- Grid List
Filter
Application of Textile...
$180.00
{"id":11242213892,"title":"Application of Textiles in Rubber (The)","handle":"978-1-85957-277-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.B. Wootton \u003cbr\u003eISBN 978-1-85957-277-1 \u003cbr\u003e\u003cbr\u003epages 248\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is written in a very readable style. It starts by describing the history of the use of textiles in rubber composites and progresses through the technology of yarn production to the details of fabric construction. The five core fabric materials used in rubber reinforcement are covered, i.e., cotton, rayon, polyester, nylon, and aramid. Adhesion of fabrics to the rubber matrix is discussed and tests for measuring adhesion are described. \u003cbr\u003e\u003cbr\u003eIn the second half of the book, specific applications of fabrics in rubber are described in detail: conveyor belting, hose, power transmission belting and coated fabrics in structural applications. There are also short sections on applications such as hovercraft skirts, air brake chamber diaphragms, and snowmobile tracks.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHistorical Background \u003cbr\u003eProduction and Properties of Textile Yarns \u003cbr\u003eYarn and Cord Processes \u003cbr\u003eFabric Formation and Design of Fabrics \u003cbr\u003eHeat-Setting and Adhesive Treatments \u003cbr\u003eBasic Rubber Compounding and Composite Assembly \u003cbr\u003eAssessment of Adhesion \u003cbr\u003eConveyor Belting \u003cbr\u003eHose \u003cbr\u003ePower Transmission Belts \u003cbr\u003eApplications of Coated Fabrics \u003cbr\u003eMiscellaneous Applications of Textiles in Rubber \u003cbr\u003eAbbreviations \u0026amp; Acronyms \u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Wootton has many years of experience as a technical expert working for the rubber industry and subsequently the textile industry. In his most recent post, he worked as Technical Services Manager for Milliken Industrials Limited, producing industrial fabrics for polymer reinforcement. He has written and lectured on the topics of textile reinforcement and adhesion. This book is a revised version of the well-known 'Textile Reinforcement of Elastomers' published over twenty years ago and edited by David Wootton and W.C. Wake.","published_at":"2017-06-22T21:13:20-04:00","created_at":"2017-06-22T21:13:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","adhesion","book","coated fabrics","compounding","cord","r-formulation","rubber","rubber reinforcement","textiles","yarns"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350916,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Application of Textiles in Rubber (The)","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-277-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355","options":["Title"],"media":[{"alt":null,"id":350148722781,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-277-1.jpg?v=1498187355","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.B. Wootton \u003cbr\u003eISBN 978-1-85957-277-1 \u003cbr\u003e\u003cbr\u003epages 248\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is written in a very readable style. It starts by describing the history of the use of textiles in rubber composites and progresses through the technology of yarn production to the details of fabric construction. The five core fabric materials used in rubber reinforcement are covered, i.e., cotton, rayon, polyester, nylon, and aramid. Adhesion of fabrics to the rubber matrix is discussed and tests for measuring adhesion are described. \u003cbr\u003e\u003cbr\u003eIn the second half of the book, specific applications of fabrics in rubber are described in detail: conveyor belting, hose, power transmission belting and coated fabrics in structural applications. There are also short sections on applications such as hovercraft skirts, air brake chamber diaphragms, and snowmobile tracks.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHistorical Background \u003cbr\u003eProduction and Properties of Textile Yarns \u003cbr\u003eYarn and Cord Processes \u003cbr\u003eFabric Formation and Design of Fabrics \u003cbr\u003eHeat-Setting and Adhesive Treatments \u003cbr\u003eBasic Rubber Compounding and Composite Assembly \u003cbr\u003eAssessment of Adhesion \u003cbr\u003eConveyor Belting \u003cbr\u003eHose \u003cbr\u003ePower Transmission Belts \u003cbr\u003eApplications of Coated Fabrics \u003cbr\u003eMiscellaneous Applications of Textiles in Rubber \u003cbr\u003eAbbreviations \u0026amp; Acronyms \u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Wootton has many years of experience as a technical expert working for the rubber industry and subsequently the textile industry. In his most recent post, he worked as Technical Services Manager for Milliken Industrials Limited, producing industrial fabrics for polymer reinforcement. He has written and lectured on the topics of textile reinforcement and adhesion. This book is a revised version of the well-known 'Textile Reinforcement of Elastomers' published over twenty years ago and edited by David Wootton and W.C. Wake."}
Applications of Polyme...
$250.00
{"id":11242240964,"title":"Applications of Polymers in Drug Delivery","handle":"9781847358516","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","delivery system","drug absorption","drug delivery","gastric drug delivery","mucaodhesive drug delivery","ocular drug delivery","oral drug delivery","p-applications","patch delivery system","polymer","polymeric system","r-formulation","transdermal drug delivery"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applications of Polymers in Drug Delivery","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847358516","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","options":["Title"],"media":[{"alt":null,"id":350156095581,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex"}
The Rubber Formulary
$365.00
{"id":11242233796,"title":"The Rubber Formulary","handle":"0-8155-1434-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peter A Ciullo and Norman Hewitt \u003cbr\u003e10-ISBN 0-8155-1434-4 \u003cbr\u003e13-ISBN 978-0-8155-1434-3\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999 \u003cbr\u003e\u003c\/span\u003e764 pages, 500 formulations\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains two parts: the introduction to the raw materials used in the rubber industry and the formulary part where formulations for final products are given.\u003cbr\u003eEleven rubber elastomers for which formulations are given in the second part are discussed in the beginning of the first section. This is followed by information on several groups of additives such as activators, accelerators, retarders, peroxides, fillers, antioxidants, antiozonants, and several other groups.\u003cbr\u003eThe first section is completed by information on rubber processing and physical testing for in-process analysis and final product property determination. The first section is designed to give background to better understand formations. The second part is divided into chapters based on the type of rubber used in the formulations. There are eleven chapters each for natural rubber and polyisoprene, styrene-butadiene \u0026amp; butadiene, butyl and halobutyl, neoprene, EPDM, nitrile, chlorinated and chlorosulfonated polyethylene, urethane, silicone and fluoroelastomers, acrylate and epichlorohydrin, and specialty rubbers.\u003cbr\u003eThe formulations included in this volume were developed by research centers of leading manufacturers in the USA including Ausimont, DSM Copolymer, DuPont Dow Elastomers, Engelhard Corporation, Enichem Elastomers Americas, Exxon Chemical Company, Goodyear Chemical Division, PPG Industries, TSE Industries, Union Carbide Corporation, Uniroyal Chemical Company, R. T. Vanderbilt Company and Zeon Chemicals. The formulations were subjected to testing for intended products from the point of view of their performance, long-term stability, and processing methods \u0026amp; conditions.\u003cbr\u003eAbout 500 formulations are given for a large number of products which belong to the following groups: tires, automotive parts (motor mount, wiper blade, pipe gasket, handle grip, bushings, exhaust hanger, V-belt, coolant hose, radiator hose, brake hose, window gasket, weatherstrip, diaphragms, fuel hose, gasoline resistant lining, power steering, shock absorber, shaft seal), seals, footwear, conveyor belts, bottle stoppers, bands, balls, golf ball cores, dampening materials, springs, exercise equipment, cellular materials, sponge, air duct, hose, tubing, air conditioner parts, wet suits, gaskets, roof sheating, curtain wall seal and other building seals, cable and wire, water sports equipment, outdoor matting, building profiles, home equipment, and many more. \u003cbr\u003e\u003cbr\u003eThe formulations presented in this book were optimized for different processing methods such as vulcanization, extrusion, injection molding, press molding, lamination, calendering, transfer molding, and coating. There is a clear distinction in the presentation which allows for an easy choice of formulation for processing method and processing conditions. The process data given provide starting conditions very useful for process optimization. The other important feature of this collection of formulations is related to the large variety of special performance characteristics under which products are expected to perform. Examples of these special characteristics are improved tear strength, electric conductivity, electric and thermal insulating properties, an ozone resistance, low heat build-up, adhesion to specific substrates, thick or thin articles, resistance to chemicals, reversion, weather, easy processing, abrasion resistance, translucence, color stability, food and pharmaceutical applications, microwave curing, antistatic properties, flame resistance, high and low temperature service, and more. This large number of formulations ready for comparison allows understanding principles of their formulation and optimization.\u003cbr\u003eFrom the above information, it becomes apparent that manufacturers of rubber products will find this collection of formulations very useful for many purposes such as the formulation of new products, reformulation of existing products, finding more economical methods of production of existing and new products, formulation costing, and estimation of the cost of competing manufacturers. But the usefulness of this book goes beyond rubber product manufacturers. Users of rubber products can find the book useful for understanding compatibility issues with rubber products, the available performance characteristics of various products, make a judgment regarding the level of technology of their suppliers, define state-of-art performance, etc. In summary, this book, similar to all bases dealing with the extensive amount of data, is suggested reference volume which helps both manufacturer and a rubber product user to obtain answers to many questions coming from everyday practice. This book is timely published because of increasing interest in rubber technology and application due to new characteristics of optimized and engineered rubber compositions.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eNatural rubber and polyisoprene\u003cbr\u003eStyrene-butadiene and butadiene\u003cbr\u003eButyl and halobutyl\u003cbr\u003eNeoprene\u003cbr\u003eEPDM\u003cbr\u003eNitrile\u003cbr\u003eChlorinated polyethylene and chlorosulfonated polyethylene\u003cbr\u003eUrethane\u003cbr\u003eSilicone and fluoroelastomers\u003cbr\u003eAcrylate and epichlorohydrin\u003cbr\u003eSpecialty rubbers\u003c\/p\u003e","published_at":"2017-06-22T21:14:24-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","accelerators","activators","additives","antioxidants","antiozonants","book","butadiene","butyl","EPDM","fillers","fluoroelastomers","halobutyl","natural rubber","neoprene","nitrile","peroxides","polyethylene","polyisoprene","r-formulation","retarders","rubber","rubber compounding","rubbers","silicone","styrene-butadiene","urethane"],"price":36500,"price_min":36500,"price_max":36500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378414340,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Rubber Formulary","public_title":null,"options":["Default Title"],"price":36500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"0-8155-1434-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1434-4_8b235c80-12b5-4b06-9241-84cd7b07a255.jpg?v=1499956561"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1434-4_8b235c80-12b5-4b06-9241-84cd7b07a255.jpg?v=1499956561","options":["Title"],"media":[{"alt":null,"id":358800719965,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1434-4_8b235c80-12b5-4b06-9241-84cd7b07a255.jpg?v=1499956561"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1434-4_8b235c80-12b5-4b06-9241-84cd7b07a255.jpg?v=1499956561","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peter A Ciullo and Norman Hewitt \u003cbr\u003e10-ISBN 0-8155-1434-4 \u003cbr\u003e13-ISBN 978-0-8155-1434-3\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999 \u003cbr\u003e\u003c\/span\u003e764 pages, 500 formulations\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains two parts: the introduction to the raw materials used in the rubber industry and the formulary part where formulations for final products are given.\u003cbr\u003eEleven rubber elastomers for which formulations are given in the second part are discussed in the beginning of the first section. This is followed by information on several groups of additives such as activators, accelerators, retarders, peroxides, fillers, antioxidants, antiozonants, and several other groups.\u003cbr\u003eThe first section is completed by information on rubber processing and physical testing for in-process analysis and final product property determination. The first section is designed to give background to better understand formations. The second part is divided into chapters based on the type of rubber used in the formulations. There are eleven chapters each for natural rubber and polyisoprene, styrene-butadiene \u0026amp; butadiene, butyl and halobutyl, neoprene, EPDM, nitrile, chlorinated and chlorosulfonated polyethylene, urethane, silicone and fluoroelastomers, acrylate and epichlorohydrin, and specialty rubbers.\u003cbr\u003eThe formulations included in this volume were developed by research centers of leading manufacturers in the USA including Ausimont, DSM Copolymer, DuPont Dow Elastomers, Engelhard Corporation, Enichem Elastomers Americas, Exxon Chemical Company, Goodyear Chemical Division, PPG Industries, TSE Industries, Union Carbide Corporation, Uniroyal Chemical Company, R. T. Vanderbilt Company and Zeon Chemicals. The formulations were subjected to testing for intended products from the point of view of their performance, long-term stability, and processing methods \u0026amp; conditions.\u003cbr\u003eAbout 500 formulations are given for a large number of products which belong to the following groups: tires, automotive parts (motor mount, wiper blade, pipe gasket, handle grip, bushings, exhaust hanger, V-belt, coolant hose, radiator hose, brake hose, window gasket, weatherstrip, diaphragms, fuel hose, gasoline resistant lining, power steering, shock absorber, shaft seal), seals, footwear, conveyor belts, bottle stoppers, bands, balls, golf ball cores, dampening materials, springs, exercise equipment, cellular materials, sponge, air duct, hose, tubing, air conditioner parts, wet suits, gaskets, roof sheating, curtain wall seal and other building seals, cable and wire, water sports equipment, outdoor matting, building profiles, home equipment, and many more. \u003cbr\u003e\u003cbr\u003eThe formulations presented in this book were optimized for different processing methods such as vulcanization, extrusion, injection molding, press molding, lamination, calendering, transfer molding, and coating. There is a clear distinction in the presentation which allows for an easy choice of formulation for processing method and processing conditions. The process data given provide starting conditions very useful for process optimization. The other important feature of this collection of formulations is related to the large variety of special performance characteristics under which products are expected to perform. Examples of these special characteristics are improved tear strength, electric conductivity, electric and thermal insulating properties, an ozone resistance, low heat build-up, adhesion to specific substrates, thick or thin articles, resistance to chemicals, reversion, weather, easy processing, abrasion resistance, translucence, color stability, food and pharmaceutical applications, microwave curing, antistatic properties, flame resistance, high and low temperature service, and more. This large number of formulations ready for comparison allows understanding principles of their formulation and optimization.\u003cbr\u003eFrom the above information, it becomes apparent that manufacturers of rubber products will find this collection of formulations very useful for many purposes such as the formulation of new products, reformulation of existing products, finding more economical methods of production of existing and new products, formulation costing, and estimation of the cost of competing manufacturers. But the usefulness of this book goes beyond rubber product manufacturers. Users of rubber products can find the book useful for understanding compatibility issues with rubber products, the available performance characteristics of various products, make a judgment regarding the level of technology of their suppliers, define state-of-art performance, etc. In summary, this book, similar to all bases dealing with the extensive amount of data, is suggested reference volume which helps both manufacturer and a rubber product user to obtain answers to many questions coming from everyday practice. This book is timely published because of increasing interest in rubber technology and application due to new characteristics of optimized and engineered rubber compositions.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eNatural rubber and polyisoprene\u003cbr\u003eStyrene-butadiene and butadiene\u003cbr\u003eButyl and halobutyl\u003cbr\u003eNeoprene\u003cbr\u003eEPDM\u003cbr\u003eNitrile\u003cbr\u003eChlorinated polyethylene and chlorosulfonated polyethylene\u003cbr\u003eUrethane\u003cbr\u003eSilicone and fluoroelastomers\u003cbr\u003eAcrylate and epichlorohydrin\u003cbr\u003eSpecialty rubbers\u003c\/p\u003e"}
The Science and Practi...
$135.00
{"id":11242205124,"title":"The Science and Practice of Rubber Mixing","handle":"978-1-85957-207-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Professor N. Nakajima \u003cbr\u003eISBN 978-1-85957-207-8\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2000 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003eThe University of Akron, USA\u003cbr\u003e\u003cbr\u003ePages: 408, Figures: 235, Tables: 41\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nManufacturing rubber products requires the use of many additives. Therefore, mixing of the additives with the rubber is a very important step in the processing of rubber. There has been extensive research to try to understand the relationships between the formulation and the properties of the final product. \u003cbr\u003eIn an industry with more than 100 years' accumulated history and a number of possible combinations of ingredients in the rubber formulation, there is an enormous amount of knowledge. However, this knowledge of exists in fragments scattered as in-house 'know-how' among manufacturers and in the personal experience of the individual operators. This book organizes this fragmented knowledge into a coherent whole based on scientific principles. \u003cbr\u003eThe book contains 14 chapters. Each chapter is fully referenced and extensively illustrated. \u003cbr\u003eThis book is written for students, teachers and those in the rubber industry, who wish to acquire a scientific viewpoint of mixing. Last but not least it is written for the researchers in this field. With the latter in mind, subjects for future research are indicated wherever appropriate. With varied readers in mind, each chapter is written in such a way that it may be read independently from others.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eMill Processability\u003c\/li\u003e\n\u003cli\u003eMixing of Rubber\u003c\/li\u003e\n\u003cli\u003eViscoelasticity and Fracture\u003c\/li\u003e\n\u003cli\u003eCharacterisation using Dilute Solution methods\u003c\/li\u003e\n\u003cli\u003eViscoelastic Characterisation of Gum Rubber\u003c\/li\u003e\n\u003cli\u003eViscoelastic Characterisation of Rubber Compounds\u003c\/li\u003e\n\u003cli\u003eRheology of Gum Rubber and Compound\u003c\/li\u003e\n\u003cli\u003eReinforcing Fillers and Liquid Additives\u003c\/li\u003e\n\u003cli\u003eThe Energy Aspects of Mixing Rubber\u003c\/li\u003e\n\u003cli\u003eMixing Mechanisms\u003c\/li\u003e\n\u003cli\u003ePost-Mixing Processes\u003c\/li\u003e\n\u003cli\u003eMaterial Testing, Quality Control, and Process Control\u003c\/li\u003e\n\u003cli\u003eMixing of Rubber without using a Mill or Internal Mixer\n\u003cp\u003eEach chapter is fully referenced and extensively illustrated.\u003c\/p\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eProfessor Nakajima was born in Japan and received his first degree from Tokyo University. In 1958 he obtained a Ph.D. from Case Institute of Technology. Before joining The University of Akron in 1984, he was\u003cbr\u003eR\u0026amp;D Fellow at the B.F. Goodrich Company, Manager of the Plastics Division of the Allied Chemical Company, section leader in the Polymer Division of the W R Grace Company and a production supervisor at the Osaka Gas Company. He has written over 150 papers on Rheology and solution properties of polymers. He is an active member of the Society of Rheology, the ACS and the American Physical Society.\u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:12:53-04:00","created_at":"2017-06-22T21:12:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","book","extraction","fillers","fracture","gum rubber","mixing","post-mixing","purification","r-formulation","reinforcing","rheology","rubber","rubber formulary","supercritical fluid","viscoelastic","viscoelasticity"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378319684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Science and Practice of Rubber Mixing","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-207-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-207-8_2a53055b-897a-415e-b89c-4114ff1cfd15.jpg?v=1499728023"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-207-8_2a53055b-897a-415e-b89c-4114ff1cfd15.jpg?v=1499728023","options":["Title"],"media":[{"alt":null,"id":358801375325,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-207-8_2a53055b-897a-415e-b89c-4114ff1cfd15.jpg?v=1499728023"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-207-8_2a53055b-897a-415e-b89c-4114ff1cfd15.jpg?v=1499728023","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Professor N. Nakajima \u003cbr\u003eISBN 978-1-85957-207-8\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2000 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003eThe University of Akron, USA\u003cbr\u003e\u003cbr\u003ePages: 408, Figures: 235, Tables: 41\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nManufacturing rubber products requires the use of many additives. Therefore, mixing of the additives with the rubber is a very important step in the processing of rubber. There has been extensive research to try to understand the relationships between the formulation and the properties of the final product. \u003cbr\u003eIn an industry with more than 100 years' accumulated history and a number of possible combinations of ingredients in the rubber formulation, there is an enormous amount of knowledge. However, this knowledge of exists in fragments scattered as in-house 'know-how' among manufacturers and in the personal experience of the individual operators. This book organizes this fragmented knowledge into a coherent whole based on scientific principles. \u003cbr\u003eThe book contains 14 chapters. Each chapter is fully referenced and extensively illustrated. \u003cbr\u003eThis book is written for students, teachers and those in the rubber industry, who wish to acquire a scientific viewpoint of mixing. Last but not least it is written for the researchers in this field. With the latter in mind, subjects for future research are indicated wherever appropriate. With varied readers in mind, each chapter is written in such a way that it may be read independently from others.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eMill Processability\u003c\/li\u003e\n\u003cli\u003eMixing of Rubber\u003c\/li\u003e\n\u003cli\u003eViscoelasticity and Fracture\u003c\/li\u003e\n\u003cli\u003eCharacterisation using Dilute Solution methods\u003c\/li\u003e\n\u003cli\u003eViscoelastic Characterisation of Gum Rubber\u003c\/li\u003e\n\u003cli\u003eViscoelastic Characterisation of Rubber Compounds\u003c\/li\u003e\n\u003cli\u003eRheology of Gum Rubber and Compound\u003c\/li\u003e\n\u003cli\u003eReinforcing Fillers and Liquid Additives\u003c\/li\u003e\n\u003cli\u003eThe Energy Aspects of Mixing Rubber\u003c\/li\u003e\n\u003cli\u003eMixing Mechanisms\u003c\/li\u003e\n\u003cli\u003ePost-Mixing Processes\u003c\/li\u003e\n\u003cli\u003eMaterial Testing, Quality Control, and Process Control\u003c\/li\u003e\n\u003cli\u003eMixing of Rubber without using a Mill or Internal Mixer\n\u003cp\u003eEach chapter is fully referenced and extensively illustrated.\u003c\/p\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eProfessor Nakajima was born in Japan and received his first degree from Tokyo University. In 1958 he obtained a Ph.D. from Case Institute of Technology. Before joining The University of Akron in 1984, he was\u003cbr\u003eR\u0026amp;D Fellow at the B.F. Goodrich Company, Manager of the Plastics Division of the Allied Chemical Company, section leader in the Polymer Division of the W R Grace Company and a production supervisor at the Osaka Gas Company. He has written over 150 papers on Rheology and solution properties of polymers. He is an active member of the Society of Rheology, the ACS and the American Physical Society.\u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e"}