser and Filler in a Plastic Compound \u003cbr\u003e5.1 Determination of Plasticiser \u003cbr\u003e5.2 Determination of Fillers \u003cbr\u003e5.2.1 Particulate Fillers \u003cbr\u003e5.2.2 Fibrous Fillers \u003cbr\u003e6 Determination of Stabilisers in a Plastics Compound \u003cbr\u003e6.1 UV Stabilisers \u003cbr\u003e6.2 Antioxidants \u003cbr\u003e7 Determination of Functional Additives \u003cbr\u003e7.1 Process Aids and Lubricants \u003cbr\u003e7.2 Slip Additives \u003cbr\u003e7.3 Pigments \u003cbr\u003e7.4 Antistatic Agents \u003cbr\u003e7.5 Crosslinking Agents and Co-Agents \u003cbr\u003e7.6 Blowing Agents \u003cbr\u003e7.7 Flame Retardants \u003cbr\u003e7.8 Impact Modifiers \u003cbr\u003e8 Analysis of Plastics for Food Contact Use \u003cbr\u003e8.1 Global Migration Tests \u003cbr\u003e8.2 Specific Migration and Residual Monomer Tests \u003cbr\u003e9 Determination of Stabilisers in PVC \u003cbr\u003e10 Analysis of Plastic Laminates and Fibres \u003cbr\u003e11 Surface Analysis of Plastics \u003cbr\u003e11.1 X-Ray Photoelectron Spectroscopy (XPS) \u003cbr\u003e11.2 Laser Induced Mass Analysis (LIMA) \u003cbr\u003e11.3 Secondary Ion Mass Spectroscopy (SIMS) \u003cbr\u003e12 Failure Diagnosis \u003cbr\u003e12.1 Common Compositional Problems \u003cbr\u003e12.2 Environmental Stress Cracking \u003cbr\u003e12.3 Contamination Problems \u003cbr\u003e12.4 Odour and Emissions Problems \u003cbr\u003e13 Conclusion \u003cbr\u003eAppendix 1 Solubility Parameters of Plastics, Plasticisers and Typical Solvents \u003cbr\u003eAppendix 2 Specific Gravities of Plastics and Compound Ingredients \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest has worked in the Analysis Section at Rapra for over fourteen years. He is currently Principal Consultant Analyst, a position he has held for the past four years. He has experience in the analysis of a wide variety of polymers and polymer products using a range of techniques. He is one of the principal contacts at Rapra for projects involving plastics analysis. \u003cbr\u003e\u003cbr\u003eRapra has been serving the polymer community for over 80 years and was formerly known as the Rubber and Plastics Research Association of Great Britain. Rapra provides comprehensive analytical services to industry, research organisations and individuals using spectroscopic (FT-IR, infrared microspectroscopy, UV\/vis spectroscopy),chromatographic (LC-MS, HPLC, GPC including triple detection, GC, GC-MS), thermal (DSC, TGA, DMTA, thermal diffusivity) and a range of wet chemical and other general and specialist techniques.\u003cbr\u003e\u003cbr\u003e"}
Plastics Failure Analy...
$220.00
{"id":11242217604,"title":"Plastics Failure Analysis and Prevention","handle":"1-884207-92-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: John Moalli, Editor \u003cbr\u003e10-ISBN 1-884207-92-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-884207-92-1\u003c\/span\u003e\u003cbr\u003ePages: 341, Figures: 284 , Tables: 42\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nGeneral methods of product failure evaluation give powerful tools in product improvement. Such methods, discussed in the book, include practical risk analysis, failure mode and effect analysis, preliminary hazard analysis, progressive failure analysis, fault tree analysis, mean time between failures, Wohler curves, finite element analysis, cohesive zone model, crack propagation kinetics, time-temperature collectives, quantitative characterization of fatigue damage, and fracture maps. These methods are broadly used in some industries such as automotive industry and can be successfully applied to other industries.\u003cbr\u003eMethods of failure analysis are critical to for material improvement and they are broadly discussed in this book. Fractography of plastics is relatively a new field, which has many commonalities with fractography of metals. Here various aspects of fractography of plastics and metals are compared and contrasted. Fractography application in studies of static and cycling loading of ABS is also discussed. Other methods include SEM, SAXS, FTIR, DSC, DMA, GC\/MS, optical microscopy, fatigue behavior, multi-axial stress, residual stress analysis, punch resistance, creep-rupture, impact, oxidative induction time, craze testing, defect analysis, fracture toughness, the activation energy of degradation.\u003cbr\u003eConsidering that product joints are the most common sites of failure this subject is analyzed in detail. Snap-fit joints failure of plastic housing is analyzed aiming at the improvement of product reliability by the redesign of the method of joining. Multiply welding effect on materials durability is discussed for a broad range of temperatures of processing and performance. Effect of hot plate welding on weld properties and morphology is considered in the comparison of different methods of testing. Mechanical fasteners are investigated under mechanical loads and temperature variations.\u003cbr\u003eMany products have ductile properties or necking behavior which are another frequent cause of failure discussed here. Fatigue properties and fatigue failure mechanisms are discussed in detail since they cause many materials to fail. \u003cbr\u003eMany references are given in this book to real products and real cases of their failure. The products discussed include office equipment, automotive compressed fuel gas system, pipes, polymer blends, blow molded parts, layered, cross-ply and continuous fiber composites, printed circuits, electronic packages, hip implants, blown and multi-layered films, construction materials, component housings, brake cups, composite pressure vessels, swamp coolers, electrical cables, plumbing fittings, medical devices, medical packaging, strapping tapes, balloons, marine coatings, thermal switches, pressure relief membranes, pharmaceutical products, window profiles, and bone cements.\u003cbr\u003eMany common methods of material analysis are compared in this book. For example, the effect of internal pressure and testing of tensile properties, factors affecting Gardner impact testing, standard test procedures for structural analysis, methods of exposure of materials to the multidimensional state of stress, and many other.\u003cbr\u003eAttention is given to material morphology and its development during processing as a practical means of material improvement. Orientation effects during welding processes are analyzed in detail. Also, morphological changes of fatigue-induced damage are evaluated for crystalline polymers.\u003cbr\u003eAlso, many different polymers are analyzed here such as polyethylene (LDPE, HDPE, UHMWPE), polypropylene, polyamide, polyoxymethylene, epoxy resins, polyvinyl chloride, polystyrene, polyketone terpolymer, polyimide, polycarbonate, polyurethane, aliphatic copolymers, EPDM, ABS, vinyl ester, aromatic polyamide, polyester, polymethylmethacrylate, polyetherimide\u003cbr\u003eThe book also contains examples of defect cost analysis which shows that improvement of product quality by the above discussed methods is a very economical means of process engineering and technology selection. Some chapters contain a discussion of 10 common pitfalls in thin-wall plastic part design and outline of strategies for the evaluation of weather induced failure of polymers.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e Practical Risk Analysis—As a Tool for Minimizing Plastic Product Failure\u003cbr\u003e• Avoiding the GIGO Syndrome\u003cbr\u003e• Defect Analysis and High Density Polyethylene Pipe Durability\u003cbr\u003e• Progressive Failure Analysis of Fiber Composite Structures\u003cbr\u003e• Failure Analysis Models for Polyacetal Molded Fittings in Plumbing Systems\u003cbr\u003e• Estimation of Time-Temperature-Collectives in Describing Aging of Polymer Materials\u003cbr\u003e• Fractography of Metals and Plastics\u003cbr\u003e• Fractography of ABS\u003cbr\u003e• Attachment Design Analysis of a Plastic Housing Joined with Snap-Fits\u003cbr\u003e• Joint Performance of Mechanical Fasteners under Dynamic Load\u003cbr\u003e• Morphological Study of Fatigue Induced Damage in Semi-Crystalline Polymers\u003cbr\u003e• Ductile Failure and Delayed Necking in Polyethylene\u003cbr\u003e• Fatigue Behavior of Discontinuous Glass Fiber Reinforced Polypropylene\u003cbr\u003e• Translating Failure into Success—Lessons Learned from Product Failure Analysis\u003cbr\u003e• Case Studies of Plastics Failure Related to Improper Formulation\u003cbr\u003e• Case Studies of Inadvertent Interactions between Polymers and Devices in Field Applications\u003cbr\u003e• Factors Affecting Variation in Gardner Impact Testing\u003cbr\u003e• Standard Test Procedures for Relevant Material Properties for Structural Analysis\u003cbr\u003e• The Influence of Multidimensional State of Stress on the Mechanical Properties of Thermoplastics\u003cbr\u003e• The Influence of Morphology on the Impact Performance of an Impact Modified PP\/PS Alloy\u003cbr\u003e• Morphology and Mechanical Behavior of Polypropylene Hot Plate Welds\u003cbr\u003e• Orientation Effects on the Weldability of Polypropylene Strapping Tape\u003cbr\u003e• Activation Energies of Polymer Degradation\u003cbr\u003e• Effects of Processing Conditions on the Failure Mode of an Aliphatic Polyketone Teropolymer\u003cbr\u003e• Durability Study of Conductive Copper Traces within Polyimide Based Substrates\u003cbr\u003e• The Role of Heat Affected Zone (HAZ) on Mechanical Properties in Thermally Welded Low Density Polyethylene Blown Film\u003cbr\u003e• Plastics Failure Due to Oxidative Degradation in Processing and Service\u003cbr\u003e• Comparing the Long Term Behavior of Tough Polyethylenes by Craze Testing\u003cbr\u003e• Crack Propagation in Continuous Glass Fiber\/Polypropylene Composites\u003cbr\u003e• Freeze-Thaw Durability of Composites for Civil Infrastructure\u003cbr\u003e• Temperature-Moisture-Mechanical Response of Vinyl Ester Resins and Pultruded Vinyl Ester\/e-glass Laminated Composites\u003cbr\u003e• Fracture Behavior of Polypropylene Modified with Metallocene Catalyzed Polyolefin\u003cbr\u003e• Mechanical Performance of Polyamides with Influence of Moisture and Temperature\u003cbr\u003e• Shelf Life Failure Prediction Considerations for Irradiated Polypropylene Medical Devices\u003cbr\u003e• Environmental Stress Cracking of ABS IIRadiation Resistance of Multilayer Films by Instrumented Impact Testing\u003cbr\u003e• Mechanical Behavior of Fabric Film Laminates\u003cbr\u003e• Determining Etch Compensation Factors for Printed Circuit Boards\u003cbr\u003e• Estimation of Long-Term Properties of Epoxies in Body Fluids\u003cbr\u003e• Aspects of the Tensile Response of Random Continuous Glass\/Epoxy Composites\u003cbr\u003e• Residual Stress Development in Marine Coatings under Simulated Service Conditions\u003cbr\u003e• Evaluation of a Yield Criteria and Energy Absorbing Mechanisms of Rubber Modified Epoxies in the Multiaxial Stress States\u003cbr\u003e• Design Aids for Preventing Brittle Failure in Polycarbonate and Polyetherimide\u003cbr\u003e• Effect of Scale on Mechanical Performance of PMMA\u003cbr\u003e• Defect Cost Analysis\u003cbr\u003e• 10 Common Pitfalls in Thin-Wall Plastic Part Design\u003cbr\u003e• Strategies for the Evaluation of Weathering-Induced Failure of Polymers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. John Moalli received his doctorate in Polymers from MIT and currently serves as Director of Exponent Failure Analysis Associates' Materials Science and Mechanical Engineering group. He addresses issues related to plastics, composite materials, rubbers, adhesives, and general materials science. His specialties include product design and development, analysis of fracture surfaces, combustion behavior, experimental mechanical property evaluation, development of constitutive relations, patent analysis, and risk analysis in polymer and polymer composite systems. His current areas of research pertain to the evaluation of polymers in medical, automotive, construction, recreational, and other environments.","published_at":"2017-06-22T21:13:33-04:00","created_at":"2017-06-22T21:13:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","ABS","acrylic polymers","activation energy","aging","analysis","balloons","book","brake cups","cables","circuits","coatings","composite","coolers","craze","creep-rupture","defect","durability","electronic packages","failure","fatigue","fiber","films","fittings","fractography","fracture","Gardner","GIGO","housings","impact","implants","membranes","microscopy","morphology","multi-axial stress","oxidative induction time","p-testing","packaging","pipe","plastic","plumbing","polyethylene","polymer","polypropylene","punch resistance","reinforcement","residual","semi-crystalline","stress","structures","switches","syndrome","tapes","thermoplastics","toughness","vessels","window"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378361028,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics Failure Analysis and Prevention","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-884207-92-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-92-8.jpg?v=1503687407"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-92-8.jpg?v=1503687407","options":["Title"],"media":[{"alt":null,"id":410019364957,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-92-8.jpg?v=1503687407"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-92-8.jpg?v=1503687407","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: John Moalli, Editor \u003cbr\u003e10-ISBN 1-884207-92-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-884207-92-1\u003c\/span\u003e\u003cbr\u003ePages: 341, Figures: 284 , Tables: 42\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nGeneral methods of product failure evaluation give powerful tools in product improvement. Such methods, discussed in the book, include practical risk analysis, failure mode and effect analysis, preliminary hazard analysis, progressive failure analysis, fault tree analysis, mean time between failures, Wohler curves, finite element analysis, cohesive zone model, crack propagation kinetics, time-temperature collectives, quantitative characterization of fatigue damage, and fracture maps. These methods are broadly used in some industries such as automotive industry and can be successfully applied to other industries.\u003cbr\u003eMethods of failure analysis are critical to for material improvement and they are broadly discussed in this book. Fractography of plastics is relatively a new field, which has many commonalities with fractography of metals. Here various aspects of fractography of plastics and metals are compared and contrasted. Fractography application in studies of static and cycling loading of ABS is also discussed. Other methods include SEM, SAXS, FTIR, DSC, DMA, GC\/MS, optical microscopy, fatigue behavior, multi-axial stress, residual stress analysis, punch resistance, creep-rupture, impact, oxidative induction time, craze testing, defect analysis, fracture toughness, the activation energy of degradation.\u003cbr\u003eConsidering that product joints are the most common sites of failure this subject is analyzed in detail. Snap-fit joints failure of plastic housing is analyzed aiming at the improvement of product reliability by the redesign of the method of joining. Multiply welding effect on materials durability is discussed for a broad range of temperatures of processing and performance. Effect of hot plate welding on weld properties and morphology is considered in the comparison of different methods of testing. Mechanical fasteners are investigated under mechanical loads and temperature variations.\u003cbr\u003eMany products have ductile properties or necking behavior which are another frequent cause of failure discussed here. Fatigue properties and fatigue failure mechanisms are discussed in detail since they cause many materials to fail. \u003cbr\u003eMany references are given in this book to real products and real cases of their failure. The products discussed include office equipment, automotive compressed fuel gas system, pipes, polymer blends, blow molded parts, layered, cross-ply and continuous fiber composites, printed circuits, electronic packages, hip implants, blown and multi-layered films, construction materials, component housings, brake cups, composite pressure vessels, swamp coolers, electrical cables, plumbing fittings, medical devices, medical packaging, strapping tapes, balloons, marine coatings, thermal switches, pressure relief membranes, pharmaceutical products, window profiles, and bone cements.\u003cbr\u003eMany common methods of material analysis are compared in this book. For example, the effect of internal pressure and testing of tensile properties, factors affecting Gardner impact testing, standard test procedures for structural analysis, methods of exposure of materials to the multidimensional state of stress, and many other.\u003cbr\u003eAttention is given to material morphology and its development during processing as a practical means of material improvement. Orientation effects during welding processes are analyzed in detail. Also, morphological changes of fatigue-induced damage are evaluated for crystalline polymers.\u003cbr\u003eAlso, many different polymers are analyzed here such as polyethylene (LDPE, HDPE, UHMWPE), polypropylene, polyamide, polyoxymethylene, epoxy resins, polyvinyl chloride, polystyrene, polyketone terpolymer, polyimide, polycarbonate, polyurethane, aliphatic copolymers, EPDM, ABS, vinyl ester, aromatic polyamide, polyester, polymethylmethacrylate, polyetherimide\u003cbr\u003eThe book also contains examples of defect cost analysis which shows that improvement of product quality by the above discussed methods is a very economical means of process engineering and technology selection. Some chapters contain a discussion of 10 common pitfalls in thin-wall plastic part design and outline of strategies for the evaluation of weather induced failure of polymers.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e Practical Risk Analysis—As a Tool for Minimizing Plastic Product Failure\u003cbr\u003e• Avoiding the GIGO Syndrome\u003cbr\u003e• Defect Analysis and High Density Polyethylene Pipe Durability\u003cbr\u003e• Progressive Failure Analysis of Fiber Composite Structures\u003cbr\u003e• Failure Analysis Models for Polyacetal Molded Fittings in Plumbing Systems\u003cbr\u003e• Estimation of Time-Temperature-Collectives in Describing Aging of Polymer Materials\u003cbr\u003e• Fractography of Metals and Plastics\u003cbr\u003e• Fractography of ABS\u003cbr\u003e• Attachment Design Analysis of a Plastic Housing Joined with Snap-Fits\u003cbr\u003e• Joint Performance of Mechanical Fasteners under Dynamic Load\u003cbr\u003e• Morphological Study of Fatigue Induced Damage in Semi-Crystalline Polymers\u003cbr\u003e• Ductile Failure and Delayed Necking in Polyethylene\u003cbr\u003e• Fatigue Behavior of Discontinuous Glass Fiber Reinforced Polypropylene\u003cbr\u003e• Translating Failure into Success—Lessons Learned from Product Failure Analysis\u003cbr\u003e• Case Studies of Plastics Failure Related to Improper Formulation\u003cbr\u003e• Case Studies of Inadvertent Interactions between Polymers and Devices in Field Applications\u003cbr\u003e• Factors Affecting Variation in Gardner Impact Testing\u003cbr\u003e• Standard Test Procedures for Relevant Material Properties for Structural Analysis\u003cbr\u003e• The Influence of Multidimensional State of Stress on the Mechanical Properties of Thermoplastics\u003cbr\u003e• The Influence of Morphology on the Impact Performance of an Impact Modified PP\/PS Alloy\u003cbr\u003e• Morphology and Mechanical Behavior of Polypropylene Hot Plate Welds\u003cbr\u003e• Orientation Effects on the Weldability of Polypropylene Strapping Tape\u003cbr\u003e• Activation Energies of Polymer Degradation\u003cbr\u003e• Effects of Processing Conditions on the Failure Mode of an Aliphatic Polyketone Teropolymer\u003cbr\u003e• Durability Study of Conductive Copper Traces within Polyimide Based Substrates\u003cbr\u003e• The Role of Heat Affected Zone (HAZ) on Mechanical Properties in Thermally Welded Low Density Polyethylene Blown Film\u003cbr\u003e• Plastics Failure Due to Oxidative Degradation in Processing and Service\u003cbr\u003e• Comparing the Long Term Behavior of Tough Polyethylenes by Craze Testing\u003cbr\u003e• Crack Propagation in Continuous Glass Fiber\/Polypropylene Composites\u003cbr\u003e• Freeze-Thaw Durability of Composites for Civil Infrastructure\u003cbr\u003e• Temperature-Moisture-Mechanical Response of Vinyl Ester Resins and Pultruded Vinyl Ester\/e-glass Laminated Composites\u003cbr\u003e• Fracture Behavior of Polypropylene Modified with Metallocene Catalyzed Polyolefin\u003cbr\u003e• Mechanical Performance of Polyamides with Influence of Moisture and Temperature\u003cbr\u003e• Shelf Life Failure Prediction Considerations for Irradiated Polypropylene Medical Devices\u003cbr\u003e• Environmental Stress Cracking of ABS IIRadiation Resistance of Multilayer Films by Instrumented Impact Testing\u003cbr\u003e• Mechanical Behavior of Fabric Film Laminates\u003cbr\u003e• Determining Etch Compensation Factors for Printed Circuit Boards\u003cbr\u003e• Estimation of Long-Term Properties of Epoxies in Body Fluids\u003cbr\u003e• Aspects of the Tensile Response of Random Continuous Glass\/Epoxy Composites\u003cbr\u003e• Residual Stress Development in Marine Coatings under Simulated Service Conditions\u003cbr\u003e• Evaluation of a Yield Criteria and Energy Absorbing Mechanisms of Rubber Modified Epoxies in the Multiaxial Stress States\u003cbr\u003e• Design Aids for Preventing Brittle Failure in Polycarbonate and Polyetherimide\u003cbr\u003e• Effect of Scale on Mechanical Performance of PMMA\u003cbr\u003e• Defect Cost Analysis\u003cbr\u003e• 10 Common Pitfalls in Thin-Wall Plastic Part Design\u003cbr\u003e• Strategies for the Evaluation of Weathering-Induced Failure of Polymers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. John Moalli received his doctorate in Polymers from MIT and currently serves as Director of Exponent Failure Analysis Associates' Materials Science and Mechanical Engineering group. He addresses issues related to plastics, composite materials, rubbers, adhesives, and general materials science. His specialties include product design and development, analysis of fracture surfaces, combustion behavior, experimental mechanical property evaluation, development of constitutive relations, patent analysis, and risk analysis in polymer and polymer composite systems. His current areas of research pertain to the evaluation of polymers in medical, automotive, construction, recreational, and other environments."}
Practical Guide to Che...
$180.00
{"id":11242214724,"title":"Practical Guide to Chemical Safety Testing","handle":"978-1-85957-372-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.J. Knight and M.B. Thomas \u003cbr\u003eISBN 978-1-85957-372-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances. \u003cbr\u003e\u003cbr\u003eHealth and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R\u0026amp;D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required. \u003cbr\u003e\u003cbr\u003eA Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results. \u003cbr\u003e\u003cbr\u003eThere is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment. \u003cbr\u003e\u003cbr\u003eEcotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals. \u003cbr\u003e\u003cbr\u003eRegulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers. \u003cbr\u003e\u003cbr\u003eThis book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Purpose of the Book\u003cbr\u003e1.2 Purpose of Safety Evaluation\u003cbr\u003e1.3 Safety Studies\u003cbr\u003e1.4 Risk Assessment and Safety Data\u003cbr\u003e1.5 Regulatory Schemes\u003cbr\u003e1.6 Summary \u003cbr\u003e2 Mammalian Toxicology\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Acute Toxicity Studies\u003cbr\u003e2.2.1 Nature and Relevance of Tests\u003cbr\u003e2.2.2 Methodology\u003cbr\u003e2.2.3 Acute Oral Toxicity Studies\u003cbr\u003e2.2.4 Dermal Toxicity Studies\u003cbr\u003e2.2.5 Inhalation Toxicity Studies\u003cbr\u003e2.2.6 Alternative Acute Oral Toxicity Methods\u003cbr\u003e2.2.7 Local Tolerance Tests\u003cbr\u003e2.2.8 Contact Sensitisation\u003cbr\u003e2.3 Repeated Dose Toxicity Studies\u003cbr\u003e2.3.1 Nature and Relevance of Tests\u003cbr\u003e2.3.2 Importance of Repeated Dose Toxicity\u003cbr\u003e2.3.3 Methodology\u003cbr\u003e2.4 Reproduction Toxicology\u003cbr\u003e2.4.1 Nature and Relevance of Tests\u003cbr\u003e2.4.2 Methodology\u003cbr\u003e2.4.3 Alternative Approaches\u003cbr\u003e2.5 Carcinogenicity\u003cbr\u003e2.5.1 Nature and Relevance of Tests\u003cbr\u003e2.5.2 Methodology\u003cbr\u003e2.5.3 Dose Levels\u003cbr\u003e2.5.4 Conduct of Study\u003cbr\u003e2.5.5 Data Evaluation\u003cbr\u003e2.5.6 Risk Assessment\u003cbr\u003e2.5.7 Alternative Approaches\u003cbr\u003e2.6 Medical Device Testing\u003cbr\u003e2.6.1 Exposure Routes\u003cbr\u003e2.6.2 Dose Preparation\u003cbr\u003e2.6.3 Cytotoxicity Testing of Medical Devices \u003cbr\u003e3 Genetic Toxicology\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Mechanisms of Mutation – Genes and Chromosomes\u003cbr\u003e3.3 Standard Genetic Toxicology Assays\u003cbr\u003e3.4 Bacterial Mutagenicity Assays\u003cbr\u003e3.5 Chromosome Aberration Tests In Vitro\u003cbr\u003e3.6 Mammalian Cell Gene Mutation Assays In Vitro\u003cbr\u003e3.7 The In Vivo Micronucleus Test\u003cbr\u003e3.8 The Unscheduled DNA Synthesis Assay\u003cbr\u003e3.9 Conclusions \u003cbr\u003e4 Ecotoxicology\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Bacterial Toxicity Testing\u003cbr\u003e4.3 Biodegradation Tests\u003cbr\u003e4.3.1 Ready Biodegradation Tests\u003cbr\u003e4.3.2 Inherent Biodegradation Tests\u003cbr\u003e4.3.3 Simulation Tests\u003cbr\u003e4.3.4 Anaerobic Biodegradation Tests\u003cbr\u003e4.4 Aquatic Toxicity Testing\u003cbr\u003e4.4.1 Acute Tests\u003cbr\u003e4.4.2 Analytical Measurements\u003cbr\u003e4.4.3 Difficult Substances\u003cbr\u003e4.4.4 Chronic Tests\u003cbr\u003e4.5 Fish Bioaccumulation Test\u003cbr\u003e4.6 Sediment Toxicity Tests\u003cbr\u003e4.7 Terrestrial Toxicity Tests\u003cbr\u003e4.7.1 Earthworms\u003cbr\u003e4.7.2 Bees and Beneficial\u003cbr\u003e4.7.3 Plant Growth Tests\u003cbr\u003e4.8 Microcosm and Mesocosm Studies\u003cbr\u003e4.9 Conclusion \u003cbr\u003e5 Physico-Chemical Properties\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Performance of the General Physico-Chemical Tests\u003cbr\u003e5.2.1 Melting Temperature\/Melting Range (OECD Test Guideline 102)\u003cbr\u003e5.2.2 Boiling Point (OECD Test Guideline 103)\u003cbr\u003e5.2.3 Vapour Pressure (OECD Test Guideline 104)\u003cbr\u003e5.2.4 Water Solubility (OECD Test Guideline 105)\u003cbr\u003e5.2.5 Partition Coefficient (OECD Test Guidelines and 117)\u003cbr\u003e5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)\u003cbr\u003e5.2.7 Density\/Relative Density (OECD Test Guideline 109)\u003cbr\u003e5.2.8 Particle Size Distribution (OECD Test Guideline 110)\u003cbr\u003e5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)\u003cbr\u003e5.2.10 Dissociation Constant (OECD Test Guideline 112)\u003cbr\u003e5.2.11 Surface Tension (OECD Test Guideline 115)\u003cbr\u003e5.2.12 Fat Solubility (OECD Test Guideline 116)\u003cbr\u003e5.3 Performance of the Polymer Specific Physico-Chemical Tests\u003cbr\u003e5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)\u003cbr\u003e5.3.2 Solution\/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)\u003cbr\u003e5.4 Performance of the Hazardous Physico-Chemical Tests\u003cbr\u003e5.4.1 Flash Point (EC Method A9)\u003cbr\u003e5.4.2 Flammable Solids (EC Method A10)\u003cbr\u003e5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)\u003cbr\u003e5.4.4 Explosive Properties (EC Method A14)\u003cbr\u003e5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)\u003cbr\u003e5.4.6 Oxidising Properties (EC Method A17)\u003cbr\u003e5.5 Order in which Physico-Chemical Tests are Performed\u003cbr\u003e5.6 Conclusion \u003cbr\u003e6 Alternatives to Animal Testing for Safety Evaluation\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Validation of Alternative Methods\u003cbr\u003e6.3 Aspects of Human Toxicity Targeted By In Vitro Assays\u003cbr\u003e6.3.1 Systemic Toxicological Properties\u003cbr\u003e6.3.2 Validated Tests Currently in Use in the EU\u003cbr\u003e6.4 Structure-Activity Relationships and Prediction of Properties\u003cbr\u003e6.5 Strategies to Minimise Use of Animals\u003cbr\u003e6.6 Future Developments and Conclusions \u003cbr\u003e7 Toxicological Assessment within a Risk Assessment Framework\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Definitions and Concepts\u003cbr\u003e7.2.1 Risk\u003cbr\u003e7.2.2 Toxicology\u003cbr\u003e7.3 Exposure Scenarios\u003cbr\u003e7.3.1 Routes of Administration\u003cbr\u003e7.3.2 Exposure Prediction\u003cbr\u003e7.4 Judgements\u003cbr\u003e7.4.1 The ‘Precautionary Principle’\u003cbr\u003e7.4.2 What Test and When?\u003cbr\u003e7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes\u003cbr\u003e7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity\u003cbr\u003e7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity\u003cbr\u003e7.5 Risk Management\u003cbr\u003e7.6 Final Word \u003cbr\u003e8 Environmental Risk Assessment\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Exposure Assessment\u003cbr\u003e8.2.1 Identification of the Target Compartments\u003cbr\u003e8.2.2 Estimation of Emissions or Releases\u003cbr\u003e8.2.3 Distribution and Degradation in the Environment (Environmental Fate)\u003cbr\u003e8.2.4 Predicted Environmental Concentrations\u003cbr\u003e8.3 Effects Assessment\u003cbr\u003e8.3.1 Estimating PNECs by Applying Uncertainty Factors\u003cbr\u003e8.3.2 The Statistical Extrapolation Method\u003cbr\u003e8.4 Risk Characterisation\u003cbr\u003e8.5 Conclusion \u003cbr\u003ePART 2: REGULATORY FRAMEWORK \u003cbr\u003e9 EU Chemical Legislation\u003cbr\u003e9.1 EU Legislation within the European Economic Area and Europe\u003cbr\u003e9.2 Notification of New Substances\u003cbr\u003e9.2.1 History of the Notification Process\u003cbr\u003e9.2.2 Data Sharing\u003cbr\u003e9.2.3 Base Set Studies for Full Notification\u003cbr\u003e9.2.4 Reduced Notification Studies\u003cbr\u003e9.2.5 Level 1 and Level 2 Notification Studies\u003cbr\u003e9.2.6 The Notification Summary Form\u003cbr\u003e9.2.7 The Sole-Representative Facility\u003cbr\u003e9.2.8 Polymers\u003cbr\u003e9.2.9 Derogations\/Exemptions from Notification\u003cbr\u003e9.2.10 Confidentiality\u003cbr\u003e9.3 Risk Assessment\u003cbr\u003e9.3.1 Human Health Risk Assessment\u003cbr\u003e9.3.2 Environment Risk Assessment\u003cbr\u003e9.4 Existing Chemicals Regulation\u003cbr\u003e9.4.1 Data Collection\u003cbr\u003e9.4.2 Priority Setting\u003cbr\u003e9.4.3 Risk Assessment\u003cbr\u003e9.5 Chemical Hazard Communication\u003cbr\u003e9.5.1 Classification and Labelling of Dangerous Substances\u003cbr\u003e9.5.2 Classification and Labelling of Dangerous Preparations\u003cbr\u003e9.5.3 Safety Data Sheets\u003cbr\u003e9.6 Transport Regulations\u003cbr\u003e9.6.1 Introduction\u003cbr\u003e9.6.2 The United Nations Transportation Classification Scheme\u003cbr\u003e9.6.3 Transport of Marine Pollutants\u003cbr\u003e9.7 National Chemical Control Measures\u003cbr\u003e9.7.1 National Product Registers\u003cbr\u003e9.7.2 German Water Hazard Classification Scheme\u003cbr\u003e9.8 Other EU Legislation for Specific Product Types\u003cbr\u003e9.8.1 Control of Cosmetics in the EU\u003cbr\u003e9.8.2 Detergents\u003cbr\u003e9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic\u003cbr\u003e9.9 Summary and Future Developments \u003cbr\u003e10 Chemical Control in Japan\u003cbr\u003e10.1 Introduction to the Japanese Regulatory Culture\u003cbr\u003e10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law\u003cbr\u003e10.2.1 Introduction\u003cbr\u003e10.2.2 The Inventory of Existing Substances\u003cbr\u003e10.2.3 Exemptions from Notification\u003cbr\u003e10.2.4 Standard Notification\u003cbr\u003e10.2.5 Polymer Notification\u003cbr\u003e10.2.6 Class I and II Specified and Designated Substances\u003cbr\u003e10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law\u003cbr\u003e10.4 Hazard Communication and Product Liability\u003cbr\u003e10.5 Other Chemical Legislation\u003cbr\u003e10.6 Summary \u003cbr\u003e11 Chemical Control in the US and the Rest of the World\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)\u003cbr\u003e11.2.1 Key Objectives of TSCA\u003cbr\u003e11.2.2 The TSCA Inventory\u003cbr\u003e11.2.3 Testing of Existing Substances\u003cbr\u003e11.2.4 Manufacturing and Processing Notices\u003cbr\u003e11.2.5 PMN Requirements\u003cbr\u003e11.2.6 Significant New Use Rules (SNURs)\u003cbr\u003e11.2.7 Exemptions from PMN\u003cbr\u003e11.3 US Occupational Safety and Health Act (OSHA)\u003cbr\u003e11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals\u003cbr\u003e11.4.1 Voluntary Challenge Programme\u003cbr\u003e11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals\u003cbr\u003e11.4.3 US Voluntary Children’s Chemical Evaluation Program\u003cbr\u003e11.5 Chemical Control Legislation in Canada\u003cbr\u003e11.5.1 The Canadian Environmental Protection Act\u003cbr\u003e11.5.2 Inventories\u003cbr\u003e11.5.3 Environmental Assessment Regulations\u003cbr\u003e11.5.4 Data Requirements for Notification\u003cbr\u003e11.5.5 Significant New Activity Notice\u003cbr\u003e11.5.6 Administration\u003cbr\u003e11.5.7 Inspection, Enforcement and Penalties\u003cbr\u003e11.5.8 Future Changes\u003cbr\u003e11.5.9 The Workplace Hazardous Materials Information System\u003cbr\u003e11.6 Chemical Control Legislation in Switzerland\u003cbr\u003e11.6.1 The Federal Law on Trade in Toxic Substances\u003cbr\u003e11.6.2 The Federal Law on Environmental Protection\u003cbr\u003e11.7 Notification of New Chemical Substances in Australia\u003cbr\u003e11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme\u003cbr\u003e11.7.2 Inventory\u003cbr\u003e11.7.3 Data Requirements for Notification\u003cbr\u003e11.7.4 Existing Substances\u003cbr\u003e11.7.5 Hazard Communication\u003cbr\u003e11.8 Chemical Control in Korea\u003cbr\u003e11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification\u003cbr\u003e11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination\u003cbr\u003e11.8.3 Hazard Communication\u003cbr\u003e11.9 Chemical Control in the Philippines\u003cbr\u003e11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act\u003cbr\u003e11.9.2 Inventory\u003cbr\u003e11.9.3 Data Requirements for Notification\u003cbr\u003e11.9.4 Administration\u003cbr\u003e11.9.5 Priority Chemicals List (PCL)\u003cbr\u003e11.10 Chemical Control in The People’s Republic of China\u003cbr\u003e11.10.1 Latest Developments\u003cbr\u003e11.10.2 First Import and Toxic Chemicals Regulations\u003cbr\u003e11.10.3 Inventory\u003cbr\u003e11.10.4 Hazard Communication\u003cbr\u003e11.11 Chemical Control in New Zealand\u003cbr\u003e11.11.1 Toxic Substances Act\u003cbr\u003e11.11.2 Resource Management Act\u003cbr\u003e11.11.3 Hazardous Substances and New Organisms Act\u003cbr\u003e11.11.4 Data Requirements for Notification\u003cbr\u003e11.11.5 Hazard Communication\u003cbr\u003e11.12 Mexico\u003cbr\u003e11.12.1 Legislation\u003cbr\u003e11.12.2 Safety Data Sheets\u003cbr\u003e11.13 Singapore\u003cbr\u003e11.14 Malaysia\u003cbr\u003e11.15 Thailand\u003cbr\u003e11.16 Indonesia\u003cbr\u003e11.17 Taiwan\u003cbr\u003e11.18 HPV Programmes\u003cbr\u003e11.18.1 OECD\u003cbr\u003e11.18.2 International Council of Chemical Associations Global Initiative\u003cbr\u003e11.19 Useful Web Sites \u003cbr\u003e12 Notification of Polymers Worldwide\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 North America\u003cbr\u003e12.2.1 USA\u003cbr\u003e12.2.2 Canada\u003cbr\u003e12.3 Asia Pacific\u003cbr\u003e12.3.1 Japan\u003cbr\u003e12.3.2 Australia\u003cbr\u003e12.3.3 New Zealand\u003cbr\u003e12.3.4 Korea\u003cbr\u003e12.3.5 Philippines\u003cbr\u003e12.3.6 China\u003cbr\u003e12.4 Europe\u003cbr\u003e12.4.1 EU\u003cbr\u003e12.4.2 Switzerland\u003cbr\u003e12.5 Overall Comparison of the Nine Polymer Notification Schemes \u003cbr\u003e13 Medical Device Regulation\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 European Economic Area\u003cbr\u003e13.2.1 Background\u003cbr\u003e13.2.2 Before Marketing\u003cbr\u003e13.2.3 After Marketing\u003cbr\u003e13.3 United States of America\u003cbr\u003e13.3.1 Background\u003cbr\u003e13.3.2 Before Marketing\u003cbr\u003e13.3.3 After Marketing\u003cbr\u003e13.4 Japan\u003cbr\u003e13.4.1 Background\u003cbr\u003e13.4.2 Before Marketing\u003cbr\u003e13.4.3 After Marketing\u003cbr\u003e13.5 Conclusion \u003cbr\u003e14 Regulation of Food Packaging in the EU and US\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Control of Food Packaging in the EU\u003cbr\u003e14.2.1 EU Framework Directive\u003cbr\u003e14.2.2 Food Contact Plastics in the EU\u003cbr\u003e14.2.3 Future Developments for Food Plastics in the EU\u003cbr\u003e14.2.4 Other EU Food Packaging Measures\u003cbr\u003e14.2.5 Strategy for Food Contact Plastic Approval in the EU\u003cbr\u003e14.3 National Controls on Food Packaging in EU Countries\u003cbr\u003e14.3.1 Germany\u003cbr\u003e14.3.2 France\u003cbr\u003e14.3.3 The Netherlands\u003cbr\u003e14.3.4 Belgium\u003cbr\u003e14.3.5 Italy\u003cbr\u003e14.4 Council of Europe Work on Food Packaging\u003cbr\u003e14.4.1 Introduction\u003cbr\u003e14.4.2 Completed Council of Europe Resolutions\u003cbr\u003e14.4.3 Council of Europe Ongoing Work\u003cbr\u003e14.5 Food Packaging in the USA\u003cbr\u003e14.5.1 Introduction\u003cbr\u003e14.5.2 History and Development of US Food Packaging Legislation\u003cbr\u003e14.5.3 The FDA Petition\u003cbr\u003e14.5.4 Threshold of Regulation Process\u003cbr\u003e14.5.5 The Pre-Marketing Notification Scheme \u003cbr\u003e15 Regulation of Biocides\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 Control of Biocides in the EU\u003cbr\u003e15.2.1 Introduction\u003cbr\u003e15.2.2 Main Features of the Directive\u003cbr\u003e15.2.3 System of Approval\u003cbr\u003e15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive\u003cbr\u003e15.2.5 Authorisation of Biocidal Products\u003cbr\u003e15.2.6 Hazard Communication\u003cbr\u003e15.2.7 The Review Programme for Existing Active Substances\u003cbr\u003e15.2.8 Technical Guidance\u003cbr\u003e15.3 Control of Biocides in the USA\u003cbr\u003e15.3.1 Introduction\u003cbr\u003e15.3.2 Data Requirements for Registration\u003cbr\u003e15.3.3 Registration Applications\u003cbr\u003e15.3.4 Data Compensation\u003cbr\u003e15.3.5 Re-Registration of Existing Pesticides\u003cbr\u003e15.3.6 Petition for a Pesticide Tolerance\u003cbr\u003e15.3.7 Regulation of Food Contact Biocides\u003cbr\u003e15.4 Regulation of Biocides in Other Countries\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides. \u003cbr\u003e\u003cbr\u003eMike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:23-04:00","created_at":"2017-06-22T21:13:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","acute","air monitoring","book","classification","dose","environment","food","hazard","health","inhalation","labelling","legislation","marine","medical","methodology","oral","p-testing","packaging","pesticide","plastics","pollutants","polymer","rubber","safety","substances control","toxic","toxicity","transport","TSCA","UN"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Chemical Safety Testing","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-372-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043","options":["Title"],"media":[{"alt":null,"id":358716768349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.J. Knight and M.B. Thomas \u003cbr\u003eISBN 978-1-85957-372-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances. \u003cbr\u003e\u003cbr\u003eHealth and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R\u0026amp;D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required. \u003cbr\u003e\u003cbr\u003eA Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results. \u003cbr\u003e\u003cbr\u003eThere is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment. \u003cbr\u003e\u003cbr\u003eEcotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals. \u003cbr\u003e\u003cbr\u003eRegulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers. \u003cbr\u003e\u003cbr\u003eThis book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Purpose of the Book\u003cbr\u003e1.2 Purpose of Safety Evaluation\u003cbr\u003e1.3 Safety Studies\u003cbr\u003e1.4 Risk Assessment and Safety Data\u003cbr\u003e1.5 Regulatory Schemes\u003cbr\u003e1.6 Summary \u003cbr\u003e2 Mammalian Toxicology\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Acute Toxicity Studies\u003cbr\u003e2.2.1 Nature and Relevance of Tests\u003cbr\u003e2.2.2 Methodology\u003cbr\u003e2.2.3 Acute Oral Toxicity Studies\u003cbr\u003e2.2.4 Dermal Toxicity Studies\u003cbr\u003e2.2.5 Inhalation Toxicity Studies\u003cbr\u003e2.2.6 Alternative Acute Oral Toxicity Methods\u003cbr\u003e2.2.7 Local Tolerance Tests\u003cbr\u003e2.2.8 Contact Sensitisation\u003cbr\u003e2.3 Repeated Dose Toxicity Studies\u003cbr\u003e2.3.1 Nature and Relevance of Tests\u003cbr\u003e2.3.2 Importance of Repeated Dose Toxicity\u003cbr\u003e2.3.3 Methodology\u003cbr\u003e2.4 Reproduction Toxicology\u003cbr\u003e2.4.1 Nature and Relevance of Tests\u003cbr\u003e2.4.2 Methodology\u003cbr\u003e2.4.3 Alternative Approaches\u003cbr\u003e2.5 Carcinogenicity\u003cbr\u003e2.5.1 Nature and Relevance of Tests\u003cbr\u003e2.5.2 Methodology\u003cbr\u003e2.5.3 Dose Levels\u003cbr\u003e2.5.4 Conduct of Study\u003cbr\u003e2.5.5 Data Evaluation\u003cbr\u003e2.5.6 Risk Assessment\u003cbr\u003e2.5.7 Alternative Approaches\u003cbr\u003e2.6 Medical Device Testing\u003cbr\u003e2.6.1 Exposure Routes\u003cbr\u003e2.6.2 Dose Preparation\u003cbr\u003e2.6.3 Cytotoxicity Testing of Medical Devices \u003cbr\u003e3 Genetic Toxicology\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Mechanisms of Mutation – Genes and Chromosomes\u003cbr\u003e3.3 Standard Genetic Toxicology Assays\u003cbr\u003e3.4 Bacterial Mutagenicity Assays\u003cbr\u003e3.5 Chromosome Aberration Tests In Vitro\u003cbr\u003e3.6 Mammalian Cell Gene Mutation Assays In Vitro\u003cbr\u003e3.7 The In Vivo Micronucleus Test\u003cbr\u003e3.8 The Unscheduled DNA Synthesis Assay\u003cbr\u003e3.9 Conclusions \u003cbr\u003e4 Ecotoxicology\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Bacterial Toxicity Testing\u003cbr\u003e4.3 Biodegradation Tests\u003cbr\u003e4.3.1 Ready Biodegradation Tests\u003cbr\u003e4.3.2 Inherent Biodegradation Tests\u003cbr\u003e4.3.3 Simulation Tests\u003cbr\u003e4.3.4 Anaerobic Biodegradation Tests\u003cbr\u003e4.4 Aquatic Toxicity Testing\u003cbr\u003e4.4.1 Acute Tests\u003cbr\u003e4.4.2 Analytical Measurements\u003cbr\u003e4.4.3 Difficult Substances\u003cbr\u003e4.4.4 Chronic Tests\u003cbr\u003e4.5 Fish Bioaccumulation Test\u003cbr\u003e4.6 Sediment Toxicity Tests\u003cbr\u003e4.7 Terrestrial Toxicity Tests\u003cbr\u003e4.7.1 Earthworms\u003cbr\u003e4.7.2 Bees and Beneficial\u003cbr\u003e4.7.3 Plant Growth Tests\u003cbr\u003e4.8 Microcosm and Mesocosm Studies\u003cbr\u003e4.9 Conclusion \u003cbr\u003e5 Physico-Chemical Properties\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Performance of the General Physico-Chemical Tests\u003cbr\u003e5.2.1 Melting Temperature\/Melting Range (OECD Test Guideline 102)\u003cbr\u003e5.2.2 Boiling Point (OECD Test Guideline 103)\u003cbr\u003e5.2.3 Vapour Pressure (OECD Test Guideline 104)\u003cbr\u003e5.2.4 Water Solubility (OECD Test Guideline 105)\u003cbr\u003e5.2.5 Partition Coefficient (OECD Test Guidelines and 117)\u003cbr\u003e5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)\u003cbr\u003e5.2.7 Density\/Relative Density (OECD Test Guideline 109)\u003cbr\u003e5.2.8 Particle Size Distribution (OECD Test Guideline 110)\u003cbr\u003e5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)\u003cbr\u003e5.2.10 Dissociation Constant (OECD Test Guideline 112)\u003cbr\u003e5.2.11 Surface Tension (OECD Test Guideline 115)\u003cbr\u003e5.2.12 Fat Solubility (OECD Test Guideline 116)\u003cbr\u003e5.3 Performance of the Polymer Specific Physico-Chemical Tests\u003cbr\u003e5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)\u003cbr\u003e5.3.2 Solution\/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)\u003cbr\u003e5.4 Performance of the Hazardous Physico-Chemical Tests\u003cbr\u003e5.4.1 Flash Point (EC Method A9)\u003cbr\u003e5.4.2 Flammable Solids (EC Method A10)\u003cbr\u003e5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)\u003cbr\u003e5.4.4 Explosive Properties (EC Method A14)\u003cbr\u003e5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)\u003cbr\u003e5.4.6 Oxidising Properties (EC Method A17)\u003cbr\u003e5.5 Order in which Physico-Chemical Tests are Performed\u003cbr\u003e5.6 Conclusion \u003cbr\u003e6 Alternatives to Animal Testing for Safety Evaluation\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Validation of Alternative Methods\u003cbr\u003e6.3 Aspects of Human Toxicity Targeted By In Vitro Assays\u003cbr\u003e6.3.1 Systemic Toxicological Properties\u003cbr\u003e6.3.2 Validated Tests Currently in Use in the EU\u003cbr\u003e6.4 Structure-Activity Relationships and Prediction of Properties\u003cbr\u003e6.5 Strategies to Minimise Use of Animals\u003cbr\u003e6.6 Future Developments and Conclusions \u003cbr\u003e7 Toxicological Assessment within a Risk Assessment Framework\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Definitions and Concepts\u003cbr\u003e7.2.1 Risk\u003cbr\u003e7.2.2 Toxicology\u003cbr\u003e7.3 Exposure Scenarios\u003cbr\u003e7.3.1 Routes of Administration\u003cbr\u003e7.3.2 Exposure Prediction\u003cbr\u003e7.4 Judgements\u003cbr\u003e7.4.1 The ‘Precautionary Principle’\u003cbr\u003e7.4.2 What Test and When?\u003cbr\u003e7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes\u003cbr\u003e7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity\u003cbr\u003e7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity\u003cbr\u003e7.5 Risk Management\u003cbr\u003e7.6 Final Word \u003cbr\u003e8 Environmental Risk Assessment\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Exposure Assessment\u003cbr\u003e8.2.1 Identification of the Target Compartments\u003cbr\u003e8.2.2 Estimation of Emissions or Releases\u003cbr\u003e8.2.3 Distribution and Degradation in the Environment (Environmental Fate)\u003cbr\u003e8.2.4 Predicted Environmental Concentrations\u003cbr\u003e8.3 Effects Assessment\u003cbr\u003e8.3.1 Estimating PNECs by Applying Uncertainty Factors\u003cbr\u003e8.3.2 The Statistical Extrapolation Method\u003cbr\u003e8.4 Risk Characterisation\u003cbr\u003e8.5 Conclusion \u003cbr\u003ePART 2: REGULATORY FRAMEWORK \u003cbr\u003e9 EU Chemical Legislation\u003cbr\u003e9.1 EU Legislation within the European Economic Area and Europe\u003cbr\u003e9.2 Notification of New Substances\u003cbr\u003e9.2.1 History of the Notification Process\u003cbr\u003e9.2.2 Data Sharing\u003cbr\u003e9.2.3 Base Set Studies for Full Notification\u003cbr\u003e9.2.4 Reduced Notification Studies\u003cbr\u003e9.2.5 Level 1 and Level 2 Notification Studies\u003cbr\u003e9.2.6 The Notification Summary Form\u003cbr\u003e9.2.7 The Sole-Representative Facility\u003cbr\u003e9.2.8 Polymers\u003cbr\u003e9.2.9 Derogations\/Exemptions from Notification\u003cbr\u003e9.2.10 Confidentiality\u003cbr\u003e9.3 Risk Assessment\u003cbr\u003e9.3.1 Human Health Risk Assessment\u003cbr\u003e9.3.2 Environment Risk Assessment\u003cbr\u003e9.4 Existing Chemicals Regulation\u003cbr\u003e9.4.1 Data Collection\u003cbr\u003e9.4.2 Priority Setting\u003cbr\u003e9.4.3 Risk Assessment\u003cbr\u003e9.5 Chemical Hazard Communication\u003cbr\u003e9.5.1 Classification and Labelling of Dangerous Substances\u003cbr\u003e9.5.2 Classification and Labelling of Dangerous Preparations\u003cbr\u003e9.5.3 Safety Data Sheets\u003cbr\u003e9.6 Transport Regulations\u003cbr\u003e9.6.1 Introduction\u003cbr\u003e9.6.2 The United Nations Transportation Classification Scheme\u003cbr\u003e9.6.3 Transport of Marine Pollutants\u003cbr\u003e9.7 National Chemical Control Measures\u003cbr\u003e9.7.1 National Product Registers\u003cbr\u003e9.7.2 German Water Hazard Classification Scheme\u003cbr\u003e9.8 Other EU Legislation for Specific Product Types\u003cbr\u003e9.8.1 Control of Cosmetics in the EU\u003cbr\u003e9.8.2 Detergents\u003cbr\u003e9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic\u003cbr\u003e9.9 Summary and Future Developments \u003cbr\u003e10 Chemical Control in Japan\u003cbr\u003e10.1 Introduction to the Japanese Regulatory Culture\u003cbr\u003e10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law\u003cbr\u003e10.2.1 Introduction\u003cbr\u003e10.2.2 The Inventory of Existing Substances\u003cbr\u003e10.2.3 Exemptions from Notification\u003cbr\u003e10.2.4 Standard Notification\u003cbr\u003e10.2.5 Polymer Notification\u003cbr\u003e10.2.6 Class I and II Specified and Designated Substances\u003cbr\u003e10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law\u003cbr\u003e10.4 Hazard Communication and Product Liability\u003cbr\u003e10.5 Other Chemical Legislation\u003cbr\u003e10.6 Summary \u003cbr\u003e11 Chemical Control in the US and the Rest of the World\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)\u003cbr\u003e11.2.1 Key Objectives of TSCA\u003cbr\u003e11.2.2 The TSCA Inventory\u003cbr\u003e11.2.3 Testing of Existing Substances\u003cbr\u003e11.2.4 Manufacturing and Processing Notices\u003cbr\u003e11.2.5 PMN Requirements\u003cbr\u003e11.2.6 Significant New Use Rules (SNURs)\u003cbr\u003e11.2.7 Exemptions from PMN\u003cbr\u003e11.3 US Occupational Safety and Health Act (OSHA)\u003cbr\u003e11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals\u003cbr\u003e11.4.1 Voluntary Challenge Programme\u003cbr\u003e11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals\u003cbr\u003e11.4.3 US Voluntary Children’s Chemical Evaluation Program\u003cbr\u003e11.5 Chemical Control Legislation in Canada\u003cbr\u003e11.5.1 The Canadian Environmental Protection Act\u003cbr\u003e11.5.2 Inventories\u003cbr\u003e11.5.3 Environmental Assessment Regulations\u003cbr\u003e11.5.4 Data Requirements for Notification\u003cbr\u003e11.5.5 Significant New Activity Notice\u003cbr\u003e11.5.6 Administration\u003cbr\u003e11.5.7 Inspection, Enforcement and Penalties\u003cbr\u003e11.5.8 Future Changes\u003cbr\u003e11.5.9 The Workplace Hazardous Materials Information System\u003cbr\u003e11.6 Chemical Control Legislation in Switzerland\u003cbr\u003e11.6.1 The Federal Law on Trade in Toxic Substances\u003cbr\u003e11.6.2 The Federal Law on Environmental Protection\u003cbr\u003e11.7 Notification of New Chemical Substances in Australia\u003cbr\u003e11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme\u003cbr\u003e11.7.2 Inventory\u003cbr\u003e11.7.3 Data Requirements for Notification\u003cbr\u003e11.7.4 Existing Substances\u003cbr\u003e11.7.5 Hazard Communication\u003cbr\u003e11.8 Chemical Control in Korea\u003cbr\u003e11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification\u003cbr\u003e11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination\u003cbr\u003e11.8.3 Hazard Communication\u003cbr\u003e11.9 Chemical Control in the Philippines\u003cbr\u003e11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act\u003cbr\u003e11.9.2 Inventory\u003cbr\u003e11.9.3 Data Requirements for Notification\u003cbr\u003e11.9.4 Administration\u003cbr\u003e11.9.5 Priority Chemicals List (PCL)\u003cbr\u003e11.10 Chemical Control in The People’s Republic of China\u003cbr\u003e11.10.1 Latest Developments\u003cbr\u003e11.10.2 First Import and Toxic Chemicals Regulations\u003cbr\u003e11.10.3 Inventory\u003cbr\u003e11.10.4 Hazard Communication\u003cbr\u003e11.11 Chemical Control in New Zealand\u003cbr\u003e11.11.1 Toxic Substances Act\u003cbr\u003e11.11.2 Resource Management Act\u003cbr\u003e11.11.3 Hazardous Substances and New Organisms Act\u003cbr\u003e11.11.4 Data Requirements for Notification\u003cbr\u003e11.11.5 Hazard Communication\u003cbr\u003e11.12 Mexico\u003cbr\u003e11.12.1 Legislation\u003cbr\u003e11.12.2 Safety Data Sheets\u003cbr\u003e11.13 Singapore\u003cbr\u003e11.14 Malaysia\u003cbr\u003e11.15 Thailand\u003cbr\u003e11.16 Indonesia\u003cbr\u003e11.17 Taiwan\u003cbr\u003e11.18 HPV Programmes\u003cbr\u003e11.18.1 OECD\u003cbr\u003e11.18.2 International Council of Chemical Associations Global Initiative\u003cbr\u003e11.19 Useful Web Sites \u003cbr\u003e12 Notification of Polymers Worldwide\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 North America\u003cbr\u003e12.2.1 USA\u003cbr\u003e12.2.2 Canada\u003cbr\u003e12.3 Asia Pacific\u003cbr\u003e12.3.1 Japan\u003cbr\u003e12.3.2 Australia\u003cbr\u003e12.3.3 New Zealand\u003cbr\u003e12.3.4 Korea\u003cbr\u003e12.3.5 Philippines\u003cbr\u003e12.3.6 China\u003cbr\u003e12.4 Europe\u003cbr\u003e12.4.1 EU\u003cbr\u003e12.4.2 Switzerland\u003cbr\u003e12.5 Overall Comparison of the Nine Polymer Notification Schemes \u003cbr\u003e13 Medical Device Regulation\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 European Economic Area\u003cbr\u003e13.2.1 Background\u003cbr\u003e13.2.2 Before Marketing\u003cbr\u003e13.2.3 After Marketing\u003cbr\u003e13.3 United States of America\u003cbr\u003e13.3.1 Background\u003cbr\u003e13.3.2 Before Marketing\u003cbr\u003e13.3.3 After Marketing\u003cbr\u003e13.4 Japan\u003cbr\u003e13.4.1 Background\u003cbr\u003e13.4.2 Before Marketing\u003cbr\u003e13.4.3 After Marketing\u003cbr\u003e13.5 Conclusion \u003cbr\u003e14 Regulation of Food Packaging in the EU and US\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Control of Food Packaging in the EU\u003cbr\u003e14.2.1 EU Framework Directive\u003cbr\u003e14.2.2 Food Contact Plastics in the EU\u003cbr\u003e14.2.3 Future Developments for Food Plastics in the EU\u003cbr\u003e14.2.4 Other EU Food Packaging Measures\u003cbr\u003e14.2.5 Strategy for Food Contact Plastic Approval in the EU\u003cbr\u003e14.3 National Controls on Food Packaging in EU Countries\u003cbr\u003e14.3.1 Germany\u003cbr\u003e14.3.2 France\u003cbr\u003e14.3.3 The Netherlands\u003cbr\u003e14.3.4 Belgium\u003cbr\u003e14.3.5 Italy\u003cbr\u003e14.4 Council of Europe Work on Food Packaging\u003cbr\u003e14.4.1 Introduction\u003cbr\u003e14.4.2 Completed Council of Europe Resolutions\u003cbr\u003e14.4.3 Council of Europe Ongoing Work\u003cbr\u003e14.5 Food Packaging in the USA\u003cbr\u003e14.5.1 Introduction\u003cbr\u003e14.5.2 History and Development of US Food Packaging Legislation\u003cbr\u003e14.5.3 The FDA Petition\u003cbr\u003e14.5.4 Threshold of Regulation Process\u003cbr\u003e14.5.5 The Pre-Marketing Notification Scheme \u003cbr\u003e15 Regulation of Biocides\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 Control of Biocides in the EU\u003cbr\u003e15.2.1 Introduction\u003cbr\u003e15.2.2 Main Features of the Directive\u003cbr\u003e15.2.3 System of Approval\u003cbr\u003e15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive\u003cbr\u003e15.2.5 Authorisation of Biocidal Products\u003cbr\u003e15.2.6 Hazard Communication\u003cbr\u003e15.2.7 The Review Programme for Existing Active Substances\u003cbr\u003e15.2.8 Technical Guidance\u003cbr\u003e15.3 Control of Biocides in the USA\u003cbr\u003e15.3.1 Introduction\u003cbr\u003e15.3.2 Data Requirements for Registration\u003cbr\u003e15.3.3 Registration Applications\u003cbr\u003e15.3.4 Data Compensation\u003cbr\u003e15.3.5 Re-Registration of Existing Pesticides\u003cbr\u003e15.3.6 Petition for a Pesticide Tolerance\u003cbr\u003e15.3.7 Regulation of Food Contact Biocides\u003cbr\u003e15.4 Regulation of Biocides in Other Countries\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides. \u003cbr\u003e\u003cbr\u003eMike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Smo...
$130.00
{"id":11242255172,"title":"Practical Guide to Smoke and Combustion Products from Burning PolymersGeneration, Assessment and Control","handle":"978-1-84735-442-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sergei Levchik, Marcelo Hirschler and Edward Weil \u003cbr\u003eISBN 978-1-84735-442-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Practical Guide presents one of the complete overviews of this important topic, covering smoke generation (including obscuration, toxicity, corrosivity), small and large scale smoke assessment, regulation of smoke, and methods of controlling smoke by plastics formulation. In particular, this book focuses on the assessment of fire hazard and fire risks from combustion products and is an important book for plastics processors, regulatory personnel, and fire research and safety engineers. \u003cbr\u003e\u003cbr\u003eThis book presents a state of the art overview of smoke formation from natural and synthetic polymeric materials. Also presented is a discussion on why different commercial polymers have different intrinsic tendencies to generate smoke and ways in which smoke generation can be assessed. Mechanisms and general approaches for decreasing smoke formation are examined.\u003cbr\u003e\u003cbr\u003eThis book also gives an overview of flammability tests for measuring smoke formation. In particular, the criticality of assessing smoke formation in realistic scale is discussed. An overview is provided of regulations, codes, and standards for critical application of polymeric materials where smoke generation is controlled. Common commercial approaches to decrease smoke formation in specific polymer systems and for specific applications are also presented. Finally, a balanced opinion on the controversial issue of smoke and associated combustion gases is given.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:30-04:00","created_at":"2017-06-22T21:15:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","combustion","corrosivity","flammability","hazard","p-testing","plastics","polymer","smoke","toxicity"],"price":13000,"price_min":13000,"price_max":13000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378490692,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Smoke and Combustion Products from Burning PolymersGeneration, Assessment and Control","public_title":null,"options":["Default Title"],"price":13000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-442-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061","options":["Title"],"media":[{"alt":null,"id":358722928733,"position":1,"preview_image":{"aspect_ratio":0.667,"height":499,"width":333,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061"},"aspect_ratio":0.667,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061","width":333}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sergei Levchik, Marcelo Hirschler and Edward Weil \u003cbr\u003eISBN 978-1-84735-442-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Practical Guide presents one of the complete overviews of this important topic, covering smoke generation (including obscuration, toxicity, corrosivity), small and large scale smoke assessment, regulation of smoke, and methods of controlling smoke by plastics formulation. In particular, this book focuses on the assessment of fire hazard and fire risks from combustion products and is an important book for plastics processors, regulatory personnel, and fire research and safety engineers. \u003cbr\u003e\u003cbr\u003eThis book presents a state of the art overview of smoke formation from natural and synthetic polymeric materials. Also presented is a discussion on why different commercial polymers have different intrinsic tendencies to generate smoke and ways in which smoke generation can be assessed. Mechanisms and general approaches for decreasing smoke formation are examined.\u003cbr\u003e\u003cbr\u003eThis book also gives an overview of flammability tests for measuring smoke formation. In particular, the criticality of assessing smoke formation in realistic scale is discussed. An overview is provided of regulations, codes, and standards for critical application of polymeric materials where smoke generation is controlled. Common commercial approaches to decrease smoke formation in specific polymer systems and for specific applications are also presented. Finally, a balanced opinion on the controversial issue of smoke and associated combustion gases is given.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to the...
$350.00
{"id":11242209412,"title":"Practical Guide to the Assessment of the Useful Life of Plastics","handle":"978-1-85957-312-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown and J.H. Greenwood \u003cbr\u003eISBN 978-1-85957-312-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e\u003cspan\u003e \u003cbr\u003e\u003c\/span\u003epages 180\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' Lifetime expectancy is often many years, the service conditions may be complex, and there is a scarcity of definitive data on durability. The situation is complicated by the fact that there are a vast number of degradation agents, service conditions, properties of importance and different plastics. \u003cbr\u003e\u003cbr\u003eThere are many inherent difficulties in designing durability tests. In many cases, the time scale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003e\u003cbr\u003eMost assessments of the lifetime of plastics are made by considering some measure of performance, such as impact strength, and specifying some lower limit for the property, which is taken as the endpoint. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as the number of cycles of use.\u003cbr\u003e\u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of plastics. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximise the effectiveness of a durability-testing programme. \u003cbr\u003e\u003cbr\u003eThis guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation. The test procedures used are outlined and the relevant textbooks and international standards are well referenced. Examples of lifetime testing studies are cited.\u003cbr\u003e\u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing plastic components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Definition of the Polymer\u003cbr\u003e3. What is Failure?\u003cbr\u003e4. Agents and Mechanisms of Degradation\u003cbr\u003e5. Real and Simulated Service Conditions\u003cbr\u003e6. Accelerated Tests\u003cbr\u003e7. Parameters to Monitor Degradation\u003cbr\u003e8. Prediction Techniques\u003cbr\u003e9. Limitations, Pitfalls, and Uncertainties\u003cbr\u003e10. Condition Monitoring and Residual Life Assessment\u003cbr\u003e11. Data Available\u003cbr\u003e12. Examples of Current Practice\u003cbr\u003e13. Conclusion\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eRoger Brown\u003c\/strong\u003e is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. John Greenwood\u003c\/strong\u003e studied at Cambridge and has worked for over thirty years on non-metallic materials for companies in America and Europe. He is an authority on mechanical testing and lifetime prediction of polymer and composite materials including pipes and geosynthetics. He has published extensively, including patents, and is the convenor of working groups for the\u003cbr\u003estandardisation of geotextiles and fuel pipes. He is currently non-metals\u003cbr\u003econsultant at ERA.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:06-04:00","created_at":"2017-06-22T21:13:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","accelerated tests","book","conditions","degradation","durability","durability-testing","failure","p-testing","plastics","polymer","testing","weathering"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378329924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to the Assessment of the Useful Life of Plastics","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-312-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651","options":["Title"],"media":[{"alt":null,"id":358723780701,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown and J.H. Greenwood \u003cbr\u003eISBN 978-1-85957-312-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e\u003cspan\u003e \u003cbr\u003e\u003c\/span\u003epages 180\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' Lifetime expectancy is often many years, the service conditions may be complex, and there is a scarcity of definitive data on durability. The situation is complicated by the fact that there are a vast number of degradation agents, service conditions, properties of importance and different plastics. \u003cbr\u003e\u003cbr\u003eThere are many inherent difficulties in designing durability tests. In many cases, the time scale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003e\u003cbr\u003eMost assessments of the lifetime of plastics are made by considering some measure of performance, such as impact strength, and specifying some lower limit for the property, which is taken as the endpoint. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as the number of cycles of use.\u003cbr\u003e\u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of plastics. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximise the effectiveness of a durability-testing programme. \u003cbr\u003e\u003cbr\u003eThis guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation. The test procedures used are outlined and the relevant textbooks and international standards are well referenced. Examples of lifetime testing studies are cited.\u003cbr\u003e\u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing plastic components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Definition of the Polymer\u003cbr\u003e3. What is Failure?\u003cbr\u003e4. Agents and Mechanisms of Degradation\u003cbr\u003e5. Real and Simulated Service Conditions\u003cbr\u003e6. Accelerated Tests\u003cbr\u003e7. Parameters to Monitor Degradation\u003cbr\u003e8. Prediction Techniques\u003cbr\u003e9. Limitations, Pitfalls, and Uncertainties\u003cbr\u003e10. Condition Monitoring and Residual Life Assessment\u003cbr\u003e11. Data Available\u003cbr\u003e12. Examples of Current Practice\u003cbr\u003e13. Conclusion\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eRoger Brown\u003c\/strong\u003e is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. John Greenwood\u003c\/strong\u003e studied at Cambridge and has worked for over thirty years on non-metallic materials for companies in America and Europe. He is an authority on mechanical testing and lifetime prediction of polymer and composite materials including pipes and geosynthetics. He has published extensively, including patents, and is the convenor of working groups for the\u003cbr\u003estandardisation of geotextiles and fuel pipes. He is currently non-metals\u003cbr\u003econsultant at ERA.\u003cbr\u003e\u003cbr\u003e"}
Progress in Understand...
$135.00
{"id":11242242756,"title":"Progress in Understanding of Polymer Crystallization","handle":"978-3-540-47305-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds.: Günter Reiter, Gert R. Strobl \u003cbr\u003eISBN 978-3-540-47305-3 \u003cbr\u003e\u003cbr\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003epages 506, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel general views and concepts which help to advance our understanding of polymer crystallisation\u003c\/li\u003e\n\u003cli\u003enucleation phenomena\u003c\/li\u003e\n\u003cli\u003elong living melt structures affecting crystallization\u003c\/li\u003e\n\u003cli\u003econfinement effects on crystallization\u003c\/li\u003e\n\u003cli\u003ecrystallization in flowing melts\u003c\/li\u003e\n\u003cli\u003efluid mobility restrictions caused by crystallites\u003c\/li\u003e\n\u003cli\u003ethe role of mesophases in the crystal formation\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eand presents new ideas in a connected and accessible way.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Shifting Paradigms in Polymer Crystallization.\u003cbr\u003e2. Theoretical aspects of the Equilibrium State of Chain Crystals.\u003cbr\u003e3. Intramolecular Crystal Nucleation.\u003cbr\u003e4. Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation.\u003cbr\u003e5. Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow.\u003cbr\u003e6. Structure Formation and Glass Transition in Oriented Poly(ethylene terephthalate).\u003cbr\u003e7. How Do Orientation Fluctuations Evolve to Crystals?.\u003cbr\u003e8. Role of Chain Entanglement Network on Formation of FlowInduced Crystallization Precursor Structure.\u003cbr\u003e9. Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol.\u003cbr\u003e10. Small Angle Scattering Study of Polyethylene Crystallization from Solutions.\u003cbr\u003e11. Morphologies of Polymer Crystals in Thin Films.\u003cbr\u003e12. Crystallization of Frustrated Alkyl Groups in Polymeric Systems Containing Octadecylmethacrylate.\u003cbr\u003e13. Crystallization in Block Copolymers with More than one Crystallizable Block.\u003cbr\u003e14. Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and CrystalMelt Interface.\u003cbr\u003e15. The Role of the Interphase on the Chain Mobility and Melting of SemiCrystalline Polymers; a Study on Polyethylenes.\u003cbr\u003e16. Polymer Crystallization under High Cooling Rate and Pressure: a Step Towards Polymer Processing Conditions.\u003cbr\u003e17. StressInduced Phase Transitions in MetalloceneMade Isotactic Polypropylene.\u003cbr\u003e18. Insights into Polymer Crystallization from InSitu Atomic Force Microscopy.\u003cbr\u003e19. Temperature and Molecular Weight Dependencies of Polymer Crystallization.\u003cbr\u003e20. StepScan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene.\u003cbr\u003e21.Order and Segmental Mobility in Crystallizing Polymers.\u003cbr\u003e22. Atomistic Simulation of Polymer Melt Crystallization by Molecular Dynamics.\u003cbr\u003e23. A Multiphase Model Describing Polymer","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","acrylic polymers","anti-corrosion polymers","application polymer blends and composite","block copolymers","book","confinement effects","crystallization","eemicrystalline","flowing melts","fluid mobility","melt structures","mesophases","Monte Carlo","morphologies","nucleation phenomena","p-testing","polyamide 4.6","polyamide 6","polyethylene","polymer","polymer crystals","simulations","solutions","thin films"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Progress in Understanding of Polymer Crystallization","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-47305-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953","options":["Title"],"media":[{"alt":null,"id":358724567133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds.: Günter Reiter, Gert R. Strobl \u003cbr\u003eISBN 978-3-540-47305-3 \u003cbr\u003e\u003cbr\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003epages 506, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel general views and concepts which help to advance our understanding of polymer crystallisation\u003c\/li\u003e\n\u003cli\u003enucleation phenomena\u003c\/li\u003e\n\u003cli\u003elong living melt structures affecting crystallization\u003c\/li\u003e\n\u003cli\u003econfinement effects on crystallization\u003c\/li\u003e\n\u003cli\u003ecrystallization in flowing melts\u003c\/li\u003e\n\u003cli\u003efluid mobility restrictions caused by crystallites\u003c\/li\u003e\n\u003cli\u003ethe role of mesophases in the crystal formation\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eand presents new ideas in a connected and accessible way.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Shifting Paradigms in Polymer Crystallization.\u003cbr\u003e2. Theoretical aspects of the Equilibrium State of Chain Crystals.\u003cbr\u003e3. Intramolecular Crystal Nucleation.\u003cbr\u003e4. Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation.\u003cbr\u003e5. Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow.\u003cbr\u003e6. Structure Formation and Glass Transition in Oriented Poly(ethylene terephthalate).\u003cbr\u003e7. How Do Orientation Fluctuations Evolve to Crystals?.\u003cbr\u003e8. Role of Chain Entanglement Network on Formation of FlowInduced Crystallization Precursor Structure.\u003cbr\u003e9. Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol.\u003cbr\u003e10. Small Angle Scattering Study of Polyethylene Crystallization from Solutions.\u003cbr\u003e11. Morphologies of Polymer Crystals in Thin Films.\u003cbr\u003e12. Crystallization of Frustrated Alkyl Groups in Polymeric Systems Containing Octadecylmethacrylate.\u003cbr\u003e13. Crystallization in Block Copolymers with More than one Crystallizable Block.\u003cbr\u003e14. Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and CrystalMelt Interface.\u003cbr\u003e15. The Role of the Interphase on the Chain Mobility and Melting of SemiCrystalline Polymers; a Study on Polyethylenes.\u003cbr\u003e16. Polymer Crystallization under High Cooling Rate and Pressure: a Step Towards Polymer Processing Conditions.\u003cbr\u003e17. StressInduced Phase Transitions in MetalloceneMade Isotactic Polypropylene.\u003cbr\u003e18. Insights into Polymer Crystallization from InSitu Atomic Force Microscopy.\u003cbr\u003e19. Temperature and Molecular Weight Dependencies of Polymer Crystallization.\u003cbr\u003e20. StepScan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene.\u003cbr\u003e21.Order and Segmental Mobility in Crystallizing Polymers.\u003cbr\u003e22. Atomistic Simulation of Polymer Melt Crystallization by Molecular Dynamics.\u003cbr\u003e23. A Multiphase Model Describing Polymer"}
Solid-State NMR of Pol...
$115.00
{"id":11242215812,"title":"Solid-State NMR of Polymers","handle":"978-1-85957-272-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Mirau \u003cbr\u003eISBN 978-1-85957-272-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 144, Figures: 43, Tables: 2\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNMR spectroscopy has emerged as one of the most important methods for the solid-state characterization of polymers. This report gives an overview of the methods and applications of NMR to relevant polymer problems with an emphasis on how NMR can be used for materials characterization and to understand structure-property relationships in polymers. This report is of interest to both the chemical and pharmaceutical industry. \u003cbr\u003e\u003cbr\u003eThe review begins with a discussion of the fundamental principles which underpin solid-state NMR, before leading onto the experimental methods involved, including magic-angle sample spinning, and multi-dimensional NMR. A section is then devoted to polymer structure and conformation, including information on semicrystalline polymers. Polymer morphology is detailed, with a focus on polymer crystallinity and blends. The review is completed with a discussion on polymer dynamics, with particular emphasis on semicrystalline, as well as amorphous, polymers. \u003cbr\u003eThe book comprises a concise expert overview, accompanied by an indexed section containing approximately four hundred references and abstracts from the Rapra Abstracts database. These will provide the reader of this report with a valuable reference for further information relating to the study of polymer microstructure using solid-state NMR.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Fundamental Principles 1.2 Solid-State NMR \u003cbr\u003e1.2.1 Chemical Shift Anisotropy and Magic-Angle Spinning \u003cbr\u003e1.2.2 Dipolar Couplings \u003cbr\u003e1.3 Experimental Methods\u003cbr\u003e1.3.1 Cross Polarization \u003cbr\u003e1.3.2 Magic-Angle Sample Spinning \u003cbr\u003e1.3.3 NMR Relaxation in Solids\u003cbr\u003e1.3.4 Solid-State Proton NMR\u003cbr\u003e1.3.5 Wideline NMR\u003cbr\u003e1.3.6 Multi-Dimensional NM.R\u003cbr\u003e2. Polymer Structure and Conformation \u003cbr\u003e2.1 Semicrystalline Polymers \u003cbr\u003e2.2 Amorphous Polymers \u003cbr\u003e2.3 Rubbers \u003cbr\u003e2.4 Polymer Reactivity and Curing \u003cbr\u003e2.5 Other Studies\u003cbr\u003e3 Polymer Morphology \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.1.1Polymer Crystallinity \u003cbr\u003e3.1.2 Spin Diffusion and Polymer Morphology \u003cbr\u003e3.2 Semicrystalline Polymers \u003cbr\u003e3.3 Polymer Blends \u003cbr\u003e3.4 Multiphase Polymers \u003cbr\u003e4. Polymer Dynamics \u003cbr\u003e4.1 Semicrystalline Polymers\u003cbr\u003e4.2 Amorphous Polymers \u003cbr\u003e4.3 Polymer Blends \u003cbr\u003e4.4 Multiphase Polymers \u003cbr\u003eAbbreviations \u003cbr\u003eAdditional References \u003cbr\u003eReferences from the Rapra Abstracts Database\u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Mirau holds the position of Distinguished Member of Technical Staff at Bell Laboratories, AT\u0026amp;T and Lucent Technologies, New Jersey, USA. He has published widely on solid-state NMR and is a member of the American Chemical Society, the American Physical Society as well as the American Association for the Advancement of Science.","published_at":"2017-06-22T21:13:27-04:00","created_at":"2017-06-22T21:13:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","blends","book","characterization","crystallinity","magic-angle","material","morphology","multi-dimensional","NMR","p-testing","polymer","polymers","semicrystalline","spectroscopy","structure"],"price":11500,"price_min":11500,"price_max":11500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378355780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Solid-State NMR of Polymers","public_title":null,"options":["Default Title"],"price":11500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-272-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-272-6.jpg?v=1499913835"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-272-6.jpg?v=1499913835","options":["Title"],"media":[{"alt":null,"id":358755565661,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-272-6.jpg?v=1499913835"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-272-6.jpg?v=1499913835","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Mirau \u003cbr\u003eISBN 978-1-85957-272-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 144, Figures: 43, Tables: 2\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNMR spectroscopy has emerged as one of the most important methods for the solid-state characterization of polymers. This report gives an overview of the methods and applications of NMR to relevant polymer problems with an emphasis on how NMR can be used for materials characterization and to understand structure-property relationships in polymers. This report is of interest to both the chemical and pharmaceutical industry. \u003cbr\u003e\u003cbr\u003eThe review begins with a discussion of the fundamental principles which underpin solid-state NMR, before leading onto the experimental methods involved, including magic-angle sample spinning, and multi-dimensional NMR. A section is then devoted to polymer structure and conformation, including information on semicrystalline polymers. Polymer morphology is detailed, with a focus on polymer crystallinity and blends. The review is completed with a discussion on polymer dynamics, with particular emphasis on semicrystalline, as well as amorphous, polymers. \u003cbr\u003eThe book comprises a concise expert overview, accompanied by an indexed section containing approximately four hundred references and abstracts from the Rapra Abstracts database. These will provide the reader of this report with a valuable reference for further information relating to the study of polymer microstructure using solid-state NMR.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Fundamental Principles 1.2 Solid-State NMR \u003cbr\u003e1.2.1 Chemical Shift Anisotropy and Magic-Angle Spinning \u003cbr\u003e1.2.2 Dipolar Couplings \u003cbr\u003e1.3 Experimental Methods\u003cbr\u003e1.3.1 Cross Polarization \u003cbr\u003e1.3.2 Magic-Angle Sample Spinning \u003cbr\u003e1.3.3 NMR Relaxation in Solids\u003cbr\u003e1.3.4 Solid-State Proton NMR\u003cbr\u003e1.3.5 Wideline NMR\u003cbr\u003e1.3.6 Multi-Dimensional NM.R\u003cbr\u003e2. Polymer Structure and Conformation \u003cbr\u003e2.1 Semicrystalline Polymers \u003cbr\u003e2.2 Amorphous Polymers \u003cbr\u003e2.3 Rubbers \u003cbr\u003e2.4 Polymer Reactivity and Curing \u003cbr\u003e2.5 Other Studies\u003cbr\u003e3 Polymer Morphology \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.1.1Polymer Crystallinity \u003cbr\u003e3.1.2 Spin Diffusion and Polymer Morphology \u003cbr\u003e3.2 Semicrystalline Polymers \u003cbr\u003e3.3 Polymer Blends \u003cbr\u003e3.4 Multiphase Polymers \u003cbr\u003e4. Polymer Dynamics \u003cbr\u003e4.1 Semicrystalline Polymers\u003cbr\u003e4.2 Amorphous Polymers \u003cbr\u003e4.3 Polymer Blends \u003cbr\u003e4.4 Multiphase Polymers \u003cbr\u003eAbbreviations \u003cbr\u003eAdditional References \u003cbr\u003eReferences from the Rapra Abstracts Database\u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Mirau holds the position of Distinguished Member of Technical Staff at Bell Laboratories, AT\u0026amp;T and Lucent Technologies, New Jersey, USA. He has published widely on solid-state NMR and is a member of the American Chemical Society, the American Physical Society as well as the American Association for the Advancement of Science."}
Spectroscopy of Rubber...
$190.00
{"id":11242209604,"title":"Spectroscopy of Rubber and Rubbery Materials","handle":"978-1-85957-280-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V. M. Litvinov and P. P. De \u003cbr\u003eISBN\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e978-1-85957-280-1\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003ePages: 654\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book deals with the application of spectroscopic techniques for characterisation of chemical and physical structures in viscoelastic materials, such as unvulcanised elastomers and their vulcanisates, various rubbery materials and some plastics, which when blended with particular additives (plasticisers) behave like rubbers. \u003cbr\u003e\u003cbr\u003eAnalysis of the rubbery materials is complicated by the fact that rubbery products, such as tyres, tubes, seals, V-belts, and hoses, contain in the rubbery matrix a significant amount of various compounds, i.e., fillers, vulcanising agents, antioxidants, and plasticisers. Due to the complex composition, no single technique can provide a good understanding of the effect of chemical and physical structures on the functional properties of rubbery materials. Thus spectroscopy has become a powerful tool for the determination of polymer structures. \u003cbr\u003e\u003cbr\u003eThe most comprehensive information on chemical and physical structures in relation to material properties can be obtained by using a combination of macroscopic techniques and methods that provide information on the molecular level. \u003cbr\u003e\u003cbr\u003eThe major part of the book is devoted to techniques that are the most frequently used for analysis of rubbery materials, i.e., various methods of nuclear magnetic resonance (NMR) and optical spectroscopy. The main objective of this present book is to discuss a wide range of applications of the spectroscopic techniques for the analysis of rubbery materials. \u003cbr\u003e\u003cbr\u003eThe book brings together the various spectroscopic techniques for obtaining the following information: chemical structure of rubbery materials, network structure analysis, heterogeneity of rubbery materials, physical properties of rubbery materials, functional properties and stability of rubbery materials, processing of rubbery materials and quality control. \u003cbr\u003e\u003cbr\u003eThe contents of this book are of interest to chemists, physicists, material scientists and technologists who seek a better understanding of rubbery materials.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eChapter Titles\u003c\/strong\u003e\u003cbr\u003e1. Characterisation of Elastomers Using (Multi) Hyphenated Thermogravimetric Analysis Techniques \u003cbr\u003e2. Photoacoustic Fourier Transform Infrared Spectroscopy of Rubbers and Related Materials \u003cbr\u003e3. Infrared Spectroscopy of Rubbers \u003cbr\u003e4. Application of Infrared Spectroscopy to Characterise Chemically Modified Rubbers and Rubbery Materials \u003cbr\u003e5. Infrared Spectroscopy of Rubbery Materials \u003cbr\u003e6. Crosslinking of EPDM and Polydiene Rubbers Studied by Optical Spectroscopy \u003cbr\u003e7. NMR Imaging of Elastomers \u003cbr\u003e8. NMR in Soft Polymeric Matter: Nanometer-Scale Probe \u003cbr\u003e9. Chemical Characterisation of Vulcanisates by High-Resolution Solid-State NMR \u003cbr\u003e10. Characterisation of Chemical and Physical Networks in Rubbery Materials Using Proton NMR Magnetisation Relaxation \u003cbr\u003e11. High-Resolution NMR of Elastomers \u003cbr\u003e12. 129Xe NMR of Elastomers in Blends and Composites \u003cbr\u003e13. Swollen Rubbery Materials: Chemistry and Physical Properties Studied by NMR Techniques \u003cbr\u003e14. Multidimensional NMR Techniques for the Characterisation of Viscoelastic Materials \u003cbr\u003e15. Deuterium NMR in Rubbery Materials\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eVictor M. Litvinov\u003c\/strong\u003e is a senior researcher at the Department of Molecular Identification and Quantification at DSM Research, Campus Geleen, The Netherlands. He is responsible for the characterisation of chemical and physical structures in organic and inorganic materials by solid-state NMR techniques, applications of the method for quality control and establishing structure-property relationships. After graduating in 1973 from the Moscow Academy for Fine Chemical Technology, he worked in the Scientific Council on High-Performance Polymer Materials at the Presidium Academy of Sciences in Moscow, Russia. In 1978, he received a Ph.D. in macromolecular chemistry. From 1985 until 1992, he worked at the Institute of Synthetic Polymer Material of Academy of Sciences, Russia. In 1992, he joined DSM Research. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePrajnaparamita De\u003c\/strong\u003e is a Professor in the Rubber Technology center at the Indian Institute of Technology, Kharagpur, India. She has been working in the characterisation of polymers and rubbers for last 20 years, especially in the field of infrared spectroscopic studies.She has also worked on thermoplastic elastomers, adhesion, blends, polymer-filler bonding, utilisation of waste polymers and rubbers. Prajna has published about 130 research papers in international journals and delivered lectures in various universities, companies and at conferences in several countries.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:06-04:00","created_at":"2017-06-22T21:13:07-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","acrylic polymers","additives","analysis","belts","book","elastomers","fillers","infrared spectroscopy","NMR","p-testing","photoacoustic fourier transform","physical properties","plasticisers","plasticizers","plastics","polymer","processing","quality control","rubber","rubbery materials","stability","thermogravimetric","tubes","tyres"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378331332,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Spectroscopy of Rubber and Rubbery Materials","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-280-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-280-1.jpg?v=1499727987"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-280-1.jpg?v=1499727987","options":["Title"],"media":[{"alt":null,"id":358760120413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-280-1.jpg?v=1499727987"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-280-1.jpg?v=1499727987","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V. M. Litvinov and P. P. De \u003cbr\u003eISBN\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e978-1-85957-280-1\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003ePages: 654\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book deals with the application of spectroscopic techniques for characterisation of chemical and physical structures in viscoelastic materials, such as unvulcanised elastomers and their vulcanisates, various rubbery materials and some plastics, which when blended with particular additives (plasticisers) behave like rubbers. \u003cbr\u003e\u003cbr\u003eAnalysis of the rubbery materials is complicated by the fact that rubbery products, such as tyres, tubes, seals, V-belts, and hoses, contain in the rubbery matrix a significant amount of various compounds, i.e., fillers, vulcanising agents, antioxidants, and plasticisers. Due to the complex composition, no single technique can provide a good understanding of the effect of chemical and physical structures on the functional properties of rubbery materials. Thus spectroscopy has become a powerful tool for the determination of polymer structures. \u003cbr\u003e\u003cbr\u003eThe most comprehensive information on chemical and physical structures in relation to material properties can be obtained by using a combination of macroscopic techniques and methods that provide information on the molecular level. \u003cbr\u003e\u003cbr\u003eThe major part of the book is devoted to techniques that are the most frequently used for analysis of rubbery materials, i.e., various methods of nuclear magnetic resonance (NMR) and optical spectroscopy. The main objective of this present book is to discuss a wide range of applications of the spectroscopic techniques for the analysis of rubbery materials. \u003cbr\u003e\u003cbr\u003eThe book brings together the various spectroscopic techniques for obtaining the following information: chemical structure of rubbery materials, network structure analysis, heterogeneity of rubbery materials, physical properties of rubbery materials, functional properties and stability of rubbery materials, processing of rubbery materials and quality control. \u003cbr\u003e\u003cbr\u003eThe contents of this book are of interest to chemists, physicists, material scientists and technologists who seek a better understanding of rubbery materials.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eChapter Titles\u003c\/strong\u003e\u003cbr\u003e1. Characterisation of Elastomers Using (Multi) Hyphenated Thermogravimetric Analysis Techniques \u003cbr\u003e2. Photoacoustic Fourier Transform Infrared Spectroscopy of Rubbers and Related Materials \u003cbr\u003e3. Infrared Spectroscopy of Rubbers \u003cbr\u003e4. Application of Infrared Spectroscopy to Characterise Chemically Modified Rubbers and Rubbery Materials \u003cbr\u003e5. Infrared Spectroscopy of Rubbery Materials \u003cbr\u003e6. Crosslinking of EPDM and Polydiene Rubbers Studied by Optical Spectroscopy \u003cbr\u003e7. NMR Imaging of Elastomers \u003cbr\u003e8. NMR in Soft Polymeric Matter: Nanometer-Scale Probe \u003cbr\u003e9. Chemical Characterisation of Vulcanisates by High-Resolution Solid-State NMR \u003cbr\u003e10. Characterisation of Chemical and Physical Networks in Rubbery Materials Using Proton NMR Magnetisation Relaxation \u003cbr\u003e11. High-Resolution NMR of Elastomers \u003cbr\u003e12. 129Xe NMR of Elastomers in Blends and Composites \u003cbr\u003e13. Swollen Rubbery Materials: Chemistry and Physical Properties Studied by NMR Techniques \u003cbr\u003e14. Multidimensional NMR Techniques for the Characterisation of Viscoelastic Materials \u003cbr\u003e15. Deuterium NMR in Rubbery Materials\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eVictor M. Litvinov\u003c\/strong\u003e is a senior researcher at the Department of Molecular Identification and Quantification at DSM Research, Campus Geleen, The Netherlands. He is responsible for the characterisation of chemical and physical structures in organic and inorganic materials by solid-state NMR techniques, applications of the method for quality control and establishing structure-property relationships. After graduating in 1973 from the Moscow Academy for Fine Chemical Technology, he worked in the Scientific Council on High-Performance Polymer Materials at the Presidium Academy of Sciences in Moscow, Russia. In 1978, he received a Ph.D. in macromolecular chemistry. From 1985 until 1992, he worked at the Institute of Synthetic Polymer Material of Academy of Sciences, Russia. In 1992, he joined DSM Research. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePrajnaparamita De\u003c\/strong\u003e is a Professor in the Rubber Technology center at the Indian Institute of Technology, Kharagpur, India. She has been working in the characterisation of polymers and rubbers for last 20 years, especially in the field of infrared spectroscopic studies.She has also worked on thermoplastic elastomers, adhesion, blends, polymer-filler bonding, utilisation of waste polymers and rubbers. Prajna has published about 130 research papers in international journals and delivered lectures in various universities, companies and at conferences in several countries.\u003cbr\u003e\u003cbr\u003e"}