Industry analysts and specialists in particular branches of industry create these comprehensive reports on various industries. The authors have an excellent understanding of the industry to assist governmental employees, engineers, scientists, university professors and students in tasks requiring knowledge of a current information on trends, directions, and statistical data characterizing these industries. These reports are comprehensive and very cost effective.
- Grid List
Filter
Biodegradable Polymers
$390.00
{"id":11242213828,"title":"Biodegradable Polymers","handle":"978-1-85957-519-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David K. Platt \u003cbr\u003eISBN 978-1-85957-519-2 \u003cbr\u003e\u003cbr\u003eRapra Market Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers have experienced strong growth over the last three years and are set to make further inroads into markets traditionally dominated by conventional thermoplastics in future. \u003cbr\u003e\u003cbr\u003eDemand is being driven by a number of factors. \u003cbr\u003eThe cost of biodegradable polymers has come down considerably over the last three years while at the same time standard thermoplastic prices have increased considerably. Now, some classes of biodegradable polymers are price competitive with polymers such as PET. \u003cbr\u003e\u003cbr\u003eThe biodegradable polymers industry itself has established an agreed framework for testing and certification and there is growing political pressure in developed countries to reduce packaging waste and develop a composting infrastructure. Biodegradable polymer producers have also invested in product and process improvements. Finally, consumers and brand owners are beginning to recognize the benefits of sustainable or ‘green’ packaging. \u003cbr\u003e\u003cbr\u003eFour main classes of biodegradable polymers are analyzed in this report, polylactic acid (PLA), starch-based polymers, synthetic biodegradable polymers, such as aromatic aliphatic co-polyesters, and polyhydroxyalkanoates (PHA). The report analyses their key performance properties, applications development, market drivers and future prospects. Each product section also contains an estimate of market size by world region and end use market, plus forecasts to 2010. There is also an analysis of key suppliers and their products. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e \u003cbr\u003eBiodegradable polymers market size by geographic region, polymer type and end use sector, 2000 and 2005, plus forecasts to 2010. Market opportunity analysis by end use sector, such as packaging, bags and sacks, foodservice, agriculture, medical, consumer products and fibres. Illustrations of product and applications development over the last three years. Supply chain analysis: including details of thirty leading biodegradable polymer suppliers and profiles of around fifty of the world’s leading biodegradable polymer processors. Analysis of biodegradable polymer performance properties, market drivers, applications and product developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Platt graduated from the University of Nottingham with an Economics degree before completing an MBA at the University of Bradford. He joined a leading international market consultancy where he specialized in plastics sector research. He conducted a wide range of multi-client and single-client studies covering a wide range of materials, from standard thermoplastics, engineering and high performance polymers to conductive polymers and thermoplastic elastomers. Now operating as a freelance consultant, he makes regular contributions to the European plastics trade press, and works with leading plastics industry consultants.","published_at":"2017-06-22T21:13:20-04:00","created_at":"2017-06-22T21:13:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","agriculture","analysis","aromatic aliphatic co-polyesters","bags","biodegradable polymers","book","consumer products","foodservice","market","medical","packaging","PHA","PLA","polyhydroxyalkanoates","polylactic acid","polymer","polymers","properties","report","sacks","starch-based polymers","synthetic biodegradable polymers"],"price":39000,"price_min":39000,"price_max":39000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350852,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biodegradable Polymers","public_title":null,"options":["Default Title"],"price":39000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-519-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157","options":["Title"],"media":[{"alt":null,"id":350156882013,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David K. Platt \u003cbr\u003eISBN 978-1-85957-519-2 \u003cbr\u003e\u003cbr\u003eRapra Market Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers have experienced strong growth over the last three years and are set to make further inroads into markets traditionally dominated by conventional thermoplastics in future. \u003cbr\u003e\u003cbr\u003eDemand is being driven by a number of factors. \u003cbr\u003eThe cost of biodegradable polymers has come down considerably over the last three years while at the same time standard thermoplastic prices have increased considerably. Now, some classes of biodegradable polymers are price competitive with polymers such as PET. \u003cbr\u003e\u003cbr\u003eThe biodegradable polymers industry itself has established an agreed framework for testing and certification and there is growing political pressure in developed countries to reduce packaging waste and develop a composting infrastructure. Biodegradable polymer producers have also invested in product and process improvements. Finally, consumers and brand owners are beginning to recognize the benefits of sustainable or ‘green’ packaging. \u003cbr\u003e\u003cbr\u003eFour main classes of biodegradable polymers are analyzed in this report, polylactic acid (PLA), starch-based polymers, synthetic biodegradable polymers, such as aromatic aliphatic co-polyesters, and polyhydroxyalkanoates (PHA). The report analyses their key performance properties, applications development, market drivers and future prospects. Each product section also contains an estimate of market size by world region and end use market, plus forecasts to 2010. There is also an analysis of key suppliers and their products. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e \u003cbr\u003eBiodegradable polymers market size by geographic region, polymer type and end use sector, 2000 and 2005, plus forecasts to 2010. Market opportunity analysis by end use sector, such as packaging, bags and sacks, foodservice, agriculture, medical, consumer products and fibres. Illustrations of product and applications development over the last three years. Supply chain analysis: including details of thirty leading biodegradable polymer suppliers and profiles of around fifty of the world’s leading biodegradable polymer processors. Analysis of biodegradable polymer performance properties, market drivers, applications and product developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Platt graduated from the University of Nottingham with an Economics degree before completing an MBA at the University of Bradford. He joined a leading international market consultancy where he specialized in plastics sector research. He conducted a wide range of multi-client and single-client studies covering a wide range of materials, from standard thermoplastics, engineering and high performance polymers to conductive polymers and thermoplastic elastomers. Now operating as a freelance consultant, he makes regular contributions to the European plastics trade press, and works with leading plastics industry consultants."}
Flame Retardants for P...
$520.00
{"id":11242215876,"title":"Flame Retardants for Plastics","handle":"978-1-85957-385-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. P.W. Dufton \u003cbr\u003eISBN 978-1-85957-385-3 \u003cbr\u003e\u003cbr\u003epages 148\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics materials are used in large volumes in major applications such as buildings, vehicles and electronic appliances. In each of these areas, fire safety is critical. Hence flame retardants have been developed to improve the properties of plastics under the different conditions of processing and use. Flame retardants can act in a variety of ways: by raising the ignition temperature, reducing the rate of burning, reducing flame spread and reducing smoke generation. There are various test methods in use to quantify the effectiveness of different flame retardants and these are described here. \u003cbr\u003e\u003cbr\u003eThis report examines the new developments from a range of flame retardant producers, both in products and product ranges. Besides brominated materials, mineral fillers such as alumina trihydrate hold a large market share, alongside phosphorus compounds, antimony trioxide, borates and intumescent materials. The latter function by forming an insulating char on the surface of the material. Nanocomposites are being tested as flame retardant materials - these and other new types of additive are described \u003cbr\u003e\u003cbr\u003eEnvironmental legislation has affected this sector of the additive industry, particularly in the field of halogenated flame retardants. Brominated flame retardants are widely used, effective materials in many resin formulations. Many pressure groups would like to see compounds containing halogens banned. There are concerns about the potential for release and bioaccumulation of toxic combustion products. However, the evidence shows that where the use of these materials has been reduced, for example in television sets in Europe, the number of fires and consequently deaths has increased. The issues are discussed in this report. \u003cbr\u003e\u003cbr\u003eAt the same time, fire safety requirements for materials have increased. The uncertainty of the situation has lead to major suppliers of flame retardants branching out to secure their position in the market place. Thus larger companies have been purchasing suppliers of alternative types of retardants so that if legislation reduces their share of one sector of the market, they can reap the benefits from their alternative products. \u003cbr\u003e\u003cbr\u003eMarket data on flame retardants is limited, but the available figures from different sources are summarised here. For example, the market size for flame retardants in the USA is currently around half a million tones per year. There is extensive discussion of specific applications, i.e., automotive, building and construction, and electrical and electronic. \u003cbr\u003e\u003cbr\u003eThis technical market report highlights the current work on flame retardants by different companies and for different resins; it describes the situation of flux in the marketplace with the new changes to legislation and gives data on the market size and possible future changes.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology \u003cbr\u003e\u003cbr\u003e2. Summary and Conclusions\u003cbr\u003e2.1 Materials\u003cbr\u003e2.2 End User Sectors\u003cbr\u003e2.2.1 Automotive\u003cbr\u003e2.2.2 Electrical Appliances\u003cbr\u003e2.2.3 Business Machines and Consumer Electronics\u003cbr\u003e2.2.4 Building and Construction\u003cbr\u003e2.2.5 Furniture\u003cbr\u003e2.2.6 Trends\u003cbr\u003e2.3 General\u003cbr\u003e2.3.1 Testing and Environmental Factors\u003cbr\u003e2.3.2 Overview \u003cbr\u003e\u003cbr\u003e3. Flame Retardants\u003cbr\u003e3.1 General\u003cbr\u003e3.2 Organic Halogen Compounds\u003cbr\u003e3.3 Phosphorus Compounds\u003cbr\u003e3.4 Antimony Trioxide\u003cbr\u003e3.5 Alumina Trihydrate\u003cbr\u003e3.6 Magnesium Hydroxide\u003cbr\u003e3.7 Zinc Borate\u003cbr\u003e3.8 Intumescent Materials \u003cbr\u003e\u003cbr\u003e4 Products and their Markets\u003cbr\u003e4.1 Organic Halogen Containing Materials\u003cbr\u003e4.1.1 Bromine Compounds\u003cbr\u003e4.1.1.1 Dead Sea Bromine Group\u003cbr\u003e4.1.1.2 Great Lakes\u003cbr\u003e4.1.1.3 Albermarle\u003cbr\u003e4.1.1.4 Ferro Corporation\u003cbr\u003e4.1.1.5 Unitex Chemical Corporation\u003cbr\u003e4.1.2 Chlorine Compounds\u003cbr\u003e4.2 Phosphorus Containing Compounds\u003cbr\u003e4.2.1 Introduction\u003cbr\u003e4.2.2 Polymer Modification\u003cbr\u003e4.2.3 Red Phosphorus\u003cbr\u003e4.2.4 Ammonium Polyphosphate\u003cbr\u003e4.2.5 Phosphorus Oxynitride\u003cbr\u003e4.2.6 Albright \u0026amp; Wilson\u003cbr\u003e4.2.7 Albermarle Corporation\u003cbr\u003e4.2.8 Polymer Tailoring\u003cbr\u003e4.2.9 Akzo Nobel Chemicals\u003cbr\u003e4.2.10 Great Lakes Chemical Corporation\u003cbr\u003e4.2.11 Clariant\u003cbr\u003e4.2.12 Other New Developments\u003cbr\u003e4.3 Inorganic Minerals and Compounds\u003cbr\u003e4.3.1 Antimony Trioxide\u003cbr\u003e4.3.2 Alumina Trihydrate (ATH)\u003cbr\u003e4.3.3 Boron Compounds\u003cbr\u003e4.3.4 Magnesium Hydroxide\u003cbr\u003e4.3.4.1 Technology\u003cbr\u003e4.3.4.2 Commercial Products\u003cbr\u003e4.3.5 Other Inorganic Compounds\u003cbr\u003e4.3.5.1 Iron Compounds\u003cbr\u003e4.3.5.2 Molybdenum Compounds\u003cbr\u003e4.3.5.3 Tin Compounds\u003cbr\u003e4.3.5.4 Talc\u003cbr\u003e4.4 Other Materials\u003cbr\u003e4.4.1 Coatings\u003cbr\u003e4.4.2 Char Forming Polymers\u003cbr\u003e4.4.3 Potassium Compounds\u003cbr\u003e4.4.4 Melamine Compounds\u003cbr\u003e4.4.4.1 Melamine Polyphosphate\u003cbr\u003e4.4.4.2 Melamine Cyanurate (MC)\u003cbr\u003e4.4.5 Silicon Compounds\u003cbr\u003e4.4.6 Graphite\u003cbr\u003e4.4.7 Glass Flake\u003cbr\u003e4.4.8 Low Melting Glasses\u003cbr\u003e4.4.9 Polymer Blends\u003cbr\u003e4.4.10 PTFE\u003cbr\u003e4.4.11 Aluminium Flake\u003cbr\u003e4.4.12 Hindered Amine Light Stabilisers\u003cbr\u003e4.4.13 Nanocomposites\u003cbr\u003e4.4.14 TSWB\u003cbr\u003e4.4.15 Noflan \u003cbr\u003e\u003cbr\u003e5 Polymer Families and Their Flame Retardancy\u003cbr\u003e5.1 Polyolefins\u003cbr\u003e5.1.1 Polyethylene\u003cbr\u003e5.1.2 EVA\u003cbr\u003e5.1.3 Polypropylene\u003cbr\u003e5.2 PVC\u003cbr\u003e5.3 Styrenics\u003cbr\u003e5.4 Polyamides\u003cbr\u003e5.5 Modified PPO (m-PPO)\u003cbr\u003e5.6 Polyurethanes\u003cbr\u003e5.7 Thermosets\u003cbr\u003e5.7.1 Unsaturated Polyesters\u003cbr\u003e5.7.2 Epoxy Resins\u003cbr\u003e5.7.3 Phenolics\u003cbr\u003e5.7.4 PU Casting Systems\u003cbr\u003e5.7.5 Acrylic Resins\u003cbr\u003e5.7.6 Dicyclopentadiene\u003cbr\u003e5.8 Thermoplastic Polyesters\u003cbr\u003e5.9 Polycarbonates\u003cbr\u003e5.10 Other Thermoplastics\u003cbr\u003e\u003cbr\u003e6 Suppliers and the Consumption of FR Additives and Compounds\u003cbr\u003e6.1 General Comments\u003cbr\u003e6.2 Suppliers\u003cbr\u003e6.2.1 Brominated Flame Retardants\u003cbr\u003e6.2.2 Melamine\u003cbr\u003e6.2.3 Phosphorus Flame Retardants\u003cbr\u003e6.2.4 Mineral Filler Flame Retardants\u003cbr\u003e6.2.5 Borate Flame Retardants\u003cbr\u003e6.3 Consumption and Market Data\u003cbr\u003e6.4 Compounding for Flame Retardancy \u003cbr\u003e\u003cbr\u003e7 End-User Market Sectors\u003cbr\u003e7.1 Automotive\u003cbr\u003e7.2 Other Transport\u003cbr\u003e7.3 Electrical Components\u003cbr\u003e7.4 Electronics Products\u003cbr\u003e7.4.1 Telecommunications\u003cbr\u003e7.4.2 Consumer, Brown Goods\u003cbr\u003e7.5 Electrical Cables\u003cbr\u003e7.6 Building and Construction\u003cbr\u003e7.7 Upholstered Furniture and Textiles \u003cbr\u003e\u003cbr\u003e8 Fire Testing\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Specific Tests\u003cbr\u003e8.3 Comparing Test Results\u003cbr\u003e8.4 Tests for Building Materials\u003cbr\u003e8.5 Cable Testing\u003cbr\u003e8.6 Mattress Tests\u003cbr\u003e8.7 Clothing Tests \u003cbr\u003e\u003cbr\u003e9 Environmental and Regulatory Matters\u003cbr\u003e9.1 Fire Safety\u003cbr\u003e9.1.1 European Standards for Television Sets\u003cbr\u003e9.1.2 Brominated Flame Retardants\u003cbr\u003e9.2 Brominated Flame Retardants\u003cbr\u003e9.3 EU Directives\u003cbr\u003e9.4 Recycling Matters\u003cbr\u003e9.5 Postscript\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Peter Dufton has extensive experience in writing market reports, having worked with the Rapra Industry Analysis unit for many years.","published_at":"2017-06-22T21:13:27-04:00","created_at":"2017-06-22T21:13:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","antimony trioxide","automotive","book","borates","building","construction","electrical appliances","fire safety","fire testing","flame retardants","furniture","intumescent","market size","mineral fillers","nanocomposites","phosphorus compounds","plastic materials","report"],"price":52000,"price_min":52000,"price_max":52000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378355844,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Flame Retardants for Plastics","public_title":null,"options":["Default Title"],"price":52000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-385-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-385-3.jpg?v=1499726435"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-385-3.jpg?v=1499726435","options":["Title"],"media":[{"alt":null,"id":354807382109,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-385-3.jpg?v=1499726435"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-385-3.jpg?v=1499726435","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. P.W. Dufton \u003cbr\u003eISBN 978-1-85957-385-3 \u003cbr\u003e\u003cbr\u003epages 148\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastics materials are used in large volumes in major applications such as buildings, vehicles and electronic appliances. In each of these areas, fire safety is critical. Hence flame retardants have been developed to improve the properties of plastics under the different conditions of processing and use. Flame retardants can act in a variety of ways: by raising the ignition temperature, reducing the rate of burning, reducing flame spread and reducing smoke generation. There are various test methods in use to quantify the effectiveness of different flame retardants and these are described here. \u003cbr\u003e\u003cbr\u003eThis report examines the new developments from a range of flame retardant producers, both in products and product ranges. Besides brominated materials, mineral fillers such as alumina trihydrate hold a large market share, alongside phosphorus compounds, antimony trioxide, borates and intumescent materials. The latter function by forming an insulating char on the surface of the material. Nanocomposites are being tested as flame retardant materials - these and other new types of additive are described \u003cbr\u003e\u003cbr\u003eEnvironmental legislation has affected this sector of the additive industry, particularly in the field of halogenated flame retardants. Brominated flame retardants are widely used, effective materials in many resin formulations. Many pressure groups would like to see compounds containing halogens banned. There are concerns about the potential for release and bioaccumulation of toxic combustion products. However, the evidence shows that where the use of these materials has been reduced, for example in television sets in Europe, the number of fires and consequently deaths has increased. The issues are discussed in this report. \u003cbr\u003e\u003cbr\u003eAt the same time, fire safety requirements for materials have increased. The uncertainty of the situation has lead to major suppliers of flame retardants branching out to secure their position in the market place. Thus larger companies have been purchasing suppliers of alternative types of retardants so that if legislation reduces their share of one sector of the market, they can reap the benefits from their alternative products. \u003cbr\u003e\u003cbr\u003eMarket data on flame retardants is limited, but the available figures from different sources are summarised here. For example, the market size for flame retardants in the USA is currently around half a million tones per year. There is extensive discussion of specific applications, i.e., automotive, building and construction, and electrical and electronic. \u003cbr\u003e\u003cbr\u003eThis technical market report highlights the current work on flame retardants by different companies and for different resins; it describes the situation of flux in the marketplace with the new changes to legislation and gives data on the market size and possible future changes.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology \u003cbr\u003e\u003cbr\u003e2. Summary and Conclusions\u003cbr\u003e2.1 Materials\u003cbr\u003e2.2 End User Sectors\u003cbr\u003e2.2.1 Automotive\u003cbr\u003e2.2.2 Electrical Appliances\u003cbr\u003e2.2.3 Business Machines and Consumer Electronics\u003cbr\u003e2.2.4 Building and Construction\u003cbr\u003e2.2.5 Furniture\u003cbr\u003e2.2.6 Trends\u003cbr\u003e2.3 General\u003cbr\u003e2.3.1 Testing and Environmental Factors\u003cbr\u003e2.3.2 Overview \u003cbr\u003e\u003cbr\u003e3. Flame Retardants\u003cbr\u003e3.1 General\u003cbr\u003e3.2 Organic Halogen Compounds\u003cbr\u003e3.3 Phosphorus Compounds\u003cbr\u003e3.4 Antimony Trioxide\u003cbr\u003e3.5 Alumina Trihydrate\u003cbr\u003e3.6 Magnesium Hydroxide\u003cbr\u003e3.7 Zinc Borate\u003cbr\u003e3.8 Intumescent Materials \u003cbr\u003e\u003cbr\u003e4 Products and their Markets\u003cbr\u003e4.1 Organic Halogen Containing Materials\u003cbr\u003e4.1.1 Bromine Compounds\u003cbr\u003e4.1.1.1 Dead Sea Bromine Group\u003cbr\u003e4.1.1.2 Great Lakes\u003cbr\u003e4.1.1.3 Albermarle\u003cbr\u003e4.1.1.4 Ferro Corporation\u003cbr\u003e4.1.1.5 Unitex Chemical Corporation\u003cbr\u003e4.1.2 Chlorine Compounds\u003cbr\u003e4.2 Phosphorus Containing Compounds\u003cbr\u003e4.2.1 Introduction\u003cbr\u003e4.2.2 Polymer Modification\u003cbr\u003e4.2.3 Red Phosphorus\u003cbr\u003e4.2.4 Ammonium Polyphosphate\u003cbr\u003e4.2.5 Phosphorus Oxynitride\u003cbr\u003e4.2.6 Albright \u0026amp; Wilson\u003cbr\u003e4.2.7 Albermarle Corporation\u003cbr\u003e4.2.8 Polymer Tailoring\u003cbr\u003e4.2.9 Akzo Nobel Chemicals\u003cbr\u003e4.2.10 Great Lakes Chemical Corporation\u003cbr\u003e4.2.11 Clariant\u003cbr\u003e4.2.12 Other New Developments\u003cbr\u003e4.3 Inorganic Minerals and Compounds\u003cbr\u003e4.3.1 Antimony Trioxide\u003cbr\u003e4.3.2 Alumina Trihydrate (ATH)\u003cbr\u003e4.3.3 Boron Compounds\u003cbr\u003e4.3.4 Magnesium Hydroxide\u003cbr\u003e4.3.4.1 Technology\u003cbr\u003e4.3.4.2 Commercial Products\u003cbr\u003e4.3.5 Other Inorganic Compounds\u003cbr\u003e4.3.5.1 Iron Compounds\u003cbr\u003e4.3.5.2 Molybdenum Compounds\u003cbr\u003e4.3.5.3 Tin Compounds\u003cbr\u003e4.3.5.4 Talc\u003cbr\u003e4.4 Other Materials\u003cbr\u003e4.4.1 Coatings\u003cbr\u003e4.4.2 Char Forming Polymers\u003cbr\u003e4.4.3 Potassium Compounds\u003cbr\u003e4.4.4 Melamine Compounds\u003cbr\u003e4.4.4.1 Melamine Polyphosphate\u003cbr\u003e4.4.4.2 Melamine Cyanurate (MC)\u003cbr\u003e4.4.5 Silicon Compounds\u003cbr\u003e4.4.6 Graphite\u003cbr\u003e4.4.7 Glass Flake\u003cbr\u003e4.4.8 Low Melting Glasses\u003cbr\u003e4.4.9 Polymer Blends\u003cbr\u003e4.4.10 PTFE\u003cbr\u003e4.4.11 Aluminium Flake\u003cbr\u003e4.4.12 Hindered Amine Light Stabilisers\u003cbr\u003e4.4.13 Nanocomposites\u003cbr\u003e4.4.14 TSWB\u003cbr\u003e4.4.15 Noflan \u003cbr\u003e\u003cbr\u003e5 Polymer Families and Their Flame Retardancy\u003cbr\u003e5.1 Polyolefins\u003cbr\u003e5.1.1 Polyethylene\u003cbr\u003e5.1.2 EVA\u003cbr\u003e5.1.3 Polypropylene\u003cbr\u003e5.2 PVC\u003cbr\u003e5.3 Styrenics\u003cbr\u003e5.4 Polyamides\u003cbr\u003e5.5 Modified PPO (m-PPO)\u003cbr\u003e5.6 Polyurethanes\u003cbr\u003e5.7 Thermosets\u003cbr\u003e5.7.1 Unsaturated Polyesters\u003cbr\u003e5.7.2 Epoxy Resins\u003cbr\u003e5.7.3 Phenolics\u003cbr\u003e5.7.4 PU Casting Systems\u003cbr\u003e5.7.5 Acrylic Resins\u003cbr\u003e5.7.6 Dicyclopentadiene\u003cbr\u003e5.8 Thermoplastic Polyesters\u003cbr\u003e5.9 Polycarbonates\u003cbr\u003e5.10 Other Thermoplastics\u003cbr\u003e\u003cbr\u003e6 Suppliers and the Consumption of FR Additives and Compounds\u003cbr\u003e6.1 General Comments\u003cbr\u003e6.2 Suppliers\u003cbr\u003e6.2.1 Brominated Flame Retardants\u003cbr\u003e6.2.2 Melamine\u003cbr\u003e6.2.3 Phosphorus Flame Retardants\u003cbr\u003e6.2.4 Mineral Filler Flame Retardants\u003cbr\u003e6.2.5 Borate Flame Retardants\u003cbr\u003e6.3 Consumption and Market Data\u003cbr\u003e6.4 Compounding for Flame Retardancy \u003cbr\u003e\u003cbr\u003e7 End-User Market Sectors\u003cbr\u003e7.1 Automotive\u003cbr\u003e7.2 Other Transport\u003cbr\u003e7.3 Electrical Components\u003cbr\u003e7.4 Electronics Products\u003cbr\u003e7.4.1 Telecommunications\u003cbr\u003e7.4.2 Consumer, Brown Goods\u003cbr\u003e7.5 Electrical Cables\u003cbr\u003e7.6 Building and Construction\u003cbr\u003e7.7 Upholstered Furniture and Textiles \u003cbr\u003e\u003cbr\u003e8 Fire Testing\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Specific Tests\u003cbr\u003e8.3 Comparing Test Results\u003cbr\u003e8.4 Tests for Building Materials\u003cbr\u003e8.5 Cable Testing\u003cbr\u003e8.6 Mattress Tests\u003cbr\u003e8.7 Clothing Tests \u003cbr\u003e\u003cbr\u003e9 Environmental and Regulatory Matters\u003cbr\u003e9.1 Fire Safety\u003cbr\u003e9.1.1 European Standards for Television Sets\u003cbr\u003e9.1.2 Brominated Flame Retardants\u003cbr\u003e9.2 Brominated Flame Retardants\u003cbr\u003e9.3 EU Directives\u003cbr\u003e9.4 Recycling Matters\u003cbr\u003e9.5 Postscript\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Peter Dufton has extensive experience in writing market reports, having worked with the Rapra Industry Analysis unit for many years."}
Functional Additives f...
$180.00
{"id":11242233220,"title":"Functional Additives for the Plastics Industry","handle":"978-1-85957-145-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.W. Dufton \u003cbr\u003eISBN 978-1-85957-145-3 \u003cbr\u003e\u003cbr\u003e200 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report covers all the major functional additives used in plastics and will be of interest to additive and polymer suppliers, converters, end-users and technical libraries. Included are a technical review of the additives and the new materials available; identification of the factors which could affect their use in future, and coverage of the current situation for their supply and estimates of the demand in Europe for such materials. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAdditives:\u003c\/strong\u003e antimicrobials, antioxidants, antistatic agents, blowing agents, curing agents, compatibilizers, coupling agents, heat stabilizers, lubricants, UV stabilizers, plasticizers, fillers, colorants, flame retardants, modifiers. \u003cbr\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction \u003cbr\u003eSummary and conclusions \u003cbr\u003eTechnology\u003c\/p\u003e\n\u003cli\u003eAntimicrobial agents\u003c\/li\u003e\n\u003cli\u003eAntioxidants\u003c\/li\u003e\n\u003cli\u003eAntistatic agents\u003c\/li\u003e\n\u003cli\u003eBlowing agents\u003c\/li\u003e\n\u003cli\u003eCuring agents\u003c\/li\u003e\n\u003cli\u003eCompatibilisers and coupling agents\u003c\/li\u003e\n\u003cli\u003eHeat stabilisers\u003c\/li\u003e\n\u003cli\u003eLubricants\u003c\/li\u003e\n\u003cli\u003eUV stabilisers\u003c\/li\u003e\n\u003cli\u003ePlasticisers\u003c\/li\u003e\n\u003cli\u003eFillers\u003c\/li\u003e\n\u003cli\u003eColourants\u003c\/li\u003e\n\u003cli\u003eFlame retardants\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003eModifiers\u003c\/p\u003e\n\u003cp\u003eProducts and markets(as above) \u003cbr\u003eSupply and demand(as above\u003cstrong\u003e) \u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003ePlastics view\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePolyethylene\u003c\/li\u003e\n\u003cli\u003ePolypropylene\u003c\/li\u003e\n\u003cli\u003ePolystyrene and other styrenics\u003c\/li\u003e\n\u003cli\u003ePVC\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003eOther polymers\u003c\/p\u003e\n\u003cp\u003eEnvironmental issues – legislation and regulations \u003cbr\u003eAppendix\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003eList of additive supplier details\u003c\/li\u003e","published_at":"2017-06-22T21:14:22-04:00","created_at":"2017-06-22T21:14:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","antimicrobials","antioxidants","antistatic agents","blowing agents","book","colorants","compatibilizers","coupling agents","curing agents","fillers","flame retardants","heat stabilizers","lubricants","modifiers","plasticizers","report","UV stabilizers"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413508,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Additives for the Plastics Industry","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-145-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.W. Dufton \u003cbr\u003eISBN 978-1-85957-145-3 \u003cbr\u003e\u003cbr\u003e200 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report covers all the major functional additives used in plastics and will be of interest to additive and polymer suppliers, converters, end-users and technical libraries. Included are a technical review of the additives and the new materials available; identification of the factors which could affect their use in future, and coverage of the current situation for their supply and estimates of the demand in Europe for such materials. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAdditives:\u003c\/strong\u003e antimicrobials, antioxidants, antistatic agents, blowing agents, curing agents, compatibilizers, coupling agents, heat stabilizers, lubricants, UV stabilizers, plasticizers, fillers, colorants, flame retardants, modifiers. \u003cbr\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction \u003cbr\u003eSummary and conclusions \u003cbr\u003eTechnology\u003c\/p\u003e\n\u003cli\u003eAntimicrobial agents\u003c\/li\u003e\n\u003cli\u003eAntioxidants\u003c\/li\u003e\n\u003cli\u003eAntistatic agents\u003c\/li\u003e\n\u003cli\u003eBlowing agents\u003c\/li\u003e\n\u003cli\u003eCuring agents\u003c\/li\u003e\n\u003cli\u003eCompatibilisers and coupling agents\u003c\/li\u003e\n\u003cli\u003eHeat stabilisers\u003c\/li\u003e\n\u003cli\u003eLubricants\u003c\/li\u003e\n\u003cli\u003eUV stabilisers\u003c\/li\u003e\n\u003cli\u003ePlasticisers\u003c\/li\u003e\n\u003cli\u003eFillers\u003c\/li\u003e\n\u003cli\u003eColourants\u003c\/li\u003e\n\u003cli\u003eFlame retardants\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003eModifiers\u003c\/p\u003e\n\u003cp\u003eProducts and markets(as above) \u003cbr\u003eSupply and demand(as above\u003cstrong\u003e) \u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003ePlastics view\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePolyethylene\u003c\/li\u003e\n\u003cli\u003ePolypropylene\u003c\/li\u003e\n\u003cli\u003ePolystyrene and other styrenics\u003c\/li\u003e\n\u003cli\u003ePVC\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003eOther polymers\u003c\/p\u003e\n\u003cp\u003eEnvironmental issues – legislation and regulations \u003cbr\u003eAppendix\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003eList of additive supplier details\u003c\/li\u003e"}
Natural and Synthetic ...
$350.00
{"id":11242211844,"title":"Natural and Synthetic Latex Polymers","handle":"978-1-85957-360-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Richard H. D. Beswick of bms AG and David J. Dunn of bms North America \u003cbr\u003eISBN 978-1-85957-360-0 \u003cbr\u003e\u003cbr\u003eRapra Market Report\u003cbr\u003ePages 134\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis latex market report gives a comprehensive introduction to both natural and synthetic polymers in one volume. This is a “hot” subject because of the tremendous changes in the market. These have arisen from the increased use of disposable gloves in the medical industry and the search for elastomers which do not promote allergic reactions. Also, latex products are being used extensively as alternatives to solvent-based systems such as adhesives, sealants, and coatings, because of global legislation concerning the use of volatile and flammable solvents. \u003cbr\u003e\u003cbr\u003eThe range of applications of latex is extensive. Polymer latices are used in paints and coatings, textiles, non-wovens, packaging, construction (mainly in adhesives and binders), furniture, packaging, paper (e.g., coatings), medical equipment, personal protective equipment, carpet backing, adhesives, polish, belts, seals, etc. \u003cbr\u003e\u003cbr\u003eThe global annual consumption of natural rubber latex is running at just over 7 million tons. Natural rubber latex is particularly widely used in medical gloves, thread and condom applications. Gloves are by far the largest market sector, consuming around 60% by weight. The market is being driven by the advent of AIDS and other pandemic diseases, and the need to protect healthcare workers from infection. Production quality must be high to eliminate pinholes and provide an adequate barrier. This is a very competitive market and much of the production industry has been moved to Asia to reduce costs. This, in turn, has to lead to new standards being introduced, such as the Standard Malaysian Gloves (SMG). \u003cbr\u003e\u003cbr\u003eNatural rubber latex is discussed in depth in this report from cultivation practices to manufacturing methods and new developments. Allergic reactions have been reported to residual proteins in latex. The nature, incidence and potential market impact of this are discussed. Attempts are being made to replace natural rubber with synthetics, but currently, this is not generally cost effective. The key properties of natural latex are described in the report. \u003cbr\u003e\u003cbr\u003eA wide range of synthetic latices is available including styrene-butadiene copolymers (SBR), acrylonitrile-butadiene copolymers, polychloroprene, acrylic polymers, vinyl acetate polymers, vinyl acetate-ethylene polymers, vinyl chloride polymers and copolymers, polybutadiene and polyisoprene. SBR is the most commonly used synthetic latex – around 2.4 million tons are consumed globally each year. This report describes production methods, applications, and markets. \u003cbr\u003e\u003cbr\u003eThe worldwide structure of the latex industry is outlined here. The natural rubber industry in Asian countries, North America and Europe are described. Asia is the key area for production. \u003cbr\u003e\u003cbr\u003eThe latex market is spread across the globe, making it less sensitive to regional fluctuations and economic cycles. Application areas are growing with the requirements for medical gloves and condoms, and the use of latices as substitutes for solvent-based systems. \u003cbr\u003e\u003cbr\u003eThis Rapra Natural and Synthetic Latex Polymers Market Report provide an excellent, clear overview of the whole of the latex industry from production and manufacturing methods to market applications, new technology and potential for growth.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 The World of Latex\u003cbr\u003e1.2 Scope of the Report\u003cbr\u003e1.3 Geographical Focus\u003cbr\u003e1.4 Methodology\u003cbr\u003e1.5 Authorship\u003cbr\u003e1.6 Units \u003cbr\u003e\u003cbr\u003e2 Executive Summary\u003cbr\u003e2.1 Market Size\u003cbr\u003e2.2 Natural Rubber Latex\u003cbr\u003e2.3 Synthetic Latex \u003cbr\u003e\u003cbr\u003e3 Natural Latex\u003cbr\u003e3.1 Natural Rubber Latex (NRL)\u003cbr\u003e3.2 History of Natural Rubber\u003cbr\u003e3.3 Developments in Natural Rubber Production\u003cbr\u003e3.3.1 Plantation Productivity\u003cbr\u003e3.3.2 Molecular Engineering\u003cbr\u003e3.3.3 Diseases\u003cbr\u003e3.4 Production of Natural Rubber Latex\u003cbr\u003e3.4.1 Agronomy\u003cbr\u003e3.4.2 Ecology\u003cbr\u003e3.4.3 Composition\u003cbr\u003e3.4.4 Harvesting\u003cbr\u003e3.4.5 Preservation\u003cbr\u003e3.4.6 Concentration\u003cbr\u003e3.4.7 Latex Storage\u003cbr\u003e3.4.8 Commercial Forms of Latex\u003cbr\u003e3.4.9 Vulcanisation\u003cbr\u003e3.5 Properties of Natural Rubber Latex\u003cbr\u003e3.6 Supply of Natural Latex\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 Synthetic Latex\u003cbr\u003e4.1 Latex Types\u003cbr\u003e4.1.1 Styrene-Butadiene Rubber (SBR)\u003cbr\u003e4.1.2 Acrylonitrile-Butadiene Copolymers (NBR Latex)\u003cbr\u003e4.1.3 Polychloroprene (CR)\u003cbr\u003e4.1.4 Vinyl Ester Polymers\u003cbr\u003e4.1.5 Acrylic Polymers, Including Vinyl Acrylics and Styrene Acrylics\u003cbr\u003e4.1.6 Ethylene-Vinyl Chloride Copolymers (EVCL)\u003cbr\u003e4.1.7 Polybutadiene\u003cbr\u003e4.1.8 Synthetic Polyisoprene (IR)\u003cbr\u003e4.1.9 Other Speciality Latices\u003cbr\u003e4.1.9.1 Polyvinylidene Chloride (PVDC)\u003cbr\u003e4.1.9.2 Polyacrylonitrile (PAN)\u003cbr\u003e4.1.9.3 Polyvinyl Pyridine\u003cbr\u003e4.1.9.4 Butyl Rubber\u003cbr\u003e4.1.9.5 Fluoropolymers\u003cbr\u003e4.1.9.6 Chlorosulfonated Polyethylene Latex (CSM Latex)\u003cbr\u003e4.2 Compounding and Processing of Rubber Latex\u003cbr\u003e4.2.1 Compounding\u003cbr\u003e4.2.2 Foaming\u003cbr\u003e4.2.3 Dip Moulding\u003cbr\u003e4.2.3.1 Forms\/Mandrels\u003cbr\u003e4.2.3.2 Coagulant Dip\u003cbr\u003e4.2.3.3 Dipping\u003cbr\u003e4.2.3.4 Drying and Vulcanising\u003cbr\u003e4.2.3.5 Beading\u003cbr\u003e4.2.3.6 Leaching\u003cbr\u003e4.2.3.7 Stripping\u003cbr\u003e4.2.3.8 Production Machinery\u003cbr\u003e4.2.4 Spraying\u003cbr\u003e4.2.5 Sheeting\u003cbr\u003e4.2.6 Extrusion\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Applications for Latex\u003cbr\u003e5.1 Medical and Hygiene\u003cbr\u003e5.1.1 Medical Gloves\u003cbr\u003e5.1.2 Condoms\u003cbr\u003e5.1.3 Other Medical and Hygiene Applications\u003cbr\u003e5.2 Building and Construction\u003cbr\u003e5.2.1 Concrete Modification\u003cbr\u003e5.2.2 Asphalt Modification\u003cbr\u003e5.2.3 Adhesives and Sealants\u003cbr\u003e5.3 Textiles and Non-Woven Fabrics\u003cbr\u003e5.3.1 Textiles\u003cbr\u003e5.3.2 Non-Woven Fabrics\u003cbr\u003e5.3.3 Important Characteristics of Latices for Textile and Non-Woven Applications\u003cbr\u003e5.3.4 Types of Latex Binders\u003cbr\u003e5.3.5 Manufacturing of Non-Wovens\u003cbr\u003e5.3.5.1 Saturation Bonding\u003cbr\u003e5.3.5.2 Foam Bonding\u003cbr\u003e5.3.5.3 Spray Bonding\u003cbr\u003e5.3.5.4 Print Bonding\u003cbr\u003e5.3.6 Applications for Latex Bonded Non-Wovens\u003cbr\u003e5.3.7 Developments in Non-Wovens\u003cbr\u003e5.4 Paint and Coatings\u003cbr\u003e5.5 Paper\u003cbr\u003e5.6 Printing Inks\u003cbr\u003e5.7 Furniture\u003cbr\u003e5.7.1 Foam\u003cbr\u003e5.7.2 Adhesives\u003cbr\u003e5.8 Carpets\u003cbr\u003e5.9 Packaging\u003cbr\u003e5.10 Industrial\u003cbr\u003e5.10.1 Adhering Rubber to Fabrics\u003cbr\u003e5.10.2 Industrial Gloves\u003cbr\u003e5.10.2.1 Clean Room Gloves\u003cbr\u003e5.10.2.2 Food Contact Gloves\u003cbr\u003e5.10.2.3 Industrial Gloves\u003cbr\u003e5.10.3 Other Industrial Applications\u003cbr\u003e5.11 Consumer Products\u003cbr\u003e5.12 Adhesives and Sealants\u003cbr\u003e5.13 Floor Polishes\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 New Developments in Latex\u003cbr\u003e6.1 Natural Latex\u003cbr\u003e6.1.1 Latex Stimulants\u003cbr\u003e6.1.2 Alternative Sources of Natural Rubber\u003cbr\u003e6.1.3 Solutions to the Natural Rubber Allergy Issue\u003cbr\u003e6.1.3.1 Leaching\u003cbr\u003e6.1.3.2 Chlorination\u003cbr\u003e6.1.3.3 Proteolytic Enzymes\u003cbr\u003e6.1.3.4 Fumed Silica\u003cbr\u003e6.1.3.5 Other Technologies\u003cbr\u003e6.1.3.6 Commercially Available Low Protein Latices\u003cbr\u003e6.1.3.7 Glove Powder Evaluation\u003cbr\u003e6.1.3.8 Polymer Coating\u003cbr\u003e6.1.4 Other Developments\u003cbr\u003e6.2 Synthetic Latex\u003cbr\u003e6.2.1 Heterogeneous Emulsion Particles\u003cbr\u003e6.2.2 Gradient Polymer Morphologies\u003cbr\u003e6.2.3 Controlled Free Radical Polymerisation\u003cbr\u003e6.2.4 New Cure Methods\u003cbr\u003e6.2.5 Low VOC Latex\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Consumption by Global Region and Material Type\u003cbr\u003e7.1 Global Demand for Latex\u003cbr\u003e7.2 Regional Demand For Latex\u003cbr\u003e7.3 Demand by Material Type\u003cbr\u003e7.4 Demand by Market Segment\u003cbr\u003eReference \u003cbr\u003e\u003cbr\u003e8 Natural Rubber Latex Industry Structure\u003cbr\u003e8.1 Plantations and Harvesting of Natural Rubber\u003cbr\u003e8.2 Natural Rubber Latex Processing\u003cbr\u003e8.3 Natural Rubber Latex Products Manufacturing\u003cbr\u003e8.4 Natural Rubber Latex Marketing\u003cbr\u003e8.5 National and Regional Rubber Industry Profiles\u003cbr\u003e8.5.1 Malaysia\u003cbr\u003e8.5.1.1 Rubber Products Industry\u003cbr\u003e8.5.1.2 Technology Trends\u003cbr\u003e8.5.1.3 Standard Malaysian Gloves (SMG)\u003cbr\u003e8.5.2 Thai Rubber Latex Industry\u003cbr\u003e8.5.3 Indonesian Rubber Latex Industry\u003cbr\u003e8.5.4 Vietnamese Rubber Latex Industry\u003cbr\u003e8.5.5 Indian Rubber Latex Industry\u003cbr\u003e8.5.6 Chinese Rubber Latex Industry\u003cbr\u003e8.5.7 North American Rubber Latex Industry\u003cbr\u003e8.5.8 European Rubber Latex Industry\u003cbr\u003e8.6 Trade in Natural Rubber Latex\u003cbr\u003e8.7 Prices of Natural Rubber Latex\u003cbr\u003e8.8 INRA and ITRC\u003cbr\u003e8.9 Examples of Latex Product Manufacturers\u003cbr\u003e8.9.1 Malaysian Manufacturers of Latex Products\u003cbr\u003e8.9.2 Thai Manufacturers of Latex Products\u003cbr\u003e8.9.3 Chinese Manufacturers of Latex Products\u003cbr\u003e8.9.4 Indian Manufacturers of Latex Products\u003cbr\u003e8.9.5 US Manufacturers of Latex Products\u003cbr\u003e8.9.6 European Manufacturers of Latex Products\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Synthetic Latex Industry Structure\u003cbr\u003e9.1 Leading Manufacturers\u003cbr\u003e9.1.1 Competitive Strategies\u003cbr\u003e9.2 Mergers and Acquisition\u003cbr\u003e9.3 Manufacturers of Specific Latex Types\u003cbr\u003e9.4 Prices of Synthetic Latex \u003cbr\u003e\u003cbr\u003e10 Regulations and Environmental Issues\u003cbr\u003e10.1 Health and Safety\u003cbr\u003e10.1.1 Emissions from Bonded Carpets\u003cbr\u003e10.1.2 Lowering Volatile Organic Component (VOC) Levels\u003cbr\u003e10.1.3 Residual Monomers in Synthetic Latices\u003cbr\u003e10.1.4 Issues Relating to Additives in Rubber Latex\u003cbr\u003e10.1.5 Formaldehyde\u003cbr\u003e10.1.6 The Natural Latex Allergy Issue\u003cbr\u003e10.2 Environmental Issues - Recycling and Waste Disposal\u003cbr\u003e10.2.1 Recycling of Carpets\u003cbr\u003e10.2.2 Re-Pulpability of Paper Coatings and Adhesives\u003cbr\u003e10.2.3 Heavy Metal Effluents from Latex \u003cbr\u003e\u003cbr\u003e11 Influences and Trends in Latices to 2005\u003cbr\u003e11.1 Future Prospects for the Latex Industry\u003cbr\u003e11.1.1 Market Drivers\u003cbr\u003e11.1.2 Market Restraints\u003cbr\u003e11.2 International Forecast 2003-2005 by Region\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 Companies and Associations\u003cbr\u003e12.1 International and National Associations and Organisations\u003cbr\u003e12.2 Media \u003cbr\u003eGlossary of Terms\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nbms is a market research and consultancy organisation which aims to provide actionable marketing information. Richard Beswick has 22 years of experience in industrial marketing and market research. \u003cbr\u003e\u003cbr\u003eDr. Dave Dunn is a senior associate at bms North America with training as a chemist and a background in both industrial and academic circles. He has been a Vice President of Loctite Corporation, a specialty adhesive and sealant Company. The authors are based in Europe and North America respectively, giving them an ideal base for this report. \u003cbr\u003e\u003cbr\u003eThe authors have organised the Latex 2001 and Latex 2002 conferences for Rapra and given presentations on the current state of the latex industry.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:14-04:00","created_at":"2017-06-22T21:13:14-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","acrylic","acrylonitrile-butadiene copolymers","book","CR","ehylene-vnyl chloride","EVCL","market size","natural rubber latex","NBR","plychloroprene","polybutadiene","polymer","polymers","report","SBR","styrene-butadiene","synthetic latex","vnyl ester"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378338052,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Natural and Synthetic Latex Polymers","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-360-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-360-0.jpg?v=1499951844"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-360-0.jpg?v=1499951844","options":["Title"],"media":[{"alt":null,"id":358525829213,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-360-0.jpg?v=1499951844"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-360-0.jpg?v=1499951844","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Richard H. D. Beswick of bms AG and David J. Dunn of bms North America \u003cbr\u003eISBN 978-1-85957-360-0 \u003cbr\u003e\u003cbr\u003eRapra Market Report\u003cbr\u003ePages 134\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis latex market report gives a comprehensive introduction to both natural and synthetic polymers in one volume. This is a “hot” subject because of the tremendous changes in the market. These have arisen from the increased use of disposable gloves in the medical industry and the search for elastomers which do not promote allergic reactions. Also, latex products are being used extensively as alternatives to solvent-based systems such as adhesives, sealants, and coatings, because of global legislation concerning the use of volatile and flammable solvents. \u003cbr\u003e\u003cbr\u003eThe range of applications of latex is extensive. Polymer latices are used in paints and coatings, textiles, non-wovens, packaging, construction (mainly in adhesives and binders), furniture, packaging, paper (e.g., coatings), medical equipment, personal protective equipment, carpet backing, adhesives, polish, belts, seals, etc. \u003cbr\u003e\u003cbr\u003eThe global annual consumption of natural rubber latex is running at just over 7 million tons. Natural rubber latex is particularly widely used in medical gloves, thread and condom applications. Gloves are by far the largest market sector, consuming around 60% by weight. The market is being driven by the advent of AIDS and other pandemic diseases, and the need to protect healthcare workers from infection. Production quality must be high to eliminate pinholes and provide an adequate barrier. This is a very competitive market and much of the production industry has been moved to Asia to reduce costs. This, in turn, has to lead to new standards being introduced, such as the Standard Malaysian Gloves (SMG). \u003cbr\u003e\u003cbr\u003eNatural rubber latex is discussed in depth in this report from cultivation practices to manufacturing methods and new developments. Allergic reactions have been reported to residual proteins in latex. The nature, incidence and potential market impact of this are discussed. Attempts are being made to replace natural rubber with synthetics, but currently, this is not generally cost effective. The key properties of natural latex are described in the report. \u003cbr\u003e\u003cbr\u003eA wide range of synthetic latices is available including styrene-butadiene copolymers (SBR), acrylonitrile-butadiene copolymers, polychloroprene, acrylic polymers, vinyl acetate polymers, vinyl acetate-ethylene polymers, vinyl chloride polymers and copolymers, polybutadiene and polyisoprene. SBR is the most commonly used synthetic latex – around 2.4 million tons are consumed globally each year. This report describes production methods, applications, and markets. \u003cbr\u003e\u003cbr\u003eThe worldwide structure of the latex industry is outlined here. The natural rubber industry in Asian countries, North America and Europe are described. Asia is the key area for production. \u003cbr\u003e\u003cbr\u003eThe latex market is spread across the globe, making it less sensitive to regional fluctuations and economic cycles. Application areas are growing with the requirements for medical gloves and condoms, and the use of latices as substitutes for solvent-based systems. \u003cbr\u003e\u003cbr\u003eThis Rapra Natural and Synthetic Latex Polymers Market Report provide an excellent, clear overview of the whole of the latex industry from production and manufacturing methods to market applications, new technology and potential for growth.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 The World of Latex\u003cbr\u003e1.2 Scope of the Report\u003cbr\u003e1.3 Geographical Focus\u003cbr\u003e1.4 Methodology\u003cbr\u003e1.5 Authorship\u003cbr\u003e1.6 Units \u003cbr\u003e\u003cbr\u003e2 Executive Summary\u003cbr\u003e2.1 Market Size\u003cbr\u003e2.2 Natural Rubber Latex\u003cbr\u003e2.3 Synthetic Latex \u003cbr\u003e\u003cbr\u003e3 Natural Latex\u003cbr\u003e3.1 Natural Rubber Latex (NRL)\u003cbr\u003e3.2 History of Natural Rubber\u003cbr\u003e3.3 Developments in Natural Rubber Production\u003cbr\u003e3.3.1 Plantation Productivity\u003cbr\u003e3.3.2 Molecular Engineering\u003cbr\u003e3.3.3 Diseases\u003cbr\u003e3.4 Production of Natural Rubber Latex\u003cbr\u003e3.4.1 Agronomy\u003cbr\u003e3.4.2 Ecology\u003cbr\u003e3.4.3 Composition\u003cbr\u003e3.4.4 Harvesting\u003cbr\u003e3.4.5 Preservation\u003cbr\u003e3.4.6 Concentration\u003cbr\u003e3.4.7 Latex Storage\u003cbr\u003e3.4.8 Commercial Forms of Latex\u003cbr\u003e3.4.9 Vulcanisation\u003cbr\u003e3.5 Properties of Natural Rubber Latex\u003cbr\u003e3.6 Supply of Natural Latex\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 Synthetic Latex\u003cbr\u003e4.1 Latex Types\u003cbr\u003e4.1.1 Styrene-Butadiene Rubber (SBR)\u003cbr\u003e4.1.2 Acrylonitrile-Butadiene Copolymers (NBR Latex)\u003cbr\u003e4.1.3 Polychloroprene (CR)\u003cbr\u003e4.1.4 Vinyl Ester Polymers\u003cbr\u003e4.1.5 Acrylic Polymers, Including Vinyl Acrylics and Styrene Acrylics\u003cbr\u003e4.1.6 Ethylene-Vinyl Chloride Copolymers (EVCL)\u003cbr\u003e4.1.7 Polybutadiene\u003cbr\u003e4.1.8 Synthetic Polyisoprene (IR)\u003cbr\u003e4.1.9 Other Speciality Latices\u003cbr\u003e4.1.9.1 Polyvinylidene Chloride (PVDC)\u003cbr\u003e4.1.9.2 Polyacrylonitrile (PAN)\u003cbr\u003e4.1.9.3 Polyvinyl Pyridine\u003cbr\u003e4.1.9.4 Butyl Rubber\u003cbr\u003e4.1.9.5 Fluoropolymers\u003cbr\u003e4.1.9.6 Chlorosulfonated Polyethylene Latex (CSM Latex)\u003cbr\u003e4.2 Compounding and Processing of Rubber Latex\u003cbr\u003e4.2.1 Compounding\u003cbr\u003e4.2.2 Foaming\u003cbr\u003e4.2.3 Dip Moulding\u003cbr\u003e4.2.3.1 Forms\/Mandrels\u003cbr\u003e4.2.3.2 Coagulant Dip\u003cbr\u003e4.2.3.3 Dipping\u003cbr\u003e4.2.3.4 Drying and Vulcanising\u003cbr\u003e4.2.3.5 Beading\u003cbr\u003e4.2.3.6 Leaching\u003cbr\u003e4.2.3.7 Stripping\u003cbr\u003e4.2.3.8 Production Machinery\u003cbr\u003e4.2.4 Spraying\u003cbr\u003e4.2.5 Sheeting\u003cbr\u003e4.2.6 Extrusion\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Applications for Latex\u003cbr\u003e5.1 Medical and Hygiene\u003cbr\u003e5.1.1 Medical Gloves\u003cbr\u003e5.1.2 Condoms\u003cbr\u003e5.1.3 Other Medical and Hygiene Applications\u003cbr\u003e5.2 Building and Construction\u003cbr\u003e5.2.1 Concrete Modification\u003cbr\u003e5.2.2 Asphalt Modification\u003cbr\u003e5.2.3 Adhesives and Sealants\u003cbr\u003e5.3 Textiles and Non-Woven Fabrics\u003cbr\u003e5.3.1 Textiles\u003cbr\u003e5.3.2 Non-Woven Fabrics\u003cbr\u003e5.3.3 Important Characteristics of Latices for Textile and Non-Woven Applications\u003cbr\u003e5.3.4 Types of Latex Binders\u003cbr\u003e5.3.5 Manufacturing of Non-Wovens\u003cbr\u003e5.3.5.1 Saturation Bonding\u003cbr\u003e5.3.5.2 Foam Bonding\u003cbr\u003e5.3.5.3 Spray Bonding\u003cbr\u003e5.3.5.4 Print Bonding\u003cbr\u003e5.3.6 Applications for Latex Bonded Non-Wovens\u003cbr\u003e5.3.7 Developments in Non-Wovens\u003cbr\u003e5.4 Paint and Coatings\u003cbr\u003e5.5 Paper\u003cbr\u003e5.6 Printing Inks\u003cbr\u003e5.7 Furniture\u003cbr\u003e5.7.1 Foam\u003cbr\u003e5.7.2 Adhesives\u003cbr\u003e5.8 Carpets\u003cbr\u003e5.9 Packaging\u003cbr\u003e5.10 Industrial\u003cbr\u003e5.10.1 Adhering Rubber to Fabrics\u003cbr\u003e5.10.2 Industrial Gloves\u003cbr\u003e5.10.2.1 Clean Room Gloves\u003cbr\u003e5.10.2.2 Food Contact Gloves\u003cbr\u003e5.10.2.3 Industrial Gloves\u003cbr\u003e5.10.3 Other Industrial Applications\u003cbr\u003e5.11 Consumer Products\u003cbr\u003e5.12 Adhesives and Sealants\u003cbr\u003e5.13 Floor Polishes\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 New Developments in Latex\u003cbr\u003e6.1 Natural Latex\u003cbr\u003e6.1.1 Latex Stimulants\u003cbr\u003e6.1.2 Alternative Sources of Natural Rubber\u003cbr\u003e6.1.3 Solutions to the Natural Rubber Allergy Issue\u003cbr\u003e6.1.3.1 Leaching\u003cbr\u003e6.1.3.2 Chlorination\u003cbr\u003e6.1.3.3 Proteolytic Enzymes\u003cbr\u003e6.1.3.4 Fumed Silica\u003cbr\u003e6.1.3.5 Other Technologies\u003cbr\u003e6.1.3.6 Commercially Available Low Protein Latices\u003cbr\u003e6.1.3.7 Glove Powder Evaluation\u003cbr\u003e6.1.3.8 Polymer Coating\u003cbr\u003e6.1.4 Other Developments\u003cbr\u003e6.2 Synthetic Latex\u003cbr\u003e6.2.1 Heterogeneous Emulsion Particles\u003cbr\u003e6.2.2 Gradient Polymer Morphologies\u003cbr\u003e6.2.3 Controlled Free Radical Polymerisation\u003cbr\u003e6.2.4 New Cure Methods\u003cbr\u003e6.2.5 Low VOC Latex\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Consumption by Global Region and Material Type\u003cbr\u003e7.1 Global Demand for Latex\u003cbr\u003e7.2 Regional Demand For Latex\u003cbr\u003e7.3 Demand by Material Type\u003cbr\u003e7.4 Demand by Market Segment\u003cbr\u003eReference \u003cbr\u003e\u003cbr\u003e8 Natural Rubber Latex Industry Structure\u003cbr\u003e8.1 Plantations and Harvesting of Natural Rubber\u003cbr\u003e8.2 Natural Rubber Latex Processing\u003cbr\u003e8.3 Natural Rubber Latex Products Manufacturing\u003cbr\u003e8.4 Natural Rubber Latex Marketing\u003cbr\u003e8.5 National and Regional Rubber Industry Profiles\u003cbr\u003e8.5.1 Malaysia\u003cbr\u003e8.5.1.1 Rubber Products Industry\u003cbr\u003e8.5.1.2 Technology Trends\u003cbr\u003e8.5.1.3 Standard Malaysian Gloves (SMG)\u003cbr\u003e8.5.2 Thai Rubber Latex Industry\u003cbr\u003e8.5.3 Indonesian Rubber Latex Industry\u003cbr\u003e8.5.4 Vietnamese Rubber Latex Industry\u003cbr\u003e8.5.5 Indian Rubber Latex Industry\u003cbr\u003e8.5.6 Chinese Rubber Latex Industry\u003cbr\u003e8.5.7 North American Rubber Latex Industry\u003cbr\u003e8.5.8 European Rubber Latex Industry\u003cbr\u003e8.6 Trade in Natural Rubber Latex\u003cbr\u003e8.7 Prices of Natural Rubber Latex\u003cbr\u003e8.8 INRA and ITRC\u003cbr\u003e8.9 Examples of Latex Product Manufacturers\u003cbr\u003e8.9.1 Malaysian Manufacturers of Latex Products\u003cbr\u003e8.9.2 Thai Manufacturers of Latex Products\u003cbr\u003e8.9.3 Chinese Manufacturers of Latex Products\u003cbr\u003e8.9.4 Indian Manufacturers of Latex Products\u003cbr\u003e8.9.5 US Manufacturers of Latex Products\u003cbr\u003e8.9.6 European Manufacturers of Latex Products\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Synthetic Latex Industry Structure\u003cbr\u003e9.1 Leading Manufacturers\u003cbr\u003e9.1.1 Competitive Strategies\u003cbr\u003e9.2 Mergers and Acquisition\u003cbr\u003e9.3 Manufacturers of Specific Latex Types\u003cbr\u003e9.4 Prices of Synthetic Latex \u003cbr\u003e\u003cbr\u003e10 Regulations and Environmental Issues\u003cbr\u003e10.1 Health and Safety\u003cbr\u003e10.1.1 Emissions from Bonded Carpets\u003cbr\u003e10.1.2 Lowering Volatile Organic Component (VOC) Levels\u003cbr\u003e10.1.3 Residual Monomers in Synthetic Latices\u003cbr\u003e10.1.4 Issues Relating to Additives in Rubber Latex\u003cbr\u003e10.1.5 Formaldehyde\u003cbr\u003e10.1.6 The Natural Latex Allergy Issue\u003cbr\u003e10.2 Environmental Issues - Recycling and Waste Disposal\u003cbr\u003e10.2.1 Recycling of Carpets\u003cbr\u003e10.2.2 Re-Pulpability of Paper Coatings and Adhesives\u003cbr\u003e10.2.3 Heavy Metal Effluents from Latex \u003cbr\u003e\u003cbr\u003e11 Influences and Trends in Latices to 2005\u003cbr\u003e11.1 Future Prospects for the Latex Industry\u003cbr\u003e11.1.1 Market Drivers\u003cbr\u003e11.1.2 Market Restraints\u003cbr\u003e11.2 International Forecast 2003-2005 by Region\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 Companies and Associations\u003cbr\u003e12.1 International and National Associations and Organisations\u003cbr\u003e12.2 Media \u003cbr\u003eGlossary of Terms\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nbms is a market research and consultancy organisation which aims to provide actionable marketing information. Richard Beswick has 22 years of experience in industrial marketing and market research. \u003cbr\u003e\u003cbr\u003eDr. Dave Dunn is a senior associate at bms North America with training as a chemist and a background in both industrial and academic circles. He has been a Vice President of Loctite Corporation, a specialty adhesive and sealant Company. The authors are based in Europe and North America respectively, giving them an ideal base for this report. \u003cbr\u003e\u003cbr\u003eThe authors have organised the Latex 2001 and Latex 2002 conferences for Rapra and given presentations on the current state of the latex industry.\u003cbr\u003e\u003cbr\u003e"}
Plastic Films - Situat...
$520.00
{"id":11242219204,"title":"Plastic Films - Situation and Outlook","handle":"978-1-85957-480-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Francoise Pardos \u003cbr\u003eISBN 978-1-85957-480-5 \u003cbr\u003e\u003cbr\u003epages 182\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFlexible films are defined as being planar forms of plastics, which may be thick enough to be self-supporting but thin enough to be flexed, folded and\/or creased without cracking. Films comprise around 25% of all plastics used worldwide, around 40 million tons, and are thus a massive market sector. Commodity plastics dominate, with polyethylene and polypropylene together accounting for around 34 million tons. This is an expanding area with increased demand each year particularly in the developing regions of the world and with a move from rigid to flexible packaging. \u003cbr\u003e\u003cbr\u003eThere are many material types used in films from single layer polymers to multilayer structures with tie layers and copolymers. Multilayers permit custom adaptation of material properties from barrier to strength. Technology, such as the orientation of polypropylene, has produced better properties and more valuable materials. High performance plastics are also being used in applications such as telectronics. The different materials in use in films are reviewed in this market report. There are details of the main suppliers including mergers and capacity. \u003cbr\u003e\u003cbr\u003eFilms can be made via a number of converting processes: extrusion, coextrusion, casting, extrusion coating, extrusion laminating and metallising. Blown extrusion was the first process used to make films of polyethylene. These processes have advantages and disadvantages depending on the material type in use, the width and thickness of film required. \u003cbr\u003e\u003cbr\u003eFilms are mainly used in packaging for foodstuffs, but there are also substantial market segments for medical, electronic, automotive and construction applications. Specific applications include decorative wrap, form-fill-seal, blood bags, flexible printed circuits, bed sheeting, diapers, and in-mould decorating of car parts (to replace painting and provide a more durable surface coating). Carrier bags and garbage bags are big markets, with imports to Europe; there are environmental concerns about the use of plastic bags and these are discussed in the report. In construction, films are used in glazing, damp proofing, tarpaulins, geomembranes and similar applications. \u003cbr\u003e\u003cbr\u003ePE and PP are the main materials used in packaging films. PET is primarily used in magnetics, optics, and telectronics. PVC is found in consumer goods and medical applications, while PVB is mainly used in automotive and construction applications as glazing protection. Multimaterial films account for around 7 million tons of the films produced, with around 95% of this going into packaging applications. These are just some of the examples listed in this market report. \u003cbr\u003e\u003cbr\u003eEurope and North America each account for about 30% of the total world consumption of plastic films. The plastic films supply structure and individual company information are summarised in the second half of this market report on Plastic Films in Europe and the Rest of the World.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Geographical Focus\u003cbr\u003e1.2 Flexible Materials Under Study\u003cbr\u003e1.3 Methodology\u003cbr\u003e1.4 Authorship \u003cbr\u003e\u003cbr\u003e2 Executive Summary\u003cbr\u003e2.1 Main Study Findings \u003cbr\u003e\u003cbr\u003e3 Types of Films and Materials\u003cbr\u003e3.1 Main Film Materials Characteristics\u003cbr\u003e3.2 Polyethylene (PE)\u003cbr\u003eTypes of Polyethylene\u003cbr\u003ePE Films Industry Structure\u003cbr\u003eConsumption of PE Films\u003cbr\u003e3.3 Polypropylene (PP)\u003cbr\u003eTypes of Polypropylene\u003cbr\u003eOriented PP Films\u003cbr\u003eOPP Films Industry Structure\u003cbr\u003eConsumption of OPP Films\u003cbr\u003eMain Uses of OPP Films\u003cbr\u003eCast PP Films\u003cbr\u003e3.4 Polyvinyl Chloride (PVC)\u003cbr\u003ePVC Films Industry Structure\u003cbr\u003ePVC Film Consumption\u003cbr\u003e3.5 Polystyrene (PS) and Derivatives\u003cbr\u003e3.6 Polyethylene Terephthalate (PET)\u003cbr\u003ePET Film Capacity and Comments\u003cbr\u003ePET Film Consumption\u003cbr\u003e3.7 Polyethylene Terephthalate Glycol (PETG)\u003cbr\u003e3.8 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.9 Polyamide (PA, Nylon)\u003cbr\u003eNylon Films Industry Structure\u003cbr\u003eConsumption of Nylon Films\u003cbr\u003e3.10 Polycarbonate (PC)\u003cbr\u003e3.11 Cellophane (Cello)\u003cbr\u003e3.12 Disposable and Edible Films\u003cbr\u003e3.13 Film Substrates for Multilayer Films\u003cbr\u003e3.14 Ethylene Copolymers\u003cbr\u003e3.15 Ethylene Vinyl Acetate (EVA)\u003cbr\u003e3.16 Ionomers\u003cbr\u003e3.17 Cyclo-Olefin Copolymers (COC)\u003cbr\u003e3.18 Polyvinyl Butyral (PVB)\u003cbr\u003e3.19 Barrier Materials\u003cbr\u003eSummary of the Barrier Story\u003cbr\u003e3.20 Ethylene Vinyl Alcohol (EVOH)\u003cbr\u003eExamples of EVOH Film Constructions\u003cbr\u003e3.21 Polyvinyl Alcohol (PVOH)\u003cbr\u003e3.22 Polyvinylidene Chloride (PVDC)\u003cbr\u003ePVDC Industry Structure\u003cbr\u003ePVDC Consumption\u003cbr\u003e3.23 Oxide-Coated Films\u003cbr\u003e3.24 Liquid Crystal Polymers (LCP)\u003cbr\u003e3.25 Polyarylamide MXD6 (PA MXD6)\u003cbr\u003e3.26 Nano-Barriers\u003cbr\u003e3.27 Polyimides (PI)\u003cbr\u003e3.28 Fluoropolymers\u003cbr\u003e3.29 Adhesives\u003cbr\u003e3.30 Multilayer Films\u003cbr\u003e3.31 Aluminium Foil\u003cbr\u003e3.32 Paper and Board Products \u003cbr\u003e\u003cbr\u003e4 Processes for Films\u003cbr\u003e4.1 Film Extrusion\u003cbr\u003eBlown Extrusion\u003cbr\u003eFlat Die Extrusion\u003cbr\u003e4.2 Stretching\u003cbr\u003e4.3 Pre-treatment\u003cbr\u003e4.4 Processes for Multilayer Barrier Films\u003cbr\u003e4.5 Coextrusion\u003cbr\u003eFlat Die Cast Coextrusion\u003cbr\u003eBlown Film Coextrusion\u003cbr\u003eThe Choice Between the Two Techniques\u003cbr\u003eCoextrusion of Commodity Plastic Films\u003cbr\u003eCoextrusion of Specialty and Barrier Plastic Films\u003cbr\u003e4.6 Lamination and Adhesive Lamination\u003cbr\u003e4.7 Coating\u003cbr\u003e4.8 Metallisation\u003cbr\u003eStructure of the Metallising Films Industry\u003cbr\u003eMetallised Flexible Material Consumption and Growth\u003cbr\u003eReplacement of Aluminium Foil\u003cbr\u003eMetallised Paper\u003cbr\u003e4.9 Form-Fill-Seal (FFS)\u003cbr\u003e4.10 Thermoforming\u003cbr\u003e4.11 Printing\u003cbr\u003e4.12 New Technical Developments in Films\u003cbr\u003e4.13 Alphabetical List of Machine Manufacturers for Films \u003cbr\u003e\u003cbr\u003e5 Applications of Films\u003cbr\u003e5.1 Packaging - General Introduction\u003cbr\u003e5.2 Stretch and Shrink Films\u003cbr\u003eShrink Film\u003cbr\u003eStretch Film\u003cbr\u003eStructure of the Shrink\/Stretch Films Industry\u003cbr\u003eConsumption of Stretch and Shrink Films\u003cbr\u003e5.3 Bags and Sacks\u003cbr\u003eTypes of Plastic Bags and Sacks\u003cbr\u003eBag Markets and Applications\u003cbr\u003eBag producers in Europe and Elsewhere\u003cbr\u003eNational Laws and Actions Against Shopping Bags\u003cbr\u003e5.4 Heavy-Duty Sacks and Big Bags\u003cbr\u003eHeavy-Duty Sacks\u003cbr\u003eBig Bags\u003cbr\u003e5.5 Free-Standing Bags and Similar Products\u003cbr\u003eFree-Standing Bags or Stand-Up Pouches\u003cbr\u003ePouches and Sachets\u003cbr\u003eBag in Box\u003cbr\u003e5.6 Automatic Packaging Films\u003cbr\u003e5.7 Multilayer Films\u003cbr\u003e5.8 Labels, Sleeves and Display Films\u003cbr\u003eTraditional and Changing Labels\u003cbr\u003ePlastic Labels\u003cbr\u003eFilm Labels, New-Look Labels, and Plastic Sleeves\u003cbr\u003eSleeves\u003cbr\u003eDisplay Films\u003cbr\u003e5.9 Other Packaging Applications\u003cbr\u003eLidding\u003cbr\u003eStrapping\u003cbr\u003eBubble Films and Wrap\u003cbr\u003eTear Tapes\u003cbr\u003eTwistwrap\u003cbr\u003eAdhesive Tapes\u003cbr\u003eWeaving Tapes\u003cbr\u003e5.10 Building Construction\u003cbr\u003e5.11 Agriculture\u003cbr\u003e5.12 Consumer Goods\u003cbr\u003eGarbage Bags\u003cbr\u003eHousehold Films\u003cbr\u003eDisposable Diapers and Related Products\u003cbr\u003eCredit Cards\u003cbr\u003eTarpaulins\u003cbr\u003e5.13 Medical Applications\u003cbr\u003e5.14 Automobile Industry\u003cbr\u003e5.15 Electrical\/Electronics Industries\u003cbr\u003e5.16 Synthetic Paper\u003cbr\u003e5.17 All Other End-Uses \u003cbr\u003e\u003cbr\u003e6 Film Consumption Summary\u003cbr\u003e6.1 Total World Plastic Film Consumption\u003cbr\u003e6.2 Geographic\/Economic Consumption Split\u003cbr\u003e6.3 Main Film End-Uses \u003cbr\u003e\u003cbr\u003e7 Film Supply Structure, Concentration, and Strategies\u003cbr\u003e7.1 Raw Film Production\u003cbr\u003e7.2 Converted Film Production\u003cbr\u003e7.3 Recent Developments \u003cbr\u003e\u003cbr\u003e8 Main Film Groups, Mergers and Acquisitions \u003cbr\u003e\u003cbr\u003e9 Profiles of Selected Film Producers and Converters\u003cbr\u003e9.1 Alphabetical Listing\u003cbr\u003eACX Technologies [USA]\u003cbr\u003eAEP Industries [USA, Europe]\u003cbr\u003eAET, Applied Extrusion Technologies [USA]\u003cbr\u003eAlcan [Canada]\u003cbr\u003eAlcan Flexible Packaging [USA]\u003cbr\u003eAlcoa [USA]\u003cbr\u003eAlkor Draka [Belgium]\u003cbr\u003eAllflex [Germany]\u003cbr\u003eAlpha Packaging Films [UK]\u003cbr\u003eAluflexpack, AFP [Croatia]\u003cbr\u003eAmcor Flexibles Europe, AFE [Europe]\u003cbr\u003eAPI Foils [UK]\u003cbr\u003eAquafilm [USA] and Aquafilm Ltd [UK]\u003cbr\u003eArmando Álvarez Group [Spain]\u003cbr\u003eAutobar Flexible [UK]\u003cbr\u003eBalcan Plastics [Canada]\u003cbr\u003eBarbier Group [France]\u003cbr\u003eBemis [USA, Europe]\u003cbr\u003eBischof \u0026amp; Klein [Germany]\u003cbr\u003eBolloré [France]\u003cbr\u003eBP Films [UK]\u003cbr\u003eBritish Polythene Industries, BPI [UK]\u003cbr\u003eBuergofol [Germany]\u003cbr\u003eBunzl [UK, USA]\u003cbr\u003eCaffaro Flexible Packaging, CFP [Italy]\u003cbr\u003eCEISA [France]\u003cbr\u003eCeplastik [Spain]\u003cbr\u003eChamberlain Plastics [UK]\u003cbr\u003eCharpentier [France]\u003cbr\u003eChemosvit [Slovakia]\u003cbr\u003eClondalkin [Ireland]\u003cbr\u003eClopay Plastic Products [USA]\u003cbr\u003eCoburn [USA]\u003cbr\u003eCoexpan [Spain]\u003cbr\u003eCofira [France]\u003cbr\u003eColines [Italy]\u003cbr\u003eColoplast [Denmark]\u003cbr\u003eConvenience Food Systems, CFS [the Netherlands]\u003cbr\u003eCrest Packaging [UK]\u003cbr\u003eDanapak Flexibles [Denmark]\u003cbr\u003eDeltalene Adelpro [France]\u003cbr\u003eDubai Poly Film [UAE]\u003cbr\u003eEiffel [Italy]\u003cbr\u003eEtimex [Germany]\u003cbr\u003eEVC Films [Europe]\u003cbr\u003eExbanor [France]\u003cbr\u003eExxonMobil Films [USA, world]\u003cbr\u003eFlexico Minigrip [France]\u003cbr\u003eFrantschach [Austria]\u003cbr\u003eGarware Polyester [India]\u003cbr\u003eGatex [Germany]\u003cbr\u003eGellis [Israel]\u003cbr\u003eGlenroy [USA]\u003cbr\u003eGlory Polyfilms [India]\u003cbr\u003eGoglio [Italy]\u003cbr\u003eGualapack, Safta [Italy]\u003cbr\u003eHueck Folien [Germany]\u003cbr\u003eHuhtamaki [Finland]\u003cbr\u003eImprisac [France]\u003cbr\u003eJason Plastics [UK]\u003cbr\u003eJindal Poly Films, JPFL [India]\u003cbr\u003eKangaroo Plastics [UAE]\u003cbr\u003eKlöckner Pentaplast [Germany]\u003cbr\u003eKohler Plastics [South Africa]\u003cbr\u003eKrehalon [Japan, Europe]\u003cbr\u003eLatinplast [Venezuela]\u003cbr\u003eLawson Mardon [UK]\u003cbr\u003eLinpac [UK]\u003cbr\u003eLofo High Tech Film [Germany]\u003cbr\u003eManuli Packaging [Italy]\u003cbr\u003eMapal Plastics Products [Israel]\u003cbr\u003eMegaplast [Greece]\u003cbr\u003eMF Folien [Germany]\u003cbr\u003eMianyang Longhua Chemical Co. [China]\u003cbr\u003eMM Behrens Packaging [Germany]\u003cbr\u003eMO.CEL [Italy]\u003cbr\u003eNeoGraf [Italy]\u003cbr\u003eNordenia [Germany]\u003cbr\u003eNuova Pansac [Italy]\u003cbr\u003eNuroll, M\u0026amp;G Polymers [Italy]\u003cbr\u003eOrbita [Germany]\u003cbr\u003ePactiv [USA]\u003cbr\u003eParkside Flexibles [UK]\u003cbr\u003ePéchiney Soplaril Flexible Europe, PSFE [France]\u003cbr\u003ePhoenix Packaging [USA]\u003cbr\u003ePlasto-Sac [Israel]\u003cbr\u003ePliant [USA]\u003cbr\u003ePoligal [Spain]\u003cbr\u003ePolinas [Turkey]\u003cbr\u003ePoly Products [Nigeria]\u003cbr\u003ePoly Towers [Malaysia]\u003cbr\u003ePolyclear [UK]\u003cbr\u003ePositive Packaging Industries [India]\u003cbr\u003ePowerpack [Belgium]\u003cbr\u003ePP Payne [UK]\u003cbr\u003ePrepac [Thailand]\u003cbr\u003ePrintpack [USA]\u003cbr\u003eRadici [Italy]\u003cbr\u003eReef Industries [USA]\u003cbr\u003eRenolit RKW [Germany]\u003cbr\u003eRoland Emballages [France]\u003cbr\u003eRomar Packaging [UK]\u003cbr\u003eRotoflex [Lebanon]\u003cbr\u003eRubafilm [France]\u003cbr\u003eSealed Air [US, Europe]\u003cbr\u003eSopal PKL [France, Germany]\u003cbr\u003eStar Polybag [Cyprus]\u003cbr\u003eSüdpack [Germany]\u003cbr\u003eSyfan [Israel]\u003cbr\u003eTekni-Plex [USA]\u003cbr\u003eTredegar Films [USA]\u003cbr\u003eTreofan [Germany]\u003cbr\u003eTrioplast [Sweden]\u003cbr\u003eTyco Plastics [USA]\u003cbr\u003eUCB Films [Belgium]\u003cbr\u003eUnited Flexible Packaging [Dubai]\u003cbr\u003eUnited Flexibles [Germany]\u003cbr\u003eUnterland [Austria]\u003cbr\u003eValeron Strength Films [USA]\u003cbr\u003eVifan Vibac [Europe, Canada]\u003cbr\u003eWihuri, Wipak, Winpak [Finland]\u003cbr\u003eWipf [Switzerland]\u003cbr\u003e9.2 Other Film Companies and Countries - Not Detailed \u003cbr\u003e\u003cbr\u003e10 Sources\u003cbr\u003e10.1 Packaging Federations\u003cbr\u003eEurope\u003cbr\u003eCountries\u003cbr\u003e10.2 Publications, Literature and Databases\u003cbr\u003eTrade Magazines\u003cbr\u003eDatabases and Similar Sources\u003cbr\u003eBooks \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nFrançoise Pardos was trained as an economist, with an MA from Berkeley, University of California, and a doctorate (\"docteur ès-Sciences Economiques\") from Paris. After five years as market research analyst at Kaiser Aluminum, in California, and two years at SEMA, an industrial consultant in Paris, she created Pardos Marketing, an industrial market research consultancy specializing in plastics and plastics applications. \u003cbr\u003e\u003cbr\u003eOver 200 studies have been completed in the last fifteen years. The main topics of recent studies cover new developments in plastics packaging, barrier materials, plastics applications in automotive, electrical, building and medical industries, high performance plastics, potential developments of new materials, with emphasis on European, African and Indian markets.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:38-04:00","created_at":"2017-06-22T21:13:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","applications","automobile","book","Cello","cellophane","COC","copolymers","cyclo-olefin","electrical","electronics","ethylene vinyl acetate","EVA","films","flexible","glycol","ionomers","medical","naphthalate","Nylon","PA","packaging","paper","PC","PE","PEN","pet","PETG","plastics","polyamide","polycarbonate","polyethylene","polypropylene","polyvinyl butyral","PP","PVB","pvc","report","terephthalate"],"price":52000,"price_min":52000,"price_max":52000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378370564,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastic Films - Situation and Outlook","public_title":null,"options":["Default Title"],"price":52000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-480-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-480-5.jpg?v=1499952218"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-480-5.jpg?v=1499952218","options":["Title"],"media":[{"alt":null,"id":358532153437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-480-5.jpg?v=1499952218"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-480-5.jpg?v=1499952218","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Francoise Pardos \u003cbr\u003eISBN 978-1-85957-480-5 \u003cbr\u003e\u003cbr\u003epages 182\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFlexible films are defined as being planar forms of plastics, which may be thick enough to be self-supporting but thin enough to be flexed, folded and\/or creased without cracking. Films comprise around 25% of all plastics used worldwide, around 40 million tons, and are thus a massive market sector. Commodity plastics dominate, with polyethylene and polypropylene together accounting for around 34 million tons. This is an expanding area with increased demand each year particularly in the developing regions of the world and with a move from rigid to flexible packaging. \u003cbr\u003e\u003cbr\u003eThere are many material types used in films from single layer polymers to multilayer structures with tie layers and copolymers. Multilayers permit custom adaptation of material properties from barrier to strength. Technology, such as the orientation of polypropylene, has produced better properties and more valuable materials. High performance plastics are also being used in applications such as telectronics. The different materials in use in films are reviewed in this market report. There are details of the main suppliers including mergers and capacity. \u003cbr\u003e\u003cbr\u003eFilms can be made via a number of converting processes: extrusion, coextrusion, casting, extrusion coating, extrusion laminating and metallising. Blown extrusion was the first process used to make films of polyethylene. These processes have advantages and disadvantages depending on the material type in use, the width and thickness of film required. \u003cbr\u003e\u003cbr\u003eFilms are mainly used in packaging for foodstuffs, but there are also substantial market segments for medical, electronic, automotive and construction applications. Specific applications include decorative wrap, form-fill-seal, blood bags, flexible printed circuits, bed sheeting, diapers, and in-mould decorating of car parts (to replace painting and provide a more durable surface coating). Carrier bags and garbage bags are big markets, with imports to Europe; there are environmental concerns about the use of plastic bags and these are discussed in the report. In construction, films are used in glazing, damp proofing, tarpaulins, geomembranes and similar applications. \u003cbr\u003e\u003cbr\u003ePE and PP are the main materials used in packaging films. PET is primarily used in magnetics, optics, and telectronics. PVC is found in consumer goods and medical applications, while PVB is mainly used in automotive and construction applications as glazing protection. Multimaterial films account for around 7 million tons of the films produced, with around 95% of this going into packaging applications. These are just some of the examples listed in this market report. \u003cbr\u003e\u003cbr\u003eEurope and North America each account for about 30% of the total world consumption of plastic films. The plastic films supply structure and individual company information are summarised in the second half of this market report on Plastic Films in Europe and the Rest of the World.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Geographical Focus\u003cbr\u003e1.2 Flexible Materials Under Study\u003cbr\u003e1.3 Methodology\u003cbr\u003e1.4 Authorship \u003cbr\u003e\u003cbr\u003e2 Executive Summary\u003cbr\u003e2.1 Main Study Findings \u003cbr\u003e\u003cbr\u003e3 Types of Films and Materials\u003cbr\u003e3.1 Main Film Materials Characteristics\u003cbr\u003e3.2 Polyethylene (PE)\u003cbr\u003eTypes of Polyethylene\u003cbr\u003ePE Films Industry Structure\u003cbr\u003eConsumption of PE Films\u003cbr\u003e3.3 Polypropylene (PP)\u003cbr\u003eTypes of Polypropylene\u003cbr\u003eOriented PP Films\u003cbr\u003eOPP Films Industry Structure\u003cbr\u003eConsumption of OPP Films\u003cbr\u003eMain Uses of OPP Films\u003cbr\u003eCast PP Films\u003cbr\u003e3.4 Polyvinyl Chloride (PVC)\u003cbr\u003ePVC Films Industry Structure\u003cbr\u003ePVC Film Consumption\u003cbr\u003e3.5 Polystyrene (PS) and Derivatives\u003cbr\u003e3.6 Polyethylene Terephthalate (PET)\u003cbr\u003ePET Film Capacity and Comments\u003cbr\u003ePET Film Consumption\u003cbr\u003e3.7 Polyethylene Terephthalate Glycol (PETG)\u003cbr\u003e3.8 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.9 Polyamide (PA, Nylon)\u003cbr\u003eNylon Films Industry Structure\u003cbr\u003eConsumption of Nylon Films\u003cbr\u003e3.10 Polycarbonate (PC)\u003cbr\u003e3.11 Cellophane (Cello)\u003cbr\u003e3.12 Disposable and Edible Films\u003cbr\u003e3.13 Film Substrates for Multilayer Films\u003cbr\u003e3.14 Ethylene Copolymers\u003cbr\u003e3.15 Ethylene Vinyl Acetate (EVA)\u003cbr\u003e3.16 Ionomers\u003cbr\u003e3.17 Cyclo-Olefin Copolymers (COC)\u003cbr\u003e3.18 Polyvinyl Butyral (PVB)\u003cbr\u003e3.19 Barrier Materials\u003cbr\u003eSummary of the Barrier Story\u003cbr\u003e3.20 Ethylene Vinyl Alcohol (EVOH)\u003cbr\u003eExamples of EVOH Film Constructions\u003cbr\u003e3.21 Polyvinyl Alcohol (PVOH)\u003cbr\u003e3.22 Polyvinylidene Chloride (PVDC)\u003cbr\u003ePVDC Industry Structure\u003cbr\u003ePVDC Consumption\u003cbr\u003e3.23 Oxide-Coated Films\u003cbr\u003e3.24 Liquid Crystal Polymers (LCP)\u003cbr\u003e3.25 Polyarylamide MXD6 (PA MXD6)\u003cbr\u003e3.26 Nano-Barriers\u003cbr\u003e3.27 Polyimides (PI)\u003cbr\u003e3.28 Fluoropolymers\u003cbr\u003e3.29 Adhesives\u003cbr\u003e3.30 Multilayer Films\u003cbr\u003e3.31 Aluminium Foil\u003cbr\u003e3.32 Paper and Board Products \u003cbr\u003e\u003cbr\u003e4 Processes for Films\u003cbr\u003e4.1 Film Extrusion\u003cbr\u003eBlown Extrusion\u003cbr\u003eFlat Die Extrusion\u003cbr\u003e4.2 Stretching\u003cbr\u003e4.3 Pre-treatment\u003cbr\u003e4.4 Processes for Multilayer Barrier Films\u003cbr\u003e4.5 Coextrusion\u003cbr\u003eFlat Die Cast Coextrusion\u003cbr\u003eBlown Film Coextrusion\u003cbr\u003eThe Choice Between the Two Techniques\u003cbr\u003eCoextrusion of Commodity Plastic Films\u003cbr\u003eCoextrusion of Specialty and Barrier Plastic Films\u003cbr\u003e4.6 Lamination and Adhesive Lamination\u003cbr\u003e4.7 Coating\u003cbr\u003e4.8 Metallisation\u003cbr\u003eStructure of the Metallising Films Industry\u003cbr\u003eMetallised Flexible Material Consumption and Growth\u003cbr\u003eReplacement of Aluminium Foil\u003cbr\u003eMetallised Paper\u003cbr\u003e4.9 Form-Fill-Seal (FFS)\u003cbr\u003e4.10 Thermoforming\u003cbr\u003e4.11 Printing\u003cbr\u003e4.12 New Technical Developments in Films\u003cbr\u003e4.13 Alphabetical List of Machine Manufacturers for Films \u003cbr\u003e\u003cbr\u003e5 Applications of Films\u003cbr\u003e5.1 Packaging - General Introduction\u003cbr\u003e5.2 Stretch and Shrink Films\u003cbr\u003eShrink Film\u003cbr\u003eStretch Film\u003cbr\u003eStructure of the Shrink\/Stretch Films Industry\u003cbr\u003eConsumption of Stretch and Shrink Films\u003cbr\u003e5.3 Bags and Sacks\u003cbr\u003eTypes of Plastic Bags and Sacks\u003cbr\u003eBag Markets and Applications\u003cbr\u003eBag producers in Europe and Elsewhere\u003cbr\u003eNational Laws and Actions Against Shopping Bags\u003cbr\u003e5.4 Heavy-Duty Sacks and Big Bags\u003cbr\u003eHeavy-Duty Sacks\u003cbr\u003eBig Bags\u003cbr\u003e5.5 Free-Standing Bags and Similar Products\u003cbr\u003eFree-Standing Bags or Stand-Up Pouches\u003cbr\u003ePouches and Sachets\u003cbr\u003eBag in Box\u003cbr\u003e5.6 Automatic Packaging Films\u003cbr\u003e5.7 Multilayer Films\u003cbr\u003e5.8 Labels, Sleeves and Display Films\u003cbr\u003eTraditional and Changing Labels\u003cbr\u003ePlastic Labels\u003cbr\u003eFilm Labels, New-Look Labels, and Plastic Sleeves\u003cbr\u003eSleeves\u003cbr\u003eDisplay Films\u003cbr\u003e5.9 Other Packaging Applications\u003cbr\u003eLidding\u003cbr\u003eStrapping\u003cbr\u003eBubble Films and Wrap\u003cbr\u003eTear Tapes\u003cbr\u003eTwistwrap\u003cbr\u003eAdhesive Tapes\u003cbr\u003eWeaving Tapes\u003cbr\u003e5.10 Building Construction\u003cbr\u003e5.11 Agriculture\u003cbr\u003e5.12 Consumer Goods\u003cbr\u003eGarbage Bags\u003cbr\u003eHousehold Films\u003cbr\u003eDisposable Diapers and Related Products\u003cbr\u003eCredit Cards\u003cbr\u003eTarpaulins\u003cbr\u003e5.13 Medical Applications\u003cbr\u003e5.14 Automobile Industry\u003cbr\u003e5.15 Electrical\/Electronics Industries\u003cbr\u003e5.16 Synthetic Paper\u003cbr\u003e5.17 All Other End-Uses \u003cbr\u003e\u003cbr\u003e6 Film Consumption Summary\u003cbr\u003e6.1 Total World Plastic Film Consumption\u003cbr\u003e6.2 Geographic\/Economic Consumption Split\u003cbr\u003e6.3 Main Film End-Uses \u003cbr\u003e\u003cbr\u003e7 Film Supply Structure, Concentration, and Strategies\u003cbr\u003e7.1 Raw Film Production\u003cbr\u003e7.2 Converted Film Production\u003cbr\u003e7.3 Recent Developments \u003cbr\u003e\u003cbr\u003e8 Main Film Groups, Mergers and Acquisitions \u003cbr\u003e\u003cbr\u003e9 Profiles of Selected Film Producers and Converters\u003cbr\u003e9.1 Alphabetical Listing\u003cbr\u003eACX Technologies [USA]\u003cbr\u003eAEP Industries [USA, Europe]\u003cbr\u003eAET, Applied Extrusion Technologies [USA]\u003cbr\u003eAlcan [Canada]\u003cbr\u003eAlcan Flexible Packaging [USA]\u003cbr\u003eAlcoa [USA]\u003cbr\u003eAlkor Draka [Belgium]\u003cbr\u003eAllflex [Germany]\u003cbr\u003eAlpha Packaging Films [UK]\u003cbr\u003eAluflexpack, AFP [Croatia]\u003cbr\u003eAmcor Flexibles Europe, AFE [Europe]\u003cbr\u003eAPI Foils [UK]\u003cbr\u003eAquafilm [USA] and Aquafilm Ltd [UK]\u003cbr\u003eArmando Álvarez Group [Spain]\u003cbr\u003eAutobar Flexible [UK]\u003cbr\u003eBalcan Plastics [Canada]\u003cbr\u003eBarbier Group [France]\u003cbr\u003eBemis [USA, Europe]\u003cbr\u003eBischof \u0026amp; Klein [Germany]\u003cbr\u003eBolloré [France]\u003cbr\u003eBP Films [UK]\u003cbr\u003eBritish Polythene Industries, BPI [UK]\u003cbr\u003eBuergofol [Germany]\u003cbr\u003eBunzl [UK, USA]\u003cbr\u003eCaffaro Flexible Packaging, CFP [Italy]\u003cbr\u003eCEISA [France]\u003cbr\u003eCeplastik [Spain]\u003cbr\u003eChamberlain Plastics [UK]\u003cbr\u003eCharpentier [France]\u003cbr\u003eChemosvit [Slovakia]\u003cbr\u003eClondalkin [Ireland]\u003cbr\u003eClopay Plastic Products [USA]\u003cbr\u003eCoburn [USA]\u003cbr\u003eCoexpan [Spain]\u003cbr\u003eCofira [France]\u003cbr\u003eColines [Italy]\u003cbr\u003eColoplast [Denmark]\u003cbr\u003eConvenience Food Systems, CFS [the Netherlands]\u003cbr\u003eCrest Packaging [UK]\u003cbr\u003eDanapak Flexibles [Denmark]\u003cbr\u003eDeltalene Adelpro [France]\u003cbr\u003eDubai Poly Film [UAE]\u003cbr\u003eEiffel [Italy]\u003cbr\u003eEtimex [Germany]\u003cbr\u003eEVC Films [Europe]\u003cbr\u003eExbanor [France]\u003cbr\u003eExxonMobil Films [USA, world]\u003cbr\u003eFlexico Minigrip [France]\u003cbr\u003eFrantschach [Austria]\u003cbr\u003eGarware Polyester [India]\u003cbr\u003eGatex [Germany]\u003cbr\u003eGellis [Israel]\u003cbr\u003eGlenroy [USA]\u003cbr\u003eGlory Polyfilms [India]\u003cbr\u003eGoglio [Italy]\u003cbr\u003eGualapack, Safta [Italy]\u003cbr\u003eHueck Folien [Germany]\u003cbr\u003eHuhtamaki [Finland]\u003cbr\u003eImprisac [France]\u003cbr\u003eJason Plastics [UK]\u003cbr\u003eJindal Poly Films, JPFL [India]\u003cbr\u003eKangaroo Plastics [UAE]\u003cbr\u003eKlöckner Pentaplast [Germany]\u003cbr\u003eKohler Plastics [South Africa]\u003cbr\u003eKrehalon [Japan, Europe]\u003cbr\u003eLatinplast [Venezuela]\u003cbr\u003eLawson Mardon [UK]\u003cbr\u003eLinpac [UK]\u003cbr\u003eLofo High Tech Film [Germany]\u003cbr\u003eManuli Packaging [Italy]\u003cbr\u003eMapal Plastics Products [Israel]\u003cbr\u003eMegaplast [Greece]\u003cbr\u003eMF Folien [Germany]\u003cbr\u003eMianyang Longhua Chemical Co. [China]\u003cbr\u003eMM Behrens Packaging [Germany]\u003cbr\u003eMO.CEL [Italy]\u003cbr\u003eNeoGraf [Italy]\u003cbr\u003eNordenia [Germany]\u003cbr\u003eNuova Pansac [Italy]\u003cbr\u003eNuroll, M\u0026amp;G Polymers [Italy]\u003cbr\u003eOrbita [Germany]\u003cbr\u003ePactiv [USA]\u003cbr\u003eParkside Flexibles [UK]\u003cbr\u003ePéchiney Soplaril Flexible Europe, PSFE [France]\u003cbr\u003ePhoenix Packaging [USA]\u003cbr\u003ePlasto-Sac [Israel]\u003cbr\u003ePliant [USA]\u003cbr\u003ePoligal [Spain]\u003cbr\u003ePolinas [Turkey]\u003cbr\u003ePoly Products [Nigeria]\u003cbr\u003ePoly Towers [Malaysia]\u003cbr\u003ePolyclear [UK]\u003cbr\u003ePositive Packaging Industries [India]\u003cbr\u003ePowerpack [Belgium]\u003cbr\u003ePP Payne [UK]\u003cbr\u003ePrepac [Thailand]\u003cbr\u003ePrintpack [USA]\u003cbr\u003eRadici [Italy]\u003cbr\u003eReef Industries [USA]\u003cbr\u003eRenolit RKW [Germany]\u003cbr\u003eRoland Emballages [France]\u003cbr\u003eRomar Packaging [UK]\u003cbr\u003eRotoflex [Lebanon]\u003cbr\u003eRubafilm [France]\u003cbr\u003eSealed Air [US, Europe]\u003cbr\u003eSopal PKL [France, Germany]\u003cbr\u003eStar Polybag [Cyprus]\u003cbr\u003eSüdpack [Germany]\u003cbr\u003eSyfan [Israel]\u003cbr\u003eTekni-Plex [USA]\u003cbr\u003eTredegar Films [USA]\u003cbr\u003eTreofan [Germany]\u003cbr\u003eTrioplast [Sweden]\u003cbr\u003eTyco Plastics [USA]\u003cbr\u003eUCB Films [Belgium]\u003cbr\u003eUnited Flexible Packaging [Dubai]\u003cbr\u003eUnited Flexibles [Germany]\u003cbr\u003eUnterland [Austria]\u003cbr\u003eValeron Strength Films [USA]\u003cbr\u003eVifan Vibac [Europe, Canada]\u003cbr\u003eWihuri, Wipak, Winpak [Finland]\u003cbr\u003eWipf [Switzerland]\u003cbr\u003e9.2 Other Film Companies and Countries - Not Detailed \u003cbr\u003e\u003cbr\u003e10 Sources\u003cbr\u003e10.1 Packaging Federations\u003cbr\u003eEurope\u003cbr\u003eCountries\u003cbr\u003e10.2 Publications, Literature and Databases\u003cbr\u003eTrade Magazines\u003cbr\u003eDatabases and Similar Sources\u003cbr\u003eBooks \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nFrançoise Pardos was trained as an economist, with an MA from Berkeley, University of California, and a doctorate (\"docteur ès-Sciences Economiques\") from Paris. After five years as market research analyst at Kaiser Aluminum, in California, and two years at SEMA, an industrial consultant in Paris, she created Pardos Marketing, an industrial market research consultancy specializing in plastics and plastics applications. \u003cbr\u003e\u003cbr\u003eOver 200 studies have been completed in the last fifteen years. The main topics of recent studies cover new developments in plastics packaging, barrier materials, plastics applications in automotive, electrical, building and medical industries, high performance plastics, potential developments of new materials, with emphasis on European, African and Indian markets.\u003cbr\u003e\u003cbr\u003e"}
Plastics Additives
$500.00
{"id":11242219460,"title":"Plastics Additives","handle":"978-1-85957-499-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Geoffrey Pritchard \u003cbr\u003eISBN 978-1-85957-499-7 \u003cbr\u003e\u003cbr\u003ePages 200, Market Report\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe plastics industry has seen restructuring and mergers, and new manufacturing processes and specifications have altered customers requirements for additives. Plastics Additives, a new market report from Rapra, offers a fresh account of the additives market. \u003cbr\u003e\u003cbr\u003ePlastics Additives begins with an executive summary of the important points arising from the report, followed by an overview of the significant trends in the four largest plastics market sectors: packaging, construction, automotive and electrical and electronics. The report focuses on the important issues within Europe, with a comment on the relevant trends in North America and Asia. \u003cbr\u003e\u003cbr\u003eThe additive families are considered with an outline of the technical issues and the trends driving the markets. The report provides specific product examples and technology developments. Product types covered include antiblocking agents, biocides, antioxidants, antistatic agents, blowing agents, clarifying and nucleating agents, compatibilisers, fillers (including nanofillers), flame retardants, heat stabilisers, impact modifiers, lubricants and process oils, plasticisers and light stabilisers. \u003cbr\u003e\u003cbr\u003eNew products may be promoted amongst other reasons on grounds of reducing costs, minimising handling and storage problems, improving process efficiency, reducing product defects, or improving product performance. The main marketplaces for each additive type are discussed in this report and the developments in specific properties or trends outlined. \u003cbr\u003e\u003cbr\u003eDemand for additives is obviously strongly dependent on demand for plastics, however, other drivers are important: evolving food distribution with demand for improved packaging, changes in fire regulations, use of materials at higher temperatures in for example the automotive and electronic component industries, recycling issues. This report provides a discussion of the trends in material consumption and specific additive groups. It also includes brief company news and information for some of the leading additive suppliers. \u003cbr\u003e\u003cbr\u003eHealth and safety considerations and regulatory pressures have had a major impact on certain classes of additives, especially heat stabilisers, flame retardants, and plasticisers. A section of this report is dedicated to these developments with topics covered including REACH, end-of-life disposal, chemicals of specific concern, biocides, flame retardants and food contact applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeoffrey Pritchard is an independent consultant and plastics industry analyst. He has been an editor or principal co-author of nine books on polymer technology and has organised the technical programmes for Rapra's annual Addcon conferences on additives and modifiers since 1996.","published_at":"2017-06-22T21:13:40-04:00","created_at":"2017-06-22T21:13:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","antiblocking agents","antioxidants","antistatic agents","biocides","blowing agents","book","clarifying","compatibilisers","fillers","flame retardants","heat stabilisers","impact modifiers","lubricants and process oils","nanofillers","nucleating agents","plasticisers and light stabilisers","report"],"price":50000,"price_min":50000,"price_max":50000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378370820,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics Additives","public_title":null,"options":["Default Title"],"price":50000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-499-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-499-7.jpg?v=1499952371"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-499-7.jpg?v=1499952371","options":["Title"],"media":[{"alt":null,"id":358533496925,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-499-7.jpg?v=1499952371"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-499-7.jpg?v=1499952371","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Geoffrey Pritchard \u003cbr\u003eISBN 978-1-85957-499-7 \u003cbr\u003e\u003cbr\u003ePages 200, Market Report\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe plastics industry has seen restructuring and mergers, and new manufacturing processes and specifications have altered customers requirements for additives. Plastics Additives, a new market report from Rapra, offers a fresh account of the additives market. \u003cbr\u003e\u003cbr\u003ePlastics Additives begins with an executive summary of the important points arising from the report, followed by an overview of the significant trends in the four largest plastics market sectors: packaging, construction, automotive and electrical and electronics. The report focuses on the important issues within Europe, with a comment on the relevant trends in North America and Asia. \u003cbr\u003e\u003cbr\u003eThe additive families are considered with an outline of the technical issues and the trends driving the markets. The report provides specific product examples and technology developments. Product types covered include antiblocking agents, biocides, antioxidants, antistatic agents, blowing agents, clarifying and nucleating agents, compatibilisers, fillers (including nanofillers), flame retardants, heat stabilisers, impact modifiers, lubricants and process oils, plasticisers and light stabilisers. \u003cbr\u003e\u003cbr\u003eNew products may be promoted amongst other reasons on grounds of reducing costs, minimising handling and storage problems, improving process efficiency, reducing product defects, or improving product performance. The main marketplaces for each additive type are discussed in this report and the developments in specific properties or trends outlined. \u003cbr\u003e\u003cbr\u003eDemand for additives is obviously strongly dependent on demand for plastics, however, other drivers are important: evolving food distribution with demand for improved packaging, changes in fire regulations, use of materials at higher temperatures in for example the automotive and electronic component industries, recycling issues. This report provides a discussion of the trends in material consumption and specific additive groups. It also includes brief company news and information for some of the leading additive suppliers. \u003cbr\u003e\u003cbr\u003eHealth and safety considerations and regulatory pressures have had a major impact on certain classes of additives, especially heat stabilisers, flame retardants, and plasticisers. A section of this report is dedicated to these developments with topics covered including REACH, end-of-life disposal, chemicals of specific concern, biocides, flame retardants and food contact applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeoffrey Pritchard is an independent consultant and plastics industry analyst. He has been an editor or principal co-author of nine books on polymer technology and has organised the technical programmes for Rapra's annual Addcon conferences on additives and modifiers since 1996."}
Plastics in Packaging ...
$489.00
{"id":11242212036,"title":"Plastics in Packaging - Western Europe and North America.","handle":"978-1-85957-329-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002 \u003cbr\u003eISBN 978-1-85957-329-7 \u003cbr\u003e\u003cbr\u003epages: 144, figures: 24, tables: 51\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPackaging is an $800 billion global industry. Flexible packaging types range from bags and bubble wrap to tubes, stand-up pouches and foam cushioning materials. Rigid packaging comprises blisters, bottles, cartridges, clam shells, pallets, trays, etc. Polymers are used in caps and closures, sacks, bags, labels, adhesives, rigid containers, films and other flexibles. \u003cbr\u003e\u003cbr\u003ePlastics are the most important material type in the flexible packaging market with over 70% market share in Europe and North America. Packaging is a very important market for thermoplastics, comprising 40% of total demand in Europe and 25% of total demand in North America in 2000. \u003cbr\u003e\u003cbr\u003ePlastics have increasingly replaced traditional materials in this sector because of their light weight and superior functionality. In rigid packaging polyethylene terephthalate (PET) has replaced glass in bottles for carbonated drinks, which has moved this resin from a speciality to a commodity plastic. New developments in materials include heat resistant and high barrier plastics which can replace metals and glass in other packaging applications. \u003cbr\u003e\u003cbr\u003eHowever, most of the easy conversions from traditional materials to plastics have now been made. Unless some radical changes occur, such as the packaging of beer in plastic pouches or bottles, the market is likely to grow in line with global GDP. \u003cbr\u003e\u003cbr\u003eThe five-volume polymers used in packaging are polyethylene, polypropylene, polystyrene, polyvinyl chloride (PVC) and PET. Packaging is the major use of polyethylene and polypropylene. High-density polyethylene is used in applications such as containers, milk and detergent bottles, bags and industrial wrapping. Low-density polyethylene is used for pallet and agricultural film, bags, coatings and containers. Polypropylene is employed in film, crates and microwavable containers. Polystyrene finds use in jewel cases, trays and foam insulation, while PET is used in bottles, film and other food packaging applications. \u003cbr\u003e\u003cbr\u003eA variety of speciality materials are used in packaging. New developments include liquid crystal polymers, which are high-temperature resistant materials with excellent barrier properties. Ticona has produced Vectran materials that can be thermoformed and extruded on standard equipment. They are high cost, but the material loading can be much lower than, for example, ethylene-vinyl alcohol (EVOH). \u003cbr\u003e\u003cbr\u003eThis report includes a description of plastic material types and properties relevant to packaging. Tables of comparative data are found in Chapter 4. Materials are commonly used in combinations in multilayer structures to obtain a set of key properties and to reduce costs. Processing is important to material properties and methods are outlined here. \u003cbr\u003e\u003cbr\u003eThis clearly written report on Plastics in Packaging provides an overview of the plastic packaging supply chain from materials to disposal. Information is included on market sizes and trends relevant to this chain. It includes a review of key factors affecting the industry, such as the need for recycling, and new developments in plastics used in packaging.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 The World of Packaging \u003cbr\u003e1.2 Scope of the Report \u003cbr\u003e1.3 Geographical Focus \u003cbr\u003e1.4 Methodology \u003cbr\u003e1.5 Authorship \u003cbr\u003e1.6 Units \u003cbr\u003e2 Executive Summary \u003cbr\u003e\u003cbr\u003e3 Materials for Packaging \u003cbr\u003e\u003cbr\u003e3.1 High Volume Polymers \u003cbr\u003e3.1.1 Polyethylene \u003cbr\u003e3.1.2 Polypropylene \u003cbr\u003e3.1.3 Polystyrene \u003cbr\u003e3.1.3.1 High Impact Polystyrene (HIPS) \u003cbr\u003e3.1.3.2 Syndiotactic Polystyrene (SPS) \u003cbr\u003e3.1.4 Acrylonitrile-Butadiene-Styrene (ABS) \u003cbr\u003e3.1.5 Polyvinyl Chloride (PVC} \u003cbr\u003e3.1.6 Polyethylene Terephthalate (PET) \u003cbr\u003e3.2 Specialty Polymers \u003cbr\u003e3.2.1 Specialty Polyesters \u003cbr\u003e3.2.1.1 Glycol Modified PET \u003cbr\u003e3.2.1.2 PEN \u003cbr\u003e3.2.2 Cellulosics \u003cbr\u003e3.2.3 Ethylene-Vinyl Acetate Copolymers (EVA) \u003cbr\u003e3.2.4 Polycarbonate (PC) \u003cbr\u003e3.2.5 Polyvinyl Alcohol and Copolymers \u003cbr\u003e3.2.5.1 Polyvinyl Alcohol (PVOH or PVAL) \u003cbr\u003e3.2.5.2 Ethylene-Vinyl Alcohol Copolymers (EVOH) \u003cbr\u003e3.2.6 Polyvinylidene Chloride Copolymers (PVDC) \u003cbr\u003e3.2.7 Polyacrylonitrile Copolymers (PAN) \u003cbr\u003e3.2.8 Polyamides (PA) \u003cbr\u003e3.2.8 Cyclic Polyolefins (COC) \u003cbr\u003e3.2.10 Specialty Copolymers \u003cbr\u003e3.2.10.1 Ethylene-Styrene Copolymers \u003cbr\u003e3.2.10.2 Ethylene-Acrylic Copolymers \u003cbr\u003e3.2.10.3 Styrene-Acrylic Copolymers \u003cbr\u003e3.2.10.4 Styrene Block Copolymers (SBC) \u003cbr\u003e3.2.11 Liquid Crystal Polymers (LCP) \u003cbr\u003e3.3 Additives and Ancillaries \u003cbr\u003e3.3.1 Additives \u003cbr\u003e3.3.1.1 Introduction \u003cbr\u003e3.3.1.2 Processing Additives \u003cbr\u003e3.3.1.3 In-Use Enhancement Additives \u003cbr\u003e3.3.1.4 New Additives for Plastics in Packaging \u003cbr\u003e3.3.2 Adhesives \u003cbr\u003e3.3.2.1 Types of Adhesives \u003cbr\u003e3.3.2.2 Applications of Adhesives in Packaging \u003cbr\u003e3.3.2.3 New Developments for Adhesives in the Context of Plastics for Packaging \u003cbr\u003e3.3.3 Coatings \u003cbr\u003e3.3.3.1 Applications of Coatings in Packaging \u003cbr\u003e3.3.3.2 New Developments for Coatings in the Context of Plastics for Packaging \u003cbr\u003e3.4 Alternative Materials and Inter-Materials Competition \u003cbr\u003e3.4.1 Plastics Versus Paper \u003cbr\u003e3.4.2 Plastics Versus Paperboard \u003cbr\u003e3.4.3 Plastics Versus Wood\/Fibreboard \u003cbr\u003e3.4.4 Plastics Versus Glass \u003cbr\u003e3.4.5 Plastics Versus Metals \u003cbr\u003e4 Performance Characteristics of Plastics in Packaging \u003cbr\u003e\u003cbr\u003e4.1 Physical Properties \u003cbr\u003e4.1.1 Density \u003cbr\u003e4.1.2 Tacticity and Crystallinity \u003cbr\u003e4.1.3 Clarity \u003cbr\u003e4.1.4 Orientation \u003cbr\u003e4.1.5 Flammability \u003cbr\u003e4.1.6 Barrier Properties \u003cbr\u003e4.2 Mechanical Properties \u003cbr\u003e4.2.1 Tensile Strength, Rigidity and Flexibility \u003cbr\u003e4.2.2 Impact Strength \u003cbr\u003e4.3 Thermal Properties \u003cbr\u003e4.3.1 Glass Transition Temperature and Melting Temperature \u003cbr\u003e4.4 Chemical Properties \u003cbr\u003e5 Polymer Conversion Processes \u003cbr\u003e\u003cbr\u003e5.1 Overview \u003cbr\u003e5.2 Extrusion and Co-Extrusion \u003cbr\u003e5.3 Injection Moulding \u003cbr\u003e5.4 Rotational Moulding \u003cbr\u003e5.5 Moulding Expanded Polystyrene (EPS) \u003cbr\u003e5.6 Injection Blow Moulding and Extrusion Blowing \u003cbr\u003e5.7 Injection Stretch Blow Moulding \u003cbr\u003e5.8 Film Production \u003cbr\u003e5.8.1 Film Blowing \u003cbr\u003e5.8.2 Film Casting \u003cbr\u003e5.8.3 Calendering \u003cbr\u003e5.9 Thermoforming \u003cbr\u003e5.10 Extrusion Coating \u003cbr\u003e5.11 Foaming \u003cbr\u003e5.12 Form-Fill-Seal (FFS) \u003cbr\u003e5.13 Multilayer and Multimaterial Structures \u003cbr\u003e5.14 New Developments in Conversion \u003cbr\u003e5.15 Ancillary Processes \u003cbr\u003e5.15.1 Labelling \u003cbr\u003e5.15.2 Printing \u003cbr\u003e5.15.3 Closures \u003cbr\u003e5.15.4 Surface Treatment \u003cbr\u003e5.15.5 Metal Barrier Coatings for Films \u003cbr\u003e5.15.6 Silicon Oxide Barrier Coatings for Films \u003cbr\u003e5.15.7 Other Coatings for Films \u003cbr\u003e6 Flexible and Rigid Packaging Applications \u003cbr\u003e\u003cbr\u003e6.1 Flexible Packaging \u003cbr\u003e6.1.1 Definition \u003cbr\u003e6.1.2 Types of Flexible Packaging \u003cbr\u003e6.1.2.1 Bags \u003cbr\u003e6.1.2.2 Pouches \u003cbr\u003e6.1.2.3 Stand-up Pouches \u003cbr\u003e6.1.2.4 Retort Pouches \u003cbr\u003e6.1.2.5 Shrink Wrap \u003cbr\u003e6.1.2.6 Stretch Wrap \u003cbr\u003e6.1.2.7 Bubble Wrap \u003cbr\u003e6.1.2.8 Twist Wrap \u003cbr\u003e6.1.2.9 Foams \u003cbr\u003e6.1.3 Future Trends in Flexible Packaging \u003cbr\u003e6.2 Rigid Packaging \u003cbr\u003e6.2.1 Definition \u003cbr\u003e6.2.2 Types of Rigid Packaging \u003cbr\u003e6.2.2.1 Blister Packs \u003cbr\u003e6.2.2.2 Clam Shells \u003cbr\u003e6.2.2.3 Bottles, Jars and Cans \u003cbr\u003e6.2.2.4 Cartridges and Syringes \u003cbr\u003e6.2.2.5 Trays \u003cbr\u003e6.2.2.6 Transport Packaging - Pallets, Pails and Drums \u003cbr\u003e6.2.2.7 Packaging for Electrostatic Discharge Protection \u003cbr\u003e6.2.3 Future Trends in Rigid Packaging \u003cbr\u003e6.3 Hybrid Packaging \u003cbr\u003e6.3.1 Bag in Box \u003cbr\u003e6.3.2 Squeezable, Collapsible Tubes \u003cbr\u003e6.4 Packaging Accessories \u003cbr\u003e7 Current Market Quantification \u003cbr\u003e\u003cbr\u003e7.1 Plastics Production and Consumption \u003cbr\u003e7.2 Packaging Markets Size and Growth of Packaging Markets in Europe and USA \u003cbr\u003e7.3 European Plastics for Packaging Market Quantification \u003cbr\u003e7.4 US Plastics for Packaging Market Quantification \u003cbr\u003e7.5 Primary, Secondary and Tertiary Plastic Packaging \u003cbr\u003e7.6 Flexible Packaging Market Quantification \u003cbr\u003e7.7 Rigid Packaging Market Quantification \u003cbr\u003e8 Applications Markets \u003cbr\u003e\u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Food \u003cbr\u003e8.1.2 Beverages \u003cbr\u003e8.1.2.1 Water \u003cbr\u003e8.1.2.2 Carbonated Drinks \u003cbr\u003e8.1.2.3 Fruit Juices \u003cbr\u003e8.1.2.4 Beer \u003cbr\u003e8.1.3 Household and Hardware \u003cbr\u003e8.1.4 Personal Care \u003cbr\u003e8.1.5 Healthcare \u003cbr\u003e8.1.6 Industrial Products \u003cbr\u003e8.2 In Use Performance Requirements \u003cbr\u003e8.2.1 Microwavable \u003cbr\u003e8.2.2 Ovenable \u003cbr\u003e8.2.3 Shelf Life \u003cbr\u003e8.2.4 Modified Atmosphere Packaging \u003cbr\u003e8.3 Design and Aesthetics \u003cbr\u003e8.3.1 Decoration and Design \u003cbr\u003e8.3.3 Tamper Evidence \u003cbr\u003e8.3.4 Anti-Counterfeiting \u003cbr\u003e8.3.5 Other Intelligent Packaging \u003cbr\u003e8.3.6 In-Mould Labelling \u003cbr\u003e9 Industry Structure and Value Chain \u003cbr\u003e\u003cbr\u003e9.1 Plastics Industry \u003cbr\u003e9.1.1 Polymer Industry Structure by Polymer \u003cbr\u003e9.1.1.1 Polyethylene \u003cbr\u003e9.1.1.2 Polypropylene \u003cbr\u003e9.1.1.3 Polystyrene \u003cbr\u003e9.1.1.4 Polyvinyl Chloride \u003cbr\u003e9.1.1.5 Polyethylene Terephthalate \u003cbr\u003e9.1.2 Interpolymer Competition \u003cbr\u003e9.2 Compounding Industry \u003cbr\u003e9.3 Additives Industry \u003cbr\u003e9.4 Adhesive Industry \u003cbr\u003e9.5 Equipment Industry \u003cbr\u003e9.5.1 Plastics Machinery \u003cbr\u003e9.6 Converting and Packaging Industry \u003cbr\u003e9.6.1 Packaging Industry \u003cbr\u003e9.6.2 Converting Industry \u003cbr\u003e9.7 User Markets\/Packers \u003cbr\u003e9.8 Distribution \u0026amp; Retail Sales \u003cbr\u003e10 Regulations and Environmental Issues \u003cbr\u003e\u003cbr\u003e10.1 Food Contact \u003cbr\u003e10.2 European Waste and Recycling \u003cbr\u003e10.2.1 Plastics Packaging Waste \u003cbr\u003e10.2.2 Packaging Waste Issue \u003cbr\u003e10.2.1 Legislative Summary \u003cbr\u003e10.2.1.1 The EU Packaging Waste Directive (94\/62\/EC) \u003cbr\u003e10.2.1.2 Forthcoming Changes to EU Legislation \u003cbr\u003e10.2.2 Plastics Recycling \u0026amp; Recovery \u003cbr\u003e10.2.2.1 Source Reduction \u003cbr\u003e10.3 US Waste and Recycling \u003cbr\u003e10.3.1 Legislative Summary \u003cbr\u003e10.3.2 Plastics Recycling \u003cbr\u003e11 Developments in Plastic Packaging \u003cbr\u003e\u003cbr\u003e11.1 New Barrier Materials and Processes \u003cbr\u003e11.2 Oxygen Scavengers \u003cbr\u003e11.3 Nanocomposites \u003cbr\u003e11.4 Metallocene Polymers \u003cbr\u003e11.5 Biodegradable Polymers \u003cbr\u003e11.6 Aliphatic Polyketones \u003cbr\u003e11.7 Liquid Crystal Polymers \u003cbr\u003e11.8 Polyethylene Naphthalate \u003cbr\u003e11.9 New Developments in Films \u003cbr\u003e11.9.1 Smart Films \u003cbr\u003e11.9.2 Oriented Polystyrene (OPS) Films \u003cbr\u003e11.9.3 Microwavable Films \u003cbr\u003e11.9.4 Edible and Soluble Films \u003cbr\u003e11.10 Pouches \u003cbr\u003e11.11 New Developments for Rigid Cups, Trays, And Dishes \u003cbr\u003e11.12 New Developments for Bottles \u003cbr\u003e11.13 Other New Developments for Plastics in Packaging \u003cbr\u003e12 Influences and Trends in Plastics in Packaging to 2005 \u003cbr\u003e\u003cbr\u003e12.1 The Overall Packaging Market \u003cbr\u003e12.2 The Plastics Packaging Market \u003cbr\u003e12.2.1 Rigid Packaging Trends and Influences \u003cbr\u003e12.2.2 Flexible Packaging Trends and Influences \u003cbr\u003e12.3 Summary of Trends for Polymers Used in Packaging \u003cbr\u003e13 Companies and Associations \u003cbr\u003e\u003cbr\u003e13.1 International and National Plastics Industry Associations \u003cbr\u003e13.2 Media \u003cbr\u003e\u003cbr\u003eAppendix: Abbreviations \u0026amp; Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nbms is a market research and consultancy organisation which aims to provide actionable marketing information. Richard Beswick has worked in the chemicals and biotechnology sectors and has 22 years of experience in industrial marketing and market research. Dr. Dave Dunn is a senior associate at bms North America with training as a chemist and a background in both industrial and academic circles. He has been a Vice President of Loctite Corporation, a speciality adhesive and sealant Company. The authors are based in Europe and North America respectively, giving them an ideal base for this report.","published_at":"2017-06-22T21:13:14-04:00","created_at":"2017-06-22T21:13:14-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","ABS","acetate","acrylonitrile","adhesives","applications","book","cellulosics","coatings","COC","copolymers","EVA","flammability","glycol","high impact","HIPS","PA","packaging","PAN","PC","PEN","PET","plastics","polyamides","polycarbonate","polyesters","polyethylene","polyolefins","polypropylene","polystyrene","polyvinyl alcohol","polyvinyl chloride","polyvinylidene chloride","propert","PVC","PVDC","report","SPS","syndiotactic","terephthalate"],"price":48900,"price_min":48900,"price_max":48900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378338628,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics in Packaging - Western Europe and North America.","public_title":null,"options":["Default Title"],"price":48900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-329-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-329-7.jpg?v=1499952510"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-329-7.jpg?v=1499952510","options":["Title"],"media":[{"alt":null,"id":358536708189,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-329-7.jpg?v=1499952510"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-329-7.jpg?v=1499952510","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002 \u003cbr\u003eISBN 978-1-85957-329-7 \u003cbr\u003e\u003cbr\u003epages: 144, figures: 24, tables: 51\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPackaging is an $800 billion global industry. Flexible packaging types range from bags and bubble wrap to tubes, stand-up pouches and foam cushioning materials. Rigid packaging comprises blisters, bottles, cartridges, clam shells, pallets, trays, etc. Polymers are used in caps and closures, sacks, bags, labels, adhesives, rigid containers, films and other flexibles. \u003cbr\u003e\u003cbr\u003ePlastics are the most important material type in the flexible packaging market with over 70% market share in Europe and North America. Packaging is a very important market for thermoplastics, comprising 40% of total demand in Europe and 25% of total demand in North America in 2000. \u003cbr\u003e\u003cbr\u003ePlastics have increasingly replaced traditional materials in this sector because of their light weight and superior functionality. In rigid packaging polyethylene terephthalate (PET) has replaced glass in bottles for carbonated drinks, which has moved this resin from a speciality to a commodity plastic. New developments in materials include heat resistant and high barrier plastics which can replace metals and glass in other packaging applications. \u003cbr\u003e\u003cbr\u003eHowever, most of the easy conversions from traditional materials to plastics have now been made. Unless some radical changes occur, such as the packaging of beer in plastic pouches or bottles, the market is likely to grow in line with global GDP. \u003cbr\u003e\u003cbr\u003eThe five-volume polymers used in packaging are polyethylene, polypropylene, polystyrene, polyvinyl chloride (PVC) and PET. Packaging is the major use of polyethylene and polypropylene. High-density polyethylene is used in applications such as containers, milk and detergent bottles, bags and industrial wrapping. Low-density polyethylene is used for pallet and agricultural film, bags, coatings and containers. Polypropylene is employed in film, crates and microwavable containers. Polystyrene finds use in jewel cases, trays and foam insulation, while PET is used in bottles, film and other food packaging applications. \u003cbr\u003e\u003cbr\u003eA variety of speciality materials are used in packaging. New developments include liquid crystal polymers, which are high-temperature resistant materials with excellent barrier properties. Ticona has produced Vectran materials that can be thermoformed and extruded on standard equipment. They are high cost, but the material loading can be much lower than, for example, ethylene-vinyl alcohol (EVOH). \u003cbr\u003e\u003cbr\u003eThis report includes a description of plastic material types and properties relevant to packaging. Tables of comparative data are found in Chapter 4. Materials are commonly used in combinations in multilayer structures to obtain a set of key properties and to reduce costs. Processing is important to material properties and methods are outlined here. \u003cbr\u003e\u003cbr\u003eThis clearly written report on Plastics in Packaging provides an overview of the plastic packaging supply chain from materials to disposal. Information is included on market sizes and trends relevant to this chain. It includes a review of key factors affecting the industry, such as the need for recycling, and new developments in plastics used in packaging.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 The World of Packaging \u003cbr\u003e1.2 Scope of the Report \u003cbr\u003e1.3 Geographical Focus \u003cbr\u003e1.4 Methodology \u003cbr\u003e1.5 Authorship \u003cbr\u003e1.6 Units \u003cbr\u003e2 Executive Summary \u003cbr\u003e\u003cbr\u003e3 Materials for Packaging \u003cbr\u003e\u003cbr\u003e3.1 High Volume Polymers \u003cbr\u003e3.1.1 Polyethylene \u003cbr\u003e3.1.2 Polypropylene \u003cbr\u003e3.1.3 Polystyrene \u003cbr\u003e3.1.3.1 High Impact Polystyrene (HIPS) \u003cbr\u003e3.1.3.2 Syndiotactic Polystyrene (SPS) \u003cbr\u003e3.1.4 Acrylonitrile-Butadiene-Styrene (ABS) \u003cbr\u003e3.1.5 Polyvinyl Chloride (PVC} \u003cbr\u003e3.1.6 Polyethylene Terephthalate (PET) \u003cbr\u003e3.2 Specialty Polymers \u003cbr\u003e3.2.1 Specialty Polyesters \u003cbr\u003e3.2.1.1 Glycol Modified PET \u003cbr\u003e3.2.1.2 PEN \u003cbr\u003e3.2.2 Cellulosics \u003cbr\u003e3.2.3 Ethylene-Vinyl Acetate Copolymers (EVA) \u003cbr\u003e3.2.4 Polycarbonate (PC) \u003cbr\u003e3.2.5 Polyvinyl Alcohol and Copolymers \u003cbr\u003e3.2.5.1 Polyvinyl Alcohol (PVOH or PVAL) \u003cbr\u003e3.2.5.2 Ethylene-Vinyl Alcohol Copolymers (EVOH) \u003cbr\u003e3.2.6 Polyvinylidene Chloride Copolymers (PVDC) \u003cbr\u003e3.2.7 Polyacrylonitrile Copolymers (PAN) \u003cbr\u003e3.2.8 Polyamides (PA) \u003cbr\u003e3.2.8 Cyclic Polyolefins (COC) \u003cbr\u003e3.2.10 Specialty Copolymers \u003cbr\u003e3.2.10.1 Ethylene-Styrene Copolymers \u003cbr\u003e3.2.10.2 Ethylene-Acrylic Copolymers \u003cbr\u003e3.2.10.3 Styrene-Acrylic Copolymers \u003cbr\u003e3.2.10.4 Styrene Block Copolymers (SBC) \u003cbr\u003e3.2.11 Liquid Crystal Polymers (LCP) \u003cbr\u003e3.3 Additives and Ancillaries \u003cbr\u003e3.3.1 Additives \u003cbr\u003e3.3.1.1 Introduction \u003cbr\u003e3.3.1.2 Processing Additives \u003cbr\u003e3.3.1.3 In-Use Enhancement Additives \u003cbr\u003e3.3.1.4 New Additives for Plastics in Packaging \u003cbr\u003e3.3.2 Adhesives \u003cbr\u003e3.3.2.1 Types of Adhesives \u003cbr\u003e3.3.2.2 Applications of Adhesives in Packaging \u003cbr\u003e3.3.2.3 New Developments for Adhesives in the Context of Plastics for Packaging \u003cbr\u003e3.3.3 Coatings \u003cbr\u003e3.3.3.1 Applications of Coatings in Packaging \u003cbr\u003e3.3.3.2 New Developments for Coatings in the Context of Plastics for Packaging \u003cbr\u003e3.4 Alternative Materials and Inter-Materials Competition \u003cbr\u003e3.4.1 Plastics Versus Paper \u003cbr\u003e3.4.2 Plastics Versus Paperboard \u003cbr\u003e3.4.3 Plastics Versus Wood\/Fibreboard \u003cbr\u003e3.4.4 Plastics Versus Glass \u003cbr\u003e3.4.5 Plastics Versus Metals \u003cbr\u003e4 Performance Characteristics of Plastics in Packaging \u003cbr\u003e\u003cbr\u003e4.1 Physical Properties \u003cbr\u003e4.1.1 Density \u003cbr\u003e4.1.2 Tacticity and Crystallinity \u003cbr\u003e4.1.3 Clarity \u003cbr\u003e4.1.4 Orientation \u003cbr\u003e4.1.5 Flammability \u003cbr\u003e4.1.6 Barrier Properties \u003cbr\u003e4.2 Mechanical Properties \u003cbr\u003e4.2.1 Tensile Strength, Rigidity and Flexibility \u003cbr\u003e4.2.2 Impact Strength \u003cbr\u003e4.3 Thermal Properties \u003cbr\u003e4.3.1 Glass Transition Temperature and Melting Temperature \u003cbr\u003e4.4 Chemical Properties \u003cbr\u003e5 Polymer Conversion Processes \u003cbr\u003e\u003cbr\u003e5.1 Overview \u003cbr\u003e5.2 Extrusion and Co-Extrusion \u003cbr\u003e5.3 Injection Moulding \u003cbr\u003e5.4 Rotational Moulding \u003cbr\u003e5.5 Moulding Expanded Polystyrene (EPS) \u003cbr\u003e5.6 Injection Blow Moulding and Extrusion Blowing \u003cbr\u003e5.7 Injection Stretch Blow Moulding \u003cbr\u003e5.8 Film Production \u003cbr\u003e5.8.1 Film Blowing \u003cbr\u003e5.8.2 Film Casting \u003cbr\u003e5.8.3 Calendering \u003cbr\u003e5.9 Thermoforming \u003cbr\u003e5.10 Extrusion Coating \u003cbr\u003e5.11 Foaming \u003cbr\u003e5.12 Form-Fill-Seal (FFS) \u003cbr\u003e5.13 Multilayer and Multimaterial Structures \u003cbr\u003e5.14 New Developments in Conversion \u003cbr\u003e5.15 Ancillary Processes \u003cbr\u003e5.15.1 Labelling \u003cbr\u003e5.15.2 Printing \u003cbr\u003e5.15.3 Closures \u003cbr\u003e5.15.4 Surface Treatment \u003cbr\u003e5.15.5 Metal Barrier Coatings for Films \u003cbr\u003e5.15.6 Silicon Oxide Barrier Coatings for Films \u003cbr\u003e5.15.7 Other Coatings for Films \u003cbr\u003e6 Flexible and Rigid Packaging Applications \u003cbr\u003e\u003cbr\u003e6.1 Flexible Packaging \u003cbr\u003e6.1.1 Definition \u003cbr\u003e6.1.2 Types of Flexible Packaging \u003cbr\u003e6.1.2.1 Bags \u003cbr\u003e6.1.2.2 Pouches \u003cbr\u003e6.1.2.3 Stand-up Pouches \u003cbr\u003e6.1.2.4 Retort Pouches \u003cbr\u003e6.1.2.5 Shrink Wrap \u003cbr\u003e6.1.2.6 Stretch Wrap \u003cbr\u003e6.1.2.7 Bubble Wrap \u003cbr\u003e6.1.2.8 Twist Wrap \u003cbr\u003e6.1.2.9 Foams \u003cbr\u003e6.1.3 Future Trends in Flexible Packaging \u003cbr\u003e6.2 Rigid Packaging \u003cbr\u003e6.2.1 Definition \u003cbr\u003e6.2.2 Types of Rigid Packaging \u003cbr\u003e6.2.2.1 Blister Packs \u003cbr\u003e6.2.2.2 Clam Shells \u003cbr\u003e6.2.2.3 Bottles, Jars and Cans \u003cbr\u003e6.2.2.4 Cartridges and Syringes \u003cbr\u003e6.2.2.5 Trays \u003cbr\u003e6.2.2.6 Transport Packaging - Pallets, Pails and Drums \u003cbr\u003e6.2.2.7 Packaging for Electrostatic Discharge Protection \u003cbr\u003e6.2.3 Future Trends in Rigid Packaging \u003cbr\u003e6.3 Hybrid Packaging \u003cbr\u003e6.3.1 Bag in Box \u003cbr\u003e6.3.2 Squeezable, Collapsible Tubes \u003cbr\u003e6.4 Packaging Accessories \u003cbr\u003e7 Current Market Quantification \u003cbr\u003e\u003cbr\u003e7.1 Plastics Production and Consumption \u003cbr\u003e7.2 Packaging Markets Size and Growth of Packaging Markets in Europe and USA \u003cbr\u003e7.3 European Plastics for Packaging Market Quantification \u003cbr\u003e7.4 US Plastics for Packaging Market Quantification \u003cbr\u003e7.5 Primary, Secondary and Tertiary Plastic Packaging \u003cbr\u003e7.6 Flexible Packaging Market Quantification \u003cbr\u003e7.7 Rigid Packaging Market Quantification \u003cbr\u003e8 Applications Markets \u003cbr\u003e\u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Food \u003cbr\u003e8.1.2 Beverages \u003cbr\u003e8.1.2.1 Water \u003cbr\u003e8.1.2.2 Carbonated Drinks \u003cbr\u003e8.1.2.3 Fruit Juices \u003cbr\u003e8.1.2.4 Beer \u003cbr\u003e8.1.3 Household and Hardware \u003cbr\u003e8.1.4 Personal Care \u003cbr\u003e8.1.5 Healthcare \u003cbr\u003e8.1.6 Industrial Products \u003cbr\u003e8.2 In Use Performance Requirements \u003cbr\u003e8.2.1 Microwavable \u003cbr\u003e8.2.2 Ovenable \u003cbr\u003e8.2.3 Shelf Life \u003cbr\u003e8.2.4 Modified Atmosphere Packaging \u003cbr\u003e8.3 Design and Aesthetics \u003cbr\u003e8.3.1 Decoration and Design \u003cbr\u003e8.3.3 Tamper Evidence \u003cbr\u003e8.3.4 Anti-Counterfeiting \u003cbr\u003e8.3.5 Other Intelligent Packaging \u003cbr\u003e8.3.6 In-Mould Labelling \u003cbr\u003e9 Industry Structure and Value Chain \u003cbr\u003e\u003cbr\u003e9.1 Plastics Industry \u003cbr\u003e9.1.1 Polymer Industry Structure by Polymer \u003cbr\u003e9.1.1.1 Polyethylene \u003cbr\u003e9.1.1.2 Polypropylene \u003cbr\u003e9.1.1.3 Polystyrene \u003cbr\u003e9.1.1.4 Polyvinyl Chloride \u003cbr\u003e9.1.1.5 Polyethylene Terephthalate \u003cbr\u003e9.1.2 Interpolymer Competition \u003cbr\u003e9.2 Compounding Industry \u003cbr\u003e9.3 Additives Industry \u003cbr\u003e9.4 Adhesive Industry \u003cbr\u003e9.5 Equipment Industry \u003cbr\u003e9.5.1 Plastics Machinery \u003cbr\u003e9.6 Converting and Packaging Industry \u003cbr\u003e9.6.1 Packaging Industry \u003cbr\u003e9.6.2 Converting Industry \u003cbr\u003e9.7 User Markets\/Packers \u003cbr\u003e9.8 Distribution \u0026amp; Retail Sales \u003cbr\u003e10 Regulations and Environmental Issues \u003cbr\u003e\u003cbr\u003e10.1 Food Contact \u003cbr\u003e10.2 European Waste and Recycling \u003cbr\u003e10.2.1 Plastics Packaging Waste \u003cbr\u003e10.2.2 Packaging Waste Issue \u003cbr\u003e10.2.1 Legislative Summary \u003cbr\u003e10.2.1.1 The EU Packaging Waste Directive (94\/62\/EC) \u003cbr\u003e10.2.1.2 Forthcoming Changes to EU Legislation \u003cbr\u003e10.2.2 Plastics Recycling \u0026amp; Recovery \u003cbr\u003e10.2.2.1 Source Reduction \u003cbr\u003e10.3 US Waste and Recycling \u003cbr\u003e10.3.1 Legislative Summary \u003cbr\u003e10.3.2 Plastics Recycling \u003cbr\u003e11 Developments in Plastic Packaging \u003cbr\u003e\u003cbr\u003e11.1 New Barrier Materials and Processes \u003cbr\u003e11.2 Oxygen Scavengers \u003cbr\u003e11.3 Nanocomposites \u003cbr\u003e11.4 Metallocene Polymers \u003cbr\u003e11.5 Biodegradable Polymers \u003cbr\u003e11.6 Aliphatic Polyketones \u003cbr\u003e11.7 Liquid Crystal Polymers \u003cbr\u003e11.8 Polyethylene Naphthalate \u003cbr\u003e11.9 New Developments in Films \u003cbr\u003e11.9.1 Smart Films \u003cbr\u003e11.9.2 Oriented Polystyrene (OPS) Films \u003cbr\u003e11.9.3 Microwavable Films \u003cbr\u003e11.9.4 Edible and Soluble Films \u003cbr\u003e11.10 Pouches \u003cbr\u003e11.11 New Developments for Rigid Cups, Trays, And Dishes \u003cbr\u003e11.12 New Developments for Bottles \u003cbr\u003e11.13 Other New Developments for Plastics in Packaging \u003cbr\u003e12 Influences and Trends in Plastics in Packaging to 2005 \u003cbr\u003e\u003cbr\u003e12.1 The Overall Packaging Market \u003cbr\u003e12.2 The Plastics Packaging Market \u003cbr\u003e12.2.1 Rigid Packaging Trends and Influences \u003cbr\u003e12.2.2 Flexible Packaging Trends and Influences \u003cbr\u003e12.3 Summary of Trends for Polymers Used in Packaging \u003cbr\u003e13 Companies and Associations \u003cbr\u003e\u003cbr\u003e13.1 International and National Plastics Industry Associations \u003cbr\u003e13.2 Media \u003cbr\u003e\u003cbr\u003eAppendix: Abbreviations \u0026amp; Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nbms is a market research and consultancy organisation which aims to provide actionable marketing information. Richard Beswick has worked in the chemicals and biotechnology sectors and has 22 years of experience in industrial marketing and market research. Dr. Dave Dunn is a senior associate at bms North America with training as a chemist and a background in both industrial and academic circles. He has been a Vice President of Loctite Corporation, a speciality adhesive and sealant Company. The authors are based in Europe and North America respectively, giving them an ideal base for this report."}
Polymers in Building a...
$450.00
{"id":11242223108,"title":"Polymers in Building and Construction","handle":"978-1-85957-332-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Market Report, 2002 \u003cbr\u003eISBN 978-1-85957-332-7 \u003cbr\u003e\u003cbr\u003ePublished: 2002\u003cbr\u003epages: 124, tables: 3, figures: 9\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBuilding and construction form a large part of the global economy and this industry showed a growth rate of 1.8% worldwide in 2001. Polymer materials have been steadily replacing traditional materials in this sector. Construction applications of plastics include pipes and guttering, window and door profiles, glazing, roofing, sealants and adhesives, cement, insulation, flooring and building panels. Civil engineering applications include geomembranes, road and sports surfaces, building reinforcement and bridge building. \u003cbr\u003e\u003cbr\u003eThis is a critical market for plastics. Around 60% of all PVC production is now used in this sector, applications include profiles for windows and doors, fascias, pipes and pipe fittings. Polystyrene is also used extensively, primarily in insulation applications. Around 1.85 million tons of high density polyethylene are used annually in construction, amounting to roughly 10% of total global consumption. Low density polyethylene, polyurethane, and polypropylene are also used extensively. \u003cbr\u003e\u003cbr\u003eIn Western Europe alone in 1998 6.4 million tonnes of plastics were used in construction. The value of the plastics pipes market in the same year was estimated at 11 million euros and the growth rate is predicted to be 4% per annum in Europe. PVC accounts for 60% of the pipe market with polyolefins at 27% and growing. Alternative materials such as ABS and polyvinylidene fluoride are also being used, particularly in industrial sectors. \u003cbr\u003e\u003cbr\u003eThe growth rate for plastics consumption in building and construction in the US averaged 8% per annum from 1995 to 1998. Figures for the US housing industry showed an increase in the number of new housing starts in June 2001 at 1.658 million units, 6.3% higher than in June 2000. Other factors that influence plastics consumption are refurbishment and DIY projects. \u003cbr\u003e\u003cbr\u003eComposite materials are being used for load bearing in construction applications. Foamed wood\/plastic composites are a growing market in applications such as decking in North America. Demand is projected to be around 600,000 tons in 2005. There is potential for using recycled materials in composites. Plastic lumber decking is commonly made using recycled HDPE. Recycled plastics are also being used in a cement matrix. Polymeric fibres can also be used to reinforce cement and materials are being developed with ductility values equal to those of metals for applications such as runway surfaces, floors, and pavements. \u003cbr\u003e\u003cbr\u003eEnvironmental concerns are affecting the building industry in many ways. Recycling methods are being developed for plastic building components. Methods of using recycled material in construction are under trial. The housing itself is being redesigned to minimise usage of fossil fuels, which is leading to an increased requirement for insulation and the development of alternative means of heating such as solar panels and geothermal heating. \u003cbr\u003e\u003cbr\u003ePolymers in Building and Construction examines the extensive markets for polymers by material and also by application, listing key players in these fields and new developments. A selection of companies operating in this sector is described in greater depth in Chapter 7.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Background \u003cbr\u003e1.2 World Markets \u003cbr\u003e1.3 Scope \u003cbr\u003e1.4 Geographical Focus \u003cbr\u003e1.5 Methodology \u003cbr\u003eReference \u003cbr\u003e2 Executive Summary \u003cbr\u003e\u003cbr\u003e2.1 Global Construction Industry \u003cbr\u003e2.2 Materials \u003cbr\u003e2.2.1 Resins \u003cbr\u003e2.2.2 Composites \u003cbr\u003e2.3 Applications \u003cbr\u003e2.3.1 Plastic Pipes \u003cbr\u003e2.3.2 Profile \u003cbr\u003e2.3.3 Cladding \u003cbr\u003e2.3.4 Roofing \u003cbr\u003e2.3.5 Adhesives \u003cbr\u003e2.3.6 Glazing \u003cbr\u003e2.3.7 Insulation \u003cbr\u003e2.3.8 Flooring \u003cbr\u003e2.3.9 Civil Engineering Applications \u003cbr\u003e2.4 Recycling \u003cbr\u003e2.5 Material Suppliers \u003cbr\u003eReference \u003cbr\u003e3 Review of Material Types and Properties \u003cbr\u003e\u003cbr\u003eIntroduction \u003cbr\u003e3.1 PVC \u003cbr\u003e3.1.1 Overview \u003cbr\u003e3.1.2 PVC in Pipes \u003cbr\u003e3.1.3 PVC in Profile \u003cbr\u003e3.1.4 Compounds and Additives \u003cbr\u003e3.1.5 Foamed PVC \u003cbr\u003e3.2 Polyvinyl Butyral (PVB) \u003cbr\u003e3.3 Polyethylene \u003cbr\u003e3.3.1 Overview \u003cbr\u003e3.3.2 Polyethylene for Pipe \u003cbr\u003e3.3.3 Other Uses \u003cbr\u003e3.4 Polyethylene Terephthalate \u003cbr\u003e3.5 Polypropylene (PP) \u003cbr\u003e3.5.1 Overview \u003cbr\u003e3.5.2 Polypropylene for Pipe \u003cbr\u003e3.5.3 Other Uses \u003cbr\u003e3.6 Acrylonitrile-Butadiene-Styrene (ABS) \u003cbr\u003e3.7 Polystyrene (PS) \u003cbr\u003e3.7.1 Overview \u003cbr\u003e3.7.2 Expanded Polystyrene \u003cbr\u003e3.7.3 Other Uses \u003cbr\u003e3.8 Acrylic \u003cbr\u003e3.9 Polycarbonate \u003cbr\u003e3.10 Polyamide (PA) \u003cbr\u003e3.10.2 Polyphthalamide (PPA) \u003cbr\u003e3.11 Polyphenylene Oxide (PPO) \u003cbr\u003e3.12 Unsaturated Polyesters \u003cbr\u003e3.13 Phenolic Resins \u003cbr\u003e3.14 Epoxy Resin \u003cbr\u003e3.15 Polyurethane \u003cbr\u003e3.15.1 Overview \u003cbr\u003e3.15.2 Polyurethane Foam \u003cbr\u003e3.15.3 Blowing Agent Replacements \u003cbr\u003e3.15.4 Other Uses \u003cbr\u003e3.16 Thermoplastic Elastomers (TPE) \u003cbr\u003e3.17 Thermoset Elastomers \u003cbr\u003e3.18 Composite Materials \u003cbr\u003e3.18.1 Glass Fibre Composites \u003cbr\u003e3.18.2 Carbon Fibre Composites \u003cbr\u003e3.18.3 Wood\/Plastic Composites \u003cbr\u003e3.18.4 Other Natural Fibre Composites \u003cbr\u003e3.18.5 Cement-Based Composites \u003cbr\u003eReferences \u003cbr\u003e4 Overview of Polymer Usage in the Building and Construction Sector \u003cbr\u003e\u003cbr\u003e4.1 Windows and Doors \u003cbr\u003e4.2 Glazing \u003cbr\u003e4.2.1 Glazing Film \u003cbr\u003e4.3 Cladding and Fascias \u003cbr\u003e4.3.1 Coving, Skirting and Other Interior Items \u003cbr\u003e4.3.2 Exterior Cladding, Shuttering and Panels \u003cbr\u003e4.3.3 Other Profiles and Interior Panels \u003cbr\u003e4.4 Insulation \u003cbr\u003e4.4.1 Thermal Insulation \u003cbr\u003e4.4.1.1 Building Regulations \u003cbr\u003e4.4.1.2 Polystyrene Foam Insulation \u003cbr\u003e4.4.1.3 Polyurethane Foam Insulation \u003cbr\u003e4.4.2 Acoustic Insulation \u003cbr\u003e4.5 Sealing \u003cbr\u003e4.5.1 Seals and Gaskets \u003cbr\u003e4.5.2 Sealants \u003cbr\u003e4.6 Flooring \u003cbr\u003e4.6.1 Sheets \u003cbr\u003e4.6.2 Tiles \u003cbr\u003e4.6.3 Carpet \u003cbr\u003e4.6.5 Wall Covering \u003cbr\u003e4.7 Pipe and Conduit \u003cbr\u003e4.7.1 Overview \u003cbr\u003e4.7.2 Renovation of Water and Sewerage Pipelines \u003cbr\u003e4.7.3 Gas Pipes \u003cbr\u003e4.7.4 Pipe Coatings \u003cbr\u003e4.8 Roofing \u003cbr\u003e4.9 Houses and Shelters \u003cbr\u003e4.9.1 Hurricane-Proof Shelters \u003cbr\u003e4.9.2 Storm Shelters \u003cbr\u003e4.9.3 Emergency Shelters \u003cbr\u003e4.10 Adhesives \u003cbr\u003e4.11 Fencing and Decking \u003cbr\u003e4.12 Recycled Plastic Lumber \u003cbr\u003e4.13 Building Stone Restoration \u003cbr\u003e5 Civil Engineering Applications of Polymers \u003cbr\u003e\u003cbr\u003e5.1 Bridges \u003cbr\u003e5.1.1 Construction \u003cbr\u003e5.1.2 Repair and Reinforcement \u003cbr\u003e5.1.3 Glulams \u003cbr\u003e5.2 Seismic Damage \u003cbr\u003e5.3 Membranes \u003cbr\u003e5.4 Road and Paving Applications \u003cbr\u003e5.5 Railway Applications \u003cbr\u003e5.6 Sport and Leisure Surfaces \u003cbr\u003e6 Key Trends \u003cbr\u003e\u003cbr\u003e6.1 The Economy \u003cbr\u003e6.1.1 North America \u003cbr\u003e6.1.2 Europe \u003cbr\u003e6.2 Regional Differences in the Market for Construction Products made from Plastics \u003cbr\u003e6.3 Polymer Pricing \u003cbr\u003e6.4 Internet Trading \u003cbr\u003e6.5 Global Warming \u003cbr\u003e6.6 European Union Action Against Ozone Depleting Substances \u003cbr\u003e6.7 Recycling and Use of Recycled Materials \u003cbr\u003e6.8 Synthetic Building Materials from Solid Waste \u003cbr\u003e6.9 Trends in Housing \u003cbr\u003e6.9.1 Environmentally Friendly Housing \u003cbr\u003e6.9.2 Modular Housing \u003cbr\u003e6.9.3 Floating Houses \u003cbr\u003e6.9.4 Plastic Space House \u003cbr\u003e6.10 Solar Heating \u003cbr\u003e6.11 Geothermal Heating \u003cbr\u003e6.12 Development of Dense Plastic Foam \u003cbr\u003e7 Company Profiles \u003cbr\u003e\u003cbr\u003e7.1 Introduction - Competitive Situation \u003cbr\u003e7.2 Advanced Elastomer Systems, L.P. \u003cbr\u003e7.3 Atofina \u003cbr\u003e7.4 Barlo Plastics Europe N.V. \u003cbr\u003e7.5 BASF AG \u003cbr\u003e7.6 Bayer AG \u003cbr\u003e7.7 Borealis Holding A\/S \u003cbr\u003e7.8 BP \u003cbr\u003e7.9 British Vita PLC \u003cbr\u003e7.10 CRH PLC \u003cbr\u003e7.11 Crompton Vinyl Additives GmbH \u003cbr\u003e7.12 Deceuninck NV \u003cbr\u003e7.13 The Dow Chemical Company \u003cbr\u003e7.14 DSM \u003cbr\u003e7.15 DuPont de Nemours International SA \u003cbr\u003e7.16 European Vinyls Corporation (EVC) \u003cbr\u003e7.17 Heywood Williams Group PLC \u003cbr\u003e7.18 HT Troplast AG \u003cbr\u003e7.19 Huntsman Corporation \u003cbr\u003e7.20 Hydro Polymers \u003cbr\u003e7.21 Icopal Holding \u003cbr\u003e7.22 IMI plc \u003cbr\u003e7.23 Palram Industries Limited \u003cbr\u003e7.24 Royal Group Technologies Limited \u003cbr\u003e7.25 Solvay S.A. \u003cbr\u003e7.26 Spartech Corporation \u003cbr\u003e7.27 Tarkett Sommer Vertriebs GmbH \u0026amp; Co. KG \u003cbr\u003e7.28 Uponor Oyj \u003cbr\u003e7.29 Wavin Plastics Ltd. \u003cbr\u003e8 Future Outlook \u003cbr\u003e\u003cbr\u003e8.1 Polymers in the Third Millennium \u003cbr\u003e8.2 Technology \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University in Engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. \u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:52-04:00","created_at":"2017-06-22T21:13:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","building","construction","polymers","report"],"price":45000,"price_min":45000,"price_max":45000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378377604,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Building and Construction","public_title":null,"options":["Default Title"],"price":45000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-332-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273","options":["Title"],"media":[{"alt":null,"id":358703202397,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Market Report, 2002 \u003cbr\u003eISBN 978-1-85957-332-7 \u003cbr\u003e\u003cbr\u003ePublished: 2002\u003cbr\u003epages: 124, tables: 3, figures: 9\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBuilding and construction form a large part of the global economy and this industry showed a growth rate of 1.8% worldwide in 2001. Polymer materials have been steadily replacing traditional materials in this sector. Construction applications of plastics include pipes and guttering, window and door profiles, glazing, roofing, sealants and adhesives, cement, insulation, flooring and building panels. Civil engineering applications include geomembranes, road and sports surfaces, building reinforcement and bridge building. \u003cbr\u003e\u003cbr\u003eThis is a critical market for plastics. Around 60% of all PVC production is now used in this sector, applications include profiles for windows and doors, fascias, pipes and pipe fittings. Polystyrene is also used extensively, primarily in insulation applications. Around 1.85 million tons of high density polyethylene are used annually in construction, amounting to roughly 10% of total global consumption. Low density polyethylene, polyurethane, and polypropylene are also used extensively. \u003cbr\u003e\u003cbr\u003eIn Western Europe alone in 1998 6.4 million tonnes of plastics were used in construction. The value of the plastics pipes market in the same year was estimated at 11 million euros and the growth rate is predicted to be 4% per annum in Europe. PVC accounts for 60% of the pipe market with polyolefins at 27% and growing. Alternative materials such as ABS and polyvinylidene fluoride are also being used, particularly in industrial sectors. \u003cbr\u003e\u003cbr\u003eThe growth rate for plastics consumption in building and construction in the US averaged 8% per annum from 1995 to 1998. Figures for the US housing industry showed an increase in the number of new housing starts in June 2001 at 1.658 million units, 6.3% higher than in June 2000. Other factors that influence plastics consumption are refurbishment and DIY projects. \u003cbr\u003e\u003cbr\u003eComposite materials are being used for load bearing in construction applications. Foamed wood\/plastic composites are a growing market in applications such as decking in North America. Demand is projected to be around 600,000 tons in 2005. There is potential for using recycled materials in composites. Plastic lumber decking is commonly made using recycled HDPE. Recycled plastics are also being used in a cement matrix. Polymeric fibres can also be used to reinforce cement and materials are being developed with ductility values equal to those of metals for applications such as runway surfaces, floors, and pavements. \u003cbr\u003e\u003cbr\u003eEnvironmental concerns are affecting the building industry in many ways. Recycling methods are being developed for plastic building components. Methods of using recycled material in construction are under trial. The housing itself is being redesigned to minimise usage of fossil fuels, which is leading to an increased requirement for insulation and the development of alternative means of heating such as solar panels and geothermal heating. \u003cbr\u003e\u003cbr\u003ePolymers in Building and Construction examines the extensive markets for polymers by material and also by application, listing key players in these fields and new developments. A selection of companies operating in this sector is described in greater depth in Chapter 7.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Background \u003cbr\u003e1.2 World Markets \u003cbr\u003e1.3 Scope \u003cbr\u003e1.4 Geographical Focus \u003cbr\u003e1.5 Methodology \u003cbr\u003eReference \u003cbr\u003e2 Executive Summary \u003cbr\u003e\u003cbr\u003e2.1 Global Construction Industry \u003cbr\u003e2.2 Materials \u003cbr\u003e2.2.1 Resins \u003cbr\u003e2.2.2 Composites \u003cbr\u003e2.3 Applications \u003cbr\u003e2.3.1 Plastic Pipes \u003cbr\u003e2.3.2 Profile \u003cbr\u003e2.3.3 Cladding \u003cbr\u003e2.3.4 Roofing \u003cbr\u003e2.3.5 Adhesives \u003cbr\u003e2.3.6 Glazing \u003cbr\u003e2.3.7 Insulation \u003cbr\u003e2.3.8 Flooring \u003cbr\u003e2.3.9 Civil Engineering Applications \u003cbr\u003e2.4 Recycling \u003cbr\u003e2.5 Material Suppliers \u003cbr\u003eReference \u003cbr\u003e3 Review of Material Types and Properties \u003cbr\u003e\u003cbr\u003eIntroduction \u003cbr\u003e3.1 PVC \u003cbr\u003e3.1.1 Overview \u003cbr\u003e3.1.2 PVC in Pipes \u003cbr\u003e3.1.3 PVC in Profile \u003cbr\u003e3.1.4 Compounds and Additives \u003cbr\u003e3.1.5 Foamed PVC \u003cbr\u003e3.2 Polyvinyl Butyral (PVB) \u003cbr\u003e3.3 Polyethylene \u003cbr\u003e3.3.1 Overview \u003cbr\u003e3.3.2 Polyethylene for Pipe \u003cbr\u003e3.3.3 Other Uses \u003cbr\u003e3.4 Polyethylene Terephthalate \u003cbr\u003e3.5 Polypropylene (PP) \u003cbr\u003e3.5.1 Overview \u003cbr\u003e3.5.2 Polypropylene for Pipe \u003cbr\u003e3.5.3 Other Uses \u003cbr\u003e3.6 Acrylonitrile-Butadiene-Styrene (ABS) \u003cbr\u003e3.7 Polystyrene (PS) \u003cbr\u003e3.7.1 Overview \u003cbr\u003e3.7.2 Expanded Polystyrene \u003cbr\u003e3.7.3 Other Uses \u003cbr\u003e3.8 Acrylic \u003cbr\u003e3.9 Polycarbonate \u003cbr\u003e3.10 Polyamide (PA) \u003cbr\u003e3.10.2 Polyphthalamide (PPA) \u003cbr\u003e3.11 Polyphenylene Oxide (PPO) \u003cbr\u003e3.12 Unsaturated Polyesters \u003cbr\u003e3.13 Phenolic Resins \u003cbr\u003e3.14 Epoxy Resin \u003cbr\u003e3.15 Polyurethane \u003cbr\u003e3.15.1 Overview \u003cbr\u003e3.15.2 Polyurethane Foam \u003cbr\u003e3.15.3 Blowing Agent Replacements \u003cbr\u003e3.15.4 Other Uses \u003cbr\u003e3.16 Thermoplastic Elastomers (TPE) \u003cbr\u003e3.17 Thermoset Elastomers \u003cbr\u003e3.18 Composite Materials \u003cbr\u003e3.18.1 Glass Fibre Composites \u003cbr\u003e3.18.2 Carbon Fibre Composites \u003cbr\u003e3.18.3 Wood\/Plastic Composites \u003cbr\u003e3.18.4 Other Natural Fibre Composites \u003cbr\u003e3.18.5 Cement-Based Composites \u003cbr\u003eReferences \u003cbr\u003e4 Overview of Polymer Usage in the Building and Construction Sector \u003cbr\u003e\u003cbr\u003e4.1 Windows and Doors \u003cbr\u003e4.2 Glazing \u003cbr\u003e4.2.1 Glazing Film \u003cbr\u003e4.3 Cladding and Fascias \u003cbr\u003e4.3.1 Coving, Skirting and Other Interior Items \u003cbr\u003e4.3.2 Exterior Cladding, Shuttering and Panels \u003cbr\u003e4.3.3 Other Profiles and Interior Panels \u003cbr\u003e4.4 Insulation \u003cbr\u003e4.4.1 Thermal Insulation \u003cbr\u003e4.4.1.1 Building Regulations \u003cbr\u003e4.4.1.2 Polystyrene Foam Insulation \u003cbr\u003e4.4.1.3 Polyurethane Foam Insulation \u003cbr\u003e4.4.2 Acoustic Insulation \u003cbr\u003e4.5 Sealing \u003cbr\u003e4.5.1 Seals and Gaskets \u003cbr\u003e4.5.2 Sealants \u003cbr\u003e4.6 Flooring \u003cbr\u003e4.6.1 Sheets \u003cbr\u003e4.6.2 Tiles \u003cbr\u003e4.6.3 Carpet \u003cbr\u003e4.6.5 Wall Covering \u003cbr\u003e4.7 Pipe and Conduit \u003cbr\u003e4.7.1 Overview \u003cbr\u003e4.7.2 Renovation of Water and Sewerage Pipelines \u003cbr\u003e4.7.3 Gas Pipes \u003cbr\u003e4.7.4 Pipe Coatings \u003cbr\u003e4.8 Roofing \u003cbr\u003e4.9 Houses and Shelters \u003cbr\u003e4.9.1 Hurricane-Proof Shelters \u003cbr\u003e4.9.2 Storm Shelters \u003cbr\u003e4.9.3 Emergency Shelters \u003cbr\u003e4.10 Adhesives \u003cbr\u003e4.11 Fencing and Decking \u003cbr\u003e4.12 Recycled Plastic Lumber \u003cbr\u003e4.13 Building Stone Restoration \u003cbr\u003e5 Civil Engineering Applications of Polymers \u003cbr\u003e\u003cbr\u003e5.1 Bridges \u003cbr\u003e5.1.1 Construction \u003cbr\u003e5.1.2 Repair and Reinforcement \u003cbr\u003e5.1.3 Glulams \u003cbr\u003e5.2 Seismic Damage \u003cbr\u003e5.3 Membranes \u003cbr\u003e5.4 Road and Paving Applications \u003cbr\u003e5.5 Railway Applications \u003cbr\u003e5.6 Sport and Leisure Surfaces \u003cbr\u003e6 Key Trends \u003cbr\u003e\u003cbr\u003e6.1 The Economy \u003cbr\u003e6.1.1 North America \u003cbr\u003e6.1.2 Europe \u003cbr\u003e6.2 Regional Differences in the Market for Construction Products made from Plastics \u003cbr\u003e6.3 Polymer Pricing \u003cbr\u003e6.4 Internet Trading \u003cbr\u003e6.5 Global Warming \u003cbr\u003e6.6 European Union Action Against Ozone Depleting Substances \u003cbr\u003e6.7 Recycling and Use of Recycled Materials \u003cbr\u003e6.8 Synthetic Building Materials from Solid Waste \u003cbr\u003e6.9 Trends in Housing \u003cbr\u003e6.9.1 Environmentally Friendly Housing \u003cbr\u003e6.9.2 Modular Housing \u003cbr\u003e6.9.3 Floating Houses \u003cbr\u003e6.9.4 Plastic Space House \u003cbr\u003e6.10 Solar Heating \u003cbr\u003e6.11 Geothermal Heating \u003cbr\u003e6.12 Development of Dense Plastic Foam \u003cbr\u003e7 Company Profiles \u003cbr\u003e\u003cbr\u003e7.1 Introduction - Competitive Situation \u003cbr\u003e7.2 Advanced Elastomer Systems, L.P. \u003cbr\u003e7.3 Atofina \u003cbr\u003e7.4 Barlo Plastics Europe N.V. \u003cbr\u003e7.5 BASF AG \u003cbr\u003e7.6 Bayer AG \u003cbr\u003e7.7 Borealis Holding A\/S \u003cbr\u003e7.8 BP \u003cbr\u003e7.9 British Vita PLC \u003cbr\u003e7.10 CRH PLC \u003cbr\u003e7.11 Crompton Vinyl Additives GmbH \u003cbr\u003e7.12 Deceuninck NV \u003cbr\u003e7.13 The Dow Chemical Company \u003cbr\u003e7.14 DSM \u003cbr\u003e7.15 DuPont de Nemours International SA \u003cbr\u003e7.16 European Vinyls Corporation (EVC) \u003cbr\u003e7.17 Heywood Williams Group PLC \u003cbr\u003e7.18 HT Troplast AG \u003cbr\u003e7.19 Huntsman Corporation \u003cbr\u003e7.20 Hydro Polymers \u003cbr\u003e7.21 Icopal Holding \u003cbr\u003e7.22 IMI plc \u003cbr\u003e7.23 Palram Industries Limited \u003cbr\u003e7.24 Royal Group Technologies Limited \u003cbr\u003e7.25 Solvay S.A. \u003cbr\u003e7.26 Spartech Corporation \u003cbr\u003e7.27 Tarkett Sommer Vertriebs GmbH \u0026amp; Co. KG \u003cbr\u003e7.28 Uponor Oyj \u003cbr\u003e7.29 Wavin Plastics Ltd. \u003cbr\u003e8 Future Outlook \u003cbr\u003e\u003cbr\u003e8.1 Polymers in the Third Millennium \u003cbr\u003e8.2 Technology \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University in Engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. \u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003cbr\u003e\u003cbr\u003e"}
Polymers in Electronics
$490.00
{"id":11242223236,"title":"Polymers in Electronics","handle":"978-1-84735-006-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-84735-006-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e120 pages, Soft-backed, Rapra market report\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDesigners of electrical and electronic components have a wide choice of polymers at their disposal - cost is a prime consideration but competition in the market place is imposing ever more stringent specification criteria on the equipment designer who, in turn, is demanding significantly improved performance from his polymer supplier. This report lists the most commonly used polymers with brief notes on their properties.\u003cbr\u003e\u003cbr\u003eThis report seeks to provide an overall picture of the varied use of polymers in the manufacture of electronic components. It has endeavoured to identify trends and future movements of the market.\u003cbr\u003e\u003cbr\u003eThe pattern of polymer usage has changed and material formulations have had to be modified to conform with new European Union (EU) legislation relating to the use of hazardous materials in components. Furthermore, there is now far more emphasis on recycling rather than landfill disposal and these are issues covered in the report.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to all those involved in using polymers to produce electronic components and to those who provide the raw materials for the production.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Executive Summary\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3. Review of Materials and Properties\u003c\/strong\u003e\u003cstrong\u003e\u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction\u003cbr\u003e3.2 Polymers for Components\u003cbr\u003e3.2.1 Acrylonitrile-Butadiene-Styrene (ABS)\u003cbr\u003e3.2.2 Acetal Copolymers (Polyoxymethylene; POM)\u003cbr\u003e3.2.3 IXEF Polyarylamide\u003cbr\u003e3.2.4 Liquid Crystalline Polymers (LCP)\u003cbr\u003e3.2.5 Polyamide (Nylon; PA)\u003cbr\u003e3.2.6 Polybutylene Terephthalate (PBT)\u003cbr\u003e3.2.7 Polycarbonate (PC)\u003cbr\u003e3.2.8 Poly Ether Ether Ketone (PEEK)\u003cbr\u003e3.2.9 Polyetherimide (PEI)\u003cbr\u003e3.2.10 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.2.11 Polyethylene Terephthalate (PET)\u003cbr\u003e3.2.12 Polyparaphenylene Terephthalamide\u003cbr\u003e3.2.13 Polyimide (PI)\u003cbr\u003e3.2.14 Polypropylene (PP)\u003cbr\u003e3.2.15 Polyphthalamides (PPA)\u003cbr\u003e3.2.16 Polyphenylene Sulfide (PPS)\u003cbr\u003e3.2.17 Polystyrene (PS)\u003cbr\u003e3.2.18 PS-Modified Polyphenylene Oxide (PPO)\u003cbr\u003e3.2.19 Polysulfone (PSU)\u003cbr\u003e3.2.20 Polytetrafluoroethylene (PTFE)\u003cbr\u003e3.2.21 Polyurethane (PU)\u003cbr\u003e3.2.22 Polyvinyl Chloride (PVC)\u003cbr\u003e3.2.23 Polyvinylidene Fluoride (PVDF)\u003cbr\u003e3.2.24 Styrene\/Acrylonitrile (SAN)\u003cbr\u003e3.2.25 Elastomers\u003cbr\u003e3.2.26 Conductive Materials\u003cbr\u003e3.2.27 Additives\u003cbr\u003e3.3 Component Characteristics\u003cbr\u003e3.4 Polymers for Enclosures\u003cbr\u003e3.5 Electronic Components - Polymers Typically Employed\u003cbr\u003e3.5.1 Batteries including Lithium Polymer Types\u003cbr\u003e3.5.2 Capacitors\u003cbr\u003e3.5.3 Coil Formers\u003cbr\u003e3.5.4 Connectors\u003cbr\u003e3.5.5 Membrane Keypads\u003cbr\u003e3.5.6 Plugs and Sockets\u003cbr\u003e3.5.7 Printed Circuit Boards (PCB)\u003cbr\u003e3.5.8 Relays\u003cbr\u003e3.5.9 Resistors\u003cbr\u003e3.5.10 RFI Screening\u003cbr\u003e3.5.11 Sensors\u003cbr\u003e3.5.12 Switches\u003cbr\u003e3.5.13 Terminals\u003cbr\u003e3.5.14 Touch Screens\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Overview of European Electronic Component Markets\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Market Analysis\u003cbr\u003e4.3 Mobile Communications\u003cbr\u003e4.4 Automotive Applications\u003cbr\u003e4.5 Fuel Cells\u003cbr\u003e4.6 Computers\u003cbr\u003e4.7 Contract Electronic Manufacturing\u003cbr\u003e4.8 Component Distribution\u003cbr\u003e4.9 European Markets - Germany\u003cbr\u003e4.10 European Markets - France\u003cbr\u003e4.11 European Markets - Italy\u003cbr\u003e4.12 Other European Markets\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Key Trends and Developments\u003c\/strong\u003e\u003cbr\u003e5.1 Bluetooth Technology\u003cbr\u003e5.2 Organic and Other Polymer Developments\u003cbr\u003e5.3 Supercapacitors\u003cbr\u003e5.4 Solar Cells\u003cbr\u003e5.5 Flat Panel Displays\u003cbr\u003e5.6 Other New Technologies\u003cbr\u003e5.7 Recycling\u003cbr\u003e5.8 Chemical Safety\u003cbr\u003e5.9 Compliance with European RoHS and WEEE Directives\u003cbr\u003e5.10 Nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Company Profiles\u003c\/strong\u003e\u003cbr\u003eArkema\u003cbr\u003eBasell BV\u003cbr\u003eBASF AG\u003cbr\u003eBayer AG\u003cbr\u003eBorealis A\/S\u003cbr\u003eBP Plc\u003cbr\u003eCDT Limited\u003cbr\u003eDegussa AG\u003cbr\u003eDow Europe GmbH\u003cbr\u003eDSM Engineering Plastics BV\u003cbr\u003eDupont (UK) Limited\u003cbr\u003eEMS-chemie (UK) Limited\u003cbr\u003eEpcos AG\u003cbr\u003eGeneral Electric Company\u003cbr\u003eHuntsman Corporation\u003cbr\u003eLG Chem\u003cbr\u003ePlastic Logic Limited\u003cbr\u003eRogers Corporation\u003cbr\u003eSABIC Europe\u003cbr\u003eSamsung Electronics\u003cbr\u003eSolutia Inc.\u003cbr\u003eSolvay Chemicals Limited\u003cbr\u003eTeijin\u003cbr\u003eTicona GmbH\u003cbr\u003eToray Europe Limited (TEL)\u003cbr\u003eTotal SA\u003cbr\u003eTT Electronics plc\u003cbr\u003eTyco Electronics UK Limited\u003cbr\u003eVictrex Plc\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Future Outlook\u003c\/strong\u003e\u003cbr\u003e7.1 Optical Applications\u003cbr\u003e7.2 Search for New Products\u003cbr\u003e7.3 Superconducting Plastics\u003cbr\u003e7.4 Asia - Opportunity or Threat\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Abbreviations and Acronyms\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University with an Engineering Science degree and followed a graduate apprenticeship with one of the forerunners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery.\u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately commissioned studies.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:52-04:00","created_at":"2017-06-22T21:13:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","book","chemical and structural properties","components","electronics","formulations","hazardous materials","polymers","report"],"price":49000,"price_min":49000,"price_max":49000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378378308,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Electronics","public_title":null,"options":["Default Title"],"price":49000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-006-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333","options":["Title"],"media":[{"alt":null,"id":358705889373,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-84735-006-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e120 pages, Soft-backed, Rapra market report\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDesigners of electrical and electronic components have a wide choice of polymers at their disposal - cost is a prime consideration but competition in the market place is imposing ever more stringent specification criteria on the equipment designer who, in turn, is demanding significantly improved performance from his polymer supplier. This report lists the most commonly used polymers with brief notes on their properties.\u003cbr\u003e\u003cbr\u003eThis report seeks to provide an overall picture of the varied use of polymers in the manufacture of electronic components. It has endeavoured to identify trends and future movements of the market.\u003cbr\u003e\u003cbr\u003eThe pattern of polymer usage has changed and material formulations have had to be modified to conform with new European Union (EU) legislation relating to the use of hazardous materials in components. Furthermore, there is now far more emphasis on recycling rather than landfill disposal and these are issues covered in the report.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to all those involved in using polymers to produce electronic components and to those who provide the raw materials for the production.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Executive Summary\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3. Review of Materials and Properties\u003c\/strong\u003e\u003cstrong\u003e\u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction\u003cbr\u003e3.2 Polymers for Components\u003cbr\u003e3.2.1 Acrylonitrile-Butadiene-Styrene (ABS)\u003cbr\u003e3.2.2 Acetal Copolymers (Polyoxymethylene; POM)\u003cbr\u003e3.2.3 IXEF Polyarylamide\u003cbr\u003e3.2.4 Liquid Crystalline Polymers (LCP)\u003cbr\u003e3.2.5 Polyamide (Nylon; PA)\u003cbr\u003e3.2.6 Polybutylene Terephthalate (PBT)\u003cbr\u003e3.2.7 Polycarbonate (PC)\u003cbr\u003e3.2.8 Poly Ether Ether Ketone (PEEK)\u003cbr\u003e3.2.9 Polyetherimide (PEI)\u003cbr\u003e3.2.10 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.2.11 Polyethylene Terephthalate (PET)\u003cbr\u003e3.2.12 Polyparaphenylene Terephthalamide\u003cbr\u003e3.2.13 Polyimide (PI)\u003cbr\u003e3.2.14 Polypropylene (PP)\u003cbr\u003e3.2.15 Polyphthalamides (PPA)\u003cbr\u003e3.2.16 Polyphenylene Sulfide (PPS)\u003cbr\u003e3.2.17 Polystyrene (PS)\u003cbr\u003e3.2.18 PS-Modified Polyphenylene Oxide (PPO)\u003cbr\u003e3.2.19 Polysulfone (PSU)\u003cbr\u003e3.2.20 Polytetrafluoroethylene (PTFE)\u003cbr\u003e3.2.21 Polyurethane (PU)\u003cbr\u003e3.2.22 Polyvinyl Chloride (PVC)\u003cbr\u003e3.2.23 Polyvinylidene Fluoride (PVDF)\u003cbr\u003e3.2.24 Styrene\/Acrylonitrile (SAN)\u003cbr\u003e3.2.25 Elastomers\u003cbr\u003e3.2.26 Conductive Materials\u003cbr\u003e3.2.27 Additives\u003cbr\u003e3.3 Component Characteristics\u003cbr\u003e3.4 Polymers for Enclosures\u003cbr\u003e3.5 Electronic Components - Polymers Typically Employed\u003cbr\u003e3.5.1 Batteries including Lithium Polymer Types\u003cbr\u003e3.5.2 Capacitors\u003cbr\u003e3.5.3 Coil Formers\u003cbr\u003e3.5.4 Connectors\u003cbr\u003e3.5.5 Membrane Keypads\u003cbr\u003e3.5.6 Plugs and Sockets\u003cbr\u003e3.5.7 Printed Circuit Boards (PCB)\u003cbr\u003e3.5.8 Relays\u003cbr\u003e3.5.9 Resistors\u003cbr\u003e3.5.10 RFI Screening\u003cbr\u003e3.5.11 Sensors\u003cbr\u003e3.5.12 Switches\u003cbr\u003e3.5.13 Terminals\u003cbr\u003e3.5.14 Touch Screens\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Overview of European Electronic Component Markets\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Market Analysis\u003cbr\u003e4.3 Mobile Communications\u003cbr\u003e4.4 Automotive Applications\u003cbr\u003e4.5 Fuel Cells\u003cbr\u003e4.6 Computers\u003cbr\u003e4.7 Contract Electronic Manufacturing\u003cbr\u003e4.8 Component Distribution\u003cbr\u003e4.9 European Markets - Germany\u003cbr\u003e4.10 European Markets - France\u003cbr\u003e4.11 European Markets - Italy\u003cbr\u003e4.12 Other European Markets\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Key Trends and Developments\u003c\/strong\u003e\u003cbr\u003e5.1 Bluetooth Technology\u003cbr\u003e5.2 Organic and Other Polymer Developments\u003cbr\u003e5.3 Supercapacitors\u003cbr\u003e5.4 Solar Cells\u003cbr\u003e5.5 Flat Panel Displays\u003cbr\u003e5.6 Other New Technologies\u003cbr\u003e5.7 Recycling\u003cbr\u003e5.8 Chemical Safety\u003cbr\u003e5.9 Compliance with European RoHS and WEEE Directives\u003cbr\u003e5.10 Nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Company Profiles\u003c\/strong\u003e\u003cbr\u003eArkema\u003cbr\u003eBasell BV\u003cbr\u003eBASF AG\u003cbr\u003eBayer AG\u003cbr\u003eBorealis A\/S\u003cbr\u003eBP Plc\u003cbr\u003eCDT Limited\u003cbr\u003eDegussa AG\u003cbr\u003eDow Europe GmbH\u003cbr\u003eDSM Engineering Plastics BV\u003cbr\u003eDupont (UK) Limited\u003cbr\u003eEMS-chemie (UK) Limited\u003cbr\u003eEpcos AG\u003cbr\u003eGeneral Electric Company\u003cbr\u003eHuntsman Corporation\u003cbr\u003eLG Chem\u003cbr\u003ePlastic Logic Limited\u003cbr\u003eRogers Corporation\u003cbr\u003eSABIC Europe\u003cbr\u003eSamsung Electronics\u003cbr\u003eSolutia Inc.\u003cbr\u003eSolvay Chemicals Limited\u003cbr\u003eTeijin\u003cbr\u003eTicona GmbH\u003cbr\u003eToray Europe Limited (TEL)\u003cbr\u003eTotal SA\u003cbr\u003eTT Electronics plc\u003cbr\u003eTyco Electronics UK Limited\u003cbr\u003eVictrex Plc\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Future Outlook\u003c\/strong\u003e\u003cbr\u003e7.1 Optical Applications\u003cbr\u003e7.2 Search for New Products\u003cbr\u003e7.3 Superconducting Plastics\u003cbr\u003e7.4 Asia - Opportunity or Threat\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Abbreviations and Acronyms\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University with an Engineering Science degree and followed a graduate apprenticeship with one of the forerunners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery.\u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately commissioned studies.\u003cbr\u003e\u003cbr\u003e"}
PVC - World Markets an...
$430.00
{"id":11242226052,"title":"PVC - World Markets and Prospects","handle":"978-1-85957-311-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002, G. Pritchard, Emeritus Professor of Kingston University, Surrey, UK \u003cbr\u003eISBN 978-1-85957-311-2 \u003cbr\u003e\u003cbr\u003eKingston University, Surrey, UK\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 200\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n20% of all the resin sold in the world today, 26 million tonnes, consists of PVC. It is the second most used plastics material in the world. \u003cbr\u003e\u003cbr\u003eThis report discusses PVC from a business perspective, looking at its supply and demand, price, markets and applications, environmental issues and the future prospects of the industry. \u003cbr\u003e\u003cbr\u003eProfessor Pritchard is an exceptional author. He has successfully covered the broad sweep of the PVC industry, describing raw materials and synthesis, additives and compounding, and processing. Current issues have been highlighted including new technology and market forces. \u003cbr\u003e\u003cbr\u003eApplications are dealt with by sector with emphasis on the building and construction industry, the predominant user of PVC in applications such as window profiles. Other key application areas include medical, wire and cable and packaging. The trends in different global regions are addressed to indicate where markets are mature and where they are likely to expand. \u003cbr\u003e\u003cbr\u003eThere is also an extensive section describing individual global regions, including North America, Europe and China, and indicating areas of over-capacity and of growth. Population size, local legislation, free trade areas and degree of industrialization are all relevant factors here. \u003cbr\u003e\u003cbr\u003eThe individual companies in the PVC industry are diverse in their range of activities. Besides listings in appropriate sections of the book, there is a chapter giving individual company descriptions, citing useful information such as capacity and prospects. \u003cbr\u003e\u003cbr\u003eThere have been campaigns by environmentalists against the use of PVC. There are also concerns about the safety of some of the additives, which have been used in plastics to date, primarily heavy metal stabilisers and phthalate plasticisers. This report outlines these concerns, the effects on the industry and the efforts of PVC manufacturers to address these issues. \u003cbr\u003e\u003cbr\u003eRecycling of plastics is a major issue for all resins, particularly those used in packaging and vehicles, which are increasingly being targeted by legislation. End-of-life PVC is discussed here. \u003cbr\u003e\u003cbr\u003eThis report is accessible to both technical and non-technical personnel with an interest in the PVC industry. It will provide an excellent overview for market researchers, and analysts, whilst providing key information on the marketplace and prospects to those in the industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. About this Report \u003cbr\u003e2. Executive Summary \u003cbr\u003e3. Brief History of the PVC Industry \u003cbr\u003e4. Advantages and Disadvantages of PVC \u003cbr\u003e5. World Consumption of PVC \u003cbr\u003e6. The Price of PVC \u003cbr\u003e7. How PVC is Made \u003cbr\u003e8. Additives for PVC formulations \u003cbr\u003e9. Compounding and Shaping \u003cbr\u003e10. Environmental Issues \u003cbr\u003e11. End-of-Life Disposal of PVC Products \u003cbr\u003e12. PVC in Building and Construction \u003cbr\u003e13. Floorcoverings \u003cbr\u003e14. Packaging \u003cbr\u003e15. Wire and Cable \u003cbr\u003e16. Medical Products \u003cbr\u003e17. Toys and Other Children's Products \u003cbr\u003e18. Gloves \u003cbr\u003e19. Footwear \u003cbr\u003e20. Automotive Applications of PVC \u003cbr\u003e21. Coatings, Paints and Coated Substrates \u003cbr\u003e22. Other Applications of PVC \u003cbr\u003e23. The PVC Industry in Key Global Regions \u003cbr\u003e24. Some Representative Companies in the PVC Industry \u003cbr\u003e25. Prospects for PVC - A Brief Summary \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eReferences \u003cbr\u003eAppendix: Additional Sources of Information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Geoff Pritchard is Emeritus Professor of Kingston University in Surrey, UK. He has extensive knowledge of the PVC industry. He is the editor of several books on plastics and is also the editor of the monthly newsletter Focus on Polyvinyl Chloride, which provides regular updates of events in the PVC industry worldwide, as well as of Rapra's Focus on Plastics Additives, much of which relates to PVC.","published_at":"2017-06-22T21:14:01-04:00","created_at":"2017-06-22T21:14:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","additives","automotive","book","building","cable","coatings","compounding","construction","copolymers","disposal","emulsion","environment","floorcoverings","footwear","global production","gloves","market","marketing","medical","packaging","paints","price","PVC","report","shaping","solution","suspension","toys","wire"],"price":43000,"price_min":43000,"price_max":43000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC - World Markets and Prospects","public_title":null,"options":["Default Title"],"price":43000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-311-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197","options":["Title"],"media":[{"alt":null,"id":358725943389,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002, G. Pritchard, Emeritus Professor of Kingston University, Surrey, UK \u003cbr\u003eISBN 978-1-85957-311-2 \u003cbr\u003e\u003cbr\u003eKingston University, Surrey, UK\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 200\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n20% of all the resin sold in the world today, 26 million tonnes, consists of PVC. It is the second most used plastics material in the world. \u003cbr\u003e\u003cbr\u003eThis report discusses PVC from a business perspective, looking at its supply and demand, price, markets and applications, environmental issues and the future prospects of the industry. \u003cbr\u003e\u003cbr\u003eProfessor Pritchard is an exceptional author. He has successfully covered the broad sweep of the PVC industry, describing raw materials and synthesis, additives and compounding, and processing. Current issues have been highlighted including new technology and market forces. \u003cbr\u003e\u003cbr\u003eApplications are dealt with by sector with emphasis on the building and construction industry, the predominant user of PVC in applications such as window profiles. Other key application areas include medical, wire and cable and packaging. The trends in different global regions are addressed to indicate where markets are mature and where they are likely to expand. \u003cbr\u003e\u003cbr\u003eThere is also an extensive section describing individual global regions, including North America, Europe and China, and indicating areas of over-capacity and of growth. Population size, local legislation, free trade areas and degree of industrialization are all relevant factors here. \u003cbr\u003e\u003cbr\u003eThe individual companies in the PVC industry are diverse in their range of activities. Besides listings in appropriate sections of the book, there is a chapter giving individual company descriptions, citing useful information such as capacity and prospects. \u003cbr\u003e\u003cbr\u003eThere have been campaigns by environmentalists against the use of PVC. There are also concerns about the safety of some of the additives, which have been used in plastics to date, primarily heavy metal stabilisers and phthalate plasticisers. This report outlines these concerns, the effects on the industry and the efforts of PVC manufacturers to address these issues. \u003cbr\u003e\u003cbr\u003eRecycling of plastics is a major issue for all resins, particularly those used in packaging and vehicles, which are increasingly being targeted by legislation. End-of-life PVC is discussed here. \u003cbr\u003e\u003cbr\u003eThis report is accessible to both technical and non-technical personnel with an interest in the PVC industry. It will provide an excellent overview for market researchers, and analysts, whilst providing key information on the marketplace and prospects to those in the industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. About this Report \u003cbr\u003e2. Executive Summary \u003cbr\u003e3. Brief History of the PVC Industry \u003cbr\u003e4. Advantages and Disadvantages of PVC \u003cbr\u003e5. World Consumption of PVC \u003cbr\u003e6. The Price of PVC \u003cbr\u003e7. How PVC is Made \u003cbr\u003e8. Additives for PVC formulations \u003cbr\u003e9. Compounding and Shaping \u003cbr\u003e10. Environmental Issues \u003cbr\u003e11. End-of-Life Disposal of PVC Products \u003cbr\u003e12. PVC in Building and Construction \u003cbr\u003e13. Floorcoverings \u003cbr\u003e14. Packaging \u003cbr\u003e15. Wire and Cable \u003cbr\u003e16. Medical Products \u003cbr\u003e17. Toys and Other Children's Products \u003cbr\u003e18. Gloves \u003cbr\u003e19. Footwear \u003cbr\u003e20. Automotive Applications of PVC \u003cbr\u003e21. Coatings, Paints and Coated Substrates \u003cbr\u003e22. Other Applications of PVC \u003cbr\u003e23. The PVC Industry in Key Global Regions \u003cbr\u003e24. Some Representative Companies in the PVC Industry \u003cbr\u003e25. Prospects for PVC - A Brief Summary \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eReferences \u003cbr\u003eAppendix: Additional Sources of Information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Geoff Pritchard is Emeritus Professor of Kingston University in Surrey, UK. He has extensive knowledge of the PVC industry. He is the editor of several books on plastics and is also the editor of the monthly newsletter Focus on Polyvinyl Chloride, which provides regular updates of events in the PVC industry worldwide, as well as of Rapra's Focus on Plastics Additives, much of which relates to PVC."}
Thermoplastic Elastomers
$250.00
{"id":11242225156,"title":"Thermoplastic Elastomers","handle":"978-1-85957-302-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.W. Dufton \u003cbr\u003eISBN 978-1-85957-302-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 166\n\u003ch5\u003eSummary\u003c\/h5\u003e\nMaterials that combine elastomeric properties with many of the attributes of thermoplastics have been available to industry for over twenty years. A wide acceptance of these materials has taken place due to a growing catalogue of experience backed by convincing case studies in many sectors of industrial activity; new-generation materials have been developed to meet the demands of ever more discriminating customers. \u003cbr\u003e\u003cbr\u003eThis report contains discussion of the different families of thermoplastic elastomer (TPE) materials, and of the trends in material developments. The key end-use sectors are analysed in terms of material usage and future trends. Each sector is examined in some detail starting with reference to activity in Western Europe, the involvement of polymers within the sector, and how important a share of that involvement is held by TPEs. The issues which affect the choice of different materials and how these are likely to impinge on the use of TPEs in future are discussed. \u003cbr\u003e\u003cbr\u003eData on TPE supply and consumption by material family and trends for future consumption are given. Growth in TPE usage is due to three main factors: replacement for other materials, new processing technologies and new applications and markets. TPEs have proven themselves in meeting a wide range of demanding engineering requirements and automotive applications. These applications will continue to grow because of the cost savings provided and the performance delivered.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology\u003cbr\u003e2 Executive Summary\u003cbr\u003e2.1 Overall\u003cbr\u003e2.2 Materials\u003cbr\u003e2.3 General\u003cbr\u003e3 TPE Technologies\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Styrenic Block Copolymers (SBCs)\u003cbr\u003e3.3 Thermoplastic Olefins (TPOs)\u003cbr\u003e3.4 Thermoplastic Vulcanisates (TPVs)\u003cbr\u003e3.5 Thermoplastic Polyurethane Elastomers (TPUs)\u003cbr\u003e3.6 Copolyesters (COPEs)\u003cbr\u003e3.7 Copolyamides (COPAs)\u003cbr\u003e4 Material Developments, Products and Trends\u003cbr\u003e4.1 Styrenic Block Copolymers (SBCs)\u003cbr\u003e4.2 Thermoplastic Olefins (TPOs)\u003cbr\u003e4.3 Thermoplastic Vulcanisates (TPVs)\u003cbr\u003e4.4 Thermoplastic Polyurethane Elastomers (TPUs)\u003cbr\u003e4.5 Copolyesters (COPEs)\u003cbr\u003e4.6 Copolyamides (COPAs)\u003cbr\u003e4.7 Other TPE Materials\u003cbr\u003e5 End-User Markets for Thermoplastic Elastomers\u003cbr\u003e5.1 Automotive\u003cbr\u003e5.2 General Mechanical and Industrial Rubber Products\u003cbr\u003e5.3 Footwear\u003cbr\u003e5.4 Medical and Healthcare Markets\u003cbr\u003e5.5 Other Market Sectors\u003cbr\u003e6 The Supply and Demand for Thermoplastic Elastomers\u003cbr\u003e6.1 Summary\u003cbr\u003e6.2 Current Supply and Demand by Material\u003cbr\u003e6.3 Notes on Suppliers and Compounders\u003cbr\u003e6.4 Estimated Future Demand for TPEs\u003cbr\u003e7 Processing, Machinery and Other Factors\u003cbr\u003e7.1 Extrusion\u003cbr\u003e7.2 Injection Moulding\u003cbr\u003e7.3 Finishing and Assembly\u003cbr\u003e7.4 Machinery\u003cbr\u003e7.5 Testing Procedures\u003cbr\u003e7.6 Recycling\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nPeter W. Dufton graduated from Cambridge University in Materials Science before taking a research degree for work on mechanical properties of high strength aircraft materials. He joined Dunlop in 1970 to work on tyre reinforcement materials before moving within the company to technical support and product development in the Overseas Division. This was followed by a period as Overseas Business Development Manager in Dunlop Adhesives. \u003cbr\u003e\u003cbr\u003eFrom 1987-2000 he worked for Rapra as a consultant in the business analysis and publishing areas, undertaking multi-client work in the field of market research on a range of topics. These include tyres, fire-related matters, wire and cable and various other end-use sectors for the polymers, individual polymer materials development and compounding additives. He is also the author of several reports in the Rapra Industry Analysis Series.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:58-04:00","created_at":"2017-06-22T21:13:58-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","automotive","blends","book","compounders","copolyamides","copolyesters","copolymers","demand","elastomers","extrusion","footwear","healthcare markets","injection moulding","machinery","materials","medical","olefins","plastics","polyurethane","report","styrenic block","suppliers","testing","thermoplastics","trends","vulcanisates","weathering"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378390660,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermoplastic Elastomers","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-302-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-302-0_4cfec737-5ebd-41ec-ab0c-6ffe43a87438.jpg?v=1499956757"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-302-0_4cfec737-5ebd-41ec-ab0c-6ffe43a87438.jpg?v=1499956757","options":["Title"],"media":[{"alt":null,"id":358821396573,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-302-0_4cfec737-5ebd-41ec-ab0c-6ffe43a87438.jpg?v=1499956757"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-302-0_4cfec737-5ebd-41ec-ab0c-6ffe43a87438.jpg?v=1499956757","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.W. Dufton \u003cbr\u003eISBN 978-1-85957-302-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 166\n\u003ch5\u003eSummary\u003c\/h5\u003e\nMaterials that combine elastomeric properties with many of the attributes of thermoplastics have been available to industry for over twenty years. A wide acceptance of these materials has taken place due to a growing catalogue of experience backed by convincing case studies in many sectors of industrial activity; new-generation materials have been developed to meet the demands of ever more discriminating customers. \u003cbr\u003e\u003cbr\u003eThis report contains discussion of the different families of thermoplastic elastomer (TPE) materials, and of the trends in material developments. The key end-use sectors are analysed in terms of material usage and future trends. Each sector is examined in some detail starting with reference to activity in Western Europe, the involvement of polymers within the sector, and how important a share of that involvement is held by TPEs. The issues which affect the choice of different materials and how these are likely to impinge on the use of TPEs in future are discussed. \u003cbr\u003e\u003cbr\u003eData on TPE supply and consumption by material family and trends for future consumption are given. Growth in TPE usage is due to three main factors: replacement for other materials, new processing technologies and new applications and markets. TPEs have proven themselves in meeting a wide range of demanding engineering requirements and automotive applications. These applications will continue to grow because of the cost savings provided and the performance delivered.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology\u003cbr\u003e2 Executive Summary\u003cbr\u003e2.1 Overall\u003cbr\u003e2.2 Materials\u003cbr\u003e2.3 General\u003cbr\u003e3 TPE Technologies\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Styrenic Block Copolymers (SBCs)\u003cbr\u003e3.3 Thermoplastic Olefins (TPOs)\u003cbr\u003e3.4 Thermoplastic Vulcanisates (TPVs)\u003cbr\u003e3.5 Thermoplastic Polyurethane Elastomers (TPUs)\u003cbr\u003e3.6 Copolyesters (COPEs)\u003cbr\u003e3.7 Copolyamides (COPAs)\u003cbr\u003e4 Material Developments, Products and Trends\u003cbr\u003e4.1 Styrenic Block Copolymers (SBCs)\u003cbr\u003e4.2 Thermoplastic Olefins (TPOs)\u003cbr\u003e4.3 Thermoplastic Vulcanisates (TPVs)\u003cbr\u003e4.4 Thermoplastic Polyurethane Elastomers (TPUs)\u003cbr\u003e4.5 Copolyesters (COPEs)\u003cbr\u003e4.6 Copolyamides (COPAs)\u003cbr\u003e4.7 Other TPE Materials\u003cbr\u003e5 End-User Markets for Thermoplastic Elastomers\u003cbr\u003e5.1 Automotive\u003cbr\u003e5.2 General Mechanical and Industrial Rubber Products\u003cbr\u003e5.3 Footwear\u003cbr\u003e5.4 Medical and Healthcare Markets\u003cbr\u003e5.5 Other Market Sectors\u003cbr\u003e6 The Supply and Demand for Thermoplastic Elastomers\u003cbr\u003e6.1 Summary\u003cbr\u003e6.2 Current Supply and Demand by Material\u003cbr\u003e6.3 Notes on Suppliers and Compounders\u003cbr\u003e6.4 Estimated Future Demand for TPEs\u003cbr\u003e7 Processing, Machinery and Other Factors\u003cbr\u003e7.1 Extrusion\u003cbr\u003e7.2 Injection Moulding\u003cbr\u003e7.3 Finishing and Assembly\u003cbr\u003e7.4 Machinery\u003cbr\u003e7.5 Testing Procedures\u003cbr\u003e7.6 Recycling\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nPeter W. Dufton graduated from Cambridge University in Materials Science before taking a research degree for work on mechanical properties of high strength aircraft materials. He joined Dunlop in 1970 to work on tyre reinforcement materials before moving within the company to technical support and product development in the Overseas Division. This was followed by a period as Overseas Business Development Manager in Dunlop Adhesives. \u003cbr\u003e\u003cbr\u003eFrom 1987-2000 he worked for Rapra as a consultant in the business analysis and publishing areas, undertaking multi-client work in the field of market research on a range of topics. These include tyres, fire-related matters, wire and cable and various other end-use sectors for the polymers, individual polymer materials development and compounding additives. He is also the author of several reports in the Rapra Industry Analysis Series.\u003cbr\u003e\u003cbr\u003e"}
Volume Polymers in Nor...
$450.00
{"id":11242229892,"title":"Volume Polymers in North America and Western Europe, Industry Analysis Report","handle":"978-1-85957-238-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: W.C. Kuhlke \u003cbr\u003eISBN 978-1-85957-238-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 228\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years, the plastics industry has undergone significant change due to company acquisitions and mergers. The scale of change means that it is crucial for all companies involved in the industry-manufacturers, suppliers and end-users-to have contemporary information on the major players in the marketplace. \u003cbr\u003e\u003cbr\u003eThis Rapra Industry Analysis Report compares the North American volume polymers market with its Western European counterpart, and contains market data on the volume thermoplastics: polyethylene, polypropylene, polystyrene and polyvinyl chloride. Discussion of polyethylene is further divided into LDPE, LLDPE and HDPE, and that of polystyrene into conventional polystyrene (CPS) and expandable polystyrene (EPS). The report focuses on the producing countries for both regions, with the following nations covered in detail: \u003cbr\u003e\u003cbr\u003eCanada \u003cbr\u003eMexico \u003cbr\u003eUnited States of America \u003cbr\u003eAustria \u003cbr\u003eBelgium \u003cbr\u003eFinland \u003cbr\u003eFrance \u003cbr\u003eGermany \u003cbr\u003eGreece \u003cbr\u003eIreland \u003cbr\u003eItaly \u003cbr\u003eNetherlands \u003cbr\u003eNorway \u003cbr\u003ePortugal \u003cbr\u003eSpain \u003cbr\u003eSweden \u003cbr\u003eSwitzerland \u003cbr\u003eUnited Kingdom \u003cbr\u003e\u003cbr\u003e\u003cbr\u003eFor each country, an analysis of the base chemical capability is followed by a review of the volume polymer industry. An overview of volume polymer production capacity and consumption is provided by material, with the key end-use markets examined. The report includes discussion of the activities of the leading polymer-producing companies including merger and acquisition activity. A table is provided for each country summarising supply and demand for the period 1992-1998 with forecasts to 2003. \u003cbr\u003e\u003cbr\u003eAppendix tables describe all the volume polymer plants in these two regions. The annual capacity of these plants is displayed over the period 1996-2000 with forecasts to 2005. Data included in these tables include the year the plant came on line, the type of resin produced, the technology used (or licenced) by the producer as well as capacity in the planning stage.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Executive Summary\u003cbr\u003e3 Volume Polymers\u003cbr\u003e3.1 Polyethylene\u003cbr\u003e3.2 Polypropylene\u003cbr\u003e3.3 Polystyrene\u003cbr\u003e3.4 PVC\u003cbr\u003e\u003cbr\u003e4 Market Overview\u003cbr\u003e4.1 A Comparison of the North American Plastics Market with the Western European Market\u003cbr\u003e4.1.1 Population and GDP per Capita\u003cbr\u003e4.1.2 Labour Costs\u003cbr\u003e4.1.3 Delivery of Plastics\u003cbr\u003e4.1.4 Feedstocks\u003cbr\u003e4.1.5 The Internet\u003cbr\u003e4.1.5.1 Plastics Trading Sites\u003cbr\u003e4.1.5.1 Plastics Industry Information Sites\u003cbr\u003e4.1.6 Polymer Supply\u003cbr\u003e\u003cbr\u003e5 North America\u003cbr\u003e5.1 Canada\u003cbr\u003e5.1.1 Base Chemicals\u003cbr\u003e5.1.2 Plastics General\u003cbr\u003e5.1.3 Polyethylene\u003cbr\u003e5.1.4 Polypropylene\u003cbr\u003e5.1.5 Styrene Monomer\u003cbr\u003e5.1.6 Polystyrene\u003cbr\u003e5.1.7 VCM\u003cbr\u003e5.1.8 PVC\u003cbr\u003e5.1.9 ABS\/SAN\u003cbr\u003e5.1.10 Polycarbonate\u003cbr\u003e5.1.11 PET\u003cbr\u003e5.1.12 Major International Companies\u003cbr\u003e5.1.12.1 AT Plastics\u003cbr\u003e5.1.12.2 Nova Corp\u003cbr\u003e5.1.12 Supply Demand Balance\u003cbr\u003e5.1.14 Sources\u003cbr\u003e\u003cbr\u003e5.2 Mexico\u003cbr\u003e5.2.1 Base Chemicals\u003cbr\u003e5.2.2 Plastics General\u003cbr\u003e5.2.3 Polyethylene\u003cbr\u003e5.2.4 Polypropylene\u003cbr\u003e5.2.5 Styrene Monomer\u003cbr\u003e5.2.6 Polystyrene\u003cbr\u003e5.2.7 VCM\u003cbr\u003e5.2.8 PVC\u003cbr\u003e5.2.9 ABS\/SAN\u003cbr\u003e5.2.10 Major International Companies\u003cbr\u003e5.2.10.1 Pemex\u003cbr\u003e5.2.11 Supply Demand Balance\u003cbr\u003e5.2.12 Sources\u003cbr\u003e\u003cbr\u003e5.3 USA\u003cbr\u003e5.3.1 Base Chemicals\u003cbr\u003e5.3.2 Plastics General\u003cbr\u003e5.3.3 Polyethylene\u003cbr\u003e5.3.4 Polypropylene\u003cbr\u003e5.3.5 Polystyrene\u003cbr\u003e5.3.6 PVC\u003cbr\u003e5.3.7 ABS\/SAN\u003cbr\u003e5.3.8 Major International Companies\u003cbr\u003e5.3.8.1 BP-Amoco\u003cbr\u003e5.3.8.2 Arco\u003cbr\u003e5.3.8.3 Aristech\u003cbr\u003e5.3.8.4 Chevron\u003cbr\u003e5.3.8.5 Dow\u003cbr\u003e5.3.8.6 Eastman\u003cbr\u003e5.3.8.7 Exxon\u003cbr\u003e5.3.8.8 General Electric\u003cbr\u003e5.3.8.9 Geon\u003cbr\u003e5.3.8.10 Hunstman\u003cbr\u003e5.3.8.11 Mobil\u003cbr\u003e5.3.8.12 Oxychem\u003cbr\u003e5.3.8.13 Phillips Petroleum\u003cbr\u003e5.3.8.14 Union Carbide\u003cbr\u003e5.3.9 Supply Demand Balance\u003cbr\u003e5.3.10 Sources\u003cbr\u003e\u003cbr\u003e6 Western Europe\u003cbr\u003e(a) Base Chemicals\u003cbr\u003e(b) Plastics General\u003cbr\u003e(c) Polyethylene\u003cbr\u003e(d) Polypropylene\u003cbr\u003e(e) Styrene Monomer\u003cbr\u003e(f) Polystyrene\u003cbr\u003e(g) PVC\u003cbr\u003e(h) ABS\/SAN\u003cbr\u003e(i) Western EuropeSupply Demand Balance\u003cbr\u003e\u003cbr\u003e6.1 Austria\u003cbr\u003e6.1.1 Base Chemicals\u003cbr\u003e6.1.2 Plastics General\u003cbr\u003e6.1.3 Polyethylene\u003cbr\u003e6.1.4 Polypropylene\u003cbr\u003e6.1.5 Polystyrene\u003cbr\u003e6.1.6 PVC\u003cbr\u003e6.1.7 Polycarbonate\u003cbr\u003e6.1.8 Major International Companies\u003cbr\u003e6.1.8.1 OeMV\u003cbr\u003e6.1.9 Supply Demand Balance\u003cbr\u003e6.1.10 Sources\u003cbr\u003e\u003cbr\u003e6.2 Belgium\u003cbr\u003e6.2.1 Base Chemicals\u003cbr\u003e6.2.1.1 FAO\u003cbr\u003e6.2.1.2 North Sea Propane Dehydrogenation Plant\u003cbr\u003e6.2.1.3 BASF Complex\u003cbr\u003e6.2.2 Plastics General\u003cbr\u003e6.2.3 Polyethylene\u003cbr\u003e6.2.4 Polypropylene\u003cbr\u003e6.2.5 Styrene Monomer\u003cbr\u003e6.2.6 Polystyrene\u003cbr\u003e6.2.7 VCM\u003cbr\u003e6.2.8 PVC\u003cbr\u003e6.2.9 Major International Companies\u003cbr\u003e6.2.9.1 EVC\u003cbr\u003e6.2.9.2 Petrofina\u003cbr\u003e6.2.9.3 Solvay\u003cbr\u003e6.2.10 Supply Demand Balance\u003cbr\u003e6.2.11 Sources\u003cbr\u003e\u003cbr\u003e6.3 Denmark\u003cbr\u003e6.3.1 Base Chemicals\u003cbr\u003e6.3.2 Plastics General\u003cbr\u003e6.3.3 Major International Companies\u003cbr\u003e6.3.3.1 Borealis\u003cbr\u003e6.3.4 Supply Demand Balance\u003cbr\u003e6.3.5 Sources\u003cbr\u003e\u003cbr\u003e6.4 Finland\u003cbr\u003e6.4.1 Base Chemicals\u003cbr\u003e6.4.2 Plastics General\u003cbr\u003e6.4.3 Polyethylene\u003cbr\u003e6.4.4 Polypropylene\u003cbr\u003e6.4.5 Polystyrene\u003cbr\u003e6.4.6 VCM Monomer\/PVC\u003cbr\u003e6.4.7 Major International Companies\u003cbr\u003e6.4.7.1 Neste\u003cbr\u003e6.4.8 Supply Demand Balance\u003cbr\u003e6.4.9 Sources\u003cbr\u003e\u003cbr\u003e6.5 France\u003cbr\u003e6.5.1 Base Chemicals\u003cbr\u003e6.5.2 Plastics General\u003cbr\u003e6.5.3 Polyethylene\u003cbr\u003e6.5.4 Polypropylene\u003cbr\u003e6.5.5 Polystyrene\u003cbr\u003e6.5.6 PVC\u003cbr\u003e6.5.7 ABS\/SAN\u003cbr\u003e6.5.8 Major International Companies\u003cbr\u003e6.5.8.1 Atochem\u003cbr\u003e6.5.9 Supply Demand Balance\u003cbr\u003e6.5.10 Sources\u003cbr\u003e\u003cbr\u003e6.6 Germany\u003cbr\u003e6.6.1 Base Chemicals\u003cbr\u003e6.6.2 Plastics General\u003cbr\u003e6.6.3 Polyethylene\u003cbr\u003e6.6.4 Polypropylene\u003cbr\u003e6.6.5 Polystyrene\u003cbr\u003e6.6.6 PVC\u003cbr\u003e6.6.7 ABS\/SAN\u003cbr\u003e6.6.8 Polycarbonate\u003cbr\u003e6.6.9 PET\u003cbr\u003e6.6.10 Major International Companies\u003cbr\u003e6.6.10.1 Bayer\u003cbr\u003e6.6.10.2 BASF\u003cbr\u003e6.6.10.3 Hoechst\u003cbr\u003e6.6.11 Supply Demand Balance\u003cbr\u003e\u003cbr\u003e6.7 Greece\u003cbr\u003e6.7.1 Base Chemicals\u003cbr\u003e6.7.2 Polyethylene\u003cbr\u003e6.7.3 Polypropylene\u003cbr\u003e6.7.4 Polystyrene\u003cbr\u003e6.7.5 PVC\u003cbr\u003e6.7.6 Major International Companies\u003cbr\u003e6.7.6.1 Eko Chemicals\u003cbr\u003e6.7.7 Supply Demand Balance\u003cbr\u003e6.7.8 Sources\u003cbr\u003e\u003cbr\u003e6.8 Ireland\u003cbr\u003e6.8.1 Plastics General\u003cbr\u003e6.8.2 Sources\u003cbr\u003e\u003cbr\u003e6.9 Italy\u003cbr\u003e6.9.1 Base Chemicals\u003cbr\u003e6.9.2 Plastics General\u003cbr\u003e6.9.3 Polyethylene\u003cbr\u003e6.9.4 Polypropylene\u003cbr\u003e6.9.5 Styrene Monomer\u003cbr\u003e6.9.6 Polystyrene\u003cbr\u003e6.9.7 VCM\u003cbr\u003e6.9.8 PVC\u003cbr\u003e6.9.9 ABS\/SAN\u003cbr\u003e6.9.10 Polycarbonate\u003cbr\u003e6.9.11 PET\u003cbr\u003e6.9.12 Major International Companies\u003cbr\u003e6.9.12.1 Montedison\u003cbr\u003e6.9.12.2 Enichem\u003cbr\u003e6.9.13 Supply Demand Balance\u003cbr\u003e6.9.14 Sources\u003cbr\u003e\u003cbr\u003e6.10 The Netherlands\u003cbr\u003e6.10.1 Base Chemicals\u003cbr\u003e6.10.2 Plastics General\u003cbr\u003e6.10.3 Polyethylene\u003cbr\u003e6.10.4 Polypropylene\u003cbr\u003e6.10.5 Styrene Monomer\u003cbr\u003e6.10.6 Polystyrene\u003cbr\u003e6.10.7 PVC\u003cbr\u003e6.10.8 ABS\/SAN\u003cbr\u003e6.10.9 Polycarbonate\u003cbr\u003e6.10.10 PET\u003cbr\u003e6.10.11 Major International Companies\u003cbr\u003e6.10.11.1 DSM\u003cbr\u003e6.10.11.2 Basell\u003cbr\u003e6.10.12 Supply Demand Balance\u003cbr\u003e6.10.13 Sources\u003cbr\u003e\u003cbr\u003e6.11 Norway\u003cbr\u003e6.11.1 Base Chemicals\u003cbr\u003e6.11.2 Plastics General\u003cbr\u003e6.11.3 Polyethylene\u003cbr\u003e6.11.4 Polypropylene\u003cbr\u003e6.11.5 Polystyrene\u003cbr\u003e6.11.6 EDC\/VCM\u003cbr\u003e6.11.7 PVC\u003cbr\u003e6.11.8 ABS\/SAN\u003cbr\u003e6.11.9 Other Polymers\u003cbr\u003e6.11.10 Major International Companies\u003cbr\u003e6.11.10.1 Norsk Hydro\u003cbr\u003e6.11.11 Supply Demand Balance\u003cbr\u003e6.11.12 Sources\u003cbr\u003e\u003cbr\u003e6.12 Portugal\u003cbr\u003e6.12.1 Base Chemicals\u003cbr\u003e6.12.2 Plastics General\u003cbr\u003e6.12.3 Polyethylene\u003cbr\u003e6.12.4 Polypropylene\u003cbr\u003e6.12.5 Polystyrene\/ABS\u003cbr\u003e6.12.6 EDC\/VCM\u003cbr\u003e6.12.7 PVC\u003cbr\u003e6.12.8 PET\u003cbr\u003e6.12.9 Polycarbonate\u003cbr\u003e6.12.10 PET\u003cbr\u003e6.12.11 Supply Demand Balance\u003cbr\u003e6.12.12 Sources\u003cbr\u003e\u003cbr\u003e6.13 Spain\u003cbr\u003e6.13.1 Base Chemicals\u003cbr\u003e6.13.2 Plastics General\u003cbr\u003e6.13.3 Polyethylene\u003cbr\u003e6.13.4 Polypropylene\u003cbr\u003e6.13.5 Styrene Monomer\u003cbr\u003e6.13.6 Polystyrene\u003cbr\u003e6.13.7 VCM\u003cbr\u003e6.13.8 PVC\u003cbr\u003e6.13.9 ABS\/SAN\u003cbr\u003e6.13.10 Polycarbonate\u003cbr\u003e6.13.11 PET\u003cbr\u003e6.13.12 Major International Companies\u003cbr\u003e6.13.12.1 Repsol\u003cbr\u003e6.13.13 Supply Demand Balance\u003cbr\u003e6.13.14 Sources\u003cbr\u003e\u003cbr\u003e6.14 Sweden\u003cbr\u003e6.14.1 Base Chemicals\u003cbr\u003e6.14.2 Plastics General\u003cbr\u003e6.14.3 Supply Demand Balance\u003cbr\u003e6.14.4 Sources\u003cbr\u003e\u003cbr\u003e6.15 Switzerland\u003cbr\u003e6.15.1 Base Chemicals\u003cbr\u003e6.15.2 Plastics General\u003cbr\u003e6.15.3 Supply Demand Balance\u003cbr\u003e6.15.4 Sources\u003cbr\u003e\u003cbr\u003e6.16 UK\u003cbr\u003e6.16.1 Base Chemicals\u003cbr\u003e6.16.2 Plastics General\u003cbr\u003e6.16.3 Polyethylene\u003cbr\u003e6.16.4 Polypropylene\u003cbr\u003e6.16.5 Polystyrene\u003cbr\u003e6.16.6 PVC\u003cbr\u003e6.16.7 Major International Companies\u003cbr\u003e6.16.7.1 BP-Amoco\u003cbr\u003e6.16.7.2 Royal Dutch\u003cbr\u003e6.16.8 Supply Demand Balance\u003cbr\u003e\u003cbr\u003e6.17 Other Western European Countries\u003cbr\u003e6.17.1 Supply Demand Balance\u003cbr\u003e\u003cbr\u003e7 Polymer Pricing\u003cbr\u003e\u003cbr\u003eAppendix A - Capacity Tables\u003cbr\u003eA.1 Abbreviations for Capacity Tables\u003cbr\u003eAppendix B - Definitions and Abbreviations\u003cbr\u003eB.1 Definitions\u003cbr\u003eB.2 Abbreviations\u003cbr\u003eB.3 Yield factors\u003cbr\u003eAppendix C - Abbreviations for State Names in the USA, Canada and Mexico\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nWilliam C. Kuhlke is president of Kuhlke and Associates, a consulting firm in Houston, Texas, which specialises in the marketing of volume polymers. \u003cbr\u003e\u003cbr\u003eMr. Kuhlke was with Shell Chemical Company for 33 years in various marketing functions, initially with the oil company and then with the chemical company. In the latter position, he was associated with the Resins, Elastomers, and Polymer businesses. The author subsequently moved to DeWitt and Company, where he was responsible for all polymer consulting activities. \u003cbr\u003e\u003cbr\u003eWilliam Kuhlke was the International President of the SPE during the period 1984-1985. His SPE activities also included: President of the South Texas Section, Programme Chairman for the 1979 ANTEC meeting and Programme Chairman for the first International Polyolefins Conference. He has served as Chairman of the SPI's Furniture Division and as an SPI industry spokesman, in which role he has appeared in numerous radio and television interviews. He has also written numerous published articles on plastics.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:12-04:00","created_at":"2017-06-22T21:14:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","Arco","Aristech","BASF","Bayer","book","Chevron","Dow","Eastman","Exxon","General Electric","Geon","Hoechst","Hunstman","materials","Mobil","Oxychem","Phillips Petroleum","plastics","polyethylene","polypropylene","polystyrene","polyvinyl chloride","report","thermoplastics","trends","Union Carbide","weathering","Western Europe"],"price":45000,"price_min":45000,"price_max":45000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378399492,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Volume Polymers in North America and Western Europe, Industry Analysis Report","public_title":null,"options":["Default Title"],"price":45000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-238-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: W.C. Kuhlke \u003cbr\u003eISBN 978-1-85957-238-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 228\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years, the plastics industry has undergone significant change due to company acquisitions and mergers. The scale of change means that it is crucial for all companies involved in the industry-manufacturers, suppliers and end-users-to have contemporary information on the major players in the marketplace. \u003cbr\u003e\u003cbr\u003eThis Rapra Industry Analysis Report compares the North American volume polymers market with its Western European counterpart, and contains market data on the volume thermoplastics: polyethylene, polypropylene, polystyrene and polyvinyl chloride. Discussion of polyethylene is further divided into LDPE, LLDPE and HDPE, and that of polystyrene into conventional polystyrene (CPS) and expandable polystyrene (EPS). The report focuses on the producing countries for both regions, with the following nations covered in detail: \u003cbr\u003e\u003cbr\u003eCanada \u003cbr\u003eMexico \u003cbr\u003eUnited States of America \u003cbr\u003eAustria \u003cbr\u003eBelgium \u003cbr\u003eFinland \u003cbr\u003eFrance \u003cbr\u003eGermany \u003cbr\u003eGreece \u003cbr\u003eIreland \u003cbr\u003eItaly \u003cbr\u003eNetherlands \u003cbr\u003eNorway \u003cbr\u003ePortugal \u003cbr\u003eSpain \u003cbr\u003eSweden \u003cbr\u003eSwitzerland \u003cbr\u003eUnited Kingdom \u003cbr\u003e\u003cbr\u003e\u003cbr\u003eFor each country, an analysis of the base chemical capability is followed by a review of the volume polymer industry. An overview of volume polymer production capacity and consumption is provided by material, with the key end-use markets examined. The report includes discussion of the activities of the leading polymer-producing companies including merger and acquisition activity. A table is provided for each country summarising supply and demand for the period 1992-1998 with forecasts to 2003. \u003cbr\u003e\u003cbr\u003eAppendix tables describe all the volume polymer plants in these two regions. The annual capacity of these plants is displayed over the period 1996-2000 with forecasts to 2005. Data included in these tables include the year the plant came on line, the type of resin produced, the technology used (or licenced) by the producer as well as capacity in the planning stage.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Executive Summary\u003cbr\u003e3 Volume Polymers\u003cbr\u003e3.1 Polyethylene\u003cbr\u003e3.2 Polypropylene\u003cbr\u003e3.3 Polystyrene\u003cbr\u003e3.4 PVC\u003cbr\u003e\u003cbr\u003e4 Market Overview\u003cbr\u003e4.1 A Comparison of the North American Plastics Market with the Western European Market\u003cbr\u003e4.1.1 Population and GDP per Capita\u003cbr\u003e4.1.2 Labour Costs\u003cbr\u003e4.1.3 Delivery of Plastics\u003cbr\u003e4.1.4 Feedstocks\u003cbr\u003e4.1.5 The Internet\u003cbr\u003e4.1.5.1 Plastics Trading Sites\u003cbr\u003e4.1.5.1 Plastics Industry Information Sites\u003cbr\u003e4.1.6 Polymer Supply\u003cbr\u003e\u003cbr\u003e5 North America\u003cbr\u003e5.1 Canada\u003cbr\u003e5.1.1 Base Chemicals\u003cbr\u003e5.1.2 Plastics General\u003cbr\u003e5.1.3 Polyethylene\u003cbr\u003e5.1.4 Polypropylene\u003cbr\u003e5.1.5 Styrene Monomer\u003cbr\u003e5.1.6 Polystyrene\u003cbr\u003e5.1.7 VCM\u003cbr\u003e5.1.8 PVC\u003cbr\u003e5.1.9 ABS\/SAN\u003cbr\u003e5.1.10 Polycarbonate\u003cbr\u003e5.1.11 PET\u003cbr\u003e5.1.12 Major International Companies\u003cbr\u003e5.1.12.1 AT Plastics\u003cbr\u003e5.1.12.2 Nova Corp\u003cbr\u003e5.1.12 Supply Demand Balance\u003cbr\u003e5.1.14 Sources\u003cbr\u003e\u003cbr\u003e5.2 Mexico\u003cbr\u003e5.2.1 Base Chemicals\u003cbr\u003e5.2.2 Plastics General\u003cbr\u003e5.2.3 Polyethylene\u003cbr\u003e5.2.4 Polypropylene\u003cbr\u003e5.2.5 Styrene Monomer\u003cbr\u003e5.2.6 Polystyrene\u003cbr\u003e5.2.7 VCM\u003cbr\u003e5.2.8 PVC\u003cbr\u003e5.2.9 ABS\/SAN\u003cbr\u003e5.2.10 Major International Companies\u003cbr\u003e5.2.10.1 Pemex\u003cbr\u003e5.2.11 Supply Demand Balance\u003cbr\u003e5.2.12 Sources\u003cbr\u003e\u003cbr\u003e5.3 USA\u003cbr\u003e5.3.1 Base Chemicals\u003cbr\u003e5.3.2 Plastics General\u003cbr\u003e5.3.3 Polyethylene\u003cbr\u003e5.3.4 Polypropylene\u003cbr\u003e5.3.5 Polystyrene\u003cbr\u003e5.3.6 PVC\u003cbr\u003e5.3.7 ABS\/SAN\u003cbr\u003e5.3.8 Major International Companies\u003cbr\u003e5.3.8.1 BP-Amoco\u003cbr\u003e5.3.8.2 Arco\u003cbr\u003e5.3.8.3 Aristech\u003cbr\u003e5.3.8.4 Chevron\u003cbr\u003e5.3.8.5 Dow\u003cbr\u003e5.3.8.6 Eastman\u003cbr\u003e5.3.8.7 Exxon\u003cbr\u003e5.3.8.8 General Electric\u003cbr\u003e5.3.8.9 Geon\u003cbr\u003e5.3.8.10 Hunstman\u003cbr\u003e5.3.8.11 Mobil\u003cbr\u003e5.3.8.12 Oxychem\u003cbr\u003e5.3.8.13 Phillips Petroleum\u003cbr\u003e5.3.8.14 Union Carbide\u003cbr\u003e5.3.9 Supply Demand Balance\u003cbr\u003e5.3.10 Sources\u003cbr\u003e\u003cbr\u003e6 Western Europe\u003cbr\u003e(a) Base Chemicals\u003cbr\u003e(b) Plastics General\u003cbr\u003e(c) Polyethylene\u003cbr\u003e(d) Polypropylene\u003cbr\u003e(e) Styrene Monomer\u003cbr\u003e(f) Polystyrene\u003cbr\u003e(g) PVC\u003cbr\u003e(h) ABS\/SAN\u003cbr\u003e(i) Western EuropeSupply Demand Balance\u003cbr\u003e\u003cbr\u003e6.1 Austria\u003cbr\u003e6.1.1 Base Chemicals\u003cbr\u003e6.1.2 Plastics General\u003cbr\u003e6.1.3 Polyethylene\u003cbr\u003e6.1.4 Polypropylene\u003cbr\u003e6.1.5 Polystyrene\u003cbr\u003e6.1.6 PVC\u003cbr\u003e6.1.7 Polycarbonate\u003cbr\u003e6.1.8 Major International Companies\u003cbr\u003e6.1.8.1 OeMV\u003cbr\u003e6.1.9 Supply Demand Balance\u003cbr\u003e6.1.10 Sources\u003cbr\u003e\u003cbr\u003e6.2 Belgium\u003cbr\u003e6.2.1 Base Chemicals\u003cbr\u003e6.2.1.1 FAO\u003cbr\u003e6.2.1.2 North Sea Propane Dehydrogenation Plant\u003cbr\u003e6.2.1.3 BASF Complex\u003cbr\u003e6.2.2 Plastics General\u003cbr\u003e6.2.3 Polyethylene\u003cbr\u003e6.2.4 Polypropylene\u003cbr\u003e6.2.5 Styrene Monomer\u003cbr\u003e6.2.6 Polystyrene\u003cbr\u003e6.2.7 VCM\u003cbr\u003e6.2.8 PVC\u003cbr\u003e6.2.9 Major International Companies\u003cbr\u003e6.2.9.1 EVC\u003cbr\u003e6.2.9.2 Petrofina\u003cbr\u003e6.2.9.3 Solvay\u003cbr\u003e6.2.10 Supply Demand Balance\u003cbr\u003e6.2.11 Sources\u003cbr\u003e\u003cbr\u003e6.3 Denmark\u003cbr\u003e6.3.1 Base Chemicals\u003cbr\u003e6.3.2 Plastics General\u003cbr\u003e6.3.3 Major International Companies\u003cbr\u003e6.3.3.1 Borealis\u003cbr\u003e6.3.4 Supply Demand Balance\u003cbr\u003e6.3.5 Sources\u003cbr\u003e\u003cbr\u003e6.4 Finland\u003cbr\u003e6.4.1 Base Chemicals\u003cbr\u003e6.4.2 Plastics General\u003cbr\u003e6.4.3 Polyethylene\u003cbr\u003e6.4.4 Polypropylene\u003cbr\u003e6.4.5 Polystyrene\u003cbr\u003e6.4.6 VCM Monomer\/PVC\u003cbr\u003e6.4.7 Major International Companies\u003cbr\u003e6.4.7.1 Neste\u003cbr\u003e6.4.8 Supply Demand Balance\u003cbr\u003e6.4.9 Sources\u003cbr\u003e\u003cbr\u003e6.5 France\u003cbr\u003e6.5.1 Base Chemicals\u003cbr\u003e6.5.2 Plastics General\u003cbr\u003e6.5.3 Polyethylene\u003cbr\u003e6.5.4 Polypropylene\u003cbr\u003e6.5.5 Polystyrene\u003cbr\u003e6.5.6 PVC\u003cbr\u003e6.5.7 ABS\/SAN\u003cbr\u003e6.5.8 Major International Companies\u003cbr\u003e6.5.8.1 Atochem\u003cbr\u003e6.5.9 Supply Demand Balance\u003cbr\u003e6.5.10 Sources\u003cbr\u003e\u003cbr\u003e6.6 Germany\u003cbr\u003e6.6.1 Base Chemicals\u003cbr\u003e6.6.2 Plastics General\u003cbr\u003e6.6.3 Polyethylene\u003cbr\u003e6.6.4 Polypropylene\u003cbr\u003e6.6.5 Polystyrene\u003cbr\u003e6.6.6 PVC\u003cbr\u003e6.6.7 ABS\/SAN\u003cbr\u003e6.6.8 Polycarbonate\u003cbr\u003e6.6.9 PET\u003cbr\u003e6.6.10 Major International Companies\u003cbr\u003e6.6.10.1 Bayer\u003cbr\u003e6.6.10.2 BASF\u003cbr\u003e6.6.10.3 Hoechst\u003cbr\u003e6.6.11 Supply Demand Balance\u003cbr\u003e\u003cbr\u003e6.7 Greece\u003cbr\u003e6.7.1 Base Chemicals\u003cbr\u003e6.7.2 Polyethylene\u003cbr\u003e6.7.3 Polypropylene\u003cbr\u003e6.7.4 Polystyrene\u003cbr\u003e6.7.5 PVC\u003cbr\u003e6.7.6 Major International Companies\u003cbr\u003e6.7.6.1 Eko Chemicals\u003cbr\u003e6.7.7 Supply Demand Balance\u003cbr\u003e6.7.8 Sources\u003cbr\u003e\u003cbr\u003e6.8 Ireland\u003cbr\u003e6.8.1 Plastics General\u003cbr\u003e6.8.2 Sources\u003cbr\u003e\u003cbr\u003e6.9 Italy\u003cbr\u003e6.9.1 Base Chemicals\u003cbr\u003e6.9.2 Plastics General\u003cbr\u003e6.9.3 Polyethylene\u003cbr\u003e6.9.4 Polypropylene\u003cbr\u003e6.9.5 Styrene Monomer\u003cbr\u003e6.9.6 Polystyrene\u003cbr\u003e6.9.7 VCM\u003cbr\u003e6.9.8 PVC\u003cbr\u003e6.9.9 ABS\/SAN\u003cbr\u003e6.9.10 Polycarbonate\u003cbr\u003e6.9.11 PET\u003cbr\u003e6.9.12 Major International Companies\u003cbr\u003e6.9.12.1 Montedison\u003cbr\u003e6.9.12.2 Enichem\u003cbr\u003e6.9.13 Supply Demand Balance\u003cbr\u003e6.9.14 Sources\u003cbr\u003e\u003cbr\u003e6.10 The Netherlands\u003cbr\u003e6.10.1 Base Chemicals\u003cbr\u003e6.10.2 Plastics General\u003cbr\u003e6.10.3 Polyethylene\u003cbr\u003e6.10.4 Polypropylene\u003cbr\u003e6.10.5 Styrene Monomer\u003cbr\u003e6.10.6 Polystyrene\u003cbr\u003e6.10.7 PVC\u003cbr\u003e6.10.8 ABS\/SAN\u003cbr\u003e6.10.9 Polycarbonate\u003cbr\u003e6.10.10 PET\u003cbr\u003e6.10.11 Major International Companies\u003cbr\u003e6.10.11.1 DSM\u003cbr\u003e6.10.11.2 Basell\u003cbr\u003e6.10.12 Supply Demand Balance\u003cbr\u003e6.10.13 Sources\u003cbr\u003e\u003cbr\u003e6.11 Norway\u003cbr\u003e6.11.1 Base Chemicals\u003cbr\u003e6.11.2 Plastics General\u003cbr\u003e6.11.3 Polyethylene\u003cbr\u003e6.11.4 Polypropylene\u003cbr\u003e6.11.5 Polystyrene\u003cbr\u003e6.11.6 EDC\/VCM\u003cbr\u003e6.11.7 PVC\u003cbr\u003e6.11.8 ABS\/SAN\u003cbr\u003e6.11.9 Other Polymers\u003cbr\u003e6.11.10 Major International Companies\u003cbr\u003e6.11.10.1 Norsk Hydro\u003cbr\u003e6.11.11 Supply Demand Balance\u003cbr\u003e6.11.12 Sources\u003cbr\u003e\u003cbr\u003e6.12 Portugal\u003cbr\u003e6.12.1 Base Chemicals\u003cbr\u003e6.12.2 Plastics General\u003cbr\u003e6.12.3 Polyethylene\u003cbr\u003e6.12.4 Polypropylene\u003cbr\u003e6.12.5 Polystyrene\/ABS\u003cbr\u003e6.12.6 EDC\/VCM\u003cbr\u003e6.12.7 PVC\u003cbr\u003e6.12.8 PET\u003cbr\u003e6.12.9 Polycarbonate\u003cbr\u003e6.12.10 PET\u003cbr\u003e6.12.11 Supply Demand Balance\u003cbr\u003e6.12.12 Sources\u003cbr\u003e\u003cbr\u003e6.13 Spain\u003cbr\u003e6.13.1 Base Chemicals\u003cbr\u003e6.13.2 Plastics General\u003cbr\u003e6.13.3 Polyethylene\u003cbr\u003e6.13.4 Polypropylene\u003cbr\u003e6.13.5 Styrene Monomer\u003cbr\u003e6.13.6 Polystyrene\u003cbr\u003e6.13.7 VCM\u003cbr\u003e6.13.8 PVC\u003cbr\u003e6.13.9 ABS\/SAN\u003cbr\u003e6.13.10 Polycarbonate\u003cbr\u003e6.13.11 PET\u003cbr\u003e6.13.12 Major International Companies\u003cbr\u003e6.13.12.1 Repsol\u003cbr\u003e6.13.13 Supply Demand Balance\u003cbr\u003e6.13.14 Sources\u003cbr\u003e\u003cbr\u003e6.14 Sweden\u003cbr\u003e6.14.1 Base Chemicals\u003cbr\u003e6.14.2 Plastics General\u003cbr\u003e6.14.3 Supply Demand Balance\u003cbr\u003e6.14.4 Sources\u003cbr\u003e\u003cbr\u003e6.15 Switzerland\u003cbr\u003e6.15.1 Base Chemicals\u003cbr\u003e6.15.2 Plastics General\u003cbr\u003e6.15.3 Supply Demand Balance\u003cbr\u003e6.15.4 Sources\u003cbr\u003e\u003cbr\u003e6.16 UK\u003cbr\u003e6.16.1 Base Chemicals\u003cbr\u003e6.16.2 Plastics General\u003cbr\u003e6.16.3 Polyethylene\u003cbr\u003e6.16.4 Polypropylene\u003cbr\u003e6.16.5 Polystyrene\u003cbr\u003e6.16.6 PVC\u003cbr\u003e6.16.7 Major International Companies\u003cbr\u003e6.16.7.1 BP-Amoco\u003cbr\u003e6.16.7.2 Royal Dutch\u003cbr\u003e6.16.8 Supply Demand Balance\u003cbr\u003e\u003cbr\u003e6.17 Other Western European Countries\u003cbr\u003e6.17.1 Supply Demand Balance\u003cbr\u003e\u003cbr\u003e7 Polymer Pricing\u003cbr\u003e\u003cbr\u003eAppendix A - Capacity Tables\u003cbr\u003eA.1 Abbreviations for Capacity Tables\u003cbr\u003eAppendix B - Definitions and Abbreviations\u003cbr\u003eB.1 Definitions\u003cbr\u003eB.2 Abbreviations\u003cbr\u003eB.3 Yield factors\u003cbr\u003eAppendix C - Abbreviations for State Names in the USA, Canada and Mexico\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nWilliam C. Kuhlke is president of Kuhlke and Associates, a consulting firm in Houston, Texas, which specialises in the marketing of volume polymers. \u003cbr\u003e\u003cbr\u003eMr. Kuhlke was with Shell Chemical Company for 33 years in various marketing functions, initially with the oil company and then with the chemical company. In the latter position, he was associated with the Resins, Elastomers, and Polymer businesses. The author subsequently moved to DeWitt and Company, where he was responsible for all polymer consulting activities. \u003cbr\u003e\u003cbr\u003eWilliam Kuhlke was the International President of the SPE during the period 1984-1985. His SPE activities also included: President of the South Texas Section, Programme Chairman for the 1979 ANTEC meeting and Programme Chairman for the first International Polyolefins Conference. He has served as Chairman of the SPI's Furniture Division and as an SPI industry spokesman, in which role he has appeared in numerous radio and television interviews. He has also written numerous published articles on plastics.\u003cbr\u003e\u003cbr\u003e"}