- Grid List
Filter
Polymers in Agricultur...
$122.00
{"id":11242227460,"title":"Polymers in Agriculture and Horticulture.","handle":"978-1-85957-460-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Roger P Brown \u003cbr\u003eISBN 978-1-85957-460-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003e94 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers have been used in agriculture and horticulture since the middle\u003cbr\u003eof the last century. There is a tremendous potential for using polymers\u003cbr\u003ein agriculture and our fields and garden would look very different if we\u003cbr\u003edid not use polymers in them.\u003cbr\u003e\u003cbr\u003eThis review traces the history of polymer use, discusses the markets for\u003cbr\u003epolymers in these applications, and describes in detail the different\u003cbr\u003etypes of polymers that can be used and their specific applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. The Market\u003cbr\u003e3. Materials\u003cbr\u003e4. Crop Protection \u003cbr\u003e4.1 Greenhouses\/Large Tunnel \u003cbr\u003e4.2 Low Tunnels \u003cbr\u003e4.3 Direct Covers \u003cbr\u003e4.4 Windbreaks \u003cbr\u003e4.5 Shading \u003cbr\u003e4.6 Protection Against Pests\u003cbr\u003e5. Soil Conditioning \u003cbr\u003e5.1 Mulching \u003cbr\u003e5.2 Soil Improvement\u003cbr\u003e6. Water Management \u003cbr\u003e6.1 Collection, Storage, and Transport of Water \u003cbr\u003e6.2 Irrigation \u003cbr\u003e6.3 Water Holding \u003cbr\u003e6.4 Drainage\u003cbr\u003e7. Harvesting and Crop Storage\u003cbr\u003e8. Buildings\u003cbr\u003e9. Machinery and Equipment\u003cbr\u003e10. Containers and Packaging\u003cbr\u003e11. Miscellaneous Applications \u003cbr\u003e11.1 Identification Tags \u003cbr\u003e11.2 Clothing and Footwear \u003cbr\u003e11.3 Controlled Release of Fertilizers, etc \u003cbr\u003e11.4 Garden Ponds \u003cbr\u003e11.5 Greenhouse Sundries \u003cbr\u003e11.6 Labels \u003cbr\u003e11.7 Seed Coatings \u003cbr\u003e11.8 Soil Less Cultivation \u003cbr\u003e11.9 Ties and Grafting Bands \u003cbr\u003e11.10 Twine \u003cbr\u003e11.11 Others\u003cbr\u003e12. Standards and Testing\u003cbr\u003e13. Disposal and Recycling\u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.","published_at":"2017-06-22T21:14:05-04:00","created_at":"2017-06-22T21:14:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","agriculture","book","building","horticulture","p-applications","poly","polymers","polymers in acgriculture","recycling","water management"],"price":12200,"price_min":12200,"price_max":12200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394884,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Agriculture and Horticulture.","public_title":null,"options":["Default Title"],"price":12200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-460-7","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-460-7.jpg?v=1499953251"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-460-7.jpg?v=1499953251","options":["Title"],"media":[{"alt":null,"id":358701465693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-460-7.jpg?v=1499953251"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-460-7.jpg?v=1499953251","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Roger P Brown \u003cbr\u003eISBN 978-1-85957-460-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003e94 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers have been used in agriculture and horticulture since the middle\u003cbr\u003eof the last century. There is a tremendous potential for using polymers\u003cbr\u003ein agriculture and our fields and garden would look very different if we\u003cbr\u003edid not use polymers in them.\u003cbr\u003e\u003cbr\u003eThis review traces the history of polymer use, discusses the markets for\u003cbr\u003epolymers in these applications, and describes in detail the different\u003cbr\u003etypes of polymers that can be used and their specific applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. The Market\u003cbr\u003e3. Materials\u003cbr\u003e4. Crop Protection \u003cbr\u003e4.1 Greenhouses\/Large Tunnel \u003cbr\u003e4.2 Low Tunnels \u003cbr\u003e4.3 Direct Covers \u003cbr\u003e4.4 Windbreaks \u003cbr\u003e4.5 Shading \u003cbr\u003e4.6 Protection Against Pests\u003cbr\u003e5. Soil Conditioning \u003cbr\u003e5.1 Mulching \u003cbr\u003e5.2 Soil Improvement\u003cbr\u003e6. Water Management \u003cbr\u003e6.1 Collection, Storage, and Transport of Water \u003cbr\u003e6.2 Irrigation \u003cbr\u003e6.3 Water Holding \u003cbr\u003e6.4 Drainage\u003cbr\u003e7. Harvesting and Crop Storage\u003cbr\u003e8. Buildings\u003cbr\u003e9. Machinery and Equipment\u003cbr\u003e10. Containers and Packaging\u003cbr\u003e11. Miscellaneous Applications \u003cbr\u003e11.1 Identification Tags \u003cbr\u003e11.2 Clothing and Footwear \u003cbr\u003e11.3 Controlled Release of Fertilizers, etc \u003cbr\u003e11.4 Garden Ponds \u003cbr\u003e11.5 Greenhouse Sundries \u003cbr\u003e11.6 Labels \u003cbr\u003e11.7 Seed Coatings \u003cbr\u003e11.8 Soil Less Cultivation \u003cbr\u003e11.9 Ties and Grafting Bands \u003cbr\u003e11.10 Twine \u003cbr\u003e11.11 Others\u003cbr\u003e12. Standards and Testing\u003cbr\u003e13. Disposal and Recycling\u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees."}
Polymers in Defence an...
$185.00
{"id":11242250308,"title":"Polymers in Defence and Aerospace Applications, 2007","handle":"978-1-84735-019-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-019-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eToulouse, France, 18-19 September 2007\u003cbr\u003eRapra Conference Proceedings, 2007\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers play a vital role in many defence and aerospace applications and there is a huge amount of activity underway globally to produce new polymers and polymeric materials that can enhance these applications. Composites are one such example where materials have revolutionised performance capabilities and, with the emergence of nanomaterials, the world of composites is set to be further extended. Many new nanocomposites have been developed, each with interesting and novel properties and new potential applications. \u003cbr\u003e\u003cbr\u003eA significant part of the conference was therefore devoted to presentations detailing composites, nanocomposites, and their novel applications. The conference also covered many of the other key novel polymers, processes, and applications, including high-temperature thermoplastics, elastomers, and rubbers. These proceedings will appeal to all those seeking to gain insights into the crucial role that polymers play in many critical aerospace and defence applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1. COMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 1 Composite Applications and Challenges for Lightweight Design of Aircraft Structure \u003cbr\u003eDave Wood, BAE SYSTEMS – Military Air Solutions, UK \u003cbr\u003e\u003cbr\u003ePaper 2 Quickstep curing technology: an out of – autoclave technology for prepegs and dry fibre reinforced laminates \u003cbr\u003eDr. J. Schlimbach, A. Ogale, D. Brosius \u0026amp; N. Noble, Quickstep GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION 2. NANOCOMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 3 Polymer nanocomposites with carbon nanotubes in aerospace and defence \u003cbr\u003eDr. James Njuguna, Cranefield University, UK \u003cbr\u003e\u003cbr\u003ePaper 4 Nylon-12 nanocomposite thin films as protective barriers \u003cbr\u003eDr. Celia Stevens, M. Gnatowski \u0026amp; S. Duncan, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 5 Thermal conductivity of ethylene vinyl acetate copolymer\/carbon nanofiller blends \u003cbr\u003eDr. Sayata Ghose, K.A. Watson, D.C. Working, J.W. Connell, J.G. Smith Jr, Y. Lin \u0026amp; Y.P. Sun, National Institute of Aerospace, USA \u003cbr\u003e\u003cbr\u003ePaper 6 Nanoscopically controlled polymer containing gadolinium atoms for shielding against radiation \u003cbr\u003eJoseph D Lichtenhan, J.P. Spratt, S. Aghara, P.A. Wheeler \u0026amp; R. Leadon, Hybrid Plastics, USA \u003cbr\u003e\u003cbr\u003ePaper 7 Conducting polymer nanofibres obtained by electrospinning \u003cbr\u003eDr. Lucie Robitaille \u0026amp; A. Laforgue, National Research Council Canada, Canada \u003cbr\u003e\u003cbr\u003ePaper 8 Influence of space radiation on nano adhesive bonding of high-performance polymer \u003cbr\u003eDr. Shantanu Bhowmik, Delft University of Technology, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION 3. NOVEL POLYMER SYSTEMS \u003cbr\u003e\u003cbr\u003ePaper 9 Electrically conductive shape memory polymer with anisotropic electro-thermo-mechanical properties \u003cbr\u003eW.M. Huang, N. Liu, S.Y. Phoo \u0026amp; C.S. Chan, Nanyang Technological University, Singapore \u003cbr\u003e\u003cbr\u003ePaper 10 Development of new, conductive and microwave-lossy materials involving conducting polymer coatings \u003cbr\u003eDr. Jamshid Avloni, Eeonyx Corp, USA \u0026amp; Dr. A. Henn, Marktek Inc, USA \u003cbr\u003e\u003cbr\u003ePaper 11 Incorporating functional fillers into silicone elastomer systems \u003cbr\u003eBrian Burkitt, B. Riegler \u0026amp; S. Bruner, NuSil Technology Europe, UK \u003cbr\u003e\u003cbr\u003eSESSION 4. ELASTOMERS AND RUBBERS \u003cbr\u003e\u003cbr\u003ePaper 12 Elastomeric solutions to seal jet oils at high temperature with fluoroelastomers and perfluoroelastomers \u003cbr\u003eJean-Luc Matoux, EW Thomas \u0026amp; R.W. Schnell, DuPont Performance Elastomers SA, Switzerland \u003cbr\u003e\u003cbr\u003ePaper 13 Novel nylon\/halogenated butyl rubber blends in protection against warfare agents \u003cbr\u003eDr. Marek Gnatowski, J.D. Van Dyke \u0026amp; A. Burczyk, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 14 Development of wider performance range rubber seal materials and the utility of FEA modeling \u003cbr\u003eDr. Robert Keller, Freudenberg-NOK General Partnership, USA \u003cbr\u003e\u003cbr\u003eSESSION 5 OTHER MATERIALS AND ASSESSMENT \u003cbr\u003e\u003cbr\u003ePaper 15 New PEEK™ products and process technology developments for lightweight aerospace components \u003cbr\u003eDidier Padey, John Walling \u0026amp; Alan Wood, Victrex plc, France \u003cbr\u003e\u003cbr\u003ePaper 16 Polymerisation, compound and elastomeric modified ETFE in aerospace and defence applications \u003cbr\u003ePhil Spencer, AGC Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePaper 17 Lifetime prediction and assessment of metal-polymer laminates \u003cbr\u003eJulie Etheridge, AWE plc, UK \u003cbr\u003e\u003cbr\u003eSESSION 6 POLYMER PROCESSES AND APPLICATIONS \u003cbr\u003e\u003cbr\u003ePaper 18 Sonochemical surface modification for advanced electronic materials \u003cbr\u003eDr. Andy Cobley \u0026amp; Prof T. Mason, The Sonochemistry Centre at Coventry University, UK \u003cbr\u003e\u003cbr\u003ePaper 19 Polymers for exo-atmospheric supersonic vehicles: a tough life \u003cbr\u003eDr. Duncan Broughton, AWEplc, UK \u003cbr\u003e\u003cbr\u003ePaper 20 The role of polymeric materials for effective structural damping \u003cbr\u003eJohn R. House MIOA, QinetiQ, UK \u003cbr\u003e\u003cbr\u003ePaper 21 Liquid Crystal Polymer (LCP): the ultimate solution for low-cost RF flexible electronics and antennae \u003cbr\u003eRushi Vyas, A. Ride, S. Bhattacharya \u0026amp; M.M. Tentzeris, Georgia Institute of Technology, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:15-04:00","created_at":"2017-06-22T21:15:15-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","aerospace","book","p-applications","polymer","polymer applications","polymeric materials","polymers"],"price":18500,"price_min":18500,"price_max":18500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471428,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Defence and Aerospace Applications, 2007","public_title":null,"options":["Default Title"],"price":18500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-019-0","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847350190.jpg?v=1503691452"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847350190.jpg?v=1503691452","options":["Title"],"media":[{"alt":null,"id":410062422109,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847350190.jpg?v=1503691452"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781847350190.jpg?v=1503691452","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-019-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eToulouse, France, 18-19 September 2007\u003cbr\u003eRapra Conference Proceedings, 2007\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers play a vital role in many defence and aerospace applications and there is a huge amount of activity underway globally to produce new polymers and polymeric materials that can enhance these applications. Composites are one such example where materials have revolutionised performance capabilities and, with the emergence of nanomaterials, the world of composites is set to be further extended. Many new nanocomposites have been developed, each with interesting and novel properties and new potential applications. \u003cbr\u003e\u003cbr\u003eA significant part of the conference was therefore devoted to presentations detailing composites, nanocomposites, and their novel applications. The conference also covered many of the other key novel polymers, processes, and applications, including high-temperature thermoplastics, elastomers, and rubbers. These proceedings will appeal to all those seeking to gain insights into the crucial role that polymers play in many critical aerospace and defence applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1. COMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 1 Composite Applications and Challenges for Lightweight Design of Aircraft Structure \u003cbr\u003eDave Wood, BAE SYSTEMS – Military Air Solutions, UK \u003cbr\u003e\u003cbr\u003ePaper 2 Quickstep curing technology: an out of – autoclave technology for prepegs and dry fibre reinforced laminates \u003cbr\u003eDr. J. Schlimbach, A. Ogale, D. Brosius \u0026amp; N. Noble, Quickstep GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION 2. NANOCOMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 3 Polymer nanocomposites with carbon nanotubes in aerospace and defence \u003cbr\u003eDr. James Njuguna, Cranefield University, UK \u003cbr\u003e\u003cbr\u003ePaper 4 Nylon-12 nanocomposite thin films as protective barriers \u003cbr\u003eDr. Celia Stevens, M. Gnatowski \u0026amp; S. Duncan, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 5 Thermal conductivity of ethylene vinyl acetate copolymer\/carbon nanofiller blends \u003cbr\u003eDr. Sayata Ghose, K.A. Watson, D.C. Working, J.W. Connell, J.G. Smith Jr, Y. Lin \u0026amp; Y.P. Sun, National Institute of Aerospace, USA \u003cbr\u003e\u003cbr\u003ePaper 6 Nanoscopically controlled polymer containing gadolinium atoms for shielding against radiation \u003cbr\u003eJoseph D Lichtenhan, J.P. Spratt, S. Aghara, P.A. Wheeler \u0026amp; R. Leadon, Hybrid Plastics, USA \u003cbr\u003e\u003cbr\u003ePaper 7 Conducting polymer nanofibres obtained by electrospinning \u003cbr\u003eDr. Lucie Robitaille \u0026amp; A. Laforgue, National Research Council Canada, Canada \u003cbr\u003e\u003cbr\u003ePaper 8 Influence of space radiation on nano adhesive bonding of high-performance polymer \u003cbr\u003eDr. Shantanu Bhowmik, Delft University of Technology, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION 3. NOVEL POLYMER SYSTEMS \u003cbr\u003e\u003cbr\u003ePaper 9 Electrically conductive shape memory polymer with anisotropic electro-thermo-mechanical properties \u003cbr\u003eW.M. Huang, N. Liu, S.Y. Phoo \u0026amp; C.S. Chan, Nanyang Technological University, Singapore \u003cbr\u003e\u003cbr\u003ePaper 10 Development of new, conductive and microwave-lossy materials involving conducting polymer coatings \u003cbr\u003eDr. Jamshid Avloni, Eeonyx Corp, USA \u0026amp; Dr. A. Henn, Marktek Inc, USA \u003cbr\u003e\u003cbr\u003ePaper 11 Incorporating functional fillers into silicone elastomer systems \u003cbr\u003eBrian Burkitt, B. Riegler \u0026amp; S. Bruner, NuSil Technology Europe, UK \u003cbr\u003e\u003cbr\u003eSESSION 4. ELASTOMERS AND RUBBERS \u003cbr\u003e\u003cbr\u003ePaper 12 Elastomeric solutions to seal jet oils at high temperature with fluoroelastomers and perfluoroelastomers \u003cbr\u003eJean-Luc Matoux, EW Thomas \u0026amp; R.W. Schnell, DuPont Performance Elastomers SA, Switzerland \u003cbr\u003e\u003cbr\u003ePaper 13 Novel nylon\/halogenated butyl rubber blends in protection against warfare agents \u003cbr\u003eDr. Marek Gnatowski, J.D. Van Dyke \u0026amp; A. Burczyk, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 14 Development of wider performance range rubber seal materials and the utility of FEA modeling \u003cbr\u003eDr. Robert Keller, Freudenberg-NOK General Partnership, USA \u003cbr\u003e\u003cbr\u003eSESSION 5 OTHER MATERIALS AND ASSESSMENT \u003cbr\u003e\u003cbr\u003ePaper 15 New PEEK™ products and process technology developments for lightweight aerospace components \u003cbr\u003eDidier Padey, John Walling \u0026amp; Alan Wood, Victrex plc, France \u003cbr\u003e\u003cbr\u003ePaper 16 Polymerisation, compound and elastomeric modified ETFE in aerospace and defence applications \u003cbr\u003ePhil Spencer, AGC Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePaper 17 Lifetime prediction and assessment of metal-polymer laminates \u003cbr\u003eJulie Etheridge, AWE plc, UK \u003cbr\u003e\u003cbr\u003eSESSION 6 POLYMER PROCESSES AND APPLICATIONS \u003cbr\u003e\u003cbr\u003ePaper 18 Sonochemical surface modification for advanced electronic materials \u003cbr\u003eDr. Andy Cobley \u0026amp; Prof T. Mason, The Sonochemistry Centre at Coventry University, UK \u003cbr\u003e\u003cbr\u003ePaper 19 Polymers for exo-atmospheric supersonic vehicles: a tough life \u003cbr\u003eDr. Duncan Broughton, AWEplc, UK \u003cbr\u003e\u003cbr\u003ePaper 20 The role of polymeric materials for effective structural damping \u003cbr\u003eJohn R. House MIOA, QinetiQ, UK \u003cbr\u003e\u003cbr\u003ePaper 21 Liquid Crystal Polymer (LCP): the ultimate solution for low-cost RF flexible electronics and antennae \u003cbr\u003eRushi Vyas, A. Ride, S. Bhattacharya \u0026amp; M.M. Tentzeris, Georgia Institute of Technology, USA\u003cbr\u003e\u003cbr\u003e"}
Polymers in Electronic...
$135.00
{"id":11242231236,"title":"Polymers in Electronics 2007","handle":"978-1-84735-009-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-009-1 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 30-31 January 2007\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis conference saw presentations from all parts of the electronics industry’s materials supply chain, from raw materials to finished products and offered an opportunity to learn more about both traditional and new polymer materials, their markets, manufacturing processes, and applications. It also covered the impact of legislation, the need to recycle and other polymer-related challenges and opportunities for the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1. TRENDS AND GROWTH \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 1: Plastics in Electronics - the CEE market \u003cbr\u003eKalman Wappel, Eastern, and Central European Business Development Ltd., Hungary\u003c\/p\u003e\n\u003cb\u003eSESSION 2. CONDUCTIVE POLYMERS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 2: Electrically conductive polymer blends filled with low melting metal alloys \u003cbr\u003eProf. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli \u0026amp; Dipl.-Ing. Tobias Pfefferkorn, Institute of Plastics Processing at RWTH Aachen University (IKV), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 3: Development and applications of nano- and microscale layers of conductive polymers applied to various surfaces\u003c\/b\u003e \u003cbr\u003eDr. Jamshid Avloni \u0026amp; Ryan Lau, Eeonyx Corporation \u0026amp; Dr. Arthur Henn, Marktek Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 4: Conducting polymer nanocomposites in EMI shielding\/radar absorption applications\u003c\/b\u003e \u003cbr\u003eMatt Aldissi, Fractal Systems Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 5: Inherently conductive polyaniline for electronics applications\u003c\/b\u003e \u003cbr\u003eJukka Perento, Panipol, Finland\u003c\/p\u003e\n\u003cb\u003eSESSION 3. NEW DEVELOPMENTS IN FLAME RETARDED POLYMERS FOR ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 6: Sustainable flame retardants – beyond fire safety, RoHS, and WEEE compliance \u003cbr\u003eTroy DeSoto \u0026amp; Veronique Steukers, Albemarle Corporation, Belgium \u0026amp; Kumar Kumar, Albemarle Corporation, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 7: Phosphinates, the flame retardants for polymers in electronics\u003c\/b\u003e \u003cbr\u003eDr. Sebastian Hörold, lmar Schmitt, Mathias Dietz, Jerome De Boysere, Clariant Produkte GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 8: Fire retardancy of polymers in electronics, a scientific approach\u003c\/b\u003e \u003cbr\u003eR. Borms, S. Goebelbecker \u0026amp; L. Tange, Eurobrom B.V. ICL-IP \u0026amp; P. Georlette \u0026amp; Y. Bar Yaakov, ICL-IP, The Netherlands\u003c\/p\u003e\n\u003cb\u003eSESSION 4. POLYMERS IN SUBSTRATES, ASSEMBLY AND RELIABILITY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 9: An overview of polymers as key enablers in electronics assembly \u003cbr\u003eProf. Martin Goosey, IeMRC, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 10: New epoxy resins for printed wiring board application\u003c\/b\u003e \u003cbr\u003eDr. Bernd Hoevel, Dr. Ludovic Valette \u0026amp; Dr. Joseph Gan, Dow Deutschland Anlagengesellschaft mbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 11: Printed circuit boards for lead-free soldering, materials and failure mechanisms\u003c\/b\u003e \u003cbr\u003ePer Johander, Per-Erik Tegehall, Abelrahim Ahmed Osman, Göran Wetter \u0026amp; Dag Andersson, IVF Industrial Research \u0026amp; Development Corporation, Sweden\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 12: Selection and qualification of polymers for rigid and flexible interconnect applications\u003c\/b\u003e \u003cbr\u003eFlorian Schuessler, Prof. Dr.-Ing. Klaus Feldmann \u0026amp; Thomas Bigl, Institute for Manufacturing Automation and Production Systems (FAPS), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 13: Macromelt molding - low-pressure adhesive injection molding\u003c\/b\u003e \u003cbr\u003eOlaf Muendelein, Henkel GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 14: Conformal coating resistance to organic and inorganic contaminants\u003c\/b\u003e \u003cbr\u003eDr. Christopher Hunt, National Physical Laboratory, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 5. POLYMER FORMULATION AND RECYCLING FOR ELECTRONICS APPLICATIONS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 15: Additives: the way to tailor-made plastics for E\u0026amp;E applications \u003cbr\u003eDr. Markus C. Grob, Eelco Dekker \u0026amp; Dr. Wolfgang Diegritz, Ciba Specialty Chemicals Inc., Switzerland\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 16: Polymer recycling from WEEE - rapid assessment of electronic product enclosure plastics for improved resource management\u003c\/b\u003e \u003cbr\u003eProf. Gary Stevens et al, Gnosys\/Surrey University, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 17: Polymers in WEEE – A ‘sustainable’ raw material resource\u003c\/b\u003e \u003cbr\u003eKeith Freegard, Axion Recycling Ltd, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 6. POLYMERS AND PRINTED ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 18: Printed electronics: market opportunities and technical challenges \u003cbr\u003eMark Hutton \u0026amp; Nick Pearne, BPA Consulting, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 19: Inkjet printing of electronics\u003c\/b\u003e \u003cbr\u003eSteve Jones, Printed Electronics Limited, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 20: Flexible printing process for bespoke film based FCBs on polymer foil by combining laser technology, printing technology and electroplating \"Flextronic\"\u003c\/b\u003e \u003cbr\u003eFrits Feenstra, TNO Science \u0026amp; Industry, The Netherlands \u0026amp; Juergen Hackert, Vipem GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 21: Printed interconnects and batteries\u003c\/b\u003e \u003cbr\u003eDarren Southee, Gareth Hay, Peter Evans \u0026amp; David Harrison, Brunel University, UK\u003c\/p\u003e","published_at":"2017-06-22T21:14:16-04:00","created_at":"2017-06-22T21:14:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additive","application","batteries","blends","book","circuit boards","coating resistance","conductive polymer","electronics","epoxy resins","flame retardants","ink jet printing","interconnects","metal alloys","molding","nanocomposites","p-applications","phosphinates","plastics","polyaniline","polymer","polymers","printed wiring board","recycling"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378405380,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Electronics 2007","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-009-1","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-009-1.jpg?v=1499953353"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-009-1.jpg?v=1499953353","options":["Title"],"media":[{"alt":null,"id":358706872413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-009-1.jpg?v=1499953353"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-009-1.jpg?v=1499953353","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-009-1 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 30-31 January 2007\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis conference saw presentations from all parts of the electronics industry’s materials supply chain, from raw materials to finished products and offered an opportunity to learn more about both traditional and new polymer materials, their markets, manufacturing processes, and applications. It also covered the impact of legislation, the need to recycle and other polymer-related challenges and opportunities for the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1. TRENDS AND GROWTH \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 1: Plastics in Electronics - the CEE market \u003cbr\u003eKalman Wappel, Eastern, and Central European Business Development Ltd., Hungary\u003c\/p\u003e\n\u003cb\u003eSESSION 2. CONDUCTIVE POLYMERS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 2: Electrically conductive polymer blends filled with low melting metal alloys \u003cbr\u003eProf. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli \u0026amp; Dipl.-Ing. Tobias Pfefferkorn, Institute of Plastics Processing at RWTH Aachen University (IKV), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 3: Development and applications of nano- and microscale layers of conductive polymers applied to various surfaces\u003c\/b\u003e \u003cbr\u003eDr. Jamshid Avloni \u0026amp; Ryan Lau, Eeonyx Corporation \u0026amp; Dr. Arthur Henn, Marktek Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 4: Conducting polymer nanocomposites in EMI shielding\/radar absorption applications\u003c\/b\u003e \u003cbr\u003eMatt Aldissi, Fractal Systems Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 5: Inherently conductive polyaniline for electronics applications\u003c\/b\u003e \u003cbr\u003eJukka Perento, Panipol, Finland\u003c\/p\u003e\n\u003cb\u003eSESSION 3. NEW DEVELOPMENTS IN FLAME RETARDED POLYMERS FOR ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 6: Sustainable flame retardants – beyond fire safety, RoHS, and WEEE compliance \u003cbr\u003eTroy DeSoto \u0026amp; Veronique Steukers, Albemarle Corporation, Belgium \u0026amp; Kumar Kumar, Albemarle Corporation, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 7: Phosphinates, the flame retardants for polymers in electronics\u003c\/b\u003e \u003cbr\u003eDr. Sebastian Hörold, lmar Schmitt, Mathias Dietz, Jerome De Boysere, Clariant Produkte GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 8: Fire retardancy of polymers in electronics, a scientific approach\u003c\/b\u003e \u003cbr\u003eR. Borms, S. Goebelbecker \u0026amp; L. Tange, Eurobrom B.V. ICL-IP \u0026amp; P. Georlette \u0026amp; Y. Bar Yaakov, ICL-IP, The Netherlands\u003c\/p\u003e\n\u003cb\u003eSESSION 4. POLYMERS IN SUBSTRATES, ASSEMBLY AND RELIABILITY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 9: An overview of polymers as key enablers in electronics assembly \u003cbr\u003eProf. Martin Goosey, IeMRC, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 10: New epoxy resins for printed wiring board application\u003c\/b\u003e \u003cbr\u003eDr. Bernd Hoevel, Dr. Ludovic Valette \u0026amp; Dr. Joseph Gan, Dow Deutschland Anlagengesellschaft mbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 11: Printed circuit boards for lead-free soldering, materials and failure mechanisms\u003c\/b\u003e \u003cbr\u003ePer Johander, Per-Erik Tegehall, Abelrahim Ahmed Osman, Göran Wetter \u0026amp; Dag Andersson, IVF Industrial Research \u0026amp; Development Corporation, Sweden\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 12: Selection and qualification of polymers for rigid and flexible interconnect applications\u003c\/b\u003e \u003cbr\u003eFlorian Schuessler, Prof. Dr.-Ing. Klaus Feldmann \u0026amp; Thomas Bigl, Institute for Manufacturing Automation and Production Systems (FAPS), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 13: Macromelt molding - low-pressure adhesive injection molding\u003c\/b\u003e \u003cbr\u003eOlaf Muendelein, Henkel GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 14: Conformal coating resistance to organic and inorganic contaminants\u003c\/b\u003e \u003cbr\u003eDr. Christopher Hunt, National Physical Laboratory, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 5. POLYMER FORMULATION AND RECYCLING FOR ELECTRONICS APPLICATIONS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 15: Additives: the way to tailor-made plastics for E\u0026amp;E applications \u003cbr\u003eDr. Markus C. Grob, Eelco Dekker \u0026amp; Dr. Wolfgang Diegritz, Ciba Specialty Chemicals Inc., Switzerland\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 16: Polymer recycling from WEEE - rapid assessment of electronic product enclosure plastics for improved resource management\u003c\/b\u003e \u003cbr\u003eProf. Gary Stevens et al, Gnosys\/Surrey University, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 17: Polymers in WEEE – A ‘sustainable’ raw material resource\u003c\/b\u003e \u003cbr\u003eKeith Freegard, Axion Recycling Ltd, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 6. POLYMERS AND PRINTED ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 18: Printed electronics: market opportunities and technical challenges \u003cbr\u003eMark Hutton \u0026amp; Nick Pearne, BPA Consulting, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 19: Inkjet printing of electronics\u003c\/b\u003e \u003cbr\u003eSteve Jones, Printed Electronics Limited, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 20: Flexible printing process for bespoke film based FCBs on polymer foil by combining laser technology, printing technology and electroplating \"Flextronic\"\u003c\/b\u003e \u003cbr\u003eFrits Feenstra, TNO Science \u0026amp; Industry, The Netherlands \u0026amp; Juergen Hackert, Vipem GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 21: Printed interconnects and batteries\u003c\/b\u003e \u003cbr\u003eDarren Southee, Gareth Hay, Peter Evans \u0026amp; David Harrison, Brunel University, UK\u003c\/p\u003e"}
Polysaccharides in Med...
$265.00
{"id":11242255108,"title":"Polysaccharides in Medicinal and Pharmaceutical Applications","handle":"978-1-84735-436-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Valentin Popa \u003cbr\u003eISBN 978-1-84735-436-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book presents new and specific aspects in the field of polysaccharides and their derivatives recommended for use in medicine and pharmacy. At the same time, the aspects developed in this book will be useful to design new systems for drugs delivery, immunomodulation, and new materials based on polysaccharides isolated from different sources and their derivatives.\u003cbr\u003e\u003cbr\u003eThe structure and properties of polysaccharides from different sources with potential applications in the fields of medicine and pharmacy are discussed. Thus, the structural aspects concerning hyaluronic acids, fungal extracellular polysaccharides, celluloses, alginates, hemicelluloses, dextran, glyconjugates, and cyclodextrins are covered. The applications are described both for nonmodified and modified forms of polysaccharides for drug delivery, immunomodulation, tissue engineering and hydrogel preparation.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:29-04:00","created_at":"2017-06-22T21:15:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","appilcation","book","drug delivery","hydrogel","immunomodulation","p-applications","polysaccharides","tissue"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378490628,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polysaccharides in Medicinal and Pharmaceutical Applications","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-436-5","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-436-5.jpg?v=1499953417"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-436-5.jpg?v=1499953417","options":["Title"],"media":[{"alt":null,"id":358712016989,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-436-5.jpg?v=1499953417"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-84735-436-5.jpg?v=1499953417","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Valentin Popa \u003cbr\u003eISBN 978-1-84735-436-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book presents new and specific aspects in the field of polysaccharides and their derivatives recommended for use in medicine and pharmacy. At the same time, the aspects developed in this book will be useful to design new systems for drugs delivery, immunomodulation, and new materials based on polysaccharides isolated from different sources and their derivatives.\u003cbr\u003e\u003cbr\u003eThe structure and properties of polysaccharides from different sources with potential applications in the fields of medicine and pharmacy are discussed. Thus, the structural aspects concerning hyaluronic acids, fungal extracellular polysaccharides, celluloses, alginates, hemicelluloses, dextran, glyconjugates, and cyclodextrins are covered. The applications are described both for nonmodified and modified forms of polysaccharides for drug delivery, immunomodulation, tissue engineering and hydrogel preparation.\u003cbr\u003e\u003cbr\u003e"}
Regulation of Food Pac...
$125.00
{"id":11242214212,"title":"Regulation of Food Packaging in Europe and the USA","handle":"978-1-85957-471-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Derek J Knight and Lesley A Creighton \u003cbr\u003eISBN 978-1-85957-471-3 \u003cbr\u003e\u003cbr\u003eSafePharm Laboratories Ltd.\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003eRapra Review Reports, Vol. 15, No. 5, Report 173\u003cbr\u003epages 120\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA wide variety of plastics is used in food-contact applications and it is important that such plastics do not affect the food with which they come into contact. Given the obvious importance of producing safe and wholesome food, with adequate shelf life, it is not surprising that the food industry is heavily regulated. There is considerable public concern about the safety of food packaging, and one issue is the potential migration of compounding ingredients, monomers or additives from plastics into food. In general, food diffuses into plastic packaging, enhancing the migration of unreacted monomers and potentially mobile additives from the plastic into the food. \u003cbr\u003e\u003cbr\u003eThe objective of food packaging legislation is to protect the consumer by controlling the contamination of food by chemicals transferred from the packaging. Standard migration tests are available based on prescribed food simulants; these tests include overall migration testing and specific migration tests (for individual chemical species). The gradual development of lower detection limits for analytical methods has shown that many substances previously not considered as indirect food additives do actually migrate into food. \u003cbr\u003e\u003cbr\u003eFood packaging regulations are constantly under revision, and differ significantly between Europe and the USA – even between countries within the EU, although there is a strong harmonising influence from the Council of Europe and the European Commission. The regulation of food-contact materials in the EU is currently in a state of development, with various aspects still subject to national provisions until the European Commission has completed the harmonisation process. The US regulatory system is complex, with various approval and certification schemes. \u003cbr\u003e\u003cbr\u003eThis Rapra Review Report provides a clearly written summary of the current legislation surrounding the use of plastics in contact with food. It will be of interest to those working to formulate food-contact plastics, food processors and testing laboratories, packaging manufacturers and users, together with organisations working to ensure safe conditions for food production. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. INTRODUCTION AND OVERVIEW \u003cbr\u003e2. PLASTICS FOR USE IN PACKAGING\u003cbr\u003e2.1 Characteristics of Plastics\u003cbr\u003e2.2 Applications in Packaging\u003cbr\u003e2.2.1 Polymer Types\u003cbr\u003e2.2.2 Combination Products \u003cbr\u003e3. SAFETY EVALUATION OF FOOD PACKAGING\u003cbr\u003e3.1 Exposure Assessment\u003cbr\u003e3.1.1 Migration Evaluation\u003cbr\u003e3.1.2 Estimation of Dietary Exposure\u003cbr\u003e3.2 Toxicology Testing\u003cbr\u003e3.3 Risk Assessment \u003cbr\u003e4. CONTROL OF FOOD PACKAGING IN THE EU\u003cbr\u003e4.1 General Principles and the Framework Directive\u003cbr\u003e4.2 Food-Contact Plastics\u003cbr\u003e4.2.1 The Plastics Directive\u003cbr\u003e4.2.2 EU Lists of Substances for Plastics\u003cbr\u003e4.2.3 Safety Assessment of Additives and Starting Substances for Food-Contact Plastics\u003cbr\u003e4.2.4 Safety Assessment of Polymer Substances\u003cbr\u003e4.3 Future Developments for Food Plastics in the EU\u003cbr\u003e4.3.1 Introduction\u003cbr\u003e4.3.2 Proposed Introduction of a Revised Regulation to Council Directive 89\/109\/EC\u003cbr\u003e4.3.3 The Plastics Super Directive\u003cbr\u003e4.3.4 Active and Intelligent Packaging\u003cbr\u003e4.4 Other EU Food Packaging Measures\u003cbr\u003e4.4.1 Regenerated Cellulose Film\u003cbr\u003e4.4.2 Ceramic Articles\u003cbr\u003e4.4.3 Control of Vinyl Chloride from PVC\u003cbr\u003e4.4.4 Control of N-nitrosamines from Teats and Soothers\u003cbr\u003e4.4.5 Restrictions on Certain Epoxy Derivatives\u003cbr\u003e4.5 Disposal and Recycling of Plastics\u003cbr\u003e4.6 Strategy for Food-Contact Plastic Approval in the EU \u003cbr\u003e5. NATIONAL CONTROLS ON FOOD PACKAGING IN EU COUNTRIES\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Germany\u003cbr\u003e5.3 France\u003cbr\u003e5.4 The Netherlands\u003cbr\u003e5.5 Belgium\u003cbr\u003e5.6 Italy \u003cbr\u003e6. COUNCIL OF EUROPE WORK ON FOOD PACKAGING\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Completed Council of Europe Resolutions\u003cbr\u003e6.2.1 Colorants in Plastic Materials\u003cbr\u003e6.2.2 Polymerisation Aids\u003cbr\u003e6.2.3 Surface Coatings\u003cbr\u003e6.2.4 Ion Exchange and Absorbent Resins\u003cbr\u003e6.2.5 Silicones\u003cbr\u003e6.3 Council of Europe Ongoing Work\u003cbr\u003e6.3.1 Paper and Board\u003cbr\u003e6.3.2 Packaging Inks\u003cbr\u003e6.3.3 Rubber\u003cbr\u003e6.3.4 Other Draft Resolutions and Guidelines and Future Developments \u003cbr\u003e7. FOOD PACKAGING IN THE USA\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Development of US Food Packaging Legislation\u003cbr\u003e7.3 The Petition\u003cbr\u003e7.4 Threshold of Regulation Process\u003cbr\u003e7.5 The Pre-Marketing Notification Scheme \u003cbr\u003e8. CONCLUSIONS\u003cbr\u003eAcknowledgements\u003cbr\u003eAdditional References\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDerek J Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd., a leading UK contract research organisation, specialising in safety assessments of chemicals, biocides, and agrochemical pesticides. He heads a team of regulatory affairs professionals who deal with a wide range of registration projects covering many product types for regulatory compliance in all the key markets globally. As such he has gained an overall perspective into commercial issues associated with the regulation of the chemical industry. He is a Fellow of the RSC and a Fellow of TOPRA. His doctoral studies at the University of Oxford were in organosulphur chemistry. \u003cbr\u003e\u003cbr\u003eLesley A Creighton has worked within SafePharm Laboratories for 13 years providing regulatory support to the chemical industry for the notification of new chemical substances, food contact materials, and cosmetic products. She has a combined science degree in chemistry and mathematics and is a member of both the RSC and TOPRA. 2004\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:21-04:00","created_at":"2017-06-22T21:13:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","acrylic polymers","book","cellulose","ceramic","epoxy derivatives","EU","exposure","film","food","materials","migration","p-applications","packaging","plastics","polymer","PVC","recycling","testing","toxicology"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378351300,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Regulation of Food Packaging in Europe and the USA","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-471-3","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-471-3.jpg?v=1499724997"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-471-3.jpg?v=1499724997","options":["Title"],"media":[{"alt":null,"id":358733873245,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-471-3.jpg?v=1499724997"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-471-3.jpg?v=1499724997","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Derek J Knight and Lesley A Creighton \u003cbr\u003eISBN 978-1-85957-471-3 \u003cbr\u003e\u003cbr\u003eSafePharm Laboratories Ltd.\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003eRapra Review Reports, Vol. 15, No. 5, Report 173\u003cbr\u003epages 120\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA wide variety of plastics is used in food-contact applications and it is important that such plastics do not affect the food with which they come into contact. Given the obvious importance of producing safe and wholesome food, with adequate shelf life, it is not surprising that the food industry is heavily regulated. There is considerable public concern about the safety of food packaging, and one issue is the potential migration of compounding ingredients, monomers or additives from plastics into food. In general, food diffuses into plastic packaging, enhancing the migration of unreacted monomers and potentially mobile additives from the plastic into the food. \u003cbr\u003e\u003cbr\u003eThe objective of food packaging legislation is to protect the consumer by controlling the contamination of food by chemicals transferred from the packaging. Standard migration tests are available based on prescribed food simulants; these tests include overall migration testing and specific migration tests (for individual chemical species). The gradual development of lower detection limits for analytical methods has shown that many substances previously not considered as indirect food additives do actually migrate into food. \u003cbr\u003e\u003cbr\u003eFood packaging regulations are constantly under revision, and differ significantly between Europe and the USA – even between countries within the EU, although there is a strong harmonising influence from the Council of Europe and the European Commission. The regulation of food-contact materials in the EU is currently in a state of development, with various aspects still subject to national provisions until the European Commission has completed the harmonisation process. The US regulatory system is complex, with various approval and certification schemes. \u003cbr\u003e\u003cbr\u003eThis Rapra Review Report provides a clearly written summary of the current legislation surrounding the use of plastics in contact with food. It will be of interest to those working to formulate food-contact plastics, food processors and testing laboratories, packaging manufacturers and users, together with organisations working to ensure safe conditions for food production. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. INTRODUCTION AND OVERVIEW \u003cbr\u003e2. PLASTICS FOR USE IN PACKAGING\u003cbr\u003e2.1 Characteristics of Plastics\u003cbr\u003e2.2 Applications in Packaging\u003cbr\u003e2.2.1 Polymer Types\u003cbr\u003e2.2.2 Combination Products \u003cbr\u003e3. SAFETY EVALUATION OF FOOD PACKAGING\u003cbr\u003e3.1 Exposure Assessment\u003cbr\u003e3.1.1 Migration Evaluation\u003cbr\u003e3.1.2 Estimation of Dietary Exposure\u003cbr\u003e3.2 Toxicology Testing\u003cbr\u003e3.3 Risk Assessment \u003cbr\u003e4. CONTROL OF FOOD PACKAGING IN THE EU\u003cbr\u003e4.1 General Principles and the Framework Directive\u003cbr\u003e4.2 Food-Contact Plastics\u003cbr\u003e4.2.1 The Plastics Directive\u003cbr\u003e4.2.2 EU Lists of Substances for Plastics\u003cbr\u003e4.2.3 Safety Assessment of Additives and Starting Substances for Food-Contact Plastics\u003cbr\u003e4.2.4 Safety Assessment of Polymer Substances\u003cbr\u003e4.3 Future Developments for Food Plastics in the EU\u003cbr\u003e4.3.1 Introduction\u003cbr\u003e4.3.2 Proposed Introduction of a Revised Regulation to Council Directive 89\/109\/EC\u003cbr\u003e4.3.3 The Plastics Super Directive\u003cbr\u003e4.3.4 Active and Intelligent Packaging\u003cbr\u003e4.4 Other EU Food Packaging Measures\u003cbr\u003e4.4.1 Regenerated Cellulose Film\u003cbr\u003e4.4.2 Ceramic Articles\u003cbr\u003e4.4.3 Control of Vinyl Chloride from PVC\u003cbr\u003e4.4.4 Control of N-nitrosamines from Teats and Soothers\u003cbr\u003e4.4.5 Restrictions on Certain Epoxy Derivatives\u003cbr\u003e4.5 Disposal and Recycling of Plastics\u003cbr\u003e4.6 Strategy for Food-Contact Plastic Approval in the EU \u003cbr\u003e5. NATIONAL CONTROLS ON FOOD PACKAGING IN EU COUNTRIES\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Germany\u003cbr\u003e5.3 France\u003cbr\u003e5.4 The Netherlands\u003cbr\u003e5.5 Belgium\u003cbr\u003e5.6 Italy \u003cbr\u003e6. COUNCIL OF EUROPE WORK ON FOOD PACKAGING\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Completed Council of Europe Resolutions\u003cbr\u003e6.2.1 Colorants in Plastic Materials\u003cbr\u003e6.2.2 Polymerisation Aids\u003cbr\u003e6.2.3 Surface Coatings\u003cbr\u003e6.2.4 Ion Exchange and Absorbent Resins\u003cbr\u003e6.2.5 Silicones\u003cbr\u003e6.3 Council of Europe Ongoing Work\u003cbr\u003e6.3.1 Paper and Board\u003cbr\u003e6.3.2 Packaging Inks\u003cbr\u003e6.3.3 Rubber\u003cbr\u003e6.3.4 Other Draft Resolutions and Guidelines and Future Developments \u003cbr\u003e7. FOOD PACKAGING IN THE USA\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Development of US Food Packaging Legislation\u003cbr\u003e7.3 The Petition\u003cbr\u003e7.4 Threshold of Regulation Process\u003cbr\u003e7.5 The Pre-Marketing Notification Scheme \u003cbr\u003e8. CONCLUSIONS\u003cbr\u003eAcknowledgements\u003cbr\u003eAdditional References\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDerek J Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd., a leading UK contract research organisation, specialising in safety assessments of chemicals, biocides, and agrochemical pesticides. He heads a team of regulatory affairs professionals who deal with a wide range of registration projects covering many product types for regulatory compliance in all the key markets globally. As such he has gained an overall perspective into commercial issues associated with the regulation of the chemical industry. He is a Fellow of the RSC and a Fellow of TOPRA. His doctoral studies at the University of Oxford were in organosulphur chemistry. \u003cbr\u003e\u003cbr\u003eLesley A Creighton has worked within SafePharm Laboratories for 13 years providing regulatory support to the chemical industry for the notification of new chemical substances, food contact materials, and cosmetic products. She has a combined science degree in chemistry and mathematics and is a member of both the RSC and TOPRA. 2004\u003cbr\u003e\u003cbr\u003e"}
Shape Memory Polymers:...
$205.00
{"id":11242241156,"title":"Shape Memory Polymers: Fundamentals, Advances and Applications","handle":"9781909030329","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","blends","book","mechanical properties","medical applications","modelling","morphology","p-applications","p-structural","polymer","polymer composite","polymers","shape-memory","structure","textile applications"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Shape Memory Polymers: Fundamentals, Advances and Applications","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781909030329","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781909030329.jpg?v=1499955459"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781909030329.jpg?v=1499955459","options":["Title"],"media":[{"alt":null,"id":358743539805,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781909030329.jpg?v=1499955459"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781909030329.jpg?v=1499955459","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}
Shreir's Corrosion
$2,475.00
{"id":11242218692,"title":"Shreir's Corrosion","handle":"978-0-444-52788-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Various \u003cbr\u003eISBN 978-0-444-52788-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003eApproximately 4,000 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCoverage of all aspects of the corrosion phenomenon from the science behind corrosion of metallic and non-metallic materials in liquids and gases to the management of corrosion in specific industries and applications is given full attention. This multivolume book, containing approximately 4,000 pages, features cutting-edge topics such as medical applications, metal matrix composites, and corrosion modeling and it covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy.\u003c\/p\u003e\n\u003cp\u003eAudience \u003c\/p\u003e\nIndustry professionals and academics working in areas such as materials\u003cbr\u003escience, chemical\/mechanical\/metallurgical engineering, and design\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nVol. 1: Basic Concepts, High-Temperature Corrosion \u003cbr\u003eVol. 2: Corrosion in Liquids, Experimental Evaluation \u0026amp; Modelling of\u003cbr\u003eCorrosion V\u003cbr\u003eVol. 3: Corrosion of Engineering Materials \u003cbr\u003eVol. 4: Management and Control of Corrosion\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nEdited by: Tony Richardson, (Coordinating Editor), Anticorrosion Consulting,\u003cbr\u003eDurham, UK, Bob Cottis, Rob Lindsay, Stuart Lyon, David Scantlebury, \u003cbr\u003eHoward Stott, Corrosion and Protection Centre, School of Materials,\u003cbr\u003eUniversity of Manchester, Manchester, UK\u003cbr\u003eMike Graham, National Research Council, Institute for Microstructural\u003cbr\u003eSciences, Ontario, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:37-04:00","created_at":"2017-06-22T21:13:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","aspects of the corrosion phenomenon","book","corrosion","corrosion of metallic materials","Covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy","engineering materials","general","material","medical applications","metal matrix composites","non-metallic materials","p-applications","polymer"],"price":247500,"price_min":247500,"price_max":247500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378364036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Shreir's Corrosion","public_title":null,"options":["Default Title"],"price":247500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-444-52788-2","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-444-52788-2.jpg?v=1504196733"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-444-52788-2.jpg?v=1504196733","options":["Title"],"media":[{"alt":null,"id":413504045149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-444-52788-2.jpg?v=1504196733"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-444-52788-2.jpg?v=1504196733","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Various \u003cbr\u003eISBN 978-0-444-52788-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003eApproximately 4,000 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCoverage of all aspects of the corrosion phenomenon from the science behind corrosion of metallic and non-metallic materials in liquids and gases to the management of corrosion in specific industries and applications is given full attention. This multivolume book, containing approximately 4,000 pages, features cutting-edge topics such as medical applications, metal matrix composites, and corrosion modeling and it covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy.\u003c\/p\u003e\n\u003cp\u003eAudience \u003c\/p\u003e\nIndustry professionals and academics working in areas such as materials\u003cbr\u003escience, chemical\/mechanical\/metallurgical engineering, and design\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nVol. 1: Basic Concepts, High-Temperature Corrosion \u003cbr\u003eVol. 2: Corrosion in Liquids, Experimental Evaluation \u0026amp; Modelling of\u003cbr\u003eCorrosion V\u003cbr\u003eVol. 3: Corrosion of Engineering Materials \u003cbr\u003eVol. 4: Management and Control of Corrosion\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nEdited by: Tony Richardson, (Coordinating Editor), Anticorrosion Consulting,\u003cbr\u003eDurham, UK, Bob Cottis, Rob Lindsay, Stuart Lyon, David Scantlebury, \u003cbr\u003eHoward Stott, Corrosion and Protection Centre, School of Materials,\u003cbr\u003eUniversity of Manchester, Manchester, UK\u003cbr\u003eMike Graham, National Research Council, Institute for Microstructural\u003cbr\u003eSciences, Ontario, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Sputtering Materials f...
$199.00
{"id":11242250820,"title":"Sputtering Materials for VLSI and Thin Film Devices, 1st Edition","handle":"9780815515937","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J Sarkar \u003cbr\u003eISBN 9780815515937 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eUnique coverage of sputtering target manufacturing methods in the light of semiconductor, displays, data storage and photovoltaic industry requirements\u003cbr\u003e\u003cbr\u003ePractical information on technology trends, role of sputtering and major OEMs\u003cbr\u003e\u003cbr\u003eDiscussion on properties of a wide variety of thin films which include silicides, conductors, diffusion barriers, transparent conducting oxides, magnetic films etc.\u003cbr\u003e\u003cbr\u003ePractical case-studies on target performance and troubleshooting\u003cbr\u003e\u003cbr\u003eEssential technological information for students, engineers and scientists working in the semiconductor, display, data storage and photovoltaic industry\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eAn important resource for the microelectronics and flat panel display industries, this book focuses on the development of sputtering targets for the conductor, diffusion barrier, reflective, data storage and display applications.\u003cbr\u003e\u003cbr\u003eSarkar reviews essential microelectronics industry topics, including: history and technology trends; chip making fundamentals; deposition and properties of thin films; and the role of sputtering target performance on overall production yield. Materials science fundamentals, types of metallic materials for conductors, diffusion barrier, data storage, and flat panel display applications are also discussed.\u003cbr\u003e\u003cbr\u003eThe author illustrates his arguments with case studies and real-world examples of troubleshooting in an industrial setting.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eResearchers, engineers, undergraduate and graduate students in the fields of semiconductors, displays, thin films (nanotechnology and MEMS) and related industries.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSputtering Materials for VLSI and Thin Film Devices, 1st Edition\u003cbr\u003eChapter 1: Sputtering materials for microelectronic industry\u003cbr\u003eChapter 2: Sputter deposition of thin films\u003cbr\u003eChapter 3: Performance of sputtering targets and productivity\u003cbr\u003eChapter 4: Sputtering target manufacturing\u003cbr\u003eChapter 5: Sputtering targets for integrated circuits\u003cbr\u003eChapter 6: Sputtering targets for displays and photovoltaic devices\u003cbr\u003eChapter 7: Ferromagnetic sputtering targets for silicide and data storage applications\u003cbr\u003eChapter 8: Troubleshooting\u003cbr\u003eAppendix I Diffusion and phase transformation\u003cbr\u003eAppendix II Crystallographic texture\u003cbr\u003eAppendix III Phase change materials\u003cbr\u003eAppendix IV Mechanical property evaluation\u003cbr\u003eAppendix V Units and conversion factors\u003cbr\u003eAppendix VI Periodic table\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:17-04:00","created_at":"2017-06-22T21:15:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","conversion","crystallographic texture","diffusion","flat panel","microelectronics","OEMs","p-applications","photovoltaic industry","polymer","sputtering","thin films","troubleshooting"],"price":19900,"price_min":19900,"price_max":19900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378473732,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Sputtering Materials for VLSI and Thin Film Devices, 1st Edition","public_title":null,"options":["Default Title"],"price":19900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780815515937","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9780815515937_d0b3fd08-84b2-4684-9912-1cfd304bc799.jpg?v=1499955872"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9780815515937_d0b3fd08-84b2-4684-9912-1cfd304bc799.jpg?v=1499955872","options":["Title"],"media":[{"alt":null,"id":358761365597,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9780815515937_d0b3fd08-84b2-4684-9912-1cfd304bc799.jpg?v=1499955872"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9780815515937_d0b3fd08-84b2-4684-9912-1cfd304bc799.jpg?v=1499955872","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J Sarkar \u003cbr\u003eISBN 9780815515937 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eUnique coverage of sputtering target manufacturing methods in the light of semiconductor, displays, data storage and photovoltaic industry requirements\u003cbr\u003e\u003cbr\u003ePractical information on technology trends, role of sputtering and major OEMs\u003cbr\u003e\u003cbr\u003eDiscussion on properties of a wide variety of thin films which include silicides, conductors, diffusion barriers, transparent conducting oxides, magnetic films etc.\u003cbr\u003e\u003cbr\u003ePractical case-studies on target performance and troubleshooting\u003cbr\u003e\u003cbr\u003eEssential technological information for students, engineers and scientists working in the semiconductor, display, data storage and photovoltaic industry\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eAn important resource for the microelectronics and flat panel display industries, this book focuses on the development of sputtering targets for the conductor, diffusion barrier, reflective, data storage and display applications.\u003cbr\u003e\u003cbr\u003eSarkar reviews essential microelectronics industry topics, including: history and technology trends; chip making fundamentals; deposition and properties of thin films; and the role of sputtering target performance on overall production yield. Materials science fundamentals, types of metallic materials for conductors, diffusion barrier, data storage, and flat panel display applications are also discussed.\u003cbr\u003e\u003cbr\u003eThe author illustrates his arguments with case studies and real-world examples of troubleshooting in an industrial setting.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eResearchers, engineers, undergraduate and graduate students in the fields of semiconductors, displays, thin films (nanotechnology and MEMS) and related industries.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSputtering Materials for VLSI and Thin Film Devices, 1st Edition\u003cbr\u003eChapter 1: Sputtering materials for microelectronic industry\u003cbr\u003eChapter 2: Sputter deposition of thin films\u003cbr\u003eChapter 3: Performance of sputtering targets and productivity\u003cbr\u003eChapter 4: Sputtering target manufacturing\u003cbr\u003eChapter 5: Sputtering targets for integrated circuits\u003cbr\u003eChapter 6: Sputtering targets for displays and photovoltaic devices\u003cbr\u003eChapter 7: Ferromagnetic sputtering targets for silicide and data storage applications\u003cbr\u003eChapter 8: Troubleshooting\u003cbr\u003eAppendix I Diffusion and phase transformation\u003cbr\u003eAppendix II Crystallographic texture\u003cbr\u003eAppendix III Phase change materials\u003cbr\u003eAppendix IV Mechanical property evaluation\u003cbr\u003eAppendix V Units and conversion factors\u003cbr\u003eAppendix VI Periodic table\u003cbr\u003e\u003cbr\u003e"}
Stabilisers for Polyol...
$119.00
{"id":11242207172,"title":"Stabilisers for Polyolefins","handle":"978-1-85957-285-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Kröhnke and F. Werner, Clariant Huningue \u003cbr\u003eISBN 978-1-85957-285-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: Nov 2001\u003cbr\u003e\u003c\/span\u003ePages 132\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the first technical breakthrough occurred in the development of plastics at the beginning of the 20th century, plastic materials have become increasingly important. As well as research into polymer synthesis, the polymer industry is permanently challenged to improve the stability and lifetime of polymers. Demanding requirements can only be reached by means of the addition of small amounts of appropriate stabilisers, which maintain or even improve the initial properties of plastic materials. \u003cbr\u003e\u003cbr\u003eIn this review, the authors describe the main types of stabilisers with the focus on those categories for polyolefins. They also elucidate some of the physical and chemical aspects of such products when incorporated into the polymer matrix, discussing stability during weathering, heat ageing, and processing. Examples of the stabilisation of a variety of different articles are presented to reinforce the points discussed. The review is supported by several hundred relevant abstracts selected from the Rapra Abstracts database\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eChristoph Kröhnke\u003c\/strong\u003e is presently Team leader in the Development Group of Clariant's Business Line Polymer Additives. His expertise lies mainly in the field of solid-state polymer chemistry and physics. Since 1991 he has been particularly involved in the area of polymer degradation and stabilisation.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrédéric Werner\u003c\/strong\u003e joined Clariant's Business Line Polymer Additives in 1999 as regional technical manager for South Europe, Eastern Europe, and Mexico. He provides technical support to customers in the area of polyolefins and engineering plastics with products including amongst others processing, long-term heat, and light stabilisers.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:12:59-04:00","created_at":"2017-06-22T21:12:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","additives","ageing","book","degradation","heat","p-additives","p-applications","plastics","polymer","polymers","polyolefines","polyolefins","stabilisers"],"price":11900,"price_min":11900,"price_max":11900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378325700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Stabilisers for Polyolefins","public_title":null,"options":["Default Title"],"price":11900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-285-6","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895","options":["Title"],"media":[{"alt":null,"id":358762512477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-85957-285-6_a7adf26f-154f-4adf-a7ca-d87fac4f25ac.jpg?v=1499955895","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Kröhnke and F. Werner, Clariant Huningue \u003cbr\u003eISBN 978-1-85957-285-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: Nov 2001\u003cbr\u003e\u003c\/span\u003ePages 132\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the first technical breakthrough occurred in the development of plastics at the beginning of the 20th century, plastic materials have become increasingly important. As well as research into polymer synthesis, the polymer industry is permanently challenged to improve the stability and lifetime of polymers. Demanding requirements can only be reached by means of the addition of small amounts of appropriate stabilisers, which maintain or even improve the initial properties of plastic materials. \u003cbr\u003e\u003cbr\u003eIn this review, the authors describe the main types of stabilisers with the focus on those categories for polyolefins. They also elucidate some of the physical and chemical aspects of such products when incorporated into the polymer matrix, discussing stability during weathering, heat ageing, and processing. Examples of the stabilisation of a variety of different articles are presented to reinforce the points discussed. The review is supported by several hundred relevant abstracts selected from the Rapra Abstracts database\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eChristoph Kröhnke\u003c\/strong\u003e is presently Team leader in the Development Group of Clariant's Business Line Polymer Additives. His expertise lies mainly in the field of solid-state polymer chemistry and physics. Since 1991 he has been particularly involved in the area of polymer degradation and stabilisation.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrédéric Werner\u003c\/strong\u003e joined Clariant's Business Line Polymer Additives in 1999 as regional technical manager for South Europe, Eastern Europe, and Mexico. He provides technical support to customers in the area of polyolefins and engineering plastics with products including amongst others processing, long-term heat, and light stabilisers.\u003cbr\u003e\u003cbr\u003e"}
Superlattice to Nanoel...
$190.00
{"id":11242251076,"title":"Superlattice to Nanoelectronics, 2nd Edition","handle":"978-0-08-096813-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Raphael Tsu \u003cbr\u003eISBN 978-0-08-096813-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e346 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSuperlattice to Nanoelectronics, Second Edition, traces the history of the development of superlattices and quantum wells from their origins in 1969. Topics discussed include the birth of the superlattice; resonant tunneling via man-made quantum well states; optical properties and Raman scattering in man-made quantum systems; dielectric function and doping of a superlattice; and quantum step and activation energy. The book also covers semiconductor atomic superlattice; Si quantum dots fabricated from annealing amorphous silicon; capacitance, dielectric constant, and doping quantum dots; porous silicon; and quantum impedance of electrons.\n\u003cul\u003e\n\u003cli\u003eWritten by one of the founders of this field\u003c\/li\u003e\n\u003cli\u003eDelivers over 20% new material, including new research and new technological applications\u003c\/li\u003e\n\u003cli\u003eProvides a basic understanding of the physics involved from first principles, while adding new depth, using basic mathematics and an explanation of the background essentials\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSuperlattice\u003cbr\u003e\u003cbr\u003eResonant tunneling via man-made quantum well states\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eOptical properties and Raman scattering in man-made quantum systems\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eDielectric function and doping of a superlattice\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eQuantum step and activation energy\u003cbr\u003e\u003cbr\u003eSemiconductor atomic superlattice (sas)\u003cbr\u003e\u003cbr\u003eSi quantum dots\u003cbr\u003e\u003cbr\u003eCapacitance, dielectric constant and doping quantum dots\u003cbr\u003e\u003cbr\u003ePorous silicon\u003cbr\u003e\u003cbr\u003eSome novel devices\u003cbr\u003e\u003cbr\u003eQuantum impedance of electrons\u003cbr\u003e\u003cbr\u003eWhy super and why nano\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:18-04:00","created_at":"2017-06-22T21:15:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","dielectric","optical properties","p-applications","poly","Raman","semiconductor","superlattice"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378474500,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Superlattice to Nanoelectronics, 2nd Edition","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08-096813-1","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-08-096813-1_3c545a29-0ca4-43f2-b1ae-6011d6fbf813.jpg?v=1499956084"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-08-096813-1_3c545a29-0ca4-43f2-b1ae-6011d6fbf813.jpg?v=1499956084","options":["Title"],"media":[{"alt":null,"id":358773719133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-08-096813-1_3c545a29-0ca4-43f2-b1ae-6011d6fbf813.jpg?v=1499956084"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-08-096813-1_3c545a29-0ca4-43f2-b1ae-6011d6fbf813.jpg?v=1499956084","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Raphael Tsu \u003cbr\u003eISBN 978-0-08-096813-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e346 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSuperlattice to Nanoelectronics, Second Edition, traces the history of the development of superlattices and quantum wells from their origins in 1969. Topics discussed include the birth of the superlattice; resonant tunneling via man-made quantum well states; optical properties and Raman scattering in man-made quantum systems; dielectric function and doping of a superlattice; and quantum step and activation energy. The book also covers semiconductor atomic superlattice; Si quantum dots fabricated from annealing amorphous silicon; capacitance, dielectric constant, and doping quantum dots; porous silicon; and quantum impedance of electrons.\n\u003cul\u003e\n\u003cli\u003eWritten by one of the founders of this field\u003c\/li\u003e\n\u003cli\u003eDelivers over 20% new material, including new research and new technological applications\u003c\/li\u003e\n\u003cli\u003eProvides a basic understanding of the physics involved from first principles, while adding new depth, using basic mathematics and an explanation of the background essentials\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSuperlattice\u003cbr\u003e\u003cbr\u003eResonant tunneling via man-made quantum well states\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eOptical properties and Raman scattering in man-made quantum systems\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eDielectric function and doping of a superlattice\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eQuantum step and activation energy\u003cbr\u003e\u003cbr\u003eSemiconductor atomic superlattice (sas)\u003cbr\u003e\u003cbr\u003eSi quantum dots\u003cbr\u003e\u003cbr\u003eCapacitance, dielectric constant and doping quantum dots\u003cbr\u003e\u003cbr\u003ePorous silicon\u003cbr\u003e\u003cbr\u003eSome novel devices\u003cbr\u003e\u003cbr\u003eQuantum impedance of electrons\u003cbr\u003e\u003cbr\u003eWhy super and why nano\u003cbr\u003e\u003cbr\u003e"}
The Effect of Steriliz...
$314.00
{"id":11242208388,"title":"The Effect of Sterilization Methods on Plastics and Elastomers, 2nd Edition","handle":"978-0-8155-1505-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Liesl K. Massey \u003cbr\u003eISBN 978-0-8155-1505-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e412 pages · 8.5\" x 11\" Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively updated second edition was created for medical device, medical packaging, and food packaging design engineers, material product technical support, and research\/development personnel. This comprehensive databook contains important characteristics and properties data on the effects of sterilization methods on plastics and elastomers. It provides a ready reference for comparing materials in the same family as well as materials in different families. \u003cbr\u003e\u003cbr\u003eData are presented on 43 major plastic and elastomer packaging materials, including biodegradable or organic polymers. New to this edition are resin chapters containing textual summary information including category; a general description; applications; resistances to particular sterilization methods; and regulatory status considerations for use in medical devices and medical\/food packaging. The resin chapter material supplier trade name product data is presented in a graphical and tabular format, with results normalized to SI units, retaining the familiar format of the best selling first edition and allowing easy comparison between materials and test conditions.\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/a\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eMED108000: MEDICAL \/ Instruments \u0026amp; Supplies\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBIC CODES\u003c\/strong\u003e\u003cbr\u003eTDCP: Plastics \u0026amp; polymers technology\u003cbr\u003eTGM: Materials science\u003cbr\u003eMBG: Medical equipment and techniques\u003cbr\u003e\u003cbr\u003e\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003c\/a\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSterilization Methods\u003cbr\u003e\u003cbr\u003eSterilization Stability of Materials\u003cbr\u003e\u003cbr\u003eComparative Radiation Stability\u003cbr\u003e\u003cbr\u003eThe Effect of Ionizing Radiation on Polymers\u003cbr\u003e\u003cbr\u003eRadiation Stabilizers\u003cbr\u003e\u003cbr\u003eThe Effects of Gamma Sterilization on Color Change\u003cbr\u003e\u003cbr\u003eRegulatory Status\u003cbr\u003e\u003cbr\u003eResin Chapters\u003cbr\u003e\u003cbr\u003eAcetal\u003cbr\u003e\u003cbr\u003eABS\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNylon\u003cbr\u003e\u003cbr\u003ePolycarbonate\u003cbr\u003e\u003cbr\u003ePolyester\u003cbr\u003e\u003cbr\u003eLiquid Crystal Polymer\u003cbr\u003e\u003cbr\u003ePolyimide\u003cbr\u003e\u003cbr\u003ePolyketone\u003cbr\u003e\u003cbr\u003ePolyolefin\u003cbr\u003e\u003cbr\u003ePolyphenylene Sulfide\u003cbr\u003e\u003cbr\u003ePolystyrene\u003cbr\u003e\u003cbr\u003ePolysulfone\u003cbr\u003e\u003cbr\u003ePolyurethane\u003cbr\u003e\u003cbr\u003eStyrene Acrylonitrile\u003cbr\u003e\u003cbr\u003eStyrene Butadiene Copolymers\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride\u003cbr\u003e\u003cbr\u003eThermoplastic Alloys\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers\u003cbr\u003e\u003cbr\u003eSilicone\u003cbr\u003e\u003cbr\u003eBiodegradable or Organic\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003eIndices\u003cbr\u003e\u003cbr\u003eTable and Graph Index\u003cbr\u003e\u003cbr\u003eTrade Name Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLiesl K. Massey\u003c\/strong\u003e\u003cbr\u003eFina Oil and Chemical Company\u003cbr\u003eEducated as a mechanical engineer and MBS, Liesl K. Massey brings substantial and varied plastics industry experience from Fina Oil and Chemical Company and Ferro Corporation to her writing occupation. Past responsibilities include technical service support, new product introductions, account management, and customer service management of a wide range of resin and additive products. She is a past committee member of the annual SPE Polyolefins Conference and is currently consulting within the polymer and polymer additives market.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:03-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","book","elastomers","Gamma Sterilization","general","medical","methods","p-applications","plastics","polymer","polymers","radiation","stability","sterlization"],"price":31400,"price_min":31400,"price_max":31400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378328004,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Sterilization Methods on Plastics and Elastomers, 2nd Edition","public_title":null,"options":["Default Title"],"price":31400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1505-0","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302","options":["Title"],"media":[{"alt":null,"id":358783483997,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Liesl K. Massey \u003cbr\u003eISBN 978-0-8155-1505-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e412 pages · 8.5\" x 11\" Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively updated second edition was created for medical device, medical packaging, and food packaging design engineers, material product technical support, and research\/development personnel. This comprehensive databook contains important characteristics and properties data on the effects of sterilization methods on plastics and elastomers. It provides a ready reference for comparing materials in the same family as well as materials in different families. \u003cbr\u003e\u003cbr\u003eData are presented on 43 major plastic and elastomer packaging materials, including biodegradable or organic polymers. New to this edition are resin chapters containing textual summary information including category; a general description; applications; resistances to particular sterilization methods; and regulatory status considerations for use in medical devices and medical\/food packaging. The resin chapter material supplier trade name product data is presented in a graphical and tabular format, with results normalized to SI units, retaining the familiar format of the best selling first edition and allowing easy comparison between materials and test conditions.\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/a\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eMED108000: MEDICAL \/ Instruments \u0026amp; Supplies\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBIC CODES\u003c\/strong\u003e\u003cbr\u003eTDCP: Plastics \u0026amp; polymers technology\u003cbr\u003eTGM: Materials science\u003cbr\u003eMBG: Medical equipment and techniques\u003cbr\u003e\u003cbr\u003e\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003c\/a\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSterilization Methods\u003cbr\u003e\u003cbr\u003eSterilization Stability of Materials\u003cbr\u003e\u003cbr\u003eComparative Radiation Stability\u003cbr\u003e\u003cbr\u003eThe Effect of Ionizing Radiation on Polymers\u003cbr\u003e\u003cbr\u003eRadiation Stabilizers\u003cbr\u003e\u003cbr\u003eThe Effects of Gamma Sterilization on Color Change\u003cbr\u003e\u003cbr\u003eRegulatory Status\u003cbr\u003e\u003cbr\u003eResin Chapters\u003cbr\u003e\u003cbr\u003eAcetal\u003cbr\u003e\u003cbr\u003eABS\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNylon\u003cbr\u003e\u003cbr\u003ePolycarbonate\u003cbr\u003e\u003cbr\u003ePolyester\u003cbr\u003e\u003cbr\u003eLiquid Crystal Polymer\u003cbr\u003e\u003cbr\u003ePolyimide\u003cbr\u003e\u003cbr\u003ePolyketone\u003cbr\u003e\u003cbr\u003ePolyolefin\u003cbr\u003e\u003cbr\u003ePolyphenylene Sulfide\u003cbr\u003e\u003cbr\u003ePolystyrene\u003cbr\u003e\u003cbr\u003ePolysulfone\u003cbr\u003e\u003cbr\u003ePolyurethane\u003cbr\u003e\u003cbr\u003eStyrene Acrylonitrile\u003cbr\u003e\u003cbr\u003eStyrene Butadiene Copolymers\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride\u003cbr\u003e\u003cbr\u003eThermoplastic Alloys\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers\u003cbr\u003e\u003cbr\u003eSilicone\u003cbr\u003e\u003cbr\u003eBiodegradable or Organic\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003eIndices\u003cbr\u003e\u003cbr\u003eTable and Graph Index\u003cbr\u003e\u003cbr\u003eTrade Name Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLiesl K. Massey\u003c\/strong\u003e\u003cbr\u003eFina Oil and Chemical Company\u003cbr\u003eEducated as a mechanical engineer and MBS, Liesl K. Massey brings substantial and varied plastics industry experience from Fina Oil and Chemical Company and Ferro Corporation to her writing occupation. Past responsibilities include technical service support, new product introductions, account management, and customer service management of a wide range of resin and additive products. She is a past committee member of the annual SPE Polyolefins Conference and is currently consulting within the polymer and polymer additives market.\u003cbr\u003e\u003cbr\u003e"}
The Effect of Steriliz...
$280.00
{"id":11242223620,"title":"The Effect of Sterilization on Plastics and Elastomers, 3rd Edition","handle":"978-1-4557-2598-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2598-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2012 \u003cbr\u003e\u003c\/span\u003e480 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eEssential data and practical guidance for engineers and scientists working with plastics in applications that require sterile packaging and equipment.\u003c\/li\u003e\n\u003cli\u003e3rd edition includes new introductory chapters on sterilization processes and polymer chemistry, providing the underpinning knowledge required to utilize the data.'\u003c\/li\u003e\n\u003cli\u003eProvides essential information and guidance for FDA submissions required for new Medical Devices.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\u003cbr\u003eThis reference guide brings together a wide range of essential data on the sterilization of plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data tables in this book enable engineers and scientists to select the right materials, and right sterilization method for a given product or application.\u003cbr\u003e\u003cbr\u003eThe third edition includes new text chapters that provide the underpinning knowledge required to make the best use of the data. Larry McKeen has also added detailed descriptions of sterilization methods for most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics. Data has been updated throughout, with expanded information on newer classes of polymer utilized in medical devices and sterile packaging, such as UHMWPE, high-temperature plastics (PEEK, PES, PPS, etc.), PBT, PETG, etc. The resulting Handbook is an essential reference for Plastics Engineers, Materials Scientists, and Chemists working in contexts where sterilization is required, such as food packaging, pharmaceutical packaging, and medical devices.\u003cbr\u003e\u003cbr\u003e \u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePlastics engineers, product designers, packaging engineers and materials scientists.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cul\u003e\n\u003cli\u003eMedical device and packaging designers and users; polymer and coatings chemists; producers and users of sterile packaging products and medical devices.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cul\u003e\n\u003cli\u003eSectors: food, beverage and pharmaceutical packaging; medical devices; chemical processing; agriculture; defense.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Sterilization Processes\u003cbr\u003e\u003cbr\u003eIntroduction to Plastics and Polymers\u003cbr\u003e\u003cbr\u003eProperties of Plastics\u003cbr\u003e\u003cbr\u003eMarkets and Applications for Plastics requiring sterilization\u003cbr\u003e\u003cbr\u003eStyrene-based Plastics\u003cbr\u003e\u003cbr\u003ePolyesters\u003cbr\u003e\u003cbr\u003ePolyimides\u003cbr\u003e\u003cbr\u003ePolyamides (Nylons)\u003cbr\u003e\u003cbr\u003ePolyolefins, Polyvinyls \u0026amp; Acrylics\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eHigh Temperature\/ High-Performance Polymers\u003cbr\u003e\u003cbr\u003eElastomers and rubbers\u003cbr\u003e\u003cbr\u003eEnvironmentally friendly polymers (biosource and biodegradable)\u003cbr\u003e\u003cbr\u003eAppendices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence W McKeen, Senior Research Associate, DuPont, Wilmington, DE, USA","published_at":"2017-06-22T21:13:53-04:00","created_at":"2017-06-22T21:13:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","environmentally friendly polymers","FDA","material","medical devices","nylons","p-applications","plastics","polimides","poly","polyesters","rubbers","sterilization","styrene-based"," elastomers"],"price":28000,"price_min":28000,"price_max":28000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378380356,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Sterilization on Plastics and Elastomers, 3rd Edition","public_title":null,"options":["Default Title"],"price":28000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2598-4","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4557-2598-4_e4f601a5-3342-44e9-a9b4-5a8bcb1bf175.jpg?v=1499956341"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4557-2598-4_e4f601a5-3342-44e9-a9b4-5a8bcb1bf175.jpg?v=1499956341","options":["Title"],"media":[{"alt":null,"id":358785253469,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4557-2598-4_e4f601a5-3342-44e9-a9b4-5a8bcb1bf175.jpg?v=1499956341"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4557-2598-4_e4f601a5-3342-44e9-a9b4-5a8bcb1bf175.jpg?v=1499956341","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2598-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2012 \u003cbr\u003e\u003c\/span\u003e480 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eEssential data and practical guidance for engineers and scientists working with plastics in applications that require sterile packaging and equipment.\u003c\/li\u003e\n\u003cli\u003e3rd edition includes new introductory chapters on sterilization processes and polymer chemistry, providing the underpinning knowledge required to utilize the data.'\u003c\/li\u003e\n\u003cli\u003eProvides essential information and guidance for FDA submissions required for new Medical Devices.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\u003cbr\u003eThis reference guide brings together a wide range of essential data on the sterilization of plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data tables in this book enable engineers and scientists to select the right materials, and right sterilization method for a given product or application.\u003cbr\u003e\u003cbr\u003eThe third edition includes new text chapters that provide the underpinning knowledge required to make the best use of the data. Larry McKeen has also added detailed descriptions of sterilization methods for most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics. Data has been updated throughout, with expanded information on newer classes of polymer utilized in medical devices and sterile packaging, such as UHMWPE, high-temperature plastics (PEEK, PES, PPS, etc.), PBT, PETG, etc. The resulting Handbook is an essential reference for Plastics Engineers, Materials Scientists, and Chemists working in contexts where sterilization is required, such as food packaging, pharmaceutical packaging, and medical devices.\u003cbr\u003e\u003cbr\u003e \u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePlastics engineers, product designers, packaging engineers and materials scientists.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cul\u003e\n\u003cli\u003eMedical device and packaging designers and users; polymer and coatings chemists; producers and users of sterile packaging products and medical devices.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cul\u003e\n\u003cli\u003eSectors: food, beverage and pharmaceutical packaging; medical devices; chemical processing; agriculture; defense.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction to Sterilization Processes\u003cbr\u003e\u003cbr\u003eIntroduction to Plastics and Polymers\u003cbr\u003e\u003cbr\u003eProperties of Plastics\u003cbr\u003e\u003cbr\u003eMarkets and Applications for Plastics requiring sterilization\u003cbr\u003e\u003cbr\u003eStyrene-based Plastics\u003cbr\u003e\u003cbr\u003ePolyesters\u003cbr\u003e\u003cbr\u003ePolyimides\u003cbr\u003e\u003cbr\u003ePolyamides (Nylons)\u003cbr\u003e\u003cbr\u003ePolyolefins, Polyvinyls \u0026amp; Acrylics\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eHigh Temperature\/ High-Performance Polymers\u003cbr\u003e\u003cbr\u003eElastomers and rubbers\u003cbr\u003e\u003cbr\u003eEnvironmentally friendly polymers (biosource and biodegradable)\u003cbr\u003e\u003cbr\u003eAppendices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nLaurence W McKeen, Senior Research Associate, DuPont, Wilmington, DE, USA"}
Thin Film Materials Te...
$140.00
{"id":11242208068,"title":"Thin Film Materials Technology: Sputtering of Compound Materials","handle":"0-8155-1483-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Kiyotaka Wasa et al \u003cbr\u003eISBN 0-8155-1483-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003ePages 432\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn invaluable resource for industrial science and engineering newcomers to sputter deposition technology in thin film production applications, this book is rich in coverage of both historical developments and the newest experimental and technological information about ceramic thin films, a key technology for nano-materials in high-speed information applications and large-area functional coating such as automotive or decorative painting of plastic parts, among other topics.\u003cbr\u003eIn seven concise chapters, the book thoroughly reviews basic thin film technology and deposition processes, sputtering processes, structural control of compound thin films, and microfabrication by sputtering.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nThin Film Materials and Devices\u003cbr\u003eThin Film Process\u003cbr\u003eThin Film Growth Process\u003cbr\u003eThin Film Deposition Process\u003cbr\u003eCharacterization\u003cbr\u003eSputtering Phenomena\u003cbr\u003eSputtering Yield\u003cbr\u003eSputtering Atoms\u003cbr\u003eMechanisms of Sputtering\u003cbr\u003eSputtering Systems\u003cbr\u003eDischarge in a Gas\u003cbr\u003eSputtering System\u003cbr\u003ePractical Aspects of Sputtering System\u003cbr\u003eDeposition of Compound Thin Films\u003cbr\u003eOxides\u003cbr\u003eNitrides\u003cbr\u003eCarbides and Silicides\u003cbr\u003eDiamond\u003cbr\u003eSelenides\u003cbr\u003eAmorphous Thin Films\u003cbr\u003eSuper-Lattice Structures\u003cbr\u003eOrganic Thin Films\u003cbr\u003eMagnetron Sputtering Under a Strong Magentic Field\u003cbr\u003eStructural Control of Compound Thin Films\u003cbr\u003eFerroelectric Materials and Structures\u003cbr\u003eControl of Structure\u003cbr\u003eNanometer Structures\u003cbr\u003eInterfacial Control\u003cbr\u003eMicrofabrication by Sputtering\u003cbr\u003eClassification by Sputtering Etching\u003cbr\u003eIon Beam Sputter Etching\u003cbr\u003eDiode Sputter Etching\u003cbr\u003eDeposition into Deep Trench Structure\u003cbr\u003eAppendix\u003cbr\u003eElectric Units, Their Symbols and Conversion\u003cbr\u003eFactors\u003cbr\u003eFundamental Physical Constants\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eKiyotaka Wasa\u003c\/strong\u003e brings to this book over 40 years experience in the fields of radiation damage, gas discharge, plasma, cathodic sputtering and thin film technology with Matsushita Electric, Ltd. and Yokohama City University. A Ph.D. from Osaka University, his honors in surface science include awards from Japan and the United States. He has made seminal contributions to magnetron sputtering and developed numerous thin film materials and electronic devices including ZnO, diamond, and high-Tc superconducting thin films. Life Fellow of IEEE.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMakoto Kitabatake\u003c\/strong\u003e has studied a synthesis of novel materials by sputtering at Matsushita Electric, Ltd. and University of Illinois. He got Ph.D. from Tohoku University. He has seminal work in the low temperature growth of carbides and nitrides by ion beam sputtering. He has a seminal work on a growth of cubic diamond at room temperature and silicon carbide semiconducting devices.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHideaki Adachi\u003c\/strong\u003e has studied a growth process of oxide compound thin films at Matsushita Electric, Ltd. A Ph.D. from Tohoku University, his honors in thin film materials include awards from Japan. He has seminal contribution to a synthesis of single crystal perovskite thin films and man-made superlattice of perovskite by sputtering. He has given a pioneer work in PLZT electro-optic switches, man-made high-Tc superconductors, and magnetic oxide devices.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:02-04:00","created_at":"2017-06-22T21:13:02-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","actuators","automotive parts","book","coatings","composite","compound films","film","flat display","flexible ferroelectric memory","micro-MEMS","micro-sensors","mobile compact","nanometer","non-peel plastics","p-applications","painting","plasma","PLD","poly","solar battery","superlattice","thin film"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327620,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thin Film Materials Technology: Sputtering of Compound Materials","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"0-8155-1483-2","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/0-8155-1483-2_7f078de6-e28f-47be-8c0f-51d9b75ca898.jpg?v=1499956812"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/0-8155-1483-2_7f078de6-e28f-47be-8c0f-51d9b75ca898.jpg?v=1499956812","options":["Title"],"media":[{"alt":null,"id":358826246237,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/0-8155-1483-2_7f078de6-e28f-47be-8c0f-51d9b75ca898.jpg?v=1499956812"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/0-8155-1483-2_7f078de6-e28f-47be-8c0f-51d9b75ca898.jpg?v=1499956812","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Kiyotaka Wasa et al \u003cbr\u003eISBN 0-8155-1483-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003ePages 432\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn invaluable resource for industrial science and engineering newcomers to sputter deposition technology in thin film production applications, this book is rich in coverage of both historical developments and the newest experimental and technological information about ceramic thin films, a key technology for nano-materials in high-speed information applications and large-area functional coating such as automotive or decorative painting of plastic parts, among other topics.\u003cbr\u003eIn seven concise chapters, the book thoroughly reviews basic thin film technology and deposition processes, sputtering processes, structural control of compound thin films, and microfabrication by sputtering.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nThin Film Materials and Devices\u003cbr\u003eThin Film Process\u003cbr\u003eThin Film Growth Process\u003cbr\u003eThin Film Deposition Process\u003cbr\u003eCharacterization\u003cbr\u003eSputtering Phenomena\u003cbr\u003eSputtering Yield\u003cbr\u003eSputtering Atoms\u003cbr\u003eMechanisms of Sputtering\u003cbr\u003eSputtering Systems\u003cbr\u003eDischarge in a Gas\u003cbr\u003eSputtering System\u003cbr\u003ePractical Aspects of Sputtering System\u003cbr\u003eDeposition of Compound Thin Films\u003cbr\u003eOxides\u003cbr\u003eNitrides\u003cbr\u003eCarbides and Silicides\u003cbr\u003eDiamond\u003cbr\u003eSelenides\u003cbr\u003eAmorphous Thin Films\u003cbr\u003eSuper-Lattice Structures\u003cbr\u003eOrganic Thin Films\u003cbr\u003eMagnetron Sputtering Under a Strong Magentic Field\u003cbr\u003eStructural Control of Compound Thin Films\u003cbr\u003eFerroelectric Materials and Structures\u003cbr\u003eControl of Structure\u003cbr\u003eNanometer Structures\u003cbr\u003eInterfacial Control\u003cbr\u003eMicrofabrication by Sputtering\u003cbr\u003eClassification by Sputtering Etching\u003cbr\u003eIon Beam Sputter Etching\u003cbr\u003eDiode Sputter Etching\u003cbr\u003eDeposition into Deep Trench Structure\u003cbr\u003eAppendix\u003cbr\u003eElectric Units, Their Symbols and Conversion\u003cbr\u003eFactors\u003cbr\u003eFundamental Physical Constants\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eKiyotaka Wasa\u003c\/strong\u003e brings to this book over 40 years experience in the fields of radiation damage, gas discharge, plasma, cathodic sputtering and thin film technology with Matsushita Electric, Ltd. and Yokohama City University. A Ph.D. from Osaka University, his honors in surface science include awards from Japan and the United States. He has made seminal contributions to magnetron sputtering and developed numerous thin film materials and electronic devices including ZnO, diamond, and high-Tc superconducting thin films. Life Fellow of IEEE.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMakoto Kitabatake\u003c\/strong\u003e has studied a synthesis of novel materials by sputtering at Matsushita Electric, Ltd. and University of Illinois. He got Ph.D. from Tohoku University. He has seminal work in the low temperature growth of carbides and nitrides by ion beam sputtering. He has a seminal work on a growth of cubic diamond at room temperature and silicon carbide semiconducting devices.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHideaki Adachi\u003c\/strong\u003e has studied a growth process of oxide compound thin films at Matsushita Electric, Ltd. A Ph.D. from Tohoku University, his honors in thin film materials include awards from Japan. He has seminal contribution to a synthesis of single crystal perovskite thin films and man-made superlattice of perovskite by sputtering. He has given a pioneer work in PLZT electro-optic switches, man-made high-Tc superconductors, and magnetic oxide devices.\u003cbr\u003e\u003cbr\u003e"}
Wood-Plastic Composites
$253.00
{"id":11242210564,"title":"Wood-Plastic Composites","handle":"978-0-470-14891-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A. A. Kyosov \u003cbr\u003eISBN 978-0-470-14891-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003ePages 697, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the first book that presents an overview of the main principles underlying the composition of wood-plastic composite (WPC) materials and their performance in the real world. Focusing on the characteristics of WPC materials rather than their manufacture, this guide bridges the gap between laboratory-based research and testing and the properties WPC materials exhibit when they're used in decks, railing systems, fences, and other common applications\u003cbr\u003e\u003cbr\u003e-Describes compositions of WPC materials, including thermoplastics, cellulose fiber, minerals, additives, and their properties \u003cbr\u003e-Covers mechanical properties, microbial resistance, water absorption, flammability, slip resistance, thermal expansion-contraction, sensitivity to oxidation and solar radiation, and rheological properties of hot melts of WPC \u003cbr\u003e-Covers subjects that determine esthetics, properties, performance, and durability of wood-plastic composite products -Includes comparisons of different ASTM methods and procedures that apply to specific properties\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePreface. \u003cbr\u003e1. Foreword-Overview Wood-Plastic Composites.\u003cbr\u003eWPC, pricing restrictions. \u003cbr\u003eWPC, brands and manufacturers. \u003cbr\u003eFlexural strength. \u003cbr\u003eFlexural modulus, deflection. \u003cbr\u003eDeck boards. \u003cbr\u003eStair treads. \u003cbr\u003eThermal expansion-contraction. \u003cbr\u003eShrinkage. \u003cbr\u003eSlip resistance. \u003cbr\u003eWater absorption, swell, buckling. \u003cbr\u003eMicrobial degradation. \u003cbr\u003eTermite resistance. \u003cbr\u003eFlammability. \u003cbr\u003eOxidation and crumbling. \u003cbr\u003ePhoto-oxidation and fading. \u003cbr\u003eWood-plastic composites - products, trends, market size and dynamics, and unsolved (or only partially solved) problems. \u003cbr\u003eWPC products. \u003cbr\u003eThe public view, perception. \u003cbr\u003eWPC market size and dynamics. \u003cbr\u003eCompetition on the WPC market. \u003cbr\u003eUnsolved (or only partially solved) R\u0026amp;D problems. \u003cbr\u003eExamples of wood-plastic composite deck boards. \u003cbr\u003eReferences.\u003cbr\u003e\u003cbr\u003e2. Composition of wood-plastic composites: thermoplastics.\u003cbr\u003eIntroduction. \u003cbr\u003ePolyethylene. \u003cbr\u003ePolypropylene. \u003cbr\u003ePolyvinyl Chloride. \u003cbr\u003eAcrylonitrile-Butadiene-Styrene copolymer (ABS). \u003cbr\u003eNylon 6 and other polyamides. \u003cbr\u003eConclusion. \u003cbr\u003eAddendum: ASTM tests covering definitions of technical terms and their contractions used in plastic industry and specifications of plastics. \u003cbr\u003eReferences. \u003cbr\u003e3. Composition of wood-plastic composites: cellulose and lignocellulose fillers. \u003cbr\u003eIntroduction. \u003cbr\u003eA brief history of cellulose fillers in WPC in U.S. patents. \u003cbr\u003eBeginning of WPC. Thermosetting materials. \u003cbr\u003eCellulose as a reinforcing ingredient in thermoplastic compositions. \u003cbr\u003eImproving mechanical and other properties of WPC. \u003cbr\u003eImproving the compatibility of the fillers with the polymeric matrix. Coupling agents. \u003cbr\u003ePlastics beyond HDPE in wood-plastic composite materials. \u003cbr\u003eCellulose-polyolefin composite pellets. \u003cbr\u003eFoamed wood-plastic composites. \u003cbr\u003eBiodegradable wood-plastic composites. \u003cbr\u003eGeneral properties of lignocellulosic fiber as fillers. \u003cbr\u003eChemical composition. \u003cbr\u003eDetrimental effect of lignin. \u003cbr\u003eDetrimental effect of hemicellulosics. Steam explosion. \u003cbr\u003eAspect ratio. \u003cbr\u003eDensity (specific gravity). \u003cbr\u003eParticle size. \u003cbr\u003eParticle shape. \u003cbr\u003eParticle size distribution. \u003cbr\u003eParticle surface area. \u003cbr\u003eMoisture content, the ability to absorb water. \u003cbr\u003eThe ability of filler to absorb oil. \u003cbr\u003eFlammability. \u003cbr\u003eEffect on mechanical properties of the composite material. \u003cbr\u003eEffect on fading and durability of plastics and composites. \u003cbr\u003eEffect on hot melt viscosity. \u003cbr\u003eEffect on mold shrinkage. \u003cbr\u003eWood fiber. \u003cbr\u003eWood flour. \u003cbr\u003eSaw dust. \u003cbr\u003eRice hulls. \u003cbr\u003eVOC from rice hulls. \u003cbr\u003eLong natural fiber. \u003cbr\u003ePapermaking sludge. \u003cbr\u003eBiodac. \u003cbr\u003eVOC from Biodac. \u003cbr\u003eRice hulls and Biodac as antioxidants in WPC. \u003cbr\u003eReferences (other than patents). \u003cbr\u003eReferences (patents). \u003cbr\u003e\u003cbr\u003e4. Composition of wood-plastic composites: mineral fillers. \u003cbr\u003eIntroduction. \u003cbr\u003eGeneral properties of mineral fillers. \u003cbr\u003eChemical composition. \u003cbr\u003eAspect ratio. \u003cbr\u003eDensity (specific gravity). \u003cbr\u003eParticle size. \u003cbr\u003eParticle shape. \u003cbr\u003eParticle size distribution. \u003cbr\u003eParticle surface area. \u003cbr\u003eMoisture content, the ability to absorb water. \u003cbr\u003eThe ability to absorb oil. \u003cbr\u003eFlame retardant properties. \u003cbr\u003eEffect on mechanical properties of the composite material. \u003cbr\u003eEffect on hot melt viscosity. \u003cbr\u003eEffect on mold shrinkage. \u003cbr\u003eThermal properties. \u003cbr\u003eColor, optical properties. \u003cbr\u003eEffect on fading and durability of plastics and composites. \u003cbr\u003eHealth and safety. \u003cbr\u003eFillers. \u003cbr\u003eCalcium carbonate. \u003cbr\u003eTalc. \u003cbr\u003eBiodac (a blend of cellulose and mineral fillers). \u003cbr\u003eSilica. \u003cbr\u003eKaolin clay. \u003cbr\u003eMica. \u003cbr\u003eWollastonite. \u003cbr\u003eGlass fibers. \u003cbr\u003eFly ash. \u003cbr\u003eCarbon black. \u003cbr\u003eNanofillers and nanocomposites. \u003cbr\u003eConclusions. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e5. Composition of wood-plastic composites: coupling agents. \u003cbr\u003eIntroduction. \u003cbr\u003eA brief overview of the chapter. \u003cbr\u003eMaleated polyolefins. \u003cbr\u003eOrganosilanes. \u003cbr\u003eMetablenTM A3000. \u003cbr\u003eOther coupling agents. \u003cbr\u003eEffect of coupling agents on mechanical properties of wood-plastic composites: experimental data. \u003cbr\u003eMechanisms of cross-linking, coupling and\/or compatibilizing effects. \u003cbr\u003eSpectroscopic studies. \u003cbr\u003eRheological studies. \u003cbr\u003eKinetic studies. \u003cbr\u003eOther considerations. \u003cbr\u003eEffect of coupling agents on WPC properties: a summary. \u003cbr\u003eEffect on flexural and tensile modulus. \u003cbr\u003eEffect on flexural and tensile strength. \u003cbr\u003eEffect on water absorption. \u003cbr\u003eLubricants, compatible and not compatible with coupling agents. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e6. Density (specific gravity) of wood-plastic composites and its effect on WPC properties. \u003cbr\u003eIntroduction. \u003cbr\u003eEffect of density (specific gravity) of WPC. \u003cbr\u003eEffect on flexural strength and modulus. \u003cbr\u003eEffect on oxidation and degradation. \u003cbr\u003eEffect on flammability, ignition, flame spread. \u003cbr\u003eEffect on moisture content and water absorption. \u003cbr\u003eEffect on microbial contamination\/degradation. \u003cbr\u003eEffect on shrinkage. \u003cbr\u003eEffect on the coefficient of friction (the slip coefficient). \u003cbr\u003eDensity of cross-sectional areas of hollow profiles of GeoDeck WPC boards. \u003cbr\u003eDensities and weight of some commercial wood-plastic deck boards. \u003cbr\u003eDetermination of density of wood-plastic composites using a sink\/float method. \u003cbr\u003eASTM tests recommended for determination of the specific gravity (density). \u003cbr\u003eASTM D 1505 “Standard test method for density of plastics by the density-gradient technique”. \u003cbr\u003eASTM D 1622 “Standard test method for apparent density of rigid cellular plastics”. \u003cbr\u003eASTM D 1895 “Standard test methods for apparent density, bulk factor, and pourability of plastic materials”. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e7. Flexural strength (MOR) and flexural modulus (MOE) of composite materials and profiles. \u003cbr\u003eIntroduction. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations. \u003cbr\u003eFlexural strength of composite deck boards. \u003cbr\u003eFlexural modulus of composite deck boards. \u003cbr\u003eFlexural modulus of neat HDPE and other plastics, and comparisons with that for wood-plastic composites. \u003cbr\u003eA deck board used as a stair tread: a critical role of flexural modulus. \u003cbr\u003eDeflection of composite materials: Case studies. \u003cbr\u003e1. Deflection and bending moment of a soundwall under windloads. \u003cbr\u003e2. Deflection of a fence board. \u003cbr\u003e3. Deflection of wood-plastic composite joists. \u003cbr\u003e4. Deflection of a deck under a hot tub. \u003cbr\u003e5. Deflection of a hollow deck board filled with hot water. \u003cbr\u003e6. Deflection and creep of composite deck boards. \u003cbr\u003eGuardrail systems. \u003cbr\u003eComposite (and PVC) railing systems for which ICC-ES reports were issued until October 2006. \u003cbr\u003eCombined flexural and shear strength: a “shotgun” test 537. \u003cbr\u003eMathematical modeling of wood-plastic composites and the real world. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e8. Compressive and tensile strength and modulus of composite profiles. \u003cbr\u003eIntroduction. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations. \u003cbr\u003eTensile strength of composite materials: examples. \u003cbr\u003eCompressive strength of composite materials. \u003cbr\u003eTensile modulus of elasticity of composite materials. \u003cbr\u003eCompressive modulus of composite materials. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e9. Linear shrinkage of extruded wood-plastic composites. \u003cbr\u003eIntroduction. \u003cbr\u003eOrigin of shrinkage. \u003cbr\u003eSize of shrinkage. \u003cbr\u003eEffect of density (specific gravity) of WPC on its shrinkage. \u003cbr\u003eEffect of extrusion regime on shrinkage. \u003cbr\u003eAnnealing of composite boards. \u003cbr\u003eWarranty claims: GeoDeck composite deckboards. \u003cbr\u003eExamples of GeoDeck boards shrinkage on a deck. \u003cbr\u003e\u003cbr\u003e10. Temperature driven expansion-contraction of wood-plastic composites. Linear coefficient of thermal expansion-contraction. \u003cbr\u003eIntroduction. \u003cbr\u003eLinear coefficient of expansion-contraction. \u003cbr\u003eSome reservations in applicability of coefficients of expansion-contraction. \u003cbr\u003eASTM tests recommended for determination of the linear coefficient of thermal expansion-contraction. \u003cbr\u003eLinear coefficient of thermal expansion-contraction for wood-plastic composites. Effect of fillers and coupling agents. \u003cbr\u003eExample: a case study. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e11. Slip resistance and coefficient of friction of composite deck boards. \u003cbr\u003eIntroduction. \u003cbr\u003eDefinitions. \u003cbr\u003eExplanations and some examples. \u003cbr\u003eSlip resistance of plastics. \u003cbr\u003eSlip resistance of wood decks. \u003cbr\u003eSlip resistance of wood-plastic composite decks. \u003cbr\u003eASTM tests recommended for determining static coefficient of friction. \u003cbr\u003eSlip resistance using an inclined-plane method. \u003cbr\u003eEffect of formulation of composite deck board on slip resistance. Slip enhancers. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e12. Water absorption by composite materials and related effects. \u003cbr\u003eIntroduction. \u003cbr\u003e“Near-surface” vs. “into the bulk” distribution of absorbed water in composite materials. \u003cbr\u003eEffect of mineral fillers on water absorption. \u003cbr\u003eSwelling (dimensional instability), pressure development and buckling. \u003cbr\u003eShort- and long-term water absorption. \u003cbr\u003eASTM recommendations. \u003cbr\u003eEffect of cellulose content in composite materials on water absorption. \u003cbr\u003eEffect of board density (specific gravity) on water absorption. \u003cbr\u003eMoisture content of wood and wood-plastic composites. \u003cbr\u003eEffect of water absorption on flexural strength and modulus. \u003cbr\u003eFreeze-thaw resistance. \u003cbr\u003eEffect of board density on freeze-thaw resistance - a case study. \u003cbr\u003eEffect of board density and weathering on freeze-thaw resistance - a case study. \u003cbr\u003eEffect of multiple freeze-thaw cycles. \u003cbr\u003eComparison of water absorption of some composite deck boards available on the market. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e13. Microbial degradation of wood-plastic composite materials and “black spots” on the surface. Mold resistance. \u003cbr\u003eIntroduction. \u003cbr\u003eMicrobial effects on wood-plastic composites. \u003cbr\u003eMold and spores. \u003cbr\u003eMoisture and ventilation. Critical moisture content. \u003cbr\u003eWood decay fungi. \u003cbr\u003eBiocides and “mold resistance”. \u003cbr\u003ePreservatives for wood lumber. \u003cbr\u003eCCA. \u003cbr\u003eACQ. \u003cbr\u003ePCP. \u003cbr\u003eCreosote. \u003cbr\u003eMicroorganisms active in degradation and staining of composite materials. \u003cbr\u003eMolds. \u003cbr\u003eBlack mold. \u003cbr\u003eBlack algae. \u003cbr\u003eCase study 1. Staining with a microbial pigment. \u003cbr\u003eCase study 2. Deck as a mold incubator. \u003cbr\u003eCase study 3. Black mold due to composite low density and high mosture. \u003cbr\u003eMicrobial infestation of wood-plastic composite materials. \u003cbr\u003eRequirements for microbial growth on wood and wood-plastic composites. \u003cbr\u003eSensitivity and resistance of composite materials to microbial degradation. Examples. \u003cbr\u003eASTM tests recommended for microbial growth and degradation of wood-plastic composites. \u003cbr\u003eExamples: wood. \u003cbr\u003eExamples: wood-plastic composites. \u003cbr\u003eEffect of formulation on sensitivity and resistance of wood-plastic composites to microbial degradation. \u003cbr\u003eBiocides used (actually or under consideration) in wood-plastic composites. \u003cbr\u003eBiocides: accelerated laboratory data and the real world. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e14. Flammability and fire rating of wood-plastic composites. \u003cbr\u003eIntroduction. \u003cbr\u003eFlammability of wood. \u003cbr\u003eIgnition of composite materials. \u003cbr\u003eFlame spread indexes (FSI) and fire rating of composite materials. \u003cbr\u003eEffect of mineral fillers on flammability. \u003cbr\u003eSmoke and toxic gases, and smoke development index (SDI). \u003cbr\u003eFlame retardants for plastics and composite materials. \u003cbr\u003eASTM recommendations. \u003cbr\u003eFire performance of composite decks and deck boards. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e15. Thermo- and photo-oxidative degradation and lifetime of composite building materials. \u003cbr\u003eIntroduction. Lifetime of plastics and plastic-based composites Examples. \u003cbr\u003eThermo-oxidation, photo-oxidation, oxidative degradation, and product crumbling and failure. \u003cbr\u003eFactors accelerating the oxidative degradation of composites. \u003cbr\u003eDensity (specific gravity) of the composite. \u003cbr\u003eTemperature. \u003cbr\u003eThe physical and the chemical structure of the polymer. \u003cbr\u003eHistory of plastic (virgin, recycled). \u003cbr\u003eThe type and amount of cellulose fiber. \u003cbr\u003eThe type and amount of mineral fillers. \u003cbr\u003eThe presence of stress. \u003cbr\u003eThe presence of metal catalysts. \u003cbr\u003eThe presence of moisture. \u003cbr\u003eAntioxidants and their amounts. \u003cbr\u003eSolar radiation (UV light). \u003cbr\u003eAmount of added regrinds, if any. \u003cbr\u003eASTM recommendations. \u003cbr\u003eASTM tests for oxidative induction time. \u003cbr\u003eASTM tests for determination of phenolic antioxidants in plastics. \u003cbr\u003eSurface temperature of composite decking and railing systems. \u003cbr\u003eLife span of zero-antioxidant GeoDeck decks in various areas of the U.S. \u003cbr\u003eThe OIT and lifetime of composite deck boards. \u003cbr\u003eDurability (in terms of oxidative degradation) of wood-plastic composite decks available on the current market. \u003cbr\u003eOxidative degradation and crumbling of GeoDeck deck boards. History of the case and correction of the problem. \u003cbr\u003eDensity, porosity, and mechanical properties of GeoDeck before the problem had emerged. \u003cbr\u003eEmerging of the problem. \u003cbr\u003eDensity (specific gravity) of GeoDeck boards in pre-October 2003. \u003cbr\u003eCorrection of the crumbling problem-- Antioxidant level. \u003cbr\u003eAddendum. Test method for oxidative-induction time of filled composite material by differential scanning calorimetry. \u003cbr\u003eCase studies. \u003cbr\u003eGeoDeck decks crumbling in Arizona. \u003cbr\u003eGeoDeck decks crumbling in Massachusetts. \u003cbr\u003eGeoDeck voluntary recall. \u003cbr\u003eProblem GeoDeck decks: installation time and warranty claims. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e16. Photo-oxidation and fading of composite building materials. \u003cbr\u003eIntroduction. \u003cbr\u003eHow fading is measured? \u003cbr\u003eFading. Some introductory definitions. \u003cbr\u003eAccelerated and natural weathering of wood-plastic composite materials, and a correlation (or a lack of it) between them. The acceleration factor. \u003cbr\u003eFading of commercial wood-plastic composite materials. \u003cbr\u003eFading of composite deck boards vs. their crumbling due to oxidation. \u003cbr\u003eFactors accelerating or slowing down fading of composites. \u003cbr\u003eDensity (specific gravity) of the composite. \u003cbr\u003eTemperature. \u003cbr\u003eUV absorbers and their amounts. \u003cbr\u003ePigments and their amounts. \u003cbr\u003eAntioxidants and their amounts. \u003cbr\u003eHistory of plastics (virgin, recycled). \u003cbr\u003eEffect of moisture in the composite. \u003cbr\u003eThe type and amount of cellulose fiber. \u003cbr\u003eExtruded vs. injection molded wood-plastic composite materials. \u003cbr\u003eASTM recommendations. \u003cbr\u003eAddendum: Some definitions and technical terms used in descriptions of. \u003cbr\u003ephotodegradation of plastics and wood-plastic composites. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e17. Rheology and a selection of incoming plastics for composite materials. \u003cbr\u003eIntroduction. Rheology of neat and filled plastics, composite materials and regrinds. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations in the area of capillary rheometry. \u003cbr\u003eASTM recommendations in the area of rotational rheometry. \u003cbr\u003eCommon observation. \u003cbr\u003eNeat plastics. \u003cbr\u003eComposite materials. \u003cbr\u003eAlmost uncharted areas of composite and plastic rheology. \u003cbr\u003eReferences. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnatole A. Klyosov, PHD, was Consulting Vice President of LDI Composites Co. (formerly Kadant Composites, where he was Vice President of research and development). Dr. Klyosov was also professor of biochemistry at Harvard University for eight years. He is currently Chief Scientist at Pro-Pharmaceuticals, Inc. He has published almost 300 peer-reviewed articles, thirty-five patents, and a number of books.","published_at":"2017-06-22T21:13:09-04:00","created_at":"2017-06-22T21:13:09-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","acrylic polymers","additives","book","cellulose fiber","compositions","durability","flammability","hot melts","mechanical properties","microbial resistance","minerals","oxidation","p-application","p-applications","polymer","properties","rheological properties","slip resistance","solar radiation","thermal expansion-contraction","thermoplastics","water absorption","WPC"],"price":25300,"price_min":25300,"price_max":25300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378332676,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Wood-Plastic Composites","public_title":null,"options":["Default Title"],"price":25300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-14891-4","requires_selling_plan":false,"selling_plan_allocations":[],"quantity_rule":{"min":1,"max":null,"increment":1}}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-470-14891-4_71b8f530-3b87-4d35-9be2-2984ea752d48.jpg?v=1499957359"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-470-14891-4_71b8f530-3b87-4d35-9be2-2984ea752d48.jpg?v=1499957359","options":["Title"],"media":[{"alt":null,"id":358843613277,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-470-14891-4_71b8f530-3b87-4d35-9be2-2984ea752d48.jpg?v=1499957359"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-470-14891-4_71b8f530-3b87-4d35-9be2-2984ea752d48.jpg?v=1499957359","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A. A. Kyosov \u003cbr\u003eISBN 978-0-470-14891-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003ePages 697, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the first book that presents an overview of the main principles underlying the composition of wood-plastic composite (WPC) materials and their performance in the real world. Focusing on the characteristics of WPC materials rather than their manufacture, this guide bridges the gap between laboratory-based research and testing and the properties WPC materials exhibit when they're used in decks, railing systems, fences, and other common applications\u003cbr\u003e\u003cbr\u003e-Describes compositions of WPC materials, including thermoplastics, cellulose fiber, minerals, additives, and their properties \u003cbr\u003e-Covers mechanical properties, microbial resistance, water absorption, flammability, slip resistance, thermal expansion-contraction, sensitivity to oxidation and solar radiation, and rheological properties of hot melts of WPC \u003cbr\u003e-Covers subjects that determine esthetics, properties, performance, and durability of wood-plastic composite products -Includes comparisons of different ASTM methods and procedures that apply to specific properties\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePreface. \u003cbr\u003e1. Foreword-Overview Wood-Plastic Composites.\u003cbr\u003eWPC, pricing restrictions. \u003cbr\u003eWPC, brands and manufacturers. \u003cbr\u003eFlexural strength. \u003cbr\u003eFlexural modulus, deflection. \u003cbr\u003eDeck boards. \u003cbr\u003eStair treads. \u003cbr\u003eThermal expansion-contraction. \u003cbr\u003eShrinkage. \u003cbr\u003eSlip resistance. \u003cbr\u003eWater absorption, swell, buckling. \u003cbr\u003eMicrobial degradation. \u003cbr\u003eTermite resistance. \u003cbr\u003eFlammability. \u003cbr\u003eOxidation and crumbling. \u003cbr\u003ePhoto-oxidation and fading. \u003cbr\u003eWood-plastic composites - products, trends, market size and dynamics, and unsolved (or only partially solved) problems. \u003cbr\u003eWPC products. \u003cbr\u003eThe public view, perception. \u003cbr\u003eWPC market size and dynamics. \u003cbr\u003eCompetition on the WPC market. \u003cbr\u003eUnsolved (or only partially solved) R\u0026amp;D problems. \u003cbr\u003eExamples of wood-plastic composite deck boards. \u003cbr\u003eReferences.\u003cbr\u003e\u003cbr\u003e2. Composition of wood-plastic composites: thermoplastics.\u003cbr\u003eIntroduction. \u003cbr\u003ePolyethylene. \u003cbr\u003ePolypropylene. \u003cbr\u003ePolyvinyl Chloride. \u003cbr\u003eAcrylonitrile-Butadiene-Styrene copolymer (ABS). \u003cbr\u003eNylon 6 and other polyamides. \u003cbr\u003eConclusion. \u003cbr\u003eAddendum: ASTM tests covering definitions of technical terms and their contractions used in plastic industry and specifications of plastics. \u003cbr\u003eReferences. \u003cbr\u003e3. Composition of wood-plastic composites: cellulose and lignocellulose fillers. \u003cbr\u003eIntroduction. \u003cbr\u003eA brief history of cellulose fillers in WPC in U.S. patents. \u003cbr\u003eBeginning of WPC. Thermosetting materials. \u003cbr\u003eCellulose as a reinforcing ingredient in thermoplastic compositions. \u003cbr\u003eImproving mechanical and other properties of WPC. \u003cbr\u003eImproving the compatibility of the fillers with the polymeric matrix. Coupling agents. \u003cbr\u003ePlastics beyond HDPE in wood-plastic composite materials. \u003cbr\u003eCellulose-polyolefin composite pellets. \u003cbr\u003eFoamed wood-plastic composites. \u003cbr\u003eBiodegradable wood-plastic composites. \u003cbr\u003eGeneral properties of lignocellulosic fiber as fillers. \u003cbr\u003eChemical composition. \u003cbr\u003eDetrimental effect of lignin. \u003cbr\u003eDetrimental effect of hemicellulosics. Steam explosion. \u003cbr\u003eAspect ratio. \u003cbr\u003eDensity (specific gravity). \u003cbr\u003eParticle size. \u003cbr\u003eParticle shape. \u003cbr\u003eParticle size distribution. \u003cbr\u003eParticle surface area. \u003cbr\u003eMoisture content, the ability to absorb water. \u003cbr\u003eThe ability of filler to absorb oil. \u003cbr\u003eFlammability. \u003cbr\u003eEffect on mechanical properties of the composite material. \u003cbr\u003eEffect on fading and durability of plastics and composites. \u003cbr\u003eEffect on hot melt viscosity. \u003cbr\u003eEffect on mold shrinkage. \u003cbr\u003eWood fiber. \u003cbr\u003eWood flour. \u003cbr\u003eSaw dust. \u003cbr\u003eRice hulls. \u003cbr\u003eVOC from rice hulls. \u003cbr\u003eLong natural fiber. \u003cbr\u003ePapermaking sludge. \u003cbr\u003eBiodac. \u003cbr\u003eVOC from Biodac. \u003cbr\u003eRice hulls and Biodac as antioxidants in WPC. \u003cbr\u003eReferences (other than patents). \u003cbr\u003eReferences (patents). \u003cbr\u003e\u003cbr\u003e4. Composition of wood-plastic composites: mineral fillers. \u003cbr\u003eIntroduction. \u003cbr\u003eGeneral properties of mineral fillers. \u003cbr\u003eChemical composition. \u003cbr\u003eAspect ratio. \u003cbr\u003eDensity (specific gravity). \u003cbr\u003eParticle size. \u003cbr\u003eParticle shape. \u003cbr\u003eParticle size distribution. \u003cbr\u003eParticle surface area. \u003cbr\u003eMoisture content, the ability to absorb water. \u003cbr\u003eThe ability to absorb oil. \u003cbr\u003eFlame retardant properties. \u003cbr\u003eEffect on mechanical properties of the composite material. \u003cbr\u003eEffect on hot melt viscosity. \u003cbr\u003eEffect on mold shrinkage. \u003cbr\u003eThermal properties. \u003cbr\u003eColor, optical properties. \u003cbr\u003eEffect on fading and durability of plastics and composites. \u003cbr\u003eHealth and safety. \u003cbr\u003eFillers. \u003cbr\u003eCalcium carbonate. \u003cbr\u003eTalc. \u003cbr\u003eBiodac (a blend of cellulose and mineral fillers). \u003cbr\u003eSilica. \u003cbr\u003eKaolin clay. \u003cbr\u003eMica. \u003cbr\u003eWollastonite. \u003cbr\u003eGlass fibers. \u003cbr\u003eFly ash. \u003cbr\u003eCarbon black. \u003cbr\u003eNanofillers and nanocomposites. \u003cbr\u003eConclusions. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e5. Composition of wood-plastic composites: coupling agents. \u003cbr\u003eIntroduction. \u003cbr\u003eA brief overview of the chapter. \u003cbr\u003eMaleated polyolefins. \u003cbr\u003eOrganosilanes. \u003cbr\u003eMetablenTM A3000. \u003cbr\u003eOther coupling agents. \u003cbr\u003eEffect of coupling agents on mechanical properties of wood-plastic composites: experimental data. \u003cbr\u003eMechanisms of cross-linking, coupling and\/or compatibilizing effects. \u003cbr\u003eSpectroscopic studies. \u003cbr\u003eRheological studies. \u003cbr\u003eKinetic studies. \u003cbr\u003eOther considerations. \u003cbr\u003eEffect of coupling agents on WPC properties: a summary. \u003cbr\u003eEffect on flexural and tensile modulus. \u003cbr\u003eEffect on flexural and tensile strength. \u003cbr\u003eEffect on water absorption. \u003cbr\u003eLubricants, compatible and not compatible with coupling agents. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e6. Density (specific gravity) of wood-plastic composites and its effect on WPC properties. \u003cbr\u003eIntroduction. \u003cbr\u003eEffect of density (specific gravity) of WPC. \u003cbr\u003eEffect on flexural strength and modulus. \u003cbr\u003eEffect on oxidation and degradation. \u003cbr\u003eEffect on flammability, ignition, flame spread. \u003cbr\u003eEffect on moisture content and water absorption. \u003cbr\u003eEffect on microbial contamination\/degradation. \u003cbr\u003eEffect on shrinkage. \u003cbr\u003eEffect on the coefficient of friction (the slip coefficient). \u003cbr\u003eDensity of cross-sectional areas of hollow profiles of GeoDeck WPC boards. \u003cbr\u003eDensities and weight of some commercial wood-plastic deck boards. \u003cbr\u003eDetermination of density of wood-plastic composites using a sink\/float method. \u003cbr\u003eASTM tests recommended for determination of the specific gravity (density). \u003cbr\u003eASTM D 1505 “Standard test method for density of plastics by the density-gradient technique”. \u003cbr\u003eASTM D 1622 “Standard test method for apparent density of rigid cellular plastics”. \u003cbr\u003eASTM D 1895 “Standard test methods for apparent density, bulk factor, and pourability of plastic materials”. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e7. Flexural strength (MOR) and flexural modulus (MOE) of composite materials and profiles. \u003cbr\u003eIntroduction. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations. \u003cbr\u003eFlexural strength of composite deck boards. \u003cbr\u003eFlexural modulus of composite deck boards. \u003cbr\u003eFlexural modulus of neat HDPE and other plastics, and comparisons with that for wood-plastic composites. \u003cbr\u003eA deck board used as a stair tread: a critical role of flexural modulus. \u003cbr\u003eDeflection of composite materials: Case studies. \u003cbr\u003e1. Deflection and bending moment of a soundwall under windloads. \u003cbr\u003e2. Deflection of a fence board. \u003cbr\u003e3. Deflection of wood-plastic composite joists. \u003cbr\u003e4. Deflection of a deck under a hot tub. \u003cbr\u003e5. Deflection of a hollow deck board filled with hot water. \u003cbr\u003e6. Deflection and creep of composite deck boards. \u003cbr\u003eGuardrail systems. \u003cbr\u003eComposite (and PVC) railing systems for which ICC-ES reports were issued until October 2006. \u003cbr\u003eCombined flexural and shear strength: a “shotgun” test 537. \u003cbr\u003eMathematical modeling of wood-plastic composites and the real world. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e8. Compressive and tensile strength and modulus of composite profiles. \u003cbr\u003eIntroduction. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations. \u003cbr\u003eTensile strength of composite materials: examples. \u003cbr\u003eCompressive strength of composite materials. \u003cbr\u003eTensile modulus of elasticity of composite materials. \u003cbr\u003eCompressive modulus of composite materials. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e9. Linear shrinkage of extruded wood-plastic composites. \u003cbr\u003eIntroduction. \u003cbr\u003eOrigin of shrinkage. \u003cbr\u003eSize of shrinkage. \u003cbr\u003eEffect of density (specific gravity) of WPC on its shrinkage. \u003cbr\u003eEffect of extrusion regime on shrinkage. \u003cbr\u003eAnnealing of composite boards. \u003cbr\u003eWarranty claims: GeoDeck composite deckboards. \u003cbr\u003eExamples of GeoDeck boards shrinkage on a deck. \u003cbr\u003e\u003cbr\u003e10. Temperature driven expansion-contraction of wood-plastic composites. Linear coefficient of thermal expansion-contraction. \u003cbr\u003eIntroduction. \u003cbr\u003eLinear coefficient of expansion-contraction. \u003cbr\u003eSome reservations in applicability of coefficients of expansion-contraction. \u003cbr\u003eASTM tests recommended for determination of the linear coefficient of thermal expansion-contraction. \u003cbr\u003eLinear coefficient of thermal expansion-contraction for wood-plastic composites. Effect of fillers and coupling agents. \u003cbr\u003eExample: a case study. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e11. Slip resistance and coefficient of friction of composite deck boards. \u003cbr\u003eIntroduction. \u003cbr\u003eDefinitions. \u003cbr\u003eExplanations and some examples. \u003cbr\u003eSlip resistance of plastics. \u003cbr\u003eSlip resistance of wood decks. \u003cbr\u003eSlip resistance of wood-plastic composite decks. \u003cbr\u003eASTM tests recommended for determining static coefficient of friction. \u003cbr\u003eSlip resistance using an inclined-plane method. \u003cbr\u003eEffect of formulation of composite deck board on slip resistance. Slip enhancers. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e12. Water absorption by composite materials and related effects. \u003cbr\u003eIntroduction. \u003cbr\u003e“Near-surface” vs. “into the bulk” distribution of absorbed water in composite materials. \u003cbr\u003eEffect of mineral fillers on water absorption. \u003cbr\u003eSwelling (dimensional instability), pressure development and buckling. \u003cbr\u003eShort- and long-term water absorption. \u003cbr\u003eASTM recommendations. \u003cbr\u003eEffect of cellulose content in composite materials on water absorption. \u003cbr\u003eEffect of board density (specific gravity) on water absorption. \u003cbr\u003eMoisture content of wood and wood-plastic composites. \u003cbr\u003eEffect of water absorption on flexural strength and modulus. \u003cbr\u003eFreeze-thaw resistance. \u003cbr\u003eEffect of board density on freeze-thaw resistance - a case study. \u003cbr\u003eEffect of board density and weathering on freeze-thaw resistance - a case study. \u003cbr\u003eEffect of multiple freeze-thaw cycles. \u003cbr\u003eComparison of water absorption of some composite deck boards available on the market. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e13. Microbial degradation of wood-plastic composite materials and “black spots” on the surface. Mold resistance. \u003cbr\u003eIntroduction. \u003cbr\u003eMicrobial effects on wood-plastic composites. \u003cbr\u003eMold and spores. \u003cbr\u003eMoisture and ventilation. Critical moisture content. \u003cbr\u003eWood decay fungi. \u003cbr\u003eBiocides and “mold resistance”. \u003cbr\u003ePreservatives for wood lumber. \u003cbr\u003eCCA. \u003cbr\u003eACQ. \u003cbr\u003ePCP. \u003cbr\u003eCreosote. \u003cbr\u003eMicroorganisms active in degradation and staining of composite materials. \u003cbr\u003eMolds. \u003cbr\u003eBlack mold. \u003cbr\u003eBlack algae. \u003cbr\u003eCase study 1. Staining with a microbial pigment. \u003cbr\u003eCase study 2. Deck as a mold incubator. \u003cbr\u003eCase study 3. Black mold due to composite low density and high mosture. \u003cbr\u003eMicrobial infestation of wood-plastic composite materials. \u003cbr\u003eRequirements for microbial growth on wood and wood-plastic composites. \u003cbr\u003eSensitivity and resistance of composite materials to microbial degradation. Examples. \u003cbr\u003eASTM tests recommended for microbial growth and degradation of wood-plastic composites. \u003cbr\u003eExamples: wood. \u003cbr\u003eExamples: wood-plastic composites. \u003cbr\u003eEffect of formulation on sensitivity and resistance of wood-plastic composites to microbial degradation. \u003cbr\u003eBiocides used (actually or under consideration) in wood-plastic composites. \u003cbr\u003eBiocides: accelerated laboratory data and the real world. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e14. Flammability and fire rating of wood-plastic composites. \u003cbr\u003eIntroduction. \u003cbr\u003eFlammability of wood. \u003cbr\u003eIgnition of composite materials. \u003cbr\u003eFlame spread indexes (FSI) and fire rating of composite materials. \u003cbr\u003eEffect of mineral fillers on flammability. \u003cbr\u003eSmoke and toxic gases, and smoke development index (SDI). \u003cbr\u003eFlame retardants for plastics and composite materials. \u003cbr\u003eASTM recommendations. \u003cbr\u003eFire performance of composite decks and deck boards. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e15. Thermo- and photo-oxidative degradation and lifetime of composite building materials. \u003cbr\u003eIntroduction. Lifetime of plastics and plastic-based composites Examples. \u003cbr\u003eThermo-oxidation, photo-oxidation, oxidative degradation, and product crumbling and failure. \u003cbr\u003eFactors accelerating the oxidative degradation of composites. \u003cbr\u003eDensity (specific gravity) of the composite. \u003cbr\u003eTemperature. \u003cbr\u003eThe physical and the chemical structure of the polymer. \u003cbr\u003eHistory of plastic (virgin, recycled). \u003cbr\u003eThe type and amount of cellulose fiber. \u003cbr\u003eThe type and amount of mineral fillers. \u003cbr\u003eThe presence of stress. \u003cbr\u003eThe presence of metal catalysts. \u003cbr\u003eThe presence of moisture. \u003cbr\u003eAntioxidants and their amounts. \u003cbr\u003eSolar radiation (UV light). \u003cbr\u003eAmount of added regrinds, if any. \u003cbr\u003eASTM recommendations. \u003cbr\u003eASTM tests for oxidative induction time. \u003cbr\u003eASTM tests for determination of phenolic antioxidants in plastics. \u003cbr\u003eSurface temperature of composite decking and railing systems. \u003cbr\u003eLife span of zero-antioxidant GeoDeck decks in various areas of the U.S. \u003cbr\u003eThe OIT and lifetime of composite deck boards. \u003cbr\u003eDurability (in terms of oxidative degradation) of wood-plastic composite decks available on the current market. \u003cbr\u003eOxidative degradation and crumbling of GeoDeck deck boards. History of the case and correction of the problem. \u003cbr\u003eDensity, porosity, and mechanical properties of GeoDeck before the problem had emerged. \u003cbr\u003eEmerging of the problem. \u003cbr\u003eDensity (specific gravity) of GeoDeck boards in pre-October 2003. \u003cbr\u003eCorrection of the crumbling problem-- Antioxidant level. \u003cbr\u003eAddendum. Test method for oxidative-induction time of filled composite material by differential scanning calorimetry. \u003cbr\u003eCase studies. \u003cbr\u003eGeoDeck decks crumbling in Arizona. \u003cbr\u003eGeoDeck decks crumbling in Massachusetts. \u003cbr\u003eGeoDeck voluntary recall. \u003cbr\u003eProblem GeoDeck decks: installation time and warranty claims. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e16. Photo-oxidation and fading of composite building materials. \u003cbr\u003eIntroduction. \u003cbr\u003eHow fading is measured? \u003cbr\u003eFading. Some introductory definitions. \u003cbr\u003eAccelerated and natural weathering of wood-plastic composite materials, and a correlation (or a lack of it) between them. The acceleration factor. \u003cbr\u003eFading of commercial wood-plastic composite materials. \u003cbr\u003eFading of composite deck boards vs. their crumbling due to oxidation. \u003cbr\u003eFactors accelerating or slowing down fading of composites. \u003cbr\u003eDensity (specific gravity) of the composite. \u003cbr\u003eTemperature. \u003cbr\u003eUV absorbers and their amounts. \u003cbr\u003ePigments and their amounts. \u003cbr\u003eAntioxidants and their amounts. \u003cbr\u003eHistory of plastics (virgin, recycled). \u003cbr\u003eEffect of moisture in the composite. \u003cbr\u003eThe type and amount of cellulose fiber. \u003cbr\u003eExtruded vs. injection molded wood-plastic composite materials. \u003cbr\u003eASTM recommendations. \u003cbr\u003eAddendum: Some definitions and technical terms used in descriptions of. \u003cbr\u003ephotodegradation of plastics and wood-plastic composites. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e17. Rheology and a selection of incoming plastics for composite materials. \u003cbr\u003eIntroduction. Rheology of neat and filled plastics, composite materials and regrinds. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations in the area of capillary rheometry. \u003cbr\u003eASTM recommendations in the area of rotational rheometry. \u003cbr\u003eCommon observation. \u003cbr\u003eNeat plastics. \u003cbr\u003eComposite materials. \u003cbr\u003eAlmost uncharted areas of composite and plastic rheology. \u003cbr\u003eReferences. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnatole A. Klyosov, PHD, was Consulting Vice President of LDI Composites Co. (formerly Kadant Composites, where he was Vice President of research and development). Dr. Klyosov was also professor of biochemistry at Harvard University for eight years. He is currently Chief Scientist at Pro-Pharmaceuticals, Inc. He has published almost 300 peer-reviewed articles, thirty-five patents, and a number of books."}