- Grid List
Filter
Applications of Polyme...
$250.00
{"id":11242240964,"title":"Applications of Polymers in Drug Delivery","handle":"9781847358516","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","delivery system","drug absorption","drug delivery","gastric drug delivery","mucaodhesive drug delivery","ocular drug delivery","oral drug delivery","p-applications","patch delivery system","polymer","polymeric system","r-formulation","transdermal drug delivery"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applications of Polymers in Drug Delivery","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847358516","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","options":["Title"],"media":[{"alt":null,"id":350156095581,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex"}
Biocides in Plastics
$153.00
{"id":11242214020,"title":"Biocides in Plastics","handle":"978-1-85957-512-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D. Nichols, Thor Overseas Limited \u003cbr\u003eISBN 978-1-85957-512-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 126\u003cbr\u003eFormat: Soft-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of biocides in plastics is commonplace. They are added to protect the plastic from degradation by microbes or to provide an external antimicrobial hygienic surface.\u003cbr\u003e\u003cbr\u003eBiocides are selected on the basis of their function and the application for which they are intended, but choosing the right biocide is often not so simple. As well as biocidal performance, the in-process stability, migration, leachability, light and heat stability may all be important factors.\u003cbr\u003e\u003cbr\u003eThis Rapra Review Report examines the use of biocides in plastics with reference to material types and application requirements. The commonly available biocides are reviewed and details of their strengths and weaknesses are provided. The author reviews the frequently used test methods for fungi and bacteria, and, in an ever-changing regulatory environment, explores the influence of legislation on the current and future use of such biocides.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to biocide suppliers and plastic product manufacturers, and to all professionals requiring information on biocide chemistry and application.\u003cbr\u003e\u003cbr\u003eThis detailed and state-of-the-art review is supported by an indexed section containing several hundred key references and abstracts selected from the Polymer Library.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 INTRODUCTION\u003c\/b\u003e\u003cbr\u003e2.1 Bacteria\u003cbr\u003e2.2 Fungi\u003cbr\u003e2.3 Algae\u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 THE NEED FOR BIOCIDES IN PLASTICS AND BASIC MICROBIOLOGY\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003e3 PLASTIC MATERIALS REQUIRING BIOCIDES\u003c\/b\u003e\u003cbr\u003e3.1 Biostabiliser Effects\u003cbr\u003e3.1.1 Nutrient Sources for Fungi and Bacteria\u003cbr\u003e3.1.2 Microbiological Effects\u003cbr\u003e3.1.3 Organisms of Importance\u003cbr\u003e3.2 Hygienic Applications\u003cbr\u003e3.2.1 Organisms of Interest\u003cbr\u003e3.2.2 Merits of Such Biocides\u003cbr\u003e3.2.3 The Bacterial Problem\u003cbr\u003e3.2.4 False Claims\u003cbr\u003e3.2.5 Conclusions Regarding Hygienic Applications\u003cbr\u003e3.3 Active Packaging\u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 TEST METHODS\u003c\/b\u003e\u003cbr\u003e4.1 Fungal Test Methods\u003cbr\u003e4.1.1 Fungicidal Procedures\u003cbr\u003e4.1.2 Fungistatic Procedures\u003cbr\u003e4.1.3 Soil Burial\u003cbr\u003e4.1.4 Humidity Chamber or Vermiculite Bed\u003cbr\u003e4.2 Bacterial Test Methods\u003cbr\u003e4.2.1 Resistance of Plastic to Bacteria\u003cbr\u003e4.2.2 Antimicrobial Plastic\u003cbr\u003e4.2.3 Pink Stain Test\u003cbr\u003e4.3 Laboratory Tests versus use Conditions\u003cbr\u003e\u003cbr\u003e\u003cb\u003e5 AVAILABLE ACTIVE INGREDIENTS\u003c\/b\u003e\u003cbr\u003e5.1 Migratory Biocides\u003cbr\u003e5.1.1 OBPA\u003cbr\u003e5.1.2 OIT\u003cbr\u003e5.1.3 Butyl BIT\u003cbr\u003e5.1.4 Zinc Pyrithione\u003cbr\u003e5.1.5 Iodo-Propylbutyl Carbamate (IPBC)\u003cbr\u003e5.1.6 N-Haloalkylthio Compounds\u003cbr\u003e5.1.7 Carbendazim (N-benzimidazol-2-ylcarbamic acid methylester)\u003cbr\u003e5.1.8 Bethoxazin (3-Benzo(b)thien-2-yl-5,6-dihydro-1,4,2-oxathiazine 4-oxide)\u003cbr\u003e5.2 Non or Low Migratory Biocides\u003cbr\u003e5.2.1 Triclosan (2,2,4-dicholoro-2-hydroxydiphenyl ether)\u003cbr\u003e5.2.2 DCOIT \u003cbr\u003e5.2.3 Silver\u003cbr\u003e5.2.4 Sustainable Antimicrobial Polymers (Degussa)\u003cbr\u003e5.2.5 Titanium Dioxide Nanoparticles\u003cbr\u003e5.3 Other Ingredients\u003cbr\u003e\u003cbr\u003e\u003cb\u003e6 LEGISLATION REGARDING BIOCIDES\u003c\/b\u003e\u003cbr\u003e6.1 Limitations of Use\u003cbr\u003e6.2 Future Requirements\u003cbr\u003e6.3 BPD Exemptions\u003cbr\u003e\u003cbr\u003e\u003cb\u003e7 SUMMARY\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eAdditional References\u003cbr\u003eUnpublished References\u003cbr\u003eBibliography\u003cbr\u003eAcknowledgements\u003cbr\u003eAbbreviations\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDean Nichols has a BSc. (Hons.) degree in biology and has worked for THOR, a speciality chemicals company and leading biocide company, for the past 15 years. His experience has involved research and development and marketing of biocides and other speciality chemicals to the Middle East, Europe and some countries in the Far East. Currently, he is a member of Thors biocide product management team and has a global role for promotion of products, services and expertise into various market sectors.","published_at":"2017-06-22T21:13:20-04:00","created_at":"2017-06-22T21:13:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","Biocides","book","degradation plastics","environment","p-additives","polymer"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378351044,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biocides in Plastics","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-512-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-512-3.jpg?v=1498191099"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-512-3.jpg?v=1498191099","options":["Title"],"media":[{"alt":null,"id":350156849245,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-512-3.jpg?v=1498191099"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-512-3.jpg?v=1498191099","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D. Nichols, Thor Overseas Limited \u003cbr\u003eISBN 978-1-85957-512-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 126\u003cbr\u003eFormat: Soft-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of biocides in plastics is commonplace. They are added to protect the plastic from degradation by microbes or to provide an external antimicrobial hygienic surface.\u003cbr\u003e\u003cbr\u003eBiocides are selected on the basis of their function and the application for which they are intended, but choosing the right biocide is often not so simple. As well as biocidal performance, the in-process stability, migration, leachability, light and heat stability may all be important factors.\u003cbr\u003e\u003cbr\u003eThis Rapra Review Report examines the use of biocides in plastics with reference to material types and application requirements. The commonly available biocides are reviewed and details of their strengths and weaknesses are provided. The author reviews the frequently used test methods for fungi and bacteria, and, in an ever-changing regulatory environment, explores the influence of legislation on the current and future use of such biocides.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to biocide suppliers and plastic product manufacturers, and to all professionals requiring information on biocide chemistry and application.\u003cbr\u003e\u003cbr\u003eThis detailed and state-of-the-art review is supported by an indexed section containing several hundred key references and abstracts selected from the Polymer Library.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 INTRODUCTION\u003c\/b\u003e\u003cbr\u003e2.1 Bacteria\u003cbr\u003e2.2 Fungi\u003cbr\u003e2.3 Algae\u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 THE NEED FOR BIOCIDES IN PLASTICS AND BASIC MICROBIOLOGY\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003e3 PLASTIC MATERIALS REQUIRING BIOCIDES\u003c\/b\u003e\u003cbr\u003e3.1 Biostabiliser Effects\u003cbr\u003e3.1.1 Nutrient Sources for Fungi and Bacteria\u003cbr\u003e3.1.2 Microbiological Effects\u003cbr\u003e3.1.3 Organisms of Importance\u003cbr\u003e3.2 Hygienic Applications\u003cbr\u003e3.2.1 Organisms of Interest\u003cbr\u003e3.2.2 Merits of Such Biocides\u003cbr\u003e3.2.3 The Bacterial Problem\u003cbr\u003e3.2.4 False Claims\u003cbr\u003e3.2.5 Conclusions Regarding Hygienic Applications\u003cbr\u003e3.3 Active Packaging\u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 TEST METHODS\u003c\/b\u003e\u003cbr\u003e4.1 Fungal Test Methods\u003cbr\u003e4.1.1 Fungicidal Procedures\u003cbr\u003e4.1.2 Fungistatic Procedures\u003cbr\u003e4.1.3 Soil Burial\u003cbr\u003e4.1.4 Humidity Chamber or Vermiculite Bed\u003cbr\u003e4.2 Bacterial Test Methods\u003cbr\u003e4.2.1 Resistance of Plastic to Bacteria\u003cbr\u003e4.2.2 Antimicrobial Plastic\u003cbr\u003e4.2.3 Pink Stain Test\u003cbr\u003e4.3 Laboratory Tests versus use Conditions\u003cbr\u003e\u003cbr\u003e\u003cb\u003e5 AVAILABLE ACTIVE INGREDIENTS\u003c\/b\u003e\u003cbr\u003e5.1 Migratory Biocides\u003cbr\u003e5.1.1 OBPA\u003cbr\u003e5.1.2 OIT\u003cbr\u003e5.1.3 Butyl BIT\u003cbr\u003e5.1.4 Zinc Pyrithione\u003cbr\u003e5.1.5 Iodo-Propylbutyl Carbamate (IPBC)\u003cbr\u003e5.1.6 N-Haloalkylthio Compounds\u003cbr\u003e5.1.7 Carbendazim (N-benzimidazol-2-ylcarbamic acid methylester)\u003cbr\u003e5.1.8 Bethoxazin (3-Benzo(b)thien-2-yl-5,6-dihydro-1,4,2-oxathiazine 4-oxide)\u003cbr\u003e5.2 Non or Low Migratory Biocides\u003cbr\u003e5.2.1 Triclosan (2,2,4-dicholoro-2-hydroxydiphenyl ether)\u003cbr\u003e5.2.2 DCOIT \u003cbr\u003e5.2.3 Silver\u003cbr\u003e5.2.4 Sustainable Antimicrobial Polymers (Degussa)\u003cbr\u003e5.2.5 Titanium Dioxide Nanoparticles\u003cbr\u003e5.3 Other Ingredients\u003cbr\u003e\u003cbr\u003e\u003cb\u003e6 LEGISLATION REGARDING BIOCIDES\u003c\/b\u003e\u003cbr\u003e6.1 Limitations of Use\u003cbr\u003e6.2 Future Requirements\u003cbr\u003e6.3 BPD Exemptions\u003cbr\u003e\u003cbr\u003e\u003cb\u003e7 SUMMARY\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eAdditional References\u003cbr\u003eUnpublished References\u003cbr\u003eBibliography\u003cbr\u003eAcknowledgements\u003cbr\u003eAbbreviations\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDean Nichols has a BSc. (Hons.) degree in biology and has worked for THOR, a speciality chemicals company and leading biocide company, for the past 15 years. His experience has involved research and development and marketing of biocides and other speciality chemicals to the Middle East, Europe and some countries in the Far East. Currently, he is a member of Thors biocide product management team and has a global role for promotion of products, services and expertise into various market sectors."}
Biodegradable Polymers
$390.00
{"id":11242213828,"title":"Biodegradable Polymers","handle":"978-1-85957-519-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David K. Platt \u003cbr\u003eISBN 978-1-85957-519-2 \u003cbr\u003e\u003cbr\u003eRapra Market Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers have experienced strong growth over the last three years and are set to make further inroads into markets traditionally dominated by conventional thermoplastics in future. \u003cbr\u003e\u003cbr\u003eDemand is being driven by a number of factors. \u003cbr\u003eThe cost of biodegradable polymers has come down considerably over the last three years while at the same time standard thermoplastic prices have increased considerably. Now, some classes of biodegradable polymers are price competitive with polymers such as PET. \u003cbr\u003e\u003cbr\u003eThe biodegradable polymers industry itself has established an agreed framework for testing and certification and there is growing political pressure in developed countries to reduce packaging waste and develop a composting infrastructure. Biodegradable polymer producers have also invested in product and process improvements. Finally, consumers and brand owners are beginning to recognize the benefits of sustainable or ‘green’ packaging. \u003cbr\u003e\u003cbr\u003eFour main classes of biodegradable polymers are analyzed in this report, polylactic acid (PLA), starch-based polymers, synthetic biodegradable polymers, such as aromatic aliphatic co-polyesters, and polyhydroxyalkanoates (PHA). The report analyses their key performance properties, applications development, market drivers and future prospects. Each product section also contains an estimate of market size by world region and end use market, plus forecasts to 2010. There is also an analysis of key suppliers and their products. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e \u003cbr\u003eBiodegradable polymers market size by geographic region, polymer type and end use sector, 2000 and 2005, plus forecasts to 2010. Market opportunity analysis by end use sector, such as packaging, bags and sacks, foodservice, agriculture, medical, consumer products and fibres. Illustrations of product and applications development over the last three years. Supply chain analysis: including details of thirty leading biodegradable polymer suppliers and profiles of around fifty of the world’s leading biodegradable polymer processors. Analysis of biodegradable polymer performance properties, market drivers, applications and product developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Platt graduated from the University of Nottingham with an Economics degree before completing an MBA at the University of Bradford. He joined a leading international market consultancy where he specialized in plastics sector research. He conducted a wide range of multi-client and single-client studies covering a wide range of materials, from standard thermoplastics, engineering and high performance polymers to conductive polymers and thermoplastic elastomers. Now operating as a freelance consultant, he makes regular contributions to the European plastics trade press, and works with leading plastics industry consultants.","published_at":"2017-06-22T21:13:20-04:00","created_at":"2017-06-22T21:13:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","agriculture","analysis","aromatic aliphatic co-polyesters","bags","biodegradable polymers","book","consumer products","foodservice","market","medical","packaging","PHA","PLA","polyhydroxyalkanoates","polylactic acid","polymer","polymers","properties","report","sacks","starch-based polymers","synthetic biodegradable polymers"],"price":39000,"price_min":39000,"price_max":39000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350852,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biodegradable Polymers","public_title":null,"options":["Default Title"],"price":39000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-519-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157","options":["Title"],"media":[{"alt":null,"id":350156882013,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-519-2.jpg?v=1498191157","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David K. Platt \u003cbr\u003eISBN 978-1-85957-519-2 \u003cbr\u003e\u003cbr\u003eRapra Market Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers have experienced strong growth over the last three years and are set to make further inroads into markets traditionally dominated by conventional thermoplastics in future. \u003cbr\u003e\u003cbr\u003eDemand is being driven by a number of factors. \u003cbr\u003eThe cost of biodegradable polymers has come down considerably over the last three years while at the same time standard thermoplastic prices have increased considerably. Now, some classes of biodegradable polymers are price competitive with polymers such as PET. \u003cbr\u003e\u003cbr\u003eThe biodegradable polymers industry itself has established an agreed framework for testing and certification and there is growing political pressure in developed countries to reduce packaging waste and develop a composting infrastructure. Biodegradable polymer producers have also invested in product and process improvements. Finally, consumers and brand owners are beginning to recognize the benefits of sustainable or ‘green’ packaging. \u003cbr\u003e\u003cbr\u003eFour main classes of biodegradable polymers are analyzed in this report, polylactic acid (PLA), starch-based polymers, synthetic biodegradable polymers, such as aromatic aliphatic co-polyesters, and polyhydroxyalkanoates (PHA). The report analyses their key performance properties, applications development, market drivers and future prospects. Each product section also contains an estimate of market size by world region and end use market, plus forecasts to 2010. There is also an analysis of key suppliers and their products. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eKey Features\u003c\/b\u003e \u003cbr\u003eBiodegradable polymers market size by geographic region, polymer type and end use sector, 2000 and 2005, plus forecasts to 2010. Market opportunity analysis by end use sector, such as packaging, bags and sacks, foodservice, agriculture, medical, consumer products and fibres. Illustrations of product and applications development over the last three years. Supply chain analysis: including details of thirty leading biodegradable polymer suppliers and profiles of around fifty of the world’s leading biodegradable polymer processors. Analysis of biodegradable polymer performance properties, market drivers, applications and product developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Platt graduated from the University of Nottingham with an Economics degree before completing an MBA at the University of Bradford. He joined a leading international market consultancy where he specialized in plastics sector research. He conducted a wide range of multi-client and single-client studies covering a wide range of materials, from standard thermoplastics, engineering and high performance polymers to conductive polymers and thermoplastic elastomers. Now operating as a freelance consultant, he makes regular contributions to the European plastics trade press, and works with leading plastics industry consultants."}
Blends and Alloys of E...
$72.00
{"id":11242253956,"title":"Blends and Alloys of Engineering Thermoplastics","handle":"978-0-08041744-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: H.T. van de Grampel \u003cbr\u003eISBN 978-0-08041744-8 \u003cbr\u003e\u003cbr\u003eGE Plastics BV\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e132 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report explains the theory of blending materials which may be essentially incompatible, and the properties and applications of commercially available blends of engineering thermoplastics are then described. \u003cbr\u003e\u003cbr\u003eExperimental results and data on commercial materials can be obtained from the accompanying references and abstracts (499).\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:27-04:00","created_at":"2017-06-22T21:15:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1991","alloys","applications","blends","book","morphology","p-structural","physical properties","polymer","thermoplastics"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378488004,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blends and Alloys of Engineering Thermoplastics","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-08041744-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446","options":["Title"],"media":[{"alt":null,"id":353915338845,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-08041744-8.jpg?v=1499189446","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: H.T. van de Grampel \u003cbr\u003eISBN 978-0-08041744-8 \u003cbr\u003e\u003cbr\u003eGE Plastics BV\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e132 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report explains the theory of blending materials which may be essentially incompatible, and the properties and applications of commercially available blends of engineering thermoplastics are then described. \u003cbr\u003e\u003cbr\u003eExperimental results and data on commercial materials can be obtained from the accompanying references and abstracts (499).\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$160.00
{"id":11242236164,"title":"Blowing Agents and Foaming Processes 2001","handle":"978-1-85957-252-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-252-8 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 13th-14th March 2001\u003cbr\u003e\u003cbr\u003ePages: 190, Figures: 245, Tables: 82\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years the markets for foams or expended substrates has grown enormously, this is documented through the high number of patent applications for products and processes which are filed each year. This third, international conference dedicated to the critical role of blowing agents in foamed plastics and rubber assembled major blowing agent manufacturers and suppliers, foaming process providers and academia to present insight into the industrial progress and research for foam generation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of papers\u003c\/strong\u003e\u003cbr\u003eNew Polymeric Foam Technologies \u003cbr\u003eMichael E. Reedy and *Stan Dudek, Reedy International Corporation, USA and *Durrell Components, USA \u003cbr\u003eAdvantages of the Use of Chemical Foaming Agents in Wood-Plastic Composites \u003cbr\u003eGunther Luebke, Clariant Masterbatch GmbH \u0026amp; Co. OHG, Germany \u003cbr\u003eTitanate and Zirconate Coupling Agents in Foamed Polymers \u003cbr\u003eSalvatore J. Monte, Kenrich Petrochemicals, Inc., USA \u003cbr\u003eCompounding Based Rotational Foam Molding of Polyolefin Foams \u003cbr\u003eRemon Pop-Iliev, Ghaus M. Rizvi, and Chul B Park; Microcellular Plastics Manufacturing Laboratory, University of Toronto, Canada \u003cbr\u003eA New Grade of Expandable Microspheres for Foaming Polypropylene \u003cbr\u003eKlas Elfving, Expancel, Sweden \u003cbr\u003eCan User Demands Be Met By Suppliers? \u003cbr\u003eSiebolt Hettinga, Hettinga Technologies, Inc., USA \u003cbr\u003eStrategies for Achieving Fine-celled Low-Density Polypropylene Foams \u003cbr\u003eHani E.Naguib, Chul B. Park and *Achim Hesse, *Ulf Panzer, Norbert Reichelt; Microcellular Plastics Manufacturing Laboratory, University of Toronto, Canada and *Borealis GmbH, Austria \u003cbr\u003eLow Pressure Injection Moulding \u003cbr\u003eHelmut Eckardt, Process and Engineering Department, Battenfeld GmbH, Germany \u003cbr\u003eNew Technology for Foam Injection Moulding with Physical Blowing Agents \u003cbr\u003eW. Michaeli, Sasan Habibi-Naini, IKV, Germany \u003cbr\u003eCase Studies on Gas in Melt Technology (Gimtech) and Coralfoam Technology \u003cbr\u003eBarrie Penny, Pentex Limited, UK \u003cbr\u003eFoaming of Cable Insulation - Some Physical Basics \u003cbr\u003eThomas Reiner and Horst Scheid, Siebe Engineering, Germany \u003cbr\u003eInnovative Approach To Molding Large Structural Parts Using Multi-Nozzle Low Pressure Technology \u003cbr\u003eBrian Read and *Richard Lynch, Horizon Plastics Limited, Canada and *Uniloy Milacron, USA \u003cbr\u003eNew Aspects of Endothermal Blowing Agents in Blow Moulding Applications \u003cbr\u003eRudi France, Inkutec GmbH, Germany \u003cbr\u003eRigid PVC Cellular Extrusion North America and Europe Market and Technology Trends \u003cbr\u003eStephen Quinn, Bayer plc, UK \u003cbr\u003eTechnical and Environmental Acceptance of HFCs as Blowing Agents for XPS Boards \u003cbr\u003eChrister Bratt* and Arnaud Albouy**, *Nordic Foam AB, Sweden and **Atofina, France \u003cbr\u003eSolubility of Simple Alkanes in Polyethylene and Its Effects in Low Density Foam Extrusion \u003cbr\u003eS. T. Lee and Kevin Lee, Sealed Air Corporation, USA \u003cbr\u003eMethylal or Dimethoxymethane as a Blowing Agent for Polyurethane Foams? \u003cbr\u003eMichel Beaujean, Lambiotte et Cie S.A., Belgium \u003cbr\u003eWhat comes After Cyclopentane? \u003cbr\u003eHolger Seifert, Anja Biedermann and Werner Wiegmann, Elastogran, Germany \u003cbr\u003eMolding Technology: Introduction, Applications, and Advantages \u003cbr\u003eDavid Pierick and Robert Janisch, MuCell Molding, Trexel, Inc., and Trexel, Inc., USA \u003cbr\u003eHFC-245fa \u0026amp; HFC-245fa Blends: Blowing Agent Solutions for All Rigid and Integral Skin Foam Applications \u003cbr\u003eDavid Williams and Mary Bogdan, Honeywell, USA \u003cbr\u003eNew Blowing Agents for Insulated Panels \u003cbr\u003eBarrier G. Colvin, IFS Chemicals Limited, UK \u003cbr\u003eThe Effect of Nucleating Agent Particle Size and Specific Surface Area on Foam Morphology: A New Descriptor \u003cbr\u003eDenis Rodrigue 1, Caroline Woelfle 1 and Louis E. Daigneault 2, 1 Université Laval, Canada and 2 IPEX, Canada \u003cbr\u003eModern Polyurethane Machine and Production Line Concepts for Processing Environmentally Compatible Blowing Agents \u003cbr\u003eTerry Armitt, Hennecke GmbH, Germany \u003cbr\u003eHFC Blends for the Production of High Performance XPS Insulating Foams \u003cbr\u003ePierre Dournel (1) and Lothar Zipfel (2), (1) Solvay Research \u0026amp; Technology, Belgium and (2) Solvay Fluor und Derivate GmbH, Germany \u003cbr\u003eOptimization of Insulation Performance by HFC-365mfc \u003cbr\u003eLothar Zipfel (1), Pierre Dournel (2), (1) Solvay Strategic Business Unit Fluor, Solvay Fluor und Derivate GmbH, Germany and (2) Solvay Strategic Business Unit Fluor, Solvay Fluor und Derivate GmbH, Belgium \u003cbr\u003eNew Developments in PET Foam \u003cbr\u003eHussain Al Ghatta, D. Giordano and T. Severini, Sinco Ricerche SpA, Italy \u003cbr\u003eOptimization of Crosslinking and Gas Liberation in Cellular Rubber \u003cbr\u003eKristin Vinje, SINTEF Materials Technology, Norway \u003cbr\u003eFoaming of Film and Sheet from Polypropylene and Polystyrene \u003cbr\u003eUlrich Berghaus, Reifenhaeuser GmbH \u0026amp; Co., Germany\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:31-04:00","created_at":"2017-06-22T21:14:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","blowing agents","book","cable insulation","coupling agents","foaming agents","foams","insulation","p-additives","plastics","polymer","polyolefin foams","titanate","XPS Boards","zirconate"],"price":16000,"price_min":16000,"price_max":16000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378422980,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2001","public_title":null,"options":["Default Title"],"price":16000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-252-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-252-8.jpg?v=1499190052"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-252-8.jpg?v=1499190052","options":["Title"],"media":[{"alt":null,"id":353916485725,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-252-8.jpg?v=1499190052"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-252-8.jpg?v=1499190052","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-252-8 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 13th-14th March 2001\u003cbr\u003e\u003cbr\u003ePages: 190, Figures: 245, Tables: 82\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years the markets for foams or expended substrates has grown enormously, this is documented through the high number of patent applications for products and processes which are filed each year. This third, international conference dedicated to the critical role of blowing agents in foamed plastics and rubber assembled major blowing agent manufacturers and suppliers, foaming process providers and academia to present insight into the industrial progress and research for foam generation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of papers\u003c\/strong\u003e\u003cbr\u003eNew Polymeric Foam Technologies \u003cbr\u003eMichael E. Reedy and *Stan Dudek, Reedy International Corporation, USA and *Durrell Components, USA \u003cbr\u003eAdvantages of the Use of Chemical Foaming Agents in Wood-Plastic Composites \u003cbr\u003eGunther Luebke, Clariant Masterbatch GmbH \u0026amp; Co. OHG, Germany \u003cbr\u003eTitanate and Zirconate Coupling Agents in Foamed Polymers \u003cbr\u003eSalvatore J. Monte, Kenrich Petrochemicals, Inc., USA \u003cbr\u003eCompounding Based Rotational Foam Molding of Polyolefin Foams \u003cbr\u003eRemon Pop-Iliev, Ghaus M. Rizvi, and Chul B Park; Microcellular Plastics Manufacturing Laboratory, University of Toronto, Canada \u003cbr\u003eA New Grade of Expandable Microspheres for Foaming Polypropylene \u003cbr\u003eKlas Elfving, Expancel, Sweden \u003cbr\u003eCan User Demands Be Met By Suppliers? \u003cbr\u003eSiebolt Hettinga, Hettinga Technologies, Inc., USA \u003cbr\u003eStrategies for Achieving Fine-celled Low-Density Polypropylene Foams \u003cbr\u003eHani E.Naguib, Chul B. Park and *Achim Hesse, *Ulf Panzer, Norbert Reichelt; Microcellular Plastics Manufacturing Laboratory, University of Toronto, Canada and *Borealis GmbH, Austria \u003cbr\u003eLow Pressure Injection Moulding \u003cbr\u003eHelmut Eckardt, Process and Engineering Department, Battenfeld GmbH, Germany \u003cbr\u003eNew Technology for Foam Injection Moulding with Physical Blowing Agents \u003cbr\u003eW. Michaeli, Sasan Habibi-Naini, IKV, Germany \u003cbr\u003eCase Studies on Gas in Melt Technology (Gimtech) and Coralfoam Technology \u003cbr\u003eBarrie Penny, Pentex Limited, UK \u003cbr\u003eFoaming of Cable Insulation - Some Physical Basics \u003cbr\u003eThomas Reiner and Horst Scheid, Siebe Engineering, Germany \u003cbr\u003eInnovative Approach To Molding Large Structural Parts Using Multi-Nozzle Low Pressure Technology \u003cbr\u003eBrian Read and *Richard Lynch, Horizon Plastics Limited, Canada and *Uniloy Milacron, USA \u003cbr\u003eNew Aspects of Endothermal Blowing Agents in Blow Moulding Applications \u003cbr\u003eRudi France, Inkutec GmbH, Germany \u003cbr\u003eRigid PVC Cellular Extrusion North America and Europe Market and Technology Trends \u003cbr\u003eStephen Quinn, Bayer plc, UK \u003cbr\u003eTechnical and Environmental Acceptance of HFCs as Blowing Agents for XPS Boards \u003cbr\u003eChrister Bratt* and Arnaud Albouy**, *Nordic Foam AB, Sweden and **Atofina, France \u003cbr\u003eSolubility of Simple Alkanes in Polyethylene and Its Effects in Low Density Foam Extrusion \u003cbr\u003eS. T. Lee and Kevin Lee, Sealed Air Corporation, USA \u003cbr\u003eMethylal or Dimethoxymethane as a Blowing Agent for Polyurethane Foams? \u003cbr\u003eMichel Beaujean, Lambiotte et Cie S.A., Belgium \u003cbr\u003eWhat comes After Cyclopentane? \u003cbr\u003eHolger Seifert, Anja Biedermann and Werner Wiegmann, Elastogran, Germany \u003cbr\u003eMolding Technology: Introduction, Applications, and Advantages \u003cbr\u003eDavid Pierick and Robert Janisch, MuCell Molding, Trexel, Inc., and Trexel, Inc., USA \u003cbr\u003eHFC-245fa \u0026amp; HFC-245fa Blends: Blowing Agent Solutions for All Rigid and Integral Skin Foam Applications \u003cbr\u003eDavid Williams and Mary Bogdan, Honeywell, USA \u003cbr\u003eNew Blowing Agents for Insulated Panels \u003cbr\u003eBarrier G. Colvin, IFS Chemicals Limited, UK \u003cbr\u003eThe Effect of Nucleating Agent Particle Size and Specific Surface Area on Foam Morphology: A New Descriptor \u003cbr\u003eDenis Rodrigue 1, Caroline Woelfle 1 and Louis E. Daigneault 2, 1 Université Laval, Canada and 2 IPEX, Canada \u003cbr\u003eModern Polyurethane Machine and Production Line Concepts for Processing Environmentally Compatible Blowing Agents \u003cbr\u003eTerry Armitt, Hennecke GmbH, Germany \u003cbr\u003eHFC Blends for the Production of High Performance XPS Insulating Foams \u003cbr\u003ePierre Dournel (1) and Lothar Zipfel (2), (1) Solvay Research \u0026amp; Technology, Belgium and (2) Solvay Fluor und Derivate GmbH, Germany \u003cbr\u003eOptimization of Insulation Performance by HFC-365mfc \u003cbr\u003eLothar Zipfel (1), Pierre Dournel (2), (1) Solvay Strategic Business Unit Fluor, Solvay Fluor und Derivate GmbH, Germany and (2) Solvay Strategic Business Unit Fluor, Solvay Fluor und Derivate GmbH, Belgium \u003cbr\u003eNew Developments in PET Foam \u003cbr\u003eHussain Al Ghatta, D. Giordano and T. Severini, Sinco Ricerche SpA, Italy \u003cbr\u003eOptimization of Crosslinking and Gas Liberation in Cellular Rubber \u003cbr\u003eKristin Vinje, SINTEF Materials Technology, Norway \u003cbr\u003eFoaming of Film and Sheet from Polypropylene and Polystyrene \u003cbr\u003eUlrich Berghaus, Reifenhaeuser GmbH \u0026amp; Co., Germany\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$180.00
{"id":11242245252,"title":"Blowing Agents and Foaming Processes 2002","handle":"978-1-85957-315-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Heidelberg, Germany, 27th - 28th May, 2002 \u003cbr\u003eISBN 978-1-85957-315-0 \u003cbr\u003e\u003cbr\u003e250 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFoaming is a large area of the plastics processing industry and the possibilities grow every year through the introduction of new products, processes and systems. The advances in the industry are clearly documented by the high numbers of patent applications for products or processes which are filed every year.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHydrocarbon-Blown Formulations for Appliances and Rigid Panels: Available Solutions for Specific Local Regulations\n\u003cp\u003eChristian Cairati \u0026amp; Davide Lucca, Cannon AFROS SpA, Italy\u003c\/p\u003e\n\u003cp\u003eExtrusion of Thermoplastic Foams with CO2 as a Blowing Agent\u003c\/p\u003e\n\u003cp\u003eRobert Heinz \u0026amp; Johannes Lorenz, IKV Aachen, Germany\u003c\/p\u003e\n\u003cp\u003eDevelopment of New High Temperature Chemical Foaming Agents\u003c\/p\u003e\n\u003cp\u003eGunther Luebke \u0026amp; Marcel Weisner, Clariant Masterbatch GmbH \u0026amp; Co, Germany\u003c\/p\u003e\n\u003cp\u003eEffects of the Die Geometry on the Cell Nulceation of Microcellular PS Foams Blown with CO2\u003c\/p\u003e\n\u003cp\u003eChul Park, University of Toronto, USA\u003c\/p\u003e\n\u003cp\u003eHCF-365mfc Foaming Agent Blends\u003c\/p\u003e\n\u003cp\u003eLothar Zipfel, Solvay Fluor and Derivative GmbH, Germany\u003c\/p\u003e\n\u003cp\u003eEnovateTM 3000 Blowing Agent - A Versatile and Cost Effective Blowing Agent Technology for Rigid Foam\u003c\/p\u003e\n\u003cp\u003eMary Bogdan, Honeywell Specialty Chemicals, USA\u003c\/p\u003e\n\u003cp\u003eLatest Develoment with Structural Foam\u003c\/p\u003e\n\u003cp\u003eHelmut Eckardt, Battenfeld Injection Moulding Technology, Germany\u003c\/p\u003e\n\u003cp\u003ePaper unavailable at time of print\u003c\/p\u003e\n\u003cp\u003eNew Developments in MuCell Microcellular Foam Molding Technology and Commercial Applications\u003c\/p\u003e\n\u003cp\u003eRobert Janisch, Trexel Inc, USA\u003c\/p\u003e\n\u003cp\u003eSimulation of Polyolefine Foam Parameters as Prediction for Cable Production Limits\u003c\/p\u003e\n\u003cp\u003eHorst Scheid, Siebe Engineering, Germany\u003c\/p\u003e\n\u003cp\u003eFoam Extrusion of PS Blown with HFC-134a - Impact on Screw Design and Processing Conditions\u003c\/p\u003e\n\u003cp\u003eRichard Gendron, National Research Council of Canada, USA\u003c\/p\u003e\n\u003cp\u003eFeedblock Technologies for Foam Core Products\u003c\/p\u003e\n\u003cp\u003eJosef Dobrowsky, Cincinnati (CET) Extrusion GmbH, Austria\u003c\/p\u003e\n\u003cp\u003eThe Use of Chemical Blowing Agents in the Rotational Moulding of Plastics\u003c\/p\u003e\n\u003cp\u003eMark Kearns, PPRC Belfast, UK\u003c\/p\u003e\n\u003cp\u003eAn Overview of the Technical Advantages of Physically XL PO Foams\u003c\/p\u003e\n\u003cp\u003eMark Hennessy, Sekisui UK Ltd, UK\u003c\/p\u003e\n\u003cp\u003eCrosslinking of LDPE in the Presence of Polyfunctional Monomers to Modify Matrix Properties and CYCLE times\u003c\/p\u003e\n\u003cp\u003eCoswald Sipaut \u0026amp; Dr Geoff Sims, Umist \/Universiti Sains Malaysia, UK\u003c\/p\u003e\n\u003cp\u003eThe Obtaining of Polyurethanes with Uresa Groups by the Pseudoforpolymer Method\u003c\/p\u003e\n\u003cp\u003eN. I. Koltsov, Chuvash State University, Russia\u003c\/p\u003e\n\u003cp\u003ePaper unavailable at time of print\u003c\/p\u003e\n\u003cp\u003eThe Effect OF Calcium Carbonate Particle Size on Ldpe Foam Morphology\u003c\/p\u003e\n\u003cp\u003eDenis Rodrigue \u0026amp; Ryan Gosselin, University Laval, Canada\u003c\/p\u003e\n\u003cp\u003eA New Low Cost Injection Moulding System that Reduces Product Costs\u003c\/p\u003e\n\u003cp\u003eAnton Hagen \u0026amp; Joseph McRoskey,\u003c\/p\u003e\n\u003cp w:st=\"on\"\u003eSpirax Europe BV, The Netherlands\u003c\/p\u003e\n\u003cp\u003eA Foam Extrusion Process with \"Woodtruder\"\u003c\/p\u003e\n\u003cp\u003eGerhard Folie, Davis Standard GmbH, Germany\u003c\/p\u003e\n\u003cp\u003eImproved Foam Extrusion Productivity - a New Screw Design Concept - Turbo-Screws\u003c\/p\u003e\n\u003cp\u003eDavid Fogarty, Plastics Engineering Associated Licencing, Inc, USA\u003c\/p\u003e\n\u003cp\u003eEffects of Recycling on the Rheological Properties and and Foaming Behaviors of Branched PP\u003c\/p\u003e\n\u003cp\u003eChul Park, University of Toronto, USA\u003c\/p\u003e\n\u003cp\u003eThe Influence of Elongational Properties of the Melt on the Morphology of PES and PPE Cellular Materials\u003c\/p\u003e\n\u003cp\u003eFrank Wöllecke, Universitaet Bayreuth, Germany\u003c\/p\u003e\n\u003cp\u003eInnovative Foaming Technologies\u003c\/p\u003e\n\u003cp\u003eMichael Reedy, Reedy International Corp, USA\u003c\/p\u003e\n\u003cp\u003eMelt Strength Analysis for Extruded Polyolefin Foam Development\u003c\/p\u003e\n\u003cp\u003eShau-Tarng Lee, Sealed Air Corp, USA\u003c\/p\u003e","published_at":"2017-06-22T21:14:59-04:00","created_at":"2017-06-22T21:14:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","extrusion","foaming technologies","foaming. rubber","foams","p-additives","plastics","polymer","polyolefin foam","processing conditions","PS","screw design","structural foam"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378451652,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2002","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-315-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-315-0.jpg?v=1499718354"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-315-0.jpg?v=1499718354","options":["Title"],"media":[{"alt":null,"id":353916944477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-315-0.jpg?v=1499718354"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-315-0.jpg?v=1499718354","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Heidelberg, Germany, 27th - 28th May, 2002 \u003cbr\u003eISBN 978-1-85957-315-0 \u003cbr\u003e\u003cbr\u003e250 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFoaming is a large area of the plastics processing industry and the possibilities grow every year through the introduction of new products, processes and systems. The advances in the industry are clearly documented by the high numbers of patent applications for products or processes which are filed every year.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nHydrocarbon-Blown Formulations for Appliances and Rigid Panels: Available Solutions for Specific Local Regulations\n\u003cp\u003eChristian Cairati \u0026amp; Davide Lucca, Cannon AFROS SpA, Italy\u003c\/p\u003e\n\u003cp\u003eExtrusion of Thermoplastic Foams with CO2 as a Blowing Agent\u003c\/p\u003e\n\u003cp\u003eRobert Heinz \u0026amp; Johannes Lorenz, IKV Aachen, Germany\u003c\/p\u003e\n\u003cp\u003eDevelopment of New High Temperature Chemical Foaming Agents\u003c\/p\u003e\n\u003cp\u003eGunther Luebke \u0026amp; Marcel Weisner, Clariant Masterbatch GmbH \u0026amp; Co, Germany\u003c\/p\u003e\n\u003cp\u003eEffects of the Die Geometry on the Cell Nulceation of Microcellular PS Foams Blown with CO2\u003c\/p\u003e\n\u003cp\u003eChul Park, University of Toronto, USA\u003c\/p\u003e\n\u003cp\u003eHCF-365mfc Foaming Agent Blends\u003c\/p\u003e\n\u003cp\u003eLothar Zipfel, Solvay Fluor and Derivative GmbH, Germany\u003c\/p\u003e\n\u003cp\u003eEnovateTM 3000 Blowing Agent - A Versatile and Cost Effective Blowing Agent Technology for Rigid Foam\u003c\/p\u003e\n\u003cp\u003eMary Bogdan, Honeywell Specialty Chemicals, USA\u003c\/p\u003e\n\u003cp\u003eLatest Develoment with Structural Foam\u003c\/p\u003e\n\u003cp\u003eHelmut Eckardt, Battenfeld Injection Moulding Technology, Germany\u003c\/p\u003e\n\u003cp\u003ePaper unavailable at time of print\u003c\/p\u003e\n\u003cp\u003eNew Developments in MuCell Microcellular Foam Molding Technology and Commercial Applications\u003c\/p\u003e\n\u003cp\u003eRobert Janisch, Trexel Inc, USA\u003c\/p\u003e\n\u003cp\u003eSimulation of Polyolefine Foam Parameters as Prediction for Cable Production Limits\u003c\/p\u003e\n\u003cp\u003eHorst Scheid, Siebe Engineering, Germany\u003c\/p\u003e\n\u003cp\u003eFoam Extrusion of PS Blown with HFC-134a - Impact on Screw Design and Processing Conditions\u003c\/p\u003e\n\u003cp\u003eRichard Gendron, National Research Council of Canada, USA\u003c\/p\u003e\n\u003cp\u003eFeedblock Technologies for Foam Core Products\u003c\/p\u003e\n\u003cp\u003eJosef Dobrowsky, Cincinnati (CET) Extrusion GmbH, Austria\u003c\/p\u003e\n\u003cp\u003eThe Use of Chemical Blowing Agents in the Rotational Moulding of Plastics\u003c\/p\u003e\n\u003cp\u003eMark Kearns, PPRC Belfast, UK\u003c\/p\u003e\n\u003cp\u003eAn Overview of the Technical Advantages of Physically XL PO Foams\u003c\/p\u003e\n\u003cp\u003eMark Hennessy, Sekisui UK Ltd, UK\u003c\/p\u003e\n\u003cp\u003eCrosslinking of LDPE in the Presence of Polyfunctional Monomers to Modify Matrix Properties and CYCLE times\u003c\/p\u003e\n\u003cp\u003eCoswald Sipaut \u0026amp; Dr Geoff Sims, Umist \/Universiti Sains Malaysia, UK\u003c\/p\u003e\n\u003cp\u003eThe Obtaining of Polyurethanes with Uresa Groups by the Pseudoforpolymer Method\u003c\/p\u003e\n\u003cp\u003eN. I. Koltsov, Chuvash State University, Russia\u003c\/p\u003e\n\u003cp\u003ePaper unavailable at time of print\u003c\/p\u003e\n\u003cp\u003eThe Effect OF Calcium Carbonate Particle Size on Ldpe Foam Morphology\u003c\/p\u003e\n\u003cp\u003eDenis Rodrigue \u0026amp; Ryan Gosselin, University Laval, Canada\u003c\/p\u003e\n\u003cp\u003eA New Low Cost Injection Moulding System that Reduces Product Costs\u003c\/p\u003e\n\u003cp\u003eAnton Hagen \u0026amp; Joseph McRoskey,\u003c\/p\u003e\n\u003cp w:st=\"on\"\u003eSpirax Europe BV, The Netherlands\u003c\/p\u003e\n\u003cp\u003eA Foam Extrusion Process with \"Woodtruder\"\u003c\/p\u003e\n\u003cp\u003eGerhard Folie, Davis Standard GmbH, Germany\u003c\/p\u003e\n\u003cp\u003eImproved Foam Extrusion Productivity - a New Screw Design Concept - Turbo-Screws\u003c\/p\u003e\n\u003cp\u003eDavid Fogarty, Plastics Engineering Associated Licencing, Inc, USA\u003c\/p\u003e\n\u003cp\u003eEffects of Recycling on the Rheological Properties and and Foaming Behaviors of Branched PP\u003c\/p\u003e\n\u003cp\u003eChul Park, University of Toronto, USA\u003c\/p\u003e\n\u003cp\u003eThe Influence of Elongational Properties of the Melt on the Morphology of PES and PPE Cellular Materials\u003c\/p\u003e\n\u003cp\u003eFrank Wöllecke, Universitaet Bayreuth, Germany\u003c\/p\u003e\n\u003cp\u003eInnovative Foaming Technologies\u003c\/p\u003e\n\u003cp\u003eMichael Reedy, Reedy International Corp, USA\u003c\/p\u003e\n\u003cp\u003eMelt Strength Analysis for Extruded Polyolefin Foam Development\u003c\/p\u003e\n\u003cp\u003eShau-Tarng Lee, Sealed Air Corp, USA\u003c\/p\u003e"}
Blowing Agents and Foa...
$978.00
$180.00
{"id":11242235332,"title":"Blowing Agents and Foaming Processes 2003","handle":"978-1-85957-366-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-366-2 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 19th-20th May 2003\u003cbr\u003e\u003cbr\u003e232 pages\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe fifth Blowing Agents and Foaming Processes Conference was held in Munich, Germany and was dedicated to the critical role of blowing agents in foamed plastics and rubber. \u003cbr\u003e\u003cbr\u003eThe two day international conference brought together major blowing agent manufacturers and suppliers, foaming process providers and academia to present an insight into the latest industrial progress and research for foam generation. \u003cbr\u003e\u003cbr\u003eReports were presented on new injection molding processes, structural foam, micro cellular and extrusion processes. There were also presentations from the more theoretical and academic side, which provide a good overview of the physical properties, effects, performance and functions of blowing agents.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of papers \u003cbr\u003eSESSION 1: BLOWING AGENTS, NEW FOAMING SYSTEMS AND GASES\u003c\/strong\u003e \u003cbr\u003eAzodicarbonamide, One Blowing Agent for One Use? Most Definitely Not!\u003cbr\u003eDr Stephen Quinn, Bayer UK, UK \u003cbr\u003eNew Developments with Expandable Microspheres\u003cbr\u003eDr Klas Elving, Expancel, Sweden \u003cbr\u003eMethylal: A Blowing or Co-Blowing Agent for Polyurethane and Other Foams\u003cbr\u003eDr Michel Beaujean, Lambiotte \u0026amp; Cie S. A., Belgium \u003cbr\u003eEnovateTM 3000 Blowing Agent is a Versatile Blowing Agent for Polyurethane and Polyisocyanurate Foam in the European Construction Industry\u003cbr\u003eMary C Bogdan, Honeywell International, USA \u003cbr\u003eSolkane 365\/227 Blends for Polyurethane Foaming: Skills on Commercial Use and Bulk Handling\u003cbr\u003eDr Lothar Zipfel, SOLVAY Fluor und Derivate, Germany \u003cbr\u003eCell Structure and Properties of Rigid Polyurethane Foams Blown with New Generation Agents\u003cbr\u003eDr Eng Aleksander Prociak, Cracow University of Technology, Poland \u003cbr\u003e\u003cstrong\u003eSESSION 2: FOAM INJECTION MOULDING - DIFFERENT VIEWS AND RESULTS\u003c\/strong\u003e \u003cbr\u003eThermoplastic Structural Foam -Wellknown and New Process\u003cbr\u003eDr Helmut Eckardt, Battenfeld GmbH, Germany \u003cbr\u003eFoam Injection Moulding with Chemical Blowing Agents\u003cbr\u003eMr Robert Benker, Geobra Brandstatter GmbH \u0026amp; Co Kg, Germany \u003cbr\u003eInvestigation on Foam Injection Moulding with a Special Injection Moulding Nozzle\u003cbr\u003eDipl Ing Sasan Habibi-Naini, IKV - Institut für Kunststoffverarbeitung, Germany \u003cbr\u003ePhysical Foaming with ErgoCell - Machine Technology, Benefits, Limits, Economic Efficiency\u003cbr\u003eDr Rolf Sauthof, Demag Ergotec GmbH, Germany \u003cbr\u003eNew Developments in Mucell Markets\u003cbr\u003eDr Hartmut Traut, Trexel GmbH, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 3: EXTRUDED FOAMED THERMOPLASTICS\u003c\/strong\u003e \u003cbr\u003eFoam Extrusion of PS Blown with a Mixture of HFC-134a and Isopropanol\u003cbr\u003eDr Richard Gendron, Conseil National de Recherches\/ National Research Council Canada, Canada \u003cbr\u003eOverview and Marketing Aspects of the Extrusion Foam Business\u003cbr\u003eReiner Bunnenberg \u0026amp; Dröge Berthold, SMSFolientechnik GmbH \u0026amp; Co Kg, Austria \u003cbr\u003eFoam Extrusion of Polypropylene Foams - New Developments and Applications\u003cbr\u003eDr Ing Dirk Kropp, Polymer-Tec GmbH, Germany \u003cbr\u003eNew Demands for Foam Extrusion Technology when using CO2 as Direct Gased Foaming Agents\u003cbr\u003eDr Frank van Lueck, SMS Foam Technology, Austria \u003cbr\u003e\u003cstrong\u003eSESSION 4: NEW ASPECTS ON EXTRUSION AND EXTRUDED SUBSTRATES\u003c\/strong\u003e \u003cbr\u003ePP Blends with Tailored Foamability and Mechanical Properties\u003cbr\u003eDr Norbert Reichelt, Borealis GmbH, Austria \u003cbr\u003eThe Effect of Nucleating Agents on Polypropylene Foam Morphology\u003cbr\u003eDr Denis Rodrigue, Université Laval, Canada \u003cbr\u003eEvaluation of HFC-245fa as an Alternative Blowing Agent for Extruded Thermoplastic Foams\u003cbr\u003eDr Caroline Vachon, Conseil National de Recherches\/ National Research Council Canada, Canada \u003cbr\u003eExtrusion for Microcellular Foams\u003cbr\u003eDipl Ing Johannes Lorenz, IKV - Institut für Kunststoffverarbeitung, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 5: THEORECTICAL AND PRACTICAL EXPERIENCE OF FOAMS AND RELATED RESULTS\u003c\/strong\u003e \u003cbr\u003eDensity and Open Cell Effects on PE Foam Modulus\u003cbr\u003eDr Shau-Tarng Lee, Sealed Air Corporation, USA \u003cbr\u003eThe Role of Extensional Rheology in the Screening Phase of the Development of New Closed Cell Foams\u003cbr\u003eDr Frank Woellecke, Universität Bayreuth, Germany \u003cbr\u003eTrans-1,2-Dichloroethylene\/Pentanes Coblown Foams for Improved Fire Performance\u003cbr\u003eDr Laurent Caron, Atofina Chemicals Inc, France \u003cbr\u003eStabilization of Polyolefin Foams during Ageing\u003cbr\u003eDr Chung Poo Park, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:28-04:00","created_at":"2017-06-22T21:14:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","blends","blowing agents","book","closed cell","foam extrusion","foamed plastics","injection moulding","molding","nozzle","p-additives","polymer","rheology"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":97800,"compare_at_price_min":97800,"compare_at_price_max":97800,"compare_at_price_varies":false,"variants":[{"id":43378418116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2003","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":97800,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-366-2.jpg?v=1499720317"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-366-2.jpg?v=1499720317","options":["Title"],"media":[{"alt":null,"id":353916977245,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-366-2.jpg?v=1499720317"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-366-2.jpg?v=1499720317","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-366-2 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 19th-20th May 2003\u003cbr\u003e\u003cbr\u003e232 pages\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe fifth Blowing Agents and Foaming Processes Conference was held in Munich, Germany and was dedicated to the critical role of blowing agents in foamed plastics and rubber. \u003cbr\u003e\u003cbr\u003eThe two day international conference brought together major blowing agent manufacturers and suppliers, foaming process providers and academia to present an insight into the latest industrial progress and research for foam generation. \u003cbr\u003e\u003cbr\u003eReports were presented on new injection molding processes, structural foam, micro cellular and extrusion processes. There were also presentations from the more theoretical and academic side, which provide a good overview of the physical properties, effects, performance and functions of blowing agents.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of papers \u003cbr\u003eSESSION 1: BLOWING AGENTS, NEW FOAMING SYSTEMS AND GASES\u003c\/strong\u003e \u003cbr\u003eAzodicarbonamide, One Blowing Agent for One Use? Most Definitely Not!\u003cbr\u003eDr Stephen Quinn, Bayer UK, UK \u003cbr\u003eNew Developments with Expandable Microspheres\u003cbr\u003eDr Klas Elving, Expancel, Sweden \u003cbr\u003eMethylal: A Blowing or Co-Blowing Agent for Polyurethane and Other Foams\u003cbr\u003eDr Michel Beaujean, Lambiotte \u0026amp; Cie S. A., Belgium \u003cbr\u003eEnovateTM 3000 Blowing Agent is a Versatile Blowing Agent for Polyurethane and Polyisocyanurate Foam in the European Construction Industry\u003cbr\u003eMary C Bogdan, Honeywell International, USA \u003cbr\u003eSolkane 365\/227 Blends for Polyurethane Foaming: Skills on Commercial Use and Bulk Handling\u003cbr\u003eDr Lothar Zipfel, SOLVAY Fluor und Derivate, Germany \u003cbr\u003eCell Structure and Properties of Rigid Polyurethane Foams Blown with New Generation Agents\u003cbr\u003eDr Eng Aleksander Prociak, Cracow University of Technology, Poland \u003cbr\u003e\u003cstrong\u003eSESSION 2: FOAM INJECTION MOULDING - DIFFERENT VIEWS AND RESULTS\u003c\/strong\u003e \u003cbr\u003eThermoplastic Structural Foam -Wellknown and New Process\u003cbr\u003eDr Helmut Eckardt, Battenfeld GmbH, Germany \u003cbr\u003eFoam Injection Moulding with Chemical Blowing Agents\u003cbr\u003eMr Robert Benker, Geobra Brandstatter GmbH \u0026amp; Co Kg, Germany \u003cbr\u003eInvestigation on Foam Injection Moulding with a Special Injection Moulding Nozzle\u003cbr\u003eDipl Ing Sasan Habibi-Naini, IKV - Institut für Kunststoffverarbeitung, Germany \u003cbr\u003ePhysical Foaming with ErgoCell - Machine Technology, Benefits, Limits, Economic Efficiency\u003cbr\u003eDr Rolf Sauthof, Demag Ergotec GmbH, Germany \u003cbr\u003eNew Developments in Mucell Markets\u003cbr\u003eDr Hartmut Traut, Trexel GmbH, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 3: EXTRUDED FOAMED THERMOPLASTICS\u003c\/strong\u003e \u003cbr\u003eFoam Extrusion of PS Blown with a Mixture of HFC-134a and Isopropanol\u003cbr\u003eDr Richard Gendron, Conseil National de Recherches\/ National Research Council Canada, Canada \u003cbr\u003eOverview and Marketing Aspects of the Extrusion Foam Business\u003cbr\u003eReiner Bunnenberg \u0026amp; Dröge Berthold, SMSFolientechnik GmbH \u0026amp; Co Kg, Austria \u003cbr\u003eFoam Extrusion of Polypropylene Foams - New Developments and Applications\u003cbr\u003eDr Ing Dirk Kropp, Polymer-Tec GmbH, Germany \u003cbr\u003eNew Demands for Foam Extrusion Technology when using CO2 as Direct Gased Foaming Agents\u003cbr\u003eDr Frank van Lueck, SMS Foam Technology, Austria \u003cbr\u003e\u003cstrong\u003eSESSION 4: NEW ASPECTS ON EXTRUSION AND EXTRUDED SUBSTRATES\u003c\/strong\u003e \u003cbr\u003ePP Blends with Tailored Foamability and Mechanical Properties\u003cbr\u003eDr Norbert Reichelt, Borealis GmbH, Austria \u003cbr\u003eThe Effect of Nucleating Agents on Polypropylene Foam Morphology\u003cbr\u003eDr Denis Rodrigue, Université Laval, Canada \u003cbr\u003eEvaluation of HFC-245fa as an Alternative Blowing Agent for Extruded Thermoplastic Foams\u003cbr\u003eDr Caroline Vachon, Conseil National de Recherches\/ National Research Council Canada, Canada \u003cbr\u003eExtrusion for Microcellular Foams\u003cbr\u003eDipl Ing Johannes Lorenz, IKV - Institut für Kunststoffverarbeitung, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 5: THEORECTICAL AND PRACTICAL EXPERIENCE OF FOAMS AND RELATED RESULTS\u003c\/strong\u003e \u003cbr\u003eDensity and Open Cell Effects on PE Foam Modulus\u003cbr\u003eDr Shau-Tarng Lee, Sealed Air Corporation, USA \u003cbr\u003eThe Role of Extensional Rheology in the Screening Phase of the Development of New Closed Cell Foams\u003cbr\u003eDr Frank Woellecke, Universität Bayreuth, Germany \u003cbr\u003eTrans-1,2-Dichloroethylene\/Pentanes Coblown Foams for Improved Fire Performance\u003cbr\u003eDr Laurent Caron, Atofina Chemicals Inc, France \u003cbr\u003eStabilization of Polyolefin Foams during Ageing\u003cbr\u003eDr Chung Poo Park, USA\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$180.00
{"id":11242235396,"title":"Blowing Agents and Foaming Processes 2004","handle":"978-1-85957-447-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-447-8 \u003cbr\u003e\u003cbr\u003eHamburg, Germany, 10th-11th May 2004\u003cbr\u003e\u003cbr\u003epages 214\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis sixth international conference dedicated to the critical role of blowing agents in foamed plastics and rubber aimed to present an insight into the latest industrial progress and research for foam generation. \u003cbr\u003e\u003cbr\u003eThe conference offered a comprehensive review of recent academic developments, results and future possibilities, foaming agents and blowing gases and foam processes such as microcellular technology, direct gassing processes and related gases.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 1: BLOWING AGENTS AND GASES: NEW DEVELOPMENTS AND VIEWS\u003c\/strong\u003e \u003cbr\u003eThe Right Chemical Foaming Agent for Your Application\u003cbr\u003eMarcel Wiesner, Clariant Masterbatch GmbH, Germany \u003cbr\u003eChemical Blowing Agents as Versatile Additives for Injection Moulding\u003cbr\u003eLars Wahlen, Lehmann \u0026amp; Voss \u0026amp; Co., Germany \u003cbr\u003eFlammable Blowing Agents, Design and Storage Considerations\u003cbr\u003eDennis Jones, BOC, UK \u003cbr\u003eSolkane 365mfc for Rigid PU Foams: Application Status and Future Perspective\u003cbr\u003eLothar Zipfel, Solvay Fluor und Derivate, Germany \u003cbr\u003eFoam Development by using the Melt Elongational Properties as a Key Factor\u003cbr\u003eDieter Langenfelder, Basell Bayreuth Chemie GmbH,Germany\u003cbr\u003e+++ PAPER UNAVAILABLE AT TIME OF PRINT +++ \u003cbr\u003e\u003cstrong\u003eSESSION 2: FOAM INJECTION MOULDING – PROCESSES AND LATEST RESULTS\u003c\/strong\u003e \u003cbr\u003eOptifoam™ - The Flexible Solution for Foam Injection Molding\u003cbr\u003eSasan Habibi-Naini, Sulzer Chemtech AG, Switzerland \u003cbr\u003eWhy Structural Foam? Advantages, Process Technology and Applications\u003cbr\u003eHelmut Eckardt, Battenfeld GmbH, Germany \u003cbr\u003eThe Mucell ® -Technology - Characteristics with In-Mold-Decorating and Insert Moulding\u003cbr\u003eHartmut Traut, Trexel GmbH, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 3: BASIC RESULTS ON PU FOAMS\u003c\/strong\u003e \u003cbr\u003eThermal Conductivity of Polyurethane Foams at Different Temperatures\u003cbr\u003eAleksander Prociak, Cracow University of Technology, Poland \u003cbr\u003eAnalysis of Polyurethane Foam Processing and Surface Texture\u003cbr\u003eAhmad Majdi Abdul Rani, Loughborough University, UK \u003cbr\u003e\u003cstrong\u003eSESSION 4: EXTRUDED FOAM PLASTICS – MACHINERY AND PRODUCTS\u003c\/strong\u003e \u003cbr\u003eKEYNOTE PRESENTATION - Resin Evolution for Thermoplastic Foam Extrusion\u003cbr\u003eShau Tarng Lee, Sealed Air Corporation, USA \u003cbr\u003eNew Challenges and Solutions for Foam Extrusion\u003cbr\u003eThomas Liebe \u0026amp; Berthold Dröge, SMS Folientechnik GmbH, Austria \u003cbr\u003eAssessment of the Foamability of Polymers on the Basis of their Biaxial Stress\/Strain Behaviour\u003cbr\u003eHolger Schumacher, IKV - RWTH Aachen, Germany \u003cbr\u003eDevelopments in Strandfoam Technology\u003cbr\u003eJean-Francois Koenig, Dow Chemical Co, Germany \u003cbr\u003eTwin Screw Extruders in Foam Extrusion\u003cbr\u003eMatthias Reimker, Berstorff GmbH, Germany \u003cbr\u003eCurrent Trends and Products for the XPS Industry\u003cbr\u003eJoachim Greis, Nova Chemicals Deutschland GmbH, Germany \u003cbr\u003eSoft Polypropylene Foams\u003cbr\u003eManfred Stadlbauer, Borealis GmbH, Austria \u003cbr\u003e\u003cstrong\u003eSESSION 5: NEW RESULTS AND ASPECTS ON DIFFERENT SUBSTRATES SUCH AS PVC, SILICONE, ELASTOMERS AND RUBBER\u003c\/strong\u003e \u003cbr\u003eRigid PVC Foam: Formulation for Sustainability\u003cbr\u003eNoreen L. Thomas, Loughborough University, UK \u003cbr\u003eSoft Materials with Fine Cells using Chemical Blowing Agents\u003cbr\u003eRemco Willemse, Sekisui Alveo BV, The Netherlands \u003cbr\u003eNew Technology to Produce Silicone Sponge without Chemical Blowing Agents or Volatile Organics\u003cbr\u003eErnst Gerlach, Dow Corning GmbH, Germany \u003cbr\u003eA New Method for the Characterisation of Sponge Rubber Compound\u003cbr\u003eArndt Kremers, IKV - RWTH Aachen, Germany\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:29-04:00","created_at":"2017-06-22T21:14:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","blowing agents","book","elastomers","foams","injection molding","moulding","p-additives","polymer","polypropylene","polyurethane","PVC","rigid PU foams","rubber","silicone","silicone sponge"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378418180,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2004","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-447-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-447-8.jpg?v=1499720269"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-447-8.jpg?v=1499720269","options":["Title"],"media":[{"alt":null,"id":353917108317,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-447-8.jpg?v=1499720269"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-447-8.jpg?v=1499720269","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-447-8 \u003cbr\u003e\u003cbr\u003eHamburg, Germany, 10th-11th May 2004\u003cbr\u003e\u003cbr\u003epages 214\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis sixth international conference dedicated to the critical role of blowing agents in foamed plastics and rubber aimed to present an insight into the latest industrial progress and research for foam generation. \u003cbr\u003e\u003cbr\u003eThe conference offered a comprehensive review of recent academic developments, results and future possibilities, foaming agents and blowing gases and foam processes such as microcellular technology, direct gassing processes and related gases.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 1: BLOWING AGENTS AND GASES: NEW DEVELOPMENTS AND VIEWS\u003c\/strong\u003e \u003cbr\u003eThe Right Chemical Foaming Agent for Your Application\u003cbr\u003eMarcel Wiesner, Clariant Masterbatch GmbH, Germany \u003cbr\u003eChemical Blowing Agents as Versatile Additives for Injection Moulding\u003cbr\u003eLars Wahlen, Lehmann \u0026amp; Voss \u0026amp; Co., Germany \u003cbr\u003eFlammable Blowing Agents, Design and Storage Considerations\u003cbr\u003eDennis Jones, BOC, UK \u003cbr\u003eSolkane 365mfc for Rigid PU Foams: Application Status and Future Perspective\u003cbr\u003eLothar Zipfel, Solvay Fluor und Derivate, Germany \u003cbr\u003eFoam Development by using the Melt Elongational Properties as a Key Factor\u003cbr\u003eDieter Langenfelder, Basell Bayreuth Chemie GmbH,Germany\u003cbr\u003e+++ PAPER UNAVAILABLE AT TIME OF PRINT +++ \u003cbr\u003e\u003cstrong\u003eSESSION 2: FOAM INJECTION MOULDING – PROCESSES AND LATEST RESULTS\u003c\/strong\u003e \u003cbr\u003eOptifoam™ - The Flexible Solution for Foam Injection Molding\u003cbr\u003eSasan Habibi-Naini, Sulzer Chemtech AG, Switzerland \u003cbr\u003eWhy Structural Foam? Advantages, Process Technology and Applications\u003cbr\u003eHelmut Eckardt, Battenfeld GmbH, Germany \u003cbr\u003eThe Mucell ® -Technology - Characteristics with In-Mold-Decorating and Insert Moulding\u003cbr\u003eHartmut Traut, Trexel GmbH, Germany \u003cbr\u003e\u003cstrong\u003eSESSION 3: BASIC RESULTS ON PU FOAMS\u003c\/strong\u003e \u003cbr\u003eThermal Conductivity of Polyurethane Foams at Different Temperatures\u003cbr\u003eAleksander Prociak, Cracow University of Technology, Poland \u003cbr\u003eAnalysis of Polyurethane Foam Processing and Surface Texture\u003cbr\u003eAhmad Majdi Abdul Rani, Loughborough University, UK \u003cbr\u003e\u003cstrong\u003eSESSION 4: EXTRUDED FOAM PLASTICS – MACHINERY AND PRODUCTS\u003c\/strong\u003e \u003cbr\u003eKEYNOTE PRESENTATION - Resin Evolution for Thermoplastic Foam Extrusion\u003cbr\u003eShau Tarng Lee, Sealed Air Corporation, USA \u003cbr\u003eNew Challenges and Solutions for Foam Extrusion\u003cbr\u003eThomas Liebe \u0026amp; Berthold Dröge, SMS Folientechnik GmbH, Austria \u003cbr\u003eAssessment of the Foamability of Polymers on the Basis of their Biaxial Stress\/Strain Behaviour\u003cbr\u003eHolger Schumacher, IKV - RWTH Aachen, Germany \u003cbr\u003eDevelopments in Strandfoam Technology\u003cbr\u003eJean-Francois Koenig, Dow Chemical Co, Germany \u003cbr\u003eTwin Screw Extruders in Foam Extrusion\u003cbr\u003eMatthias Reimker, Berstorff GmbH, Germany \u003cbr\u003eCurrent Trends and Products for the XPS Industry\u003cbr\u003eJoachim Greis, Nova Chemicals Deutschland GmbH, Germany \u003cbr\u003eSoft Polypropylene Foams\u003cbr\u003eManfred Stadlbauer, Borealis GmbH, Austria \u003cbr\u003e\u003cstrong\u003eSESSION 5: NEW RESULTS AND ASPECTS ON DIFFERENT SUBSTRATES SUCH AS PVC, SILICONE, ELASTOMERS AND RUBBER\u003c\/strong\u003e \u003cbr\u003eRigid PVC Foam: Formulation for Sustainability\u003cbr\u003eNoreen L. Thomas, Loughborough University, UK \u003cbr\u003eSoft Materials with Fine Cells using Chemical Blowing Agents\u003cbr\u003eRemco Willemse, Sekisui Alveo BV, The Netherlands \u003cbr\u003eNew Technology to Produce Silicone Sponge without Chemical Blowing Agents or Volatile Organics\u003cbr\u003eErnst Gerlach, Dow Corning GmbH, Germany \u003cbr\u003eA New Method for the Characterisation of Sponge Rubber Compound\u003cbr\u003eArndt Kremers, IKV - RWTH Aachen, Germany\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$135.00
{"id":11242236612,"title":"Blowing Agents and Foaming Processes 2008","handle":"978-1-84735-071-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-071-8 \u003cbr\u003e\u003cbr\u003ePapers: 23\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNow in its tenth year Blowing Agents and Foaming Processes 2008 has become firmly established in the plastics community as the meeting place for processors, material suppliers, academics and end users to exchange ideas and keep up to date with developments in this fast growing niche of the polymer sector.\u003cbr\u003e\u003cbr\u003eRecent changes in the foam blowing industry have been largely driven by environmental legislation - whether concerns over consumer safety, atmospheric protection or solid waste disposal and recycling. In their primary applications in consumer products, (such as cushioning for furniture and automobiles, thermal insulation for construction and packaging) polymer foams are being continually enhanced to replace dense solid polymers, reducing weight and costs. Indeed strict energy regulations in most European countries have boosted the use of polymer foams in building and construction, automotive and aerospace sectors where foamed plastics are recognised for their performance and processing advantages as well as the obvious cost and weight savings. Nevertheless providing environmentally sound and cost effective foam solutions continues to be a constant challenge.\u003cbr\u003e\u003cbr\u003eBlowing Agents and Foaming Processes 2008 was dedicated to the critical role of blowing agents in foamed plastics and rubber and included, amongst other things, commercial polymeric foams and their applications, their technologies and future industry trends.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 BLOWING AGENTS \/ BLOWING GASES AND SPECIALITIES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 1 Foaming of biodegradable plastics in packaging applications\u003cbr\u003eJan Erik Wegner \u0026amp; Micro Gröseling, Clariant Masterbatches (Deutschland GmbH), Germany\u003cbr\u003e\u003cbr\u003ePaper 2 Environmental advantages of pentane and NIK blends\u003cbr\u003eDennis Jones \u0026amp; John Murphy, The BOC Group Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming of an immiscible blend system using organic liquids as blowing agents\u003cbr\u003ePeter Gutmann, Klaus Hildebrandt, Volker Altstädt \u0026amp; Axel H E Müller, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 4 Properties of thermoplastics foamed with EXPANCEL® expandable microspheres\u003cbr\u003eAnna Gärd \u0026amp; Lena Jönsson, Eka Chemicals EXPANCEL, Sweden\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2 GASES AND POLYURETHANE FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 5 Investigation of new low GWP blowing agents for rigid polyurethane foams\u003cbr\u003eDr Laurent Abbas, Arkema, France; Ben Chen, Joseph Costa, Philippe Bonnet \u0026amp; Maher Elsheik, Arkema Inc, USA\u003cbr\u003e\u003cbr\u003ePaper 6 Update on the development of FEA-1100, a novel foam expansion agent for polyurethane foams\u003cbr\u003eDr Mark L Robin, Gary Loh \u0026amp; Joseph A Creazzo, DuPont Fluoroproducts, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 NEW STUDIES ON RESINS AND FOAMING PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 7 Trends in polymer foam research\u003cbr\u003eDr Holger Ruckdäschel, Roland Hingmann, Klaus Han, Jan K W Sandler, Erik Wassner \u0026amp; Timothy Francis, BASF SE, Germany\u003cbr\u003e\u003cbr\u003ePaper 8 Sandwich structures with a functionally graded syntactic foam core: Free vibration analysis\u003cbr\u003eOmid Rahmani \u0026amp; S M R Khalili, K N Toosi University of Technology, Iran\u003cbr\u003e\u003cbr\u003ePaper 9 Compression molding of polyethylene foams under a temperature gradient: Morphology and properties\u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Lavel University, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 NANO-STRUCTURES - DIFFERENT ASPECTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose\u003cbr\u003eLaetitia Urbanczyk, Jean-M ichel Thomassin, Michael Alexandre, Christine Jérôme \u0026amp; Christophe Detrembleur, University of Liège, Belgium; Isabelle Huynen, Université Catholique de Louvain, Belgium\u003cbr\u003e\u003cbr\u003ePaper 11 The fundamental issues about the effect of nano-particles on the foaming behavior of nanocomposites\u003cbr\u003eProf Chul B Park, Wentao Zhai, Siu N Leung, Lilac Wang \u0026amp; Takashi Kuboki, University of Toronto,Canada\u003cbr\u003e\u003cbr\u003ePaper 12 The added value of high melt strength polyolefins in practice\u003cbr\u003eLeon Nelissen, SABIC Europe, The Netherlands\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5 FOAM INJECTION MOULDING TECHNOLOGY\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 13 Smooth foam and smooth surface - a contradiction?\u003cbr\u003eHelmut Eckardt, Wittman Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 14 Large structural foam parts and multi-nozzle low pressure machines\u003cbr\u003eBrian Read, Horizon Plastics Ltd, Canada\u003cbr\u003e\u003cbr\u003ePaper 15 Influence of organic additives on foam morphology of injection-moulded i-polypropylene\u003cbr\u003eMarieluise Stumpf, Andreas Spörrer, Hans-Werner Schmidt \u0026amp; Volker Alstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical properties of structural LDPE foams compared with those of conventional nonstructural LDPE foams\u003cbr\u003eJ Escudero, M A Rodriguez-Perez, E Solórzano \u0026amp; J A de Saja, University Valladoid, Spain\u003cbr\u003e\u003cbr\u003ePaper 17 Improving the impact behaviour of structural foams\u003cbr\u003eLaura Flórez, Prof Dr Ing Dr Ing E h Walter Michaeli, Dominik Obeloer \u0026amp; Markus Brinkmann, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 18 A new process for the injection moulding of foamed parts with physical blowing agents\u003cbr\u003eProf Dr-Ing Dr-Ing E h Walter Michaeli \u0026amp; Dominik Obeloer, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 19 Implementation of the MuCell® process in commercial applications\u003cbr\u003eDr Hartmut Traut, Levi Kishbaugh \u0026amp; Uwe Kolshorn, Trexel, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6 EXTRUSION: NEW FINDINGS AND RESULTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 20 New high-melt-strength polypropylene by reactive extrusion\u003cbr\u003eDr Ir André H Hogt \u0026amp; Wim K Frijlink, AkzoNobel Polymer Chemicals, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7 MICROCELLULAR FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Technyl®XCell; nylon grades offering best aesthetics and performances for microcellular processing (MuCell®).\u003cbr\u003eDr Gerard Bradley, Rhodia Research \u0026amp; Technologies, France\u003cbr\u003e\u003cbr\u003ePaper 22 Fabrication and characterization of halogen-free flame retardant polyolefin foams with cell sizes in the microcellular range\u003cbr\u003eSilvia Román-Lorza, J Sabadell \u0026amp; J J García-Ruiz, Fundación Centro Tecnológico de Miranda de Ebro (CTME), Spain; M A Rodriguez-Perez \u0026amp; J A de Saja Sáez, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 23 Influence of different blowing agents and injection moulding processing parameters on the properties of microcellular polycarbonate\u003cbr\u003eDipl-Ing Martin Rohleder, A K Bledzki \u0026amp; H Kirschling, University of Kassel, Germany\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:32-04:00","created_at":"2017-06-22T21:14:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","acrylic polymers","applications","Blowing agents","book","foams","p-additives","polymer"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423492,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2008","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-071-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-071-8.jpg?v=1499211476"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-071-8.jpg?v=1499211476","options":["Title"],"media":[{"alt":null,"id":353964687453,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-071-8.jpg?v=1499211476"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-071-8.jpg?v=1499211476","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-071-8 \u003cbr\u003e\u003cbr\u003ePapers: 23\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNow in its tenth year Blowing Agents and Foaming Processes 2008 has become firmly established in the plastics community as the meeting place for processors, material suppliers, academics and end users to exchange ideas and keep up to date with developments in this fast growing niche of the polymer sector.\u003cbr\u003e\u003cbr\u003eRecent changes in the foam blowing industry have been largely driven by environmental legislation - whether concerns over consumer safety, atmospheric protection or solid waste disposal and recycling. In their primary applications in consumer products, (such as cushioning for furniture and automobiles, thermal insulation for construction and packaging) polymer foams are being continually enhanced to replace dense solid polymers, reducing weight and costs. Indeed strict energy regulations in most European countries have boosted the use of polymer foams in building and construction, automotive and aerospace sectors where foamed plastics are recognised for their performance and processing advantages as well as the obvious cost and weight savings. Nevertheless providing environmentally sound and cost effective foam solutions continues to be a constant challenge.\u003cbr\u003e\u003cbr\u003eBlowing Agents and Foaming Processes 2008 was dedicated to the critical role of blowing agents in foamed plastics and rubber and included, amongst other things, commercial polymeric foams and their applications, their technologies and future industry trends.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 BLOWING AGENTS \/ BLOWING GASES AND SPECIALITIES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 1 Foaming of biodegradable plastics in packaging applications\u003cbr\u003eJan Erik Wegner \u0026amp; Micro Gröseling, Clariant Masterbatches (Deutschland GmbH), Germany\u003cbr\u003e\u003cbr\u003ePaper 2 Environmental advantages of pentane and NIK blends\u003cbr\u003eDennis Jones \u0026amp; John Murphy, The BOC Group Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming of an immiscible blend system using organic liquids as blowing agents\u003cbr\u003ePeter Gutmann, Klaus Hildebrandt, Volker Altstädt \u0026amp; Axel H E Müller, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 4 Properties of thermoplastics foamed with EXPANCEL® expandable microspheres\u003cbr\u003eAnna Gärd \u0026amp; Lena Jönsson, Eka Chemicals EXPANCEL, Sweden\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2 GASES AND POLYURETHANE FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 5 Investigation of new low GWP blowing agents for rigid polyurethane foams\u003cbr\u003eDr Laurent Abbas, Arkema, France; Ben Chen, Joseph Costa, Philippe Bonnet \u0026amp; Maher Elsheik, Arkema Inc, USA\u003cbr\u003e\u003cbr\u003ePaper 6 Update on the development of FEA-1100, a novel foam expansion agent for polyurethane foams\u003cbr\u003eDr Mark L Robin, Gary Loh \u0026amp; Joseph A Creazzo, DuPont Fluoroproducts, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 NEW STUDIES ON RESINS AND FOAMING PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 7 Trends in polymer foam research\u003cbr\u003eDr Holger Ruckdäschel, Roland Hingmann, Klaus Han, Jan K W Sandler, Erik Wassner \u0026amp; Timothy Francis, BASF SE, Germany\u003cbr\u003e\u003cbr\u003ePaper 8 Sandwich structures with a functionally graded syntactic foam core: Free vibration analysis\u003cbr\u003eOmid Rahmani \u0026amp; S M R Khalili, K N Toosi University of Technology, Iran\u003cbr\u003e\u003cbr\u003ePaper 9 Compression molding of polyethylene foams under a temperature gradient: Morphology and properties\u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Lavel University, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 NANO-STRUCTURES - DIFFERENT ASPECTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose\u003cbr\u003eLaetitia Urbanczyk, Jean-M ichel Thomassin, Michael Alexandre, Christine Jérôme \u0026amp; Christophe Detrembleur, University of Liège, Belgium; Isabelle Huynen, Université Catholique de Louvain, Belgium\u003cbr\u003e\u003cbr\u003ePaper 11 The fundamental issues about the effect of nano-particles on the foaming behavior of nanocomposites\u003cbr\u003eProf Chul B Park, Wentao Zhai, Siu N Leung, Lilac Wang \u0026amp; Takashi Kuboki, University of Toronto,Canada\u003cbr\u003e\u003cbr\u003ePaper 12 The added value of high melt strength polyolefins in practice\u003cbr\u003eLeon Nelissen, SABIC Europe, The Netherlands\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5 FOAM INJECTION MOULDING TECHNOLOGY\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 13 Smooth foam and smooth surface - a contradiction?\u003cbr\u003eHelmut Eckardt, Wittman Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 14 Large structural foam parts and multi-nozzle low pressure machines\u003cbr\u003eBrian Read, Horizon Plastics Ltd, Canada\u003cbr\u003e\u003cbr\u003ePaper 15 Influence of organic additives on foam morphology of injection-moulded i-polypropylene\u003cbr\u003eMarieluise Stumpf, Andreas Spörrer, Hans-Werner Schmidt \u0026amp; Volker Alstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical properties of structural LDPE foams compared with those of conventional nonstructural LDPE foams\u003cbr\u003eJ Escudero, M A Rodriguez-Perez, E Solórzano \u0026amp; J A de Saja, University Valladoid, Spain\u003cbr\u003e\u003cbr\u003ePaper 17 Improving the impact behaviour of structural foams\u003cbr\u003eLaura Flórez, Prof Dr Ing Dr Ing E h Walter Michaeli, Dominik Obeloer \u0026amp; Markus Brinkmann, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 18 A new process for the injection moulding of foamed parts with physical blowing agents\u003cbr\u003eProf Dr-Ing Dr-Ing E h Walter Michaeli \u0026amp; Dominik Obeloer, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 19 Implementation of the MuCell® process in commercial applications\u003cbr\u003eDr Hartmut Traut, Levi Kishbaugh \u0026amp; Uwe Kolshorn, Trexel, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6 EXTRUSION: NEW FINDINGS AND RESULTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 20 New high-melt-strength polypropylene by reactive extrusion\u003cbr\u003eDr Ir André H Hogt \u0026amp; Wim K Frijlink, AkzoNobel Polymer Chemicals, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7 MICROCELLULAR FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Technyl®XCell; nylon grades offering best aesthetics and performances for microcellular processing (MuCell®).\u003cbr\u003eDr Gerard Bradley, Rhodia Research \u0026amp; Technologies, France\u003cbr\u003e\u003cbr\u003ePaper 22 Fabrication and characterization of halogen-free flame retardant polyolefin foams with cell sizes in the microcellular range\u003cbr\u003eSilvia Román-Lorza, J Sabadell \u0026amp; J J García-Ruiz, Fundación Centro Tecnológico de Miranda de Ebro (CTME), Spain; M A Rodriguez-Perez \u0026amp; J A de Saja Sáez, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 23 Influence of different blowing agents and injection moulding processing parameters on the properties of microcellular polycarbonate\u003cbr\u003eDipl-Ing Martin Rohleder, A K Bledzki \u0026amp; H Kirschling, University of Kassel, Germany\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$180.00
{"id":11242236676,"title":"Blowing Agents and Foaming Processes 2009","handle":"978-1-84735-392-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-392-4 \u003cbr\u003e\u003cbr\u003e23 papers\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlowing Agents and Foaming Processes 2009, Conference Proceedings\u003cbr\u003e\u003cbr\u003eFoamed substances are now being sourced as an alternative substance for applications that previously had an established material. Blowing agents or blowing gases are excellent 'fillers' and have the dual benefits of saving material and reducing weight, the latter minimising shipping and other related expenses. Today there are numerous solutions on offer - new methods, technology, processes and additives, all of which will be looked at during this conference.\u003cbr\u003e\u003cbr\u003eBlowing Agents and Foaming Processes, 2009 is a well established conference and the only event world-wide offering such a prestigious range of academic, practical and industrial papers. All technical papers presented at this event are included in the proceedings and focus on; blowing agents and gases specialities, nano structures, foam injection moulding, new extrusion findings and microcellular foams.\u003cbr\u003e\u003cbr\u003e All technical papers presented at the Conference are inlcuded in the Conference Proceedings\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 BLOWING AGENTS \/ BLOWING GASES AND SPECIALITIES\u003cbr\u003e\u003cbr\u003e \u003c\/strong\u003ePaper 1 Foaming of biodegradable plastics in packaging applications\u003cbr\u003eJan Erik Wegner \u0026amp; Micro Gröseling, Clariant Masterbatches (Deutschland GmbH), Germany\u003cbr\u003e\u003cbr\u003ePaper 2 Environmental advantages of pentane and NIK blend\u003cbr\u003eDennis Jones \u0026amp; John Murphy, The BOC Group Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming of an immiscible blend system using organic liquids as blowing agents\u003cbr\u003ePeter Gutmann, Klaus Hildebrandt, Volker Altstädt \u0026amp; Axel H E Müller, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 4 Properties of thermoplastics foamed with EXPANCEL® expandable microspheres\u003cbr\u003eAnna Gärd \u0026amp; Lena Jönsson, Eka Chemicals EXPANCEL, Sweden\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2 GASES AND POLYURETHANE FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 5 Investigation of new low GWP blowing agents for rigid polyurethane foams\u003cbr\u003eDr Laurent Abbas, Arkema, France; Ben Chen, Joseph Costa, Philippe Bonnet \u0026amp; Maher Elsheik,Arkema Inc, USA\u003cbr\u003e\u003cbr\u003e Paper 6 Update on the development of FEA-1100, a novel foam expansion agent for polyurethane foams\u003cbr\u003eDr Mark L Robin, Gary Loh \u0026amp; Joseph A Creazzo, DuPont Fluoroproducts, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 NEW STUDIES ON RESINS AND FOAMING PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 7 Trends in polymer foam research\u003cbr\u003eDr Holger Ruckdäschel, Roland Hingmann, Klaus Han, Jan K W Sandler, Erik Wassner \u0026amp; Timothy Francis, BASF SE, Germany\u003cbr\u003e\u003cbr\u003ePaper 8 Sandwich structures with a functionally graded syntactic foam core: Free vibration analysis\u003cbr\u003eOmid Rahmani \u0026amp; S M R Khalili, K N Toosi University of Technology, Iran\u003cbr\u003e\u003cbr\u003ePaper 9 Compression molding of polyethylene foams under a temperature gradient: Morphology and properties\u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Lavel University, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 NANO-STRUCTURES - DIFFERENT ASPECTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose\u003cbr\u003eLaetitia Urbanczyk, Jean-M ichel Thomassin, Michael Alexandre, Christine Jérôme \u0026amp; Christophe Detrembleur, University of Liège, Belgium; Isabelle Huynen, Université Catholique de Louvain, Belgium\u003cbr\u003e\u003cbr\u003ePaper 11 The fundamental issues about the effect of nano-particles on the foaming behavior of nanocomposites\u003cbr\u003eProf Chul B Park, Wentao Zhai, Siu N Leung, Lilac Wang \u0026amp; Takashi Kuboki, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003ePaper 12 The added value of high melt strength polyolefins in practice\u003cbr\u003eLeon Nelissen, SABIC Europe, The Netherlands\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5 FOAM INJECTION MOULDING TECHNOLOGY\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 13 Smooth foam and smooth surface - a contradiction?\u003cbr\u003eHelmut Eckardt, Wittman Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 14 Large structural foam parts and multi-nozzle low pressure machines\u003cbr\u003eBrian Read, Horizon Plastics Ltd, Canada\u003cbr\u003e\u003cbr\u003ePaper 15 Influence of organic additives on foam morphology of injection-moulded i-polypropylene\u003cbr\u003eMarieluise Stumpf, Andreas Spörrer, Hans-Werner Schmidt \u0026amp; Volker Alstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical properties of structural LDPE foams compared with those of conventional non-structural LDPE foams\u003cbr\u003eJ Escudero, M A Rodriguez-Perez, E Solórzano \u0026amp; J A de Saja, University Valladoid, Spain\u003cbr\u003e\u003cbr\u003ePaper 17 Improving the impact behaviour of structural foams\u003cbr\u003eLaura Flórez, Prof Dr Ing Dr Ing E h Walter Michaeli, Dominik Obeloer \u0026amp; Markus Brinkmann, RWTH\u003cbr\u003eAachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 18 A new process for the injection moulding of foamed parts with physical blowing agents\u003cbr\u003eProf Dr-Ing Dr-Ing E h Walter Michaeli \u0026amp; Dominik Obeloer, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003e Paper 19 Implementation of the MuCell® process in commercial applications\u003cbr\u003eDr Hartmut Traut, Levi Kishbaugh \u0026amp; Uwe Kolshorn, Trexel, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6 EXTRUSION: NEW FINDINGS AND RESULTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 20 New high-melt-strength polypropylene by reactive extrusion\u003cbr\u003eDr Ir André H Hogt \u0026amp; Wim K Frijlink, AkzoNobel Polymer Chemicals, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7 MICROCELLULAR FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Technyl®XCell; nylon grades offering best aesthetics and performances for microcellular processing (MuCell®).\u003cbr\u003eDr Gerard Bradley, Rhodia Research \u0026amp; Technologies, France\u003cbr\u003e\u003cbr\u003ePaper 22 Fabrication and characterization of halogen-free flame retardant polyolefin foams with cell sizes in the microcellular range\u003cbr\u003eSilvia Román-Lorza, J Sabadell \u0026amp; J J García-Ruiz, Fundación Centro Tecnológico de Miranda de Ebro (CTME), Spain; M A Rodriguez-Perez \u0026amp; J A de Saja Sáez, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 23 Influence of different blowing agents and injection moulding processing parameters on the properties of microcellular polycarbonate\u003cbr\u003eDipl-Ing Martin Rohleder, A K Bledzki \u0026amp; H Kirschling, University of Kassel, Germany\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:33-04:00","created_at":"2017-06-22T21:14:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","agents","biodegradable","blowing","book","environment","foaming","injection moulding","LDPE","molding","nanotechnology","p-additives","polymer","rigid polyurethane","thermoplastics"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423556,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2009","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-392-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-392-4.jpg?v=1499211689"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-392-4.jpg?v=1499211689","options":["Title"],"media":[{"alt":null,"id":353965736029,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-392-4.jpg?v=1499211689"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-392-4.jpg?v=1499211689","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conferences \u003cbr\u003eISBN 978-1-84735-392-4 \u003cbr\u003e\u003cbr\u003e23 papers\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlowing Agents and Foaming Processes 2009, Conference Proceedings\u003cbr\u003e\u003cbr\u003eFoamed substances are now being sourced as an alternative substance for applications that previously had an established material. Blowing agents or blowing gases are excellent 'fillers' and have the dual benefits of saving material and reducing weight, the latter minimising shipping and other related expenses. Today there are numerous solutions on offer - new methods, technology, processes and additives, all of which will be looked at during this conference.\u003cbr\u003e\u003cbr\u003eBlowing Agents and Foaming Processes, 2009 is a well established conference and the only event world-wide offering such a prestigious range of academic, practical and industrial papers. All technical papers presented at this event are included in the proceedings and focus on; blowing agents and gases specialities, nano structures, foam injection moulding, new extrusion findings and microcellular foams.\u003cbr\u003e\u003cbr\u003e All technical papers presented at the Conference are inlcuded in the Conference Proceedings\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 BLOWING AGENTS \/ BLOWING GASES AND SPECIALITIES\u003cbr\u003e\u003cbr\u003e \u003c\/strong\u003ePaper 1 Foaming of biodegradable plastics in packaging applications\u003cbr\u003eJan Erik Wegner \u0026amp; Micro Gröseling, Clariant Masterbatches (Deutschland GmbH), Germany\u003cbr\u003e\u003cbr\u003ePaper 2 Environmental advantages of pentane and NIK blend\u003cbr\u003eDennis Jones \u0026amp; John Murphy, The BOC Group Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 3 Foaming of an immiscible blend system using organic liquids as blowing agents\u003cbr\u003ePeter Gutmann, Klaus Hildebrandt, Volker Altstädt \u0026amp; Axel H E Müller, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 4 Properties of thermoplastics foamed with EXPANCEL® expandable microspheres\u003cbr\u003eAnna Gärd \u0026amp; Lena Jönsson, Eka Chemicals EXPANCEL, Sweden\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2 GASES AND POLYURETHANE FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 5 Investigation of new low GWP blowing agents for rigid polyurethane foams\u003cbr\u003eDr Laurent Abbas, Arkema, France; Ben Chen, Joseph Costa, Philippe Bonnet \u0026amp; Maher Elsheik,Arkema Inc, USA\u003cbr\u003e\u003cbr\u003e Paper 6 Update on the development of FEA-1100, a novel foam expansion agent for polyurethane foams\u003cbr\u003eDr Mark L Robin, Gary Loh \u0026amp; Joseph A Creazzo, DuPont Fluoroproducts, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 NEW STUDIES ON RESINS AND FOAMING PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 7 Trends in polymer foam research\u003cbr\u003eDr Holger Ruckdäschel, Roland Hingmann, Klaus Han, Jan K W Sandler, Erik Wassner \u0026amp; Timothy Francis, BASF SE, Germany\u003cbr\u003e\u003cbr\u003ePaper 8 Sandwich structures with a functionally graded syntactic foam core: Free vibration analysis\u003cbr\u003eOmid Rahmani \u0026amp; S M R Khalili, K N Toosi University of Technology, Iran\u003cbr\u003e\u003cbr\u003ePaper 9 Compression molding of polyethylene foams under a temperature gradient: Morphology and properties\u003cbr\u003eProf Denis Rodrigue, Jiaolian Yao \u0026amp; Mohamad Reza Barzegari, Lavel University, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 NANO-STRUCTURES - DIFFERENT ASPECTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10 Use of the supercritical fluid technology to prepare efficient nanocomposite foams for environmental protection purpose\u003cbr\u003eLaetitia Urbanczyk, Jean-M ichel Thomassin, Michael Alexandre, Christine Jérôme \u0026amp; Christophe Detrembleur, University of Liège, Belgium; Isabelle Huynen, Université Catholique de Louvain, Belgium\u003cbr\u003e\u003cbr\u003ePaper 11 The fundamental issues about the effect of nano-particles on the foaming behavior of nanocomposites\u003cbr\u003eProf Chul B Park, Wentao Zhai, Siu N Leung, Lilac Wang \u0026amp; Takashi Kuboki, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003ePaper 12 The added value of high melt strength polyolefins in practice\u003cbr\u003eLeon Nelissen, SABIC Europe, The Netherlands\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5 FOAM INJECTION MOULDING TECHNOLOGY\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e Paper 13 Smooth foam and smooth surface - a contradiction?\u003cbr\u003eHelmut Eckardt, Wittman Battenfeld GmbH \u0026amp; Co KG, Germany\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003ePaper 14 Large structural foam parts and multi-nozzle low pressure machines\u003cbr\u003eBrian Read, Horizon Plastics Ltd, Canada\u003cbr\u003e\u003cbr\u003ePaper 15 Influence of organic additives on foam morphology of injection-moulded i-polypropylene\u003cbr\u003eMarieluise Stumpf, Andreas Spörrer, Hans-Werner Schmidt \u0026amp; Volker Alstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 16 Mechanical properties of structural LDPE foams compared with those of conventional non-structural LDPE foams\u003cbr\u003eJ Escudero, M A Rodriguez-Perez, E Solórzano \u0026amp; J A de Saja, University Valladoid, Spain\u003cbr\u003e\u003cbr\u003ePaper 17 Improving the impact behaviour of structural foams\u003cbr\u003eLaura Flórez, Prof Dr Ing Dr Ing E h Walter Michaeli, Dominik Obeloer \u0026amp; Markus Brinkmann, RWTH\u003cbr\u003eAachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003ePaper 18 A new process for the injection moulding of foamed parts with physical blowing agents\u003cbr\u003eProf Dr-Ing Dr-Ing E h Walter Michaeli \u0026amp; Dominik Obeloer, RWTH Aachen University (IKV), Germany\u003cbr\u003e\u003cbr\u003e Paper 19 Implementation of the MuCell® process in commercial applications\u003cbr\u003eDr Hartmut Traut, Levi Kishbaugh \u0026amp; Uwe Kolshorn, Trexel, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6 EXTRUSION: NEW FINDINGS AND RESULTS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 20 New high-melt-strength polypropylene by reactive extrusion\u003cbr\u003eDr Ir André H Hogt \u0026amp; Wim K Frijlink, AkzoNobel Polymer Chemicals, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7 MICROCELLULAR FOAMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21 Technyl®XCell; nylon grades offering best aesthetics and performances for microcellular processing (MuCell®).\u003cbr\u003eDr Gerard Bradley, Rhodia Research \u0026amp; Technologies, France\u003cbr\u003e\u003cbr\u003ePaper 22 Fabrication and characterization of halogen-free flame retardant polyolefin foams with cell sizes in the microcellular range\u003cbr\u003eSilvia Román-Lorza, J Sabadell \u0026amp; J J García-Ruiz, Fundación Centro Tecnológico de Miranda de Ebro (CTME), Spain; M A Rodriguez-Perez \u0026amp; J A de Saja Sáez, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 23 Influence of different blowing agents and injection moulding processing parameters on the properties of microcellular polycarbonate\u003cbr\u003eDipl-Ing Martin Rohleder, A K Bledzki \u0026amp; H Kirschling, University of Kassel, Germany\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$165.00
{"id":11242251396,"title":"Blowing Agents and Foaming Processes 2011","handle":"9781847356314","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 9781847356314 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlowing Agents \u0026amp; Foaming Processes conference returned for the thirteenth consecutive year to highlight the academic and commercial developments in current and new polymeric foam applications. As the only conference to be tailored to the specific needs of the polymeric foam industry, this was a not-to-be-missed opportunity to hear the latest thinking and best practice in new materials selection and processing technologies. These proceedings cover all the presentations from the conference, bringing you up-to-date on how to find cost-effective alternatives to traditional choices by discussing the numerous solutions on offer - including new materials, resins, technology, processes, and additives.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:19-04:00","created_at":"2017-06-22T21:15:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","blowing","book","foaming","p-additives","polymer","polymeric foam"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378478788,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356314","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356314.jpg?v=1499720064"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356314.jpg?v=1499720064","options":["Title"],"media":[{"alt":null,"id":353917665373,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356314.jpg?v=1499720064"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356314.jpg?v=1499720064","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 9781847356314 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlowing Agents \u0026amp; Foaming Processes conference returned for the thirteenth consecutive year to highlight the academic and commercial developments in current and new polymeric foam applications. As the only conference to be tailored to the specific needs of the polymeric foam industry, this was a not-to-be-missed opportunity to hear the latest thinking and best practice in new materials selection and processing technologies. These proceedings cover all the presentations from the conference, bringing you up-to-date on how to find cost-effective alternatives to traditional choices by discussing the numerous solutions on offer - including new materials, resins, technology, processes, and additives.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Blowing Agents and Foa...
$165.00
{"id":11242250372,"title":"Blowing Agents and Foaming Processes 2013","handle":"9781909030428","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 9781909030428 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nToday there are numerous solutions on offer – new methods, resins, technology, processes, and additives and it seems that demand for higher performance and lower costs is set to once again drive technical developments in polymeric foams.\u003cbr\u003e\u003cbr\u003eThose involved in the manufacture of blowing agents, PU foam insulation and packaging, foam extrusion and equipment manufacturer were able to hear, discuss and understand the ways in which they can continue to develop and grow within the market and how our leading panel of speakers addressed such topics and issues.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from Smithers Rapra’s fifteenth internationally renowned Blowing Agents and Foaming Processes conference.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: CHEMICAL AND PHYSICAL FOAMING BASICS\u003cbr\u003ePaper 1\u003cbr\u003eChemical foaming agents in thermoplastics and thermosets\u003cbr\u003eDr Thomas Mergenhagen, Tramaco GmbH, Germany\u003cbr\u003ePaper 2\u003cbr\u003eChemical foaming of thermoplastic seals at ambient pressure\u003cbr\u003eMatthias Gössi \u0026amp; Jürgen Finter, Sika Technology AG, Zürich\/Switzerland\u003cbr\u003ePaper 3\u003cbr\u003eA zero ODP and low GWP foam expansion agent\u003cbr\u003eClaus-Peter Keller, Dupont de Nemours (Deutschland) GmbH, Germany, Gary Loh, Joseph A. Creazzo, Mark L. Robin, PhD \u0026amp; Saadat A. Ata, DuPont Company, USA\u003cbr\u003ePaper 4\u003cbr\u003eShelf life evaluation of PU rigid spray foams\u003cbr\u003eDavid Modray, Foam Supplies, Inc, USA\u003cbr\u003e??\u003cbr\u003eSESSION 2: CURED SYSTEMS (PUR AND SILICONE)\u003cbr\u003ePaper 5\u003cbr\u003eFoaming process and cellular structure analyses of bio-based flexible polyurethane foams\u003cbr\u003ePiotr Rojek \u0026amp; Aleksander Prociak,, Cracow University of Technology, Poland\u003cbr\u003ePaper 6\u003cbr\u003eFoaming of silicone rubber with physical blowing agents in an extrusion process\u003cbr\u003eDipl.-Gyml. Sarah Sitz, Prof. Dr.-Ing. Christian Hopmann, Elena Göbel \u0026amp; Margareta Merke, Institut für Kunststoffverarbeitung (IKV) an der RWTH Aachen, Germany\u003cbr\u003ePaper 7\u003cbr\u003eSilicone foams: how to expand the fastest crosslinking elastomer\u003cbr\u003e??Dr. Jürgen Weidinger, M+S Silicon GmbH \u0026amp; Co.KG, Germany - paper unavailable at time of print SESSION 3: POLYMERS AND PROCESSES\u003cbr\u003e?Paper 8\u003cbr\u003eSustainability in foam created by rheological analysis and LDPE foam resins\u003cbr\u003eJohn Krist \u0026amp; Emanuel van der Ven, SABIC Europe, The Netherlands\u003cbr\u003ePaper 9 \u003cbr\u003eRetrofit concepts for foam extrusion with heat exchangers\u003cbr\u003eChristian Schlummer, Promix Solutions AG, Switzerland\u003cbr\u003ePaper 10\u003cbr\u003eFoams and wood composite foams produced by rotomoulding\u003cbr\u003eAlexandre Raymond \u0026amp; Denis Rodrigue, Université Laval, Canada\u003cbr\u003e?\u003cbr\u003eSESSION 4: INJECTION MOULDING\u003cbr\u003ePaper 11 \u003cbr\u003eMolding large foamed plastic parts\u003cbr\u003eBrian Read, Horizon Plastics International Inc, Canada\u003cbr\u003ePaper 12 \u003cbr\u003eA mould filling simulation and validation data for microcellular foaming\u003cbr\u003eLevi Kishbaugh, Trexel Inc, USA \u0026amp; Anthony Yang, Lloyd Shiu, Dan Chang, Moldex3D Presenter: Martin Jacobi, Trexel GmbH, Germany\u003cbr\u003e?Paper 13 \u003cbr\u003eLight-weight potential of fiber reinforced foams\u003cbr\u003eDipl.-Ing Alexander Roch, Fraunhofer Institute for Chemical Technology ICT,Germany\u003cbr\u003e\u003cbr\u003eSESSION 5: EXTRUSION DIRECT GASSING TRENDS AND MARKETS\u003cbr\u003ePaper 14\u003cbr\u003eTrends and potential of advanced insulating foams\u003cbr\u003eDr.-Ing. Maria-Kristin Sommer, P. Gutmann, C. Schröder, R. Hingmann, C. Däschlein, A. Löffler, BASF SE, Germany\u003cbr\u003ePaper 15\u003cbr\u003eNew class of brominated polymeric flame retardants for use in polystyrene foams\u003cbr\u003eHeli Hollnagel2, Inken Beulich2*, J. Chris Bloom1, John W. Davis1, Bruce King1, Shari Kram1, Christine Lukas3, Ted Morgan1, Bill Stobby1 1The Dow Chemical Company, USA,2 Dow Europe GmbH, Switzerland,3Dow Chemicals UK Limited, United Kingdom\u003cbr\u003ePaper 16\u003cbr\u003eJapanese market situation for EPS and EPP: differences with European market\u003cbr\u003eHiroshi Fujiwara \u0026amp; Hidekazu Ohara, KANEKA Corp., Japan\u003cbr\u003e???\u003cbr\u003eSESSION 6: EXTRUSION DG NEW FINDINGS\u003cbr\u003ePaper 17\u003cbr\u003eMorphology, mechanical properties, and thermoforming behaviour of extrusion foamed organic cellulose ester\u003cbr\u003eS. Hendriks1, T. Hildebrand2, C. Hopmann1, S. Kabasci3, H.-J. Radusch4, F. van Lück5, S. Zepnik3,4 1Institute of Plastics Processing (IKV), RWTH Aachen University, Aachen, Germany\u003cbr\u003e2Selit Dämmtechnik GmbH, Erbes-Büdesheim, Germany. 3Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, Germany. 4Martin Luther University Halle-Wittenberg, Centre of Engineering Sciences, Chair Polymer Technology, Halle (Saale), Germany 5Inde Plastik Betriebsgesellschaft mbH, Aldenhoven, Germany\u003cbr\u003ePaper 18 \u003cbr\u003eContinuous polymer foam extrusion with a physical blowing agent in the solid state\u003cbr\u003eDipl.-Ing Sven Hendriks \u0026amp; Daniel Sander, IKV - Institut für Kunststoffverarbeitung, Germany\u003cbr\u003ePaper 19 \u003cbr\u003eIn-line rheology of gas-loaded polymer melts – The key for understanding the foaming process\u003cbr\u003eT. Köppl, D. Raps, V. Altstädt, University of Bayreuth, Germany\u003cbr\u003ePaper 20\u003cbr\u003eEffects of crystallinity on the foaming behaviours of extruded polypropylene blown with CO2\u003cbr\u003eAlireza Tabatabaei, M. Reza Barzegari, Mohammadreza Nofar, and Chul. B Park, University of Toronto, Canada\u003cbr\u003e????\u003cbr\u003eSESSION 7: NANOFILLERS IN FOAMED EXTRUDED SUBSTRATES\u003cbr\u003ePaper 21 \u003cbr\u003eAdditives with strong thermodynamic affinity for supercritical carbon dioxide: effect on continuous foam processing\u003cbr\u003eAli Rizvi, Alireza Tabatabaei, Reza Barzegari and Chul B. Park, University of Toronto, Canada\u003cbr\u003ePaper 22 \u003cbr\u003eInfluence of carbon-based nanoparticles on the thermal conductivity of extruded polystyrene foams Chimezie Okolieocha, Thomas Köppl, Sabrina Kerling, Volker Altstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003eSESSION 8: NEW FINDINGS AND R\u0026amp;D WORK\u003cbr\u003ePaper 23 \u003cbr\u003ePossibilities and challenges of extrusion of foamed products at pilot plant level\u003cbr\u003eDr Ana Espert Bernia, Aimplas, Spain\u003cbr\u003ePaper 24 \u003cbr\u003eFatigue of sandwich composites and the impact on lightweight applications\u003cbr\u003eLars Massueger, Jean-Francois Koenig, Alain Sagnard \u0026amp; Fabio D’Ottaviano, DOW Europe GmbH, Switzerland","published_at":"2017-06-22T21:15:16-04:00","created_at":"2017-06-22T21:15:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","blowing agents","book","foaming agents","p-additives","polymer","polymeric foams"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471492,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents and Foaming Processes 2013","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781909030428","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781909030428.jpg?v=1499192634"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030428.jpg?v=1499192634","options":["Title"],"media":[{"alt":null,"id":353918320733,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030428.jpg?v=1499192634"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030428.jpg?v=1499192634","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 9781909030428 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nToday there are numerous solutions on offer – new methods, resins, technology, processes, and additives and it seems that demand for higher performance and lower costs is set to once again drive technical developments in polymeric foams.\u003cbr\u003e\u003cbr\u003eThose involved in the manufacture of blowing agents, PU foam insulation and packaging, foam extrusion and equipment manufacturer were able to hear, discuss and understand the ways in which they can continue to develop and grow within the market and how our leading panel of speakers addressed such topics and issues.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from Smithers Rapra’s fifteenth internationally renowned Blowing Agents and Foaming Processes conference.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: CHEMICAL AND PHYSICAL FOAMING BASICS\u003cbr\u003ePaper 1\u003cbr\u003eChemical foaming agents in thermoplastics and thermosets\u003cbr\u003eDr Thomas Mergenhagen, Tramaco GmbH, Germany\u003cbr\u003ePaper 2\u003cbr\u003eChemical foaming of thermoplastic seals at ambient pressure\u003cbr\u003eMatthias Gössi \u0026amp; Jürgen Finter, Sika Technology AG, Zürich\/Switzerland\u003cbr\u003ePaper 3\u003cbr\u003eA zero ODP and low GWP foam expansion agent\u003cbr\u003eClaus-Peter Keller, Dupont de Nemours (Deutschland) GmbH, Germany, Gary Loh, Joseph A. Creazzo, Mark L. Robin, PhD \u0026amp; Saadat A. Ata, DuPont Company, USA\u003cbr\u003ePaper 4\u003cbr\u003eShelf life evaluation of PU rigid spray foams\u003cbr\u003eDavid Modray, Foam Supplies, Inc, USA\u003cbr\u003e??\u003cbr\u003eSESSION 2: CURED SYSTEMS (PUR AND SILICONE)\u003cbr\u003ePaper 5\u003cbr\u003eFoaming process and cellular structure analyses of bio-based flexible polyurethane foams\u003cbr\u003ePiotr Rojek \u0026amp; Aleksander Prociak,, Cracow University of Technology, Poland\u003cbr\u003ePaper 6\u003cbr\u003eFoaming of silicone rubber with physical blowing agents in an extrusion process\u003cbr\u003eDipl.-Gyml. Sarah Sitz, Prof. Dr.-Ing. Christian Hopmann, Elena Göbel \u0026amp; Margareta Merke, Institut für Kunststoffverarbeitung (IKV) an der RWTH Aachen, Germany\u003cbr\u003ePaper 7\u003cbr\u003eSilicone foams: how to expand the fastest crosslinking elastomer\u003cbr\u003e??Dr. Jürgen Weidinger, M+S Silicon GmbH \u0026amp; Co.KG, Germany - paper unavailable at time of print SESSION 3: POLYMERS AND PROCESSES\u003cbr\u003e?Paper 8\u003cbr\u003eSustainability in foam created by rheological analysis and LDPE foam resins\u003cbr\u003eJohn Krist \u0026amp; Emanuel van der Ven, SABIC Europe, The Netherlands\u003cbr\u003ePaper 9 \u003cbr\u003eRetrofit concepts for foam extrusion with heat exchangers\u003cbr\u003eChristian Schlummer, Promix Solutions AG, Switzerland\u003cbr\u003ePaper 10\u003cbr\u003eFoams and wood composite foams produced by rotomoulding\u003cbr\u003eAlexandre Raymond \u0026amp; Denis Rodrigue, Université Laval, Canada\u003cbr\u003e?\u003cbr\u003eSESSION 4: INJECTION MOULDING\u003cbr\u003ePaper 11 \u003cbr\u003eMolding large foamed plastic parts\u003cbr\u003eBrian Read, Horizon Plastics International Inc, Canada\u003cbr\u003ePaper 12 \u003cbr\u003eA mould filling simulation and validation data for microcellular foaming\u003cbr\u003eLevi Kishbaugh, Trexel Inc, USA \u0026amp; Anthony Yang, Lloyd Shiu, Dan Chang, Moldex3D Presenter: Martin Jacobi, Trexel GmbH, Germany\u003cbr\u003e?Paper 13 \u003cbr\u003eLight-weight potential of fiber reinforced foams\u003cbr\u003eDipl.-Ing Alexander Roch, Fraunhofer Institute for Chemical Technology ICT,Germany\u003cbr\u003e\u003cbr\u003eSESSION 5: EXTRUSION DIRECT GASSING TRENDS AND MARKETS\u003cbr\u003ePaper 14\u003cbr\u003eTrends and potential of advanced insulating foams\u003cbr\u003eDr.-Ing. Maria-Kristin Sommer, P. Gutmann, C. Schröder, R. Hingmann, C. Däschlein, A. Löffler, BASF SE, Germany\u003cbr\u003ePaper 15\u003cbr\u003eNew class of brominated polymeric flame retardants for use in polystyrene foams\u003cbr\u003eHeli Hollnagel2, Inken Beulich2*, J. Chris Bloom1, John W. Davis1, Bruce King1, Shari Kram1, Christine Lukas3, Ted Morgan1, Bill Stobby1 1The Dow Chemical Company, USA,2 Dow Europe GmbH, Switzerland,3Dow Chemicals UK Limited, United Kingdom\u003cbr\u003ePaper 16\u003cbr\u003eJapanese market situation for EPS and EPP: differences with European market\u003cbr\u003eHiroshi Fujiwara \u0026amp; Hidekazu Ohara, KANEKA Corp., Japan\u003cbr\u003e???\u003cbr\u003eSESSION 6: EXTRUSION DG NEW FINDINGS\u003cbr\u003ePaper 17\u003cbr\u003eMorphology, mechanical properties, and thermoforming behaviour of extrusion foamed organic cellulose ester\u003cbr\u003eS. Hendriks1, T. Hildebrand2, C. Hopmann1, S. Kabasci3, H.-J. Radusch4, F. van Lück5, S. Zepnik3,4 1Institute of Plastics Processing (IKV), RWTH Aachen University, Aachen, Germany\u003cbr\u003e2Selit Dämmtechnik GmbH, Erbes-Büdesheim, Germany. 3Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, Germany. 4Martin Luther University Halle-Wittenberg, Centre of Engineering Sciences, Chair Polymer Technology, Halle (Saale), Germany 5Inde Plastik Betriebsgesellschaft mbH, Aldenhoven, Germany\u003cbr\u003ePaper 18 \u003cbr\u003eContinuous polymer foam extrusion with a physical blowing agent in the solid state\u003cbr\u003eDipl.-Ing Sven Hendriks \u0026amp; Daniel Sander, IKV - Institut für Kunststoffverarbeitung, Germany\u003cbr\u003ePaper 19 \u003cbr\u003eIn-line rheology of gas-loaded polymer melts – The key for understanding the foaming process\u003cbr\u003eT. Köppl, D. Raps, V. Altstädt, University of Bayreuth, Germany\u003cbr\u003ePaper 20\u003cbr\u003eEffects of crystallinity on the foaming behaviours of extruded polypropylene blown with CO2\u003cbr\u003eAlireza Tabatabaei, M. Reza Barzegari, Mohammadreza Nofar, and Chul. B Park, University of Toronto, Canada\u003cbr\u003e????\u003cbr\u003eSESSION 7: NANOFILLERS IN FOAMED EXTRUDED SUBSTRATES\u003cbr\u003ePaper 21 \u003cbr\u003eAdditives with strong thermodynamic affinity for supercritical carbon dioxide: effect on continuous foam processing\u003cbr\u003eAli Rizvi, Alireza Tabatabaei, Reza Barzegari and Chul B. Park, University of Toronto, Canada\u003cbr\u003ePaper 22 \u003cbr\u003eInfluence of carbon-based nanoparticles on the thermal conductivity of extruded polystyrene foams Chimezie Okolieocha, Thomas Köppl, Sabrina Kerling, Volker Altstädt, University of Bayreuth, Germany\u003cbr\u003e\u003cbr\u003eSESSION 8: NEW FINDINGS AND R\u0026amp;D WORK\u003cbr\u003ePaper 23 \u003cbr\u003ePossibilities and challenges of extrusion of foamed products at pilot plant level\u003cbr\u003eDr Ana Espert Bernia, Aimplas, Spain\u003cbr\u003ePaper 24 \u003cbr\u003eFatigue of sandwich composites and the impact on lightweight applications\u003cbr\u003eLars Massueger, Jean-Francois Koenig, Alain Sagnard \u0026amp; Fabio D’Ottaviano, DOW Europe GmbH, Switzerland"}
Blowing Agents for Pol...
$120.00
{"id":11242215940,"title":"Blowing Agents for Polyurethane Foams","handle":"978-1-85957-321-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. S.N. Singh, Huntsman Polyurethanes \u003cbr\u003eISBN 978-1-85957-321-1 \u003cbr\u003e\u003cbr\u003epages 104\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe polyurethane foam industry was radically shaken up by the discovery, in the mid 1980s, that certain chlorofluorocarbons (CFCs) used as blowing agents can damage the environment. Hydrochlorofluorocarbons (HCFCs) were developed as replacements, but they are now scheduled to be phased out as they also have ozone depleting potential. \u003cbr\u003e\u003cbr\u003eGlobal agreements have been introduced such as the Montreal Protocol and the Kyoto Protocol, which severely limit the use of many blowing agents. Global warming, ozone depleting potential, atmospheric lifetime and volatile organic compounds are the primary environmental issues with any blowing agent, and there are other factors to consider such as long-term breakdown products, halogen-free nature and acidification potential. \u003cbr\u003e\u003cbr\u003eBlowing agents must also satisfy the requirements of the marketplace including cost, flammability, compatibility with materials of construction, and safe and economic manufacturing processes. \u003cbr\u003e\u003cbr\u003eEach application for foams has its own specifications, for example, low flammability, low toxicity, load bearing capability and cushioning effects. The long-term stability of the foam structure and the insulating properties of the foam are also key. The blowing agent used in polyurethane has a critical effect on these attributes. Insulation is affected by the gas phase thermal conductivity of the blowing agent. Stability is affected by several properties, such as the solubility of the agent in the polymer and the diffusion rate compared with air. \u003cbr\u003e\u003cbr\u003eThis review discusses the legal requirements and property specifications for blowing agents in different applications. It highlights the effects of changing blowing agents including the need for reformulation. Many new polyols, isocyanates and surfactants are being developed to overcome problems. Similarly, new equipment is being produced, for example, to cope with the flammability issues surrounding the use of hydrocarbon blowing agents, such as pentane. \u003cbr\u003e\u003cbr\u003eEach type of blowing agent is described. Key environmental and physical properties are listed, together with advantages and limitations. Foams are described by types and by applications. The review also describes, briefly, the current state of the market and which new blowing agents are likely to be used in each sector. The developments by many different companies are outlined.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Blowing Agents up to the mid 1980s \u003cbr\u003e1.2 The Montreal Protocol and Other Regulations \u003cbr\u003e2 Blowing Agents - Considerations Since the mid 1980s \u003cbr\u003e\u003cbr\u003e2.1 Environmental Considerations \u003cbr\u003e2.2 Feasibility Considerations \u003cbr\u003e2.3 Performance Considerations \u003cbr\u003e3 Alternative Blowing Agents \u003cbr\u003e\u003cbr\u003e3.1 Hydrochloroflurocarbons (HCFCs) \u003cbr\u003e3.2 Hydrofluorocarbons (HFCs) \u003cbr\u003e3.3 Hydrocarbons (HCs) \u003cbr\u003e3.4 Other Physical Blowing Agents \u003cbr\u003e3.5 Chemical Blowing Agents \u003cbr\u003e4 Blowing Agents for Low Density Rigid Foam \u003cbr\u003e\u003cbr\u003e4.1 Specific Performance Criteria \u003cbr\u003e4.2 General Developments \u003cbr\u003e4.2.1 Reducing Consumption of CFC-11 \u003cbr\u003e4.2.2 Liquid HCFCs \u003cbr\u003e4.2.3 Liquid HFCs \u003cbr\u003e4.2.4 Low Boiling Blowing Agents (LBBA) \u003cbr\u003e4.2.5 Degradation Products of HCFCs and HFCs \u003cbr\u003e4.2.6 Liquid Hydrocarbons \u003cbr\u003e4.2.7 Blends of Blowing Agents \u003cbr\u003e4.2.8 All CO2 Blown \u003cbr\u003e4.2.9 Partially Open Cell Foam \u003cbr\u003e4.2.10 Thermal Conductivity Improvement Technology \u003cbr\u003e4.2.11 Thermal Conductivity Ageing of Foam \u003cbr\u003e4.2.12 Dimensional Stability of Foam \u003cbr\u003e\u003cbr\u003e4.3 Blowing Agent Technology by End Use Market \u003cbr\u003e4.3.1 Household Refrigerators and Freezers \u003cbr\u003e4.3.2 Water Heaters and Other Appliances \u003cbr\u003e4.3.3 Flexible Faced Laminates (Boardstock) \u003cbr\u003e4.3.4 Rigid Faced Laminates \u003cbr\u003e4.3.5 Entry and Garage Doors \u003cbr\u003e4.3.6 Slabstock \u003cbr\u003e4.3.7 Spray \u003cbr\u003e4.3.8 Pipe Insulation \u003cbr\u003e4.3.9 One Component Foam (OCF) \u003cbr\u003e4.3.10 Marine Flotation \u003cbr\u003e4.3.11 Miscellaneous Applications \u003cbr\u003e5 Blowing Agents for Low Density Flexible Foam \u003cbr\u003e\u003cbr\u003e5.1 Specific Performance Criteria \u003cbr\u003e5.2 Blowing Agent by Manufacturing Process \u003cbr\u003e5.2.1 Continuous Slabstock \u003cbr\u003e5.2.2 Discontinuous Slabstock \u003cbr\u003e5.2.3 Moulded Foam \u003cbr\u003e6 High Density Foams and Elastomers \u003cbr\u003e\u003cbr\u003e6.1 Specific Performance Criteria \u003cbr\u003e6.2 Flexible Integral Skin Foam \u003cbr\u003e6.2.1 Low ODP Technology \u003cbr\u003e6.2.2 Zero ODP Technology \u003cbr\u003e\u003cbr\u003e6.3 Rigid Integral Skin Foam \u003cbr\u003e6.4 Semi-Rigid Foam \u003cbr\u003e6.5 Microcellular Elastomers\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr Singh is a leading expert on blowing agents, formulation and long-term stability of polyurethane foams, and has a collection of publications including patents. He is currently a Development Associate with Huntsman Polyurethanes (formerly ICI Polyurethanes).","published_at":"2017-06-22T21:13:28-04:00","created_at":"2017-06-22T21:13:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","blends","blowing agents","book","environmental issues","foam formulation","foams","microcellular","p-additives","polymer","polymers","polyurethane","rigid","semi-rigid foam"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378355908,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Blowing Agents for Polyurethane Foams","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-321-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-321-1.jpg?v=1499202493"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-321-1.jpg?v=1499202493","options":["Title"],"media":[{"alt":null,"id":353925005405,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-321-1.jpg?v=1499202493"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-321-1.jpg?v=1499202493","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. S.N. Singh, Huntsman Polyurethanes \u003cbr\u003eISBN 978-1-85957-321-1 \u003cbr\u003e\u003cbr\u003epages 104\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe polyurethane foam industry was radically shaken up by the discovery, in the mid 1980s, that certain chlorofluorocarbons (CFCs) used as blowing agents can damage the environment. Hydrochlorofluorocarbons (HCFCs) were developed as replacements, but they are now scheduled to be phased out as they also have ozone depleting potential. \u003cbr\u003e\u003cbr\u003eGlobal agreements have been introduced such as the Montreal Protocol and the Kyoto Protocol, which severely limit the use of many blowing agents. Global warming, ozone depleting potential, atmospheric lifetime and volatile organic compounds are the primary environmental issues with any blowing agent, and there are other factors to consider such as long-term breakdown products, halogen-free nature and acidification potential. \u003cbr\u003e\u003cbr\u003eBlowing agents must also satisfy the requirements of the marketplace including cost, flammability, compatibility with materials of construction, and safe and economic manufacturing processes. \u003cbr\u003e\u003cbr\u003eEach application for foams has its own specifications, for example, low flammability, low toxicity, load bearing capability and cushioning effects. The long-term stability of the foam structure and the insulating properties of the foam are also key. The blowing agent used in polyurethane has a critical effect on these attributes. Insulation is affected by the gas phase thermal conductivity of the blowing agent. Stability is affected by several properties, such as the solubility of the agent in the polymer and the diffusion rate compared with air. \u003cbr\u003e\u003cbr\u003eThis review discusses the legal requirements and property specifications for blowing agents in different applications. It highlights the effects of changing blowing agents including the need for reformulation. Many new polyols, isocyanates and surfactants are being developed to overcome problems. Similarly, new equipment is being produced, for example, to cope with the flammability issues surrounding the use of hydrocarbon blowing agents, such as pentane. \u003cbr\u003e\u003cbr\u003eEach type of blowing agent is described. Key environmental and physical properties are listed, together with advantages and limitations. Foams are described by types and by applications. The review also describes, briefly, the current state of the market and which new blowing agents are likely to be used in each sector. The developments by many different companies are outlined.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Blowing Agents up to the mid 1980s \u003cbr\u003e1.2 The Montreal Protocol and Other Regulations \u003cbr\u003e2 Blowing Agents - Considerations Since the mid 1980s \u003cbr\u003e\u003cbr\u003e2.1 Environmental Considerations \u003cbr\u003e2.2 Feasibility Considerations \u003cbr\u003e2.3 Performance Considerations \u003cbr\u003e3 Alternative Blowing Agents \u003cbr\u003e\u003cbr\u003e3.1 Hydrochloroflurocarbons (HCFCs) \u003cbr\u003e3.2 Hydrofluorocarbons (HFCs) \u003cbr\u003e3.3 Hydrocarbons (HCs) \u003cbr\u003e3.4 Other Physical Blowing Agents \u003cbr\u003e3.5 Chemical Blowing Agents \u003cbr\u003e4 Blowing Agents for Low Density Rigid Foam \u003cbr\u003e\u003cbr\u003e4.1 Specific Performance Criteria \u003cbr\u003e4.2 General Developments \u003cbr\u003e4.2.1 Reducing Consumption of CFC-11 \u003cbr\u003e4.2.2 Liquid HCFCs \u003cbr\u003e4.2.3 Liquid HFCs \u003cbr\u003e4.2.4 Low Boiling Blowing Agents (LBBA) \u003cbr\u003e4.2.5 Degradation Products of HCFCs and HFCs \u003cbr\u003e4.2.6 Liquid Hydrocarbons \u003cbr\u003e4.2.7 Blends of Blowing Agents \u003cbr\u003e4.2.8 All CO2 Blown \u003cbr\u003e4.2.9 Partially Open Cell Foam \u003cbr\u003e4.2.10 Thermal Conductivity Improvement Technology \u003cbr\u003e4.2.11 Thermal Conductivity Ageing of Foam \u003cbr\u003e4.2.12 Dimensional Stability of Foam \u003cbr\u003e\u003cbr\u003e4.3 Blowing Agent Technology by End Use Market \u003cbr\u003e4.3.1 Household Refrigerators and Freezers \u003cbr\u003e4.3.2 Water Heaters and Other Appliances \u003cbr\u003e4.3.3 Flexible Faced Laminates (Boardstock) \u003cbr\u003e4.3.4 Rigid Faced Laminates \u003cbr\u003e4.3.5 Entry and Garage Doors \u003cbr\u003e4.3.6 Slabstock \u003cbr\u003e4.3.7 Spray \u003cbr\u003e4.3.8 Pipe Insulation \u003cbr\u003e4.3.9 One Component Foam (OCF) \u003cbr\u003e4.3.10 Marine Flotation \u003cbr\u003e4.3.11 Miscellaneous Applications \u003cbr\u003e5 Blowing Agents for Low Density Flexible Foam \u003cbr\u003e\u003cbr\u003e5.1 Specific Performance Criteria \u003cbr\u003e5.2 Blowing Agent by Manufacturing Process \u003cbr\u003e5.2.1 Continuous Slabstock \u003cbr\u003e5.2.2 Discontinuous Slabstock \u003cbr\u003e5.2.3 Moulded Foam \u003cbr\u003e6 High Density Foams and Elastomers \u003cbr\u003e\u003cbr\u003e6.1 Specific Performance Criteria \u003cbr\u003e6.2 Flexible Integral Skin Foam \u003cbr\u003e6.2.1 Low ODP Technology \u003cbr\u003e6.2.2 Zero ODP Technology \u003cbr\u003e\u003cbr\u003e6.3 Rigid Integral Skin Foam \u003cbr\u003e6.4 Semi-Rigid Foam \u003cbr\u003e6.5 Microcellular Elastomers\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr Singh is a leading expert on blowing agents, formulation and long-term stability of polyurethane foams, and has a collection of publications including patents. He is currently a Development Associate with Huntsman Polyurethanes (formerly ICI Polyurethanes)."}
Bottles, Preforms and ...
$149.00
{"id":11242203908,"title":"Bottles, Preforms and Closures, 2nd Edition - A Design Guide for PET Packaging","handle":"978-1-4377-3526-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ottmar Brandau \u003cbr\u003eISBN 978-1-4377-3526-0 \u003cbr\u003e\u003cbr\u003e180 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book is a thoroughly practical handbook that provides engineers and managers with the toolkit to improve production and engineering aspects in their own businesses - saving money, increasing output and improving competitiveness by adopting new technologies.\u003c\/p\u003e\n\u003cp\u003eIn this book, Brandau covers the engineering aspects of bottle production and the relevant production processes (focusing on blow molding), along with plant layout and organization and production management. \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart One: PET Preforms (Ottmar Brandau, Dr. Laura Martin):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Manufacture and States of PET;\u003cbr\u003e\u003cbr\u003e3 Behaviour in the Blow Mould; 4 Manufacture of PET Preforms;\u003cbr\u003e\u003cbr\u003e5 Preform Design Methodology;\u003cbr\u003e\u003cbr\u003e6 Preform Design Examples;\u003cbr\u003e\u003cbr\u003ePart 2: PET Beverage Bottles (Dr. Christian DeTrois, Thomas Steinbauer):\u003cbr\u003e\u003cbr\u003e1 From the First Idea to the Finished Bottle;\u003cbr\u003e\u003cbr\u003e2 Determination of Bottle Properties;\u003cbr\u003e\u003cbr\u003e3 Generating the First Design in CAD;\u003cbr\u003e\u003cbr\u003e4 From Shape to Fully-Fledged Design for a Safe Process;\u003cbr\u003e\u003cbr\u003e5 Verification of the 3D Design through FE Simulation;\u003cbr\u003e\u003cbr\u003e6 Selection of the Mould Concept to Meet Customer-Specific Criteria;\u003cbr\u003e\u003cbr\u003e7 Mould Design and Mould Manufacture;\u003cbr\u003e\u003cbr\u003e8 Mould Trials and Examination of Sample Bottles;\u003cbr\u003e\u003cbr\u003ePart 3 Closures for PET Bottles (Ottmar Brandau, Romeo Corvaglia):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Neck Finishes for Various Bottle Types;\u003cbr\u003e\u003cbr\u003e3 Closure Types;\u003cbr\u003e\u003cbr\u003e4 Tamper Evident Bands;\u003cbr\u003e\u003cbr\u003e5 Resins;\u003cbr\u003e\u003cbr\u003e6 Manufacturing Methods;\u003cbr\u003e\u003cbr\u003e7 Economic Guidelines;\u003cbr\u003e\u003cbr\u003e8 Test Procedures;\u003cbr\u003e\u003cbr\u003e9 Process Control during Injection Moulding; Light-weigh caps, new standards\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eOttmar Brandau\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eOB Plastics Consulting, Ontario, Canada\u003c\/div\u003e\n\u003cdiv\u003ePresident, OB Plastics Consulting, Ontario, Canada Process troubleshooting and training of plant and office personnel. Formerly VP Operations, Magic North America (Packaging \u0026amp; Containers). Member of the Omnexus (SpecialChem Plastics \u0026amp; Elastomers) Expert Team.\u003c\/div\u003e","published_at":"2017-06-22T21:12:49-04:00","created_at":"2017-06-22T21:12:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","blow molding","book","bottles","fault analysis","p-applications","packaging","PET","PET packaging","plastics processing","polymer","troubleshooting"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316740,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Bottles, Preforms and Closures, 2nd Edition - A Design Guide for PET Packaging","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-3526-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204","options":["Title"],"media":[{"alt":null,"id":353925529693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3526-0.jpg?v=1499724204","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ottmar Brandau \u003cbr\u003eISBN 978-1-4377-3526-0 \u003cbr\u003e\u003cbr\u003e180 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book is a thoroughly practical handbook that provides engineers and managers with the toolkit to improve production and engineering aspects in their own businesses - saving money, increasing output and improving competitiveness by adopting new technologies.\u003c\/p\u003e\n\u003cp\u003eIn this book, Brandau covers the engineering aspects of bottle production and the relevant production processes (focusing on blow molding), along with plant layout and organization and production management. \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart One: PET Preforms (Ottmar Brandau, Dr. Laura Martin):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Manufacture and States of PET;\u003cbr\u003e\u003cbr\u003e3 Behaviour in the Blow Mould; 4 Manufacture of PET Preforms;\u003cbr\u003e\u003cbr\u003e5 Preform Design Methodology;\u003cbr\u003e\u003cbr\u003e6 Preform Design Examples;\u003cbr\u003e\u003cbr\u003ePart 2: PET Beverage Bottles (Dr. Christian DeTrois, Thomas Steinbauer):\u003cbr\u003e\u003cbr\u003e1 From the First Idea to the Finished Bottle;\u003cbr\u003e\u003cbr\u003e2 Determination of Bottle Properties;\u003cbr\u003e\u003cbr\u003e3 Generating the First Design in CAD;\u003cbr\u003e\u003cbr\u003e4 From Shape to Fully-Fledged Design for a Safe Process;\u003cbr\u003e\u003cbr\u003e5 Verification of the 3D Design through FE Simulation;\u003cbr\u003e\u003cbr\u003e6 Selection of the Mould Concept to Meet Customer-Specific Criteria;\u003cbr\u003e\u003cbr\u003e7 Mould Design and Mould Manufacture;\u003cbr\u003e\u003cbr\u003e8 Mould Trials and Examination of Sample Bottles;\u003cbr\u003e\u003cbr\u003ePart 3 Closures for PET Bottles (Ottmar Brandau, Romeo Corvaglia):\u003cbr\u003e\u003cbr\u003e1 Introduction;\u003cbr\u003e\u003cbr\u003e2 Neck Finishes for Various Bottle Types;\u003cbr\u003e\u003cbr\u003e3 Closure Types;\u003cbr\u003e\u003cbr\u003e4 Tamper Evident Bands;\u003cbr\u003e\u003cbr\u003e5 Resins;\u003cbr\u003e\u003cbr\u003e6 Manufacturing Methods;\u003cbr\u003e\u003cbr\u003e7 Economic Guidelines;\u003cbr\u003e\u003cbr\u003e8 Test Procedures;\u003cbr\u003e\u003cbr\u003e9 Process Control during Injection Moulding; Light-weigh caps, new standards\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eOttmar Brandau\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eOB Plastics Consulting, Ontario, Canada\u003c\/div\u003e\n\u003cdiv\u003ePresident, OB Plastics Consulting, Ontario, Canada Process troubleshooting and training of plant and office personnel. Formerly VP Operations, Magic North America (Packaging \u0026amp; Containers). Member of the Omnexus (SpecialChem Plastics \u0026amp; Elastomers) Expert Team.\u003c\/div\u003e"}
Cellular Polymers III
$60.00
{"id":11242247172,"title":"Cellular Polymers III","handle":"978-1-85957-038-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-038-8 \u003cbr\u003e\u003cbr\u003e25 papers, softbound\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe material covers all aspects of elastomeric and rigid foams including: Thermal performance of insulating foams; Analysis of fire gases; The progress of CFC-free foams; Recycling and waste management; Gas transfer; Novel additives and synthesis techniques; Manufacturing developments for a range of foamed materials; Impact properties.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Papers: \u003cbr\u003e\u003cbr\u003eUse of the Distributed Parameter Continuum (DIPAC) Model for Estimating the Long Term Thermal Performance of Insulating Foams, Mark T. Bomberg and Mavinkal K Kumaran, National Research Council, Canada \u003cbr\u003e\u003cbr\u003eDevelopment of a Method tor Measuring Radial Creep of District Heating Pipes, H. D. Smidt, Danish Technological Institute, Denmark and L. Amby, Logstor Ror A\/S, Denmark \u003cbr\u003e\u003cbr\u003eUse of FTIR to Analyze Fire Gases from Burning Polyurethane Foams, K.T. Paul, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eCFC-free Thermal Insulation Foams, C.W.F. Yu, D.R. Crump and D. Gardiner, Building Research Establishment, UK \u003cbr\u003e\u003cbr\u003eA Review of Life Cycle Assessment - A Tool for Measuring the Environmental Impact of Cellular Polymers, Dr David Heath, ICI Engineering Technology, UK and Dr. Vanja Markovic, ICI Polyurethanes\/ISOPA, Belgium \u003cbr\u003e\u003cbr\u003e\"CFC-Free\" The Scope of the Achievement so far, P. Ashford, Caleb Management Services, UK \u003cbr\u003e\u003cbr\u003eThe Future of Foam Plastic Insulation in the Light of Climate Chance Legislation, J.G. Abbott, Dow Europe SA., Switzerland \u003cbr\u003e\u003cbr\u003eProcess by which Controls on Chemicals are Introduced into European Community Legislation, J. Neill, European Commission, Belgium \u003cbr\u003e\u003cbr\u003eUtilization of Polymeric Isocyanate Based Binders in Recycling of Automotive Shredder Fluff, K.C. Frisch, A. Sendijarevic, V. Sendijarevic and D. Klempner, University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003eRecovery and Recycling of Polyurethane Foams, E. Weigand, Bayer AG, Germany \u003cbr\u003e\u003cbr\u003eWaste Management of EPS in Europe, T. van Dorp, Shell Chemicals Europe, UK \u003cbr\u003e\u003cbr\u003eRecovery of Value from Waste: The Government View, P. Coombs, Department of Trade and Industry, UK \u003cbr\u003e\u003cbr\u003eCell Structure Development in Compression Molded, Crosslinked Polyethylene and Ethylene-Vinyl Acetate Foam, G.L.A. Sims and C. Khunniteekool, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eThe Influence of Low Molecular Additives on Gas Transport Properties in Polyethylene Films and Foams, W P Nauta and R.H.B. Bouma, University of Twente, J.E.F. Arnauts and H. M. Steuten, DSM Research, The Netherlands \u003cbr\u003e\u003cbr\u003ePolyether Triols,Tetrahydrofurame-Alkyleneoxides Copolymers for Flexible Polyurethane Foams, M. Ionescu, I. Mihalache, V. Zugravu and S. Mihai, Institute of Chemical Research, Romania \u003cbr\u003e\u003cbr\u003eSolubility and Nucleation Phenomena in Rigid PU Foam Expansion by Low Boiling Blowing Agents; a Modelling Approach, Henri J.M. Gruenbauer, Dow Benelux NV, The Netherlands \u003cbr\u003e\u003cbr\u003eLiquid Crystalline Polyurethanes: Synthesis, Properties and Application, B. Szczepaniak and P. Penczek, Industrial Chemistry Research Institute, A. Wolinska-Grabczyk, Institute of Coal Chemistry, and K.C. Frisch University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003ePolyurethane Reactions According to Computational Chemistry, Nelson Malwitz, Sealed Air Corporation, USA \u003cbr\u003e\u003cbr\u003eRigid PVC Foams: A New Twist to an Old Technology, K. Redford, L.T. Hoydal, A. Stori, and K.H. Holm, SINTEF, Norway, A. Jorgensen and J. Grovdal, Dynoplast AS, Norway \u003cbr\u003e\u003cbr\u003eA Solid State Semi-Continuous Process to Make PET Foam Sheets, V. Kumar, University of Washington Seattle, USA and H. G. Schirmer, W. R. Grace Co., USA \u003cbr\u003e\u003cbr\u003eThe CarDio(TM) Process: Industrial Production Experiences, Carlo Florentini, Cannon Afros, Italy, Max Taverna, Cannon Communications, Italy, Barry Collings, Cannon, USA, Tony Griffiths, Cannon Viking, Italy \u003cbr\u003e\u003cbr\u003eThe Manufacture of Flexible Polyurethane Foams by the Variable Pressure Process V.P.F., J. B. Blackwell and G. Buckley, Beamech Group Limited, UK \u003cbr\u003e\u003cbr\u003eThe Balance of Formulation, Processing Conditions in the Manufacture of Crosslinked Polyethylene Foam, G.L.A. Sims and W. Sirithongtaworn, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eInteraction between Microstructure and Mechanical Properties of Flexible Polyurethane Foams, J. M. Williams and J. H. Beynon, University of Leicester, UK \u003cbr\u003e\u003cbr\u003eAnalysis of Impact of Two-Layer Foams, and Evaluation of Body Protectors, A. Gilchrist and N.J. Mills, University of Birmingham, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:06-04:00","created_at":"2017-06-22T21:15:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","additives","book","foam","impact properties","insulation","p-structural","polymer","polyurethane foams","recycling"],"price":6000,"price_min":6000,"price_max":6000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378463108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Cellular Polymers III","public_title":null,"options":["Default Title"],"price":6000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420","options":["Title"],"media":[{"alt":null,"id":353968488541,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-038-8.jpg?v=1499212420","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-038-8 \u003cbr\u003e\u003cbr\u003e25 papers, softbound\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe material covers all aspects of elastomeric and rigid foams including: Thermal performance of insulating foams; Analysis of fire gases; The progress of CFC-free foams; Recycling and waste management; Gas transfer; Novel additives and synthesis techniques; Manufacturing developments for a range of foamed materials; Impact properties.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Papers: \u003cbr\u003e\u003cbr\u003eUse of the Distributed Parameter Continuum (DIPAC) Model for Estimating the Long Term Thermal Performance of Insulating Foams, Mark T. Bomberg and Mavinkal K Kumaran, National Research Council, Canada \u003cbr\u003e\u003cbr\u003eDevelopment of a Method tor Measuring Radial Creep of District Heating Pipes, H. D. Smidt, Danish Technological Institute, Denmark and L. Amby, Logstor Ror A\/S, Denmark \u003cbr\u003e\u003cbr\u003eUse of FTIR to Analyze Fire Gases from Burning Polyurethane Foams, K.T. Paul, Rapra Technology Limited, UK \u003cbr\u003e\u003cbr\u003eCFC-free Thermal Insulation Foams, C.W.F. Yu, D.R. Crump and D. Gardiner, Building Research Establishment, UK \u003cbr\u003e\u003cbr\u003eA Review of Life Cycle Assessment - A Tool for Measuring the Environmental Impact of Cellular Polymers, Dr David Heath, ICI Engineering Technology, UK and Dr. Vanja Markovic, ICI Polyurethanes\/ISOPA, Belgium \u003cbr\u003e\u003cbr\u003e\"CFC-Free\" The Scope of the Achievement so far, P. Ashford, Caleb Management Services, UK \u003cbr\u003e\u003cbr\u003eThe Future of Foam Plastic Insulation in the Light of Climate Chance Legislation, J.G. Abbott, Dow Europe SA., Switzerland \u003cbr\u003e\u003cbr\u003eProcess by which Controls on Chemicals are Introduced into European Community Legislation, J. Neill, European Commission, Belgium \u003cbr\u003e\u003cbr\u003eUtilization of Polymeric Isocyanate Based Binders in Recycling of Automotive Shredder Fluff, K.C. Frisch, A. Sendijarevic, V. Sendijarevic and D. Klempner, University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003eRecovery and Recycling of Polyurethane Foams, E. Weigand, Bayer AG, Germany \u003cbr\u003e\u003cbr\u003eWaste Management of EPS in Europe, T. van Dorp, Shell Chemicals Europe, UK \u003cbr\u003e\u003cbr\u003eRecovery of Value from Waste: The Government View, P. Coombs, Department of Trade and Industry, UK \u003cbr\u003e\u003cbr\u003eCell Structure Development in Compression Molded, Crosslinked Polyethylene and Ethylene-Vinyl Acetate Foam, G.L.A. Sims and C. Khunniteekool, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eThe Influence of Low Molecular Additives on Gas Transport Properties in Polyethylene Films and Foams, W P Nauta and R.H.B. Bouma, University of Twente, J.E.F. Arnauts and H. M. Steuten, DSM Research, The Netherlands \u003cbr\u003e\u003cbr\u003ePolyether Triols,Tetrahydrofurame-Alkyleneoxides Copolymers for Flexible Polyurethane Foams, M. Ionescu, I. Mihalache, V. Zugravu and S. Mihai, Institute of Chemical Research, Romania \u003cbr\u003e\u003cbr\u003eSolubility and Nucleation Phenomena in Rigid PU Foam Expansion by Low Boiling Blowing Agents; a Modelling Approach, Henri J.M. Gruenbauer, Dow Benelux NV, The Netherlands \u003cbr\u003e\u003cbr\u003eLiquid Crystalline Polyurethanes: Synthesis, Properties and Application, B. Szczepaniak and P. Penczek, Industrial Chemistry Research Institute, A. Wolinska-Grabczyk, Institute of Coal Chemistry, and K.C. Frisch University of Detroit Mercy, USA \u003cbr\u003e\u003cbr\u003ePolyurethane Reactions According to Computational Chemistry, Nelson Malwitz, Sealed Air Corporation, USA \u003cbr\u003e\u003cbr\u003eRigid PVC Foams: A New Twist to an Old Technology, K. Redford, L.T. Hoydal, A. Stori, and K.H. Holm, SINTEF, Norway, A. Jorgensen and J. Grovdal, Dynoplast AS, Norway \u003cbr\u003e\u003cbr\u003eA Solid State Semi-Continuous Process to Make PET Foam Sheets, V. Kumar, University of Washington Seattle, USA and H. G. Schirmer, W. R. Grace Co., USA \u003cbr\u003e\u003cbr\u003eThe CarDio(TM) Process: Industrial Production Experiences, Carlo Florentini, Cannon Afros, Italy, Max Taverna, Cannon Communications, Italy, Barry Collings, Cannon, USA, Tony Griffiths, Cannon Viking, Italy \u003cbr\u003e\u003cbr\u003eThe Manufacture of Flexible Polyurethane Foams by the Variable Pressure Process V.P.F., J. B. Blackwell and G. Buckley, Beamech Group Limited, UK \u003cbr\u003e\u003cbr\u003eThe Balance of Formulation, Processing Conditions in the Manufacture of Crosslinked Polyethylene Foam, G.L.A. Sims and W. Sirithongtaworn, University of Manchester and UMIST, UK \u003cbr\u003e\u003cbr\u003eInteraction between Microstructure and Mechanical Properties of Flexible Polyurethane Foams, J. M. Williams and J. H. Beynon, University of Leicester, UK \u003cbr\u003e\u003cbr\u003eAnalysis of Impact of Two-Layer Foams, and Evaluation of Body Protectors, A. Gilchrist and N.J. Mills, University of Birmingham, UK\u003cbr\u003e\u003cbr\u003e"}
Characterisation of Po...
$260.00
{"id":11242254916,"title":"Characterisation of Polymers, Volume 1 \u0026 2","handle":"978-1-84735-132-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R.Crompton \u003cbr\u003eISBN 978-1-84735-132-6 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cbr\u003eVolume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different monomer units occur in copolymers. The techniques available for composition determination of homopolymers and copolymers and other recent modern techniques such as X-ray photoelectron spectroscopy, atomic force microscopy, microthermal analysis and scanning electron microscopy and energy dispersive analysis using X-rays are also included.The structure and microstructure of polymers, copolymers and rubbers are dealt with in Volume 2. More detailed aspects, such as sequencing of monomer units in copolymers, end-group analysis, tacticity and stereochemical determinations, are also dealt with in this subsequent volume.\u003cbr\u003e\u003cbr\u003e\u003ca href=\"\/products\/978-1-84735-123-4\"\u003eVOLUME 1\u003c\/a\u003e \u003cbr\u003e\u003cbr\u003e\u003ca href=\"\/products\/978-1-84735-126-5\"\u003eVOLUME 2\u003c\/a\u003e","published_at":"2017-06-22T21:15:29-04:00","created_at":"2017-06-22T21:15:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","analysis","Atomic Force Microscopy","book","cadmium","chromatography","Chromium","copolymers","Copper","destructive techniques","Determination of metals","determination of non-metallic elements","functional groups","hompolymers","Iron","Lead","Manganese","Microthermal Analysis","monomer ratios in copolymers","Nickel","NMR","p-chemical","Polarography","polymer","spectrometry","voltammetry","X-ray photoelectron spectroscopy","Zinc"],"price":26000,"price_min":26000,"price_max":35000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378490436,"title":"Hardcover","option1":"Hardcover","option2":null,"option3":null,"sku":"978-1-84735-132-6","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Characterisation of Polymers, Volume 1 \u0026 2 - Hardcover","public_title":"Hardcover","options":["Hardcover"],"price":35000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-132-6","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":44462780612,"title":"Softcover","option1":"Softcover","option2":null,"option3":null,"sku":"978-1-84735-128-9","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Characterisation of Polymers, Volume 1 \u0026 2 - Softcover","public_title":"Softcover","options":["Softcover"],"price":26000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-128-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-132-6.jpg?v=1499202976"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-132-6.jpg?v=1499202976","options":["Cover"],"media":[{"alt":null,"id":353926316125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-132-6.jpg?v=1499202976"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-132-6.jpg?v=1499202976","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R.Crompton \u003cbr\u003eISBN 978-1-84735-132-6 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cbr\u003eVolume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different monomer units occur in copolymers. The techniques available for composition determination of homopolymers and copolymers and other recent modern techniques such as X-ray photoelectron spectroscopy, atomic force microscopy, microthermal analysis and scanning electron microscopy and energy dispersive analysis using X-rays are also included.The structure and microstructure of polymers, copolymers and rubbers are dealt with in Volume 2. More detailed aspects, such as sequencing of monomer units in copolymers, end-group analysis, tacticity and stereochemical determinations, are also dealt with in this subsequent volume.\u003cbr\u003e\u003cbr\u003e\u003ca href=\"\/products\/978-1-84735-123-4\"\u003eVOLUME 1\u003c\/a\u003e \u003cbr\u003e\u003cbr\u003e\u003ca href=\"\/products\/978-1-84735-126-5\"\u003eVOLUME 2\u003c\/a\u003e"}
Chemistry and Technolo...
$240.00
{"id":11242205380,"title":"Chemistry and Technology of Polyols for Polyurethanes","handle":"978-1-85957-501-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M. Ionescu \u003cbr\u003eISBN 978-1-85957-501-7 \u003cbr\u003e\u003cbr\u003ePages 585\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyurethanes have become one of the most dynamic groups of polymers and they find use in nearly every aspect of modern life, in applications such as furniture, bedding, seating and instrument panels for cars, shoe soles, thermoinsulation, carpet backings, packaging, and as coatings. \u003cbr\u003e\u003cbr\u003eThis book considers the raw materials used to build the polyurethane polymeric architecture. It covers the chemistry and technology of oligo-polyol fabrication, the characteristics of the various oligo-polyol families and the effects of the oligo-polyol structure on the properties of the resulting polyurethane. It presents the details of oligo-polyol synthesis, and explains the chemical and physico-chemical subtleties of oligo-polyol fabrication. \u003cbr\u003e\u003cbr\u003eThis book attempts to link data and information concerning the chemistry and technology of oligo-polyols for polyurethanes, providing a comprehensive overview of: \u003cbr\u003e\u003cbr\u003eBasic polyurethane chemistry \u003cbr\u003e-Key oligo-polyol characteristics \u003cbr\u003e-Synthesis of the main oligo-polyol families, including: polyether polyols, polyester polyols, polybutadiene polyols, acrylic polyols, polysiloxane polyols, aminic polyols\u003cbr\u003e\u003cbr\u003e-Polyols from renewable resources \u003cbr\u003e-Chemical recovery of polyols \u003cbr\u003e-Relationships between polyol structure and polyurethane properties \u003cbr\u003eThis book will be of interest to all specialists working with polyols for the manufacture of polyurethanes and to all researchers that would like to know more about polyol chemistry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polyols\u003cbr\u003e1.1 Introduction\u003cbr\u003eReferences \u003cbr\u003e2 Basic Chemistry of Polyurethanes\u003cbr\u003e2.1 Reaction of Isocyanates with Alcohols\u003cbr\u003e2.2 Reaction of Isocyanates with Water\u003cbr\u003e2.3 Reaction of Isocyanates with Urethanes\u003cbr\u003e2.4 Reaction of Isocyanates with Urea Groups\u003cbr\u003e2.5 Reaction of Isocyanates with Carboxylic Acids\u003cbr\u003e2.6 Dimerisation of Isocyanates\u003cbr\u003e2.7 Trimerisation of Isocyanates\u003cbr\u003e2.8 Reaction of Isocyanates with Epoxide Compounds\u003cbr\u003e2.9 Reaction of Isocyanates with Cyclic Anhydrides\u003cbr\u003e2.10 Prepolymer Technique\u003cbr\u003e2.11 Quasiprepolymer Technique\u003cbr\u003e2.12 One Shot Technique\u003cbr\u003e2.13 Several Considerations on the Polyaddition Reaction\u003cbr\u003eReferences \u003cbr\u003e3 The General Characteristics of Oligo-Polyols\u003cbr\u003e3.1 Hydroxyl Number\u003cbr\u003e3.1.1 Hydroxyl Percentage\u003cbr\u003e3.2 Functionality\u003cbr\u003e3.3 Molecular Weight and Molecular Weight Distribution\u003cbr\u003e3.4 Equivalent Weight\u003cbr\u003e3.5 Water Content\u003cbr\u003e3.6 Primary Hydroxyl Content\u003cbr\u003e3.7 Reactivity\u003cbr\u003e3.8 Specific Gravity\u003cbr\u003e3.9 Viscosity\u003cbr\u003e3.10 Colour\u003cbr\u003e3.11 Acid Number\u003cbr\u003eReferences \u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eMihail Ionescu gained his first degree from the University Polytechnica Bucharest, Faculty of Industrial Chemistry, and gained his PhD from the same institution in 1986.\u003c\/p\u003e\n\u003cp\u003eHe has had a varied career and is currently a Senior Research Scientist at Pittsburg State University, Kansas, USA. He was President of the Scientific Council of the Institute of Chemical Research (ICECHIM) in Bucharest, Romania from 1993-2004; the Scientific Director of ICECHIM from 1997-2004; Head of the Polymer Synthesis Department at ICECHIM from 1992-1997; Secretary of the Romanian Polymer Society from 1992; an active member of the New York Academy of Science (1996); and is a Member of American Chemical Society and American Oil Chemists Society.\u003c\/p\u003e\n\u003cp\u003eMihail has completed around 200 research projects - laboratory, pilot plant and industrial scale (unpublished in the open literature, closed circuit); has devised more than 20 technologies for polyether polyols which are applied industrially - the resulting polyethers (for flexible and rigid PU foams), are exported to: Germany, Italy, Turkey, France, The Netherlands, Poland, Hungary, Serbia; has 70 patents in the field of telechelic polyether synthesis and in the field of aromatic polymers; and has authored around 85 scientific papers; he is thus well qualified to write this book.\u003c\/p\u003e","published_at":"2017-06-22T21:12:53-04:00","created_at":"2017-06-22T21:12:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","acid number","applications","book","chemistry of polyurethanes","color","colour","equivalent weight","functionality","hydroxyl number","hydroxyl percentage","isocyanates","molecular weight","molecular weight distribution","oligo-polyol","p-chemistry","polymer","polymeric","polymers","polyurethanes","reactivity","specific gravity","viscosity","water content"],"price":24000,"price_min":24000,"price_max":24000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378319940,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Chemistry and Technology of Polyols for Polyurethanes","public_title":null,"options":["Default Title"],"price":24000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-501-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-501-7.jpg?v=1499203489"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-501-7.jpg?v=1499203489","options":["Title"],"media":[{"alt":null,"id":353927299165,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-501-7.jpg?v=1499203489"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-501-7.jpg?v=1499203489","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M. Ionescu \u003cbr\u003eISBN 978-1-85957-501-7 \u003cbr\u003e\u003cbr\u003ePages 585\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyurethanes have become one of the most dynamic groups of polymers and they find use in nearly every aspect of modern life, in applications such as furniture, bedding, seating and instrument panels for cars, shoe soles, thermoinsulation, carpet backings, packaging, and as coatings. \u003cbr\u003e\u003cbr\u003eThis book considers the raw materials used to build the polyurethane polymeric architecture. It covers the chemistry and technology of oligo-polyol fabrication, the characteristics of the various oligo-polyol families and the effects of the oligo-polyol structure on the properties of the resulting polyurethane. It presents the details of oligo-polyol synthesis, and explains the chemical and physico-chemical subtleties of oligo-polyol fabrication. \u003cbr\u003e\u003cbr\u003eThis book attempts to link data and information concerning the chemistry and technology of oligo-polyols for polyurethanes, providing a comprehensive overview of: \u003cbr\u003e\u003cbr\u003eBasic polyurethane chemistry \u003cbr\u003e-Key oligo-polyol characteristics \u003cbr\u003e-Synthesis of the main oligo-polyol families, including: polyether polyols, polyester polyols, polybutadiene polyols, acrylic polyols, polysiloxane polyols, aminic polyols\u003cbr\u003e\u003cbr\u003e-Polyols from renewable resources \u003cbr\u003e-Chemical recovery of polyols \u003cbr\u003e-Relationships between polyol structure and polyurethane properties \u003cbr\u003eThis book will be of interest to all specialists working with polyols for the manufacture of polyurethanes and to all researchers that would like to know more about polyol chemistry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polyols\u003cbr\u003e1.1 Introduction\u003cbr\u003eReferences \u003cbr\u003e2 Basic Chemistry of Polyurethanes\u003cbr\u003e2.1 Reaction of Isocyanates with Alcohols\u003cbr\u003e2.2 Reaction of Isocyanates with Water\u003cbr\u003e2.3 Reaction of Isocyanates with Urethanes\u003cbr\u003e2.4 Reaction of Isocyanates with Urea Groups\u003cbr\u003e2.5 Reaction of Isocyanates with Carboxylic Acids\u003cbr\u003e2.6 Dimerisation of Isocyanates\u003cbr\u003e2.7 Trimerisation of Isocyanates\u003cbr\u003e2.8 Reaction of Isocyanates with Epoxide Compounds\u003cbr\u003e2.9 Reaction of Isocyanates with Cyclic Anhydrides\u003cbr\u003e2.10 Prepolymer Technique\u003cbr\u003e2.11 Quasiprepolymer Technique\u003cbr\u003e2.12 One Shot Technique\u003cbr\u003e2.13 Several Considerations on the Polyaddition Reaction\u003cbr\u003eReferences \u003cbr\u003e3 The General Characteristics of Oligo-Polyols\u003cbr\u003e3.1 Hydroxyl Number\u003cbr\u003e3.1.1 Hydroxyl Percentage\u003cbr\u003e3.2 Functionality\u003cbr\u003e3.3 Molecular Weight and Molecular Weight Distribution\u003cbr\u003e3.4 Equivalent Weight\u003cbr\u003e3.5 Water Content\u003cbr\u003e3.6 Primary Hydroxyl Content\u003cbr\u003e3.7 Reactivity\u003cbr\u003e3.8 Specific Gravity\u003cbr\u003e3.9 Viscosity\u003cbr\u003e3.10 Colour\u003cbr\u003e3.11 Acid Number\u003cbr\u003eReferences \u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eMihail Ionescu gained his first degree from the University Polytechnica Bucharest, Faculty of Industrial Chemistry, and gained his PhD from the same institution in 1986.\u003c\/p\u003e\n\u003cp\u003eHe has had a varied career and is currently a Senior Research Scientist at Pittsburg State University, Kansas, USA. He was President of the Scientific Council of the Institute of Chemical Research (ICECHIM) in Bucharest, Romania from 1993-2004; the Scientific Director of ICECHIM from 1997-2004; Head of the Polymer Synthesis Department at ICECHIM from 1992-1997; Secretary of the Romanian Polymer Society from 1992; an active member of the New York Academy of Science (1996); and is a Member of American Chemical Society and American Oil Chemists Society.\u003c\/p\u003e\n\u003cp\u003eMihail has completed around 200 research projects - laboratory, pilot plant and industrial scale (unpublished in the open literature, closed circuit); has devised more than 20 technologies for polyether polyols which are applied industrially - the resulting polyethers (for flexible and rigid PU foams), are exported to: Germany, Italy, Turkey, France, The Netherlands, Poland, Hungary, Serbia; has 70 patents in the field of telechelic polyether synthesis and in the field of aromatic polymers; and has authored around 85 scientific papers; he is thus well qualified to write this book.\u003c\/p\u003e"}
Chromatography Mass Sp...
$215.00
{"id":11242239300,"title":"Chromatography Mass Spectroscopy in Polymer Analysis","handle":"978-1-84735-482-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-482-2 \u003cbr\u003e\u003cbr\u003ePages: 236, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe combination of chromatography with mass spectroscopy is a very useful technique which is being increasingly used by polymer chemists to improve existing polymers and to discover new ones with specific physical properties such as thermal stability and retention of properties over a long service life.\u003cbr\u003e\u003cbr\u003eThis technique is extremely powerful for the analysis and characterisation of polymers and is often based on the use of controlled chromatography - mass spectroscopy to measure a polymer's decomposition with techniques such as pyrolysis, followed by chromatography to separate any breakdown product, and, finally, mass spectroscopy, to achieve an unequivocal identification of the pyrolysis products obtained. The detail that can be obtained by such methods includes structure of the polymer backbone, branching, end groups, isomeric detail and fine detail in the structure of copolymers.\u003cbr\u003e\u003cbr\u003eThe first three chapters of the book discuss the various chromatographic and mass spectroscopic techniques now available.\u003cbr\u003e\u003cbr\u003eChapters 3-8 cover the complementary methods, based on the combination of mass spectroscopy with various chromatographic techniques such as high-performance liquid chromatography, gas chromatography and supercritical fluid chromatography.\u003cbr\u003e\u003cbr\u003ePyrolysis chromatography-mass spectroscopy is a method of studying the structure of polymers which involves subjecting the polymer pyrolysis products to a chromatographic technique to simplify subsequent analysis and, finally mass spectroscopy to identify the pyrolysis products with the possibility of deducing finer details of polymer structure than were previously attainable by classical methods (Chapters 9-11).\u003cbr\u003e\u003cbr\u003eBy providing a thorough up-to-date review of work in this field it is hoped that the book will be of interest to all those engaged in polymer research and development, and polymer users in general.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chromatographic Techniques\u003cbr\u003e1.1 Gas Chromatography\u003cbr\u003e1.2 High Performance Liquid Chromatography\u003cbr\u003e1.2.1 Post-column Derivatisation: Fluorescence Detectors\u003cbr\u003e1.2.2 Diode Array Detectors\u003cbr\u003e1.2.3 Electrochemical Detectors\u003cbr\u003e1.2.3.1 The determination of Monomers\u003cbr\u003e1.2.3.2 Determination of Oligomers\u003cbr\u003e1.2.4 Fractionation\/Microstructure Studies\u003cbr\u003e1.3 Size Exclusion Chromatography\u003cbr\u003e1.3.1 Characterisation Studies\u003cbr\u003e1.3.2 Branching\u003cbr\u003e1.3.3 Compositional Analysis\u003cbr\u003e1.3.4 Molecular Weight\u003cbr\u003e1.3.5 Polymer Blends\u003cbr\u003e1.3.6 Polymer Additives\u003cbr\u003e1.4 Supercritical Fluid Chromatography\u003cbr\u003e1.4.1 Polymer Additives\u003cbr\u003e1.5 Thin Layer Chromatography\u003cbr\u003e1.6 Thermal Field Flow Fractionation\u003cbr\u003evi\u003cbr\u003eChromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e2 Mass Spectroscopic Techniques\u003cbr\u003e2.1 Time-of-Flight – Secondary Ion Mass Spectroscopy\u003cbr\u003e2.1.1 Adhesion Studies\u003cbr\u003e2.1.2 Polymer Interface Studies\u003cbr\u003e2.1.3 Vulcanisation Studies\u003cbr\u003e2.2 Matrix Assisted Laser Desorption Ionisation Mass Spectroscopy\u003cbr\u003e2.2.1 Applications\u003cbr\u003e2.3 Matrix Assisted Laser Desorption Ionisation Post\u003cbr\u003eSource Decay\u003cbr\u003e2.4 Electrospray Ionisation Mass Spectroscopy\u003cbr\u003e2.5 Field Desorption Mass Spectroscopy\u003cbr\u003e2.6 Tandem Mass Spectroscopy\u003cbr\u003e2.7 Fourier-transform Ion Cyclotron Mass Spectroscopy\u003cbr\u003e2.8 Fast Atom Bombardment Mass Spectroscopy\u003cbr\u003e2.9 Radio Frequency and Glow Discharge – Mass Spectroscopy\u003cbr\u003e3 Chemical Reaction Gas Chromatography\u003cbr\u003e3.1 Applications\u003cbr\u003e3.1.1 Saponification Procedures\u003cbr\u003e3.1.2 Zeisel Procedures\u003cbr\u003e3.1.3 Alkali Fusion\u003cbr\u003e3.1.4 Reactive Hydrolysis – Methylation – Pyrolysis –Chromatography\u003cbr\u003e4 Complementary High Performance Liquid Chromatography – Mass Spectroscopy\u003cbr\u003e4.1 Theory\u003cbr\u003e4.1 Applications Contents vii\u003cbr\u003e4.1.1 Polymer Characterisation\u003cbr\u003e4.1.2 Polymer Extractables\u003cbr\u003e4.1.3 Determination of Polymer Additives\u003cbr\u003e4.1.4 High Performance Liquid Chromatography –Infrared Spectroscopy\u003cbr\u003e5 Complementary Size Exclusion Chromatography – Mass Spectroscopy\u003cbr\u003e5.1 Applications\u003cbr\u003e5.1.1 Molecular Weight\u003cbr\u003e5.1.1.1 Polyesters\u003cbr\u003e5.1.1.2 Poly(N-methyl Perfluoro –octylsulfonamido Ethyl Acrylate)\u003cbr\u003e5.1.1.3 Polymethylmethacrylate\u003cbr\u003e5.1.1.4 2-Benzothiozolon-3-yl Acetic Acid-telechelic Polyethylene Oxides (PEG Esters)\u003cbr\u003e5.1.1.5 Polyesters\u003cbr\u003e5.1.1.6 Polyethers\u003cbr\u003e5.1.1.7 Hydrocarbon Types\u003cbr\u003e5.1.1.8 Nitrogen Containing Polymers\u003cbr\u003e5.1.1.9 Silicon Containing Polymers\u003cbr\u003e5.1.1.10 Miscellaneous Polymers\u003cbr\u003e5.2 Polymer Degradation Studies\u003cbr\u003e5.3 End-group Analysis\u003cbr\u003e6 Complementary Gas Chromatography – Mass Spectroscopy\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Polymer Characterisation\u003cbr\u003e6.1.1.1 Sulfur Containing Polymers\u003cbr\u003eviii Chromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e6.1.1.2 3-Glycidoxyproply-tri-methoxysilane sols\u003cbr\u003e6.1.1.3 Fluorine Containing Polymers\u003cbr\u003e6.1.2 Polymer Degradation Studies\u003cbr\u003e6.1.2.1 Low Molecular Weight Compounds or Degradation Products\u003cbr\u003e6.1.2.2 Molar Mass Changes during Degradation Analysed by Size Exclusion Chromatography and\/or Matrix Assisted Laser Desorption Ionisation\u003cbr\u003e6.1.2.3 Polybutylene Adipate and Polybutylene Succinate\u003cbr\u003e6.1.2.4 Rubbers\u003cbr\u003e6.1.2.5 Polystyrene Peroxide\u003cbr\u003e6.1.2.6 Polypropylene Hydroperoxides\u003cbr\u003e6.1.2.7 Polystyrene\u003cbr\u003e6.1.2.8 Polyethylene Oxide – Polypropylene Oxide Copolymers\u003cbr\u003e6.1.3 Food Packaging Applications\u003cbr\u003e6.1.4 Miscellaneous Polymers\u003cbr\u003e7 Complementary Supercritical Fluid Chromatography – Mass Spectroscopy\u003cbr\u003e8 Headspace Analysis – Mass Spectroscopy\u003cbr\u003e9 Pyrolysis Gas Chromatography – Mass Spectroscopy\u003cbr\u003e9.1 Applications\u003cbr\u003e9.1.1 Polyolefins\u003cbr\u003e9.1.1.1 Polyolefin Homopolymers\u003cbr\u003e9.1.1.2 Polypropylene Carbonate\u003cbr\u003eContents ix\u003cbr\u003e9.1.1.3 Polyolefin Copolymers\u003cbr\u003e9.1.1.4 Polystyrenes\u003cbr\u003e9.1.1.5 Polyesters\u003cbr\u003e9.1.1.6 Chlorine Containing Polymers\u003cbr\u003e9.1.1.7 Rubbers\u003cbr\u003e9.1.1.9 Nitrogen Containing Polymers\u003cbr\u003e9.1.1.10 Sulfur Containing Polymers\u003cbr\u003e9.1.1.11 Silicon Containing Polymers\u003cbr\u003e9.2 Polymer Additives\u003cbr\u003e9.3 Miscellaneous\u003cbr\u003e9.3.1 Py-GC-MS Methods\u003cbr\u003e9.3.2 Direct Pyrolysis – Gas Chromatography without Intervening Chromatographic Stage\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:40-04:00","created_at":"2017-06-22T21:14:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","acrylic polymers","additives","blends","book","chromatography","mass spectroscopy","monomers","oligomers","p-chemistry","polymer","polymers"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432580,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Chromatography Mass Spectroscopy in Polymer Analysis","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-482-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231","options":["Title"],"media":[{"alt":null,"id":353927364701,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-482-2 \u003cbr\u003e\u003cbr\u003ePages: 236, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe combination of chromatography with mass spectroscopy is a very useful technique which is being increasingly used by polymer chemists to improve existing polymers and to discover new ones with specific physical properties such as thermal stability and retention of properties over a long service life.\u003cbr\u003e\u003cbr\u003eThis technique is extremely powerful for the analysis and characterisation of polymers and is often based on the use of controlled chromatography - mass spectroscopy to measure a polymer's decomposition with techniques such as pyrolysis, followed by chromatography to separate any breakdown product, and, finally, mass spectroscopy, to achieve an unequivocal identification of the pyrolysis products obtained. The detail that can be obtained by such methods includes structure of the polymer backbone, branching, end groups, isomeric detail and fine detail in the structure of copolymers.\u003cbr\u003e\u003cbr\u003eThe first three chapters of the book discuss the various chromatographic and mass spectroscopic techniques now available.\u003cbr\u003e\u003cbr\u003eChapters 3-8 cover the complementary methods, based on the combination of mass spectroscopy with various chromatographic techniques such as high-performance liquid chromatography, gas chromatography and supercritical fluid chromatography.\u003cbr\u003e\u003cbr\u003ePyrolysis chromatography-mass spectroscopy is a method of studying the structure of polymers which involves subjecting the polymer pyrolysis products to a chromatographic technique to simplify subsequent analysis and, finally mass spectroscopy to identify the pyrolysis products with the possibility of deducing finer details of polymer structure than were previously attainable by classical methods (Chapters 9-11).\u003cbr\u003e\u003cbr\u003eBy providing a thorough up-to-date review of work in this field it is hoped that the book will be of interest to all those engaged in polymer research and development, and polymer users in general.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chromatographic Techniques\u003cbr\u003e1.1 Gas Chromatography\u003cbr\u003e1.2 High Performance Liquid Chromatography\u003cbr\u003e1.2.1 Post-column Derivatisation: Fluorescence Detectors\u003cbr\u003e1.2.2 Diode Array Detectors\u003cbr\u003e1.2.3 Electrochemical Detectors\u003cbr\u003e1.2.3.1 The determination of Monomers\u003cbr\u003e1.2.3.2 Determination of Oligomers\u003cbr\u003e1.2.4 Fractionation\/Microstructure Studies\u003cbr\u003e1.3 Size Exclusion Chromatography\u003cbr\u003e1.3.1 Characterisation Studies\u003cbr\u003e1.3.2 Branching\u003cbr\u003e1.3.3 Compositional Analysis\u003cbr\u003e1.3.4 Molecular Weight\u003cbr\u003e1.3.5 Polymer Blends\u003cbr\u003e1.3.6 Polymer Additives\u003cbr\u003e1.4 Supercritical Fluid Chromatography\u003cbr\u003e1.4.1 Polymer Additives\u003cbr\u003e1.5 Thin Layer Chromatography\u003cbr\u003e1.6 Thermal Field Flow Fractionation\u003cbr\u003evi\u003cbr\u003eChromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e2 Mass Spectroscopic Techniques\u003cbr\u003e2.1 Time-of-Flight – Secondary Ion Mass Spectroscopy\u003cbr\u003e2.1.1 Adhesion Studies\u003cbr\u003e2.1.2 Polymer Interface Studies\u003cbr\u003e2.1.3 Vulcanisation Studies\u003cbr\u003e2.2 Matrix Assisted Laser Desorption Ionisation Mass Spectroscopy\u003cbr\u003e2.2.1 Applications\u003cbr\u003e2.3 Matrix Assisted Laser Desorption Ionisation Post\u003cbr\u003eSource Decay\u003cbr\u003e2.4 Electrospray Ionisation Mass Spectroscopy\u003cbr\u003e2.5 Field Desorption Mass Spectroscopy\u003cbr\u003e2.6 Tandem Mass Spectroscopy\u003cbr\u003e2.7 Fourier-transform Ion Cyclotron Mass Spectroscopy\u003cbr\u003e2.8 Fast Atom Bombardment Mass Spectroscopy\u003cbr\u003e2.9 Radio Frequency and Glow Discharge – Mass Spectroscopy\u003cbr\u003e3 Chemical Reaction Gas Chromatography\u003cbr\u003e3.1 Applications\u003cbr\u003e3.1.1 Saponification Procedures\u003cbr\u003e3.1.2 Zeisel Procedures\u003cbr\u003e3.1.3 Alkali Fusion\u003cbr\u003e3.1.4 Reactive Hydrolysis – Methylation – Pyrolysis –Chromatography\u003cbr\u003e4 Complementary High Performance Liquid Chromatography – Mass Spectroscopy\u003cbr\u003e4.1 Theory\u003cbr\u003e4.1 Applications Contents vii\u003cbr\u003e4.1.1 Polymer Characterisation\u003cbr\u003e4.1.2 Polymer Extractables\u003cbr\u003e4.1.3 Determination of Polymer Additives\u003cbr\u003e4.1.4 High Performance Liquid Chromatography –Infrared Spectroscopy\u003cbr\u003e5 Complementary Size Exclusion Chromatography – Mass Spectroscopy\u003cbr\u003e5.1 Applications\u003cbr\u003e5.1.1 Molecular Weight\u003cbr\u003e5.1.1.1 Polyesters\u003cbr\u003e5.1.1.2 Poly(N-methyl Perfluoro –octylsulfonamido Ethyl Acrylate)\u003cbr\u003e5.1.1.3 Polymethylmethacrylate\u003cbr\u003e5.1.1.4 2-Benzothiozolon-3-yl Acetic Acid-telechelic Polyethylene Oxides (PEG Esters)\u003cbr\u003e5.1.1.5 Polyesters\u003cbr\u003e5.1.1.6 Polyethers\u003cbr\u003e5.1.1.7 Hydrocarbon Types\u003cbr\u003e5.1.1.8 Nitrogen Containing Polymers\u003cbr\u003e5.1.1.9 Silicon Containing Polymers\u003cbr\u003e5.1.1.10 Miscellaneous Polymers\u003cbr\u003e5.2 Polymer Degradation Studies\u003cbr\u003e5.3 End-group Analysis\u003cbr\u003e6 Complementary Gas Chromatography – Mass Spectroscopy\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Polymer Characterisation\u003cbr\u003e6.1.1.1 Sulfur Containing Polymers\u003cbr\u003eviii Chromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e6.1.1.2 3-Glycidoxyproply-tri-methoxysilane sols\u003cbr\u003e6.1.1.3 Fluorine Containing Polymers\u003cbr\u003e6.1.2 Polymer Degradation Studies\u003cbr\u003e6.1.2.1 Low Molecular Weight Compounds or Degradation Products\u003cbr\u003e6.1.2.2 Molar Mass Changes during Degradation Analysed by Size Exclusion Chromatography and\/or Matrix Assisted Laser Desorption Ionisation\u003cbr\u003e6.1.2.3 Polybutylene Adipate and Polybutylene Succinate\u003cbr\u003e6.1.2.4 Rubbers\u003cbr\u003e6.1.2.5 Polystyrene Peroxide\u003cbr\u003e6.1.2.6 Polypropylene Hydroperoxides\u003cbr\u003e6.1.2.7 Polystyrene\u003cbr\u003e6.1.2.8 Polyethylene Oxide – Polypropylene Oxide Copolymers\u003cbr\u003e6.1.3 Food Packaging Applications\u003cbr\u003e6.1.4 Miscellaneous Polymers\u003cbr\u003e7 Complementary Supercritical Fluid Chromatography – Mass Spectroscopy\u003cbr\u003e8 Headspace Analysis – Mass Spectroscopy\u003cbr\u003e9 Pyrolysis Gas Chromatography – Mass Spectroscopy\u003cbr\u003e9.1 Applications\u003cbr\u003e9.1.1 Polyolefins\u003cbr\u003e9.1.1.1 Polyolefin Homopolymers\u003cbr\u003e9.1.1.2 Polypropylene Carbonate\u003cbr\u003eContents ix\u003cbr\u003e9.1.1.3 Polyolefin Copolymers\u003cbr\u003e9.1.1.4 Polystyrenes\u003cbr\u003e9.1.1.5 Polyesters\u003cbr\u003e9.1.1.6 Chlorine Containing Polymers\u003cbr\u003e9.1.1.7 Rubbers\u003cbr\u003e9.1.1.9 Nitrogen Containing Polymers\u003cbr\u003e9.1.1.10 Sulfur Containing Polymers\u003cbr\u003e9.1.1.11 Silicon Containing Polymers\u003cbr\u003e9.2 Polymer Additives\u003cbr\u003e9.3 Miscellaneous\u003cbr\u003e9.3.1 Py-GC-MS Methods\u003cbr\u003e9.3.2 Direct Pyrolysis – Gas Chromatography without Intervening Chromatographic Stage\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Cleaning with Solvents...
$225.00
{"id":11242206404,"title":"Cleaning with Solvents: Science and Technology, 1st Edition","handle":"9781455731312","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J Durkee \u003cbr\u003eISBN 9781455731312 \u003cbr\u003e\u003cbr\u003ePages: 780\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Three methods explained in detail for substitution of suitable solvents for those unsuitable for any reason: toxic solvents don't have to be tolerated; this volume explains how to do better\u003cbr\u003e\u003cbr\u003e• Enables users to make informed judgments about their selection of cleaning solvents for specific applications, including solvent replacement decisions\u003cbr\u003e\u003cbr\u003e• Explains how to plan and implement solvent cleaning systems that are effective, economical and compliant with regulations\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHigh-precision cleaning is required across a wide range of sectors, including aerospace, defense, medical device manufacturing, pharmaceutical processing, semiconductor\/electronics, etc.\u003cbr\u003e\u003cbr\u003eCleaning parts and surfaces with solvents is simple, effective and low-cost. Although health and safety and environmental concerns come into play with the use of solvents, this book explores how safe and compliant solvent-based cleaning techniques can be implemented. A key to this is the selection of the right solvent. The author also examines a range of newer \"green\" solvent cleaning options.\u003cbr\u003e\u003cbr\u003eThis book supplies scientific fundamentals and practical guidance supported by real-world examples. Durkee explains the three principal methods of solvent selection: matching of solubility parameters, reduction of potential for smog formation, and matching of physical properties. He also provides guidance on the safe use of aerosols, wipe-cleaning techniques, solvent stabilization, economics, and many other topics.\u003cbr\u003e\u003cbr\u003eA compendium of blend rules is included, covering the physical, chemical, and environmental properties of solvents.\u003cbr\u003e\u003cbr\u003eReadership\u003cbr\u003e\u003cbr\u003eEngineers and scientists involved in precision cleaning across sectors including aerospace, defense, medical device manufacturing, pharmaceutical processing, semiconductor \/ electronics, etc.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eJohn Durkee\u003c\/p\u003e\n\u003cp\u003eAffiliations and expertise\u003c\/p\u003e\n\u003cp\u003eConsultant in Cleaning Technology and Processes, Texas, USA \u003c\/p\u003e","published_at":"2017-06-22T21:12:57-04:00","created_at":"2017-06-22T21:12:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","cleaning options","environment","p-additives","polymer","solvent","solvents","surfaces cleaning"],"price":22500,"price_min":22500,"price_max":22500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378321988,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Cleaning with Solvents: Science and Technology, 1st Edition","public_title":null,"options":["Default Title"],"price":22500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781455731312","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781455731312.jpg?v=1499719581"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731312.jpg?v=1499719581","options":["Title"],"media":[{"alt":null,"id":353945714781,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731312.jpg?v=1499719581"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731312.jpg?v=1499719581","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J Durkee \u003cbr\u003eISBN 9781455731312 \u003cbr\u003e\u003cbr\u003ePages: 780\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Three methods explained in detail for substitution of suitable solvents for those unsuitable for any reason: toxic solvents don't have to be tolerated; this volume explains how to do better\u003cbr\u003e\u003cbr\u003e• Enables users to make informed judgments about their selection of cleaning solvents for specific applications, including solvent replacement decisions\u003cbr\u003e\u003cbr\u003e• Explains how to plan and implement solvent cleaning systems that are effective, economical and compliant with regulations\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eHigh-precision cleaning is required across a wide range of sectors, including aerospace, defense, medical device manufacturing, pharmaceutical processing, semiconductor\/electronics, etc.\u003cbr\u003e\u003cbr\u003eCleaning parts and surfaces with solvents is simple, effective and low-cost. Although health and safety and environmental concerns come into play with the use of solvents, this book explores how safe and compliant solvent-based cleaning techniques can be implemented. A key to this is the selection of the right solvent. The author also examines a range of newer \"green\" solvent cleaning options.\u003cbr\u003e\u003cbr\u003eThis book supplies scientific fundamentals and practical guidance supported by real-world examples. Durkee explains the three principal methods of solvent selection: matching of solubility parameters, reduction of potential for smog formation, and matching of physical properties. He also provides guidance on the safe use of aerosols, wipe-cleaning techniques, solvent stabilization, economics, and many other topics.\u003cbr\u003e\u003cbr\u003eA compendium of blend rules is included, covering the physical, chemical, and environmental properties of solvents.\u003cbr\u003e\u003cbr\u003eReadership\u003cbr\u003e\u003cbr\u003eEngineers and scientists involved in precision cleaning across sectors including aerospace, defense, medical device manufacturing, pharmaceutical processing, semiconductor \/ electronics, etc.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eJohn Durkee\u003c\/p\u003e\n\u003cp\u003eAffiliations and expertise\u003c\/p\u003e\n\u003cp\u003eConsultant in Cleaning Technology and Processes, Texas, USA \u003c\/p\u003e"}
Coatings Basics
$120.00
{"id":11242251204,"title":"Coatings Basics","handle":"978-3-86630-851-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Adrie Winkelaar \u003cbr\u003eISBN 978-3-86630-851-0 \u003cbr\u003e\u003cbr\u003e140 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eAn overview of the scientific fundamentals and practical aspects of paints and coatings\u003c\/li\u003e\n\u003cli\u003eProvides readers with the knowledge needed to select the right paint products, and use them in a way that delivers excellent results\u003c\/li\u003e\n\u003cli\u003eEssential reading for non-specialists and business professionals - and a fascinating overview for experienced professionals\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nWhat is paint or a coating; Basic Principles of Chemistry; Paint Ingredients; Consistency and Stability; Coating Properties; Paint Products and Paint formula; Paint production; Application, Drying and Removal; Paint test Methods; Health, Safety and Environment","published_at":"2017-06-22T21:15:18-04:00","created_at":"2017-06-22T21:15:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","application","book","coating","formula","p-applications","paint","polymer","safety"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378476228,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Coatings Basics","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-86630-851-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-851-0.jpg?v=1499720143"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-851-0.jpg?v=1499720143","options":["Title"],"media":[{"alt":null,"id":353960460381,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-851-0.jpg?v=1499720143"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-86630-851-0.jpg?v=1499720143","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Adrie Winkelaar \u003cbr\u003eISBN 978-3-86630-851-0 \u003cbr\u003e\u003cbr\u003e140 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eAn overview of the scientific fundamentals and practical aspects of paints and coatings\u003c\/li\u003e\n\u003cli\u003eProvides readers with the knowledge needed to select the right paint products, and use them in a way that delivers excellent results\u003c\/li\u003e\n\u003cli\u003eEssential reading for non-specialists and business professionals - and a fascinating overview for experienced professionals\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nWhat is paint or a coating; Basic Principles of Chemistry; Paint Ingredients; Consistency and Stability; Coating Properties; Paint Products and Paint formula; Paint production; Application, Drying and Removal; Paint test Methods; Health, Safety and Environment"}