- Grid List
Filter
Applied Plastics Engin...
$265.00
{"id":11242218436,"title":"Applied Plastics Engineering Handbook - Processing and Materials","handle":"978-1-4377-3514-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Myer Kutz \u003cbr\u003eISBN 978-1-4377-3514-7 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e574 pages, 1st. Edition\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe expert contributors to this new handbook demystify new technologies and materials and present the fundamentals of plastics engineering for optimal engineering and business decisions.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cli\u003e• Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don’t teach you in school, and experienced practitioners evaluating new technologies or getting up to speed on a new field.\u003c\/li\u003e\n\u003cli\u003eThe depth and detail of the coverage of new developments enable engineers and managers to gain knowledge of, and evaluate, new technologies and materials in key growth areas such as biomaterials and nanotechnology.\u003c\/li\u003e\n\u003cli\u003eThis highly practical handbook is set apart from other references in the field, is written by engineers for an audience of engineers and providing a wealth of real-world examples, best practice guidance, and rules-of-thumb.\u003c\/li\u003e\n\u003cli\u003e\u003cb\u003eQuotes\u003c\/b\u003e\u003c\/li\u003e\n\u003cli\u003eAn authoritative source of practical advice for engineers, providing authoritative guidance from experts that will lead to cost savings and process improvements. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained along with techniques for testing, measuring, enhancing and analyzing them. Materials and additives are described as well as their characteristics and effects. The technologies and machinery used in processing operations are covered with reference to product design. And recent developments in a cross-section of applications demonstrate in a pragmatic way, the opportunities as well as the limitations of plastics.\"--Biospace.com\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I Plastics Engineering: Basic Fundamentals (7 chapters)\u003cbr\u003e\u003cbr\u003eIntroduction to Plastics Engineering (sections 1-4 and 6-8 of old Chapter 22, The Plastics Industry)\u003cbr\u003e\u003cbr\u003eElectrical Properties\u003cbr\u003e\u003cbr\u003eMechanical Properties\u003cbr\u003e\u003cbr\u003eTesting of Plastics\u003cbr\u003e\u003cbr\u003eTesting and Instrumental Analysis for the plastics processing industry: key technologies\u003cbr\u003e\u003cbr\u003ePlastics Processing (sections 5 of old Chapter 22, The Plastics Industry)\u003cbr\u003e\u003cbr\u003eAdditives for Plastics\u003cbr\u003e\u003cbr\u003ePart II Plastics Engineering: New Developments\u003cbr\u003e\u003cbr\u003ePlastics Materials (9 chapters)\u003cbr\u003e\u003cbr\u003eEngineering Thermoplastics\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers and Their Applications\u003cbr\u003e\u003cbr\u003eThermoset Elastomers\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNanocomposites: preparation, structure, properties\u003cbr\u003e\u003cbr\u003ePolyolefins\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride (PVC)\u003cbr\u003e\u003cbr\u003eBiodegradable Plastics\u003cbr\u003e\u003cbr\u003ePolymeric Biomaterials\u003cbr\u003e\u003cbr\u003eAdditives (7 chapters)\u003cbr\u003e\u003cbr\u003eAdhesion Promotion\u003cbr\u003e\u003cbr\u003eCoatings and Colorant Processing Fundamentals (two chapters combined)\u003cbr\u003e\u003cbr\u003eDispersants and Coupling Agents\u003cbr\u003e\u003cbr\u003eFunctional Fillers for Plastics\u003cbr\u003e\u003cbr\u003eFlame Retardants\u003cbr\u003e\u003cbr\u003ePlasticizers\u003cbr\u003e\u003cbr\u003ePolymer Stabilization\u003cbr\u003e\u003cbr\u003eProcesses (11 chapters)\u003cbr\u003e\u003cbr\u003eBlow Molding\u003cbr\u003e\u003cbr\u003eChaotic advection and its application for forming structured plastic materials\u003cbr\u003e\u003cbr\u003eChemical Mechanical Polishing: Role of Polymeric Additives and Composite Materials\u003cbr\u003e\u003cbr\u003eCompression Molding\u003cbr\u003e\u003cbr\u003eExtrusion\u003cbr\u003e\u003cbr\u003eInjection Molding\u003cbr\u003e\u003cbr\u003eMicrocellular Processing\u003cbr\u003e\u003cbr\u003eRotational Molding\u003cbr\u003e\u003cbr\u003eThermoforming\u003cbr\u003e\u003cbr\u003eProcess Monitoring \u0026amp; Control\u003cbr\u003e\u003cbr\u003eRecycling of Plastics\u003cbr\u003e\u003cbr\u003eApplications (6 chapters)\u003cbr\u003e\u003cbr\u003eDesign of Plastic Parts\u003cbr\u003e\u003cbr\u003ePlastics in Building and Construction\u003cbr\u003e\u003cbr\u003eFiber Reinforced Polymer Composites Applications\u003cbr\u003e\u003cbr\u003ePlastic Piping Materials\u003cbr\u003e\u003cbr\u003ePolyethylene Terephthalate (PET) Bottles\u003cbr\u003e\u003cbr\u003eTissue Engineering Scaffolds Fabrication\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nEdited by Myer Kutz, Myer Kutz Associates. Inc., Delmar, NY, USA\u003c\/li\u003e","published_at":"2017-06-22T21:13:36-04:00","created_at":"2017-06-22T21:13:36-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","additives","applications","biomaterials","book","material","plastics","recycling","testing"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378362180,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applied Plastics Engineering Handbook - Processing and Materials","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-3514-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3514-7.jpg?v=1498190758"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3514-7.jpg?v=1498190758","options":["Title"],"media":[{"alt":null,"id":350156128349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3514-7.jpg?v=1498190758"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3514-7.jpg?v=1498190758","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Myer Kutz \u003cbr\u003eISBN 978-1-4377-3514-7 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e574 pages, 1st. Edition\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe expert contributors to this new handbook demystify new technologies and materials and present the fundamentals of plastics engineering for optimal engineering and business decisions.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cli\u003e• Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don’t teach you in school, and experienced practitioners evaluating new technologies or getting up to speed on a new field.\u003c\/li\u003e\n\u003cli\u003eThe depth and detail of the coverage of new developments enable engineers and managers to gain knowledge of, and evaluate, new technologies and materials in key growth areas such as biomaterials and nanotechnology.\u003c\/li\u003e\n\u003cli\u003eThis highly practical handbook is set apart from other references in the field, is written by engineers for an audience of engineers and providing a wealth of real-world examples, best practice guidance, and rules-of-thumb.\u003c\/li\u003e\n\u003cli\u003e\u003cb\u003eQuotes\u003c\/b\u003e\u003c\/li\u003e\n\u003cli\u003eAn authoritative source of practical advice for engineers, providing authoritative guidance from experts that will lead to cost savings and process improvements. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained along with techniques for testing, measuring, enhancing and analyzing them. Materials and additives are described as well as their characteristics and effects. The technologies and machinery used in processing operations are covered with reference to product design. And recent developments in a cross-section of applications demonstrate in a pragmatic way, the opportunities as well as the limitations of plastics.\"--Biospace.com\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I Plastics Engineering: Basic Fundamentals (7 chapters)\u003cbr\u003e\u003cbr\u003eIntroduction to Plastics Engineering (sections 1-4 and 6-8 of old Chapter 22, The Plastics Industry)\u003cbr\u003e\u003cbr\u003eElectrical Properties\u003cbr\u003e\u003cbr\u003eMechanical Properties\u003cbr\u003e\u003cbr\u003eTesting of Plastics\u003cbr\u003e\u003cbr\u003eTesting and Instrumental Analysis for the plastics processing industry: key technologies\u003cbr\u003e\u003cbr\u003ePlastics Processing (sections 5 of old Chapter 22, The Plastics Industry)\u003cbr\u003e\u003cbr\u003eAdditives for Plastics\u003cbr\u003e\u003cbr\u003ePart II Plastics Engineering: New Developments\u003cbr\u003e\u003cbr\u003ePlastics Materials (9 chapters)\u003cbr\u003e\u003cbr\u003eEngineering Thermoplastics\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers and Their Applications\u003cbr\u003e\u003cbr\u003eThermoset Elastomers\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNanocomposites: preparation, structure, properties\u003cbr\u003e\u003cbr\u003ePolyolefins\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride (PVC)\u003cbr\u003e\u003cbr\u003eBiodegradable Plastics\u003cbr\u003e\u003cbr\u003ePolymeric Biomaterials\u003cbr\u003e\u003cbr\u003eAdditives (7 chapters)\u003cbr\u003e\u003cbr\u003eAdhesion Promotion\u003cbr\u003e\u003cbr\u003eCoatings and Colorant Processing Fundamentals (two chapters combined)\u003cbr\u003e\u003cbr\u003eDispersants and Coupling Agents\u003cbr\u003e\u003cbr\u003eFunctional Fillers for Plastics\u003cbr\u003e\u003cbr\u003eFlame Retardants\u003cbr\u003e\u003cbr\u003ePlasticizers\u003cbr\u003e\u003cbr\u003ePolymer Stabilization\u003cbr\u003e\u003cbr\u003eProcesses (11 chapters)\u003cbr\u003e\u003cbr\u003eBlow Molding\u003cbr\u003e\u003cbr\u003eChaotic advection and its application for forming structured plastic materials\u003cbr\u003e\u003cbr\u003eChemical Mechanical Polishing: Role of Polymeric Additives and Composite Materials\u003cbr\u003e\u003cbr\u003eCompression Molding\u003cbr\u003e\u003cbr\u003eExtrusion\u003cbr\u003e\u003cbr\u003eInjection Molding\u003cbr\u003e\u003cbr\u003eMicrocellular Processing\u003cbr\u003e\u003cbr\u003eRotational Molding\u003cbr\u003e\u003cbr\u003eThermoforming\u003cbr\u003e\u003cbr\u003eProcess Monitoring \u0026amp; Control\u003cbr\u003e\u003cbr\u003eRecycling of Plastics\u003cbr\u003e\u003cbr\u003eApplications (6 chapters)\u003cbr\u003e\u003cbr\u003eDesign of Plastic Parts\u003cbr\u003e\u003cbr\u003ePlastics in Building and Construction\u003cbr\u003e\u003cbr\u003eFiber Reinforced Polymer Composites Applications\u003cbr\u003e\u003cbr\u003ePlastic Piping Materials\u003cbr\u003e\u003cbr\u003ePolyethylene Terephthalate (PET) Bottles\u003cbr\u003e\u003cbr\u003eTissue Engineering Scaffolds Fabrication\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nEdited by Myer Kutz, Myer Kutz Associates. Inc., Delmar, NY, USA\u003c\/li\u003e"}
Atlas of Material Damage
$325.00
{"id":11242221572,"title":"Atlas of Material Damage","handle":"978-1-895198-48-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-48-5 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 310 \u003cbr\u003eChapter 7\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAtlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled. \u003cbr\u003e\u003cbr\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end). \u003cbr\u003e\u003cbr\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, a technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics. \u003cbr\u003e\u003cbr\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality. \u003cbr\u003e\u003cbr\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003cbr\u003e\u003cbr\u003e1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003cbr\u003e2 Analysis of causes of material damage and degradation\u003cbr\u003e3 Effect of processing conditions on material damage\u003cbr\u003e4 Effect of singular and combined action of different degradants on industrial products\u003cbr\u003e5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003cbr\u003e6 Technological steps required to obtain specifically designed morphology required for specific performance \u003cbr\u003e7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003cbr\u003e\u003cbr\u003eThe above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012. \u003cbr\u003e\u003cbr\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003cbr\u003e\u003cbr\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables. \u003cbr\u003e\u003cbr\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003eIn 1981, Carl Hanser Verlag published An Atlas of Polymer Damage by Lothar Engel, Hermann Klingele, Gottfried Ehrenstein, and Helmut Schaper. This unique publication became my favorite book, which I have frequently consulted throughout the last thirty years. \u003cbr\u003e\u003cbr\u003eUsing it I have learned that there are very many applications of this knowledge, such as:\u003cbr\u003e• Materials can be made stronger and more durable with little or no cost by proper use of morphological structure\u003cbr\u003e• In many cases, polymer additives could be eliminated \u003cbr\u003e• Their useful life in product can be extended\u003cbr\u003e• Material damage can be avoided \u003cbr\u003eThese and other findings are discussed in this book, which is meant to be easy to read because it is composed of hundreds of pictures and mechanisms of performance, with a little text just to explain what can be learned from the illustrations. Its description is as close to the observations of the original authors as permitted by the integrity of narration since they have the privilege of knowing more because they have seen the information within a broader scope of their research.\u003cbr\u003e\u003cbr\u003eI hope this book will have many readers because it opens so many unexploited possibilities to make what we use today much better. Many recently introduced products use these principles. Also, a great deal of research concentrates on using specially developed structural features for the betterment of properties of their materials. Many excellent products of today cannot be made without the application of the knowledge discussed in this book.\u003cbr\u003e\u003cbr\u003eUsers of the book will find that most of the research included was done between 2009 and today, which underlines the value of these findings, considering that many problems of the past are no longer important today because they were not only solved but already implemented in product manufacture.\u003cbr\u003e\u003cbr\u003eMy goal was to produce a book which can add value to the previously published volume since so many things have changed in the last thirty years. This book has no boundaries of application because it is clear from the analysis of a large number of research projects that structural knowledge and practical ideas are useful in very different applications. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e2 Material composition, structure, and morphological features\u003cbr\u003e2.1 Materials having predominantly homogeneous structure and composition \u003cbr\u003e2.2 Heterogeneous materials \u003cbr\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e2.2.2 Materials containing insoluble additives \u003cbr\u003e2.2.3 Materials containing immiscible phases \u003cbr\u003e2.2.4 Composites \u003cbr\u003e2.2.5 Multi-component layered materials \u003cbr\u003e2.2.6 Foams, porosity \u003cbr\u003e2.2.7 Compressed solids \u003cbr\u003e2.3 Material surface versus bulk \u003cbr\u003e\u003cbr\u003e3 Effect of processing on material structure \u003cbr\u003e3.1 Temperature \u003cbr\u003e3.2 Pressure \u003cbr\u003e3.3 Time\u003cbr\u003e3.4 Viscosity \u003cbr\u003e3.5 Flow rate (shear rate) \u003cbr\u003e3.6 Deformation \u003cbr\u003e3.7 Orientation \u003cbr\u003e\u003cbr\u003e4 Scale of damage – basic concept \u003cbr\u003e4.1 Atomic \u003cbr\u003e4.2 Microscale \u003cbr\u003e4.3 Macroscale \u003cbr\u003e\u003cbr\u003e5 Microscopic mechanisms of damage caused by degradants \u003cbr\u003e5.1 Bulk (mechanical forces) \u003cbr\u003e5.1.1 Elastic-brittle fracture \u003cbr\u003e5.1.2 Elastic-plastic deformation \u003cbr\u003e5.1.3 Time-related damage \u003cbr\u003e5.1.3.1 Fatigue \u003cbr\u003e5.1.3.2 Creep \u003cbr\u003e5.1.4 Impact damage \u003cbr\u003e5.1.5 Shear fracture \u003cbr\u003e5.16 Compression set \u003cbr\u003e5.1.7 Bending forces \u003cbr\u003e5.1.8 Anisotropic damage \u003cbr\u003e5.2 Electric forces \u003cbr\u003e5.2.1 Tracking \u003cbr\u003e5.2.2 Arcing \u003cbr\u003e5.2.3 Drying out in batteries \u003cbr\u003e5.2.4 Pin-holes \u003cbr\u003e5.2.5 Cracks\u003cbr\u003e5.2.6 Delamination \u003cbr\u003e5.3 Surface-initiated damage \u003cbr\u003e5.3.1 Physical forces \u003cbr\u003e5.3.1.1 Thermal treatment \u003cbr\u003e5.3.1.1.1 Process heat \u003cbr\u003e5.3.1.1.2 Conditions of performance \u003cbr\u003e5.3.1.1.3 Infrared \u003cbr\u003e5.3.1.1.4 Frictional heat \u003cbr\u003e5.3.1.1.5 Low-temperature effects \u003cbr\u003e5.3.1.1.6 Thermal stresses \u003cbr\u003e5.3.1.2 Radiation \u003cbr\u003e5.3.1.2.1 Alpha and beta rays \u003cbr\u003e5.3.1.2.2 Gamma rays \u003cbr\u003e5.3.1.2.3 Laser beam \u003cbr\u003e5.3.1.2.4 Cosmic rays \u003cbr\u003e5.3.1.2.5 Plasma \u003cbr\u003e5.3.1.3 Weathering \u003cbr\u003e5.3.2 Mechanical action \u003cbr\u003e5.3.2.1 Scratching \u003cbr\u003e5.3.2.2 Impact \u003cbr\u003e5.3.2.3 Adhesive failure, sliding, rolling \u003cbr\u003e5.3.3 Chemical reactions \u003cbr\u003e5.3.3.1 Molecular oxygen \u003cbr\u003e5.3.3.2 Ozone \u003cbr\u003e5.3.3.3 Atomic oxygen \u003cbr\u003e5.3.3.4 Sulfur dioxide \u003cbr\u003e5.3.3.5 Particulate matter \u003cbr\u003e5.3.3.6 Other gaseous pollutants \u003cbr\u003e5.4 Combination of degrading elements \u003cbr\u003e5.4.1 Environmental stress cracking \u003cbr\u003e5.4.2 Biodegradation and biodeterioration \u003cbr\u003e5.4.3 Effect of body fluids \u003cbr\u003e5.4.4 Controlled–release substances in pharmaceutical applications \u003cbr\u003e5.4.5 Corrosion\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:47-04:00","created_at":"2017-06-22T21:13:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","analysis","biodegradation","book","chemical reactions","cracks","deformation","degradation","demage","humidity","material","mechanical action","methods of analysis","morphology of damaged material","physical forces","polymers","processing and degradation","thermal","weathering"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374596,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Atlas of Material Damage","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-48-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053","options":["Title"],"media":[{"alt":null,"id":350156750941,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-48-5.jpg?v=1498191053","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-48-5 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 310 \u003cbr\u003eChapter 7\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAtlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled. \u003cbr\u003e\u003cbr\u003eIn the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end). \u003cbr\u003e\u003cbr\u003eIt is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, a technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics. \u003cbr\u003e\u003cbr\u003eProduct reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality. \u003cbr\u003e\u003cbr\u003eThis book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:\u003cbr\u003e\u003cbr\u003e1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience\u003cbr\u003e2 Analysis of causes of material damage and degradation\u003cbr\u003e3 Effect of processing conditions on material damage\u003cbr\u003e4 Effect of singular and combined action of different degradants on industrial products\u003cbr\u003e5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material\u003cbr\u003e6 Technological steps required to obtain specifically designed morphology required for specific performance \u003cbr\u003e7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage\u003cbr\u003e\u003cbr\u003eThe above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012. \u003cbr\u003e\u003cbr\u003eThe name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements. \u003cbr\u003e\u003cbr\u003eThis book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables. \u003cbr\u003e\u003cbr\u003eProfessors and students in the above subjects will require this book for a complete survey of modern technology. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003eIn 1981, Carl Hanser Verlag published An Atlas of Polymer Damage by Lothar Engel, Hermann Klingele, Gottfried Ehrenstein, and Helmut Schaper. This unique publication became my favorite book, which I have frequently consulted throughout the last thirty years. \u003cbr\u003e\u003cbr\u003eUsing it I have learned that there are very many applications of this knowledge, such as:\u003cbr\u003e• Materials can be made stronger and more durable with little or no cost by proper use of morphological structure\u003cbr\u003e• In many cases, polymer additives could be eliminated \u003cbr\u003e• Their useful life in product can be extended\u003cbr\u003e• Material damage can be avoided \u003cbr\u003eThese and other findings are discussed in this book, which is meant to be easy to read because it is composed of hundreds of pictures and mechanisms of performance, with a little text just to explain what can be learned from the illustrations. Its description is as close to the observations of the original authors as permitted by the integrity of narration since they have the privilege of knowing more because they have seen the information within a broader scope of their research.\u003cbr\u003e\u003cbr\u003eI hope this book will have many readers because it opens so many unexploited possibilities to make what we use today much better. Many recently introduced products use these principles. Also, a great deal of research concentrates on using specially developed structural features for the betterment of properties of their materials. Many excellent products of today cannot be made without the application of the knowledge discussed in this book.\u003cbr\u003e\u003cbr\u003eUsers of the book will find that most of the research included was done between 2009 and today, which underlines the value of these findings, considering that many problems of the past are no longer important today because they were not only solved but already implemented in product manufacture.\u003cbr\u003e\u003cbr\u003eMy goal was to produce a book which can add value to the previously published volume since so many things have changed in the last thirty years. This book has no boundaries of application because it is clear from the analysis of a large number of research projects that structural knowledge and practical ideas are useful in very different applications. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e2 Material composition, structure, and morphological features\u003cbr\u003e2.1 Materials having predominantly homogeneous structure and composition \u003cbr\u003e2.2 Heterogeneous materials \u003cbr\u003e2.2.1 Crystalline forms and amorphous regions \u003cbr\u003e2.2.2 Materials containing insoluble additives \u003cbr\u003e2.2.3 Materials containing immiscible phases \u003cbr\u003e2.2.4 Composites \u003cbr\u003e2.2.5 Multi-component layered materials \u003cbr\u003e2.2.6 Foams, porosity \u003cbr\u003e2.2.7 Compressed solids \u003cbr\u003e2.3 Material surface versus bulk \u003cbr\u003e\u003cbr\u003e3 Effect of processing on material structure \u003cbr\u003e3.1 Temperature \u003cbr\u003e3.2 Pressure \u003cbr\u003e3.3 Time\u003cbr\u003e3.4 Viscosity \u003cbr\u003e3.5 Flow rate (shear rate) \u003cbr\u003e3.6 Deformation \u003cbr\u003e3.7 Orientation \u003cbr\u003e\u003cbr\u003e4 Scale of damage – basic concept \u003cbr\u003e4.1 Atomic \u003cbr\u003e4.2 Microscale \u003cbr\u003e4.3 Macroscale \u003cbr\u003e\u003cbr\u003e5 Microscopic mechanisms of damage caused by degradants \u003cbr\u003e5.1 Bulk (mechanical forces) \u003cbr\u003e5.1.1 Elastic-brittle fracture \u003cbr\u003e5.1.2 Elastic-plastic deformation \u003cbr\u003e5.1.3 Time-related damage \u003cbr\u003e5.1.3.1 Fatigue \u003cbr\u003e5.1.3.2 Creep \u003cbr\u003e5.1.4 Impact damage \u003cbr\u003e5.1.5 Shear fracture \u003cbr\u003e5.16 Compression set \u003cbr\u003e5.1.7 Bending forces \u003cbr\u003e5.1.8 Anisotropic damage \u003cbr\u003e5.2 Electric forces \u003cbr\u003e5.2.1 Tracking \u003cbr\u003e5.2.2 Arcing \u003cbr\u003e5.2.3 Drying out in batteries \u003cbr\u003e5.2.4 Pin-holes \u003cbr\u003e5.2.5 Cracks\u003cbr\u003e5.2.6 Delamination \u003cbr\u003e5.3 Surface-initiated damage \u003cbr\u003e5.3.1 Physical forces \u003cbr\u003e5.3.1.1 Thermal treatment \u003cbr\u003e5.3.1.1.1 Process heat \u003cbr\u003e5.3.1.1.2 Conditions of performance \u003cbr\u003e5.3.1.1.3 Infrared \u003cbr\u003e5.3.1.1.4 Frictional heat \u003cbr\u003e5.3.1.1.5 Low-temperature effects \u003cbr\u003e5.3.1.1.6 Thermal stresses \u003cbr\u003e5.3.1.2 Radiation \u003cbr\u003e5.3.1.2.1 Alpha and beta rays \u003cbr\u003e5.3.1.2.2 Gamma rays \u003cbr\u003e5.3.1.2.3 Laser beam \u003cbr\u003e5.3.1.2.4 Cosmic rays \u003cbr\u003e5.3.1.2.5 Plasma \u003cbr\u003e5.3.1.3 Weathering \u003cbr\u003e5.3.2 Mechanical action \u003cbr\u003e5.3.2.1 Scratching \u003cbr\u003e5.3.2.2 Impact \u003cbr\u003e5.3.2.3 Adhesive failure, sliding, rolling \u003cbr\u003e5.3.3 Chemical reactions \u003cbr\u003e5.3.3.1 Molecular oxygen \u003cbr\u003e5.3.3.2 Ozone \u003cbr\u003e5.3.3.3 Atomic oxygen \u003cbr\u003e5.3.3.4 Sulfur dioxide \u003cbr\u003e5.3.3.5 Particulate matter \u003cbr\u003e5.3.3.6 Other gaseous pollutants \u003cbr\u003e5.4 Combination of degrading elements \u003cbr\u003e5.4.1 Environmental stress cracking \u003cbr\u003e5.4.2 Biodegradation and biodeterioration \u003cbr\u003e5.4.3 Effect of body fluids \u003cbr\u003e5.4.4 Controlled–release substances in pharmaceutical applications \u003cbr\u003e5.4.5 Corrosion\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Characterisation of Po...
$185.00
{"id":11242248516,"title":"Characterisation of Polymers, Volume 1","handle":"978-1-84735-123-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R.Crompton \u003cbr\u003eISBN 978-1-84735-123-4 \u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is intended to be a complete compendium of the types of methodology that have evolved for the determination of the chemical composition of polymers. \u003cbr\u003e\u003cbr\u003eVolume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different monomer units occur in copolymers. The techniques available for composition determination of homopolymers and copolymers and other recent modern techniques such as X-ray photoelectron spectroscopy, atomic force microscopy, microthermal analysis and scanning electron microscopy and energy dispersive analysis using X-rays are also included. The structure and microstructure of polymers, copolymers and rubbers are dealt with in Volume 2. More detailed aspects, such as sequencing of monomer units in copolymers, end-group analysis, tacticity and stereochemical determinations, are also dealt with in this subsequent volume. \u003cbr\u003e\u003cbr\u003eThis book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. The book should be of great interest to all those engaged in the subject in the industry, university research.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e\u003cbr\u003e\u003cb\u003e1. Determination of Metals\u003c\/b\u003e \u003cbr\u003e1.1 Destructive Techniques \u003cbr\u003e1.1.1 Atomic Absorption Spectrometry \u003cbr\u003e1.1.2 Graphite Furnace Atomic Absorption Spectrometry \u003cbr\u003e1.1.3 Atom Trapping Technique \u003cbr\u003e1.1.4 Vapour Generation Atomic Absorption Spectrometry \u003cbr\u003e1.1.5 Zeeman Atomic Absorption Spectrometry \u003cbr\u003e1.1.6 Inductively Coupled Plasma Atomic Emission Spectrometry \u003cbr\u003e1.1.7 Hybrid Inductively Coupled Plasma Techniques \u003cbr\u003e1.1.8 Inductively Coupled Plasma Optical Emission Spectrometry–Mass Spectrometry \u003cbr\u003e1.1.9 Pre-concentration Atomic Absorption Spectrometry Techniques \u003cbr\u003e1.1.10 Microprocessors \u003cbr\u003e1.1.11 Autosamplers \u003cbr\u003e1.1.12 Applications: Atomic Absorption Spectrometric Determination of Metals \u003cbr\u003e1.1.13 Visible and UV Spectroscopy \u003cbr\u003e1.1.14 Polarography and Voltammetry \u003cbr\u003e1.1.15 Ion Chromatography \u003cbr\u003e1.2 Non-destructive Methods \u003cbr\u003e1.2.1 X-ray Fluorescence Spectrometry \u003cbr\u003e1.2.2 Neutron Activation Analysis \u003cbr\u003eMethod 1.1 Determination of Traces of Cadmium, Chromium, Copper, Iron, Lead, Manganese, Nickel, and Zinc in Polymers. Ashing – Atomic Absorption Spectrometry \u003cbr\u003eMethod 1.2 Determination of Traces of Arsenic in Acrylic Fibres Containing Antimony Trioxide Fire Retardant Agent. Acid Digestion, Atomic Absorption Spectrometry \u003cbr\u003eMethod 1.3 Determination of Vanadium Catalyst Residues in Ethylene-propylene Rubber. Ashing – spectrophotometric Procedure \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2. Determination of Non-metallic Elements\u003c\/b\u003e \u003cbr\u003e2.1 Halogens \u003cbr\u003e2.1.1 Combustion Methods \u003cbr\u003e2.1.2 Oxygen Flask Combustion \u003cbr\u003e2.1.3 Alkali Fusion Methods \u003cbr\u003e2.1.4 Physical Methods for Determining Halogens \u003cbr\u003e2.2 Sulfur \u003cbr\u003e2.2.1 Combustion Methods \u003cbr\u003e2.2.2 Sodium Peroxide Fusion \u003cbr\u003e2.2.3 Oxygen Flask Combustion \u003cbr\u003e2.3 Phosphorus \u003cbr\u003e2.3.1 Acid Digestion \u003cbr\u003e2.3.2 Oxygen Flask Combustion \u003cbr\u003e2.4 Nitrogen \u003cbr\u003e2.4.1 Combustion Methods \u003cbr\u003e2.4.2 Acid Digestion \u003cbr\u003e2.4.3 Physical Method for the Determination of Total Nitrogen \u003cbr\u003e2.5 Silica \u003cbr\u003e2.6 Boron \u003cbr\u003e2.7 Total Organic Carbon \u003cbr\u003e2.8 Total Sulfur\/Total Halogen \u003cbr\u003e2.9 Nitrogen, Carbon, and Sulfur \u003cbr\u003e2.10 Carbon, Hydrogen, and Nitrogen \u003cbr\u003e2.11 Oxygen Flask Combustion: Ion Chromatography \u003cbr\u003e2.12 X-ray Fluorescence Spectroscopy \u003cbr\u003e2.13 Thermogravimetric Analysis \u003cbr\u003eMethod 2.1 Determination of Chlorine in Polymers Containing Chloride and Sulfur and\/or Phosphorus and\/or Fluorine. Oxygen Flask Combustion – Mercurimetric Titration \u003cbr\u003eMethod 2.2 Determination of Chlorine in Chlorobutyl and Other Chlorine Containing Polymers. Oxygen Flask Combustion – Turbidimetry \u003cbr\u003eMethod 2.3 Determination of Up to 80% Chlorine, Bromine and Iodine in Polymers. Oxygen Flask Combustion – Titration \u003cbr\u003eMethod 2.4 Determination of Fluorine in Fluorinated Polymers. Oxygen Flask Combustion - Spectrophotometric Procedure \u003cbr\u003eMethod 2.5 Determination of Traces of Chlorine in Polyalkenes and Polyalkene Copolymers. Sodium Carbonate Fusion – Titration Procedure \u003cbr\u003eMethod 2.6 Determination of Macro-amounts of Sulfur in Polymers. Sodium Peroxide Fusion - Titration Procedure \u003cbr\u003eMethod 2.7 Determination of Sulfur in Polymers. Oxygen Flask Combustion – Titration Procedure \u003cbr\u003eMethod 2.8 Determination of Sulfur in Polymers. Oxygen Flask Combustion – Photometric Titration Procedure \u003cbr\u003eMethod 2.9 Micro Determination of Phosphorus in Polymers. Acid Digestion – Spectrophotometric Method \u003cbr\u003eMethod 2.10 Determination of Low Levels of Phosphorus in Polymers. Oxygen Flask Combustion – Spectrophotometric Method \u003cbr\u003eMethod 2.11 Determination of 2-13% Phosphorus in Polymers. Oxygen Flask Combustion – Spectrophotometric Method \u003cbr\u003eMethod 2.12 Determination of Between 0.002% and 75% Organic Nitrogen in Polymers. Kjeldahl Digestion – Spectrometric Indophenol Blue Method \u003cbr\u003eMethod 2.13 Determination of 1 to 90% Organic Nitrogen in Polymers. Kjeldahl Digestion – Boric Acid Titration Method \u003cbr\u003eMethod 2.14 Qualitative Detection of Elements in Polymers. Oxygen Flask Combustion \u003cbr\u003e\u003cbr\u003e\u003cb\u003e3. Determination of Functional Groups in Polymers\u003c\/b\u003e \u003cbr\u003e3.1 Hydroxy Groups \u003cbr\u003e3.1.1 Acetylation and Phthalation Procedures \u003cbr\u003e3.1.2 Spectrophotometric Methods \u003cbr\u003e3.1.3 Nuclear Magnetic Resonance Spectrometry \u003cbr\u003e3.1.4 Infrared Spectroscopy \u003cbr\u003e3.1.5 Direct Injection Enthalpimetry \u003cbr\u003e3.1.6 Kinetic Method – Primary and Secondary Hydroxyl Groups \u003cbr\u003e3.1.7 Miscellaneous Techniques \u003cbr\u003e3.2 Carboxyl Groups \u003cbr\u003e3.2.1 Titration Method \u003cbr\u003e3.2.2 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.2.3 Pyrolysis Gas Chromatography – Mass Spectrometry \u003cbr\u003e3.2.4 Infrared Spectroscopy \u003cbr\u003e3.2.5 Miscellaneous \u003cbr\u003e3.3 Carbonyl Groups \u003cbr\u003e3.4 Ester Groups \u003cbr\u003e3.4.1 Saponification Methods \u003cbr\u003e3.4.2 Zeisel Hydriodic Acid Reduction Methods \u003cbr\u003e3.4.3 Pyrolysis Gas Chromatography \u003cbr\u003e3.4.4 Infrared Spectroscopy \u003cbr\u003e3.4.5 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.4.6 Gas Chromatography \u003cbr\u003e3.4.7 Isotope Dilution Method \u003cbr\u003e3.6 Alkoxy Groups \u003cbr\u003e3.6.1 Infrared Spectroscopy \u003cbr\u003e3.6.2 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.6.3 Miscellaneous Methods \u003cbr\u003e3.7 Oxyalkylene Groups \u003cbr\u003e3.7.1 Cleavage – Gas Chromatography \u003cbr\u003e3.7.2 Pyrolysis Gas Chromatography \u003cbr\u003e3.7.3 Infrared Spectroscopy \u003cbr\u003e3.7.4 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.8 Anhydride Groups \u003cbr\u003e3.9 Total Unsaturation \u003cbr\u003e3.9.1 Hydrogenation Methods \u003cbr\u003e3.9.2 Halogenation Methods \u003cbr\u003e3.9.3 Iodine Monochloride Procedures \u003cbr\u003e3.9.4 Infrared Spectroscopy \u003cbr\u003e3.9.5 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.9.6 Pyrolysis Gas Chromatography \u003cbr\u003e3.10 Ethylene Glycol, 1,4-Butane Diol, Terephthalic Acid and Isophthalic Acid Repeat Units in Terylene \u003cbr\u003e3.11 Oxirane Rings \u003cbr\u003e3.12 Amino Groups \u003cbr\u003e3.13 Amido and Imido Groups \u003cbr\u003e3.13.1 Alkali Fusion Reaction Gas Chromatography \u003cbr\u003e3.14 Nitrile Groups \u003cbr\u003e3.14.1 Determination of Bound Nitrile Groups in Styrene – Acrylonitrile Copolymers \u003cbr\u003e3.15 Nitric Ester Groups \u003cbr\u003e3.16 Silicon Functions \u003cbr\u003eMethod 3.1 Determination of Hydroxyl Groups in Polyethylene Glycol. Silation – Spectrophotometry \u003cbr\u003eMethod 3.2 Determination of Hydroxyl Number of Glycerol-Alkylene Oxide Polyethers and Butane, 1,4-Diol Adipic Acid Polyesters. Direct Injection Enthalpimetry \u003cbr\u003eMethod 3.3 Determination of Primary and Secondary Hydroxyl Groups in Ethylene Oxide Tipped Glycerol-Propylene Oxide Condensates. \u003cbr\u003eMethod 3.4 Determination of Compositional Analysis of Methylmethacrylate - Methacrylic Acid Copolymers. Fourier Transform 13C-NMR Spectroscopy \u003cbr\u003eMethod 3.5 Identification of Acrylic Acid and Methacrylic Acid in Acrylic Copolymers. Propylation - Pyrolysis - Gas Chromatography \u003cbr\u003eMethod 3.6 Determination of Amino Groups in Aromatic Polyamides, Polyimides and Polyamides-imides. Potassium Hydroxide Fusion Gas Chromatography \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4.Monomer Ratios in Copolymers\u003c\/b\u003e \u003cbr\u003e4.1 Olefinic Copolymers \u003cbr\u003e4.1.1 Ethylene-propylene \u003cbr\u003e4.2 Pyrolysis Gas Chromatography \u003cbr\u003e4.2.1 Pyrolysis – Infrared Spectroscopy \u003cbr\u003e4.2.2 Ethylene – Butane-1 Copolymers \u003cbr\u003e4.2.3 Ethylene – Hexane-1 \u003cbr\u003e4.2.4 Other Olefin Polymers \u003cbr\u003e4.2.5 Ethylene – Vinyl Acetate Copolymers \u003cbr\u003e4.3 Vinyl Chloride Copolymers \u003cbr\u003e4.3.1 Vinyl Chloride – Vinyl Acetate \u003cbr\u003e4.3.2 Vinylidene Chloride – Vinyl Chloride \u003cbr\u003e4.4 Styrene Copolymers \u003cbr\u003e4.4.1 Styrene Acrylate and Styrene Methacrylate \u003cbr\u003e4.4.2 Styrene – Methacrylate and Styrene – Methyl Methacrylate Copolymers \u003cbr\u003e4.4.3 Styrene Acrylic Acid Copolymer NMR Spectroscopy \u003cbr\u003e4.4.4 Styrene Methacrylate Copolymers, NMR Spectroscopy \u003cbr\u003e4.4.5 Styrene-n-butyl Acrylate Copolymers \u003cbr\u003e4.4.6 Styrene Methacrylate Copolymers \u003cbr\u003e4.4.7 Miscellaneous Styrene Copolymers \u003cbr\u003e4.4.8 Vinyl Acetate – Methyl Acrylate NMR Spectroscopy \u003cbr\u003e4.5 Butadiene-based Polymers \u003cbr\u003e4.5.1 Styrene Butadiene and Polybutadiene \u003cbr\u003e4.6 Styrene-butadiene-acrylonitrile \u003cbr\u003e4.7 Vinylidene Chloride – Methacrylonitrile and Vinylidene Chloride Cyanovinylacetate Copolymers \u003cbr\u003e4.8 Acrylonitrile-cis (or Trans) Penta-1,3-diene \u003cbr\u003e4.9 Hexafluoropropylene – Vinylidene Fluoride \u003cbr\u003e4.9.1 19F-NMR \u003cbr\u003e4.9.2 Pyrolysis – Gas Chromatography \u003cbr\u003e4.10 Ethylene Glycol Terephthalic Acid, Ethylene Glycol Hydroxyl Benzoic Acid \u003cbr\u003e4.11 Ethylene Oxide Copolymers \u003cbr\u003e4.11.1 Ethylene Oxide – Propylene Oxide \u003cbr\u003e4.11.2 Ethylene Oxide – Polyacetal \u003cbr\u003e4.12 Maleic Anhydride Copolymers \u003cbr\u003e4.13 Acrylamide – Methacryloyl Oxyethyl Ammonium Chloride and Acrylamid – Acyloxyethyl Ammonium Chloride \u003cbr\u003e\u003cbr\u003e\u003cb\u003e5. Analysis of Homopolymers\u003c\/b\u003e \u003cbr\u003e5.1 Infrared Spectroscopy \u003cbr\u003e5.1.1 Determination of Low Concentrations of Methyl Groups in Polyethylene \u003cbr\u003e5.1.2 Bond Rupture in HDPE \u003cbr\u003e5.2 Fourier Transform Infrared (FTIR) Spectroscopy \u003cbr\u003e5.2.1 Instrumentation \u003cbr\u003e5.3 Fourier Transform Raman Spectroscopy \u003cbr\u003e5.3.1 Theory \u003cbr\u003e5.3.2 Applications \u003cbr\u003e5.4 Mass Spectrometry \u003cbr\u003e5.4.1 Time-of-Flight Secondary Ion Mass Spectrometry \u003cbr\u003e5.4.2 Tandem Mass Spectrometry \u003cbr\u003e5.4.3 Matrix Assisted Laser Desorption\/Ionisation Mass Spectrometry \u003cbr\u003e5.4.4 Fourier Transform Ion Cyclotron Mass Spectrometry \u003cbr\u003e5.4.5 Fast Atom Bombardment Mass Spectrometry \u003cbr\u003e5.5 Gross Polarisation Magic Angle Spinning 13C and 15N \u003cbr\u003e5.5.1 Solid State Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e5.6 Gas Chromatography – Mass Spectrometry \u003cbr\u003e5.7 Proton Magnetic Resonance Spectroscopy \u003cbr\u003e5.8 Electron Spin Resonance Spectroscopy \u003cbr\u003e5.9 Infrared Spectra \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6. Analysis of Copolymers\u003c\/b\u003e \u003cbr\u003e6.1 Infrared Spectroscopy \u003cbr\u003e6.2 Fourier Transform Infrared Spectroscopy \u003cbr\u003e6.3 Raman Spectroscopy \u003cbr\u003e6.4 Mass Spectrometry \u003cbr\u003e6.4.1 Radio Frequency Glow Discharge Mass Spectrometry \u003cbr\u003e6.4.2 Fast Atom Bombardment Mass Spectrometry \u003cbr\u003e6.4.3 Laser Desorption – Ion Mobility Spectrometry \u003cbr\u003e6.4.4 Gas Chromatography – Mass Spectrometry \u003cbr\u003e6.4.5 Matrix-assisted Laser Desorption\/Ionisation (MALDI) Mass Spectrometry \u003cbr\u003e6.5 NMR and Proton Magenetic Resonance Spectroscopy \u003cbr\u003e6.6 Pyrolysis Techniques \u003cbr\u003e6.7 Other Techniques \u003cbr\u003e\u003cbr\u003e\u003cb\u003e7. X-Ray Photoelectron Spectroscopy\u003c\/b\u003e \u003cbr\u003e7.1 Bulk Polymer Structural Studies \u003cbr\u003e7.2 Adhesion Studies \u003cbr\u003e7.3 Carbon Black Studies \u003cbr\u003e7.4 Particle Identification \u003cbr\u003e7.5 Pyrolysis Studies \u003cbr\u003e7.6 Surface Studies \u003cbr\u003e7.7 Applications in Which Only XPS is Used \u003cbr\u003e7.8 Applications in Which Both XPS and ToF-SIMS are Used \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8. Atomic Force Microscopy and Microthermal Analysis\u003c\/b\u003e \u003cbr\u003e8.1 Atomic Force Microscopy \u003cbr\u003e8.1.1 Polymer Characterisation Studies and Polymer Structure \u003cbr\u003e8.1.2 Morphology \u003cbr\u003e8.1.3 Surface Defects \u003cbr\u003e8.1.4 Adhesion Studies \u003cbr\u003e8.1.5 Polydispersivity \u003cbr\u003e8.1.6 Sub-surface Particle Studies \u003cbr\u003e8.1.7 Size of Nanostructures \u003cbr\u003e8.1.8 Visualisation of Molecular Chains \u003cbr\u003e8.1.9 Compositional Mapping \u003cbr\u003e8.1.10 Surface Roughness \u003cbr\u003e8.1.11 Microphase Separation \u003cbr\u003e8.1.12 Phase Transition \u003cbr\u003e8.1.13 Shrinkage \u003cbr\u003e8.2 Microthermal Analysis \u003cbr\u003e8.2.1 Morphology \u003cbr\u003e8.2.2 Topography \u003cbr\u003e8.2.3 Glass Transition \u003cbr\u003e8.2.4 Depth Profiling Studies \u003cbr\u003e8.2.5 Phase Separation Studies \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9. Multiple Technique Polymer Studies\u003c\/b\u003e \u003cbr\u003e9.1 FTIR – Nuclear Magnetic Resonance (NMR) Spectroscopy \u003cbr\u003e9.2 Other Technique Combinations \u003cbr\u003e\u003cbr\u003e\u003cb\u003e10. Scanning Electron Microscopy and Energy Dispersive Analysis Using X-rays\u003c\/b\u003e \u003cbr\u003e\u003cbr\u003eAppendix 1. Instument Suppliers \u003cbr\u003eAppendix 2. Suppliers of Flammability Properties Instruments \u003cbr\u003eAppendix 3. Address of Suppliers \u003cbr\u003eAbbreviations \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:09-04:00","created_at":"2017-06-22T21:15:09-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","analysis","Atomic Force Microscopy","book","cadmium","chromatography","Chromium","copolymers","Copper","destructive techniques","Determination of metals","determination of non-metallic elements","functional groups","hompolymers","Iron","Lead","Manganese","material","Microthermal Analysis","monomer ratios in copolymers","Nickel","NMR","Polarography","spectrometry","voltammetry","X-ray photoelectron spectroscopy","Zinc"],"price":18500,"price_min":18500,"price_max":22500,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":44462707268,"title":"Hardcover","option1":"Hardcover","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Characterisation of Polymers, Volume 1 - Hardcover","public_title":"Hardcover","options":["Hardcover"],"price":22500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-123-4","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":43378467524,"title":"Softcover","option1":"Softcover","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Characterisation of Polymers, Volume 1 - Softcover","public_title":"Softcover","options":["Softcover"],"price":18500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-123-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-123-4.jpg?v=1499718276"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-123-4.jpg?v=1499718276","options":["Cover"],"media":[{"alt":null,"id":353925890141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-123-4.jpg?v=1499718276"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-123-4.jpg?v=1499718276","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R.Crompton \u003cbr\u003eISBN 978-1-84735-123-4 \u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is intended to be a complete compendium of the types of methodology that have evolved for the determination of the chemical composition of polymers. \u003cbr\u003e\u003cbr\u003eVolume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different monomer units occur in copolymers. The techniques available for composition determination of homopolymers and copolymers and other recent modern techniques such as X-ray photoelectron spectroscopy, atomic force microscopy, microthermal analysis and scanning electron microscopy and energy dispersive analysis using X-rays are also included. The structure and microstructure of polymers, copolymers and rubbers are dealt with in Volume 2. More detailed aspects, such as sequencing of monomer units in copolymers, end-group analysis, tacticity and stereochemical determinations, are also dealt with in this subsequent volume. \u003cbr\u003e\u003cbr\u003eThis book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. The book should be of great interest to all those engaged in the subject in the industry, university research.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e\u003cbr\u003e\u003cb\u003e1. Determination of Metals\u003c\/b\u003e \u003cbr\u003e1.1 Destructive Techniques \u003cbr\u003e1.1.1 Atomic Absorption Spectrometry \u003cbr\u003e1.1.2 Graphite Furnace Atomic Absorption Spectrometry \u003cbr\u003e1.1.3 Atom Trapping Technique \u003cbr\u003e1.1.4 Vapour Generation Atomic Absorption Spectrometry \u003cbr\u003e1.1.5 Zeeman Atomic Absorption Spectrometry \u003cbr\u003e1.1.6 Inductively Coupled Plasma Atomic Emission Spectrometry \u003cbr\u003e1.1.7 Hybrid Inductively Coupled Plasma Techniques \u003cbr\u003e1.1.8 Inductively Coupled Plasma Optical Emission Spectrometry–Mass Spectrometry \u003cbr\u003e1.1.9 Pre-concentration Atomic Absorption Spectrometry Techniques \u003cbr\u003e1.1.10 Microprocessors \u003cbr\u003e1.1.11 Autosamplers \u003cbr\u003e1.1.12 Applications: Atomic Absorption Spectrometric Determination of Metals \u003cbr\u003e1.1.13 Visible and UV Spectroscopy \u003cbr\u003e1.1.14 Polarography and Voltammetry \u003cbr\u003e1.1.15 Ion Chromatography \u003cbr\u003e1.2 Non-destructive Methods \u003cbr\u003e1.2.1 X-ray Fluorescence Spectrometry \u003cbr\u003e1.2.2 Neutron Activation Analysis \u003cbr\u003eMethod 1.1 Determination of Traces of Cadmium, Chromium, Copper, Iron, Lead, Manganese, Nickel, and Zinc in Polymers. Ashing – Atomic Absorption Spectrometry \u003cbr\u003eMethod 1.2 Determination of Traces of Arsenic in Acrylic Fibres Containing Antimony Trioxide Fire Retardant Agent. Acid Digestion, Atomic Absorption Spectrometry \u003cbr\u003eMethod 1.3 Determination of Vanadium Catalyst Residues in Ethylene-propylene Rubber. Ashing – spectrophotometric Procedure \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2. Determination of Non-metallic Elements\u003c\/b\u003e \u003cbr\u003e2.1 Halogens \u003cbr\u003e2.1.1 Combustion Methods \u003cbr\u003e2.1.2 Oxygen Flask Combustion \u003cbr\u003e2.1.3 Alkali Fusion Methods \u003cbr\u003e2.1.4 Physical Methods for Determining Halogens \u003cbr\u003e2.2 Sulfur \u003cbr\u003e2.2.1 Combustion Methods \u003cbr\u003e2.2.2 Sodium Peroxide Fusion \u003cbr\u003e2.2.3 Oxygen Flask Combustion \u003cbr\u003e2.3 Phosphorus \u003cbr\u003e2.3.1 Acid Digestion \u003cbr\u003e2.3.2 Oxygen Flask Combustion \u003cbr\u003e2.4 Nitrogen \u003cbr\u003e2.4.1 Combustion Methods \u003cbr\u003e2.4.2 Acid Digestion \u003cbr\u003e2.4.3 Physical Method for the Determination of Total Nitrogen \u003cbr\u003e2.5 Silica \u003cbr\u003e2.6 Boron \u003cbr\u003e2.7 Total Organic Carbon \u003cbr\u003e2.8 Total Sulfur\/Total Halogen \u003cbr\u003e2.9 Nitrogen, Carbon, and Sulfur \u003cbr\u003e2.10 Carbon, Hydrogen, and Nitrogen \u003cbr\u003e2.11 Oxygen Flask Combustion: Ion Chromatography \u003cbr\u003e2.12 X-ray Fluorescence Spectroscopy \u003cbr\u003e2.13 Thermogravimetric Analysis \u003cbr\u003eMethod 2.1 Determination of Chlorine in Polymers Containing Chloride and Sulfur and\/or Phosphorus and\/or Fluorine. Oxygen Flask Combustion – Mercurimetric Titration \u003cbr\u003eMethod 2.2 Determination of Chlorine in Chlorobutyl and Other Chlorine Containing Polymers. Oxygen Flask Combustion – Turbidimetry \u003cbr\u003eMethod 2.3 Determination of Up to 80% Chlorine, Bromine and Iodine in Polymers. Oxygen Flask Combustion – Titration \u003cbr\u003eMethod 2.4 Determination of Fluorine in Fluorinated Polymers. Oxygen Flask Combustion - Spectrophotometric Procedure \u003cbr\u003eMethod 2.5 Determination of Traces of Chlorine in Polyalkenes and Polyalkene Copolymers. Sodium Carbonate Fusion – Titration Procedure \u003cbr\u003eMethod 2.6 Determination of Macro-amounts of Sulfur in Polymers. Sodium Peroxide Fusion - Titration Procedure \u003cbr\u003eMethod 2.7 Determination of Sulfur in Polymers. Oxygen Flask Combustion – Titration Procedure \u003cbr\u003eMethod 2.8 Determination of Sulfur in Polymers. Oxygen Flask Combustion – Photometric Titration Procedure \u003cbr\u003eMethod 2.9 Micro Determination of Phosphorus in Polymers. Acid Digestion – Spectrophotometric Method \u003cbr\u003eMethod 2.10 Determination of Low Levels of Phosphorus in Polymers. Oxygen Flask Combustion – Spectrophotometric Method \u003cbr\u003eMethod 2.11 Determination of 2-13% Phosphorus in Polymers. Oxygen Flask Combustion – Spectrophotometric Method \u003cbr\u003eMethod 2.12 Determination of Between 0.002% and 75% Organic Nitrogen in Polymers. Kjeldahl Digestion – Spectrometric Indophenol Blue Method \u003cbr\u003eMethod 2.13 Determination of 1 to 90% Organic Nitrogen in Polymers. Kjeldahl Digestion – Boric Acid Titration Method \u003cbr\u003eMethod 2.14 Qualitative Detection of Elements in Polymers. Oxygen Flask Combustion \u003cbr\u003e\u003cbr\u003e\u003cb\u003e3. Determination of Functional Groups in Polymers\u003c\/b\u003e \u003cbr\u003e3.1 Hydroxy Groups \u003cbr\u003e3.1.1 Acetylation and Phthalation Procedures \u003cbr\u003e3.1.2 Spectrophotometric Methods \u003cbr\u003e3.1.3 Nuclear Magnetic Resonance Spectrometry \u003cbr\u003e3.1.4 Infrared Spectroscopy \u003cbr\u003e3.1.5 Direct Injection Enthalpimetry \u003cbr\u003e3.1.6 Kinetic Method – Primary and Secondary Hydroxyl Groups \u003cbr\u003e3.1.7 Miscellaneous Techniques \u003cbr\u003e3.2 Carboxyl Groups \u003cbr\u003e3.2.1 Titration Method \u003cbr\u003e3.2.2 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.2.3 Pyrolysis Gas Chromatography – Mass Spectrometry \u003cbr\u003e3.2.4 Infrared Spectroscopy \u003cbr\u003e3.2.5 Miscellaneous \u003cbr\u003e3.3 Carbonyl Groups \u003cbr\u003e3.4 Ester Groups \u003cbr\u003e3.4.1 Saponification Methods \u003cbr\u003e3.4.2 Zeisel Hydriodic Acid Reduction Methods \u003cbr\u003e3.4.3 Pyrolysis Gas Chromatography \u003cbr\u003e3.4.4 Infrared Spectroscopy \u003cbr\u003e3.4.5 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.4.6 Gas Chromatography \u003cbr\u003e3.4.7 Isotope Dilution Method \u003cbr\u003e3.6 Alkoxy Groups \u003cbr\u003e3.6.1 Infrared Spectroscopy \u003cbr\u003e3.6.2 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.6.3 Miscellaneous Methods \u003cbr\u003e3.7 Oxyalkylene Groups \u003cbr\u003e3.7.1 Cleavage – Gas Chromatography \u003cbr\u003e3.7.2 Pyrolysis Gas Chromatography \u003cbr\u003e3.7.3 Infrared Spectroscopy \u003cbr\u003e3.7.4 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.8 Anhydride Groups \u003cbr\u003e3.9 Total Unsaturation \u003cbr\u003e3.9.1 Hydrogenation Methods \u003cbr\u003e3.9.2 Halogenation Methods \u003cbr\u003e3.9.3 Iodine Monochloride Procedures \u003cbr\u003e3.9.4 Infrared Spectroscopy \u003cbr\u003e3.9.5 Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e3.9.6 Pyrolysis Gas Chromatography \u003cbr\u003e3.10 Ethylene Glycol, 1,4-Butane Diol, Terephthalic Acid and Isophthalic Acid Repeat Units in Terylene \u003cbr\u003e3.11 Oxirane Rings \u003cbr\u003e3.12 Amino Groups \u003cbr\u003e3.13 Amido and Imido Groups \u003cbr\u003e3.13.1 Alkali Fusion Reaction Gas Chromatography \u003cbr\u003e3.14 Nitrile Groups \u003cbr\u003e3.14.1 Determination of Bound Nitrile Groups in Styrene – Acrylonitrile Copolymers \u003cbr\u003e3.15 Nitric Ester Groups \u003cbr\u003e3.16 Silicon Functions \u003cbr\u003eMethod 3.1 Determination of Hydroxyl Groups in Polyethylene Glycol. Silation – Spectrophotometry \u003cbr\u003eMethod 3.2 Determination of Hydroxyl Number of Glycerol-Alkylene Oxide Polyethers and Butane, 1,4-Diol Adipic Acid Polyesters. Direct Injection Enthalpimetry \u003cbr\u003eMethod 3.3 Determination of Primary and Secondary Hydroxyl Groups in Ethylene Oxide Tipped Glycerol-Propylene Oxide Condensates. \u003cbr\u003eMethod 3.4 Determination of Compositional Analysis of Methylmethacrylate - Methacrylic Acid Copolymers. Fourier Transform 13C-NMR Spectroscopy \u003cbr\u003eMethod 3.5 Identification of Acrylic Acid and Methacrylic Acid in Acrylic Copolymers. Propylation - Pyrolysis - Gas Chromatography \u003cbr\u003eMethod 3.6 Determination of Amino Groups in Aromatic Polyamides, Polyimides and Polyamides-imides. Potassium Hydroxide Fusion Gas Chromatography \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4.Monomer Ratios in Copolymers\u003c\/b\u003e \u003cbr\u003e4.1 Olefinic Copolymers \u003cbr\u003e4.1.1 Ethylene-propylene \u003cbr\u003e4.2 Pyrolysis Gas Chromatography \u003cbr\u003e4.2.1 Pyrolysis – Infrared Spectroscopy \u003cbr\u003e4.2.2 Ethylene – Butane-1 Copolymers \u003cbr\u003e4.2.3 Ethylene – Hexane-1 \u003cbr\u003e4.2.4 Other Olefin Polymers \u003cbr\u003e4.2.5 Ethylene – Vinyl Acetate Copolymers \u003cbr\u003e4.3 Vinyl Chloride Copolymers \u003cbr\u003e4.3.1 Vinyl Chloride – Vinyl Acetate \u003cbr\u003e4.3.2 Vinylidene Chloride – Vinyl Chloride \u003cbr\u003e4.4 Styrene Copolymers \u003cbr\u003e4.4.1 Styrene Acrylate and Styrene Methacrylate \u003cbr\u003e4.4.2 Styrene – Methacrylate and Styrene – Methyl Methacrylate Copolymers \u003cbr\u003e4.4.3 Styrene Acrylic Acid Copolymer NMR Spectroscopy \u003cbr\u003e4.4.4 Styrene Methacrylate Copolymers, NMR Spectroscopy \u003cbr\u003e4.4.5 Styrene-n-butyl Acrylate Copolymers \u003cbr\u003e4.4.6 Styrene Methacrylate Copolymers \u003cbr\u003e4.4.7 Miscellaneous Styrene Copolymers \u003cbr\u003e4.4.8 Vinyl Acetate – Methyl Acrylate NMR Spectroscopy \u003cbr\u003e4.5 Butadiene-based Polymers \u003cbr\u003e4.5.1 Styrene Butadiene and Polybutadiene \u003cbr\u003e4.6 Styrene-butadiene-acrylonitrile \u003cbr\u003e4.7 Vinylidene Chloride – Methacrylonitrile and Vinylidene Chloride Cyanovinylacetate Copolymers \u003cbr\u003e4.8 Acrylonitrile-cis (or Trans) Penta-1,3-diene \u003cbr\u003e4.9 Hexafluoropropylene – Vinylidene Fluoride \u003cbr\u003e4.9.1 19F-NMR \u003cbr\u003e4.9.2 Pyrolysis – Gas Chromatography \u003cbr\u003e4.10 Ethylene Glycol Terephthalic Acid, Ethylene Glycol Hydroxyl Benzoic Acid \u003cbr\u003e4.11 Ethylene Oxide Copolymers \u003cbr\u003e4.11.1 Ethylene Oxide – Propylene Oxide \u003cbr\u003e4.11.2 Ethylene Oxide – Polyacetal \u003cbr\u003e4.12 Maleic Anhydride Copolymers \u003cbr\u003e4.13 Acrylamide – Methacryloyl Oxyethyl Ammonium Chloride and Acrylamid – Acyloxyethyl Ammonium Chloride \u003cbr\u003e\u003cbr\u003e\u003cb\u003e5. Analysis of Homopolymers\u003c\/b\u003e \u003cbr\u003e5.1 Infrared Spectroscopy \u003cbr\u003e5.1.1 Determination of Low Concentrations of Methyl Groups in Polyethylene \u003cbr\u003e5.1.2 Bond Rupture in HDPE \u003cbr\u003e5.2 Fourier Transform Infrared (FTIR) Spectroscopy \u003cbr\u003e5.2.1 Instrumentation \u003cbr\u003e5.3 Fourier Transform Raman Spectroscopy \u003cbr\u003e5.3.1 Theory \u003cbr\u003e5.3.2 Applications \u003cbr\u003e5.4 Mass Spectrometry \u003cbr\u003e5.4.1 Time-of-Flight Secondary Ion Mass Spectrometry \u003cbr\u003e5.4.2 Tandem Mass Spectrometry \u003cbr\u003e5.4.3 Matrix Assisted Laser Desorption\/Ionisation Mass Spectrometry \u003cbr\u003e5.4.4 Fourier Transform Ion Cyclotron Mass Spectrometry \u003cbr\u003e5.4.5 Fast Atom Bombardment Mass Spectrometry \u003cbr\u003e5.5 Gross Polarisation Magic Angle Spinning 13C and 15N \u003cbr\u003e5.5.1 Solid State Nuclear Magnetic Resonance Spectroscopy \u003cbr\u003e5.6 Gas Chromatography – Mass Spectrometry \u003cbr\u003e5.7 Proton Magnetic Resonance Spectroscopy \u003cbr\u003e5.8 Electron Spin Resonance Spectroscopy \u003cbr\u003e5.9 Infrared Spectra \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6. Analysis of Copolymers\u003c\/b\u003e \u003cbr\u003e6.1 Infrared Spectroscopy \u003cbr\u003e6.2 Fourier Transform Infrared Spectroscopy \u003cbr\u003e6.3 Raman Spectroscopy \u003cbr\u003e6.4 Mass Spectrometry \u003cbr\u003e6.4.1 Radio Frequency Glow Discharge Mass Spectrometry \u003cbr\u003e6.4.2 Fast Atom Bombardment Mass Spectrometry \u003cbr\u003e6.4.3 Laser Desorption – Ion Mobility Spectrometry \u003cbr\u003e6.4.4 Gas Chromatography – Mass Spectrometry \u003cbr\u003e6.4.5 Matrix-assisted Laser Desorption\/Ionisation (MALDI) Mass Spectrometry \u003cbr\u003e6.5 NMR and Proton Magenetic Resonance Spectroscopy \u003cbr\u003e6.6 Pyrolysis Techniques \u003cbr\u003e6.7 Other Techniques \u003cbr\u003e\u003cbr\u003e\u003cb\u003e7. X-Ray Photoelectron Spectroscopy\u003c\/b\u003e \u003cbr\u003e7.1 Bulk Polymer Structural Studies \u003cbr\u003e7.2 Adhesion Studies \u003cbr\u003e7.3 Carbon Black Studies \u003cbr\u003e7.4 Particle Identification \u003cbr\u003e7.5 Pyrolysis Studies \u003cbr\u003e7.6 Surface Studies \u003cbr\u003e7.7 Applications in Which Only XPS is Used \u003cbr\u003e7.8 Applications in Which Both XPS and ToF-SIMS are Used \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8. Atomic Force Microscopy and Microthermal Analysis\u003c\/b\u003e \u003cbr\u003e8.1 Atomic Force Microscopy \u003cbr\u003e8.1.1 Polymer Characterisation Studies and Polymer Structure \u003cbr\u003e8.1.2 Morphology \u003cbr\u003e8.1.3 Surface Defects \u003cbr\u003e8.1.4 Adhesion Studies \u003cbr\u003e8.1.5 Polydispersivity \u003cbr\u003e8.1.6 Sub-surface Particle Studies \u003cbr\u003e8.1.7 Size of Nanostructures \u003cbr\u003e8.1.8 Visualisation of Molecular Chains \u003cbr\u003e8.1.9 Compositional Mapping \u003cbr\u003e8.1.10 Surface Roughness \u003cbr\u003e8.1.11 Microphase Separation \u003cbr\u003e8.1.12 Phase Transition \u003cbr\u003e8.1.13 Shrinkage \u003cbr\u003e8.2 Microthermal Analysis \u003cbr\u003e8.2.1 Morphology \u003cbr\u003e8.2.2 Topography \u003cbr\u003e8.2.3 Glass Transition \u003cbr\u003e8.2.4 Depth Profiling Studies \u003cbr\u003e8.2.5 Phase Separation Studies \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9. Multiple Technique Polymer Studies\u003c\/b\u003e \u003cbr\u003e9.1 FTIR – Nuclear Magnetic Resonance (NMR) Spectroscopy \u003cbr\u003e9.2 Other Technique Combinations \u003cbr\u003e\u003cbr\u003e\u003cb\u003e10. Scanning Electron Microscopy and Energy Dispersive Analysis Using X-rays\u003c\/b\u003e \u003cbr\u003e\u003cbr\u003eAppendix 1. Instument Suppliers \u003cbr\u003eAppendix 2. Suppliers of Flammability Properties Instruments \u003cbr\u003eAppendix 3. Address of Suppliers \u003cbr\u003eAbbreviations \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e"}
Characterisation of Po...
$180.00
{"id":11242251140,"title":"Characterisation of Polymers, Volume 2","handle":"978-1-84735-126-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R.Crompton \u003cbr\u003eISBN 978-1-84735-126-5 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is intended to be a complete compendium of the types of methodology that have evolved for the determination of the chemical composition of polymers.\u003cbr\u003e\u003cbr\u003eVolume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different monomer units occur in copolymers. The techniques available for composition determination of homopolymers and copolymers and other recent modern techniques such as X-ray photoelectron spectroscopy, atomic force microscopy, microthermal analysis and scanning electron microscopy and energy dispersive analysis using X-rays are also included.The structure and microstructure of polymers, copolymers and rubbers are dealt with in Volume 2. More detailed aspects, such as sequencing of monomer units in copolymers, end-group analysis, tacticity and stereochemical determinations, are also dealt with in this subsequent volume.\u003cbr\u003e\u003cbr\u003eThis book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. The book should be of great interest to all those engaged in the subject in industry, university research.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nTable of Contents\u003cbr\u003eChapter 1. Pyrolysis - Gas Chromatography\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 2. Complementary Pyrolysis-Gas Chromatography-FT-IR\u003cbr\u003e\u003cbr\u003eChapter 3. Complementary Pyrolysis - Mass Spectrometry\u003cbr\u003e\u003cbr\u003eChapter 4. Complementary Pyrolysis Gas Chromatography-Mass Spectrometry\u003cbr\u003e\u003cbr\u003eChapter 5. Reaction Gas chromatography Techniques\u003cbr\u003e\u003cbr\u003eChapter 6. Sequencing of Homopolymers\u003cbr\u003e\u003cbr\u003eChapter 7. Sequencing in Copolymers\u003cbr\u003e\u003cbr\u003eChapter 8. Stereoisomerism and Tacticity\u003cbr\u003e\u003cbr\u003eChapter 9. Regioisomerism\u003cbr\u003e\u003cbr\u003eChapter 10. Branching\u003cbr\u003e\u003cbr\u003eChapter 11. Block Copolymers\u003cbr\u003e\u003cbr\u003eChapter 12. Types of Unsaturation\u003cbr\u003e\u003cbr\u003eChapter 13. Determination of End-groups\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:18-04:00","created_at":"2017-06-22T21:15:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","book","chemical composition of polymers","copolymers","determination","gas chromatography","homopolymers","mass spectrometry","material","metals","momomers","organic functional group","polymers","pyrolysis"],"price":18000,"price_min":18000,"price_max":22500,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378475204,"title":"Hardcover","option1":"Hardcover","option2":null,"option3":null,"sku":"978-1-84735-126-5","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Characterisation of Polymers, Volume 2 - Hardcover","public_title":"Hardcover","options":["Hardcover"],"price":22500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-126-5","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":44462844676,"title":"Softcover","option1":"Softcover","option2":null,"option3":null,"sku":"978-1-84735-125-8","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Characterisation of Polymers, Volume 2 - Softcover","public_title":"Softcover","options":["Softcover"],"price":18000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-126-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-126-5.jpg?v=1499720108"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-126-5.jpg?v=1499720108","options":["Cover"],"media":[{"alt":null,"id":353926348893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-126-5.jpg?v=1499720108"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-126-5.jpg?v=1499720108","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R.Crompton \u003cbr\u003eISBN 978-1-84735-126-5 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is intended to be a complete compendium of the types of methodology that have evolved for the determination of the chemical composition of polymers.\u003cbr\u003e\u003cbr\u003eVolume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different monomer units occur in copolymers. The techniques available for composition determination of homopolymers and copolymers and other recent modern techniques such as X-ray photoelectron spectroscopy, atomic force microscopy, microthermal analysis and scanning electron microscopy and energy dispersive analysis using X-rays are also included.The structure and microstructure of polymers, copolymers and rubbers are dealt with in Volume 2. More detailed aspects, such as sequencing of monomer units in copolymers, end-group analysis, tacticity and stereochemical determinations, are also dealt with in this subsequent volume.\u003cbr\u003e\u003cbr\u003eThis book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. The book should be of great interest to all those engaged in the subject in industry, university research.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nTable of Contents\u003cbr\u003eChapter 1. Pyrolysis - Gas Chromatography\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 2. Complementary Pyrolysis-Gas Chromatography-FT-IR\u003cbr\u003e\u003cbr\u003eChapter 3. Complementary Pyrolysis - Mass Spectrometry\u003cbr\u003e\u003cbr\u003eChapter 4. Complementary Pyrolysis Gas Chromatography-Mass Spectrometry\u003cbr\u003e\u003cbr\u003eChapter 5. Reaction Gas chromatography Techniques\u003cbr\u003e\u003cbr\u003eChapter 6. Sequencing of Homopolymers\u003cbr\u003e\u003cbr\u003eChapter 7. Sequencing in Copolymers\u003cbr\u003e\u003cbr\u003eChapter 8. Stereoisomerism and Tacticity\u003cbr\u003e\u003cbr\u003eChapter 9. Regioisomerism\u003cbr\u003e\u003cbr\u003eChapter 10. Branching\u003cbr\u003e\u003cbr\u003eChapter 11. Block Copolymers\u003cbr\u003e\u003cbr\u003eChapter 12. Types of Unsaturation\u003cbr\u003e\u003cbr\u003eChapter 13. Determination of End-groups\u003cbr\u003e\u003cbr\u003e"}
Chemical Resistance of...
$530.00
{"id":11242203524,"title":"Chemical Resistance of Thermoplastics","handle":"978-1-4557-7896-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: William Woishnis and Sina Ebnesajjad \u003cbr\u003eISBN 978-1-4557-7896-6 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eHardbound, 3526 Pages\u003c\/p\u003e\n\u003cp\u003e2 Volumes \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nChemical Resistance of Thermoplastics is a unique reference work, providing a comprehensive cross-referenced compilation of chemical resistance data that explains the effect of thousands of exposure media on the properties and characteristics of commodity thermoplastics. The two volumes cover thermoplastics grouped within the following parts:\u003cbr\u003e- Acrylic Polymers and Copolymers \u003cbr\u003e- Acrylonitrile Polymers\u003cbr\u003e- Cellulosics Polymers\u003cbr\u003e- Ionomers\u003cbr\u003e- Olefinic Polymers\u003cbr\u003e- Polyacetals\u003cbr\u003e- Polyacetals\u003cbr\u003e- Polyamides\u003cbr\u003e- Polycarbonates \u003cbr\u003e- Polyesters \u003cbr\u003e- Polyurethanes\u003cbr\u003e- Polycarbonates\u003cbr\u003e- Styrene Copolymers\u003cbr\u003e- Styrene Copolymers\u003cbr\u003e- Vinyl Chloride Polymers\u003cbr\u003e- Vinyl Polymers\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVolume 1\u003c\/b\u003e\u003cbr\u003eMaterial Index\u003cbr\u003ePreface\u003cbr\u003eHow to Use this Book\u003cbr\u003eAbbreviations \u003cbr\u003eIntroduction to Plastics and Elastomers\u003cbr\u003eEffect of Chemicals on Plastics and Elastomers \u003cbr\u003ePart 1: Acrylic Polymers and Copolymers\u003cbr\u003eChapter 1: Acrylic Polymers and Copolymers\u003cbr\u003ePart 2: Acrylonitrile Polymers\u003cbr\u003eChapter 2: Acrylonitrile Polymers\u003cbr\u003ePart 3: Cellulosics Polymers\u003cbr\u003eChapter 3: Cellulosics Polymers\u003cbr\u003ePart 4: Ionomers\u003cbr\u003eChapter 4: Ionomers\u003cbr\u003ePart 5: Olefinic Polymers\u003cbr\u003eChapter 5: Linear Low Density Polyethylenes (LLDPE)\u003cbr\u003eChapter 6: Low Density Polyethylenes (LDPE) \u003cbr\u003eChapter 7: Polyethylene, HDPE\u003cbr\u003eChapter 8: Polyethylene, MDPE\u003cbr\u003eChapter 9: Polypropylene \u003cbr\u003eChapter 10: Other Olefinic Polymers\u003cbr\u003ePart 6: Polyacetals \u003cbr\u003eChapter 11: Acetal, Copolymer (POM Copolymer)\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003eVolume 2\u003c\/b\u003e\u003cbr\u003eMaterial Index \u003cbr\u003ePreface\u003cbr\u003eHow to Use this Book\u003cbr\u003eAbbreviations \u003cbr\u003ePart 6: Polyacetals \u003cbr\u003eChapter 12: Acetal, Homopolymer (POM Homopolymer) \u003cbr\u003ePart 7: Polyamides\u003cbr\u003eChapter 13: Nylon 11 (PA 11)\u003cbr\u003eChapter 14: Nylon 12 (PA 12)\u003cbr\u003eChapter 15: Nylon 46 (PA 46)\u003cbr\u003eChapter 16: Nylon 6 (PA 6)\u003cbr\u003eChapter 17: Nylon 610 (PA 610)\u003cbr\u003eChapter 18: Nylon 612 (PA 612)\u003cbr\u003eChapter 19: Nylon 66 (PA 66)\u003cbr\u003eChapter 20: Nylon, amorphous (PA, amorphous) \u003cbr\u003eChapter 21: PoIycaprolactones \u003cbr\u003eChapter 22: Polyamide, Nylon \u003cbr\u003eChapter 23: Other Polyamides\u003cbr\u003ePart 8: Polycarbonates\u003cbr\u003eChapter 24: PoIycarbonates\u003cbr\u003ePart 9: Polyesters\u003cbr\u003eChapter 25: Polyester, PET\u003cbr\u003eChapter 26: Other PoIyesters \u003cbr\u003ePart 10: Polyurethanes \u003cbr\u003eChapter 27: Polyurethanes \u003cbr\u003ePart 11: Styrene Copolymers \u003cbr\u003eChapter 28: ABS \u003cbr\u003eChapter 29: Styrene Acrylonitrile (SAN) and Other Copolymers \u003cbr\u003ePart 12: Styrene Polymers \u003cbr\u003eChapter 30: Polystyrene's (PS)\u003cbr\u003eChapter 31: Polystyrene, Impact\u003cbr\u003ePart 13: Vinyl Chloride Polymers\u003cbr\u003eChapter 32: Polyvinyl Chlorides (PVC) \u003cbr\u003ePart 14: Vinyl Polymers \u003cbr\u003eChapter 33: Vinyl Polymers\u003cbr\u003eAlphabetical List of Exposure Media \u003cbr\u003eCAS Registry Numbers ] Chemical Sort\u003cbr\u003eCAS Registry Numbers ] Numeric Sort\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eEdited by\u003c\/div\u003e\n\u003cdiv\u003eWilliam Woishnis, Founder, William Andrew Publishing \u0026amp; Plastics Design Library\u003c\/div\u003e\n\u003cdiv\u003eSina Ebnesajjad, Fluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e","published_at":"2017-06-22T21:12:48-04:00","created_at":"2017-06-22T21:12:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","ABS","acrylic polymers","book","cellulosics polymers","chemical resistance data","material","olefinic polymers","polyamides","polyurethanes","PVC","styrene copolymers","vinyl polymers"],"price":53000,"price_min":53000,"price_max":53000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316356,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Chemical Resistance of Thermoplastics","public_title":null,"options":["Default Title"],"price":53000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-7896-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-7896-6.jpg?v=1499203238"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-7896-6.jpg?v=1499203238","options":["Title"],"media":[{"alt":null,"id":353926742109,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-7896-6.jpg?v=1499203238"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-7896-6.jpg?v=1499203238","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: William Woishnis and Sina Ebnesajjad \u003cbr\u003eISBN 978-1-4557-7896-6 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eHardbound, 3526 Pages\u003c\/p\u003e\n\u003cp\u003e2 Volumes \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nChemical Resistance of Thermoplastics is a unique reference work, providing a comprehensive cross-referenced compilation of chemical resistance data that explains the effect of thousands of exposure media on the properties and characteristics of commodity thermoplastics. The two volumes cover thermoplastics grouped within the following parts:\u003cbr\u003e- Acrylic Polymers and Copolymers \u003cbr\u003e- Acrylonitrile Polymers\u003cbr\u003e- Cellulosics Polymers\u003cbr\u003e- Ionomers\u003cbr\u003e- Olefinic Polymers\u003cbr\u003e- Polyacetals\u003cbr\u003e- Polyacetals\u003cbr\u003e- Polyamides\u003cbr\u003e- Polycarbonates \u003cbr\u003e- Polyesters \u003cbr\u003e- Polyurethanes\u003cbr\u003e- Polycarbonates\u003cbr\u003e- Styrene Copolymers\u003cbr\u003e- Styrene Copolymers\u003cbr\u003e- Vinyl Chloride Polymers\u003cbr\u003e- Vinyl Polymers\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVolume 1\u003c\/b\u003e\u003cbr\u003eMaterial Index\u003cbr\u003ePreface\u003cbr\u003eHow to Use this Book\u003cbr\u003eAbbreviations \u003cbr\u003eIntroduction to Plastics and Elastomers\u003cbr\u003eEffect of Chemicals on Plastics and Elastomers \u003cbr\u003ePart 1: Acrylic Polymers and Copolymers\u003cbr\u003eChapter 1: Acrylic Polymers and Copolymers\u003cbr\u003ePart 2: Acrylonitrile Polymers\u003cbr\u003eChapter 2: Acrylonitrile Polymers\u003cbr\u003ePart 3: Cellulosics Polymers\u003cbr\u003eChapter 3: Cellulosics Polymers\u003cbr\u003ePart 4: Ionomers\u003cbr\u003eChapter 4: Ionomers\u003cbr\u003ePart 5: Olefinic Polymers\u003cbr\u003eChapter 5: Linear Low Density Polyethylenes (LLDPE)\u003cbr\u003eChapter 6: Low Density Polyethylenes (LDPE) \u003cbr\u003eChapter 7: Polyethylene, HDPE\u003cbr\u003eChapter 8: Polyethylene, MDPE\u003cbr\u003eChapter 9: Polypropylene \u003cbr\u003eChapter 10: Other Olefinic Polymers\u003cbr\u003ePart 6: Polyacetals \u003cbr\u003eChapter 11: Acetal, Copolymer (POM Copolymer)\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003eVolume 2\u003c\/b\u003e\u003cbr\u003eMaterial Index \u003cbr\u003ePreface\u003cbr\u003eHow to Use this Book\u003cbr\u003eAbbreviations \u003cbr\u003ePart 6: Polyacetals \u003cbr\u003eChapter 12: Acetal, Homopolymer (POM Homopolymer) \u003cbr\u003ePart 7: Polyamides\u003cbr\u003eChapter 13: Nylon 11 (PA 11)\u003cbr\u003eChapter 14: Nylon 12 (PA 12)\u003cbr\u003eChapter 15: Nylon 46 (PA 46)\u003cbr\u003eChapter 16: Nylon 6 (PA 6)\u003cbr\u003eChapter 17: Nylon 610 (PA 610)\u003cbr\u003eChapter 18: Nylon 612 (PA 612)\u003cbr\u003eChapter 19: Nylon 66 (PA 66)\u003cbr\u003eChapter 20: Nylon, amorphous (PA, amorphous) \u003cbr\u003eChapter 21: PoIycaprolactones \u003cbr\u003eChapter 22: Polyamide, Nylon \u003cbr\u003eChapter 23: Other Polyamides\u003cbr\u003ePart 8: Polycarbonates\u003cbr\u003eChapter 24: PoIycarbonates\u003cbr\u003ePart 9: Polyesters\u003cbr\u003eChapter 25: Polyester, PET\u003cbr\u003eChapter 26: Other PoIyesters \u003cbr\u003ePart 10: Polyurethanes \u003cbr\u003eChapter 27: Polyurethanes \u003cbr\u003ePart 11: Styrene Copolymers \u003cbr\u003eChapter 28: ABS \u003cbr\u003eChapter 29: Styrene Acrylonitrile (SAN) and Other Copolymers \u003cbr\u003ePart 12: Styrene Polymers \u003cbr\u003eChapter 30: Polystyrene's (PS)\u003cbr\u003eChapter 31: Polystyrene, Impact\u003cbr\u003ePart 13: Vinyl Chloride Polymers\u003cbr\u003eChapter 32: Polyvinyl Chlorides (PVC) \u003cbr\u003ePart 14: Vinyl Polymers \u003cbr\u003eChapter 33: Vinyl Polymers\u003cbr\u003eAlphabetical List of Exposure Media \u003cbr\u003eCAS Registry Numbers ] Chemical Sort\u003cbr\u003eCAS Registry Numbers ] Numeric Sort\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eEdited by\u003c\/div\u003e\n\u003cdiv\u003eWilliam Woishnis, Founder, William Andrew Publishing \u0026amp; Plastics Design Library\u003c\/div\u003e\n\u003cdiv\u003eSina Ebnesajjad, Fluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e"}
Electrical Properties ...
$229.00
{"id":11242238788,"title":"Electrical Properties of Polymers","handle":"978-0-824753467","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: E. Riande and R. Diaz-Calleja \u003cbr\u003eISBN 978-0-824753467 \u003cbr\u003e\u003cbr\u003epages 600\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOutlines the principles of electric birefringence under static fields and clarifies birefringence dynamics\u003c\/li\u003e\n\u003cli\u003eExplains molecular dynamics simulations of dynamic dielectric properties, including arrival at the time-dipole correlation coefficient\u003c\/li\u003e\n\u003cli\u003eDiscusses temperature dependence and long- and short-range relaxation dynamics of relaxation processes above glass transition temperature (Tg) or in the glassy state\u003c\/li\u003e\n\u003cli\u003eConsiders experimental approaches to studying dielectric polymers such as immitance analysis and thermostimulated currents\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:39-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","birefringence dynamics","book","Brownian motion","coefficient","currents","Debye theory","dielectric","dielectric properties","electric birefringence","entropy equations","glass transition","glassy state","Langevin","material","Maxwell","molecular dynamics","Onsager model","polymers","quasi-static dipoles","relaxation dynamics","relaxation processes","Smoluchowski equations","static fields","temperature","Tg","time-dipole"],"price":22900,"price_min":22900,"price_max":22900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378431684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Electrical Properties of Polymers","public_title":null,"options":["Default Title"],"price":22900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-824753467","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798","options":["Title"],"media":[{"alt":null,"id":354453815389,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: E. Riande and R. Diaz-Calleja \u003cbr\u003eISBN 978-0-824753467 \u003cbr\u003e\u003cbr\u003epages 600\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOutlines the principles of electric birefringence under static fields and clarifies birefringence dynamics\u003c\/li\u003e\n\u003cli\u003eExplains molecular dynamics simulations of dynamic dielectric properties, including arrival at the time-dipole correlation coefficient\u003c\/li\u003e\n\u003cli\u003eDiscusses temperature dependence and long- and short-range relaxation dynamics of relaxation processes above glass transition temperature (Tg) or in the glassy state\u003c\/li\u003e\n\u003cli\u003eConsiders experimental approaches to studying dielectric polymers such as immitance analysis and thermostimulated currents\u003c\/li\u003e\n\u003c\/ul\u003e"}
Engineering Plastics
$205.00
{"id":11242242372,"title":"Engineering Plastics","handle":"9781847355683","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R Crampton \u003cbr\u003eISBN 9781847355683 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003e264 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nGenerally speaking, engineering plastics are those which are replacing conventional materials such as metals and alloys in general engineering. In addition, the term 'engineering plastic' covers materials that have superior properties which were not particularly available in conventional polymeric materials such as the exceptionally high heat resistance of polyimides and polysulfides. In addition to conventional materials engineering polymers include materials as diverse as polyether ether ketone, polyimide, polyether-imide and polysulfides.\u003cbr\u003e\u003cbr\u003eThe mechanical, electrical and thermal properties of polymers are discussed as are other diverse applications such as solvent and detergent resistance, frictional and hardness properties, food packaging applications and gas barrier properties. I addition a very important application is discussed of the resistance of plastics to gamma and others form of radiation namely their use nuclear industry, medical applications and food sterilisation\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Mechanical Applications \u003cbr\u003e1.2 Electrical Applications \u003cbr\u003e1.3 Thermal Applications\u003cbr\u003e1.4 Miscellaneous Applications \u003cbr\u003e1.5 Significant Polymer Properties \u003cbr\u003e2. Mechanical Properties\u003cbr\u003e2.1 Review of Mechanical Properties\u003cbr\u003e2.2 Mechanical Properties of Unreinforced Polymers\u003cbr\u003e2.3 Reinforced Plastics\u003cbr\u003e2.4 Comparison of Mechanical Properties of Virgin and Reinforced Plastics\u003cbr\u003e2.5 Mechanical Properties of Particular Polymers\u003cbr\u003e2.6 Use of Lubricating Agents in Engineering Polymer Formulations \u003cbr\u003e3. Thermal Properties of Polymers\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Thermal Expansion Coefficient\u003cbr\u003e3.3 Mould Shrinkage\u003cbr\u003e3.4 Melting Temperature or Softening Point\u003cbr\u003e3.5 Maximum Operating Temperature\u003cbr\u003e3.6 Brittleness Temperature (Low Temperature Embrittlement Temperature)\u003cbr\u003e3.7 Heat Distortion Temperature \u003cbr\u003e3.8 Thermal Conductivity\u003cbr\u003e3.9 Specific Heat\u003cbr\u003e3.10 Thermal Diffusivity\u003cbr\u003e3.11 Thermal Insulation Indexder RWTH Aachen, Germany\u003cbr\u003e3.12 Glass Transition Temperature\u003cbr\u003e3.13 Alpha, Beta, Gamma Transitions\u003cbr\u003e3.14 Developments in High Temperature Plastics\u003cbr\u003e4. Electrical Properties of Plastics\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Typical Electrical Properties of a Range of Engineering Polymers\u003cbr\u003e4.3 Effect of Reinforcing Agents on Electrical Properties\u003cbr\u003e4.4 Applications of High Dielectric Strength Polymers \u003cbr\u003e4.5 Effect of Reinforcing Agents on Electrical and Mechanical Properties\u003cbr\u003e4.6 Electrical Properties\u003cbr\u003e4.7 Electrically conductive\u003cbr\u003e4.8 Fire Retardant Plastics for the Electrical Industry\u003cbr\u003e5. Miscellaneous Polymer Properties\u003cbr\u003e5.1 Abrasion Resistance and Wear\u003cbr\u003e5.2 Fatigue Index\u003cbr\u003e5.3 Coefficient of Friction\u003cbr\u003e5.4 Surface Hardness\u003cbr\u003e5.5 Haze, Glass and Surface Roughness\u003cbr\u003e5.6 Weathering Properties of Engineering Plastics\u003cbr\u003e5.7 Chemical Resistance\u003cbr\u003e5.8 Detergent Resistance \u003cbr\u003e5.9 Solvent Resistance\u003cbr\u003e5.10 Hydrolytic Stability and Water Absorption\u003cbr\u003e5.11 Gas Barrier Properties of Plastics \u003cbr\u003e5.12 Prediction of Polymer Service Lifetimes\u003cbr\u003e6 Plastics in Automotive Engineering\u003cbr\u003e6.1 Applications\u003cbr\u003e6.2 Acoustic Properties of Polymers\u003cbr\u003e6.3 End of Life of Vehicles\u003cbr\u003e6.4 Miscellaneous\u003cbr\u003e7 Plastics in Aerospace\u003cbr\u003e7.1 Applications\u003cbr\u003e7.2 Glass Fiber Reinforced Plastics\u003cbr\u003e7.3 Carbon Fiber Reinforced Nanocomposite Plastics\u003cbr\u003e7.4 Pitched Fiber Cyanate Ester Composite \u003cbr\u003e7.5 Recent Developments \u003cbr\u003e8 Other Engineering Applications\u003cbr\u003e8.1 General Engineering Applications\u003cbr\u003e8.2 Building Materials\u003cbr\u003e8.3 Plastics in Electrochemical Cells\u003cbr\u003e8.4 Polymers in Medical Devices\u003cbr\u003e8.5 Gas Barrier Properties \u003cbr\u003e8.6 Foam Insulation\u003cbr\u003e8.7 Radiation Resistance of Engineering Plastics","published_at":"2017-06-22T21:14:51-04:00","created_at":"2017-06-22T21:14:51-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","aerospace","book","building automotive","electronics","engineering plastics","material","mechanical properties","medical application","nuclear industry","plastics","polymers","thermal properties"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Engineering Plastics","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847355683","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847355683.jpg?v=1500216488"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355683.jpg?v=1500216488","options":["Title"],"media":[{"alt":null,"id":354794733661,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355683.jpg?v=1500216488"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355683.jpg?v=1500216488","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R Crampton \u003cbr\u003eISBN 9781847355683 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003e264 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nGenerally speaking, engineering plastics are those which are replacing conventional materials such as metals and alloys in general engineering. In addition, the term 'engineering plastic' covers materials that have superior properties which were not particularly available in conventional polymeric materials such as the exceptionally high heat resistance of polyimides and polysulfides. In addition to conventional materials engineering polymers include materials as diverse as polyether ether ketone, polyimide, polyether-imide and polysulfides.\u003cbr\u003e\u003cbr\u003eThe mechanical, electrical and thermal properties of polymers are discussed as are other diverse applications such as solvent and detergent resistance, frictional and hardness properties, food packaging applications and gas barrier properties. I addition a very important application is discussed of the resistance of plastics to gamma and others form of radiation namely their use nuclear industry, medical applications and food sterilisation\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Mechanical Applications \u003cbr\u003e1.2 Electrical Applications \u003cbr\u003e1.3 Thermal Applications\u003cbr\u003e1.4 Miscellaneous Applications \u003cbr\u003e1.5 Significant Polymer Properties \u003cbr\u003e2. Mechanical Properties\u003cbr\u003e2.1 Review of Mechanical Properties\u003cbr\u003e2.2 Mechanical Properties of Unreinforced Polymers\u003cbr\u003e2.3 Reinforced Plastics\u003cbr\u003e2.4 Comparison of Mechanical Properties of Virgin and Reinforced Plastics\u003cbr\u003e2.5 Mechanical Properties of Particular Polymers\u003cbr\u003e2.6 Use of Lubricating Agents in Engineering Polymer Formulations \u003cbr\u003e3. Thermal Properties of Polymers\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Thermal Expansion Coefficient\u003cbr\u003e3.3 Mould Shrinkage\u003cbr\u003e3.4 Melting Temperature or Softening Point\u003cbr\u003e3.5 Maximum Operating Temperature\u003cbr\u003e3.6 Brittleness Temperature (Low Temperature Embrittlement Temperature)\u003cbr\u003e3.7 Heat Distortion Temperature \u003cbr\u003e3.8 Thermal Conductivity\u003cbr\u003e3.9 Specific Heat\u003cbr\u003e3.10 Thermal Diffusivity\u003cbr\u003e3.11 Thermal Insulation Indexder RWTH Aachen, Germany\u003cbr\u003e3.12 Glass Transition Temperature\u003cbr\u003e3.13 Alpha, Beta, Gamma Transitions\u003cbr\u003e3.14 Developments in High Temperature Plastics\u003cbr\u003e4. Electrical Properties of Plastics\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Typical Electrical Properties of a Range of Engineering Polymers\u003cbr\u003e4.3 Effect of Reinforcing Agents on Electrical Properties\u003cbr\u003e4.4 Applications of High Dielectric Strength Polymers \u003cbr\u003e4.5 Effect of Reinforcing Agents on Electrical and Mechanical Properties\u003cbr\u003e4.6 Electrical Properties\u003cbr\u003e4.7 Electrically conductive\u003cbr\u003e4.8 Fire Retardant Plastics for the Electrical Industry\u003cbr\u003e5. Miscellaneous Polymer Properties\u003cbr\u003e5.1 Abrasion Resistance and Wear\u003cbr\u003e5.2 Fatigue Index\u003cbr\u003e5.3 Coefficient of Friction\u003cbr\u003e5.4 Surface Hardness\u003cbr\u003e5.5 Haze, Glass and Surface Roughness\u003cbr\u003e5.6 Weathering Properties of Engineering Plastics\u003cbr\u003e5.7 Chemical Resistance\u003cbr\u003e5.8 Detergent Resistance \u003cbr\u003e5.9 Solvent Resistance\u003cbr\u003e5.10 Hydrolytic Stability and Water Absorption\u003cbr\u003e5.11 Gas Barrier Properties of Plastics \u003cbr\u003e5.12 Prediction of Polymer Service Lifetimes\u003cbr\u003e6 Plastics in Automotive Engineering\u003cbr\u003e6.1 Applications\u003cbr\u003e6.2 Acoustic Properties of Polymers\u003cbr\u003e6.3 End of Life of Vehicles\u003cbr\u003e6.4 Miscellaneous\u003cbr\u003e7 Plastics in Aerospace\u003cbr\u003e7.1 Applications\u003cbr\u003e7.2 Glass Fiber Reinforced Plastics\u003cbr\u003e7.3 Carbon Fiber Reinforced Nanocomposite Plastics\u003cbr\u003e7.4 Pitched Fiber Cyanate Ester Composite \u003cbr\u003e7.5 Recent Developments \u003cbr\u003e8 Other Engineering Applications\u003cbr\u003e8.1 General Engineering Applications\u003cbr\u003e8.2 Building Materials\u003cbr\u003e8.3 Plastics in Electrochemical Cells\u003cbr\u003e8.4 Polymers in Medical Devices\u003cbr\u003e8.5 Gas Barrier Properties \u003cbr\u003e8.6 Foam Insulation\u003cbr\u003e8.7 Radiation Resistance of Engineering Plastics"}
Fatigue and Tribologic...
$299.00
{"id":11242223748,"title":"Fatigue and Tribological Properties of Plastics and Elastomers, 2nd Edition","handle":"978-0-08-096450-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W. McKeen \u003cbr\u003eISBN 978-0-08-096450-8 \u003cbr\u003e\u003cbr\u003epages 312, hardbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor all practical purposes, the useful life of a plastic component is equal to its fatigue life under conditions of cyclic loading such as those that occur in vibration. Equally important to materials engineers and designers are abrasion, friction, and wear—tribological properties. Over 80 generic families are covered including thermoplastics, thermosets, thermoplastic elastomers, and rubbers. Neat resins, blends, and alloys, plastics with various combinations of fillers, additives and more are covered. Also, covers plastics mated to plastics and metals. \u003cbr\u003eBased on the premisses that 20 to 80% of material failure is caused by fatigue, a detailed analysis of the existing data is made available in this volume. The book contains the introduction to related phenomena, such as crack initiation and growth, ductile to brittle transitions, factors related to fatigue. The tribological properties are discussed in the next section, including wear factor, a coefficient of friction, PV limit, testing methods, and additives to reduce wear. \u003cbr\u003e\u003cbr\u003eThe sections included in the introduction are further elaborated in the chapters devoted to materials. There are 68 chapters on fatigue resistance of different families of polymers and plastics. The second part includes 31 chapters on tribological properties of different families of polymers and plastics. The materials in these two sections are divided into subsections of thermoplastics, thermoplastic alloys, thermosets, and thermoplastic elastomers which contain chapters on generic polymer families. \u003cbr\u003e\u003cbr\u003eEach chapter contains a discussion of properties of commercial materials falling into this group. For each of commercial products, the information is given on parameters which affect the performance of a given material, modes of failure, and advantages of the material. \u003cbr\u003e\u003cbr\u003eEffect of additives, glass reinforcement, molecular weight, and operating variables are analyzed in the context of fatigue resistance. The graphical representation of results of testing follows the discussion. Typical data include stress vs. cycles to failure and fatigue propagation. \u003cbr\u003e\u003cbr\u003eThe tribological properties are analyzed in a similar manner, including analysis of material properties and composition factors which influence material performance, followed by graphs containing data. Tribological properties are characterized by wear factors of material and mating surface, static and dynamic coefficients of friction, limiting pressure velocity, Taber abrasion, NBS abrasion index and weight loss. \u003cbr\u003e\u003cbr\u003eProperties discussed in this volume are given as a function of pressure velocity, temperature, elapsed time, humidity, material composition, frequency, specimen size, loading conditions, atmospheric conditions, specimen geometry, etc. The above brief overview of content shows that this data bank offers comprehensive treatment of the subject. The data included in this volume were collected from close to 500 sources of information on fatigue and wear. \u003cbr\u003e\u003cbr\u003eConsidering that fatigue and wear are the major causes of plastic failure, this volume should be consulted by anyone who works with these materials for the purpose of the design of new products, their production, and use. This database is a truly unique resource of information on the subject. It saves the time of product development, assists in material choice, and may help to reduce costly failures.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction to Fatigue; Introduction to the Tribology of Plastics and Elastomers; Introduction to Plastics and Polymers; Styrenics; polyethers; Polyesters; Polyimides; Polyamides; polyolefins and Acrylics; Thermoplastic Elastomers; Fluoropolymers; High Temperature Plastics; Appendices; abbreviations, Tradenames; Conversion Factors\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence W. McKeen, DuPont Teflon Finishes Group (former), Delaware, U.S.A.","published_at":"2017-06-22T21:13:54-04:00","created_at":"2017-06-22T21:13:54-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","abrasion","additives","alloys","blends","book","coefficient","crack","elastomers","failure","fatigue","friction","material","mating","metal","plastics","PV","rubbers","static","stress","surface","thermoplastics","thermosets","tribological properties","wear","wear factor","weight loss"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378381252,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fatigue and Tribological Properties of Plastics and Elastomers, 2nd Edition","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08-096450-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-096450-8.jpg?v=1499375976"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-096450-8.jpg?v=1499375976","options":["Title"],"media":[{"alt":null,"id":354795323485,"position":1,"preview_image":{"aspect_ratio":0.764,"height":450,"width":344,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-096450-8.jpg?v=1499375976"},"aspect_ratio":0.764,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08-096450-8.jpg?v=1499375976","width":344}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W. McKeen \u003cbr\u003eISBN 978-0-08-096450-8 \u003cbr\u003e\u003cbr\u003epages 312, hardbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor all practical purposes, the useful life of a plastic component is equal to its fatigue life under conditions of cyclic loading such as those that occur in vibration. Equally important to materials engineers and designers are abrasion, friction, and wear—tribological properties. Over 80 generic families are covered including thermoplastics, thermosets, thermoplastic elastomers, and rubbers. Neat resins, blends, and alloys, plastics with various combinations of fillers, additives and more are covered. Also, covers plastics mated to plastics and metals. \u003cbr\u003eBased on the premisses that 20 to 80% of material failure is caused by fatigue, a detailed analysis of the existing data is made available in this volume. The book contains the introduction to related phenomena, such as crack initiation and growth, ductile to brittle transitions, factors related to fatigue. The tribological properties are discussed in the next section, including wear factor, a coefficient of friction, PV limit, testing methods, and additives to reduce wear. \u003cbr\u003e\u003cbr\u003eThe sections included in the introduction are further elaborated in the chapters devoted to materials. There are 68 chapters on fatigue resistance of different families of polymers and plastics. The second part includes 31 chapters on tribological properties of different families of polymers and plastics. The materials in these two sections are divided into subsections of thermoplastics, thermoplastic alloys, thermosets, and thermoplastic elastomers which contain chapters on generic polymer families. \u003cbr\u003e\u003cbr\u003eEach chapter contains a discussion of properties of commercial materials falling into this group. For each of commercial products, the information is given on parameters which affect the performance of a given material, modes of failure, and advantages of the material. \u003cbr\u003e\u003cbr\u003eEffect of additives, glass reinforcement, molecular weight, and operating variables are analyzed in the context of fatigue resistance. The graphical representation of results of testing follows the discussion. Typical data include stress vs. cycles to failure and fatigue propagation. \u003cbr\u003e\u003cbr\u003eThe tribological properties are analyzed in a similar manner, including analysis of material properties and composition factors which influence material performance, followed by graphs containing data. Tribological properties are characterized by wear factors of material and mating surface, static and dynamic coefficients of friction, limiting pressure velocity, Taber abrasion, NBS abrasion index and weight loss. \u003cbr\u003e\u003cbr\u003eProperties discussed in this volume are given as a function of pressure velocity, temperature, elapsed time, humidity, material composition, frequency, specimen size, loading conditions, atmospheric conditions, specimen geometry, etc. The above brief overview of content shows that this data bank offers comprehensive treatment of the subject. The data included in this volume were collected from close to 500 sources of information on fatigue and wear. \u003cbr\u003e\u003cbr\u003eConsidering that fatigue and wear are the major causes of plastic failure, this volume should be consulted by anyone who works with these materials for the purpose of the design of new products, their production, and use. This database is a truly unique resource of information on the subject. It saves the time of product development, assists in material choice, and may help to reduce costly failures.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction to Fatigue; Introduction to the Tribology of Plastics and Elastomers; Introduction to Plastics and Polymers; Styrenics; polyethers; Polyesters; Polyimides; Polyamides; polyolefins and Acrylics; Thermoplastic Elastomers; Fluoropolymers; High Temperature Plastics; Appendices; abbreviations, Tradenames; Conversion Factors\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence W. McKeen, DuPont Teflon Finishes Group (former), Delaware, U.S.A."}
Film Properties of Pla...
$275.00
{"id":11242202244,"title":"Film Properties of Plastics and Elastomers, 3rd Edition","handle":"978-1-4557-2551-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2551-9 \u003cbr\u003e\u003cbr\u003e320 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively revised second edition is the only data handbook available on the engineering properties of commercial polymeric films details many physical, mechanical, optical, electrical, and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in the same family as well as materials in different families. Data are presented on the characteristics of 47 major plastic and elastomer packaging materials. New to this edition, the resin chapters each contain textual summary information including category, general description, processing methods, applications, and other facts as appropriate, such as reliability, weatherability, and regulatory approval considerations for use in food and medical packaging. Extensive references are provided.\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers, chemists, manufacturers, suppliers, designers and other technical professionals who want a comprehensive reference guide to film properties of plastics and elastomers.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1. Introduction to Plastics and Polymers \u003cbr\u003e1.1. Polymerization\u003cbr\u003e1.1.1. Addition Polymerization\u003cbr\u003e1.1.2. Condensation Polymerization\u003cbr\u003e1.2. Copolymers\u003cbr\u003e1.3. Linear, Branched, and Crosslinked Polymers\u003cbr\u003e1.4. Polarity\u003cbr\u003e1.5. Unsaturation\u003cbr\u003e1.6. Steric Hindrance\u003cbr\u003e1.7. Isomers\u003cbr\u003e1.7.1. Structural isomers\u003cbr\u003e1.7.2. Geometric Isomers\u003cbr\u003e1.7.3. Stereosiomers - Syndiotactic, Isotactic, Atactic\u003cbr\u003e1.8. Inter and Intramolecular attractions in polymers\u003cbr\u003e1.8.1. Hydrogen Bonding\u003cbr\u003e1.8.2. Van der waals Forces\u003cbr\u003e1.8.3. Chain Entanglement\u003cbr\u003e1.9. General Classifications\u003cbr\u003e1.9.1. Molecular Weight\u003cbr\u003e1.9.2. Thermosets vs. Thermoplastics\u003cbr\u003e1.9.3. Crystalline vs. Amorphous\u003cbr\u003e1.9.4. Orientation\u003cbr\u003e1.10. Plastic Compositions\u003cbr\u003e1.10.1. Polymer Blends\u003cbr\u003e1.10.2. Elastomers\u003cbr\u003e1.10.3. Additives\u003cbr\u003e1.10.3.1. Fillers, Reinforcement, Composites \u003cbr\u003e1.10.3.2. Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants\u003cbr\u003e1.10.3.3. Release Agents\u003cbr\u003e1.10.3.4. Slip additives\/Internal Lubricants \u003cbr\u003e1.10.3.5. Antiblock Additives\u003cbr\u003e1.10.3.6. Catalysts\u003cbr\u003e1.10.3.7. Impact Modifiers and Tougheners\u003cbr\u003e1.10.3.8. UV Stabilizers\u003cbr\u003e1.10.3.9. Optical Brighteners\u003cbr\u003e1.10.3.10. Plasticizers\u003cbr\u003e1.10.3.11. Pigments, Extenders, Dyes, Mica\u003cbr\u003e1.10.3.12. Coupling Agents\u003cbr\u003e1.10.3.13. Thermal Stabilizers\u003cbr\u003e1.10.3.14. Antistats\u003cbr\u003e1.11. Summary\u003cbr\u003e2. Chapter 2 - Introduction to the Mechanical, Thermal and Permeation Properties of Plastics and Elastomers\u003cbr\u003e2.1. Physical property testing of plastic films\u003cbr\u003e2.1.1. Specific gravity, density\u003cbr\u003e2.1.2. Dimensional stability\u003cbr\u003e2.1.3. Hygroscopic expansion\u003cbr\u003e2.1.4. Residual shrinkage\u003cbr\u003e2.1.5. Coefficient of Thermal Expansion\u003cbr\u003e2.1.6. Appearance: Color, Haze, and Gloss\u003cbr\u003e2.1.6.1. Color\u003cbr\u003e2.1.6.2. Gloss measurement\u003cbr\u003e2.1.6.3. Haze measurement\u003cbr\u003e2.1.7. Coefficient of friction\u003cbr\u003e2.2. Mechanical Property Testing of Plastic films\u003cbr\u003e2.2.1. Tensile Properties\u003cbr\u003e2.2.2. Flexural Properties\u003cbr\u003e2.2.3. Folding endurance (MIT)\u003cbr\u003e2.2.4. Puncture properties\u003cbr\u003e2.2.4.1. High speed puncture test\u003cbr\u003e2.2.4.2. Drop Dart Impact Test for Plastics Film\u003cbr\u003e2.2.5. Tear Properties\u003cbr\u003e2.2.5.1. Elmendorf Tear Strength\u003cbr\u003e2.2.5.2. Trouser Tear Resistance\u003cbr\u003e2.3. Thermal Property Testing of Plastic films\u003cbr\u003e2.3.1. Melt Flow Index\u003cbr\u003e2.3.2. melting point\u003cbr\u003e2.3.3. Glass Transition Temperature, Tg\u003cbr\u003e2.3.4. Other Thermal Tests\u003cbr\u003e2.4. Electrical Properties of Films\u003cbr\u003e2.4.1. Dielectric constant (or Relative Permittivity)\u003cbr\u003e2.4.2. Dissipation factor\u003cbr\u003e2.4.3. Dielectric Strength\u003cbr\u003e2.4.4. Surface Resistivity\u003cbr\u003e2.4.5. Volume Resistivity\u003cbr\u003e2.5. Permeation of films\u003cbr\u003e2.5.1. History\u003cbr\u003e2.5.2. Transport of Gases and Vapors through solid materials- \u003cbr\u003e2.5.3. Effusion\u003cbr\u003e2.5.4. Solution-Diffusion and Pore-flow Models\u003cbr\u003e2.5.4.1. Dependence of Permeability, Diffusion and Solubility Pressure\u003cbr\u003e2.5.4.2. Dependence of Permeability, Diffusion and Solubility on Temperature - The Arrhenius Equation \u003cbr\u003e2.5.5. Multiple layered films \u003cbr\u003e2.5.6. Permeation and Vapor Transmission Testing \u003cbr\u003e2.5.6.1. Units of Measurement\u003cbr\u003e2.5.6.2. Gas Permeation test cells\u003cbr\u003e2.5.6.3. Vapor Permeation Cup testing\u003cbr\u003e2.5.6.4. Standard Tests for permeation and vapor transmission\u003cbr\u003e3. Production of films\u003cbr\u003e3.1. Extrusion\u003cbr\u003e3.2. Blown Film\u003cbr\u003e3.3. Calendaring\u003cbr\u003e3.4. Casting film lines\u003cbr\u003e3.5. Post film formation processing \u003cbr\u003e3.6. Web coating\u003cbr\u003e3.6.1. Gravure Coating\u003cbr\u003e3.6.2. Reverse Roll Coating\u003cbr\u003e3.6.3. Knife On Roll Coating\u003cbr\u003e3.6.4. Metering Rod (Meyer Rod) Coating\u003cbr\u003e3.6.5. Slot Die (Slot, Extrusion) Coating\u003cbr\u003e3.6.6. Immersion (Dip) Coating\u003cbr\u003e3.6.7. Vacuum deposition\u003cbr\u003e3.6.8. Web Coating process summary\u003cbr\u003e3.7. Lamination\u003cbr\u003e3.7.1. Hot Roll\/Belt Lamination\u003cbr\u003e3.7.2. Flame Lamination\u003cbr\u003e3.8. Orientation\u003cbr\u003e3.8.1. Machine Direction Orientation\u003cbr\u003e3.8.2. Biaxial orientation\u003cbr\u003e3.8.3. Blown Film Orientation\u003cbr\u003e3.9. Skiving\u003cbr\u003e3.10. Coatings\u003cbr\u003e3.11. Summary\u003cbr\u003e4. Markets and Applications for films\u003cbr\u003e4.1. Barrier Films in packaging \u003cbr\u003e4.1.1. Water Vapor\u003cbr\u003e4.1.2. Atmospheric Gases\u003cbr\u003e4.1.3. Odors and Flavors\u003cbr\u003e4.1.4. Markets and Applications of barrier films\u003cbr\u003e4.1.5. Some illustrated applications of multiple layered films\u003cbr\u003e5. Styrenic Plastics\u003cbr\u003e5.1. Acrylonitrile-Butadiene-Styrene Copolymer (ABS) \u003cbr\u003e5.2. Acrylonitrile-Styrene-Acrylate Copolymer (ASA)\u003cbr\u003e5.3. Polystyrene (PS) \u003cbr\u003e5.4. Styrene-Acrylonitrile Copolymer (SAN)\u003cbr\u003e6. Polyesters\u003cbr\u003e6.1. Liquid Crystal Polymer (LCP) \u003cbr\u003e6.2. Polybutylene Terephthalate (PBT)\u003cbr\u003e6.3. Polycarbonate (PC)\u003cbr\u003e6.4. Polycyclohexylene-dimethylene Terephthalate (PCT)\u003cbr\u003e6.5. Polyethylene Napthalate (PEN)\u003cbr\u003e6.6. Polyethylene Terephthalate (PET)\u003cbr\u003e7. Polyimides \u003cbr\u003e7.1. Polyamide-imide\u003cbr\u003e7.2. Polyetherimide\u003cbr\u003e7.3. Polyimide \u003cbr\u003e8. Polyamides (Nylons)\u003cbr\u003e8.1. Polyamide 6 (Nylon 6)\u003cbr\u003e8.2. Polyamide 12 (Nylon 12)\u003cbr\u003e8.3. Polyamide 66 (Nylon 66) \u003cbr\u003e8.4. Polyamide 66\/610 (Nylon 66\/610)\u003cbr\u003e8.5. Polyamide 6\/12 (Nylon 6\/12)\u003cbr\u003e8.6. Polyamide 666 (Nylon 666 or 6\/66)\u003cbr\u003e8.7. Polyamide 6\/69 (Nylon 6\/6.9)\u003cbr\u003e8.8. Nylon 1010\u003cbr\u003e8.9. Specialty Polyamides\u003cbr\u003e8.9.1. Amorphous Polyamides\u003cbr\u003e8.9.2. Nylon PACM-12\u003cbr\u003e8.9.3. PAA - Polyarylamide\u003cbr\u003e9. Polyolefins \u003cbr\u003e9.1. Polyethylene (PE)\u003cbr\u003e9.1.1. Unclassified polyethylene\u003cbr\u003e9.1.2. Ultralow Density polyethylene (ULDPE)\u003cbr\u003e9.1.3. Linear low density polyethylene (LLDPE)\u003cbr\u003e9.1.4. Low density polyethylene (LDPE)\u003cbr\u003e9.1.5. Medium density polyethylene (MDPE)\u003cbr\u003e9.1.6. High density polyethylene (HDPE)\u003cbr\u003e9.2. Polypropylene (PP)\u003cbr\u003e9.3. Polybutene-1 - PB-1\u003cbr\u003e9.4. Polymethyl Pentene (PMP) \u003cbr\u003e9.5. Cyclic Olefin Copolymer (COC)\u003cbr\u003e9.6. Plastomers\u003cbr\u003e10. Polyvinyls \u0026amp; Acrylics\u003cbr\u003e10.1. Ethylene-Vinyl Acetate Copolymer (EVA)\u003cbr\u003e10.2. Ethylene - Vinyl Alcohol Copolymer (EVOH)\u003cbr\u003e10.3. Polyvinyl Alcohol (PVOH)\u003cbr\u003e10.4. Polyvinyl Chloride (PVC)\u003cbr\u003e10.5. Polyvinylidene Chloride (PVDC)\u003cbr\u003e10.6. Polyacrylics\u003cbr\u003e10.7. Acrylonitrile-Methyl Acrylate Copolymer (AMA)\u003cbr\u003e10.8. Ionomers\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e11.1. Polytetrafluoroethylene (PTFE)\u003cbr\u003e11.2. Fluorinated Ethylene Propylene (FEP)\u003cbr\u003e11.3. Perfluoro Alkoxy (PFA)\u003cbr\u003e11.3.1. PFA\u003cbr\u003e11.3.2. MFA\u003cbr\u003e11.4. Amorphous fluoropolymer - Teflon AF®\u003cbr\u003e11.5. Polyvinyl Fluoride (PVF)\u003cbr\u003e11.6. Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e11.7. Polyvinylidene Fluoride (PVDF)\u003cbr\u003e11.8. Ethylene-Tetrafluoroethylene Copolymer (ETFE)\u003cbr\u003e11.9. Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE)\u003cbr\u003e12. High Temperature\/High Performance Polymers\u003cbr\u003e12.1. Polyether ether ketone (PEEK\u003cbr\u003e12.2. Polysiloxane\u003cbr\u003e12.3. Polyphenylene Sulfide (PPS)\u003cbr\u003e12.4. Polysulfone (PSU)\u003cbr\u003e12.5. Polyethersulfone (PES)\u003cbr\u003e12.6. Polybenzimidazole (PBI)\u003cbr\u003e12.7. Parylene (poly(p-xylylene))\u003cbr\u003e12.8. Polyphenylene sulfone (PPSU)\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e13.1. Thermoplastic Polyurethane Elastomers (TPU)\u003cbr\u003e13.2. Olefinic Thermoplastic Elastomers (TPO)\u003cbr\u003e13.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE)\u003cbr\u003e13.4. Thermoplastic Polyether Block Amide Elastomers (PEBA)\u003cbr\u003e13.5. Styrenic Block Copolymer (SBS) Thermoplastic Elastomers\u003cbr\u003e13.6. Syndiotactic 1,2 polybutadiene \u003cbr\u003e14. Renewable Resource or biodegradable polymers \u003cbr\u003e14.1. Cellophane™\u003cbr\u003e14.2. Nitrocellulose\u003cbr\u003e14.3. Cellulose acetate\u003cbr\u003e14.4. Cellulose acetate butyrate\u003cbr\u003e14.5. Ethylcellulose\u003cbr\u003e14.6. Polycaprolactone (PCL)\u003cbr\u003e14.7. Poly (Lactic Acid) (PLA)\u003cbr\u003e14.8. Poly-3-hydroxybutyrate (PHB or PH3B)\u003cbr\u003eAppendices\u003cbr\u003ePermeation Unit Conversion Factors\u003cbr\u003eVapor Transmission rate Conversion factors\u003cbr\u003eIndices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eLaurence W McKeen\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eSenior Research Associate, DuPont, Wilmington, DE, USA\u003c\/div\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","additives","book","electrical","film","Films","lamination","material","mechanical","optical","p-applications","plastics","polymer","properties"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378310468,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Film Properties of Plastics and Elastomers, 3rd Edition","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2551-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111","options":["Title"],"media":[{"alt":null,"id":354806726749,"position":1,"preview_image":{"aspect_ratio":0.771,"height":450,"width":347,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111"},"aspect_ratio":0.771,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111","width":347}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2551-9 \u003cbr\u003e\u003cbr\u003e320 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively revised second edition is the only data handbook available on the engineering properties of commercial polymeric films details many physical, mechanical, optical, electrical, and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in the same family as well as materials in different families. Data are presented on the characteristics of 47 major plastic and elastomer packaging materials. New to this edition, the resin chapters each contain textual summary information including category, general description, processing methods, applications, and other facts as appropriate, such as reliability, weatherability, and regulatory approval considerations for use in food and medical packaging. Extensive references are provided.\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers, chemists, manufacturers, suppliers, designers and other technical professionals who want a comprehensive reference guide to film properties of plastics and elastomers.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1. Introduction to Plastics and Polymers \u003cbr\u003e1.1. Polymerization\u003cbr\u003e1.1.1. Addition Polymerization\u003cbr\u003e1.1.2. Condensation Polymerization\u003cbr\u003e1.2. Copolymers\u003cbr\u003e1.3. Linear, Branched, and Crosslinked Polymers\u003cbr\u003e1.4. Polarity\u003cbr\u003e1.5. Unsaturation\u003cbr\u003e1.6. Steric Hindrance\u003cbr\u003e1.7. Isomers\u003cbr\u003e1.7.1. Structural isomers\u003cbr\u003e1.7.2. Geometric Isomers\u003cbr\u003e1.7.3. Stereosiomers - Syndiotactic, Isotactic, Atactic\u003cbr\u003e1.8. Inter and Intramolecular attractions in polymers\u003cbr\u003e1.8.1. Hydrogen Bonding\u003cbr\u003e1.8.2. Van der waals Forces\u003cbr\u003e1.8.3. Chain Entanglement\u003cbr\u003e1.9. General Classifications\u003cbr\u003e1.9.1. Molecular Weight\u003cbr\u003e1.9.2. Thermosets vs. Thermoplastics\u003cbr\u003e1.9.3. Crystalline vs. Amorphous\u003cbr\u003e1.9.4. Orientation\u003cbr\u003e1.10. Plastic Compositions\u003cbr\u003e1.10.1. Polymer Blends\u003cbr\u003e1.10.2. Elastomers\u003cbr\u003e1.10.3. Additives\u003cbr\u003e1.10.3.1. Fillers, Reinforcement, Composites \u003cbr\u003e1.10.3.2. Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants\u003cbr\u003e1.10.3.3. Release Agents\u003cbr\u003e1.10.3.4. Slip additives\/Internal Lubricants \u003cbr\u003e1.10.3.5. Antiblock Additives\u003cbr\u003e1.10.3.6. Catalysts\u003cbr\u003e1.10.3.7. Impact Modifiers and Tougheners\u003cbr\u003e1.10.3.8. UV Stabilizers\u003cbr\u003e1.10.3.9. Optical Brighteners\u003cbr\u003e1.10.3.10. Plasticizers\u003cbr\u003e1.10.3.11. Pigments, Extenders, Dyes, Mica\u003cbr\u003e1.10.3.12. Coupling Agents\u003cbr\u003e1.10.3.13. Thermal Stabilizers\u003cbr\u003e1.10.3.14. Antistats\u003cbr\u003e1.11. Summary\u003cbr\u003e2. Chapter 2 - Introduction to the Mechanical, Thermal and Permeation Properties of Plastics and Elastomers\u003cbr\u003e2.1. Physical property testing of plastic films\u003cbr\u003e2.1.1. Specific gravity, density\u003cbr\u003e2.1.2. Dimensional stability\u003cbr\u003e2.1.3. Hygroscopic expansion\u003cbr\u003e2.1.4. Residual shrinkage\u003cbr\u003e2.1.5. Coefficient of Thermal Expansion\u003cbr\u003e2.1.6. Appearance: Color, Haze, and Gloss\u003cbr\u003e2.1.6.1. Color\u003cbr\u003e2.1.6.2. Gloss measurement\u003cbr\u003e2.1.6.3. Haze measurement\u003cbr\u003e2.1.7. Coefficient of friction\u003cbr\u003e2.2. Mechanical Property Testing of Plastic films\u003cbr\u003e2.2.1. Tensile Properties\u003cbr\u003e2.2.2. Flexural Properties\u003cbr\u003e2.2.3. Folding endurance (MIT)\u003cbr\u003e2.2.4. Puncture properties\u003cbr\u003e2.2.4.1. High speed puncture test\u003cbr\u003e2.2.4.2. Drop Dart Impact Test for Plastics Film\u003cbr\u003e2.2.5. Tear Properties\u003cbr\u003e2.2.5.1. Elmendorf Tear Strength\u003cbr\u003e2.2.5.2. Trouser Tear Resistance\u003cbr\u003e2.3. Thermal Property Testing of Plastic films\u003cbr\u003e2.3.1. Melt Flow Index\u003cbr\u003e2.3.2. melting point\u003cbr\u003e2.3.3. Glass Transition Temperature, Tg\u003cbr\u003e2.3.4. Other Thermal Tests\u003cbr\u003e2.4. Electrical Properties of Films\u003cbr\u003e2.4.1. Dielectric constant (or Relative Permittivity)\u003cbr\u003e2.4.2. Dissipation factor\u003cbr\u003e2.4.3. Dielectric Strength\u003cbr\u003e2.4.4. Surface Resistivity\u003cbr\u003e2.4.5. Volume Resistivity\u003cbr\u003e2.5. Permeation of films\u003cbr\u003e2.5.1. History\u003cbr\u003e2.5.2. Transport of Gases and Vapors through solid materials- \u003cbr\u003e2.5.3. Effusion\u003cbr\u003e2.5.4. Solution-Diffusion and Pore-flow Models\u003cbr\u003e2.5.4.1. Dependence of Permeability, Diffusion and Solubility Pressure\u003cbr\u003e2.5.4.2. Dependence of Permeability, Diffusion and Solubility on Temperature - The Arrhenius Equation \u003cbr\u003e2.5.5. Multiple layered films \u003cbr\u003e2.5.6. Permeation and Vapor Transmission Testing \u003cbr\u003e2.5.6.1. Units of Measurement\u003cbr\u003e2.5.6.2. Gas Permeation test cells\u003cbr\u003e2.5.6.3. Vapor Permeation Cup testing\u003cbr\u003e2.5.6.4. Standard Tests for permeation and vapor transmission\u003cbr\u003e3. Production of films\u003cbr\u003e3.1. Extrusion\u003cbr\u003e3.2. Blown Film\u003cbr\u003e3.3. Calendaring\u003cbr\u003e3.4. Casting film lines\u003cbr\u003e3.5. Post film formation processing \u003cbr\u003e3.6. Web coating\u003cbr\u003e3.6.1. Gravure Coating\u003cbr\u003e3.6.2. Reverse Roll Coating\u003cbr\u003e3.6.3. Knife On Roll Coating\u003cbr\u003e3.6.4. Metering Rod (Meyer Rod) Coating\u003cbr\u003e3.6.5. Slot Die (Slot, Extrusion) Coating\u003cbr\u003e3.6.6. Immersion (Dip) Coating\u003cbr\u003e3.6.7. Vacuum deposition\u003cbr\u003e3.6.8. Web Coating process summary\u003cbr\u003e3.7. Lamination\u003cbr\u003e3.7.1. Hot Roll\/Belt Lamination\u003cbr\u003e3.7.2. Flame Lamination\u003cbr\u003e3.8. Orientation\u003cbr\u003e3.8.1. Machine Direction Orientation\u003cbr\u003e3.8.2. Biaxial orientation\u003cbr\u003e3.8.3. Blown Film Orientation\u003cbr\u003e3.9. Skiving\u003cbr\u003e3.10. Coatings\u003cbr\u003e3.11. Summary\u003cbr\u003e4. Markets and Applications for films\u003cbr\u003e4.1. Barrier Films in packaging \u003cbr\u003e4.1.1. Water Vapor\u003cbr\u003e4.1.2. Atmospheric Gases\u003cbr\u003e4.1.3. Odors and Flavors\u003cbr\u003e4.1.4. Markets and Applications of barrier films\u003cbr\u003e4.1.5. Some illustrated applications of multiple layered films\u003cbr\u003e5. Styrenic Plastics\u003cbr\u003e5.1. Acrylonitrile-Butadiene-Styrene Copolymer (ABS) \u003cbr\u003e5.2. Acrylonitrile-Styrene-Acrylate Copolymer (ASA)\u003cbr\u003e5.3. Polystyrene (PS) \u003cbr\u003e5.4. Styrene-Acrylonitrile Copolymer (SAN)\u003cbr\u003e6. Polyesters\u003cbr\u003e6.1. Liquid Crystal Polymer (LCP) \u003cbr\u003e6.2. Polybutylene Terephthalate (PBT)\u003cbr\u003e6.3. Polycarbonate (PC)\u003cbr\u003e6.4. Polycyclohexylene-dimethylene Terephthalate (PCT)\u003cbr\u003e6.5. Polyethylene Napthalate (PEN)\u003cbr\u003e6.6. Polyethylene Terephthalate (PET)\u003cbr\u003e7. Polyimides \u003cbr\u003e7.1. Polyamide-imide\u003cbr\u003e7.2. Polyetherimide\u003cbr\u003e7.3. Polyimide \u003cbr\u003e8. Polyamides (Nylons)\u003cbr\u003e8.1. Polyamide 6 (Nylon 6)\u003cbr\u003e8.2. Polyamide 12 (Nylon 12)\u003cbr\u003e8.3. Polyamide 66 (Nylon 66) \u003cbr\u003e8.4. Polyamide 66\/610 (Nylon 66\/610)\u003cbr\u003e8.5. Polyamide 6\/12 (Nylon 6\/12)\u003cbr\u003e8.6. Polyamide 666 (Nylon 666 or 6\/66)\u003cbr\u003e8.7. Polyamide 6\/69 (Nylon 6\/6.9)\u003cbr\u003e8.8. Nylon 1010\u003cbr\u003e8.9. Specialty Polyamides\u003cbr\u003e8.9.1. Amorphous Polyamides\u003cbr\u003e8.9.2. Nylon PACM-12\u003cbr\u003e8.9.3. PAA - Polyarylamide\u003cbr\u003e9. Polyolefins \u003cbr\u003e9.1. Polyethylene (PE)\u003cbr\u003e9.1.1. Unclassified polyethylene\u003cbr\u003e9.1.2. Ultralow Density polyethylene (ULDPE)\u003cbr\u003e9.1.3. Linear low density polyethylene (LLDPE)\u003cbr\u003e9.1.4. Low density polyethylene (LDPE)\u003cbr\u003e9.1.5. Medium density polyethylene (MDPE)\u003cbr\u003e9.1.6. High density polyethylene (HDPE)\u003cbr\u003e9.2. Polypropylene (PP)\u003cbr\u003e9.3. Polybutene-1 - PB-1\u003cbr\u003e9.4. Polymethyl Pentene (PMP) \u003cbr\u003e9.5. Cyclic Olefin Copolymer (COC)\u003cbr\u003e9.6. Plastomers\u003cbr\u003e10. Polyvinyls \u0026amp; Acrylics\u003cbr\u003e10.1. Ethylene-Vinyl Acetate Copolymer (EVA)\u003cbr\u003e10.2. Ethylene - Vinyl Alcohol Copolymer (EVOH)\u003cbr\u003e10.3. Polyvinyl Alcohol (PVOH)\u003cbr\u003e10.4. Polyvinyl Chloride (PVC)\u003cbr\u003e10.5. Polyvinylidene Chloride (PVDC)\u003cbr\u003e10.6. Polyacrylics\u003cbr\u003e10.7. Acrylonitrile-Methyl Acrylate Copolymer (AMA)\u003cbr\u003e10.8. Ionomers\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e11.1. Polytetrafluoroethylene (PTFE)\u003cbr\u003e11.2. Fluorinated Ethylene Propylene (FEP)\u003cbr\u003e11.3. Perfluoro Alkoxy (PFA)\u003cbr\u003e11.3.1. PFA\u003cbr\u003e11.3.2. MFA\u003cbr\u003e11.4. Amorphous fluoropolymer - Teflon AF®\u003cbr\u003e11.5. Polyvinyl Fluoride (PVF)\u003cbr\u003e11.6. Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e11.7. Polyvinylidene Fluoride (PVDF)\u003cbr\u003e11.8. Ethylene-Tetrafluoroethylene Copolymer (ETFE)\u003cbr\u003e11.9. Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE)\u003cbr\u003e12. High Temperature\/High Performance Polymers\u003cbr\u003e12.1. Polyether ether ketone (PEEK\u003cbr\u003e12.2. Polysiloxane\u003cbr\u003e12.3. Polyphenylene Sulfide (PPS)\u003cbr\u003e12.4. Polysulfone (PSU)\u003cbr\u003e12.5. Polyethersulfone (PES)\u003cbr\u003e12.6. Polybenzimidazole (PBI)\u003cbr\u003e12.7. Parylene (poly(p-xylylene))\u003cbr\u003e12.8. Polyphenylene sulfone (PPSU)\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e13.1. Thermoplastic Polyurethane Elastomers (TPU)\u003cbr\u003e13.2. Olefinic Thermoplastic Elastomers (TPO)\u003cbr\u003e13.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE)\u003cbr\u003e13.4. Thermoplastic Polyether Block Amide Elastomers (PEBA)\u003cbr\u003e13.5. Styrenic Block Copolymer (SBS) Thermoplastic Elastomers\u003cbr\u003e13.6. Syndiotactic 1,2 polybutadiene \u003cbr\u003e14. Renewable Resource or biodegradable polymers \u003cbr\u003e14.1. Cellophane™\u003cbr\u003e14.2. Nitrocellulose\u003cbr\u003e14.3. Cellulose acetate\u003cbr\u003e14.4. Cellulose acetate butyrate\u003cbr\u003e14.5. Ethylcellulose\u003cbr\u003e14.6. Polycaprolactone (PCL)\u003cbr\u003e14.7. Poly (Lactic Acid) (PLA)\u003cbr\u003e14.8. Poly-3-hydroxybutyrate (PHB or PH3B)\u003cbr\u003eAppendices\u003cbr\u003ePermeation Unit Conversion Factors\u003cbr\u003eVapor Transmission rate Conversion factors\u003cbr\u003eIndices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eLaurence W McKeen\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eSenior Research Associate, DuPont, Wilmington, DE, USA\u003c\/div\u003e"}
Handbook of Adhesives ...
$265.00
{"id":11242201412,"title":"Handbook of Adhesives and Surface Preparation, Technology, Applications and Manufacturing","handle":"978-1-4377-4461-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sina Ebnesajjad \u003cbr\u003eISBN 978-1-4377-4461-3 \u003cbr\u003e\u003cbr\u003e448 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe Applied Handbook of Adhesives provides a thoroughly practical survey of all aspects of adhesives technology from selection and surface preparation to industrial applications and health and environmental factors. The resulting handbook is a hard-working reference for a wide range of engineers and technicians working in the adhesives industry and a variety of industry sectors that make considerable use of adhesives. Particular attention is given to adhesives applications in the automotive, aerospace, medical, dental and electronics sectors.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eA handbook that truly focuses on the applied aspects of adhesives selection and applications: this is a book that won't gather dust on the shelf\u003c\/li\u003e\n\u003cli\u003eProvides practical techniques for rendering materials surfaces adhearable\u003c\/li\u003e\n\u003cli\u003eSector-based studies explore the specific issues for automotive \u0026amp; aerospace, medical, dental and electronics\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e\u003cbr\u003ePART I INTRODUCTION\u003cbr\u003e\u003cbr\u003ePART II SURFACE PREPARATION\u003cbr\u003e\u003cbr\u003ePART III ADHESIVE CHARACTERISTICS\u003cbr\u003e\u003cbr\u003ePART IV ADHESIVES FOR APPLICATIONS\u003cbr\u003e\u003cbr\u003eGlossary (From Adhesives Technology, 25 pages)\u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e, Fluoroconsultants Group; (former DuPont), Chadds Ford, Pennsylvania, U.S.A.","published_at":"2017-06-22T21:12:41-04:00","created_at":"2017-06-22T21:12:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","adhesives","aerospace applications","automotive applications","book","electronics","material","medical and dental applications","surface preparation"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308740,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Adhesives and Surface Preparation, Technology, Applications and Manufacturing","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-4461-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4461-3.jpg?v=1499387243"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4461-3.jpg?v=1499387243","options":["Title"],"media":[{"alt":null,"id":354809053277,"position":1,"preview_image":{"aspect_ratio":0.78,"height":450,"width":351,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4461-3.jpg?v=1499387243"},"aspect_ratio":0.78,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4461-3.jpg?v=1499387243","width":351}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sina Ebnesajjad \u003cbr\u003eISBN 978-1-4377-4461-3 \u003cbr\u003e\u003cbr\u003e448 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe Applied Handbook of Adhesives provides a thoroughly practical survey of all aspects of adhesives technology from selection and surface preparation to industrial applications and health and environmental factors. The resulting handbook is a hard-working reference for a wide range of engineers and technicians working in the adhesives industry and a variety of industry sectors that make considerable use of adhesives. Particular attention is given to adhesives applications in the automotive, aerospace, medical, dental and electronics sectors.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eA handbook that truly focuses on the applied aspects of adhesives selection and applications: this is a book that won't gather dust on the shelf\u003c\/li\u003e\n\u003cli\u003eProvides practical techniques for rendering materials surfaces adhearable\u003c\/li\u003e\n\u003cli\u003eSector-based studies explore the specific issues for automotive \u0026amp; aerospace, medical, dental and electronics\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e\u003cbr\u003ePART I INTRODUCTION\u003cbr\u003e\u003cbr\u003ePART II SURFACE PREPARATION\u003cbr\u003e\u003cbr\u003ePART III ADHESIVE CHARACTERISTICS\u003cbr\u003e\u003cbr\u003ePART IV ADHESIVES FOR APPLICATIONS\u003cbr\u003e\u003cbr\u003eGlossary (From Adhesives Technology, 25 pages)\u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e, Fluoroconsultants Group; (former DuPont), Chadds Ford, Pennsylvania, U.S.A."}
Handbook of Benzoxazin...
$305.00
{"id":11242249604,"title":"Handbook of Benzoxazine Resins","handle":"978-0-444-53790-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited By Hatsuo Ishida \u0026amp; Tarek Agag \u003cbr\u003eISBN 978-0-444-53790-4 \u003cbr\u003e\u003cbr\u003e712 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Provides thorough coverage of the chemistry and applications of benzoxazine resins with an evidence-based approach to enable chemists, engineers and material scientists to evaluate effectiveness\u003cbr\u003e\u003cbr\u003e• Features spectra, which allow researchers to compare results, avoid repetition and save time as well as tables on key NMR frequency, IR frequency, heat of polymerization, of many benzoxazine resins to aid them in selection of materials\u003cbr\u003e\u003cbr\u003e• Written by the foremost experts in the field\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThis handbook provides a wide overview of the field, fundamental understanding of the synthetic methods and structure\/property correlation, as well as studies related to applications in a wide range of subjects. The handbook also provides 1H and 13C NMR spectra, FTIR spectra, DSC and TGA thermograms to aid in research activities. Additional tables on key NMR and FTIR frequencies unique to benzoxazine, heat of polymerization, Tg, and char yield will greatly aid in the choice of proper benzoxazine for a specific application.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003ePart I. Introduction\u003cbr\u003e1. Overview and historical background of polybenzoxazine research (H. Ishida) \u003cbr\u003ePart II. Physical and Chemical Properties of Benzoxazine Resins\u003cbr\u003e2. Synthesis of benzoxazines in solutions and melt (H. Ishida, and Jin-Ping Liu)\u003cbr\u003e3. Molecular modeling (Yi Gu, and Ming Li)\u003cbr\u003e4. Mono-substituted phenol-based benzoxazines : Inevitable dimerization via self-termination and its metal complexation (S. Chirachanchai, S. Phongtamrug, A. Laobuthee, and K. Tashiro) \u003cbr\u003e5. Using molecular simulation to predict the physical and mechanical properties of polybenzoxazines (I. Hamerton, B.J. Howlin, A.L. Mitchell, S.A.Hall, and L. McNamara)\u003cbr\u003e6. Chemorheology of benzoxazine-based resins (S. Rimdusit, C. Jubsilp, P. Kunopast, and W. Bangsen)\u003cbr\u003e7. Polymerization kinetics (C. Jubsilp, and S. Rimdusit)\u003cbr\u003e8. Electrochemical polymerization of benzoxazines (Wei Chen)\u003cbr\u003e9. Light Induced Reactions of Benzoxazines (M.At. Tasdelen, B. Kiskan, B. Gacal, F. Kasapoglu, L. Cianga, and Y. Yagci)\u003cbr\u003e10. Effect of Neighboring Groups on Enhancing Benzoxazine Autocatalytic Polymerization (M. Baqar, T. Agag, S. Qutubuddin, and H. Ishida)\u003cbr\u003e11. Catalytic Opening of Lateral Benzoxazine Rings by Thiols (I. Gorodisher, R.J. DeVoe, and R.J. Webb)\u003cbr\u003ePart III. Physical and Chemical Properties of Cross-linked Polybenzoxazines\u003cbr\u003e12. Hydrogen bonding of polybenzoxazines (Ho-Dong Kim, and H. Ishida)\u003cbr\u003e13. Polybenzoxazines of Enhanced Thermal Properties: The Role of Additional Non-Benzoxazine Polymerizable Groups (T. Agag, S. Geiger, and H. Ishida)\u003cbr\u003e14. Thermal degradation mechanism of polybenzoxazines (J. Hacaloglu, T. Uyer, and H. Ishida)\u003cbr\u003ePart IV. Main-chain, Side-chain, Telechelic and Supramolecular Benzoxazine Architectures\u003cbr\u003e15. Various approaches for main-chain type benzoxazine polymers (S. Alhassan, D. Schiraldi, T. Agag, S. Qutubuddin, and H. Ishida)\u003cbr\u003e16. Side and end chain benzoxazine functional polymers (B. Kiskan, and Y. Yagci)\u003cbr\u003e17. Supramolecular chemistry of benzoxazines: from simple, selective, effective, and efficient macrocyclization pathway to host-guest properties (S. Chirachanchai, S. Phongtamrug, and K. Tashiro)\u003cbr\u003e18. Main-chain type benzoxazine oligomers: A new concept for easily processable high performance polybenzoxazines (Jia Liu, T. Agag, and H. Ishida)\u003cbr\u003ePart V. Renewable Resources Based Polybenzoxazine Materials\u003cbr\u003e19. Study of a cardanol-based benzoxazine as reactive diluent and toughening agent of conventional benzoxazines (P. Campaner, D. D’Amico, L. Longo, C. Stifani, A. Tarzia, and S. Tiburzio) \u003cbr\u003ePart VI. Polybenzoxazine Blends and Alloys\u003cbr\u003e20. Polybenzoxazine\/polyimide alloys (T. Takeichi, T. Kawauchi, and T. Agag)\u003cbr\u003e21. Polybenzoxazine\/polyurethane alloys (H. Yeganeh)\u003cbr\u003e22. The Blends of a Silicon-containing Arylacetylene Resin and an Acetylene-Functional Benzoxazine (Farong Huang, Jianxiang Huang, Yu Gao, Yan Zhou, and Lei Du)\u003cbr\u003e23. Polybenzoxazine\/polysiloxanes (T. Kawauchi, and T. Takeichi)\u003cbr\u003e24. Polybenzoxazine\/bisoxazolines (H. Kimura, K. Ohtsuka, and A. Matsumoto)\u003cbr\u003ePart VII. Morphological Control of Polybenzoxazines\u003cbr\u003e25. Morphology and properties of polybenzoxazine Blends (Chongyin Zhang, Lei Wang, Rentong Yu, and Sixun Zheng)\u003cbr\u003e26. Porous materials from polybenzoxazine (T. Chaisuwan)\u003cbr\u003e27. Spherical polybenzoxazine resin (Xinsheng Zheng, Yang Xue, Youmiao Xu, and Qianquan Chang)\u003cbr\u003ePart VIII. Polybenzoxazine Composites, Hybrid Materials and Nanocomposites\u003cbr\u003e28. Polybenzoxazine \/fiber composites (Yi Gu, and Qi-chao Ran)\u003cbr\u003e29. Polybenzoxazine-clay nanocomposites (T. Agag, and A. Akelah)\u003cbr\u003e30. Polybenzoxazine-POSS nanocomposites (Riwei Xu, Lei Wang, and Dingsheng Yu)\u003cbr\u003e31. Polybenzoxazine-CNT nanocomposites (Riwei Xu, Pengli Zhang, Jing Wang, and Dingsheng Yu)\u003cbr\u003ePart IX. Polybenzoxazine Applications and Potential Applications\u003cbr\u003e32. Polybenzoxazines with enhanced flame retardancy (V. Cadiz, J. C. Ronda, G. Lligadas, M. Galia)\u003cbr\u003e33. Surface properties of polybenzoxazines (Chih-Feng Wang, Feng-Chih Chang, and Shiao-Wei Kuo)\u003cbr\u003e34. Advanced Benzoxazine Chemistries Provide Improved Performance in Broad Range of Applications (R. Tietze, and M. Chaudhari)\u003cbr\u003e35. Benzoxazines for Industrial Applications: Comparison with other Resins, Formulation \u0026amp; Toughening Know-how and Water-based Dispersion Technology (C. Sawaryn, S. Kreiling, R. Schoenfeld, K. Landfester, and A. Taden)\u003cbr\u003e36. Polybenzoxazines for increased dielectric constant (H. Manuspia, and H. Ishida)\u003cbr\u003e37. Preparation of Polybenzoxazine- Ni- Zn Ferrite nanocomposites and their magnetic property (N.N. Ghosh, and A.B. Rajput)\u003cbr\u003ePart X. Material Properties and Spectra\u003cbr\u003e38. 1H NMR spectra of benzoxazine resins\u003cbr\u003e39. FTIR spectra of benzoxazine resins\u003cbr\u003e40. Raman spectra of benzoxazine resins\u003cbr\u003e41. DSC thermograms of benzoxazine resins\u003cbr\u003e42. TGA thermograms of benzoxazine resins\u003cbr\u003e43. Dynamic mechanical spectra of benzoxazine resins","published_at":"2017-06-22T21:15:13-04:00","created_at":"2017-06-22T21:15:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","applications of benzoxazine resins","benzoxazine resins","book","material","mechanical properties polybenzoxazines","physical properties polybenzoxazines"],"price":30500,"price_min":30500,"price_max":30500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378470404,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Benzoxazine Resins","public_title":null,"options":["Default Title"],"price":30500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-444-53790-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53790-4.jpg?v=1499387464"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53790-4.jpg?v=1499387464","options":["Title"],"media":[{"alt":null,"id":354809610333,"position":1,"preview_image":{"aspect_ratio":0.782,"height":450,"width":352,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53790-4.jpg?v=1499387464"},"aspect_ratio":0.782,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53790-4.jpg?v=1499387464","width":352}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited By Hatsuo Ishida \u0026amp; Tarek Agag \u003cbr\u003eISBN 978-0-444-53790-4 \u003cbr\u003e\u003cbr\u003e712 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Provides thorough coverage of the chemistry and applications of benzoxazine resins with an evidence-based approach to enable chemists, engineers and material scientists to evaluate effectiveness\u003cbr\u003e\u003cbr\u003e• Features spectra, which allow researchers to compare results, avoid repetition and save time as well as tables on key NMR frequency, IR frequency, heat of polymerization, of many benzoxazine resins to aid them in selection of materials\u003cbr\u003e\u003cbr\u003e• Written by the foremost experts in the field\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThis handbook provides a wide overview of the field, fundamental understanding of the synthetic methods and structure\/property correlation, as well as studies related to applications in a wide range of subjects. The handbook also provides 1H and 13C NMR spectra, FTIR spectra, DSC and TGA thermograms to aid in research activities. Additional tables on key NMR and FTIR frequencies unique to benzoxazine, heat of polymerization, Tg, and char yield will greatly aid in the choice of proper benzoxazine for a specific application.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003ePart I. Introduction\u003cbr\u003e1. Overview and historical background of polybenzoxazine research (H. Ishida) \u003cbr\u003ePart II. Physical and Chemical Properties of Benzoxazine Resins\u003cbr\u003e2. Synthesis of benzoxazines in solutions and melt (H. Ishida, and Jin-Ping Liu)\u003cbr\u003e3. Molecular modeling (Yi Gu, and Ming Li)\u003cbr\u003e4. Mono-substituted phenol-based benzoxazines : Inevitable dimerization via self-termination and its metal complexation (S. Chirachanchai, S. Phongtamrug, A. Laobuthee, and K. Tashiro) \u003cbr\u003e5. Using molecular simulation to predict the physical and mechanical properties of polybenzoxazines (I. Hamerton, B.J. Howlin, A.L. Mitchell, S.A.Hall, and L. McNamara)\u003cbr\u003e6. Chemorheology of benzoxazine-based resins (S. Rimdusit, C. Jubsilp, P. Kunopast, and W. Bangsen)\u003cbr\u003e7. Polymerization kinetics (C. Jubsilp, and S. Rimdusit)\u003cbr\u003e8. Electrochemical polymerization of benzoxazines (Wei Chen)\u003cbr\u003e9. Light Induced Reactions of Benzoxazines (M.At. Tasdelen, B. Kiskan, B. Gacal, F. Kasapoglu, L. Cianga, and Y. Yagci)\u003cbr\u003e10. Effect of Neighboring Groups on Enhancing Benzoxazine Autocatalytic Polymerization (M. Baqar, T. Agag, S. Qutubuddin, and H. Ishida)\u003cbr\u003e11. Catalytic Opening of Lateral Benzoxazine Rings by Thiols (I. Gorodisher, R.J. DeVoe, and R.J. Webb)\u003cbr\u003ePart III. Physical and Chemical Properties of Cross-linked Polybenzoxazines\u003cbr\u003e12. Hydrogen bonding of polybenzoxazines (Ho-Dong Kim, and H. Ishida)\u003cbr\u003e13. Polybenzoxazines of Enhanced Thermal Properties: The Role of Additional Non-Benzoxazine Polymerizable Groups (T. Agag, S. Geiger, and H. Ishida)\u003cbr\u003e14. Thermal degradation mechanism of polybenzoxazines (J. Hacaloglu, T. Uyer, and H. Ishida)\u003cbr\u003ePart IV. Main-chain, Side-chain, Telechelic and Supramolecular Benzoxazine Architectures\u003cbr\u003e15. Various approaches for main-chain type benzoxazine polymers (S. Alhassan, D. Schiraldi, T. Agag, S. Qutubuddin, and H. Ishida)\u003cbr\u003e16. Side and end chain benzoxazine functional polymers (B. Kiskan, and Y. Yagci)\u003cbr\u003e17. Supramolecular chemistry of benzoxazines: from simple, selective, effective, and efficient macrocyclization pathway to host-guest properties (S. Chirachanchai, S. Phongtamrug, and K. Tashiro)\u003cbr\u003e18. Main-chain type benzoxazine oligomers: A new concept for easily processable high performance polybenzoxazines (Jia Liu, T. Agag, and H. Ishida)\u003cbr\u003ePart V. Renewable Resources Based Polybenzoxazine Materials\u003cbr\u003e19. Study of a cardanol-based benzoxazine as reactive diluent and toughening agent of conventional benzoxazines (P. Campaner, D. D’Amico, L. Longo, C. Stifani, A. Tarzia, and S. Tiburzio) \u003cbr\u003ePart VI. Polybenzoxazine Blends and Alloys\u003cbr\u003e20. Polybenzoxazine\/polyimide alloys (T. Takeichi, T. Kawauchi, and T. Agag)\u003cbr\u003e21. Polybenzoxazine\/polyurethane alloys (H. Yeganeh)\u003cbr\u003e22. The Blends of a Silicon-containing Arylacetylene Resin and an Acetylene-Functional Benzoxazine (Farong Huang, Jianxiang Huang, Yu Gao, Yan Zhou, and Lei Du)\u003cbr\u003e23. Polybenzoxazine\/polysiloxanes (T. Kawauchi, and T. Takeichi)\u003cbr\u003e24. Polybenzoxazine\/bisoxazolines (H. Kimura, K. Ohtsuka, and A. Matsumoto)\u003cbr\u003ePart VII. Morphological Control of Polybenzoxazines\u003cbr\u003e25. Morphology and properties of polybenzoxazine Blends (Chongyin Zhang, Lei Wang, Rentong Yu, and Sixun Zheng)\u003cbr\u003e26. Porous materials from polybenzoxazine (T. Chaisuwan)\u003cbr\u003e27. Spherical polybenzoxazine resin (Xinsheng Zheng, Yang Xue, Youmiao Xu, and Qianquan Chang)\u003cbr\u003ePart VIII. Polybenzoxazine Composites, Hybrid Materials and Nanocomposites\u003cbr\u003e28. Polybenzoxazine \/fiber composites (Yi Gu, and Qi-chao Ran)\u003cbr\u003e29. Polybenzoxazine-clay nanocomposites (T. Agag, and A. Akelah)\u003cbr\u003e30. Polybenzoxazine-POSS nanocomposites (Riwei Xu, Lei Wang, and Dingsheng Yu)\u003cbr\u003e31. Polybenzoxazine-CNT nanocomposites (Riwei Xu, Pengli Zhang, Jing Wang, and Dingsheng Yu)\u003cbr\u003ePart IX. Polybenzoxazine Applications and Potential Applications\u003cbr\u003e32. Polybenzoxazines with enhanced flame retardancy (V. Cadiz, J. C. Ronda, G. Lligadas, M. Galia)\u003cbr\u003e33. Surface properties of polybenzoxazines (Chih-Feng Wang, Feng-Chih Chang, and Shiao-Wei Kuo)\u003cbr\u003e34. Advanced Benzoxazine Chemistries Provide Improved Performance in Broad Range of Applications (R. Tietze, and M. Chaudhari)\u003cbr\u003e35. Benzoxazines for Industrial Applications: Comparison with other Resins, Formulation \u0026amp; Toughening Know-how and Water-based Dispersion Technology (C. Sawaryn, S. Kreiling, R. Schoenfeld, K. Landfester, and A. Taden)\u003cbr\u003e36. Polybenzoxazines for increased dielectric constant (H. Manuspia, and H. Ishida)\u003cbr\u003e37. Preparation of Polybenzoxazine- Ni- Zn Ferrite nanocomposites and their magnetic property (N.N. Ghosh, and A.B. Rajput)\u003cbr\u003ePart X. Material Properties and Spectra\u003cbr\u003e38. 1H NMR spectra of benzoxazine resins\u003cbr\u003e39. FTIR spectra of benzoxazine resins\u003cbr\u003e40. Raman spectra of benzoxazine resins\u003cbr\u003e41. DSC thermograms of benzoxazine resins\u003cbr\u003e42. TGA thermograms of benzoxazine resins\u003cbr\u003e43. Dynamic mechanical spectra of benzoxazine resins"}
Handbook of Environmen...
$250.00
{"id":11242224132,"title":"Handbook of Environmental Degradation of Materials, 2nd Edition","handle":"978-1-4377-3455-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Myer Kutz \u003cbr\u003eISBN 978-1-4377-3455-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e896 pages, Hardcover\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003eThe Handbook’s broad scope introduces the reader to the effects of environmental degradation on a wide range of materials, including metals, plastics, concrete, wood and textiles.\n\u003cli\u003eFor each type of material, the book describes the kind of degradation that effects it and how best to protect it.\u003c\/li\u003e\n\u003cli\u003eCase Studies show how organizations from small consulting firms to corporate giants design and manufacture products that are more resistant to environmental effects.\u003c\/li\u003e\nNothing stays the same for ever. The environmental degradation and corrosion of materials is inevitable and affects most aspects of life. In industrial settings, this inescapable fact has very significant financial, safety and environmental implications.\n\u003cp\u003eThe Handbook of Environmental Degradation of Materials explains how to measure, analyse, and control environmental degradation for a wide range of industrial materials including metals, polymers, ceramics, concrete, wood and textiles exposed to environmental factors such as weather, seawater, and fire. Divided into sections which deal with analysis, types of degradation, protection and surface engineering respectively, the reader is introduced to the wide variety of environmental effects and what can be done to control them. The expert contributors to this book provide a wealth of insider knowledge and engineering knowhow, complementing their explanations and advice with Case Studies from areas such as pipelines, tankers, packaging and chemical processing equipment ensures that the reader understands the practical measures that can be put in place to save money, lives and the environment.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers: Civil, Mechanical, Materials, Design, Maintenance, Chemical \u0026amp; Process \u003c\/p\u003e\n\u003cp\u003eIndustries: construction \/ civil engineering, automotive \/ aerospace \/ transportation, chemical processing, consumer packaging, paints and coatings, petrochemical, pipeline, plastics.\u003c\/p\u003e\n\u003cp\u003eLevel: Practicing engineers and technicians, students seeking real-world examples and applied techniques.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I: Analysis\u003cbr\u003e\u003cbr\u003e1) Analysis of Failures of Metallic Materials due to Environmental Factors\u003cbr\u003e\u003cbr\u003e2) Laboratory Assessment of Corrosion\u003cbr\u003e\u003cbr\u003e3) Modeling of Corrosion Processes\u003cbr\u003e\u003cbr\u003e4) Lifetime Predictions\u003cbr\u003e\u003cbr\u003ePart II: Types of Degradation\u003cbr\u003e\u003cbr\u003e5) Electrochemical Corrosion\u003cbr\u003e\u003cbr\u003e6) Localized Corrosion\u003cbr\u003e\u003cbr\u003e7) High-Temperature Oxidation\u003cbr\u003e\u003cbr\u003e8) Weathering of Plastics\u003cbr\u003e\u003cbr\u003e9) Chemical and Physical Aging of Polymers\u003cbr\u003e\u003cbr\u003e10) Thermal Degradation of Plastics\u003cbr\u003e\u003cbr\u003e11) Environmental Degradation of Reinforced Concrete\u003cbr\u003e\u003cbr\u003e12) Biofouling and prevention, and biodeterioration and biodegradation of materials\u003cbr\u003e\u003cbr\u003e(possibly split into two chapters, one on polymers, one on metals.)\u003cbr\u003e\u003cbr\u003e13) Material Flammability\u003cbr\u003e\u003cbr\u003e14) Fire Retardant Materials\u003cbr\u003e\u003cbr\u003ePart III: Protective Measures\u003cbr\u003e\u003cbr\u003e15) Cathodic Protection\u003cbr\u003e\u003cbr\u003e16) Thermal Protective Clothing\u003cbr\u003e\u003cbr\u003e17) Wood Protection\u003cbr\u003e\u003cbr\u003e18) Materials Selection for Environmental Degradation Prevention\u003cbr\u003e\u003cbr\u003ePart IV: Surface Engineering\u003cbr\u003e\u003cbr\u003e19) The Intersection of Design, Manufacturing, and Surface Engineering (updated to\u003cbr\u003e\u003cbr\u003einclude new coatings: (biomimetic, nanostructured and conductive polymers)\u003cbr\u003e\u003cbr\u003e20) Nanostructured Surfaces and Nanomaterial Coatings\u003cbr\u003e\u003cbr\u003e21) Protective Coatings for Aluminum Alloys\u003cbr\u003e\u003cbr\u003e22) Anti-Corrosion Paints\u003cbr\u003e\u003cbr\u003e23) Thermal and Environmental Barrier Coatings\u003cbr\u003e\u003cbr\u003e24) Thermay Spray Coatings\u003cbr\u003e\u003cbr\u003e25) Paint Weathering Tests\u003cbr\u003e\u003cbr\u003e26) Coatings for Concrete Surfaces: Testing and Modeling\u003cbr\u003e\u003cbr\u003e27) The importance of intrinsic defects in the protective behavior of coatings\u003cbr\u003e\u003cbr\u003e28) Plastics Additives for Environmental Stability\u003cbr\u003e\u003cbr\u003ePart V: Industrial Applications\u003cbr\u003e\u003cbr\u003e29) Degradation of Spacecraft Materials\u003cbr\u003e\u003cbr\u003e30) Cathodic Protection for Pipelines\u003cbr\u003e\u003cbr\u003e31) Tanker Corrosion\u003cbr\u003e\u003cbr\u003e32) Barrier Packaging Materials\u003cbr\u003e\u003cbr\u003e33) Corrosion prevention and control programs for chemical processing equipment\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nMyer Kutz, Myer Kutz Associates. Inc., Delmar, NY, USA","published_at":"2017-06-22T21:13:55-04:00","created_at":"2017-06-22T21:13:55-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","ceramics","degradation","environment","material","p-properties","polymer","polymers","textiles","wood"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378383044,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Environmental Degradation of Materials, 2nd Edition","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-3455-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3455-3.jpg?v=1499725620"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3455-3.jpg?v=1499725620","options":["Title"],"media":[{"alt":null,"id":354810495069,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3455-3.jpg?v=1499725620"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3455-3.jpg?v=1499725620","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Myer Kutz \u003cbr\u003eISBN 978-1-4377-3455-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e896 pages, Hardcover\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003eThe Handbook’s broad scope introduces the reader to the effects of environmental degradation on a wide range of materials, including metals, plastics, concrete, wood and textiles.\n\u003cli\u003eFor each type of material, the book describes the kind of degradation that effects it and how best to protect it.\u003c\/li\u003e\n\u003cli\u003eCase Studies show how organizations from small consulting firms to corporate giants design and manufacture products that are more resistant to environmental effects.\u003c\/li\u003e\nNothing stays the same for ever. The environmental degradation and corrosion of materials is inevitable and affects most aspects of life. In industrial settings, this inescapable fact has very significant financial, safety and environmental implications.\n\u003cp\u003eThe Handbook of Environmental Degradation of Materials explains how to measure, analyse, and control environmental degradation for a wide range of industrial materials including metals, polymers, ceramics, concrete, wood and textiles exposed to environmental factors such as weather, seawater, and fire. Divided into sections which deal with analysis, types of degradation, protection and surface engineering respectively, the reader is introduced to the wide variety of environmental effects and what can be done to control them. The expert contributors to this book provide a wealth of insider knowledge and engineering knowhow, complementing their explanations and advice with Case Studies from areas such as pipelines, tankers, packaging and chemical processing equipment ensures that the reader understands the practical measures that can be put in place to save money, lives and the environment.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers: Civil, Mechanical, Materials, Design, Maintenance, Chemical \u0026amp; Process \u003c\/p\u003e\n\u003cp\u003eIndustries: construction \/ civil engineering, automotive \/ aerospace \/ transportation, chemical processing, consumer packaging, paints and coatings, petrochemical, pipeline, plastics.\u003c\/p\u003e\n\u003cp\u003eLevel: Practicing engineers and technicians, students seeking real-world examples and applied techniques.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I: Analysis\u003cbr\u003e\u003cbr\u003e1) Analysis of Failures of Metallic Materials due to Environmental Factors\u003cbr\u003e\u003cbr\u003e2) Laboratory Assessment of Corrosion\u003cbr\u003e\u003cbr\u003e3) Modeling of Corrosion Processes\u003cbr\u003e\u003cbr\u003e4) Lifetime Predictions\u003cbr\u003e\u003cbr\u003ePart II: Types of Degradation\u003cbr\u003e\u003cbr\u003e5) Electrochemical Corrosion\u003cbr\u003e\u003cbr\u003e6) Localized Corrosion\u003cbr\u003e\u003cbr\u003e7) High-Temperature Oxidation\u003cbr\u003e\u003cbr\u003e8) Weathering of Plastics\u003cbr\u003e\u003cbr\u003e9) Chemical and Physical Aging of Polymers\u003cbr\u003e\u003cbr\u003e10) Thermal Degradation of Plastics\u003cbr\u003e\u003cbr\u003e11) Environmental Degradation of Reinforced Concrete\u003cbr\u003e\u003cbr\u003e12) Biofouling and prevention, and biodeterioration and biodegradation of materials\u003cbr\u003e\u003cbr\u003e(possibly split into two chapters, one on polymers, one on metals.)\u003cbr\u003e\u003cbr\u003e13) Material Flammability\u003cbr\u003e\u003cbr\u003e14) Fire Retardant Materials\u003cbr\u003e\u003cbr\u003ePart III: Protective Measures\u003cbr\u003e\u003cbr\u003e15) Cathodic Protection\u003cbr\u003e\u003cbr\u003e16) Thermal Protective Clothing\u003cbr\u003e\u003cbr\u003e17) Wood Protection\u003cbr\u003e\u003cbr\u003e18) Materials Selection for Environmental Degradation Prevention\u003cbr\u003e\u003cbr\u003ePart IV: Surface Engineering\u003cbr\u003e\u003cbr\u003e19) The Intersection of Design, Manufacturing, and Surface Engineering (updated to\u003cbr\u003e\u003cbr\u003einclude new coatings: (biomimetic, nanostructured and conductive polymers)\u003cbr\u003e\u003cbr\u003e20) Nanostructured Surfaces and Nanomaterial Coatings\u003cbr\u003e\u003cbr\u003e21) Protective Coatings for Aluminum Alloys\u003cbr\u003e\u003cbr\u003e22) Anti-Corrosion Paints\u003cbr\u003e\u003cbr\u003e23) Thermal and Environmental Barrier Coatings\u003cbr\u003e\u003cbr\u003e24) Thermay Spray Coatings\u003cbr\u003e\u003cbr\u003e25) Paint Weathering Tests\u003cbr\u003e\u003cbr\u003e26) Coatings for Concrete Surfaces: Testing and Modeling\u003cbr\u003e\u003cbr\u003e27) The importance of intrinsic defects in the protective behavior of coatings\u003cbr\u003e\u003cbr\u003e28) Plastics Additives for Environmental Stability\u003cbr\u003e\u003cbr\u003ePart V: Industrial Applications\u003cbr\u003e\u003cbr\u003e29) Degradation of Spacecraft Materials\u003cbr\u003e\u003cbr\u003e30) Cathodic Protection for Pipelines\u003cbr\u003e\u003cbr\u003e31) Tanker Corrosion\u003cbr\u003e\u003cbr\u003e32) Barrier Packaging Materials\u003cbr\u003e\u003cbr\u003e33) Corrosion prevention and control programs for chemical processing equipment\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nMyer Kutz, Myer Kutz Associates. Inc., Delmar, NY, USA"}
Handbook of Material W...
$300.00
{"id":11242219780,"title":"Handbook of Material Weathering, 5th Edition","handle":"978-1-895198-62-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-62-1 \u003cbr\u003e\u003cbr\u003e5th Edition\u003cbr\u003ePages: 826\u003cbr\u003eFigures: 795\u003cbr\u003eTables: 64\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 5th edition of Handbook of Material Weathering contains systematic updates of knowledge generated in more than last 25 years when the 1st edition was prepared. \u003cbr\u003e\u003cbr\u003eThe information required for professional use has been growing so rapidly that additional books had to be written to accommodate essential knowledge for implementation in technological processes used to manufacture products, which deteriorate on exposure to weathering stress factors.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThis edition contains 20 chapters, which can be divided into the following groups:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Theory (photophysics and photochemistry)\u003cbr\u003e\u003cbr\u003e• Stress factors (parameters of exposure, measurements in assessment of weathering conditions, and climatic conditions)\u003cbr\u003e\u003cbr\u003e• Methods of weathering (laboratory degradation studies, weathering cycles, sample preparation, weathering data interpretation, lifetime prediction, and artificial weathering versus natural exposure)\u003cbr\u003e\u003cbr\u003e• Methods of testing of weathered samples (effect of weathering on material properties and testing methods of weathered specimens)\u003cbr\u003e\u003cbr\u003e• Weathering of polymers (data on 52 most important polymers, including mechanisms of degradation, effect of thermal history, characteristic changes in properties with graphical illustrations, and tables with numerical data)\u003cbr\u003e\u003cbr\u003e• Weathering of products (data on 42 groups of industrial products, including their required durability, lifetime expectation, relevant degradation mechanisms, and characteristic changes with graphical illustrations)\u003cbr\u003e\u003cbr\u003e• Effect of additives on weathering (12 groups of additives are discussed)\u003cbr\u003e\u003cbr\u003e• Effect of environmental stress cracking (parameters controlling ESC, mechanisms, methods of testing, and effect on materials)\u003cbr\u003e\u003cbr\u003e• Specific topics (suitability of weathered materials for recycling, interrelation between corrosion and weathering, and methods of study and prevention of deterioration of historical monuments made out of stone)\u003cbr\u003e\u003cbr\u003eThe above information is based on the thorough review of published papers, patents, and other relevant sources updated to the most recent data and information.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eIn addition to this book, 3 additional volumes contain supplementary information:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by Falkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThe first two books contain information relevant for protection of materials against biological and environmental stress factors. The Atlas of Material Damage has focus on structure and morphology of commercial materials and methods of damage prevention by tailoring morphology.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis set of monographic sources was prepared for research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products, and students who want to apply their knowledge to real materials. The books are invaluable for regulating agencies and patent and litigating attorneys. \u003cbr\u003e\u003cbr\u003eHandbook of Material Weathering is now used in about 100 countries, although frequently old editions (as seen from citations) are still in use, which do not contain up-to-date information. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe first edition of this book was published by ChemTec Publishing in 1990. The book had 18 chapters and 518 pages filled with the most up-to-date information on the subject of material weathering available in 1990.\u003cbr\u003e\u003cbr\u003eConsidering the size of the book and typesetting, the present edition is at least 3 times larger, in spite of the fact that two chapters were omitted from the fourth edition: Chapter 17. Stabilization and Stabilizers and Chapter 18. Biodegradation. Even without these two chapters the present 5th edition is larger than the previous edition. The reason is quite obvious − the field is systematically growing with new data, methods, and discoveries happening every day.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe reasons for eliminating the two chapters are as follows:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• If these two chapters would still be included in the book, the book would need to have two volumes which makes a book more difficult to use (separate table of contents and indices).\u003cbr\u003e\u003cbr\u003e• In anticipation of the need for specialized monographic sources, the two chapters mentioned above were not updated in the previous edition, so information was already lacking novelty.\u003cbr\u003e\u003cbr\u003e• Short chapters can only present brief review of the subject, whereas in applications detailed information is needed\u003cbr\u003e\u003cbr\u003e• Two handbooks were published by ChemTec Publishing on the subjects of the omitted chapters:\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by \u003cbr\u003e\u003cbr\u003eFalkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eThese two books give much broader and comprehensive information, such as it is required today, especially considering rapid changes which occurred recently because of health and safety concerns (biostabilization) and new discoveries (UV stabilization).\u003cbr\u003e\u003cbr\u003eIn addition, to present volume and the above two books, there is also a new book:\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThis book was written to emphasize importance of the material structure in photodegradation and photostabilization and also to account for the morphological changes which occur when materials degrade. This addition makes narrative of material degradation more comprehensive, showing new ways to deal with unstable materials.\u003cbr\u003e\u003cbr\u003eI hope that the information provided in these four books will help readers to advance their studies on particular subjects of their research and that the results of these studies will be implemented in the future editions of these books, since we try to report current developments to foster future discoveries. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Photophysics \u003cbr\u003e1.1 Nature of radiation \u003cbr\u003e1.1.1 Radiative energy \u003cbr\u003e1.1.2 Radiation intensity \u003cbr\u003e1.1.3 Radiation incidence \u003cbr\u003e1.2 Absorption of radiation by materials \u003cbr\u003e1.2.1 General principles \u003cbr\u003e1.3 Fate and utilization of absorbed energy \u003cbr\u003e1.3.1 Deactivation \u003cbr\u003e1.3.2 Intramolecular energy transfer \u003cbr\u003e1.3.3 Intermolecular energy transfer \u003cbr\u003e1.3.4 Luminescence \u003cbr\u003e1.4 Radiative processes involving dimers \u003cbr\u003e1.5 Modeling and photophysical data \u003cbr\u003eReferences \u003cbr\u003e2 Photochemistry \u003cbr\u003e2.1 Typical routes of photochemical reactions \u003cbr\u003e2.1.1 Photodissociation \u003cbr\u003e2.1.2 Photooxidation \u003cbr\u003e2.1.3 Peroxide and hydroperoxide conversions \u003cbr\u003e2.1.4 Norrish type I and II reactions \u003cbr\u003e2.1.5 Photo-Fries rearrangement \u003cbr\u003e2.1.6 Photo-Fenton \u003cbr\u003e2.1.7 Photosubstitution \u003cbr\u003e2.1.8 Photoaddition \u003cbr\u003e2.1.9 Photoelimination \u003cbr\u003e2.1.10 Photodimerization \u003cbr\u003e2.1.11 Photocondensation \u003cbr\u003e2.1.12 Photoisomerization \u003cbr\u003e2.2 Photochemical reactivity and quantum yield \u003cbr\u003e2.3 Excitation of excited state \u003cbr\u003e2.4 Parameters of photochemical reactions \u003cbr\u003e2.6 Quenchers and photosensitizers \u003cbr\u003eReferences \u003cbr\u003e3 Parameters of Exposure \u003cbr\u003e3.1 Radiation \u003cbr\u003e3.1.1 The source \u003cbr\u003e3.1.2 Solar radiative emission \u003cbr\u003e3.1.3 Effect of orbital variations on energy supply \u003cbr\u003e3.1.4 Interplanetary and near Earth space \u003cbr\u003e3.1.5 Stratosphere \u003cbr\u003e3.1.6 Troposphere \u003cbr\u003e3.2 Temperature \u003cbr\u003e3.3 Water \u003cbr\u003e3.4 Atmosphere composition \u003cbr\u003e3.5 Pollutants \u003cbr\u003e3.5.1 Nitrogen compounds \u003cbr\u003e3.5.2 Oxygen species \u003cbr\u003e3.5.3 Hydrogen species \u003cbr\u003e3.5.4 Carbon oxides \u003cbr\u003e3.5.5 Sulfur-containing components \u003cbr\u003e3.5.6 Chlorine-containing components \u003cbr\u003e3.5.7 Particulate materials \u003cbr\u003e3.6 Biological substances \u003cbr\u003e3.7 Water pollutants \u003cbr\u003e3.8 Stress \u003cbr\u003e3.7 Cooperative action of different parameters \u003cbr\u003eReferences \u003cbr\u003e4 Measurements in Assessment of Weathering Conditions \u003cbr\u003e4.1 Radiation \u003cbr\u003e4.1.1 Measuring equipment and methods of measurement \u003cbr\u003e4.1.2 Standards \u003cbr\u003e4.2 Sunshine duration \u003cbr\u003e4.3 Temperature \u003cbr\u003e4.4 Relative humidity \u003cbr\u003e4.5 Time of wetness \u003cbr\u003e4.5 Rain \u003cbr\u003e4.6 Pollutants \u003cbr\u003e4.6.1 Carbon dioxide \u003cbr\u003e4.6.2 Particulate matter \u003cbr\u003e4.6.3 Sulfur dioxide \u003cbr\u003e4.6.4 Nitrogen oxides \u003cbr\u003e4.6.5 Carbon monoxide \u003cbr\u003e4.6.6 Ozone \u003cbr\u003eReferences \u003cbr\u003e5 Climatic Conditions \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Radiation \u003cbr\u003e5.3 Sunshine duration \u003cbr\u003e5.4 Temperature \u003cbr\u003e5.5 Precipitation \u003cbr\u003e5.6 Relative humidity \u003cbr\u003e5.7 Wetness time \u003cbr\u003e5.8 Pollutants \u003cbr\u003e5.9 Surface soiling \u003cbr\u003eReferences \u003cbr\u003e6 Methods of Outdoor Exposure \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Climatic conditions and degradation rate \u003cbr\u003e6.3 Variability of weather conditions and its impact on the strategy in outdoor \u003cbr\u003eexposures \u003cbr\u003e6.4 Influence of specimen properties \u003cbr\u003e6.5 Typical methods of outdoor exposure \u003cbr\u003e6.5.1 Exposure sites \u003cbr\u003e6.5.2 Exposure racks \u003cbr\u003e6.5.3 Exposure of products and components \u003cbr\u003e6.6 Other parameters of exposure \u003cbr\u003e6.7 Relevant standards \u003cbr\u003eReferences \u003cbr\u003e7 Laboratory Degradation Studies \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Light sources \u003cbr\u003e7.3 Filters \u003cbr\u003e7.4 Radiation: delivery, monitoring and control \u003cbr\u003e7.5 Temperature control \u003cbr\u003e7.6 Humidity control \u003cbr\u003e7.7 Specimen spraying \u003cbr\u003e7.8 Specimen racks and holders \u003cbr\u003e7.9 Weathering equipment \u003cbr\u003e7.10 Correlation between different devices \u003cbr\u003e7.11 Pollutants \u003cbr\u003e7.12 Precision of studies \u003cbr\u003eReferences \u003cbr\u003e8 Weathering Cycles \u003cbr\u003eReferences \u003cbr\u003e9 Sample Preparation \u003cbr\u003eReferences \u003cbr\u003e10 Weathering Data Interpretation. Lifetime Prediction \u003cbr\u003eReferences \u003cbr\u003e11 Artificial Weathering Versus Natural Exposure \u003cbr\u003eReferences \u003cbr\u003e12 Effect of Weathering on Material Properties \u003cbr\u003e12.1 Mass loss \u003cbr\u003e12.2 Depth of degradation \u003cbr\u003e12.3 Mechanical properties \u003cbr\u003e12.4 Changes of color and optical properties \u003cbr\u003e12.5 Surface changes \u003cbr\u003e12.6 Molecular weight \u003cbr\u003e12.7 Chemical composition of surface and bulk \u003cbr\u003e12.8 Morphology and structure of surface layers \u003cbr\u003e12.9 Glass transition temperature \u003cbr\u003e12.10 Self-healing \u003cbr\u003eReferences \u003cbr\u003e13 Testing Methods of Weathered Specimen \u003cbr\u003e13.1 Visual evaluation \u003cbr\u003e13.2 Microscopy \u003cbr\u003e13.3 Imaging techniques \u003cbr\u003e13.4 Gloss \u003cbr\u003e13.5 Color changes \u003cbr\u003e13.6 Visible spectrophotometry \u003cbr\u003e13.7 UV spectrophotometry \u003cbr\u003e13.8 Infrared spectrophotometry \u003cbr\u003e13.9 Near infrared spectroscopy \u003cbr\u003e13.10 Raman spectroscopy \u003cbr\u003e13.11 Nuclear magnetic resonance \u003cbr\u003e13.12 Electron spin resonance \u003cbr\u003e13.13 Mass spectrometry \u003cbr\u003e13.14 Positron annihilation lifetime spectroscopy \u003cbr\u003e13.15 Chemiluminescence, fluorescence, and phosphorescence \u003cbr\u003e13.16 Atomic absorption spectroscopy \u003cbr\u003e13.17 WAXS and SAXS \u003cbr\u003e13.18 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e13.19 X-ray microtomography \u003cbr\u003e13.20 Mass change \u003cbr\u003e13.21 Density \u003cbr\u003e13.22 Contact angle \u003cbr\u003e13.23 Diffusion of gases and water transport in polymer \u003cbr\u003e13.24 Electrical properties \u003cbr\u003e13.25 Ultrasonic measurements \u003cbr\u003e13.26 Thermal analysis \u003cbr\u003e13.27 Rheological properties of materials \u003cbr\u003e13.28 Other physical parameters \u003cbr\u003e13.29 Tensile strength \u003cbr\u003e13.30 Elongation \u003cbr\u003e13.31 Flexural strength \u003cbr\u003e13.32 Impact strength \u003cbr\u003e13.33 Creep and constant strain tests \u003cbr\u003e13.34 Residual stress \u003cbr\u003e13.35 Scratch and mar resistance \u003cbr\u003e13.36 Other mechanical properties \u003cbr\u003e13.37 Surface roughness \u003cbr\u003e13.38 Molecular weight \u003cbr\u003e13.39 Gas and liquid chromatography \u003cbr\u003e13.40 Titrimetry \u003cbr\u003e13.41 Dehydrochlorination rate \u003cbr\u003e13.42 Gel fraction \u003cbr\u003e13.43 Oxygen uptake \u003cbr\u003e13.44 Water absorption, porosity \u003cbr\u003e13.45 Microorganism growth test \u003cbr\u003e13.46 Environmental stress cracking resistance \u003cbr\u003eReferences \u003cbr\u003e14 Data on Specific Polymers \u003cbr\u003e14.1 Acrylonitrile butadiene styrene, ABS \u003cbr\u003e14.2 Acrylonitrile styrene acrylate, ASA \u003cbr\u003e14.3 Alkyd resins \u003cbr\u003e14.4 Acrylic resins \u003cbr\u003e14.5 Cellulose \u003cbr\u003e14.6 Chitosan \u003cbr\u003e14.7 Epoxy resins \u003cbr\u003e14.8 Ethylene propylene rubber, EPR \u003cbr\u003e14.9 Ethylene vinyl acetate copolymer, EVAc \u003cbr\u003e14.10 Ethylene propylene diene monomer, EPDM \u003cbr\u003e14.11 Fluoropolymers \u003cbr\u003e14.12 Melamine resins \u003cbr\u003e14.13 Phenoxy resins \u003cbr\u003e14.14 Polyacrylamide \u003cbr\u003e14.15 Polyacrylonitrile \u003cbr\u003e14.16 Polyamides \u003cbr\u003e14.17 Polyaniline \u003cbr\u003e14.18 Polycarbonates \u003cbr\u003e14.19 Polyesters \u003cbr\u003e14.20 Polyethylene \u003cbr\u003e14.21 Polyethylene, chlorinated \u003cbr\u003e14.22 Poly(ethylene glycol) \u003cbr\u003e14.23 Polyfluorene \u003cbr\u003e14.24 Polyimides \u003cbr\u003e14.25 Poly(lactic acid) \u003cbr\u003e14.26 Polymethylmethacrylate \u003cbr\u003e14.27 Polyoxyethylene \u003cbr\u003e14.28 Polyoxymethylene \u003cbr\u003e14.29 Poly(phenylene oxide) \u003cbr\u003e14.30 Poly(phenylene sulfide) \u003cbr\u003e14.31 Poly(p-phenylene terephthalamide) \u003cbr\u003e14.32 Poly(p-phenylene vinylene) \u003cbr\u003e14.33 Polypropylene \u003cbr\u003e14.34 Polystyrenes \u003cbr\u003e14.35 Polysulfones \u003cbr\u003e14.36 Polytetrafluoroethylene \u003cbr\u003e14.37 Polythiophene \u003cbr\u003e14.38 Polyurethanes \u003cbr\u003e14.39 Polyvinylalcohol \u003cbr\u003e14.40 Polyvinylchloride \u003cbr\u003e14.41 Poly(vinylidene fluoride \u003cbr\u003e14.42 Poly(vinyl methyl ether) \u003cbr\u003e14.43 Styrene acrylonitrile copolymer \u003cbr\u003e14.44 Silicones \u003cbr\u003e14.45 Polymer blends \u003cbr\u003e14.46 Rubbers \u003cbr\u003e14.46.1 Natural rubber \u003cbr\u003e14.46.1 Polybutadiene \u003cbr\u003e14.46.2 Polychloroprene \u003cbr\u003e14.46.3 Polyisoprene \u003cbr\u003e14.46.4 Polyisobutylene \u003cbr\u003e14.46.5 Styrene butadiene rubber \u003cbr\u003e14.46.6 Styrene butadiene styrene rubber \u003cbr\u003eReferences \u003cbr\u003e15 Effect of Additives on Weathering \u003cbr\u003e15.1 Fillers and reinforcing fibers \u003cbr\u003e15.2 Pigments \u003cbr\u003e15.3 Plasticizers \u003cbr\u003e15.4 Solvents and diluents \u003cbr\u003e15.5 Flame retardants \u003cbr\u003e15.6 Impact modifiers \u003cbr\u003e15.7 Thermal stabilizers \u003cbr\u003e15.8 Antioxidants \u003cbr\u003e15.9 Antimicrobial additives \u003cbr\u003e15.10 Curatives, crosslinkers, initiators \u003cbr\u003e15.11 Catalysts \u003cbr\u003e15.12 Compatibilizer \u003cbr\u003e15.12 Impurities \u003cbr\u003e15.13 Summary \u003cbr\u003eReferences \u003cbr\u003e16 Weathering of Compounded Products \u003cbr\u003e16.1 Adhesives \u003cbr\u003e16.2 Aerospace \u003cbr\u003e16.3 Agriculture \u003cbr\u003e16.4 Appliances \u003cbr\u003e16.5 Automotive parts \u003cbr\u003e16.6 Automotive coatings \u003cbr\u003e16.7 Coated fabrics \u003cbr\u003e16.8 Coil coated materials \u003cbr\u003e16.9 Composites \u003cbr\u003e16.10 Concrete \u003cbr\u003e16.11 Conservation \u003cbr\u003e16.12 Construction materials \u003cbr\u003e16.13 Cosmetics \u003cbr\u003e16.14 Dental materials \u003cbr\u003e16.15 Electronics and electrical materials \u003cbr\u003e16.16 Environmental pollutants \u003cbr\u003e16.17 Foams \u003cbr\u003e16.18 Food \u003cbr\u003e16.19 Gel coats \u003cbr\u003e16.20 Geosynthetics \u003cbr\u003e16.21 Glass and glazing materials \u003cbr\u003e16.22 Greenhouse film \u003cbr\u003e16.23 Hair \u003cbr\u003e16.24 Laminates \u003cbr\u003e16.25 Medical equipment and supplies \u003cbr\u003e16.26 Military applications \u003cbr\u003e16.27 Molded materials \u003cbr\u003e16.28 Packaging materials \u003cbr\u003e16.28.1 Bottles \u003cbr\u003e16.28.2 Containers \u003cbr\u003e16.28.3 Crates and trays \u003cbr\u003e16.28.4 Films \u003cbr\u003e16.29 Paints and coatings \u003cbr\u003e16.30 Pavements \u003cbr\u003e16.31 Pharmaceutical products \u003cbr\u003e16.32 Pipes and tubing \u003cbr\u003e16.33 Pulp and paper \u003cbr\u003e16.34 Roofing materials \u003cbr\u003e16.35 Sealants \u003cbr\u003e16.36 Sheet \u003cbr\u003e16.37 Siding \u003cbr\u003e16.38 Solar cells and collectors \u003cbr\u003e16.39 Textiles \u003cbr\u003e16.40 Windows \u003cbr\u003e16.41 Wire and cable \u003cbr\u003e16.42 Wood \u003cbr\u003eReferences \u003cbr\u003e17 Recycling \u003cbr\u003e17.1 Effect of degradation on recycling \u003cbr\u003e17.2 Re-stabilization of material for recycling \u003cbr\u003e17.3 Multilayer materials \u003cbr\u003e17.4 Removable paint \u003cbr\u003e17.5 Chemical recycling \u003cbr\u003eReferences \u003cbr\u003e18 Environmental Stress Cracking \u003cbr\u003e18.1 Definitions \u003cbr\u003e18.2 Parameters controlling ESC \u003cbr\u003e18.2.1 Material composition \u003cbr\u003e18.2.2 Morphology and dimensions \u003cbr\u003e18.2.3 Processing and performance conditions \u003cbr\u003e18.2.4 Solubility parameters of solvents and polymers \u003cbr\u003e18.2.5 Diffusion \u003cbr\u003e18.2.6 Load and internal stress \u003cbr\u003e18.2.7 Time \u003cbr\u003e18.2.8 Temperature \u003cbr\u003e18.3 Mechanisms of environmental stress cracking \u003cbr\u003e18.4 Kinetics of environmental stress cracking \u003cbr\u003e18.5 Effect of ESC on material durability \u003cbr\u003e18.6 Methods of testing \u003cbr\u003eReferences \u003cbr\u003e19 Interrelation Between Corrosion and Weathering \u003cbr\u003eReferences \u003cbr\u003e20 Weathering of Stones \u003cbr\u003eReferences \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:40-04:00","created_at":"2017-06-22T21:13:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","degradation","degradation depth","environment","laboratory exposures","lifetime prediction","material","methods of measurement","methods of weathering","outdoor exposures","p-testing","polymer degradation","PVC degradation","sustainability of polymers materials","weathering","weathering cycles"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371204,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Material Weathering, 5th Edition","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-62-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009","options":["Title"],"media":[{"alt":null,"id":355727147101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-62-1.jpg?v=1499720009","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-62-1 \u003cbr\u003e\u003cbr\u003e5th Edition\u003cbr\u003ePages: 826\u003cbr\u003eFigures: 795\u003cbr\u003eTables: 64\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis 5th edition of Handbook of Material Weathering contains systematic updates of knowledge generated in more than last 25 years when the 1st edition was prepared. \u003cbr\u003e\u003cbr\u003eThe information required for professional use has been growing so rapidly that additional books had to be written to accommodate essential knowledge for implementation in technological processes used to manufacture products, which deteriorate on exposure to weathering stress factors.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThis edition contains 20 chapters, which can be divided into the following groups:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Theory (photophysics and photochemistry)\u003cbr\u003e\u003cbr\u003e• Stress factors (parameters of exposure, measurements in assessment of weathering conditions, and climatic conditions)\u003cbr\u003e\u003cbr\u003e• Methods of weathering (laboratory degradation studies, weathering cycles, sample preparation, weathering data interpretation, lifetime prediction, and artificial weathering versus natural exposure)\u003cbr\u003e\u003cbr\u003e• Methods of testing of weathered samples (effect of weathering on material properties and testing methods of weathered specimens)\u003cbr\u003e\u003cbr\u003e• Weathering of polymers (data on 52 most important polymers, including mechanisms of degradation, effect of thermal history, characteristic changes in properties with graphical illustrations, and tables with numerical data)\u003cbr\u003e\u003cbr\u003e• Weathering of products (data on 42 groups of industrial products, including their required durability, lifetime expectation, relevant degradation mechanisms, and characteristic changes with graphical illustrations)\u003cbr\u003e\u003cbr\u003e• Effect of additives on weathering (12 groups of additives are discussed)\u003cbr\u003e\u003cbr\u003e• Effect of environmental stress cracking (parameters controlling ESC, mechanisms, methods of testing, and effect on materials)\u003cbr\u003e\u003cbr\u003e• Specific topics (suitability of weathered materials for recycling, interrelation between corrosion and weathering, and methods of study and prevention of deterioration of historical monuments made out of stone)\u003cbr\u003e\u003cbr\u003eThe above information is based on the thorough review of published papers, patents, and other relevant sources updated to the most recent data and information.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eIn addition to this book, 3 additional volumes contain supplementary information:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by Falkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThe first two books contain information relevant for protection of materials against biological and environmental stress factors. The Atlas of Material Damage has focus on structure and morphology of commercial materials and methods of damage prevention by tailoring morphology.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis set of monographic sources was prepared for research chemists in the photochemistry field, chemists and material scientists designing new materials, users of manufactured products, those who control the quality of manufactured products, and students who want to apply their knowledge to real materials. The books are invaluable for regulating agencies and patent and litigating attorneys. \u003cbr\u003e\u003cbr\u003eHandbook of Material Weathering is now used in about 100 countries, although frequently old editions (as seen from citations) are still in use, which do not contain up-to-date information. \u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe first edition of this book was published by ChemTec Publishing in 1990. The book had 18 chapters and 518 pages filled with the most up-to-date information on the subject of material weathering available in 1990.\u003cbr\u003e\u003cbr\u003eConsidering the size of the book and typesetting, the present edition is at least 3 times larger, in spite of the fact that two chapters were omitted from the fourth edition: Chapter 17. Stabilization and Stabilizers and Chapter 18. Biodegradation. Even without these two chapters the present 5th edition is larger than the previous edition. The reason is quite obvious − the field is systematically growing with new data, methods, and discoveries happening every day.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe reasons for eliminating the two chapters are as follows:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• If these two chapters would still be included in the book, the book would need to have two volumes which makes a book more difficult to use (separate table of contents and indices).\u003cbr\u003e\u003cbr\u003e• In anticipation of the need for specialized monographic sources, the two chapters mentioned above were not updated in the previous edition, so information was already lacking novelty.\u003cbr\u003e\u003cbr\u003e• Short chapters can only present brief review of the subject, whereas in applications detailed information is needed\u003cbr\u003e\u003cbr\u003e• Two handbooks were published by ChemTec Publishing on the subjects of the omitted chapters:\u003cbr\u003e\u003cbr\u003eHandbook of Material Biodegradation, Biodeterioration, and Biostabilization by \u003cbr\u003e\u003cbr\u003eFalkiewicz-Dulik, M, Janda, K, and Wypych, G., 2010\u003cbr\u003e\u003cbr\u003eHandbook of UV Degradation and Stabilization by Wypych, G, 2011\u003cbr\u003e\u003cbr\u003eThese two books give much broader and comprehensive information, such as it is required today, especially considering rapid changes which occurred recently because of health and safety concerns (biostabilization) and new discoveries (UV stabilization).\u003cbr\u003e\u003cbr\u003eIn addition, to present volume and the above two books, there is also a new book:\u003cbr\u003e\u003cbr\u003eAtlas of Material Damage, Wypych, G, 2012\u003cbr\u003e\u003cbr\u003eThis book was written to emphasize importance of the material structure in photodegradation and photostabilization and also to account for the morphological changes which occur when materials degrade. This addition makes narrative of material degradation more comprehensive, showing new ways to deal with unstable materials.\u003cbr\u003e\u003cbr\u003eI hope that the information provided in these four books will help readers to advance their studies on particular subjects of their research and that the results of these studies will be implemented in the future editions of these books, since we try to report current developments to foster future discoveries. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Photophysics \u003cbr\u003e1.1 Nature of radiation \u003cbr\u003e1.1.1 Radiative energy \u003cbr\u003e1.1.2 Radiation intensity \u003cbr\u003e1.1.3 Radiation incidence \u003cbr\u003e1.2 Absorption of radiation by materials \u003cbr\u003e1.2.1 General principles \u003cbr\u003e1.3 Fate and utilization of absorbed energy \u003cbr\u003e1.3.1 Deactivation \u003cbr\u003e1.3.2 Intramolecular energy transfer \u003cbr\u003e1.3.3 Intermolecular energy transfer \u003cbr\u003e1.3.4 Luminescence \u003cbr\u003e1.4 Radiative processes involving dimers \u003cbr\u003e1.5 Modeling and photophysical data \u003cbr\u003eReferences \u003cbr\u003e2 Photochemistry \u003cbr\u003e2.1 Typical routes of photochemical reactions \u003cbr\u003e2.1.1 Photodissociation \u003cbr\u003e2.1.2 Photooxidation \u003cbr\u003e2.1.3 Peroxide and hydroperoxide conversions \u003cbr\u003e2.1.4 Norrish type I and II reactions \u003cbr\u003e2.1.5 Photo-Fries rearrangement \u003cbr\u003e2.1.6 Photo-Fenton \u003cbr\u003e2.1.7 Photosubstitution \u003cbr\u003e2.1.8 Photoaddition \u003cbr\u003e2.1.9 Photoelimination \u003cbr\u003e2.1.10 Photodimerization \u003cbr\u003e2.1.11 Photocondensation \u003cbr\u003e2.1.12 Photoisomerization \u003cbr\u003e2.2 Photochemical reactivity and quantum yield \u003cbr\u003e2.3 Excitation of excited state \u003cbr\u003e2.4 Parameters of photochemical reactions \u003cbr\u003e2.6 Quenchers and photosensitizers \u003cbr\u003eReferences \u003cbr\u003e3 Parameters of Exposure \u003cbr\u003e3.1 Radiation \u003cbr\u003e3.1.1 The source \u003cbr\u003e3.1.2 Solar radiative emission \u003cbr\u003e3.1.3 Effect of orbital variations on energy supply \u003cbr\u003e3.1.4 Interplanetary and near Earth space \u003cbr\u003e3.1.5 Stratosphere \u003cbr\u003e3.1.6 Troposphere \u003cbr\u003e3.2 Temperature \u003cbr\u003e3.3 Water \u003cbr\u003e3.4 Atmosphere composition \u003cbr\u003e3.5 Pollutants \u003cbr\u003e3.5.1 Nitrogen compounds \u003cbr\u003e3.5.2 Oxygen species \u003cbr\u003e3.5.3 Hydrogen species \u003cbr\u003e3.5.4 Carbon oxides \u003cbr\u003e3.5.5 Sulfur-containing components \u003cbr\u003e3.5.6 Chlorine-containing components \u003cbr\u003e3.5.7 Particulate materials \u003cbr\u003e3.6 Biological substances \u003cbr\u003e3.7 Water pollutants \u003cbr\u003e3.8 Stress \u003cbr\u003e3.7 Cooperative action of different parameters \u003cbr\u003eReferences \u003cbr\u003e4 Measurements in Assessment of Weathering Conditions \u003cbr\u003e4.1 Radiation \u003cbr\u003e4.1.1 Measuring equipment and methods of measurement \u003cbr\u003e4.1.2 Standards \u003cbr\u003e4.2 Sunshine duration \u003cbr\u003e4.3 Temperature \u003cbr\u003e4.4 Relative humidity \u003cbr\u003e4.5 Time of wetness \u003cbr\u003e4.5 Rain \u003cbr\u003e4.6 Pollutants \u003cbr\u003e4.6.1 Carbon dioxide \u003cbr\u003e4.6.2 Particulate matter \u003cbr\u003e4.6.3 Sulfur dioxide \u003cbr\u003e4.6.4 Nitrogen oxides \u003cbr\u003e4.6.5 Carbon monoxide \u003cbr\u003e4.6.6 Ozone \u003cbr\u003eReferences \u003cbr\u003e5 Climatic Conditions \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Radiation \u003cbr\u003e5.3 Sunshine duration \u003cbr\u003e5.4 Temperature \u003cbr\u003e5.5 Precipitation \u003cbr\u003e5.6 Relative humidity \u003cbr\u003e5.7 Wetness time \u003cbr\u003e5.8 Pollutants \u003cbr\u003e5.9 Surface soiling \u003cbr\u003eReferences \u003cbr\u003e6 Methods of Outdoor Exposure \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Climatic conditions and degradation rate \u003cbr\u003e6.3 Variability of weather conditions and its impact on the strategy in outdoor \u003cbr\u003eexposures \u003cbr\u003e6.4 Influence of specimen properties \u003cbr\u003e6.5 Typical methods of outdoor exposure \u003cbr\u003e6.5.1 Exposure sites \u003cbr\u003e6.5.2 Exposure racks \u003cbr\u003e6.5.3 Exposure of products and components \u003cbr\u003e6.6 Other parameters of exposure \u003cbr\u003e6.7 Relevant standards \u003cbr\u003eReferences \u003cbr\u003e7 Laboratory Degradation Studies \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Light sources \u003cbr\u003e7.3 Filters \u003cbr\u003e7.4 Radiation: delivery, monitoring and control \u003cbr\u003e7.5 Temperature control \u003cbr\u003e7.6 Humidity control \u003cbr\u003e7.7 Specimen spraying \u003cbr\u003e7.8 Specimen racks and holders \u003cbr\u003e7.9 Weathering equipment \u003cbr\u003e7.10 Correlation between different devices \u003cbr\u003e7.11 Pollutants \u003cbr\u003e7.12 Precision of studies \u003cbr\u003eReferences \u003cbr\u003e8 Weathering Cycles \u003cbr\u003eReferences \u003cbr\u003e9 Sample Preparation \u003cbr\u003eReferences \u003cbr\u003e10 Weathering Data Interpretation. Lifetime Prediction \u003cbr\u003eReferences \u003cbr\u003e11 Artificial Weathering Versus Natural Exposure \u003cbr\u003eReferences \u003cbr\u003e12 Effect of Weathering on Material Properties \u003cbr\u003e12.1 Mass loss \u003cbr\u003e12.2 Depth of degradation \u003cbr\u003e12.3 Mechanical properties \u003cbr\u003e12.4 Changes of color and optical properties \u003cbr\u003e12.5 Surface changes \u003cbr\u003e12.6 Molecular weight \u003cbr\u003e12.7 Chemical composition of surface and bulk \u003cbr\u003e12.8 Morphology and structure of surface layers \u003cbr\u003e12.9 Glass transition temperature \u003cbr\u003e12.10 Self-healing \u003cbr\u003eReferences \u003cbr\u003e13 Testing Methods of Weathered Specimen \u003cbr\u003e13.1 Visual evaluation \u003cbr\u003e13.2 Microscopy \u003cbr\u003e13.3 Imaging techniques \u003cbr\u003e13.4 Gloss \u003cbr\u003e13.5 Color changes \u003cbr\u003e13.6 Visible spectrophotometry \u003cbr\u003e13.7 UV spectrophotometry \u003cbr\u003e13.8 Infrared spectrophotometry \u003cbr\u003e13.9 Near infrared spectroscopy \u003cbr\u003e13.10 Raman spectroscopy \u003cbr\u003e13.11 Nuclear magnetic resonance \u003cbr\u003e13.12 Electron spin resonance \u003cbr\u003e13.13 Mass spectrometry \u003cbr\u003e13.14 Positron annihilation lifetime spectroscopy \u003cbr\u003e13.15 Chemiluminescence, fluorescence, and phosphorescence \u003cbr\u003e13.16 Atomic absorption spectroscopy \u003cbr\u003e13.17 WAXS and SAXS \u003cbr\u003e13.18 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e13.19 X-ray microtomography \u003cbr\u003e13.20 Mass change \u003cbr\u003e13.21 Density \u003cbr\u003e13.22 Contact angle \u003cbr\u003e13.23 Diffusion of gases and water transport in polymer \u003cbr\u003e13.24 Electrical properties \u003cbr\u003e13.25 Ultrasonic measurements \u003cbr\u003e13.26 Thermal analysis \u003cbr\u003e13.27 Rheological properties of materials \u003cbr\u003e13.28 Other physical parameters \u003cbr\u003e13.29 Tensile strength \u003cbr\u003e13.30 Elongation \u003cbr\u003e13.31 Flexural strength \u003cbr\u003e13.32 Impact strength \u003cbr\u003e13.33 Creep and constant strain tests \u003cbr\u003e13.34 Residual stress \u003cbr\u003e13.35 Scratch and mar resistance \u003cbr\u003e13.36 Other mechanical properties \u003cbr\u003e13.37 Surface roughness \u003cbr\u003e13.38 Molecular weight \u003cbr\u003e13.39 Gas and liquid chromatography \u003cbr\u003e13.40 Titrimetry \u003cbr\u003e13.41 Dehydrochlorination rate \u003cbr\u003e13.42 Gel fraction \u003cbr\u003e13.43 Oxygen uptake \u003cbr\u003e13.44 Water absorption, porosity \u003cbr\u003e13.45 Microorganism growth test \u003cbr\u003e13.46 Environmental stress cracking resistance \u003cbr\u003eReferences \u003cbr\u003e14 Data on Specific Polymers \u003cbr\u003e14.1 Acrylonitrile butadiene styrene, ABS \u003cbr\u003e14.2 Acrylonitrile styrene acrylate, ASA \u003cbr\u003e14.3 Alkyd resins \u003cbr\u003e14.4 Acrylic resins \u003cbr\u003e14.5 Cellulose \u003cbr\u003e14.6 Chitosan \u003cbr\u003e14.7 Epoxy resins \u003cbr\u003e14.8 Ethylene propylene rubber, EPR \u003cbr\u003e14.9 Ethylene vinyl acetate copolymer, EVAc \u003cbr\u003e14.10 Ethylene propylene diene monomer, EPDM \u003cbr\u003e14.11 Fluoropolymers \u003cbr\u003e14.12 Melamine resins \u003cbr\u003e14.13 Phenoxy resins \u003cbr\u003e14.14 Polyacrylamide \u003cbr\u003e14.15 Polyacrylonitrile \u003cbr\u003e14.16 Polyamides \u003cbr\u003e14.17 Polyaniline \u003cbr\u003e14.18 Polycarbonates \u003cbr\u003e14.19 Polyesters \u003cbr\u003e14.20 Polyethylene \u003cbr\u003e14.21 Polyethylene, chlorinated \u003cbr\u003e14.22 Poly(ethylene glycol) \u003cbr\u003e14.23 Polyfluorene \u003cbr\u003e14.24 Polyimides \u003cbr\u003e14.25 Poly(lactic acid) \u003cbr\u003e14.26 Polymethylmethacrylate \u003cbr\u003e14.27 Polyoxyethylene \u003cbr\u003e14.28 Polyoxymethylene \u003cbr\u003e14.29 Poly(phenylene oxide) \u003cbr\u003e14.30 Poly(phenylene sulfide) \u003cbr\u003e14.31 Poly(p-phenylene terephthalamide) \u003cbr\u003e14.32 Poly(p-phenylene vinylene) \u003cbr\u003e14.33 Polypropylene \u003cbr\u003e14.34 Polystyrenes \u003cbr\u003e14.35 Polysulfones \u003cbr\u003e14.36 Polytetrafluoroethylene \u003cbr\u003e14.37 Polythiophene \u003cbr\u003e14.38 Polyurethanes \u003cbr\u003e14.39 Polyvinylalcohol \u003cbr\u003e14.40 Polyvinylchloride \u003cbr\u003e14.41 Poly(vinylidene fluoride \u003cbr\u003e14.42 Poly(vinyl methyl ether) \u003cbr\u003e14.43 Styrene acrylonitrile copolymer \u003cbr\u003e14.44 Silicones \u003cbr\u003e14.45 Polymer blends \u003cbr\u003e14.46 Rubbers \u003cbr\u003e14.46.1 Natural rubber \u003cbr\u003e14.46.1 Polybutadiene \u003cbr\u003e14.46.2 Polychloroprene \u003cbr\u003e14.46.3 Polyisoprene \u003cbr\u003e14.46.4 Polyisobutylene \u003cbr\u003e14.46.5 Styrene butadiene rubber \u003cbr\u003e14.46.6 Styrene butadiene styrene rubber \u003cbr\u003eReferences \u003cbr\u003e15 Effect of Additives on Weathering \u003cbr\u003e15.1 Fillers and reinforcing fibers \u003cbr\u003e15.2 Pigments \u003cbr\u003e15.3 Plasticizers \u003cbr\u003e15.4 Solvents and diluents \u003cbr\u003e15.5 Flame retardants \u003cbr\u003e15.6 Impact modifiers \u003cbr\u003e15.7 Thermal stabilizers \u003cbr\u003e15.8 Antioxidants \u003cbr\u003e15.9 Antimicrobial additives \u003cbr\u003e15.10 Curatives, crosslinkers, initiators \u003cbr\u003e15.11 Catalysts \u003cbr\u003e15.12 Compatibilizer \u003cbr\u003e15.12 Impurities \u003cbr\u003e15.13 Summary \u003cbr\u003eReferences \u003cbr\u003e16 Weathering of Compounded Products \u003cbr\u003e16.1 Adhesives \u003cbr\u003e16.2 Aerospace \u003cbr\u003e16.3 Agriculture \u003cbr\u003e16.4 Appliances \u003cbr\u003e16.5 Automotive parts \u003cbr\u003e16.6 Automotive coatings \u003cbr\u003e16.7 Coated fabrics \u003cbr\u003e16.8 Coil coated materials \u003cbr\u003e16.9 Composites \u003cbr\u003e16.10 Concrete \u003cbr\u003e16.11 Conservation \u003cbr\u003e16.12 Construction materials \u003cbr\u003e16.13 Cosmetics \u003cbr\u003e16.14 Dental materials \u003cbr\u003e16.15 Electronics and electrical materials \u003cbr\u003e16.16 Environmental pollutants \u003cbr\u003e16.17 Foams \u003cbr\u003e16.18 Food \u003cbr\u003e16.19 Gel coats \u003cbr\u003e16.20 Geosynthetics \u003cbr\u003e16.21 Glass and glazing materials \u003cbr\u003e16.22 Greenhouse film \u003cbr\u003e16.23 Hair \u003cbr\u003e16.24 Laminates \u003cbr\u003e16.25 Medical equipment and supplies \u003cbr\u003e16.26 Military applications \u003cbr\u003e16.27 Molded materials \u003cbr\u003e16.28 Packaging materials \u003cbr\u003e16.28.1 Bottles \u003cbr\u003e16.28.2 Containers \u003cbr\u003e16.28.3 Crates and trays \u003cbr\u003e16.28.4 Films \u003cbr\u003e16.29 Paints and coatings \u003cbr\u003e16.30 Pavements \u003cbr\u003e16.31 Pharmaceutical products \u003cbr\u003e16.32 Pipes and tubing \u003cbr\u003e16.33 Pulp and paper \u003cbr\u003e16.34 Roofing materials \u003cbr\u003e16.35 Sealants \u003cbr\u003e16.36 Sheet \u003cbr\u003e16.37 Siding \u003cbr\u003e16.38 Solar cells and collectors \u003cbr\u003e16.39 Textiles \u003cbr\u003e16.40 Windows \u003cbr\u003e16.41 Wire and cable \u003cbr\u003e16.42 Wood \u003cbr\u003eReferences \u003cbr\u003e17 Recycling \u003cbr\u003e17.1 Effect of degradation on recycling \u003cbr\u003e17.2 Re-stabilization of material for recycling \u003cbr\u003e17.3 Multilayer materials \u003cbr\u003e17.4 Removable paint \u003cbr\u003e17.5 Chemical recycling \u003cbr\u003eReferences \u003cbr\u003e18 Environmental Stress Cracking \u003cbr\u003e18.1 Definitions \u003cbr\u003e18.2 Parameters controlling ESC \u003cbr\u003e18.2.1 Material composition \u003cbr\u003e18.2.2 Morphology and dimensions \u003cbr\u003e18.2.3 Processing and performance conditions \u003cbr\u003e18.2.4 Solubility parameters of solvents and polymers \u003cbr\u003e18.2.5 Diffusion \u003cbr\u003e18.2.6 Load and internal stress \u003cbr\u003e18.2.7 Time \u003cbr\u003e18.2.8 Temperature \u003cbr\u003e18.3 Mechanisms of environmental stress cracking \u003cbr\u003e18.4 Kinetics of environmental stress cracking \u003cbr\u003e18.5 Effect of ESC on material durability \u003cbr\u003e18.6 Methods of testing \u003cbr\u003eReferences \u003cbr\u003e19 Interrelation Between Corrosion and Weathering \u003cbr\u003eReferences \u003cbr\u003e20 Weathering of Stones \u003cbr\u003eReferences \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Nucleating...
$285.00
{"id":11242221124,"title":"Handbook of Nucleating Agents","handle":"978-1-895198-93-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-93-5 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003c\/span\u003e\u003cbr\u003ePages: 252\u003c\/div\u003e\n\u003cdiv\u003eFigures: 77\u003c\/div\u003e\n\u003cdiv\u003eTables: 19\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Nucleating Agents is the most extensive monograph on the subject ever written. In addition to the Handbook, Databook of Nucleating Agents is simultaneously published to give readers comprehensive information on this important subject. \u003cbr\u003e\u003cbr\u003eHandbook of Nucleating Agents gives information on how to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce haze of polymeric products with a proper selection of nucleating agents (and\/or the so-called clarifying agents). Handbook of Nucleating Agents brings analyses of important publications found in open and patent literature. Special attention is given to the findings of the last five years which brought many new important developments. \u003cbr\u003e\u003cbr\u003eThe book is divided into 14 chapters each of which concentrates on essential performance of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in Databook of Nucleating Agents which is published as a separate book to help in selection of product available in the commercial markets and analyze properties of different products. Information in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe next six chapters of Handbook discuss the most essential theoretical knowledge required for the proper selection and use of nucleating and clarifying agents. These include polymer crystallization in the presence and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, the measures of nucleation efficiency, the mechanisms of nucleation, and the effective methods of dispersion of nucleating agents. \u003cbr\u003e\u003cbr\u003eFollowing three chapters concentrate on the application aspects in different formulations. Here extensive use is being made of patent literature and research papers available for different applications. Discussed are 19 polymer processing methods which require use of nucleating agents, 40 different polymers which are known to use nucleating agents, and 16 groups of commercial products in which nucleating agents found applications. This shows that the modern use nucleating agent is widespread in industry.\u003cbr\u003e\u003cbr\u003eThe last three chapters discuss the effects of nucleating agents on physical and mechanical properties of materials, the most essential analytical techniques used to analyze systems containing nucleating agents, and health and safety in use of nucleating agents.\u003cbr\u003e\u003cbr\u003eThis important and timely publication(s) should not be missed. They contain essential information for upgrading production to the more economical level and products to the highest performance standards possible today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e\u003cbr\u003e2 Chemical Origin of Nucleating Agents \u003cbr\u003e2.1 Acids \u003cbr\u003e2.2 Amides \u003cbr\u003e2.3 Carbon nanotubes \u003cbr\u003e2.4 Graphene derivatives \u003cbr\u003e2.5 Hydrazides \u003cbr\u003e2.6 Inorganic materials \u003cbr\u003e2.6.1 Boron nitride \u003cbr\u003e2.6.2 Calcium carbonate \u003cbr\u003e2.6.3 Hydroxides \u003cbr\u003e2.6.4 Silica \u003cbr\u003e2.6.5 Talc \u003cbr\u003e2.6.6 Others \u003cbr\u003e2.7 Masterbatch \u003cbr\u003e2.8 Phosphate salts \u003cbr\u003e2.9 Polymeric \u003cbr\u003e2.10 Proprietary nucleating agents \u003cbr\u003e2.11 Salts of carboxylic acids \u003cbr\u003e2.12 Sorbitol derivatives \u003cbr\u003e2.13 Xylan esters \u003cbr\u003e2.14 Other nucleating agents \u003cbr\u003e\u003cbr\u003e3 Polymer Crystallization with and without Nucleating Agents\u003cbr\u003e\u003cbr\u003e4 Parameters of Crystallization \u003cbr\u003e\u003cbr\u003e5 What Influences Nucleation?\u003cbr\u003e5.1 Concentration \u003cbr\u003e5.2 Solubility of nucleating agent in polymer \u003cbr\u003e5.3 Shear rate and time \u003cbr\u003e5.4 Form of nucleating agent \u003cbr\u003e5.5 Mixtures of nucleating agents \u003cbr\u003e\u003cbr\u003e6 Nucleation Efficiency Measures \u003cbr\u003e6.1 Nuclei density\u003cbr\u003e6.2 Nucleation activity and constant \u003cbr\u003e6.3 Nucleation efficiency \u003cbr\u003e6.4 Activation energy \u003cbr\u003e\u003cbr\u003e7 Mechanisms of Crystallization \u003cbr\u003e\u003cbr\u003e8 Dispersion of Nucleating Agents \u003cbr\u003e\u003cbr\u003e9 Nucleating Agents in Different Processing Methods \u003cbr\u003e9.1 Blow molding \u003cbr\u003e9.2 Blown film extrusion \u003cbr\u003e9.3 Calendering \u003cbr\u003e9.4 Compression molding \u003cbr\u003e9.5 Dip coating \u003cbr\u003e9.6 Extrusion \u003cbr\u003e9.7 Foaming \u003cbr\u003e9.8 Hot-melt coating \u003cbr\u003e9.9 Injection molding \u003cbr\u003e9.10 Micro-injection molding \u003cbr\u003e9.11 Powder injection molding \u003cbr\u003e9.12 Pultrusion \u003cbr\u003e9.13 Reaction injection molding \u003cbr\u003e9.14 Rotational molding \u003cbr\u003e9.15 Sheet molding \u003cbr\u003e9.16 Spinning \u003cbr\u003e9.17 Thermoforming \u003cbr\u003e9.18 Welding and machining \u003cbr\u003e9.19 Wire coating\u003cbr\u003e\u003cbr\u003e10 Application of Nucleating Agents in Specific Polymers \u003cbr\u003e10.1 Poly(acrylonitrile-co-butadiene-co-styrene) \u003cbr\u003e10.2 Cellulose acetate \u003cbr\u003e10.3 Epoxy resin \u003cbr\u003e10.4 Ethylene-propylene diene terpolymer \u003cbr\u003e10.5 Ethylene-vinyl acetate copolymer \u003cbr\u003e10.6 Fluorinated ethylene-propylene copolymer \u003cbr\u003e10.7 Liquid crystalline polymer \u003cbr\u003e10.8 Polyamide \u003cbr\u003e10.9 Poly(acrylic acid) \u003cbr\u003e10.10 Polyacrylonitrile \u003cbr\u003e10.11 Polyaniline\u003cbr\u003e10.12 Poly(butylene terephthalate) \u003cbr\u003e10.13 Polycarbonate\u003cbr\u003e10.14 Poly(?-caprolactone) \u003cbr\u003e10.15 Polychlorotrifluoroethylene \u003cbr\u003e10.16 Polyethylene \u003cbr\u003e10.17 Polyetheretherketone \u003cbr\u003e10.18 Polyetherketoneketone \u003cbr\u003e10.19 Poly(ethylene oxide) \u003cbr\u003e10.20 Poly(ether sulfone) \u003cbr\u003e10.21 Poly(ethylene terephthalate) \u003cbr\u003e10.22 Polyethylene, silane-crosslinkable \u003cbr\u003e10.23 Poly(glycolic acid) \u003cbr\u003e10.24 Poly(3-hydroxybutyrate) \u003cbr\u003e10.25 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)\u003cbr\u003e10.26 Polyimide \u003cbr\u003e10.27 Poly(lactic acid) \u003cbr\u003e10.28 Polyoxymethylene \u003cbr\u003e10.29 Polypropylene \u003cbr\u003e10.30 Polyphthalamide \u003cbr\u003e10.31 Poly(p-phenylene sulfide)\u003cbr\u003e10.32 Polystyrene \u003cbr\u003e10.33 Poly(trimethylene terephthalate) \u003cbr\u003e10.34 Polyurethane \u003cbr\u003e10.35 Poly(vinyl alcohol) \u003cbr\u003e10.36 Poly(vinylidene fluoride) \u003cbr\u003e10.37 Poly(vinylidene fluoride-co-hexafluoropropylene) \u003cbr\u003e10.38 Poly(vinyl fluoride) \u003cbr\u003e10.39 Poly(N-vinyl carbazole) \u003cbr\u003e10.40 Unsaturated polyester \u003cbr\u003e\u003cbr\u003e11 Nucleating Agents in Various Products\u003cbr\u003e11.1 Adhesives\u003cbr\u003e11.2 Aerospace \u003cbr\u003e11.3 Appliances \u003cbr\u003e11.4 Automotive materials \u003cbr\u003e11.5 Bottles \u003cbr\u003e11.6 Building construction \u003cbr\u003e11.7 Cable \u0026amp; wire \u003cbr\u003e11.8 Coatings \u0026amp; paints \u003cbr\u003e11.9 Electronics and electrical \u003cbr\u003e11.10 Fibers \u003cbr\u003e11.11 Films \u003cbr\u003e11.12 Medical applications \u003cbr\u003e11.13 Pharmaceutical applications \u003cbr\u003e11.14 Railway \u003cbr\u003e11.15 Roofing \u003cbr\u003e11.16 Window profiles \u003cbr\u003e\u003cbr\u003e12 Effect of Nucleating Agents on Physical-mechanical Properties \u003cbr\u003e12.1 Physical properties\u003cbr\u003e12.1.1 Agglomeration \u003cbr\u003e12.1.2 Aspect ratio \u003cbr\u003e12.1.3 Crystalline structure \u003cbr\u003e12.1.4 Hydrophilic\/hydrophobic properties \u003cbr\u003e12.1.5 Melting temperature \u003cbr\u003e12.1.6 Moisture \u003cbr\u003e12.1.7 Optical properties \u003cbr\u003e12.1.8 Particle size \u003cbr\u003e12.1.9 Refractive index \u003cbr\u003e12.1.10 Shape memory \u003cbr\u003e12.1.11 Solubility \u003cbr\u003e12.1.12 Surface energy\u003cbr\u003e12.1.13 Thermal conductivity \u003cbr\u003e12.1.14 Transition temperature \u003cbr\u003e12.1.15 Zeta potential \u003cbr\u003e12.2 Mechanical properties \u003cbr\u003e12.2.1 Flexural strength\u003cbr\u003e12.2.2 Hardness\u003cbr\u003e12.2.3 Impact strength \u003cbr\u003e12.2.4 Residual stress \u003cbr\u003e12.2.5 Scratch resistance \u003cbr\u003e12.2.6 Shrinkage \u003cbr\u003e12.2.7 Tear strength \u003cbr\u003e12.2.8 Thermal deformation \u003cbr\u003e12.2.9 Tensile strength \u003cbr\u003e\u003cbr\u003e13 Important Analytical Methods Used in the Studies of Nucleating Agents \u003cbr\u003e13.1 Crystallinity \u003cbr\u003e13.2 Crystallization half-time \u003cbr\u003e13.3 Differential scanning calorimetry \u003cbr\u003e13.4 Fast scanning chip calorimetry\u003cbr\u003e13.5 FTIR \u003cbr\u003e13.6 Haze\u003cbr\u003e13.7 Orientation degree \u003cbr\u003e13.8 Polarized light microscopy \u003cbr\u003e13.9 Quenching device\u003cbr\u003e13.10 Small angle x-ray diffraction \u003cbr\u003e13.11 Spherulite size \u003cbr\u003e13.12 Thermogravimetric analysis \u003cbr\u003e13.13 Vicat softening temperature \u003cbr\u003e13.14 Wide angle x-ray diffraction\u003cbr\u003e\u003cbr\u003e14 Health and Safety with Nucleating Agents \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:45-04:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","alpha crystallization","beta crystallization","book","material","nucleating agent","nucleation","p-additives"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378373444,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Nucleating Agents","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-93-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-93-5.jpg?v=1499442373"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-93-5.jpg?v=1499442373","options":["Title"],"media":[{"alt":null,"id":355729408093,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-93-5.jpg?v=1499442373"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-93-5.jpg?v=1499442373","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-93-5 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003c\/span\u003e\u003cbr\u003ePages: 252\u003c\/div\u003e\n\u003cdiv\u003eFigures: 77\u003c\/div\u003e\n\u003cdiv\u003eTables: 19\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Nucleating Agents is the most extensive monograph on the subject ever written. In addition to the Handbook, Databook of Nucleating Agents is simultaneously published to give readers comprehensive information on this important subject. \u003cbr\u003e\u003cbr\u003eHandbook of Nucleating Agents gives information on how to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce haze of polymeric products with a proper selection of nucleating agents (and\/or the so-called clarifying agents). Handbook of Nucleating Agents brings analyses of important publications found in open and patent literature. Special attention is given to the findings of the last five years which brought many new important developments. \u003cbr\u003e\u003cbr\u003eThe book is divided into 14 chapters each of which concentrates on essential performance of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in Databook of Nucleating Agents which is published as a separate book to help in selection of product available in the commercial markets and analyze properties of different products. Information in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe next six chapters of Handbook discuss the most essential theoretical knowledge required for the proper selection and use of nucleating and clarifying agents. These include polymer crystallization in the presence and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, the measures of nucleation efficiency, the mechanisms of nucleation, and the effective methods of dispersion of nucleating agents. \u003cbr\u003e\u003cbr\u003eFollowing three chapters concentrate on the application aspects in different formulations. Here extensive use is being made of patent literature and research papers available for different applications. Discussed are 19 polymer processing methods which require use of nucleating agents, 40 different polymers which are known to use nucleating agents, and 16 groups of commercial products in which nucleating agents found applications. This shows that the modern use nucleating agent is widespread in industry.\u003cbr\u003e\u003cbr\u003eThe last three chapters discuss the effects of nucleating agents on physical and mechanical properties of materials, the most essential analytical techniques used to analyze systems containing nucleating agents, and health and safety in use of nucleating agents.\u003cbr\u003e\u003cbr\u003eThis important and timely publication(s) should not be missed. They contain essential information for upgrading production to the more economical level and products to the highest performance standards possible today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e\u003cbr\u003e2 Chemical Origin of Nucleating Agents \u003cbr\u003e2.1 Acids \u003cbr\u003e2.2 Amides \u003cbr\u003e2.3 Carbon nanotubes \u003cbr\u003e2.4 Graphene derivatives \u003cbr\u003e2.5 Hydrazides \u003cbr\u003e2.6 Inorganic materials \u003cbr\u003e2.6.1 Boron nitride \u003cbr\u003e2.6.2 Calcium carbonate \u003cbr\u003e2.6.3 Hydroxides \u003cbr\u003e2.6.4 Silica \u003cbr\u003e2.6.5 Talc \u003cbr\u003e2.6.6 Others \u003cbr\u003e2.7 Masterbatch \u003cbr\u003e2.8 Phosphate salts \u003cbr\u003e2.9 Polymeric \u003cbr\u003e2.10 Proprietary nucleating agents \u003cbr\u003e2.11 Salts of carboxylic acids \u003cbr\u003e2.12 Sorbitol derivatives \u003cbr\u003e2.13 Xylan esters \u003cbr\u003e2.14 Other nucleating agents \u003cbr\u003e\u003cbr\u003e3 Polymer Crystallization with and without Nucleating Agents\u003cbr\u003e\u003cbr\u003e4 Parameters of Crystallization \u003cbr\u003e\u003cbr\u003e5 What Influences Nucleation?\u003cbr\u003e5.1 Concentration \u003cbr\u003e5.2 Solubility of nucleating agent in polymer \u003cbr\u003e5.3 Shear rate and time \u003cbr\u003e5.4 Form of nucleating agent \u003cbr\u003e5.5 Mixtures of nucleating agents \u003cbr\u003e\u003cbr\u003e6 Nucleation Efficiency Measures \u003cbr\u003e6.1 Nuclei density\u003cbr\u003e6.2 Nucleation activity and constant \u003cbr\u003e6.3 Nucleation efficiency \u003cbr\u003e6.4 Activation energy \u003cbr\u003e\u003cbr\u003e7 Mechanisms of Crystallization \u003cbr\u003e\u003cbr\u003e8 Dispersion of Nucleating Agents \u003cbr\u003e\u003cbr\u003e9 Nucleating Agents in Different Processing Methods \u003cbr\u003e9.1 Blow molding \u003cbr\u003e9.2 Blown film extrusion \u003cbr\u003e9.3 Calendering \u003cbr\u003e9.4 Compression molding \u003cbr\u003e9.5 Dip coating \u003cbr\u003e9.6 Extrusion \u003cbr\u003e9.7 Foaming \u003cbr\u003e9.8 Hot-melt coating \u003cbr\u003e9.9 Injection molding \u003cbr\u003e9.10 Micro-injection molding \u003cbr\u003e9.11 Powder injection molding \u003cbr\u003e9.12 Pultrusion \u003cbr\u003e9.13 Reaction injection molding \u003cbr\u003e9.14 Rotational molding \u003cbr\u003e9.15 Sheet molding \u003cbr\u003e9.16 Spinning \u003cbr\u003e9.17 Thermoforming \u003cbr\u003e9.18 Welding and machining \u003cbr\u003e9.19 Wire coating\u003cbr\u003e\u003cbr\u003e10 Application of Nucleating Agents in Specific Polymers \u003cbr\u003e10.1 Poly(acrylonitrile-co-butadiene-co-styrene) \u003cbr\u003e10.2 Cellulose acetate \u003cbr\u003e10.3 Epoxy resin \u003cbr\u003e10.4 Ethylene-propylene diene terpolymer \u003cbr\u003e10.5 Ethylene-vinyl acetate copolymer \u003cbr\u003e10.6 Fluorinated ethylene-propylene copolymer \u003cbr\u003e10.7 Liquid crystalline polymer \u003cbr\u003e10.8 Polyamide \u003cbr\u003e10.9 Poly(acrylic acid) \u003cbr\u003e10.10 Polyacrylonitrile \u003cbr\u003e10.11 Polyaniline\u003cbr\u003e10.12 Poly(butylene terephthalate) \u003cbr\u003e10.13 Polycarbonate\u003cbr\u003e10.14 Poly(?-caprolactone) \u003cbr\u003e10.15 Polychlorotrifluoroethylene \u003cbr\u003e10.16 Polyethylene \u003cbr\u003e10.17 Polyetheretherketone \u003cbr\u003e10.18 Polyetherketoneketone \u003cbr\u003e10.19 Poly(ethylene oxide) \u003cbr\u003e10.20 Poly(ether sulfone) \u003cbr\u003e10.21 Poly(ethylene terephthalate) \u003cbr\u003e10.22 Polyethylene, silane-crosslinkable \u003cbr\u003e10.23 Poly(glycolic acid) \u003cbr\u003e10.24 Poly(3-hydroxybutyrate) \u003cbr\u003e10.25 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)\u003cbr\u003e10.26 Polyimide \u003cbr\u003e10.27 Poly(lactic acid) \u003cbr\u003e10.28 Polyoxymethylene \u003cbr\u003e10.29 Polypropylene \u003cbr\u003e10.30 Polyphthalamide \u003cbr\u003e10.31 Poly(p-phenylene sulfide)\u003cbr\u003e10.32 Polystyrene \u003cbr\u003e10.33 Poly(trimethylene terephthalate) \u003cbr\u003e10.34 Polyurethane \u003cbr\u003e10.35 Poly(vinyl alcohol) \u003cbr\u003e10.36 Poly(vinylidene fluoride) \u003cbr\u003e10.37 Poly(vinylidene fluoride-co-hexafluoropropylene) \u003cbr\u003e10.38 Poly(vinyl fluoride) \u003cbr\u003e10.39 Poly(N-vinyl carbazole) \u003cbr\u003e10.40 Unsaturated polyester \u003cbr\u003e\u003cbr\u003e11 Nucleating Agents in Various Products\u003cbr\u003e11.1 Adhesives\u003cbr\u003e11.2 Aerospace \u003cbr\u003e11.3 Appliances \u003cbr\u003e11.4 Automotive materials \u003cbr\u003e11.5 Bottles \u003cbr\u003e11.6 Building construction \u003cbr\u003e11.7 Cable \u0026amp; wire \u003cbr\u003e11.8 Coatings \u0026amp; paints \u003cbr\u003e11.9 Electronics and electrical \u003cbr\u003e11.10 Fibers \u003cbr\u003e11.11 Films \u003cbr\u003e11.12 Medical applications \u003cbr\u003e11.13 Pharmaceutical applications \u003cbr\u003e11.14 Railway \u003cbr\u003e11.15 Roofing \u003cbr\u003e11.16 Window profiles \u003cbr\u003e\u003cbr\u003e12 Effect of Nucleating Agents on Physical-mechanical Properties \u003cbr\u003e12.1 Physical properties\u003cbr\u003e12.1.1 Agglomeration \u003cbr\u003e12.1.2 Aspect ratio \u003cbr\u003e12.1.3 Crystalline structure \u003cbr\u003e12.1.4 Hydrophilic\/hydrophobic properties \u003cbr\u003e12.1.5 Melting temperature \u003cbr\u003e12.1.6 Moisture \u003cbr\u003e12.1.7 Optical properties \u003cbr\u003e12.1.8 Particle size \u003cbr\u003e12.1.9 Refractive index \u003cbr\u003e12.1.10 Shape memory \u003cbr\u003e12.1.11 Solubility \u003cbr\u003e12.1.12 Surface energy\u003cbr\u003e12.1.13 Thermal conductivity \u003cbr\u003e12.1.14 Transition temperature \u003cbr\u003e12.1.15 Zeta potential \u003cbr\u003e12.2 Mechanical properties \u003cbr\u003e12.2.1 Flexural strength\u003cbr\u003e12.2.2 Hardness\u003cbr\u003e12.2.3 Impact strength \u003cbr\u003e12.2.4 Residual stress \u003cbr\u003e12.2.5 Scratch resistance \u003cbr\u003e12.2.6 Shrinkage \u003cbr\u003e12.2.7 Tear strength \u003cbr\u003e12.2.8 Thermal deformation \u003cbr\u003e12.2.9 Tensile strength \u003cbr\u003e\u003cbr\u003e13 Important Analytical Methods Used in the Studies of Nucleating Agents \u003cbr\u003e13.1 Crystallinity \u003cbr\u003e13.2 Crystallization half-time \u003cbr\u003e13.3 Differential scanning calorimetry \u003cbr\u003e13.4 Fast scanning chip calorimetry\u003cbr\u003e13.5 FTIR \u003cbr\u003e13.6 Haze\u003cbr\u003e13.7 Orientation degree \u003cbr\u003e13.8 Polarized light microscopy \u003cbr\u003e13.9 Quenching device\u003cbr\u003e13.10 Small angle x-ray diffraction \u003cbr\u003e13.11 Spherulite size \u003cbr\u003e13.12 Thermogravimetric analysis \u003cbr\u003e13.13 Vicat softening temperature \u003cbr\u003e13.14 Wide angle x-ray diffraction\u003cbr\u003e\u003cbr\u003e14 Health and Safety with Nucleating Agents \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Photochemi...
$150.00
{"id":11242224836,"title":"Handbook of Photochemistry and Photophysics of Polymeric Materials","handle":"978-0-470-13796-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. S. Allen \u003cbr\u003eISBN 978-0-470-13796-3 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e689 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCovering materials, mechanisms, processes, properties, developments, and applications of photochemistry and photophysics in polymers, Handbook of Photochemistry and Photophysics of Polymeric Materials provides the fundamentals and applications of polymer photochemistry and photophysics in one accessible source. For each category, the fundamentals of the materials are presented alongside important developments and particular applications in the field. This book is a useful and practical resource for all researchers and graduate students working on polymeric materials either prepared by or involved in photochemistry and photophysics.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNorman S. Allen, PhD, DSc, is Professor and Chair of Applied Chemistry at Manchester Metropolitan University. Professor Allen has published some 600 papers, articles, books, and book chapters. He is the founder and a member of the editorial board of the journal Dyes and Pigments. He is also founder of the journal Polymer Photochemistry and is on the editorial board of Journal of Vinyl and Additive Technology and Polymer Degradation and Stability. Professor Allen is also Editor in Chief of the Open Materials Science Journal. From 1978–2007 he was the specialist reporter for the section on \"Polymer Photochemistry\" in the Royal Society of Chemistry's Photochemistry series.","published_at":"2017-06-22T21:13:57-04:00","created_at":"2017-06-22T21:13:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","degradation","material","Photochemistry","polymeric materials","polymers","stabilization"],"price":15000,"price_min":15000,"price_max":15000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378390148,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Photochemistry and Photophysics of Polymeric Materials","public_title":null,"options":["Default Title"],"price":15000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-13796-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-13796-3.jpg?v=1499442520"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-13796-3.jpg?v=1499442520","options":["Title"],"media":[{"alt":null,"id":355731669085,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-13796-3.jpg?v=1499442520"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-13796-3.jpg?v=1499442520","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. S. Allen \u003cbr\u003eISBN 978-0-470-13796-3 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e689 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCovering materials, mechanisms, processes, properties, developments, and applications of photochemistry and photophysics in polymers, Handbook of Photochemistry and Photophysics of Polymeric Materials provides the fundamentals and applications of polymer photochemistry and photophysics in one accessible source. For each category, the fundamentals of the materials are presented alongside important developments and particular applications in the field. This book is a useful and practical resource for all researchers and graduate students working on polymeric materials either prepared by or involved in photochemistry and photophysics.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNorman S. Allen, PhD, DSc, is Professor and Chair of Applied Chemistry at Manchester Metropolitan University. Professor Allen has published some 600 papers, articles, books, and book chapters. He is the founder and a member of the editorial board of the journal Dyes and Pigments. He is also founder of the journal Polymer Photochemistry and is on the editorial board of Journal of Vinyl and Additive Technology and Polymer Degradation and Stability. Professor Allen is also Editor in Chief of the Open Materials Science Journal. From 1978–2007 he was the specialist reporter for the section on \"Polymer Photochemistry\" in the Royal Society of Chemistry's Photochemistry series."}
Handbook of Polymer Pr...
$295.00
{"id":7703524278429,"title":"Handbook of Polymer Processing Additives","handle":"handbook-of-polymer-processing-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-77467-010-1 \u003cbr\u003e\u003cbr\u003eEdition: 1st\u003cbr data-mce-fragment=\"1\"\u003ePublished Jan. 2023\u003cbr data-mce-fragment=\"1\"\u003ePages: 120+iv\u003cbr data-mce-fragment=\"1\"\u003eTables 12\u003cbr data-mce-fragment=\"1\"\u003eFigures 36\u003cbr data-mce-fragment=\"1\"\u003eHardcover\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe handbook and the databook series include separate books on many commonly used additives, such as Antiblocking Agents, Antioxidants, Biocides, Flame Retardants, Nucleating Agents, Plasticizers, Solvents, UV Stabilizers, and many others. This Handbook contains a selection of minor additives used in the processing of polymeric and other materials, such as acid scavengers, air release, anticaking, antifoaming, antifreezing, antigassing, antigelling, defoaming, antisettling additives, hydrolysis stabilizers, moisture scavengers, and reprocessing aids. They are all very important additives, although less documented in the literature. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eInformation on the use of these additives in various products is divided into the following sections: Methods and mechanisms of additives use, Types and concentrations, Application data that emphasize reasons for their use, advantages and disadvantages of additive use, effect on product properties, and properties of final products.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above-listed additives are most frequently used in PVC resins, including rigid, flexible, and paste resin, PVC copolymers, other vinyl resins, and mixtures with other polymers, polyolefins (PE and PP), and their copolymers (e.g., EVA, EPDM), polystyrene and various styrene copolymers, epichlorohydrin rubber, fluoroelastomers, fluorinated rubbers, and fluoropolymers, polyesters (PBT, PET, PLA, PBAT, unsaturated polyesters, and TPE), polyamides, polyurethanes, acrylates, and their various copolymers, alkyds, polyoxymethylene, epoxy, melamine, and phenolic resins, cellulosic polymers (e.g., nitrocellulose, cellulose acetate butyrate), rubbers (butyl, chlorinated rubber, styrene-butadiene, chlorobutyl, chlorosulfonated polyethylene, nitrile, silicone, and polychloroprene), starch-based resins, and many others not mentioned by name.\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003eMany products and industries require these additives, including construction, automotive, aeronautic, electronic industries, glass coating, insulating glass manufacture, mineral wool insulation, adhesives, sealants and gaskets, cable and wire industry, paints, primers, and coatings, wind turbines, 3D printing, shoe industry, pneumatic pipe, film, conveyor belts, elevator wheel, home appliances, building decorative boards, shopping bags, agricultural film, food containers, toys and stationery, membranes, leather and coated fabrics, roof coatings, asphaltic felt, modified bitumen and single plies, printing with gravure and flexo on paper and vinyl wall coverings, foams, cast parts, cleaners, printing inks and toners, agrochemicals, cosmetics, and many others not mentioned by name. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above (incomplete) list of polymers and products, which use discussed in this book additives, shows how important they are for polymer processing and the production of many other products. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eA complete analysis of literature and patents is included in this book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and the environment. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHandbook of Polymer Processing Additives is a highly practical resource, covering the use and application of many processing additives. It assists engineers and scientists in the polymer industry in their applications and provides a reference book for those involved in research and development support. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThis book is an excellent companion to the Databook of Polymer Processing Additives because the data in the Handbook of Polymer Processing Additives do not repeat information, but Handbook gives a broader background for the selection of the additives, their performance mechanisms, and many essential application properties.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe combination of data and comprehensive analysis of the performance of these materials form a particularly important source of information for industry, research, academia, and legislature. These two books should be considered by any industrial, university, governmental, and public library because of the widespread applications of these additives in industry and everyday life.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2023-02-24T13:51:24-05:00","created_at":"2023-02-24T12:52:56-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","biodegradation","blends","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","monomers","physical properties","polymeric materials","polymerization","processing","processing methods","structure","structures","synthesis","toxicity","weather stability"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393827995805,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Processing Additives","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569","options":["Title"],"media":[{"alt":null,"id":27339963367581,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-77467-010-1 \u003cbr\u003e\u003cbr\u003eEdition: 1st\u003cbr data-mce-fragment=\"1\"\u003ePublished Jan. 2023\u003cbr data-mce-fragment=\"1\"\u003ePages: 120+iv\u003cbr data-mce-fragment=\"1\"\u003eTables 12\u003cbr data-mce-fragment=\"1\"\u003eFigures 36\u003cbr data-mce-fragment=\"1\"\u003eHardcover\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe handbook and the databook series include separate books on many commonly used additives, such as Antiblocking Agents, Antioxidants, Biocides, Flame Retardants, Nucleating Agents, Plasticizers, Solvents, UV Stabilizers, and many others. This Handbook contains a selection of minor additives used in the processing of polymeric and other materials, such as acid scavengers, air release, anticaking, antifoaming, antifreezing, antigassing, antigelling, defoaming, antisettling additives, hydrolysis stabilizers, moisture scavengers, and reprocessing aids. They are all very important additives, although less documented in the literature. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eInformation on the use of these additives in various products is divided into the following sections: Methods and mechanisms of additives use, Types and concentrations, Application data that emphasize reasons for their use, advantages and disadvantages of additive use, effect on product properties, and properties of final products.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above-listed additives are most frequently used in PVC resins, including rigid, flexible, and paste resin, PVC copolymers, other vinyl resins, and mixtures with other polymers, polyolefins (PE and PP), and their copolymers (e.g., EVA, EPDM), polystyrene and various styrene copolymers, epichlorohydrin rubber, fluoroelastomers, fluorinated rubbers, and fluoropolymers, polyesters (PBT, PET, PLA, PBAT, unsaturated polyesters, and TPE), polyamides, polyurethanes, acrylates, and their various copolymers, alkyds, polyoxymethylene, epoxy, melamine, and phenolic resins, cellulosic polymers (e.g., nitrocellulose, cellulose acetate butyrate), rubbers (butyl, chlorinated rubber, styrene-butadiene, chlorobutyl, chlorosulfonated polyethylene, nitrile, silicone, and polychloroprene), starch-based resins, and many others not mentioned by name.\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003eMany products and industries require these additives, including construction, automotive, aeronautic, electronic industries, glass coating, insulating glass manufacture, mineral wool insulation, adhesives, sealants and gaskets, cable and wire industry, paints, primers, and coatings, wind turbines, 3D printing, shoe industry, pneumatic pipe, film, conveyor belts, elevator wheel, home appliances, building decorative boards, shopping bags, agricultural film, food containers, toys and stationery, membranes, leather and coated fabrics, roof coatings, asphaltic felt, modified bitumen and single plies, printing with gravure and flexo on paper and vinyl wall coverings, foams, cast parts, cleaners, printing inks and toners, agrochemicals, cosmetics, and many others not mentioned by name. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above (incomplete) list of polymers and products, which use discussed in this book additives, shows how important they are for polymer processing and the production of many other products. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eA complete analysis of literature and patents is included in this book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and the environment. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHandbook of Polymer Processing Additives is a highly practical resource, covering the use and application of many processing additives. It assists engineers and scientists in the polymer industry in their applications and provides a reference book for those involved in research and development support. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThis book is an excellent companion to the Databook of Polymer Processing Additives because the data in the Handbook of Polymer Processing Additives do not repeat information, but Handbook gives a broader background for the selection of the additives, their performance mechanisms, and many essential application properties.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe combination of data and comprehensive analysis of the performance of these materials form a particularly important source of information for industry, research, academia, and legislature. These two books should be considered by any industrial, university, governmental, and public library because of the widespread applications of these additives in industry and everyday life.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Polymers
$395.00
{"id":11242220932,"title":"Handbook of Polymers","handle":"978-1-895198-47-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:44:36-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","physical properties","polymeric materials","processing","structure","synthesis","toxicity","weather stability"],"price":39500,"price_min":39500,"price_max":39500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372932,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers","public_title":null,"options":["Default Title"],"price":39500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-47-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588","options":["Title"],"media":[{"alt":null,"id":356336173149,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymers, ...
$425.00
{"id":11242222020,"title":"Handbook of Polymers, 2nd Edition","handle":"978-1-895198-92-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-92-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003ePages: 705\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2016. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical \u003cbr\u003e\u003cbr\u003eproblems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003ePresentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, \u003cbr\u003e\u003cbr\u003eFree enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, \u003cbr\u003e\u003cbr\u003eVan der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photooxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book or the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:48-04:00","created_at":"2017-06-22T21:13:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","biodegradation","blends","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","monomers","physical properties","polymeric materials","polymerization","processing","processing methods","structure","structures","synthesis","toxicity","weather stability"],"price":42500,"price_min":42500,"price_max":42500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378375172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers, 2nd Edition","public_title":null,"options":["Default Title"],"price":42500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-92-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966","options":["Title"],"media":[{"alt":null,"id":356336369757,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-92-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003ePages: 705\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2016. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical \u003cbr\u003e\u003cbr\u003eproblems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003ePresentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, \u003cbr\u003e\u003cbr\u003eFree enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, \u003cbr\u003e\u003cbr\u003eVan der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photooxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book or the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymers, ...
$455.00
{"id":7336409235613,"title":"Handbook of Polymers, 3rd Edition","handle":"handbook-of-polymers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T21:01:23-04:00","created_at":"2022-03-31T20:57:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","best","book","material","Materials","polymer","polymers"],"price":45500,"price_min":45500,"price_max":45500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165789098141,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Polymers, 3rd Edition","public_title":null,"options":["Default Title"],"price":45500,"weight":1000,"compare_at_price":null,"inventory_quantity":-2,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-95-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870","options":["Title"],"media":[{"alt":null,"id":24734620844189,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e"}
Handbook of Thermoset ...
$249.00
{"id":11242243140,"title":"Handbook of Thermoset Plastics, 3rd Edition","handle":"9781455731077","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dodiuk \u0026amp; Goodman \u003cbr\u003eISBN 9781455731077 \u003cbr\u003e\u003cbr\u003e800 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Goodman and Dodiuk-Kenig provide a comprehensive reference guide to the chemistry, manufacturing, and applications of thermosets.\u003cbr\u003e\u003cbr\u003e• Updated to include recent developments in manufacturing - from biopolymers to nanocomposites.\u003cbr\u003e\u003cbr\u003e• Case Studies illustrate applications of key thermoset plastics.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermosetting plastics are a distinct category of plastics whose high performance, durability and reliability at high temperatures make them suitable for specialty applications ranging from automotive and aerospace through to electronic packaging and consumer products (your melamine kitchen worktop is a thermoset resin!). Recent developments in thermoset plastics technology and processes has broadened their use exponentially over recent years, and these developments continue: in November 2011, French scientists created a new lightweight thermoset that is as strong and stable as previous materials yet can be easily reworked and reshaped when heated which makes it unique amongst thermosets and allows for repair and recycling.\u003cbr\u003e\u003cbr\u003eThe Handbook of Thermoset Plastics, now in its 3rd edition, provides a comprehensive survey of the chemical processes, manufacturing techniques and design properties of each polymer, along with their applications. Written by a team of highly experienced practitioners, the practical implications of using thermoset plastics are presented - both their strengths and weaknesses. The data and descriptions presented here enable engineers, scientists, and technicians to form judgments and take action on the basis of informed analysis. The aim of the book is to help the reader to make the right decision and take the correct action - avoiding the pitfalls the authors’ experience has uncovered.\u003cbr\u003e\u003cbr\u003eThe new edition has been updated throughout to reflect current practice in manufacturing and processing, featuring:\u003cbr\u003e\u003cbr\u003e• Case Studies to demonstrate how particular properties make different polymers suitable for different applications, as well as covering end-use and safety considerations.\u003cbr\u003e\u003cbr\u003e• A new chapter on using nanoparticles to enhance thermal and mechanical properties.\u003cbr\u003e\u003cbr\u003e• A new chapter describing new materials based on renewable resources (such as soy-based thermoset plastics).\u003cbr\u003e\u003cbr\u003e• A new chapter covering recent developments and potential future technologies such as new catalysts for Controlled Radical Polymerization.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, chemical engineers, polymer chemists, design engineers, manufacturing engineers and technicians, students of polymer engineering and chemistry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.Phenol-Formaldehyde Resins \u003cbr\u003e3.Polybenzoxazines-New Generation Phenolic Resins \u003cbr\u003e4.Aminoresins \u003cbr\u003e5.Furan Resins \u003cbr\u003e6.Unsaturated Polyester and Vinyl Ester Resins\u003cbr\u003e7.Allyls\u003cbr\u003e8.Epoxy Resins\u003cbr\u003e9.Thermo and Chemoset Polyurethanes \u003cbr\u003e10.Aromatic Polyimides and High-Temperature Resistant Thermoset Polymers: Research, Development and Engineering Applications\u003cbr\u003e11.Cyanate Ester Resins\u003cbr\u003e12.Maleimide Based Alder-Ene Thermosets: Recent Advances\u003cbr\u003e13.Syntactic Foams Based on Thermoset Polymers \u003cbr\u003e14.Silicones\u003cbr\u003e15.Thermosets from Renewable Sources\u003cbr\u003e16.Nanotechnology Based Thermosets\u003cbr\u003e17.Crosslinked Thermoplastics\u003cbr\u003e18.Processing of Thermoset Resins","published_at":"2017-06-22T21:14:53-04:00","created_at":"2017-06-22T21:14:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","Bakelite","book","composite materials","material","nanoparticles","plastics","polymers","thermoset","thermoset applications","thermoset chemistry","thermoset manufacturing"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444484,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thermoset Plastics, 3rd Edition","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781455731077","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781455731077.jpg?v=1499472588"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731077.jpg?v=1499472588","options":["Title"],"media":[{"alt":null,"id":356343185501,"position":1,"preview_image":{"aspect_ratio":0.784,"height":499,"width":391,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731077.jpg?v=1499472588"},"aspect_ratio":0.784,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731077.jpg?v=1499472588","width":391}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dodiuk \u0026amp; Goodman \u003cbr\u003eISBN 9781455731077 \u003cbr\u003e\u003cbr\u003e800 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Goodman and Dodiuk-Kenig provide a comprehensive reference guide to the chemistry, manufacturing, and applications of thermosets.\u003cbr\u003e\u003cbr\u003e• Updated to include recent developments in manufacturing - from biopolymers to nanocomposites.\u003cbr\u003e\u003cbr\u003e• Case Studies illustrate applications of key thermoset plastics.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermosetting plastics are a distinct category of plastics whose high performance, durability and reliability at high temperatures make them suitable for specialty applications ranging from automotive and aerospace through to electronic packaging and consumer products (your melamine kitchen worktop is a thermoset resin!). Recent developments in thermoset plastics technology and processes has broadened their use exponentially over recent years, and these developments continue: in November 2011, French scientists created a new lightweight thermoset that is as strong and stable as previous materials yet can be easily reworked and reshaped when heated which makes it unique amongst thermosets and allows for repair and recycling.\u003cbr\u003e\u003cbr\u003eThe Handbook of Thermoset Plastics, now in its 3rd edition, provides a comprehensive survey of the chemical processes, manufacturing techniques and design properties of each polymer, along with their applications. Written by a team of highly experienced practitioners, the practical implications of using thermoset plastics are presented - both their strengths and weaknesses. The data and descriptions presented here enable engineers, scientists, and technicians to form judgments and take action on the basis of informed analysis. The aim of the book is to help the reader to make the right decision and take the correct action - avoiding the pitfalls the authors’ experience has uncovered.\u003cbr\u003e\u003cbr\u003eThe new edition has been updated throughout to reflect current practice in manufacturing and processing, featuring:\u003cbr\u003e\u003cbr\u003e• Case Studies to demonstrate how particular properties make different polymers suitable for different applications, as well as covering end-use and safety considerations.\u003cbr\u003e\u003cbr\u003e• A new chapter on using nanoparticles to enhance thermal and mechanical properties.\u003cbr\u003e\u003cbr\u003e• A new chapter describing new materials based on renewable resources (such as soy-based thermoset plastics).\u003cbr\u003e\u003cbr\u003e• A new chapter covering recent developments and potential future technologies such as new catalysts for Controlled Radical Polymerization.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, chemical engineers, polymer chemists, design engineers, manufacturing engineers and technicians, students of polymer engineering and chemistry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.Phenol-Formaldehyde Resins \u003cbr\u003e3.Polybenzoxazines-New Generation Phenolic Resins \u003cbr\u003e4.Aminoresins \u003cbr\u003e5.Furan Resins \u003cbr\u003e6.Unsaturated Polyester and Vinyl Ester Resins\u003cbr\u003e7.Allyls\u003cbr\u003e8.Epoxy Resins\u003cbr\u003e9.Thermo and Chemoset Polyurethanes \u003cbr\u003e10.Aromatic Polyimides and High-Temperature Resistant Thermoset Polymers: Research, Development and Engineering Applications\u003cbr\u003e11.Cyanate Ester Resins\u003cbr\u003e12.Maleimide Based Alder-Ene Thermosets: Recent Advances\u003cbr\u003e13.Syntactic Foams Based on Thermoset Polymers \u003cbr\u003e14.Silicones\u003cbr\u003e15.Thermosets from Renewable Sources\u003cbr\u003e16.Nanotechnology Based Thermosets\u003cbr\u003e17.Crosslinked Thermoplastics\u003cbr\u003e18.Processing of Thermoset Resins"}