- Grid List
Filter
Wood-Plastic Composites
$253.00
{"id":11242210564,"title":"Wood-Plastic Composites","handle":"978-0-470-14891-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A. A. Kyosov \u003cbr\u003eISBN 978-0-470-14891-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003ePages 697, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the first book that presents an overview of the main principles underlying the composition of wood-plastic composite (WPC) materials and their performance in the real world. Focusing on the characteristics of WPC materials rather than their manufacture, this guide bridges the gap between laboratory-based research and testing and the properties WPC materials exhibit when they're used in decks, railing systems, fences, and other common applications\u003cbr\u003e\u003cbr\u003e-Describes compositions of WPC materials, including thermoplastics, cellulose fiber, minerals, additives, and their properties \u003cbr\u003e-Covers mechanical properties, microbial resistance, water absorption, flammability, slip resistance, thermal expansion-contraction, sensitivity to oxidation and solar radiation, and rheological properties of hot melts of WPC \u003cbr\u003e-Covers subjects that determine esthetics, properties, performance, and durability of wood-plastic composite products -Includes comparisons of different ASTM methods and procedures that apply to specific properties\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePreface. \u003cbr\u003e1. Foreword-Overview Wood-Plastic Composites.\u003cbr\u003eWPC, pricing restrictions. \u003cbr\u003eWPC, brands and manufacturers. \u003cbr\u003eFlexural strength. \u003cbr\u003eFlexural modulus, deflection. \u003cbr\u003eDeck boards. \u003cbr\u003eStair treads. \u003cbr\u003eThermal expansion-contraction. \u003cbr\u003eShrinkage. \u003cbr\u003eSlip resistance. \u003cbr\u003eWater absorption, swell, buckling. \u003cbr\u003eMicrobial degradation. \u003cbr\u003eTermite resistance. \u003cbr\u003eFlammability. \u003cbr\u003eOxidation and crumbling. \u003cbr\u003ePhoto-oxidation and fading. \u003cbr\u003eWood-plastic composites - products, trends, market size and dynamics, and unsolved (or only partially solved) problems. \u003cbr\u003eWPC products. \u003cbr\u003eThe public view, perception. \u003cbr\u003eWPC market size and dynamics. \u003cbr\u003eCompetition on the WPC market. \u003cbr\u003eUnsolved (or only partially solved) R\u0026amp;D problems. \u003cbr\u003eExamples of wood-plastic composite deck boards. \u003cbr\u003eReferences.\u003cbr\u003e\u003cbr\u003e2. Composition of wood-plastic composites: thermoplastics.\u003cbr\u003eIntroduction. \u003cbr\u003ePolyethylene. \u003cbr\u003ePolypropylene. \u003cbr\u003ePolyvinyl Chloride. \u003cbr\u003eAcrylonitrile-Butadiene-Styrene copolymer (ABS). \u003cbr\u003eNylon 6 and other polyamides. \u003cbr\u003eConclusion. \u003cbr\u003eAddendum: ASTM tests covering definitions of technical terms and their contractions used in plastic industry and specifications of plastics. \u003cbr\u003eReferences. \u003cbr\u003e3. Composition of wood-plastic composites: cellulose and lignocellulose fillers. \u003cbr\u003eIntroduction. \u003cbr\u003eA brief history of cellulose fillers in WPC in U.S. patents. \u003cbr\u003eBeginning of WPC. Thermosetting materials. \u003cbr\u003eCellulose as a reinforcing ingredient in thermoplastic compositions. \u003cbr\u003eImproving mechanical and other properties of WPC. \u003cbr\u003eImproving the compatibility of the fillers with the polymeric matrix. Coupling agents. \u003cbr\u003ePlastics beyond HDPE in wood-plastic composite materials. \u003cbr\u003eCellulose-polyolefin composite pellets. \u003cbr\u003eFoamed wood-plastic composites. \u003cbr\u003eBiodegradable wood-plastic composites. \u003cbr\u003eGeneral properties of lignocellulosic fiber as fillers. \u003cbr\u003eChemical composition. \u003cbr\u003eDetrimental effect of lignin. \u003cbr\u003eDetrimental effect of hemicellulosics. Steam explosion. \u003cbr\u003eAspect ratio. \u003cbr\u003eDensity (specific gravity). \u003cbr\u003eParticle size. \u003cbr\u003eParticle shape. \u003cbr\u003eParticle size distribution. \u003cbr\u003eParticle surface area. \u003cbr\u003eMoisture content, the ability to absorb water. \u003cbr\u003eThe ability of filler to absorb oil. \u003cbr\u003eFlammability. \u003cbr\u003eEffect on mechanical properties of the composite material. \u003cbr\u003eEffect on fading and durability of plastics and composites. \u003cbr\u003eEffect on hot melt viscosity. \u003cbr\u003eEffect on mold shrinkage. \u003cbr\u003eWood fiber. \u003cbr\u003eWood flour. \u003cbr\u003eSaw dust. \u003cbr\u003eRice hulls. \u003cbr\u003eVOC from rice hulls. \u003cbr\u003eLong natural fiber. \u003cbr\u003ePapermaking sludge. \u003cbr\u003eBiodac. \u003cbr\u003eVOC from Biodac. \u003cbr\u003eRice hulls and Biodac as antioxidants in WPC. \u003cbr\u003eReferences (other than patents). \u003cbr\u003eReferences (patents). \u003cbr\u003e\u003cbr\u003e4. Composition of wood-plastic composites: mineral fillers. \u003cbr\u003eIntroduction. \u003cbr\u003eGeneral properties of mineral fillers. \u003cbr\u003eChemical composition. \u003cbr\u003eAspect ratio. \u003cbr\u003eDensity (specific gravity). \u003cbr\u003eParticle size. \u003cbr\u003eParticle shape. \u003cbr\u003eParticle size distribution. \u003cbr\u003eParticle surface area. \u003cbr\u003eMoisture content, the ability to absorb water. \u003cbr\u003eThe ability to absorb oil. \u003cbr\u003eFlame retardant properties. \u003cbr\u003eEffect on mechanical properties of the composite material. \u003cbr\u003eEffect on hot melt viscosity. \u003cbr\u003eEffect on mold shrinkage. \u003cbr\u003eThermal properties. \u003cbr\u003eColor, optical properties. \u003cbr\u003eEffect on fading and durability of plastics and composites. \u003cbr\u003eHealth and safety. \u003cbr\u003eFillers. \u003cbr\u003eCalcium carbonate. \u003cbr\u003eTalc. \u003cbr\u003eBiodac (a blend of cellulose and mineral fillers). \u003cbr\u003eSilica. \u003cbr\u003eKaolin clay. \u003cbr\u003eMica. \u003cbr\u003eWollastonite. \u003cbr\u003eGlass fibers. \u003cbr\u003eFly ash. \u003cbr\u003eCarbon black. \u003cbr\u003eNanofillers and nanocomposites. \u003cbr\u003eConclusions. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e5. Composition of wood-plastic composites: coupling agents. \u003cbr\u003eIntroduction. \u003cbr\u003eA brief overview of the chapter. \u003cbr\u003eMaleated polyolefins. \u003cbr\u003eOrganosilanes. \u003cbr\u003eMetablenTM A3000. \u003cbr\u003eOther coupling agents. \u003cbr\u003eEffect of coupling agents on mechanical properties of wood-plastic composites: experimental data. \u003cbr\u003eMechanisms of cross-linking, coupling and\/or compatibilizing effects. \u003cbr\u003eSpectroscopic studies. \u003cbr\u003eRheological studies. \u003cbr\u003eKinetic studies. \u003cbr\u003eOther considerations. \u003cbr\u003eEffect of coupling agents on WPC properties: a summary. \u003cbr\u003eEffect on flexural and tensile modulus. \u003cbr\u003eEffect on flexural and tensile strength. \u003cbr\u003eEffect on water absorption. \u003cbr\u003eLubricants, compatible and not compatible with coupling agents. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e6. Density (specific gravity) of wood-plastic composites and its effect on WPC properties. \u003cbr\u003eIntroduction. \u003cbr\u003eEffect of density (specific gravity) of WPC. \u003cbr\u003eEffect on flexural strength and modulus. \u003cbr\u003eEffect on oxidation and degradation. \u003cbr\u003eEffect on flammability, ignition, flame spread. \u003cbr\u003eEffect on moisture content and water absorption. \u003cbr\u003eEffect on microbial contamination\/degradation. \u003cbr\u003eEffect on shrinkage. \u003cbr\u003eEffect on the coefficient of friction (the slip coefficient). \u003cbr\u003eDensity of cross-sectional areas of hollow profiles of GeoDeck WPC boards. \u003cbr\u003eDensities and weight of some commercial wood-plastic deck boards. \u003cbr\u003eDetermination of density of wood-plastic composites using a sink\/float method. \u003cbr\u003eASTM tests recommended for determination of the specific gravity (density). \u003cbr\u003eASTM D 1505 “Standard test method for density of plastics by the density-gradient technique”. \u003cbr\u003eASTM D 1622 “Standard test method for apparent density of rigid cellular plastics”. \u003cbr\u003eASTM D 1895 “Standard test methods for apparent density, bulk factor, and pourability of plastic materials”. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e7. Flexural strength (MOR) and flexural modulus (MOE) of composite materials and profiles. \u003cbr\u003eIntroduction. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations. \u003cbr\u003eFlexural strength of composite deck boards. \u003cbr\u003eFlexural modulus of composite deck boards. \u003cbr\u003eFlexural modulus of neat HDPE and other plastics, and comparisons with that for wood-plastic composites. \u003cbr\u003eA deck board used as a stair tread: a critical role of flexural modulus. \u003cbr\u003eDeflection of composite materials: Case studies. \u003cbr\u003e1. Deflection and bending moment of a soundwall under windloads. \u003cbr\u003e2. Deflection of a fence board. \u003cbr\u003e3. Deflection of wood-plastic composite joists. \u003cbr\u003e4. Deflection of a deck under a hot tub. \u003cbr\u003e5. Deflection of a hollow deck board filled with hot water. \u003cbr\u003e6. Deflection and creep of composite deck boards. \u003cbr\u003eGuardrail systems. \u003cbr\u003eComposite (and PVC) railing systems for which ICC-ES reports were issued until October 2006. \u003cbr\u003eCombined flexural and shear strength: a “shotgun” test 537. \u003cbr\u003eMathematical modeling of wood-plastic composites and the real world. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e8. Compressive and tensile strength and modulus of composite profiles. \u003cbr\u003eIntroduction. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations. \u003cbr\u003eTensile strength of composite materials: examples. \u003cbr\u003eCompressive strength of composite materials. \u003cbr\u003eTensile modulus of elasticity of composite materials. \u003cbr\u003eCompressive modulus of composite materials. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e9. Linear shrinkage of extruded wood-plastic composites. \u003cbr\u003eIntroduction. \u003cbr\u003eOrigin of shrinkage. \u003cbr\u003eSize of shrinkage. \u003cbr\u003eEffect of density (specific gravity) of WPC on its shrinkage. \u003cbr\u003eEffect of extrusion regime on shrinkage. \u003cbr\u003eAnnealing of composite boards. \u003cbr\u003eWarranty claims: GeoDeck composite deckboards. \u003cbr\u003eExamples of GeoDeck boards shrinkage on a deck. \u003cbr\u003e\u003cbr\u003e10. Temperature driven expansion-contraction of wood-plastic composites. Linear coefficient of thermal expansion-contraction. \u003cbr\u003eIntroduction. \u003cbr\u003eLinear coefficient of expansion-contraction. \u003cbr\u003eSome reservations in applicability of coefficients of expansion-contraction. \u003cbr\u003eASTM tests recommended for determination of the linear coefficient of thermal expansion-contraction. \u003cbr\u003eLinear coefficient of thermal expansion-contraction for wood-plastic composites. Effect of fillers and coupling agents. \u003cbr\u003eExample: a case study. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e11. Slip resistance and coefficient of friction of composite deck boards. \u003cbr\u003eIntroduction. \u003cbr\u003eDefinitions. \u003cbr\u003eExplanations and some examples. \u003cbr\u003eSlip resistance of plastics. \u003cbr\u003eSlip resistance of wood decks. \u003cbr\u003eSlip resistance of wood-plastic composite decks. \u003cbr\u003eASTM tests recommended for determining static coefficient of friction. \u003cbr\u003eSlip resistance using an inclined-plane method. \u003cbr\u003eEffect of formulation of composite deck board on slip resistance. Slip enhancers. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e12. Water absorption by composite materials and related effects. \u003cbr\u003eIntroduction. \u003cbr\u003e“Near-surface” vs. “into the bulk” distribution of absorbed water in composite materials. \u003cbr\u003eEffect of mineral fillers on water absorption. \u003cbr\u003eSwelling (dimensional instability), pressure development and buckling. \u003cbr\u003eShort- and long-term water absorption. \u003cbr\u003eASTM recommendations. \u003cbr\u003eEffect of cellulose content in composite materials on water absorption. \u003cbr\u003eEffect of board density (specific gravity) on water absorption. \u003cbr\u003eMoisture content of wood and wood-plastic composites. \u003cbr\u003eEffect of water absorption on flexural strength and modulus. \u003cbr\u003eFreeze-thaw resistance. \u003cbr\u003eEffect of board density on freeze-thaw resistance - a case study. \u003cbr\u003eEffect of board density and weathering on freeze-thaw resistance - a case study. \u003cbr\u003eEffect of multiple freeze-thaw cycles. \u003cbr\u003eComparison of water absorption of some composite deck boards available on the market. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e13. Microbial degradation of wood-plastic composite materials and “black spots” on the surface. Mold resistance. \u003cbr\u003eIntroduction. \u003cbr\u003eMicrobial effects on wood-plastic composites. \u003cbr\u003eMold and spores. \u003cbr\u003eMoisture and ventilation. Critical moisture content. \u003cbr\u003eWood decay fungi. \u003cbr\u003eBiocides and “mold resistance”. \u003cbr\u003ePreservatives for wood lumber. \u003cbr\u003eCCA. \u003cbr\u003eACQ. \u003cbr\u003ePCP. \u003cbr\u003eCreosote. \u003cbr\u003eMicroorganisms active in degradation and staining of composite materials. \u003cbr\u003eMolds. \u003cbr\u003eBlack mold. \u003cbr\u003eBlack algae. \u003cbr\u003eCase study 1. Staining with a microbial pigment. \u003cbr\u003eCase study 2. Deck as a mold incubator. \u003cbr\u003eCase study 3. Black mold due to composite low density and high mosture. \u003cbr\u003eMicrobial infestation of wood-plastic composite materials. \u003cbr\u003eRequirements for microbial growth on wood and wood-plastic composites. \u003cbr\u003eSensitivity and resistance of composite materials to microbial degradation. Examples. \u003cbr\u003eASTM tests recommended for microbial growth and degradation of wood-plastic composites. \u003cbr\u003eExamples: wood. \u003cbr\u003eExamples: wood-plastic composites. \u003cbr\u003eEffect of formulation on sensitivity and resistance of wood-plastic composites to microbial degradation. \u003cbr\u003eBiocides used (actually or under consideration) in wood-plastic composites. \u003cbr\u003eBiocides: accelerated laboratory data and the real world. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e14. Flammability and fire rating of wood-plastic composites. \u003cbr\u003eIntroduction. \u003cbr\u003eFlammability of wood. \u003cbr\u003eIgnition of composite materials. \u003cbr\u003eFlame spread indexes (FSI) and fire rating of composite materials. \u003cbr\u003eEffect of mineral fillers on flammability. \u003cbr\u003eSmoke and toxic gases, and smoke development index (SDI). \u003cbr\u003eFlame retardants for plastics and composite materials. \u003cbr\u003eASTM recommendations. \u003cbr\u003eFire performance of composite decks and deck boards. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e15. Thermo- and photo-oxidative degradation and lifetime of composite building materials. \u003cbr\u003eIntroduction. Lifetime of plastics and plastic-based composites Examples. \u003cbr\u003eThermo-oxidation, photo-oxidation, oxidative degradation, and product crumbling and failure. \u003cbr\u003eFactors accelerating the oxidative degradation of composites. \u003cbr\u003eDensity (specific gravity) of the composite. \u003cbr\u003eTemperature. \u003cbr\u003eThe physical and the chemical structure of the polymer. \u003cbr\u003eHistory of plastic (virgin, recycled). \u003cbr\u003eThe type and amount of cellulose fiber. \u003cbr\u003eThe type and amount of mineral fillers. \u003cbr\u003eThe presence of stress. \u003cbr\u003eThe presence of metal catalysts. \u003cbr\u003eThe presence of moisture. \u003cbr\u003eAntioxidants and their amounts. \u003cbr\u003eSolar radiation (UV light). \u003cbr\u003eAmount of added regrinds, if any. \u003cbr\u003eASTM recommendations. \u003cbr\u003eASTM tests for oxidative induction time. \u003cbr\u003eASTM tests for determination of phenolic antioxidants in plastics. \u003cbr\u003eSurface temperature of composite decking and railing systems. \u003cbr\u003eLife span of zero-antioxidant GeoDeck decks in various areas of the U.S. \u003cbr\u003eThe OIT and lifetime of composite deck boards. \u003cbr\u003eDurability (in terms of oxidative degradation) of wood-plastic composite decks available on the current market. \u003cbr\u003eOxidative degradation and crumbling of GeoDeck deck boards. History of the case and correction of the problem. \u003cbr\u003eDensity, porosity, and mechanical properties of GeoDeck before the problem had emerged. \u003cbr\u003eEmerging of the problem. \u003cbr\u003eDensity (specific gravity) of GeoDeck boards in pre-October 2003. \u003cbr\u003eCorrection of the crumbling problem-- Antioxidant level. \u003cbr\u003eAddendum. Test method for oxidative-induction time of filled composite material by differential scanning calorimetry. \u003cbr\u003eCase studies. \u003cbr\u003eGeoDeck decks crumbling in Arizona. \u003cbr\u003eGeoDeck decks crumbling in Massachusetts. \u003cbr\u003eGeoDeck voluntary recall. \u003cbr\u003eProblem GeoDeck decks: installation time and warranty claims. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e16. Photo-oxidation and fading of composite building materials. \u003cbr\u003eIntroduction. \u003cbr\u003eHow fading is measured? \u003cbr\u003eFading. Some introductory definitions. \u003cbr\u003eAccelerated and natural weathering of wood-plastic composite materials, and a correlation (or a lack of it) between them. The acceleration factor. \u003cbr\u003eFading of commercial wood-plastic composite materials. \u003cbr\u003eFading of composite deck boards vs. their crumbling due to oxidation. \u003cbr\u003eFactors accelerating or slowing down fading of composites. \u003cbr\u003eDensity (specific gravity) of the composite. \u003cbr\u003eTemperature. \u003cbr\u003eUV absorbers and their amounts. \u003cbr\u003ePigments and their amounts. \u003cbr\u003eAntioxidants and their amounts. \u003cbr\u003eHistory of plastics (virgin, recycled). \u003cbr\u003eEffect of moisture in the composite. \u003cbr\u003eThe type and amount of cellulose fiber. \u003cbr\u003eExtruded vs. injection molded wood-plastic composite materials. \u003cbr\u003eASTM recommendations. \u003cbr\u003eAddendum: Some definitions and technical terms used in descriptions of. \u003cbr\u003ephotodegradation of plastics and wood-plastic composites. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e17. Rheology and a selection of incoming plastics for composite materials. \u003cbr\u003eIntroduction. Rheology of neat and filled plastics, composite materials and regrinds. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations in the area of capillary rheometry. \u003cbr\u003eASTM recommendations in the area of rotational rheometry. \u003cbr\u003eCommon observation. \u003cbr\u003eNeat plastics. \u003cbr\u003eComposite materials. \u003cbr\u003eAlmost uncharted areas of composite and plastic rheology. \u003cbr\u003eReferences. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnatole A. Klyosov, PHD, was Consulting Vice President of LDI Composites Co. (formerly Kadant Composites, where he was Vice President of research and development). Dr. Klyosov was also professor of biochemistry at Harvard University for eight years. He is currently Chief Scientist at Pro-Pharmaceuticals, Inc. He has published almost 300 peer-reviewed articles, thirty-five patents, and a number of books.","published_at":"2017-06-22T21:13:09-04:00","created_at":"2017-06-22T21:13:09-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","acrylic polymers","additives","book","cellulose fiber","compositions","durability","flammability","hot melts","mechanical properties","microbial resistance","minerals","oxidation","p-application","p-applications","polymer","properties","rheological properties","slip resistance","solar radiation","thermal expansion-contraction","thermoplastics","water absorption","WPC"],"price":25300,"price_min":25300,"price_max":25300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378332676,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Wood-Plastic Composites","public_title":null,"options":["Default Title"],"price":25300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-14891-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-470-14891-4_71b8f530-3b87-4d35-9be2-2984ea752d48.jpg?v=1499957359"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-470-14891-4_71b8f530-3b87-4d35-9be2-2984ea752d48.jpg?v=1499957359","options":["Title"],"media":[{"alt":null,"id":358843613277,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-470-14891-4_71b8f530-3b87-4d35-9be2-2984ea752d48.jpg?v=1499957359"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-0-470-14891-4_71b8f530-3b87-4d35-9be2-2984ea752d48.jpg?v=1499957359","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A. A. Kyosov \u003cbr\u003eISBN 978-0-470-14891-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003ePages 697, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is the first book that presents an overview of the main principles underlying the composition of wood-plastic composite (WPC) materials and their performance in the real world. Focusing on the characteristics of WPC materials rather than their manufacture, this guide bridges the gap between laboratory-based research and testing and the properties WPC materials exhibit when they're used in decks, railing systems, fences, and other common applications\u003cbr\u003e\u003cbr\u003e-Describes compositions of WPC materials, including thermoplastics, cellulose fiber, minerals, additives, and their properties \u003cbr\u003e-Covers mechanical properties, microbial resistance, water absorption, flammability, slip resistance, thermal expansion-contraction, sensitivity to oxidation and solar radiation, and rheological properties of hot melts of WPC \u003cbr\u003e-Covers subjects that determine esthetics, properties, performance, and durability of wood-plastic composite products -Includes comparisons of different ASTM methods and procedures that apply to specific properties\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePreface. \u003cbr\u003e1. Foreword-Overview Wood-Plastic Composites.\u003cbr\u003eWPC, pricing restrictions. \u003cbr\u003eWPC, brands and manufacturers. \u003cbr\u003eFlexural strength. \u003cbr\u003eFlexural modulus, deflection. \u003cbr\u003eDeck boards. \u003cbr\u003eStair treads. \u003cbr\u003eThermal expansion-contraction. \u003cbr\u003eShrinkage. \u003cbr\u003eSlip resistance. \u003cbr\u003eWater absorption, swell, buckling. \u003cbr\u003eMicrobial degradation. \u003cbr\u003eTermite resistance. \u003cbr\u003eFlammability. \u003cbr\u003eOxidation and crumbling. \u003cbr\u003ePhoto-oxidation and fading. \u003cbr\u003eWood-plastic composites - products, trends, market size and dynamics, and unsolved (or only partially solved) problems. \u003cbr\u003eWPC products. \u003cbr\u003eThe public view, perception. \u003cbr\u003eWPC market size and dynamics. \u003cbr\u003eCompetition on the WPC market. \u003cbr\u003eUnsolved (or only partially solved) R\u0026amp;D problems. \u003cbr\u003eExamples of wood-plastic composite deck boards. \u003cbr\u003eReferences.\u003cbr\u003e\u003cbr\u003e2. Composition of wood-plastic composites: thermoplastics.\u003cbr\u003eIntroduction. \u003cbr\u003ePolyethylene. \u003cbr\u003ePolypropylene. \u003cbr\u003ePolyvinyl Chloride. \u003cbr\u003eAcrylonitrile-Butadiene-Styrene copolymer (ABS). \u003cbr\u003eNylon 6 and other polyamides. \u003cbr\u003eConclusion. \u003cbr\u003eAddendum: ASTM tests covering definitions of technical terms and their contractions used in plastic industry and specifications of plastics. \u003cbr\u003eReferences. \u003cbr\u003e3. Composition of wood-plastic composites: cellulose and lignocellulose fillers. \u003cbr\u003eIntroduction. \u003cbr\u003eA brief history of cellulose fillers in WPC in U.S. patents. \u003cbr\u003eBeginning of WPC. Thermosetting materials. \u003cbr\u003eCellulose as a reinforcing ingredient in thermoplastic compositions. \u003cbr\u003eImproving mechanical and other properties of WPC. \u003cbr\u003eImproving the compatibility of the fillers with the polymeric matrix. Coupling agents. \u003cbr\u003ePlastics beyond HDPE in wood-plastic composite materials. \u003cbr\u003eCellulose-polyolefin composite pellets. \u003cbr\u003eFoamed wood-plastic composites. \u003cbr\u003eBiodegradable wood-plastic composites. \u003cbr\u003eGeneral properties of lignocellulosic fiber as fillers. \u003cbr\u003eChemical composition. \u003cbr\u003eDetrimental effect of lignin. \u003cbr\u003eDetrimental effect of hemicellulosics. Steam explosion. \u003cbr\u003eAspect ratio. \u003cbr\u003eDensity (specific gravity). \u003cbr\u003eParticle size. \u003cbr\u003eParticle shape. \u003cbr\u003eParticle size distribution. \u003cbr\u003eParticle surface area. \u003cbr\u003eMoisture content, the ability to absorb water. \u003cbr\u003eThe ability of filler to absorb oil. \u003cbr\u003eFlammability. \u003cbr\u003eEffect on mechanical properties of the composite material. \u003cbr\u003eEffect on fading and durability of plastics and composites. \u003cbr\u003eEffect on hot melt viscosity. \u003cbr\u003eEffect on mold shrinkage. \u003cbr\u003eWood fiber. \u003cbr\u003eWood flour. \u003cbr\u003eSaw dust. \u003cbr\u003eRice hulls. \u003cbr\u003eVOC from rice hulls. \u003cbr\u003eLong natural fiber. \u003cbr\u003ePapermaking sludge. \u003cbr\u003eBiodac. \u003cbr\u003eVOC from Biodac. \u003cbr\u003eRice hulls and Biodac as antioxidants in WPC. \u003cbr\u003eReferences (other than patents). \u003cbr\u003eReferences (patents). \u003cbr\u003e\u003cbr\u003e4. Composition of wood-plastic composites: mineral fillers. \u003cbr\u003eIntroduction. \u003cbr\u003eGeneral properties of mineral fillers. \u003cbr\u003eChemical composition. \u003cbr\u003eAspect ratio. \u003cbr\u003eDensity (specific gravity). \u003cbr\u003eParticle size. \u003cbr\u003eParticle shape. \u003cbr\u003eParticle size distribution. \u003cbr\u003eParticle surface area. \u003cbr\u003eMoisture content, the ability to absorb water. \u003cbr\u003eThe ability to absorb oil. \u003cbr\u003eFlame retardant properties. \u003cbr\u003eEffect on mechanical properties of the composite material. \u003cbr\u003eEffect on hot melt viscosity. \u003cbr\u003eEffect on mold shrinkage. \u003cbr\u003eThermal properties. \u003cbr\u003eColor, optical properties. \u003cbr\u003eEffect on fading and durability of plastics and composites. \u003cbr\u003eHealth and safety. \u003cbr\u003eFillers. \u003cbr\u003eCalcium carbonate. \u003cbr\u003eTalc. \u003cbr\u003eBiodac (a blend of cellulose and mineral fillers). \u003cbr\u003eSilica. \u003cbr\u003eKaolin clay. \u003cbr\u003eMica. \u003cbr\u003eWollastonite. \u003cbr\u003eGlass fibers. \u003cbr\u003eFly ash. \u003cbr\u003eCarbon black. \u003cbr\u003eNanofillers and nanocomposites. \u003cbr\u003eConclusions. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e5. Composition of wood-plastic composites: coupling agents. \u003cbr\u003eIntroduction. \u003cbr\u003eA brief overview of the chapter. \u003cbr\u003eMaleated polyolefins. \u003cbr\u003eOrganosilanes. \u003cbr\u003eMetablenTM A3000. \u003cbr\u003eOther coupling agents. \u003cbr\u003eEffect of coupling agents on mechanical properties of wood-plastic composites: experimental data. \u003cbr\u003eMechanisms of cross-linking, coupling and\/or compatibilizing effects. \u003cbr\u003eSpectroscopic studies. \u003cbr\u003eRheological studies. \u003cbr\u003eKinetic studies. \u003cbr\u003eOther considerations. \u003cbr\u003eEffect of coupling agents on WPC properties: a summary. \u003cbr\u003eEffect on flexural and tensile modulus. \u003cbr\u003eEffect on flexural and tensile strength. \u003cbr\u003eEffect on water absorption. \u003cbr\u003eLubricants, compatible and not compatible with coupling agents. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e6. Density (specific gravity) of wood-plastic composites and its effect on WPC properties. \u003cbr\u003eIntroduction. \u003cbr\u003eEffect of density (specific gravity) of WPC. \u003cbr\u003eEffect on flexural strength and modulus. \u003cbr\u003eEffect on oxidation and degradation. \u003cbr\u003eEffect on flammability, ignition, flame spread. \u003cbr\u003eEffect on moisture content and water absorption. \u003cbr\u003eEffect on microbial contamination\/degradation. \u003cbr\u003eEffect on shrinkage. \u003cbr\u003eEffect on the coefficient of friction (the slip coefficient). \u003cbr\u003eDensity of cross-sectional areas of hollow profiles of GeoDeck WPC boards. \u003cbr\u003eDensities and weight of some commercial wood-plastic deck boards. \u003cbr\u003eDetermination of density of wood-plastic composites using a sink\/float method. \u003cbr\u003eASTM tests recommended for determination of the specific gravity (density). \u003cbr\u003eASTM D 1505 “Standard test method for density of plastics by the density-gradient technique”. \u003cbr\u003eASTM D 1622 “Standard test method for apparent density of rigid cellular plastics”. \u003cbr\u003eASTM D 1895 “Standard test methods for apparent density, bulk factor, and pourability of plastic materials”. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e7. Flexural strength (MOR) and flexural modulus (MOE) of composite materials and profiles. \u003cbr\u003eIntroduction. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations. \u003cbr\u003eFlexural strength of composite deck boards. \u003cbr\u003eFlexural modulus of composite deck boards. \u003cbr\u003eFlexural modulus of neat HDPE and other plastics, and comparisons with that for wood-plastic composites. \u003cbr\u003eA deck board used as a stair tread: a critical role of flexural modulus. \u003cbr\u003eDeflection of composite materials: Case studies. \u003cbr\u003e1. Deflection and bending moment of a soundwall under windloads. \u003cbr\u003e2. Deflection of a fence board. \u003cbr\u003e3. Deflection of wood-plastic composite joists. \u003cbr\u003e4. Deflection of a deck under a hot tub. \u003cbr\u003e5. Deflection of a hollow deck board filled with hot water. \u003cbr\u003e6. Deflection and creep of composite deck boards. \u003cbr\u003eGuardrail systems. \u003cbr\u003eComposite (and PVC) railing systems for which ICC-ES reports were issued until October 2006. \u003cbr\u003eCombined flexural and shear strength: a “shotgun” test 537. \u003cbr\u003eMathematical modeling of wood-plastic composites and the real world. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e8. Compressive and tensile strength and modulus of composite profiles. \u003cbr\u003eIntroduction. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations. \u003cbr\u003eTensile strength of composite materials: examples. \u003cbr\u003eCompressive strength of composite materials. \u003cbr\u003eTensile modulus of elasticity of composite materials. \u003cbr\u003eCompressive modulus of composite materials. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e9. Linear shrinkage of extruded wood-plastic composites. \u003cbr\u003eIntroduction. \u003cbr\u003eOrigin of shrinkage. \u003cbr\u003eSize of shrinkage. \u003cbr\u003eEffect of density (specific gravity) of WPC on its shrinkage. \u003cbr\u003eEffect of extrusion regime on shrinkage. \u003cbr\u003eAnnealing of composite boards. \u003cbr\u003eWarranty claims: GeoDeck composite deckboards. \u003cbr\u003eExamples of GeoDeck boards shrinkage on a deck. \u003cbr\u003e\u003cbr\u003e10. Temperature driven expansion-contraction of wood-plastic composites. Linear coefficient of thermal expansion-contraction. \u003cbr\u003eIntroduction. \u003cbr\u003eLinear coefficient of expansion-contraction. \u003cbr\u003eSome reservations in applicability of coefficients of expansion-contraction. \u003cbr\u003eASTM tests recommended for determination of the linear coefficient of thermal expansion-contraction. \u003cbr\u003eLinear coefficient of thermal expansion-contraction for wood-plastic composites. Effect of fillers and coupling agents. \u003cbr\u003eExample: a case study. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e11. Slip resistance and coefficient of friction of composite deck boards. \u003cbr\u003eIntroduction. \u003cbr\u003eDefinitions. \u003cbr\u003eExplanations and some examples. \u003cbr\u003eSlip resistance of plastics. \u003cbr\u003eSlip resistance of wood decks. \u003cbr\u003eSlip resistance of wood-plastic composite decks. \u003cbr\u003eASTM tests recommended for determining static coefficient of friction. \u003cbr\u003eSlip resistance using an inclined-plane method. \u003cbr\u003eEffect of formulation of composite deck board on slip resistance. Slip enhancers. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e12. Water absorption by composite materials and related effects. \u003cbr\u003eIntroduction. \u003cbr\u003e“Near-surface” vs. “into the bulk” distribution of absorbed water in composite materials. \u003cbr\u003eEffect of mineral fillers on water absorption. \u003cbr\u003eSwelling (dimensional instability), pressure development and buckling. \u003cbr\u003eShort- and long-term water absorption. \u003cbr\u003eASTM recommendations. \u003cbr\u003eEffect of cellulose content in composite materials on water absorption. \u003cbr\u003eEffect of board density (specific gravity) on water absorption. \u003cbr\u003eMoisture content of wood and wood-plastic composites. \u003cbr\u003eEffect of water absorption on flexural strength and modulus. \u003cbr\u003eFreeze-thaw resistance. \u003cbr\u003eEffect of board density on freeze-thaw resistance - a case study. \u003cbr\u003eEffect of board density and weathering on freeze-thaw resistance - a case study. \u003cbr\u003eEffect of multiple freeze-thaw cycles. \u003cbr\u003eComparison of water absorption of some composite deck boards available on the market. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e13. Microbial degradation of wood-plastic composite materials and “black spots” on the surface. Mold resistance. \u003cbr\u003eIntroduction. \u003cbr\u003eMicrobial effects on wood-plastic composites. \u003cbr\u003eMold and spores. \u003cbr\u003eMoisture and ventilation. Critical moisture content. \u003cbr\u003eWood decay fungi. \u003cbr\u003eBiocides and “mold resistance”. \u003cbr\u003ePreservatives for wood lumber. \u003cbr\u003eCCA. \u003cbr\u003eACQ. \u003cbr\u003ePCP. \u003cbr\u003eCreosote. \u003cbr\u003eMicroorganisms active in degradation and staining of composite materials. \u003cbr\u003eMolds. \u003cbr\u003eBlack mold. \u003cbr\u003eBlack algae. \u003cbr\u003eCase study 1. Staining with a microbial pigment. \u003cbr\u003eCase study 2. Deck as a mold incubator. \u003cbr\u003eCase study 3. Black mold due to composite low density and high mosture. \u003cbr\u003eMicrobial infestation of wood-plastic composite materials. \u003cbr\u003eRequirements for microbial growth on wood and wood-plastic composites. \u003cbr\u003eSensitivity and resistance of composite materials to microbial degradation. Examples. \u003cbr\u003eASTM tests recommended for microbial growth and degradation of wood-plastic composites. \u003cbr\u003eExamples: wood. \u003cbr\u003eExamples: wood-plastic composites. \u003cbr\u003eEffect of formulation on sensitivity and resistance of wood-plastic composites to microbial degradation. \u003cbr\u003eBiocides used (actually or under consideration) in wood-plastic composites. \u003cbr\u003eBiocides: accelerated laboratory data and the real world. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e14. Flammability and fire rating of wood-plastic composites. \u003cbr\u003eIntroduction. \u003cbr\u003eFlammability of wood. \u003cbr\u003eIgnition of composite materials. \u003cbr\u003eFlame spread indexes (FSI) and fire rating of composite materials. \u003cbr\u003eEffect of mineral fillers on flammability. \u003cbr\u003eSmoke and toxic gases, and smoke development index (SDI). \u003cbr\u003eFlame retardants for plastics and composite materials. \u003cbr\u003eASTM recommendations. \u003cbr\u003eFire performance of composite decks and deck boards. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e15. Thermo- and photo-oxidative degradation and lifetime of composite building materials. \u003cbr\u003eIntroduction. Lifetime of plastics and plastic-based composites Examples. \u003cbr\u003eThermo-oxidation, photo-oxidation, oxidative degradation, and product crumbling and failure. \u003cbr\u003eFactors accelerating the oxidative degradation of composites. \u003cbr\u003eDensity (specific gravity) of the composite. \u003cbr\u003eTemperature. \u003cbr\u003eThe physical and the chemical structure of the polymer. \u003cbr\u003eHistory of plastic (virgin, recycled). \u003cbr\u003eThe type and amount of cellulose fiber. \u003cbr\u003eThe type and amount of mineral fillers. \u003cbr\u003eThe presence of stress. \u003cbr\u003eThe presence of metal catalysts. \u003cbr\u003eThe presence of moisture. \u003cbr\u003eAntioxidants and their amounts. \u003cbr\u003eSolar radiation (UV light). \u003cbr\u003eAmount of added regrinds, if any. \u003cbr\u003eASTM recommendations. \u003cbr\u003eASTM tests for oxidative induction time. \u003cbr\u003eASTM tests for determination of phenolic antioxidants in plastics. \u003cbr\u003eSurface temperature of composite decking and railing systems. \u003cbr\u003eLife span of zero-antioxidant GeoDeck decks in various areas of the U.S. \u003cbr\u003eThe OIT and lifetime of composite deck boards. \u003cbr\u003eDurability (in terms of oxidative degradation) of wood-plastic composite decks available on the current market. \u003cbr\u003eOxidative degradation and crumbling of GeoDeck deck boards. History of the case and correction of the problem. \u003cbr\u003eDensity, porosity, and mechanical properties of GeoDeck before the problem had emerged. \u003cbr\u003eEmerging of the problem. \u003cbr\u003eDensity (specific gravity) of GeoDeck boards in pre-October 2003. \u003cbr\u003eCorrection of the crumbling problem-- Antioxidant level. \u003cbr\u003eAddendum. Test method for oxidative-induction time of filled composite material by differential scanning calorimetry. \u003cbr\u003eCase studies. \u003cbr\u003eGeoDeck decks crumbling in Arizona. \u003cbr\u003eGeoDeck decks crumbling in Massachusetts. \u003cbr\u003eGeoDeck voluntary recall. \u003cbr\u003eProblem GeoDeck decks: installation time and warranty claims. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e16. Photo-oxidation and fading of composite building materials. \u003cbr\u003eIntroduction. \u003cbr\u003eHow fading is measured? \u003cbr\u003eFading. Some introductory definitions. \u003cbr\u003eAccelerated and natural weathering of wood-plastic composite materials, and a correlation (or a lack of it) between them. The acceleration factor. \u003cbr\u003eFading of commercial wood-plastic composite materials. \u003cbr\u003eFading of composite deck boards vs. their crumbling due to oxidation. \u003cbr\u003eFactors accelerating or slowing down fading of composites. \u003cbr\u003eDensity (specific gravity) of the composite. \u003cbr\u003eTemperature. \u003cbr\u003eUV absorbers and their amounts. \u003cbr\u003ePigments and their amounts. \u003cbr\u003eAntioxidants and their amounts. \u003cbr\u003eHistory of plastics (virgin, recycled). \u003cbr\u003eEffect of moisture in the composite. \u003cbr\u003eThe type and amount of cellulose fiber. \u003cbr\u003eExtruded vs. injection molded wood-plastic composite materials. \u003cbr\u003eASTM recommendations. \u003cbr\u003eAddendum: Some definitions and technical terms used in descriptions of. \u003cbr\u003ephotodegradation of plastics and wood-plastic composites. \u003cbr\u003eReferences. \u003cbr\u003e\u003cbr\u003e17. Rheology and a selection of incoming plastics for composite materials. \u003cbr\u003eIntroduction. Rheology of neat and filled plastics, composite materials and regrinds. \u003cbr\u003eBasic definitions and equations. \u003cbr\u003eASTM recommendations in the area of capillary rheometry. \u003cbr\u003eASTM recommendations in the area of rotational rheometry. \u003cbr\u003eCommon observation. \u003cbr\u003eNeat plastics. \u003cbr\u003eComposite materials. \u003cbr\u003eAlmost uncharted areas of composite and plastic rheology. \u003cbr\u003eReferences. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnatole A. Klyosov, PHD, was Consulting Vice President of LDI Composites Co. (formerly Kadant Composites, where he was Vice President of research and development). Dr. Klyosov was also professor of biochemistry at Harvard University for eight years. He is currently Chief Scientist at Pro-Pharmaceuticals, Inc. He has published almost 300 peer-reviewed articles, thirty-five patents, and a number of books."}
Wood-polymers Composites
$230.00
{"id":11242206468,"title":"Wood-polymers Composites","handle":"978-1-4200761-1-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Oksman, M. Sain \u003cbr\u003eISBN 978-1-4200761-1-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWood-polymer composites (WPC) are materials in which wood is impregnated with monomers that are then polymerized in the wood to tailor the material for special applications. The resulting properties of these materials, from lightness and enhanced mechanical properties to greater sustainability, has meant a growing number of applications in such areas as building, construction and automotive engineering. This important book reviews the manufacture of wood-polymer composites, how their properties can be assessed and improved and their range of uses. \u003cbr\u003e\u003cbr\u003eAfter an introductory chapter, the book reviews key aspects of manufacture, including raw materials, manufacturing technologies and interactions between wood and synthetic polymers. Building on this foundation, the following group of chapters discusses mechanical and other properties such as durability, creep behavior and processing performance. The book concludes by looking at orientated wood-polymer composites, wood-polymer composite foams, at ways of assessing performance and at the range of current and future applications. \u003cbr\u003e\u003cbr\u003eWith its distinguished editors and international team of contributors, Wood-polymer composites will be a valuable reference for all those using and studying these important materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eIntroduction\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Oksman Niska Luleå University of Technology, Sweden and M Sain University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eRaw Materials for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eC Clemons, USDA Forest Service, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Polymers: structure and properties\u003cbr\u003e\u003cbr\u003e- Wood: structure and properties\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAdditives for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eD V Satov, Canada Colors and Chemicals Limited, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Lubricants and rheology control additives for thermoplastic composites\u003cbr\u003e\u003cbr\u003e- Coupling agents\u003cbr\u003e\u003cbr\u003e- Stabilizers\u003cbr\u003e\u003cbr\u003e- Fillers\u003cbr\u003e\u003cbr\u003e- Density reduction additives\u003cbr\u003e\u003cbr\u003e- Biocides\u003cbr\u003e\u003cbr\u003e- Product aesthetics additives\u003cbr\u003e\u003cbr\u003e- Flame retardants and smoke suppressants\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eInteractions Between Wood and Synthetic Polymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Oksman Niska and A Sanadi, Luleå University of Technology, Sweden\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- The interface and interphase in composites\u003cbr\u003e\u003cbr\u003e- Wetting, adhesion and dispersion\u003cbr\u003e\u003cbr\u003e- Techniques to evaluate interfacial interactions and adhesion\u003cbr\u003e\u003cbr\u003e- Improving interface interactions in wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Interphase effects on other properties\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eManufacturing Technologies for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eD Schwendemann, Coperion Werner \u0026amp; Pfleiderer GmbH \u0026amp; Co. KG, Germany\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Raw material handling\u003cbr\u003e\u003cbr\u003e- Compounding technologies\u003cbr\u003e\u003cbr\u003e- Pelletizing systems\u003cbr\u003e\u003cbr\u003e- Profile extrusion\u003cbr\u003e\u003cbr\u003e- Injection moulding\u003cbr\u003e\u003cbr\u003e- Sheet extrusion\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMechanical Properties of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eM Sain and M Pervaiz, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Mechanical performance of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- General mechanical properties of wood-polymer composites and test methods\u003cbr\u003e\u003cbr\u003e- Critical parameters affecting mechanical properties of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMicromechanical Modelling of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eR C Neagu, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland and E K Gamstedt, Kungliga Tekniska Högskolan (KTH), Sweden\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Elastic properties\u003cbr\u003e\u003cbr\u003e- Hygroexpansion\u003cbr\u003e\u003cbr\u003e- Strength\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eOutdoor Durability of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eN Stark, USDA Forest Service and D Gardner, University of Maine, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Characteristics of raw materials\u003cbr\u003e\u003cbr\u003e- Changes in composite properties with exposure\u003cbr\u003e\u003cbr\u003e- Methods for protection\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- Sources of further information and advice\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCreep Behaviour and Damage of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eN Marcovich and M I Aranguren, Universidad Nacional de Mar del Plata, Argentina\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Viscoelasticity and creep\u003cbr\u003e\u003cbr\u003e- Creep in wood-plastic composites\u003cbr\u003e\u003cbr\u003e- Creep failure and material damage\u003cbr\u003e\u003cbr\u003e- Conclusions and future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eProcessing Performance of Extruded Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Englund with M Wolcott, Washington State University, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Current extrusion processing methods for natural fiber thermoplastic composites\u003cbr\u003e\u003cbr\u003e- Rheology of a wood fiber-filled thermoplastic\u003cbr\u003e\u003cbr\u003e- Commercial wood-polymer composites\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eOriented Wood-Polymer Composites and Related Materials\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eF W Maine, Frank Maine Consulting Ltd, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Orientation of polymers\u003cbr\u003e\u003cbr\u003e- Applications\u003cbr\u003e\u003cbr\u003e- Current developments\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWood-Polymer Composite Foams\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eG Guo, University of Southern California, USA, G Rizvi, University of Ontario Institute of Technology and C B Park, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Structure and characterization of wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Critical issues in production of wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Fundamental mechanisms in blowing agent-based foaming of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with chemical blowing agents\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with physical blowing agents\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with heat expandable microspheres\u003cbr\u003e\u003cbr\u003e- Void formation in wood-polymer composites using stretching technology\u003cbr\u003e\u003cbr\u003e- Effects of additives on wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Summary and future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePerformance Measurement and Construction Applications of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eR J Tichy, Washington State University, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Performance measures and building codes\u003cbr\u003e\u003cbr\u003e- Wood-polymer composite properties\u003cbr\u003e\u003cbr\u003e- Building construction applications\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eLife Cycle Assessment (LCA) of Wood-Polymer Composites: a Case-Study\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eT Thamae and C Baillie, Queens University, Canada\u003cbr\u003e\u003cbr\u003e- Introduction: comparing wood-polymer and glass-fibre reinforced polypropylene car door panels\u003cbr\u003e\u003cbr\u003e- The life cycle assessment process\u003cbr\u003e\u003cbr\u003e- Goal and scope definition\u003cbr\u003e\u003cbr\u003e- Inventory\u003cbr\u003e\u003cbr\u003e- Impact assessment\u003cbr\u003e\u003cbr\u003e- Interpretation\u003cbr\u003e\u003cbr\u003e- The possible effect of European Union legislation on end-of-life vehicles\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- Acknowledgements\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMarket and Future Trends for Wood-Polymer Composites In Europe: The Example Of Germany\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eM Carus and C Gahle, nova-Institut and H Korte, Innovationsberatung Holz \u0026amp; Fasern, Germany\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- The development of the European market: the example of Germany\u003cbr\u003e\u003cbr\u003e- The most significant wood-polymer composite products in the European market\u003cbr\u003e\u003cbr\u003e- Future trends: markets\u003cbr\u003e\u003cbr\u003e- Future trends: processing and materials\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- Wood-polymer composite codes, standards, research and manufacturing in Europe\u003cbr\u003e\u003cbr\u003e- The nova-Institut and Innovationsberatung Holz und Fasern\u003cbr\u003e\u003cbr\u003e- Examples of wood polymer-composite products\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eImproving Wood-Polymer Composite Products: A Case Study\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA Klyosov, MIR International Inc., USA\u003cbr\u003e\u003cbr\u003e- Introduction: wood-polymer composite decking\u003cbr\u003e\u003cbr\u003e- Brands and manufacturers\u003cbr\u003e\u003cbr\u003e- Improving the performance of wood-polymer composite decking\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eK. Oksman, Luea University of Technology, Sweden\u003c\/p\u003e\n\u003cp\u003eM. Sain, University of Toronto, Canada\u003c\/p\u003e","published_at":"2017-06-22T21:12:57-04:00","created_at":"2017-06-22T21:12:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","applications","book","composites","creep","durability","extrusion","foaming","foams","p-structural","polymer","properties","rheology","wood-polymer"],"price":23000,"price_min":23000,"price_max":23000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378322052,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Wood-polymers Composites","public_title":null,"options":["Default Title"],"price":23000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4200761-1-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4200761-1-0_ede969c6-3b9b-4199-864f-50be71b810c3.jpg?v=1499957381"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4200761-1-0_ede969c6-3b9b-4199-864f-50be71b810c3.jpg?v=1499957381","options":["Title"],"media":[{"alt":null,"id":358844006493,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4200761-1-0_ede969c6-3b9b-4199-864f-50be71b810c3.jpg?v=1499957381"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/978-1-4200761-1-0_ede969c6-3b9b-4199-864f-50be71b810c3.jpg?v=1499957381","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Oksman, M. Sain \u003cbr\u003eISBN 978-1-4200761-1-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWood-polymer composites (WPC) are materials in which wood is impregnated with monomers that are then polymerized in the wood to tailor the material for special applications. The resulting properties of these materials, from lightness and enhanced mechanical properties to greater sustainability, has meant a growing number of applications in such areas as building, construction and automotive engineering. This important book reviews the manufacture of wood-polymer composites, how their properties can be assessed and improved and their range of uses. \u003cbr\u003e\u003cbr\u003eAfter an introductory chapter, the book reviews key aspects of manufacture, including raw materials, manufacturing technologies and interactions between wood and synthetic polymers. Building on this foundation, the following group of chapters discusses mechanical and other properties such as durability, creep behavior and processing performance. The book concludes by looking at orientated wood-polymer composites, wood-polymer composite foams, at ways of assessing performance and at the range of current and future applications. \u003cbr\u003e\u003cbr\u003eWith its distinguished editors and international team of contributors, Wood-polymer composites will be a valuable reference for all those using and studying these important materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eIntroduction\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Oksman Niska Luleå University of Technology, Sweden and M Sain University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eRaw Materials for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eC Clemons, USDA Forest Service, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Polymers: structure and properties\u003cbr\u003e\u003cbr\u003e- Wood: structure and properties\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAdditives for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eD V Satov, Canada Colors and Chemicals Limited, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Lubricants and rheology control additives for thermoplastic composites\u003cbr\u003e\u003cbr\u003e- Coupling agents\u003cbr\u003e\u003cbr\u003e- Stabilizers\u003cbr\u003e\u003cbr\u003e- Fillers\u003cbr\u003e\u003cbr\u003e- Density reduction additives\u003cbr\u003e\u003cbr\u003e- Biocides\u003cbr\u003e\u003cbr\u003e- Product aesthetics additives\u003cbr\u003e\u003cbr\u003e- Flame retardants and smoke suppressants\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eInteractions Between Wood and Synthetic Polymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Oksman Niska and A Sanadi, Luleå University of Technology, Sweden\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- The interface and interphase in composites\u003cbr\u003e\u003cbr\u003e- Wetting, adhesion and dispersion\u003cbr\u003e\u003cbr\u003e- Techniques to evaluate interfacial interactions and adhesion\u003cbr\u003e\u003cbr\u003e- Improving interface interactions in wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Interphase effects on other properties\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eManufacturing Technologies for Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eD Schwendemann, Coperion Werner \u0026amp; Pfleiderer GmbH \u0026amp; Co. KG, Germany\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Raw material handling\u003cbr\u003e\u003cbr\u003e- Compounding technologies\u003cbr\u003e\u003cbr\u003e- Pelletizing systems\u003cbr\u003e\u003cbr\u003e- Profile extrusion\u003cbr\u003e\u003cbr\u003e- Injection moulding\u003cbr\u003e\u003cbr\u003e- Sheet extrusion\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMechanical Properties of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eM Sain and M Pervaiz, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Mechanical performance of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- General mechanical properties of wood-polymer composites and test methods\u003cbr\u003e\u003cbr\u003e- Critical parameters affecting mechanical properties of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMicromechanical Modelling of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eR C Neagu, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland and E K Gamstedt, Kungliga Tekniska Högskolan (KTH), Sweden\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Elastic properties\u003cbr\u003e\u003cbr\u003e- Hygroexpansion\u003cbr\u003e\u003cbr\u003e- Strength\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eOutdoor Durability of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eN Stark, USDA Forest Service and D Gardner, University of Maine, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Characteristics of raw materials\u003cbr\u003e\u003cbr\u003e- Changes in composite properties with exposure\u003cbr\u003e\u003cbr\u003e- Methods for protection\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- Sources of further information and advice\u003cbr\u003e\u003cbr\u003e- References and further reading\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCreep Behaviour and Damage of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eN Marcovich and M I Aranguren, Universidad Nacional de Mar del Plata, Argentina\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Viscoelasticity and creep\u003cbr\u003e\u003cbr\u003e- Creep in wood-plastic composites\u003cbr\u003e\u003cbr\u003e- Creep failure and material damage\u003cbr\u003e\u003cbr\u003e- Conclusions and future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eProcessing Performance of Extruded Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eK Englund with M Wolcott, Washington State University, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Current extrusion processing methods for natural fiber thermoplastic composites\u003cbr\u003e\u003cbr\u003e- Rheology of a wood fiber-filled thermoplastic\u003cbr\u003e\u003cbr\u003e- Commercial wood-polymer composites\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eOriented Wood-Polymer Composites and Related Materials\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eF W Maine, Frank Maine Consulting Ltd, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Orientation of polymers\u003cbr\u003e\u003cbr\u003e- Applications\u003cbr\u003e\u003cbr\u003e- Current developments\u003cbr\u003e\u003cbr\u003e- Future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWood-Polymer Composite Foams\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eG Guo, University of Southern California, USA, G Rizvi, University of Ontario Institute of Technology and C B Park, University of Toronto, Canada\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Structure and characterization of wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Critical issues in production of wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Fundamental mechanisms in blowing agent-based foaming of wood-polymer composites\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with chemical blowing agents\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with physical blowing agents\u003cbr\u003e\u003cbr\u003e- Foaming of wood-polymer composites with heat expandable microspheres\u003cbr\u003e\u003cbr\u003e- Void formation in wood-polymer composites using stretching technology\u003cbr\u003e\u003cbr\u003e- Effects of additives on wood-polymer composite foams\u003cbr\u003e\u003cbr\u003e- Summary and future trends\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePerformance Measurement and Construction Applications of Wood-Polymer Composites\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eR J Tichy, Washington State University, USA\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- Performance measures and building codes\u003cbr\u003e\u003cbr\u003e- Wood-polymer composite properties\u003cbr\u003e\u003cbr\u003e- Building construction applications\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eLife Cycle Assessment (LCA) of Wood-Polymer Composites: a Case-Study\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eT Thamae and C Baillie, Queens University, Canada\u003cbr\u003e\u003cbr\u003e- Introduction: comparing wood-polymer and glass-fibre reinforced polypropylene car door panels\u003cbr\u003e\u003cbr\u003e- The life cycle assessment process\u003cbr\u003e\u003cbr\u003e- Goal and scope definition\u003cbr\u003e\u003cbr\u003e- Inventory\u003cbr\u003e\u003cbr\u003e- Impact assessment\u003cbr\u003e\u003cbr\u003e- Interpretation\u003cbr\u003e\u003cbr\u003e- The possible effect of European Union legislation on end-of-life vehicles\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- Acknowledgements\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMarket and Future Trends for Wood-Polymer Composites In Europe: The Example Of Germany\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eM Carus and C Gahle, nova-Institut and H Korte, Innovationsberatung Holz \u0026amp; Fasern, Germany\u003cbr\u003e\u003cbr\u003e- Introduction\u003cbr\u003e\u003cbr\u003e- The development of the European market: the example of Germany\u003cbr\u003e\u003cbr\u003e- The most significant wood-polymer composite products in the European market\u003cbr\u003e\u003cbr\u003e- Future trends: markets\u003cbr\u003e\u003cbr\u003e- Future trends: processing and materials\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- Wood-polymer composite codes, standards, research and manufacturing in Europe\u003cbr\u003e\u003cbr\u003e- The nova-Institut and Innovationsberatung Holz und Fasern\u003cbr\u003e\u003cbr\u003e- Examples of wood polymer-composite products\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eImproving Wood-Polymer Composite Products: A Case Study\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA Klyosov, MIR International Inc., USA\u003cbr\u003e\u003cbr\u003e- Introduction: wood-polymer composite decking\u003cbr\u003e\u003cbr\u003e- Brands and manufacturers\u003cbr\u003e\u003cbr\u003e- Improving the performance of wood-polymer composite decking\u003cbr\u003e\u003cbr\u003e- Conclusions\u003cbr\u003e\u003cbr\u003e- References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eK. Oksman, Luea University of Technology, Sweden\u003c\/p\u003e\n\u003cp\u003eM. Sain, University of Toronto, Canada\u003c\/p\u003e"}