- Grid List
Filter
Structure and Properti...
$205.00
{"id":11242242948,"title":"Structure and Properties of Crosslinked Polymers","handle":"978-1-84735-559-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","crosslinked polymers","epoxy polymers","nanocomposites","p-additives","p-structural","polymer","supersegmental structure"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Structure and Properties of Crosslinked Polymers","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-559-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","options":["Title"],"media":[{"alt":null,"id":358766608477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Template polymerization
$85.00
{"id":738270773348,"title":"Template polymerization","handle":"template-polymerization","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cdiv\u003eAuthor: Stefan Polowinski, Technical University of Lodz, Poland \u003c\/div\u003e\n\u003cdiv\u003eISBN \u003cspan\u003e978-1-895198-15-7\u003c\/span\u003e\u003cbr\u003e151 pp., 60 figures, 18 tables\u003c\/div\u003e\n\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cspan\u003eIntroducing the first published monograph devoted to this emerging technology \u003cbr\u003eTemplate polymerization is a new field in polymer synthesis but common practice in the biosynthesis since DNA is the most popular template or matrix on which proteins are built by living species. \u003cbr\u003e\u003cbr\u003eThis field is relevant to the synthesis of polymers of controlled structure but its application goes beyond the synthesis. Materials are formulated in complex mixtures always containing components which can be regarded as templates on which other materials are formed, modified, or are interacted with. In the new product development, the relevance of these phenomena is controlled by the order of addition which affects probabilities and preferences of interaction. \u003cbr\u003e\u003cbr\u003eThe current publication outlines mechanisms of template polymerization, polycondensation, and copolymerization. These mechanisms, illustrated with numerous examples, indicate a range of possibilities which can be encountered in materials and utilized to modify their properties. The orientation of substrates on a template and their effect on modification of their reactivity and properties such as, for example, absorption of light or water are also discussed. Several chapters contain information on these studies discussed with sufficient detail to give reader comprehensive understanding of the methods used in various research laboratories and their findings. \u003cbr\u003e\u003cbr\u003eKinetics of template polymerization is discussed from both theoretical and analytical sides. First, the kinetic equations which are useful in the analysis of template polymerization are discussed. The theories quoted were verified by the experiments. The chapter contains data on several groups of typical reaction mechanisms. This chapter is followed by the discussion of properties of materials which are obtained in template polymerization. These products are compared with materials made from similar monomers but without the advent of a template. \u003cbr\u003e\u003cbr\u003eSeveral ideas are given regarding potential applications of this interesting technology. The book is completed by the in-depth, expert discussion of methods which can be applied to study template polymerization. Similar methods and techniques can be applied to study the effect of materials in multicomponent mixtures from which commercial products are manufactured. This may allow one to understand various properties observed in multicomponent systems. \u003cbr\u003e\u003cbr\u003eThis book concentrates on the subject of the template (matrix) polymerization but it is a relevant source of information for those involved in any aspect of polymer synthesis, processing, and application. Since it is written in a very direct manner by one of the leading experts in this technology, the book can be used in a university classroom, by a researcher, engineer in production, or any other person who wants to understand what happens when materials interact with each other.\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.General Mechanism of Template Polymerization \u003cbr\u003e2.1 Template Polycondensation\u003cbr\u003e2.2 Chain Template Polymerization\u003cbr\u003e2.3 Template Copolymerization \u003cbr\u003e3.Templates and Orientation of Substrates on Template \u003cbr\u003e4.Examples of Template Polymerization\u003cbr\u003e4.1 Polyacids as Templates\u003cbr\u003e4.2 Polyimines and Polyamines as Templates\u003cbr\u003e4.3 Polybase Ionenes as Templates\u003cbr\u003e4.4 Poly(ethylene oxide) and Poly(vinyl pyrrolidone) as Templates\u003cbr\u003e4.5 Poly(methyl methacrylate) as Template\u003cbr\u003e4.6 Poly(vinylopyridines) as Templates\u003cbr\u003e4.7 Other Templates\u003cbr\u003e4.8 Multimonomers as Templates\u003cbr\u003e4.9 Ring-opening Polymerization\u003cbr\u003e5.Examples of Template Copolymerization\u003cbr\u003e5.1 Template Copolycondensation\u003cbr\u003e5.2 Ring Opening Template Copolymerization\u003cbr\u003e5.3 Radical Template Copolymerization\u003cbr\u003e5.3.1 Copolymerization with Participation of Multimonomers\u003cbr\u003e5.3.2 Copolymerization of Two Different Multimonomers \u003cbr\u003e5.3.3 Copolymerization without Multimonomers\u003cbr\u003e6.Examples of Template Polycondensation \u003cbr\u003e7.Secondary Reactions in Template Polymerization \u003cbr\u003e8.Kinetics of Template Polymerization \u003cbr\u003e8.2 Template Ring-opening Polymerization Kinetics \u003cbr\u003e8.3 Template Radical Polymerization Kinetics\u003cbr\u003e8.4 Kinetics of Multimonomer Polymerization 9.Products of Template Polymerization \u003cbr\u003e9.1 Polymers with Ladder-type Structure\u003cbr\u003e9.2 Polymer Complexes\u003cbr\u003e10.Potential Applications \u003cbr\u003e11.Experimental Techniques Used in the Study of Template Polymerization\u003cbr\u003e11.1 Methods of Examination of Polymerization Process\u003cbr\u003e11.2 Methods of Examination of Template Polymerization Products\u003cbr\u003e11.2.1 Polymeric Complexes\u003cbr\u003e11.2.2 Ladder Polymers","published_at":"2017-06-22T21:13:20-04:00","created_at":"2018-04-05T20:26:14-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["biosynthesis","blends","book","copolymerization","DNA","polymer","polymer synthesis","polymerization","polymers"],"price":8500,"price_min":8500,"price_max":8500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":8103392313444,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Template polymerization","public_title":null,"options":["Default Title"],"price":8500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-15-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-15-7.jpg?v=1522975074"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-15-7.jpg?v=1522975074","options":["Title"],"media":[{"alt":null,"id":810375938141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-15-7.jpg?v=1522975074"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-15-7.jpg?v=1522975074","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cdiv\u003eAuthor: Stefan Polowinski, Technical University of Lodz, Poland \u003c\/div\u003e\n\u003cdiv\u003eISBN \u003cspan\u003e978-1-895198-15-7\u003c\/span\u003e\u003cbr\u003e151 pp., 60 figures, 18 tables\u003c\/div\u003e\n\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cspan\u003eIntroducing the first published monograph devoted to this emerging technology \u003cbr\u003eTemplate polymerization is a new field in polymer synthesis but common practice in the biosynthesis since DNA is the most popular template or matrix on which proteins are built by living species. \u003cbr\u003e\u003cbr\u003eThis field is relevant to the synthesis of polymers of controlled structure but its application goes beyond the synthesis. Materials are formulated in complex mixtures always containing components which can be regarded as templates on which other materials are formed, modified, or are interacted with. In the new product development, the relevance of these phenomena is controlled by the order of addition which affects probabilities and preferences of interaction. \u003cbr\u003e\u003cbr\u003eThe current publication outlines mechanisms of template polymerization, polycondensation, and copolymerization. These mechanisms, illustrated with numerous examples, indicate a range of possibilities which can be encountered in materials and utilized to modify their properties. The orientation of substrates on a template and their effect on modification of their reactivity and properties such as, for example, absorption of light or water are also discussed. Several chapters contain information on these studies discussed with sufficient detail to give reader comprehensive understanding of the methods used in various research laboratories and their findings. \u003cbr\u003e\u003cbr\u003eKinetics of template polymerization is discussed from both theoretical and analytical sides. First, the kinetic equations which are useful in the analysis of template polymerization are discussed. The theories quoted were verified by the experiments. The chapter contains data on several groups of typical reaction mechanisms. This chapter is followed by the discussion of properties of materials which are obtained in template polymerization. These products are compared with materials made from similar monomers but without the advent of a template. \u003cbr\u003e\u003cbr\u003eSeveral ideas are given regarding potential applications of this interesting technology. The book is completed by the in-depth, expert discussion of methods which can be applied to study template polymerization. Similar methods and techniques can be applied to study the effect of materials in multicomponent mixtures from which commercial products are manufactured. This may allow one to understand various properties observed in multicomponent systems. \u003cbr\u003e\u003cbr\u003eThis book concentrates on the subject of the template (matrix) polymerization but it is a relevant source of information for those involved in any aspect of polymer synthesis, processing, and application. Since it is written in a very direct manner by one of the leading experts in this technology, the book can be used in a university classroom, by a researcher, engineer in production, or any other person who wants to understand what happens when materials interact with each other.\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.General Mechanism of Template Polymerization \u003cbr\u003e2.1 Template Polycondensation\u003cbr\u003e2.2 Chain Template Polymerization\u003cbr\u003e2.3 Template Copolymerization \u003cbr\u003e3.Templates and Orientation of Substrates on Template \u003cbr\u003e4.Examples of Template Polymerization\u003cbr\u003e4.1 Polyacids as Templates\u003cbr\u003e4.2 Polyimines and Polyamines as Templates\u003cbr\u003e4.3 Polybase Ionenes as Templates\u003cbr\u003e4.4 Poly(ethylene oxide) and Poly(vinyl pyrrolidone) as Templates\u003cbr\u003e4.5 Poly(methyl methacrylate) as Template\u003cbr\u003e4.6 Poly(vinylopyridines) as Templates\u003cbr\u003e4.7 Other Templates\u003cbr\u003e4.8 Multimonomers as Templates\u003cbr\u003e4.9 Ring-opening Polymerization\u003cbr\u003e5.Examples of Template Copolymerization\u003cbr\u003e5.1 Template Copolycondensation\u003cbr\u003e5.2 Ring Opening Template Copolymerization\u003cbr\u003e5.3 Radical Template Copolymerization\u003cbr\u003e5.3.1 Copolymerization with Participation of Multimonomers\u003cbr\u003e5.3.2 Copolymerization of Two Different Multimonomers \u003cbr\u003e5.3.3 Copolymerization without Multimonomers\u003cbr\u003e6.Examples of Template Polycondensation \u003cbr\u003e7.Secondary Reactions in Template Polymerization \u003cbr\u003e8.Kinetics of Template Polymerization \u003cbr\u003e8.2 Template Ring-opening Polymerization Kinetics \u003cbr\u003e8.3 Template Radical Polymerization Kinetics\u003cbr\u003e8.4 Kinetics of Multimonomer Polymerization 9.Products of Template Polymerization \u003cbr\u003e9.1 Polymers with Ladder-type Structure\u003cbr\u003e9.2 Polymer Complexes\u003cbr\u003e10.Potential Applications \u003cbr\u003e11.Experimental Techniques Used in the Study of Template Polymerization\u003cbr\u003e11.1 Methods of Examination of Polymerization Process\u003cbr\u003e11.2 Methods of Examination of Template Polymerization Products\u003cbr\u003e11.2.1 Polymeric Complexes\u003cbr\u003e11.2.2 Ladder Polymers"}
The Effect of Steriliz...
$314.00
{"id":11242208388,"title":"The Effect of Sterilization Methods on Plastics and Elastomers, 2nd Edition","handle":"978-0-8155-1505-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Liesl K. Massey \u003cbr\u003eISBN 978-0-8155-1505-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e412 pages · 8.5\" x 11\" Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively updated second edition was created for medical device, medical packaging, and food packaging design engineers, material product technical support, and research\/development personnel. This comprehensive databook contains important characteristics and properties data on the effects of sterilization methods on plastics and elastomers. It provides a ready reference for comparing materials in the same family as well as materials in different families. \u003cbr\u003e\u003cbr\u003eData are presented on 43 major plastic and elastomer packaging materials, including biodegradable or organic polymers. New to this edition are resin chapters containing textual summary information including category; a general description; applications; resistances to particular sterilization methods; and regulatory status considerations for use in medical devices and medical\/food packaging. The resin chapter material supplier trade name product data is presented in a graphical and tabular format, with results normalized to SI units, retaining the familiar format of the best selling first edition and allowing easy comparison between materials and test conditions.\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/a\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eMED108000: MEDICAL \/ Instruments \u0026amp; Supplies\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBIC CODES\u003c\/strong\u003e\u003cbr\u003eTDCP: Plastics \u0026amp; polymers technology\u003cbr\u003eTGM: Materials science\u003cbr\u003eMBG: Medical equipment and techniques\u003cbr\u003e\u003cbr\u003e\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003c\/a\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSterilization Methods\u003cbr\u003e\u003cbr\u003eSterilization Stability of Materials\u003cbr\u003e\u003cbr\u003eComparative Radiation Stability\u003cbr\u003e\u003cbr\u003eThe Effect of Ionizing Radiation on Polymers\u003cbr\u003e\u003cbr\u003eRadiation Stabilizers\u003cbr\u003e\u003cbr\u003eThe Effects of Gamma Sterilization on Color Change\u003cbr\u003e\u003cbr\u003eRegulatory Status\u003cbr\u003e\u003cbr\u003eResin Chapters\u003cbr\u003e\u003cbr\u003eAcetal\u003cbr\u003e\u003cbr\u003eABS\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNylon\u003cbr\u003e\u003cbr\u003ePolycarbonate\u003cbr\u003e\u003cbr\u003ePolyester\u003cbr\u003e\u003cbr\u003eLiquid Crystal Polymer\u003cbr\u003e\u003cbr\u003ePolyimide\u003cbr\u003e\u003cbr\u003ePolyketone\u003cbr\u003e\u003cbr\u003ePolyolefin\u003cbr\u003e\u003cbr\u003ePolyphenylene Sulfide\u003cbr\u003e\u003cbr\u003ePolystyrene\u003cbr\u003e\u003cbr\u003ePolysulfone\u003cbr\u003e\u003cbr\u003ePolyurethane\u003cbr\u003e\u003cbr\u003eStyrene Acrylonitrile\u003cbr\u003e\u003cbr\u003eStyrene Butadiene Copolymers\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride\u003cbr\u003e\u003cbr\u003eThermoplastic Alloys\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers\u003cbr\u003e\u003cbr\u003eSilicone\u003cbr\u003e\u003cbr\u003eBiodegradable or Organic\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003eIndices\u003cbr\u003e\u003cbr\u003eTable and Graph Index\u003cbr\u003e\u003cbr\u003eTrade Name Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLiesl K. Massey\u003c\/strong\u003e\u003cbr\u003eFina Oil and Chemical Company\u003cbr\u003eEducated as a mechanical engineer and MBS, Liesl K. Massey brings substantial and varied plastics industry experience from Fina Oil and Chemical Company and Ferro Corporation to her writing occupation. Past responsibilities include technical service support, new product introductions, account management, and customer service management of a wide range of resin and additive products. She is a past committee member of the annual SPE Polyolefins Conference and is currently consulting within the polymer and polymer additives market.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:03-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","book","elastomers","Gamma Sterilization","general","medical","methods","p-applications","plastics","polymer","polymers","radiation","stability","sterlization"],"price":31400,"price_min":31400,"price_max":31400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378328004,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Sterilization Methods on Plastics and Elastomers, 2nd Edition","public_title":null,"options":["Default Title"],"price":31400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1505-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302","options":["Title"],"media":[{"alt":null,"id":358783483997,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1505-0_296b5c8a-6cce-44b0-84dc-e77c6568fb61.jpg?v=1499956302","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Liesl K. Massey \u003cbr\u003eISBN 978-0-8155-1505-0 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e412 pages · 8.5\" x 11\" Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively updated second edition was created for medical device, medical packaging, and food packaging design engineers, material product technical support, and research\/development personnel. This comprehensive databook contains important characteristics and properties data on the effects of sterilization methods on plastics and elastomers. It provides a ready reference for comparing materials in the same family as well as materials in different families. \u003cbr\u003e\u003cbr\u003eData are presented on 43 major plastic and elastomer packaging materials, including biodegradable or organic polymers. New to this edition are resin chapters containing textual summary information including category; a general description; applications; resistances to particular sterilization methods; and regulatory status considerations for use in medical devices and medical\/food packaging. The resin chapter material supplier trade name product data is presented in a graphical and tabular format, with results normalized to SI units, retaining the familiar format of the best selling first edition and allowing easy comparison between materials and test conditions.\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/a\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eMED108000: MEDICAL \/ Instruments \u0026amp; Supplies\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBIC CODES\u003c\/strong\u003e\u003cbr\u003eTDCP: Plastics \u0026amp; polymers technology\u003cbr\u003eTGM: Materials science\u003cbr\u003eMBG: Medical equipment and techniques\u003cbr\u003e\u003cbr\u003e\u003ca href=\"prodimages\/9780815515050.pdf\" target=\"_blank\" rel=\"noopener noreferrer\"\u003e\u003cbr\u003e\u003c\/a\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSterilization Methods\u003cbr\u003e\u003cbr\u003eSterilization Stability of Materials\u003cbr\u003e\u003cbr\u003eComparative Radiation Stability\u003cbr\u003e\u003cbr\u003eThe Effect of Ionizing Radiation on Polymers\u003cbr\u003e\u003cbr\u003eRadiation Stabilizers\u003cbr\u003e\u003cbr\u003eThe Effects of Gamma Sterilization on Color Change\u003cbr\u003e\u003cbr\u003eRegulatory Status\u003cbr\u003e\u003cbr\u003eResin Chapters\u003cbr\u003e\u003cbr\u003eAcetal\u003cbr\u003e\u003cbr\u003eABS\u003cbr\u003e\u003cbr\u003eFluoropolymers\u003cbr\u003e\u003cbr\u003eNylon\u003cbr\u003e\u003cbr\u003ePolycarbonate\u003cbr\u003e\u003cbr\u003ePolyester\u003cbr\u003e\u003cbr\u003eLiquid Crystal Polymer\u003cbr\u003e\u003cbr\u003ePolyimide\u003cbr\u003e\u003cbr\u003ePolyketone\u003cbr\u003e\u003cbr\u003ePolyolefin\u003cbr\u003e\u003cbr\u003ePolyphenylene Sulfide\u003cbr\u003e\u003cbr\u003ePolystyrene\u003cbr\u003e\u003cbr\u003ePolysulfone\u003cbr\u003e\u003cbr\u003ePolyurethane\u003cbr\u003e\u003cbr\u003eStyrene Acrylonitrile\u003cbr\u003e\u003cbr\u003eStyrene Butadiene Copolymers\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride\u003cbr\u003e\u003cbr\u003eThermoplastic Alloys\u003cbr\u003e\u003cbr\u003eThermoplastic Elastomers\u003cbr\u003e\u003cbr\u003eSilicone\u003cbr\u003e\u003cbr\u003eBiodegradable or Organic\u003cbr\u003e\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003eGlossary\u003cbr\u003e\u003cbr\u003eIndices\u003cbr\u003e\u003cbr\u003eTable and Graph Index\u003cbr\u003e\u003cbr\u003eTrade Name Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLiesl K. Massey\u003c\/strong\u003e\u003cbr\u003eFina Oil and Chemical Company\u003cbr\u003eEducated as a mechanical engineer and MBS, Liesl K. Massey brings substantial and varied plastics industry experience from Fina Oil and Chemical Company and Ferro Corporation to her writing occupation. Past responsibilities include technical service support, new product introductions, account management, and customer service management of a wide range of resin and additive products. She is a past committee member of the annual SPE Polyolefins Conference and is currently consulting within the polymer and polymer additives market.\u003cbr\u003e\u003cbr\u003e"}
The Effect of Temperat...
$330.00
{"id":11242208260,"title":"The Effect of Temperature and Other Factors on Plastics","handle":"978-0-8155-1568-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W. McKeen, Editor \u003cbr\u003eISBN 978-0-8155-1568-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e2nd Edition, 824 pages, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is an update to the first edition compiled and published in 1990 by William Woishnis. A lot has changed in the field since 1990 and a lot has not changed. There are new plastic materials. There has been a huge turnover in ownership of plastics producing companies. There has been a lot of consolidation, which of course means discontinued products. Thus, this update is much more extensive than the usual \"next edition.\"\u003cbr\u003e\u003cbr\u003eIt has been reorganized from a chemistry point of view. Plastics of similar polymer types are grouped into nine chapters. Each of these chapters includes an introduction with a brief explanation of the chemistry of the polymers used in the plastics.\u003cbr\u003e\u003cbr\u003eAn extensive first chapter has been added as an introduction that summarizes the chemistry of making polymers, the formulation of plastics, testing and test methods, and plastic selection.\u003cbr\u003e\u003cbr\u003eMost plastic products and parts are expected to be used in environments other than room temperature and standard humidity conditions. Chapters 2-10 are a databank that serves as an evaluation of plastics as they are exposed to varying operating conditions at different temperatures, humidity, and other factors. Over 900 graphs for more than 45 generic families of plastics are contained in these chapters. \u003cstrong\u003eThe following types of graphs may also be included:\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA. Properties as Functions of Temperature\u003cbr\u003e(1) Flexural modulus\/strength\u003cbr\u003e(2) Tensile modulus\/strength\u003cbr\u003e(3) Shear modulus\/strength\u003cbr\u003e(4) Impact strength\u003cbr\u003e(5) Hardness\u003cbr\u003e(6) Torsional modulus\u003cbr\u003e(7) Coefficient of thermal expansion\u003cbr\u003e(8) Dielectric constant\u003cbr\u003e(9) Dissipation factor\u003cbr\u003e(10) Water absorption\u003cbr\u003e(11) Specific volume\/heat\u003cbr\u003e(12) Pressure-volume-temperature plots\u003cbr\u003e\u003cbr\u003eB: Stress vs. Strain Curves at Various Temperatures\u003cbr\u003e(1) Strain rates\u003cbr\u003e(2) Humidity levels\u003cbr\u003e\u003cbr\u003eC: Mechanical Properties as a Function of...\u003cbr\u003e(1) Strain rate\u003cbr\u003e(2) Humidity level\u003cbr\u003e\u003cbr\u003eD: Electric Properties as a Function of...\u003cbr\u003e(1) Humidity level\u003cbr\u003e(2) Frequency\u003cbr\u003e\u003cbr\u003eE: Also Included\u003cbr\u003e(1) Properties vs. Thickness\u003cbr\u003e(2) Dimensions vs. Moisture\u003cbr\u003e(3) Properties vs. Glass Content and other Formulation Factors\u003cbr\u003e\u003cbr\u003eChapter 11 contains extensive mechanical and electrical data in tabular form. The tables contain data on several thousand plastics. Similarly, Chapter 12 contains thermal data on several thousand plastics. \u003cbr\u003eData from the first edition have only been removed if those products were discontinued, and many products were. Product names and manufacturers have been updated.\u003cbr\u003e\u003cbr\u003e• Detailed introductions of plastics properties, testing procedures, and principles of plastics design. \u003cbr\u003e• The only \"databook\" available on the effects of temperature and humidity conditions on plastics and elastomers. \u003cbr\u003e• More than 1,000 graphs and tables allow for easy comparison between products. \u003cbr\u003e• Covers more than 70 types of plastics, and summarizes the chemistry of each type.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eTEC016020: TECHNOLOGY \/ Industrial Design \/ Product \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction to Plastic Properties\u003c\/strong\u003e\u003cbr\u003e1.1. Plastics and Polymers \u003cbr\u003e1.1.1. Polymerization \u003cbr\u003e1.1.2. Copolymers \u003cbr\u003e1.1.3. Linear, Branched and Crosslinked Polymers \u003cbr\u003e1.1.4. Molecular Weight \u003cbr\u003e1.1.5. Thermosets vs. Thermoplastics \u003cbr\u003e1.1.6. Crystalline vs. Amorphous \u003cbr\u003e1.1.7. Blends \u003cbr\u003e1.1.8. Elastomers \u003cbr\u003e1.1.9. Additives \u003cbr\u003e1.2. Testing of Plastics \u003cbr\u003e1.2.1. Mechanical Property Testing of Plastics \u003cbr\u003e1.2.2. Impact Property Testing of Plastics \u003cbr\u003e1.2.3. Thermal Property Testing of Plastics \u003cbr\u003e1.3. Principles of Plastic Product Design \u003cbr\u003e1.3.1. Rigidity of Plastics Materials \u003cbr\u003e1.3.2. The Assessment of Maximum Service Temperature \u003cbr\u003e1.3.3. Toughness \u003cbr\u003e1.4. Summary \u003cbr\u003e\u003cstrong\u003e2. Styrenics\u003c\/strong\u003e\u003cbr\u003e2.1. Background \u003cbr\u003e2.2. Polystyrene (PS) \u003cbr\u003e2.3. Acrylonitrile Styrene Acrylate (ASA) \u003cbr\u003e2.4. Styrene Acrylonitrile (SAN) \u003cbr\u003e2.5. Acrylonitrile Butadiene Styrene (ABS) \u003cbr\u003e2.6. Styrene Maleic Anhydride (SMA) \u003cbr\u003e2.7. Styrenic Block Copolymers (SBC) \u003cbr\u003e2.8. Blends \u003cbr\u003e\u003cstrong\u003e3. Polyethers\u003c\/strong\u003e\u003cbr\u003e3.1. Background \u003cbr\u003e3.2. Acetals (POM) \u003cbr\u003e3.3. Acetal Copolymers (POM-Co) \u003cbr\u003e3.4. Modified Polyphenylene Ether\/Polyphenylene Oxides (PPE, PPO) \u003cbr\u003e\u003cstrong\u003e4. Polyesters\u003c\/strong\u003e\u003cbr\u003e4.1. Background \u003cbr\u003e4.2. Polycarbonate (PC) \u003cbr\u003e4.3. Polybutylene Terephthalate (PBT) \u003cbr\u003e4.4. Polyethylene Terephthalate (PET) \u003cbr\u003e4.5. Liquid Crystalline Polymers (LCP) \u003cbr\u003e4.6. Polycyclohexylene-dimethylene Terephthalate (PCT) \u003cbr\u003e4.7. Polyester Blends and Alloys \u003cbr\u003e\u003cstrong\u003e5. Polyimides\u003c\/strong\u003e\u003cbr\u003e5.1. Background \u003cbr\u003e5.2. Polyetherimide (PEI) \u003cbr\u003e5.3. Polyamide-imide (PAI) \u003cbr\u003e5.4. Polyimide (PI) \u003cbr\u003e6. Polyamides \u003cbr\u003e6.1. Background \u003cbr\u003e6.2. Nylon 6 \u003cbr\u003e6.3. Nylon 11 \u003cbr\u003e6.4. Nylon 12 \u003cbr\u003e6.5. Nylon 66 \u003cbr\u003e6.6. Nylon 610 \u003cbr\u003e6.7. Nylon 612 \u003cbr\u003e6.8. Nylon 666 \u003cbr\u003e6.9. Nylon Amorphous \u003cbr\u003e6.10. Nylon 46 \u003cbr\u003e6.11. PPA \u003cbr\u003e6.12. PAA \u003cbr\u003e6.13. PA Blends \u003cbr\u003e\u003cstrong\u003e7. Polyolefins and Acrylics\u003c\/strong\u003e\u003cbr\u003e7.1. Background \u003cbr\u003e7.2. Polyethylene (PE) \u003cbr\u003e7.3. Poly Propylene (PP) \u003cbr\u003e7.4. Polytrimethyl Pentene (PTP) \u003cbr\u003e7.5. Ultrahigh Molecular Weight Polyethylene (UHMWPE) \u003cbr\u003e7.6. Rigid Polyvinyl Chloride (PVC) \u003cbr\u003e7.7. Cyclic Olefin Copolymer (COC) \u003cbr\u003e7.8. Polymethyl Methacrylate (PMMA) \u003cbr\u003e\u003cstrong\u003e8. Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e8.1. Background \u003cbr\u003e8.2. Thermoplastic Polyurethane Elastomers (TPU) \u003cbr\u003e8.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE) \u003cbr\u003e8.4. Thermoplastic Polyether Block Amide Elastomers (PEBA) \u003cbr\u003e\u003cstrong\u003e9. Fluoropolymers\u003c\/strong\u003e\u003cbr\u003e9.1. Background \u003cbr\u003e9.2. Polytetrafluoroethylene (PTFE) \u003cbr\u003e9.3. Polyethylene Chlorotrifluoroethylene (ECTFE) \u003cbr\u003e9.4. Polyethylene Tetrafluoroethylene (ETFE) \u003cbr\u003e9.5. Fluorinated Ethylene Propylene (FEP) \u003cbr\u003e9.6. Perfluoro Alkoxy (PFA) \u003cbr\u003e9.7. Polychlorotrifluoroethylene (PCTFE) \u003cbr\u003e9.8. Polyvinylidene Fluoride (PVDF) \u003cbr\u003e\u003cstrong\u003e10. Miscellaneous High Temperature Plastics\u003c\/strong\u003e\u003cbr\u003e10.1. Background \u003cbr\u003e10.2. Polyetheretherketone (PEEK) \u003cbr\u003e10.3. Polyether Sulfone (PES) \u003cbr\u003e10.4. Polyphenylene Sulfide (PPS) \u003cbr\u003e10.5. Polysulfone (PSU) \u003cbr\u003e\u003cstrong\u003e11. Tables of Selected ISO 10350 Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e11.1. Styrenics \u003cbr\u003e11.2. Polyethers \u003cbr\u003e11.3. Polyesters \u003cbr\u003e11.4. Polyimides \u003cbr\u003e11.5. Polyamides \u003cbr\u003e11.6. Polyolefins and Acrylics \u003cbr\u003e11.7. Thermoplastic Elastomers \u003cbr\u003e11.8. Fluoropolymers \u003cbr\u003e11.9. Miscellaneous High Temperature Plastics \u003cbr\u003e\u003cstrong\u003e12. Tables of Selected Thermal Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e12.1. Styrenics \u003cbr\u003e12.2. Polyethers \u003cbr\u003e12.3. Polyesters \u003cbr\u003e12.4. Polyimides \u003cbr\u003e12.5. Polyamides \u003cbr\u003e12.6. Polyolefins and Acrylics \u003cbr\u003e12.7. Thermoplastic Elastomers \u003cbr\u003e12.8. Fluoropolymers \u003cbr\u003e12.9. Miscellaneous High Temperature Plastics \u003cbr\u003eAppendices: \u003cbr\u003eAbbreviations \u003cbr\u003eTradenames \u003cbr\u003eConversion Factors?\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLaurence W. McKeen\u003c\/strong\u003e\u003cbr\u003e\u003ci\u003eDuPont Teflon Finishes Group (former), Delaware, U.S.A.\u003c\/i\u003e\u003cbr\u003eDr. Laurence W. McKeen earned a B.S. in Chemistry from Rensselaer Polytechnic Institute in 1973 and a Ph.D. in 1978 from the University of Wisconsin. He began his career with DuPont in 1978 as a mass spectroscopist but moved into product development in the Teflon® Finishes group in 1980. He has accumulated over 28 years of experience in product development and application working with customers in a wide range of industries which has led to dozens of commercial products.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:02-04:00","created_at":"2017-06-22T21:13:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","book","coefficient thermal expansion","dielectric constant","dissipation factor","flexural modulus\/strength","hardness","impact strength","nylon","p-properties","poly","polyamides","polyesters","polyethers","polyimides","polymer","properties","shear modulus\/strength","styrenics","tensile modulus\/strength","torsional modulus","water absorption"],"price":33000,"price_min":33000,"price_max":33000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327876,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Effect of Temperature and Other Factors on Plastics","public_title":null,"options":["Default Title"],"price":33000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1568-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368","options":["Title"],"media":[{"alt":null,"id":358785286237,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1568-5_03bfaf61-3bf8-4e32-a93e-0728f95bfac1.jpg?v=1499956368","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W. McKeen, Editor \u003cbr\u003eISBN 978-0-8155-1568-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e2nd Edition, 824 pages, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is an update to the first edition compiled and published in 1990 by William Woishnis. A lot has changed in the field since 1990 and a lot has not changed. There are new plastic materials. There has been a huge turnover in ownership of plastics producing companies. There has been a lot of consolidation, which of course means discontinued products. Thus, this update is much more extensive than the usual \"next edition.\"\u003cbr\u003e\u003cbr\u003eIt has been reorganized from a chemistry point of view. Plastics of similar polymer types are grouped into nine chapters. Each of these chapters includes an introduction with a brief explanation of the chemistry of the polymers used in the plastics.\u003cbr\u003e\u003cbr\u003eAn extensive first chapter has been added as an introduction that summarizes the chemistry of making polymers, the formulation of plastics, testing and test methods, and plastic selection.\u003cbr\u003e\u003cbr\u003eMost plastic products and parts are expected to be used in environments other than room temperature and standard humidity conditions. Chapters 2-10 are a databank that serves as an evaluation of plastics as they are exposed to varying operating conditions at different temperatures, humidity, and other factors. Over 900 graphs for more than 45 generic families of plastics are contained in these chapters. \u003cstrong\u003eThe following types of graphs may also be included:\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eA. Properties as Functions of Temperature\u003cbr\u003e(1) Flexural modulus\/strength\u003cbr\u003e(2) Tensile modulus\/strength\u003cbr\u003e(3) Shear modulus\/strength\u003cbr\u003e(4) Impact strength\u003cbr\u003e(5) Hardness\u003cbr\u003e(6) Torsional modulus\u003cbr\u003e(7) Coefficient of thermal expansion\u003cbr\u003e(8) Dielectric constant\u003cbr\u003e(9) Dissipation factor\u003cbr\u003e(10) Water absorption\u003cbr\u003e(11) Specific volume\/heat\u003cbr\u003e(12) Pressure-volume-temperature plots\u003cbr\u003e\u003cbr\u003eB: Stress vs. Strain Curves at Various Temperatures\u003cbr\u003e(1) Strain rates\u003cbr\u003e(2) Humidity levels\u003cbr\u003e\u003cbr\u003eC: Mechanical Properties as a Function of...\u003cbr\u003e(1) Strain rate\u003cbr\u003e(2) Humidity level\u003cbr\u003e\u003cbr\u003eD: Electric Properties as a Function of...\u003cbr\u003e(1) Humidity level\u003cbr\u003e(2) Frequency\u003cbr\u003e\u003cbr\u003eE: Also Included\u003cbr\u003e(1) Properties vs. Thickness\u003cbr\u003e(2) Dimensions vs. Moisture\u003cbr\u003e(3) Properties vs. Glass Content and other Formulation Factors\u003cbr\u003e\u003cbr\u003eChapter 11 contains extensive mechanical and electrical data in tabular form. The tables contain data on several thousand plastics. Similarly, Chapter 12 contains thermal data on several thousand plastics. \u003cbr\u003eData from the first edition have only been removed if those products were discontinued, and many products were. Product names and manufacturers have been updated.\u003cbr\u003e\u003cbr\u003e• Detailed introductions of plastics properties, testing procedures, and principles of plastics design. \u003cbr\u003e• The only \"databook\" available on the effects of temperature and humidity conditions on plastics and elastomers. \u003cbr\u003e• More than 1,000 graphs and tables allow for easy comparison between products. \u003cbr\u003e• Covers more than 70 types of plastics, and summarizes the chemistry of each type.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC055000: TECHNOLOGY \/ Textiles \u0026amp; Polymers\u003cbr\u003eTEC021000: TECHNOLOGY \/ Material Science\u003cbr\u003eTEC016020: TECHNOLOGY \/ Industrial Design \/ Product \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction to Plastic Properties\u003c\/strong\u003e\u003cbr\u003e1.1. Plastics and Polymers \u003cbr\u003e1.1.1. Polymerization \u003cbr\u003e1.1.2. Copolymers \u003cbr\u003e1.1.3. Linear, Branched and Crosslinked Polymers \u003cbr\u003e1.1.4. Molecular Weight \u003cbr\u003e1.1.5. Thermosets vs. Thermoplastics \u003cbr\u003e1.1.6. Crystalline vs. Amorphous \u003cbr\u003e1.1.7. Blends \u003cbr\u003e1.1.8. Elastomers \u003cbr\u003e1.1.9. Additives \u003cbr\u003e1.2. Testing of Plastics \u003cbr\u003e1.2.1. Mechanical Property Testing of Plastics \u003cbr\u003e1.2.2. Impact Property Testing of Plastics \u003cbr\u003e1.2.3. Thermal Property Testing of Plastics \u003cbr\u003e1.3. Principles of Plastic Product Design \u003cbr\u003e1.3.1. Rigidity of Plastics Materials \u003cbr\u003e1.3.2. The Assessment of Maximum Service Temperature \u003cbr\u003e1.3.3. Toughness \u003cbr\u003e1.4. Summary \u003cbr\u003e\u003cstrong\u003e2. Styrenics\u003c\/strong\u003e\u003cbr\u003e2.1. Background \u003cbr\u003e2.2. Polystyrene (PS) \u003cbr\u003e2.3. Acrylonitrile Styrene Acrylate (ASA) \u003cbr\u003e2.4. Styrene Acrylonitrile (SAN) \u003cbr\u003e2.5. Acrylonitrile Butadiene Styrene (ABS) \u003cbr\u003e2.6. Styrene Maleic Anhydride (SMA) \u003cbr\u003e2.7. Styrenic Block Copolymers (SBC) \u003cbr\u003e2.8. Blends \u003cbr\u003e\u003cstrong\u003e3. Polyethers\u003c\/strong\u003e\u003cbr\u003e3.1. Background \u003cbr\u003e3.2. Acetals (POM) \u003cbr\u003e3.3. Acetal Copolymers (POM-Co) \u003cbr\u003e3.4. Modified Polyphenylene Ether\/Polyphenylene Oxides (PPE, PPO) \u003cbr\u003e\u003cstrong\u003e4. Polyesters\u003c\/strong\u003e\u003cbr\u003e4.1. Background \u003cbr\u003e4.2. Polycarbonate (PC) \u003cbr\u003e4.3. Polybutylene Terephthalate (PBT) \u003cbr\u003e4.4. Polyethylene Terephthalate (PET) \u003cbr\u003e4.5. Liquid Crystalline Polymers (LCP) \u003cbr\u003e4.6. Polycyclohexylene-dimethylene Terephthalate (PCT) \u003cbr\u003e4.7. Polyester Blends and Alloys \u003cbr\u003e\u003cstrong\u003e5. Polyimides\u003c\/strong\u003e\u003cbr\u003e5.1. Background \u003cbr\u003e5.2. Polyetherimide (PEI) \u003cbr\u003e5.3. Polyamide-imide (PAI) \u003cbr\u003e5.4. Polyimide (PI) \u003cbr\u003e6. Polyamides \u003cbr\u003e6.1. Background \u003cbr\u003e6.2. Nylon 6 \u003cbr\u003e6.3. Nylon 11 \u003cbr\u003e6.4. Nylon 12 \u003cbr\u003e6.5. Nylon 66 \u003cbr\u003e6.6. Nylon 610 \u003cbr\u003e6.7. Nylon 612 \u003cbr\u003e6.8. Nylon 666 \u003cbr\u003e6.9. Nylon Amorphous \u003cbr\u003e6.10. Nylon 46 \u003cbr\u003e6.11. PPA \u003cbr\u003e6.12. PAA \u003cbr\u003e6.13. PA Blends \u003cbr\u003e\u003cstrong\u003e7. Polyolefins and Acrylics\u003c\/strong\u003e\u003cbr\u003e7.1. Background \u003cbr\u003e7.2. Polyethylene (PE) \u003cbr\u003e7.3. Poly Propylene (PP) \u003cbr\u003e7.4. Polytrimethyl Pentene (PTP) \u003cbr\u003e7.5. Ultrahigh Molecular Weight Polyethylene (UHMWPE) \u003cbr\u003e7.6. Rigid Polyvinyl Chloride (PVC) \u003cbr\u003e7.7. Cyclic Olefin Copolymer (COC) \u003cbr\u003e7.8. Polymethyl Methacrylate (PMMA) \u003cbr\u003e\u003cstrong\u003e8. Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e8.1. Background \u003cbr\u003e8.2. Thermoplastic Polyurethane Elastomers (TPU) \u003cbr\u003e8.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE) \u003cbr\u003e8.4. Thermoplastic Polyether Block Amide Elastomers (PEBA) \u003cbr\u003e\u003cstrong\u003e9. Fluoropolymers\u003c\/strong\u003e\u003cbr\u003e9.1. Background \u003cbr\u003e9.2. Polytetrafluoroethylene (PTFE) \u003cbr\u003e9.3. Polyethylene Chlorotrifluoroethylene (ECTFE) \u003cbr\u003e9.4. Polyethylene Tetrafluoroethylene (ETFE) \u003cbr\u003e9.5. Fluorinated Ethylene Propylene (FEP) \u003cbr\u003e9.6. Perfluoro Alkoxy (PFA) \u003cbr\u003e9.7. Polychlorotrifluoroethylene (PCTFE) \u003cbr\u003e9.8. Polyvinylidene Fluoride (PVDF) \u003cbr\u003e\u003cstrong\u003e10. Miscellaneous High Temperature Plastics\u003c\/strong\u003e\u003cbr\u003e10.1. Background \u003cbr\u003e10.2. Polyetheretherketone (PEEK) \u003cbr\u003e10.3. Polyether Sulfone (PES) \u003cbr\u003e10.4. Polyphenylene Sulfide (PPS) \u003cbr\u003e10.5. Polysulfone (PSU) \u003cbr\u003e\u003cstrong\u003e11. Tables of Selected ISO 10350 Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e11.1. Styrenics \u003cbr\u003e11.2. Polyethers \u003cbr\u003e11.3. Polyesters \u003cbr\u003e11.4. Polyimides \u003cbr\u003e11.5. Polyamides \u003cbr\u003e11.6. Polyolefins and Acrylics \u003cbr\u003e11.7. Thermoplastic Elastomers \u003cbr\u003e11.8. Fluoropolymers \u003cbr\u003e11.9. Miscellaneous High Temperature Plastics \u003cbr\u003e\u003cstrong\u003e12. Tables of Selected Thermal Properties of Selected Plastics\u003c\/strong\u003e\u003cbr\u003e12.1. Styrenics \u003cbr\u003e12.2. Polyethers \u003cbr\u003e12.3. Polyesters \u003cbr\u003e12.4. Polyimides \u003cbr\u003e12.5. Polyamides \u003cbr\u003e12.6. Polyolefins and Acrylics \u003cbr\u003e12.7. Thermoplastic Elastomers \u003cbr\u003e12.8. Fluoropolymers \u003cbr\u003e12.9. Miscellaneous High Temperature Plastics \u003cbr\u003eAppendices: \u003cbr\u003eAbbreviations \u003cbr\u003eTradenames \u003cbr\u003eConversion Factors?\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eLaurence W. McKeen\u003c\/strong\u003e\u003cbr\u003e\u003ci\u003eDuPont Teflon Finishes Group (former), Delaware, U.S.A.\u003c\/i\u003e\u003cbr\u003eDr. Laurence W. McKeen earned a B.S. in Chemistry from Rensselaer Polytechnic Institute in 1973 and a Ph.D. in 1978 from the University of Wisconsin. He began his career with DuPont in 1978 as a mass spectroscopist but moved into product development in the Teflon® Finishes group in 1980. He has accumulated over 28 years of experience in product development and application working with customers in a wide range of industries which has led to dozens of commercial products.\u003cbr\u003e\u003cbr\u003e"}
The Plastics Compendiu...
$190.00
{"id":11242234436,"title":"The Plastics Compendium Vol 1","handle":"978-1-85957-058-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.C. Hough and R. Dolbey \u003cbr\u003eISBN 978-1-85957-058-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003c\/span\u003e \u003cbr\u003ePages 414\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe properties and processability of plastics materials are subject to a number of influences. Factors such as a chemical constitution, molecular weight and degree of crystallinity are clearly of primary importance, but they do not tell the whole story. Commercial grades of plastics contain reinforcing agents and fillers, plasticisers and lubricants, which may enhance one aspect of a material's performance whilst diminishing another. Accurate data on the performance of the most widely available modified grades are therefore essential when specifying materials for ever more demanding applications. The relative costs of materials may also be significant when large production runs are planned or if a number of materials meet the required performance criteria. All these aspects are addressed in \u003ci\u003eThe Plastics Compendium\u003c\/i\u003e; a unique resource from Rapra Technology.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eVolume 1 of \u003ci\u003eThe Plastics Compendium\u003c\/i\u003e contains clearly presented data on 351 generic and modified material types, in the following main sections:\u003c\/p\u003e\n\u003cli\u003eProperty and commercial data sheets\u003c\/li\u003e\n\u003cli\u003eAn alphabetical trade name index\u003c\/li\u003e\n\u003cli\u003eA listing of suppliers’ (or their agents’) addresses, together with telephone, telex and fax numbers, in up to 15 European countries and the USA\u003c\/li\u003e\n\u003cli\u003eA detailed alphabetical index to the materials for which data are listed.\n\u003cp\u003eThe property and commercial data sheets provide three types of information:\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003eTextual information presented in the form of Advantages, Disadvantages and Typical Applications\u003c\/li\u003e\n\u003cli\u003eMaterials data; listing values of 24 key properties (where applicable) for all 351 materials (including mechanical and electrical properties, flammability, recommended material drying time and moulding temperature, mould shrinkage, maximum operating temperature, water absorption and cost)\u003c\/li\u003e\n\u003cli\u003eSource data; listing suppliers and their trade names.\u003c\/li\u003e","published_at":"2017-06-22T21:14:26-04:00","created_at":"2017-06-22T21:14:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","absorption","book","composites","crystallinity","drying time","elastomers","fillers","flammability","lubricants","mold","molding","molecular weight","mould shrinkage","moulding temperature","plasticisers","plastics","polymer","properties","reference","reinforcing","testing","thermoplastics","thermosets"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378416644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Plastics Compendium Vol 1","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-058-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.C. Hough and R. Dolbey \u003cbr\u003eISBN 978-1-85957-058-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003c\/span\u003e \u003cbr\u003ePages 414\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe properties and processability of plastics materials are subject to a number of influences. Factors such as a chemical constitution, molecular weight and degree of crystallinity are clearly of primary importance, but they do not tell the whole story. Commercial grades of plastics contain reinforcing agents and fillers, plasticisers and lubricants, which may enhance one aspect of a material's performance whilst diminishing another. Accurate data on the performance of the most widely available modified grades are therefore essential when specifying materials for ever more demanding applications. The relative costs of materials may also be significant when large production runs are planned or if a number of materials meet the required performance criteria. All these aspects are addressed in \u003ci\u003eThe Plastics Compendium\u003c\/i\u003e; a unique resource from Rapra Technology.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eVolume 1 of \u003ci\u003eThe Plastics Compendium\u003c\/i\u003e contains clearly presented data on 351 generic and modified material types, in the following main sections:\u003c\/p\u003e\n\u003cli\u003eProperty and commercial data sheets\u003c\/li\u003e\n\u003cli\u003eAn alphabetical trade name index\u003c\/li\u003e\n\u003cli\u003eA listing of suppliers’ (or their agents’) addresses, together with telephone, telex and fax numbers, in up to 15 European countries and the USA\u003c\/li\u003e\n\u003cli\u003eA detailed alphabetical index to the materials for which data are listed.\n\u003cp\u003eThe property and commercial data sheets provide three types of information:\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003eTextual information presented in the form of Advantages, Disadvantages and Typical Applications\u003c\/li\u003e\n\u003cli\u003eMaterials data; listing values of 24 key properties (where applicable) for all 351 materials (including mechanical and electrical properties, flammability, recommended material drying time and moulding temperature, mould shrinkage, maximum operating temperature, water absorption and cost)\u003c\/li\u003e\n\u003cli\u003eSource data; listing suppliers and their trade names.\u003c\/li\u003e"}
The Plastics Compendiu...
$145.00
{"id":11242234180,"title":"The Plastics Compendium vol. 2","handle":"978-1-85957-092-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.C. Hough and R. Dolbey \u003cbr\u003eISBN 978-1-85957-092-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages 500\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach material has been assigned a comparative ranking value for each of the properties. These range from Excellent to Very Poor and Not Applicable. 62 properties are covered, in 4 categories:\n\u003cli\u003eGeneral and electrical; including shrinkage, warpage, hydrolytic stability, UV weathering and material cost.\u003c\/li\u003e\n\u003cli\u003eMechanical; e.g. tensile strength, fatigue index, toughness, and wear.\u003c\/li\u003e\n\u003cli\u003eProcessing; i.e. ability to be processed by moulding, extrusion, pultrusion, casting, resin injection, etc.\u003c\/li\u003e\n\u003cli\u003ePost-processing; e.g. machining, plating, and welding.\u003c\/li\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eThe information is presented in the following main sections:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eProperty-based listings.\u003c\/li\u003e\n\u003cli\u003eComparative materials data sheets.\u003c\/li\u003e\n\u003cli\u003eAlphabetical indexes of properties and materials.\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:25-04:00","created_at":"2017-06-22T21:14:25-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","book","casting","chracterization","electrical","extrusion","fatigue","hydrolytic stability","mechanical","moulding","plastics","polymer","processing","properties","pultrusion","reference","resin injection","shrinkage","tensile strength","testing","thermoplastics","toughness","UV weathering","warpage","wear"],"price":14500,"price_min":14500,"price_max":14500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378415236,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Plastics Compendium vol. 2","public_title":null,"options":["Default Title"],"price":14500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-092-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.C. Hough and R. Dolbey \u003cbr\u003eISBN 978-1-85957-092-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages 500\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach material has been assigned a comparative ranking value for each of the properties. These range from Excellent to Very Poor and Not Applicable. 62 properties are covered, in 4 categories:\n\u003cli\u003eGeneral and electrical; including shrinkage, warpage, hydrolytic stability, UV weathering and material cost.\u003c\/li\u003e\n\u003cli\u003eMechanical; e.g. tensile strength, fatigue index, toughness, and wear.\u003c\/li\u003e\n\u003cli\u003eProcessing; i.e. ability to be processed by moulding, extrusion, pultrusion, casting, resin injection, etc.\u003c\/li\u003e\n\u003cli\u003ePost-processing; e.g. machining, plating, and welding.\u003c\/li\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eThe information is presented in the following main sections:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eProperty-based listings.\u003c\/li\u003e\n\u003cli\u003eComparative materials data sheets.\u003c\/li\u003e\n\u003cli\u003eAlphabetical indexes of properties and materials.\u003c\/li\u003e\n\u003c\/ul\u003e"}
Thermal Degradation of...
$145.00
{"id":11242208196,"title":"Thermal Degradation of Polymeric Materials","handle":"978-1-85957-498-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Pielichowski and J. Njuguna \u003cbr\u003eISBN 978-1-85957-498-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003cbr\u003e\u003c\/span\u003e306 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal degradation of polymeric materials is an important issue from both the academic and the industrial viewpoints. Understanding the thermal degradation of polymers is of paramount importance for developing a rational technology of polymer processing and higher-temperature applications. Controlling degradation requires an understanding of many different phenomena, including chemical mechanisms, the influence of polymer morphology, the complexities of oxidation chemistry, and the effects of stabilisers, fillers and other additives. \u003cbr\u003e\u003cbr\u003eThis work summarises recent developments in the study of the thermal degradation of polymers. The authors present an overview of thermal degradation mechanisms and kinetics as well as describing the use of thermogravimetry and differential scanning calorimetry, in combination with mass spectroscopy and infrared spectrometry, to investigate thermal decomposition. These methods have proved useful for defining suitable processing conditions for polymers as well as useful service guidelines for their application. \u003cbr\u003e\u003cbr\u003eThe authors go on to discuss the thermal degradation of various polymers, copolymers, high-performance plastics, blends, and composites, including polyolefins, styrene polymers, polyvinyl chloride, polyamides, polyurethanes, polyesters, polyacrylates and others. \u003cbr\u003e\u003cbr\u003eThis book offers a wealth of information for polymer researchers and processors requiring an understanding of the implications of thermal degradation on material and product performance.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Thermal Degradation Techniques\u003cbr\u003e1.1.1 Thermogravimetry (TG)\u003cbr\u003e1.1.2 Pyrolysis (Py)\u003cbr\u003e1.1.3 Thermal Volatilisation Analysis (TVA)\u003cbr\u003e1.1.4 Differential Scanning Calorimetry (DSC)\u003cbr\u003e1.1.5 Matrix-Assisted Laser Desorption\/Ionisation Mass Spectrometry (MALDI)\u003cbr\u003e1.1.6 Others\u003cbr\u003e1.2 Ageing and Lifetime Predictions\u003cbr\u003e1.3 Thermal Degradation Pathways \u003cbr\u003e2 Mechanisms of Thermal Degradation of Polymers\u003cbr\u003e2.1 Side-Group Elimination\u003cbr\u003e2.2 Random Scission\u003cbr\u003e2.3 Depolymerisation \u003cbr\u003e3 Thermooxidative Degradation \u003cbr\u003e4 Kinetics of Thermal Degradation\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Kinetic Analysis \u003cbr\u003e5 Polymers, Copolymers, and Blends\u003cbr\u003e5.1 Polyolefins\u003cbr\u003e5.1.1 Polyethylene (PE)\u003cbr\u003e5.1.2 Polypropylene (PP)\u003cbr\u003e5.1.3 Polyisobutylene (PIB)\u003cbr\u003e5.1.4 Cyclic Olefin Copolymers\u003cbr\u003e5.1.5 Diene Polymers\u003cbr\u003e5.2 Styrene Polymers\u003cbr\u003e5.2.1 Polystyrene (PS) and its Chemical Modifications\u003cbr\u003e5.2.2 Styrene Copolymers\u003cbr\u003e5.2.3 Acrylonitrile-Butadiene-Styrene Terpolymer (ABS)\u003cbr\u003e5.2.4 Polystyrene Blends\u003cbr\u003e5.3 Poly(Vinyl Chloride) (PVC)\u003cbr\u003e5.3.1 Poly(Vinyl Chloride) Homopolymer\u003cbr\u003e5.3.2 Poly(Vinyl Chloride) Blends\u003cbr\u003e5.4 Polyamides (PA)\u003cbr\u003e5.4.1 Poly(Ester Amide)s\u003cbr\u003e5.4.2 Liquid-Crystalline Polyamides\u003cbr\u003e5.4.3 Polyamide Blends\u003cbr\u003e5.5 Polyurethanes (PUs)\u003cbr\u003e5.5.1 Thermoplastic Polyurethanes\u003cbr\u003e5.5.2 Polyurethane Foams\u003cbr\u003e5.6 Polyesters\u003cbr\u003e5.6.1 Poly(Ethylene Terephthalate) (PET)\u003cbr\u003e5.6.2 Biodegradable Polyesters\u003cbr\u003e5.7 Acryl Polymers\u003cbr\u003e5.7.1 Poly(Methyl Methacrylate) (PMMA)\u003cbr\u003e5.7.2 Acryl (Co)Polymers\u003cbr\u003e5.7.3 Acrylonitrile-Containing (Co)Polymers\u003cbr\u003e5.8 Others\u003cbr\u003e5.8.1 Poly(Vinyl Acetate) (PVAc)\u003cbr\u003e5.8.2 Poly(Vinyl Alcohol) (PVOH)\u003cbr\u003e5.8.3 Vinylidene Chloride (VDC) Copolymers\u003cbr\u003e5.8.4 Sulfone-Containing Polymers\u003cbr\u003e5.8.5 Sulfide-Containing (Co)Polymers\u003cbr\u003e5.8.6 Poly(Bisphenol-A Carbonate) (PC)\u003cbr\u003e5.8.7 Poly(Butylene Terephthalate) (PBT)\u003cbr\u003e5.8.8 Poly(Ethylene Glycol Allenyl Methyl Ether) (PEGA)\u003cbr\u003e5.8.9 Poly(Ether Ketone)s (PEKs)\u003cbr\u003e5.8.10 Poly(Epichlorohydrin-co-Ethylene Oxide) \u003cbr\u003e6 Natural Polymers\u003cbr\u003e6.1 Starch\u003cbr\u003e6.2 Chitin and Chitosan\u003cbr\u003e6.3 Cellulose\u003cbr\u003e6.4 Lignins\u003cbr\u003e6.5 Poly(Hydroxyalkanoate)s (PHAs)\u003cbr\u003e6.6 Proteins\u003cbr\u003e6.7 Natural Rubber\u003cbr\u003e6.8 Poly(Hydroxy Acid)s\u003cbr\u003e6.8.1 Poly(L-Lactic Acid) (PLLA)\u003cbr\u003e6.8.2 Poly(L-Lactic Acid) Blends\u003cbr\u003e6.9 Poly(p-Dioxanone) (PPDO) \u003cbr\u003e7 Reinforced Polymer Nanocomposites\u003cbr\u003e7.1 Glass-Fibre-Reinforced Composites\u003cbr\u003e7.2 Carbon-Fibre-Reinforced Composites\u003cbr\u003e7.3 Unsaturated Polyester Resins Reinforced with Fibres\u003cbr\u003e7.4 Reinforced Polyurethane Composites\u003cbr\u003e7.5 Polyamides with Natural Fibres\u003cbr\u003e7.6 Other Composites \u003cbr\u003e8 Inorganic Polymers\u003cbr\u003e8.1 Polysiloxanes\u003cbr\u003e8.2 Polyphosphazenes\u003cbr\u003e8.3 Polysilazanes and Polysilanes\u003cbr\u003e8.4 Organic-Inorganic Hybrid Polymers \u003cbr\u003e9 High Temperature-Resistant Polymers\u003cbr\u003e9.1 Aromatic Polyamides\u003cbr\u003e9.2 Aromatic Polycarbonates\u003cbr\u003e9.3 Aromatic Polyethers\u003cbr\u003e9.4 Phenylene-Containing Polymers\u003cbr\u003e9.5 Poly(Ether Ether Ketone) (PEEK)\u003cbr\u003e9.6 Polybenzimidazoles (PBIs)\u003cbr\u003e9.7 Polybismaleimides (BMIs)\u003cbr\u003e9.8 Polybenzoxazines\u003cbr\u003e9.9 Other High-Temperature Polymers\u003cbr\u003e9.9.1 Phenolic Resins\u003cbr\u003e9.9.2 Epoxies\u003cbr\u003e9.9.3 Poly(Ether Imide) (PEI) \u003cbr\u003e10 Recycling of Polymers by Thermal Degradation\u003cbr\u003e10.1 Polyolefins\u003cbr\u003e10.2 Polystyrene\u003cbr\u003e10.2.1 Polystyrene in the Melt\u003cbr\u003e10.2.2 Polystyrene in Solution\u003cbr\u003e10.3 Poly(Vinyl Chloride)\u003cbr\u003e10.4 Polyamides\u003cbr\u003e10.5 Natural Polymers\u003cbr\u003e10.5.1 Poly(L-Lactic Acid)\u003cbr\u003e10.5.2 Lignocellulose\u003cbr\u003e10.6 Other Homopolymers\u003cbr\u003e10.7 Mixtures of Polymer Wastes\u003cbr\u003e10.8 Thermal Degradation of Polymeric Materials – Ecological Issues\u003cbr\u003e10.8.1 Disposal Options and Sources of Information\u003cbr\u003e10.8.2 Sustainable Development \u003cbr\u003e11 Thermal Degradation During Processing of Polymers\u003cbr\u003e11.1 Polyethylene\u003cbr\u003e11.2 Polypropylene and its Blends\u003cbr\u003e11.3 Poly(Vinyl Alcohol)\u003cbr\u003e11.4 Other Polymers \u003cbr\u003e12 Modelling of Thermal Degradation Processes \u003cbr\u003e13 Concluding Remarks \u003cbr\u003e14 References \u003cbr\u003e15 References Available from the Polymer Library\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eKrzysztof Pielichowski\u003c\/strong\u003e is currently an associate professor of polymer science at the Cracow University of Technology. He has written over 80 articles and was awarded the Foundation for Polish Science fellowship in 1996 and the Fulbright fellowship in 2003. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eJames Njuguna\u003c\/strong\u003e is a Ph.D. student at the City University of London. He was a Marie Curie Fellow at the Cracow University of Technology in 2003\/2004, performing research in the area of polymeric nanocomposites.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:02-04:00","created_at":"2017-06-22T21:13:02-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","book","composites","Differential Scanning Calorimetry","fibres","high-performance plastics","mechanisms of degradation","methods of testing","nanocomposites","p-properties","polymer","PVC degradation","recycling","thermal degradation","thermal degradation of composites","thermal degradation of natural rubber","thermal degradation of polymers"],"price":14500,"price_min":14500,"price_max":14500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327748,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Degradation of Polymeric Materials","public_title":null,"options":["Default Title"],"price":14500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-498-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622","options":["Title"],"media":[{"alt":null,"id":358804947037,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Pielichowski and J. Njuguna \u003cbr\u003eISBN 978-1-85957-498-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003cbr\u003e\u003c\/span\u003e306 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal degradation of polymeric materials is an important issue from both the academic and the industrial viewpoints. Understanding the thermal degradation of polymers is of paramount importance for developing a rational technology of polymer processing and higher-temperature applications. Controlling degradation requires an understanding of many different phenomena, including chemical mechanisms, the influence of polymer morphology, the complexities of oxidation chemistry, and the effects of stabilisers, fillers and other additives. \u003cbr\u003e\u003cbr\u003eThis work summarises recent developments in the study of the thermal degradation of polymers. The authors present an overview of thermal degradation mechanisms and kinetics as well as describing the use of thermogravimetry and differential scanning calorimetry, in combination with mass spectroscopy and infrared spectrometry, to investigate thermal decomposition. These methods have proved useful for defining suitable processing conditions for polymers as well as useful service guidelines for their application. \u003cbr\u003e\u003cbr\u003eThe authors go on to discuss the thermal degradation of various polymers, copolymers, high-performance plastics, blends, and composites, including polyolefins, styrene polymers, polyvinyl chloride, polyamides, polyurethanes, polyesters, polyacrylates and others. \u003cbr\u003e\u003cbr\u003eThis book offers a wealth of information for polymer researchers and processors requiring an understanding of the implications of thermal degradation on material and product performance.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Thermal Degradation Techniques\u003cbr\u003e1.1.1 Thermogravimetry (TG)\u003cbr\u003e1.1.2 Pyrolysis (Py)\u003cbr\u003e1.1.3 Thermal Volatilisation Analysis (TVA)\u003cbr\u003e1.1.4 Differential Scanning Calorimetry (DSC)\u003cbr\u003e1.1.5 Matrix-Assisted Laser Desorption\/Ionisation Mass Spectrometry (MALDI)\u003cbr\u003e1.1.6 Others\u003cbr\u003e1.2 Ageing and Lifetime Predictions\u003cbr\u003e1.3 Thermal Degradation Pathways \u003cbr\u003e2 Mechanisms of Thermal Degradation of Polymers\u003cbr\u003e2.1 Side-Group Elimination\u003cbr\u003e2.2 Random Scission\u003cbr\u003e2.3 Depolymerisation \u003cbr\u003e3 Thermooxidative Degradation \u003cbr\u003e4 Kinetics of Thermal Degradation\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Kinetic Analysis \u003cbr\u003e5 Polymers, Copolymers, and Blends\u003cbr\u003e5.1 Polyolefins\u003cbr\u003e5.1.1 Polyethylene (PE)\u003cbr\u003e5.1.2 Polypropylene (PP)\u003cbr\u003e5.1.3 Polyisobutylene (PIB)\u003cbr\u003e5.1.4 Cyclic Olefin Copolymers\u003cbr\u003e5.1.5 Diene Polymers\u003cbr\u003e5.2 Styrene Polymers\u003cbr\u003e5.2.1 Polystyrene (PS) and its Chemical Modifications\u003cbr\u003e5.2.2 Styrene Copolymers\u003cbr\u003e5.2.3 Acrylonitrile-Butadiene-Styrene Terpolymer (ABS)\u003cbr\u003e5.2.4 Polystyrene Blends\u003cbr\u003e5.3 Poly(Vinyl Chloride) (PVC)\u003cbr\u003e5.3.1 Poly(Vinyl Chloride) Homopolymer\u003cbr\u003e5.3.2 Poly(Vinyl Chloride) Blends\u003cbr\u003e5.4 Polyamides (PA)\u003cbr\u003e5.4.1 Poly(Ester Amide)s\u003cbr\u003e5.4.2 Liquid-Crystalline Polyamides\u003cbr\u003e5.4.3 Polyamide Blends\u003cbr\u003e5.5 Polyurethanes (PUs)\u003cbr\u003e5.5.1 Thermoplastic Polyurethanes\u003cbr\u003e5.5.2 Polyurethane Foams\u003cbr\u003e5.6 Polyesters\u003cbr\u003e5.6.1 Poly(Ethylene Terephthalate) (PET)\u003cbr\u003e5.6.2 Biodegradable Polyesters\u003cbr\u003e5.7 Acryl Polymers\u003cbr\u003e5.7.1 Poly(Methyl Methacrylate) (PMMA)\u003cbr\u003e5.7.2 Acryl (Co)Polymers\u003cbr\u003e5.7.3 Acrylonitrile-Containing (Co)Polymers\u003cbr\u003e5.8 Others\u003cbr\u003e5.8.1 Poly(Vinyl Acetate) (PVAc)\u003cbr\u003e5.8.2 Poly(Vinyl Alcohol) (PVOH)\u003cbr\u003e5.8.3 Vinylidene Chloride (VDC) Copolymers\u003cbr\u003e5.8.4 Sulfone-Containing Polymers\u003cbr\u003e5.8.5 Sulfide-Containing (Co)Polymers\u003cbr\u003e5.8.6 Poly(Bisphenol-A Carbonate) (PC)\u003cbr\u003e5.8.7 Poly(Butylene Terephthalate) (PBT)\u003cbr\u003e5.8.8 Poly(Ethylene Glycol Allenyl Methyl Ether) (PEGA)\u003cbr\u003e5.8.9 Poly(Ether Ketone)s (PEKs)\u003cbr\u003e5.8.10 Poly(Epichlorohydrin-co-Ethylene Oxide) \u003cbr\u003e6 Natural Polymers\u003cbr\u003e6.1 Starch\u003cbr\u003e6.2 Chitin and Chitosan\u003cbr\u003e6.3 Cellulose\u003cbr\u003e6.4 Lignins\u003cbr\u003e6.5 Poly(Hydroxyalkanoate)s (PHAs)\u003cbr\u003e6.6 Proteins\u003cbr\u003e6.7 Natural Rubber\u003cbr\u003e6.8 Poly(Hydroxy Acid)s\u003cbr\u003e6.8.1 Poly(L-Lactic Acid) (PLLA)\u003cbr\u003e6.8.2 Poly(L-Lactic Acid) Blends\u003cbr\u003e6.9 Poly(p-Dioxanone) (PPDO) \u003cbr\u003e7 Reinforced Polymer Nanocomposites\u003cbr\u003e7.1 Glass-Fibre-Reinforced Composites\u003cbr\u003e7.2 Carbon-Fibre-Reinforced Composites\u003cbr\u003e7.3 Unsaturated Polyester Resins Reinforced with Fibres\u003cbr\u003e7.4 Reinforced Polyurethane Composites\u003cbr\u003e7.5 Polyamides with Natural Fibres\u003cbr\u003e7.6 Other Composites \u003cbr\u003e8 Inorganic Polymers\u003cbr\u003e8.1 Polysiloxanes\u003cbr\u003e8.2 Polyphosphazenes\u003cbr\u003e8.3 Polysilazanes and Polysilanes\u003cbr\u003e8.4 Organic-Inorganic Hybrid Polymers \u003cbr\u003e9 High Temperature-Resistant Polymers\u003cbr\u003e9.1 Aromatic Polyamides\u003cbr\u003e9.2 Aromatic Polycarbonates\u003cbr\u003e9.3 Aromatic Polyethers\u003cbr\u003e9.4 Phenylene-Containing Polymers\u003cbr\u003e9.5 Poly(Ether Ether Ketone) (PEEK)\u003cbr\u003e9.6 Polybenzimidazoles (PBIs)\u003cbr\u003e9.7 Polybismaleimides (BMIs)\u003cbr\u003e9.8 Polybenzoxazines\u003cbr\u003e9.9 Other High-Temperature Polymers\u003cbr\u003e9.9.1 Phenolic Resins\u003cbr\u003e9.9.2 Epoxies\u003cbr\u003e9.9.3 Poly(Ether Imide) (PEI) \u003cbr\u003e10 Recycling of Polymers by Thermal Degradation\u003cbr\u003e10.1 Polyolefins\u003cbr\u003e10.2 Polystyrene\u003cbr\u003e10.2.1 Polystyrene in the Melt\u003cbr\u003e10.2.2 Polystyrene in Solution\u003cbr\u003e10.3 Poly(Vinyl Chloride)\u003cbr\u003e10.4 Polyamides\u003cbr\u003e10.5 Natural Polymers\u003cbr\u003e10.5.1 Poly(L-Lactic Acid)\u003cbr\u003e10.5.2 Lignocellulose\u003cbr\u003e10.6 Other Homopolymers\u003cbr\u003e10.7 Mixtures of Polymer Wastes\u003cbr\u003e10.8 Thermal Degradation of Polymeric Materials – Ecological Issues\u003cbr\u003e10.8.1 Disposal Options and Sources of Information\u003cbr\u003e10.8.2 Sustainable Development \u003cbr\u003e11 Thermal Degradation During Processing of Polymers\u003cbr\u003e11.1 Polyethylene\u003cbr\u003e11.2 Polypropylene and its Blends\u003cbr\u003e11.3 Poly(Vinyl Alcohol)\u003cbr\u003e11.4 Other Polymers \u003cbr\u003e12 Modelling of Thermal Degradation Processes \u003cbr\u003e13 Concluding Remarks \u003cbr\u003e14 References \u003cbr\u003e15 References Available from the Polymer Library\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eKrzysztof Pielichowski\u003c\/strong\u003e is currently an associate professor of polymer science at the Cracow University of Technology. He has written over 80 articles and was awarded the Foundation for Polish Science fellowship in 1996 and the Fulbright fellowship in 2003. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eJames Njuguna\u003c\/strong\u003e is a Ph.D. student at the City University of London. He was a Marie Curie Fellow at the Cracow University of Technology in 2003\/2004, performing research in the area of polymeric nanocomposites.\u003cbr\u003e\u003cbr\u003e"}
Thermal Methods of Pol...
$205.00
{"id":11242241028,"title":"Thermal Methods of Polymer Analysis","handle":"9781847356611","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847356611 \u003cbr\u003e\u003cbr\u003epages 242, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book reviews the various thermal methods used for the characterisation of polymer properties and composition. All these methods study the properties of polymers as they change with temperature.\u003cbr\u003e\u003cbr\u003eThe methods discussed in this book are: differential photocalorimetry, differential scanning calorimetry, dielectric thermal analysis, differential thermal analysis, dynamic mechanical analysis, evolved gas analysis, gas chromatography, gas chromatography combined with mass spectrometry, mass spectrometry, microthermal analysis, thermal volatilisation, thermogravimetric analysis and thermomechanical analysis.\u003cbr\u003e\u003cbr\u003eEach technique is discussed in detail and examples of the use of each technique are also given. Each chapter has an extensive list of references so that the reader can follow up topics of interest.\u003cbr\u003e\u003cbr\u003eThis book will be a useful reference for those who already use any of these thermal methods but will also be of interest to undergraduates and those who are just starting to use these techniques.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Pyrolysis–Gas Chromatography Techniques \u003cbr\u003e1.1 Theoretical Considerations \u003cbr\u003e1.2 Instrumentation \u003cbr\u003e1.2.1 Combustion Furnace Pyrolyser \u003cbr\u003e1.2.2 Filament Pyrolyser \u003cbr\u003e1.2.3 Curie Point Pyrolyser \u003cbr\u003e1.2.4 Laser Pyrolysis \u003cbr\u003e1.3 Polymer Degradation Mechanisms \u003cbr\u003e1.3.1 Depolymerisation \u003cbr\u003e1.3.2 Side Group Elimination \u003cbr\u003e1.4 Polypropylene \u003cbr\u003e1.5 Determination of the Degree of Cure of Rubber\u003cbr\u003e1.6 Polybutadiene \u003cbr\u003e1.7 Polyacrylates and Polymethacrylates \u003cbr\u003e1.8 Polyethylene Oxide \u003cbr\u003e1.9 Polysulfides \u003cbr\u003e1.10 Silicon Polymers\u003cbr\u003e1.11 Determination of Unsaturation in Ethylene–Propylene–Diene Terpolymers \u003cbr\u003e1.12 Polyethylene Acrylate and Ethylene-vinyl Acetate Copolymers \u003cbr\u003e1.13 Styrene-based Copolymers \u003cbr\u003e1.13.1 Styrene-n-butyl Acrylate Copolymers\u003cbr\u003e1.14 Styrene–Methylymethacrylate Copolymers \u003cbr\u003e1.15 Styrene–isoprene Copolymers \u003cbr\u003e1.16 Styrene Divinylbenzene \u003cbr\u003e1.17 Chloromethylated Polystyrene–Divinylbenzene Copolymers \u003cbr\u003e1.18 Vinyl Chloride–Vinylidene Chloride Copolymers \u003cbr\u003e1.19 Comonomer Units in Polyhexafluoropropylene–Vinylidene Chloride Copolymers\u003cbr\u003e1.20 Nitrile–butadiene \u003cbr\u003e1.21 Miscellaneous Copolymers \u003cbr\u003e2 Thermogravimetric Analysis \u003cbr\u003e2.1 Theoretical Considerations \u003cbr\u003e2.2 Applications\u003cbr\u003e2.2.1 Thermal Stability Studies \u003cbr\u003e2.2.2 Degradation Studies \u003cbr\u003e2.2.3 Complementary Pyrolysis Studies \u003cbr\u003e2.2.4 Activation Energy \u003cbr\u003e2.2.5 Polymer Transitions \u003cbr\u003e2.2.6 Effect of Antioxidants on Polymer Ageing \u003cbr\u003e2.2.7 Polymer Lifetime Measurements \u003cbr\u003e2.2.8 Combustion Inhibition \u003cbr\u003e3 Complementary Thermogravimetry, Gas chromatography-Mass Spectroscopy and Fourier-Transform-Infrared Spectroscopy \u003cbr\u003e3.1 Thermogravimetry – Gas chromatography-Mass Spectroscopy Techniques \u003cbr\u003e3.1.1 Instrumentation \u003cbr\u003e3.1.2 Applications \u003cbr\u003e3.1.2.1 Ethylene–polystyrene Copolymer \u003cbr\u003e3.1.2.2 Ethylene-vinyl Acetate \u003cbr\u003e3.1.2.3 Epoxy Resins \u003cbr\u003e3.1.2.4 Phosphorus-Containing Polymers \u003cbr\u003e3.1.2.5 Polyimides. \u003cbr\u003e3.1.2.6 Miscellaneous Polymers \u003cbr\u003e3.2 Thermogravimetric Analysis–FT-IR \u003cbr\u003e3.2.1 Instrumentation \u003cbr\u003e3.2.2 Applications \u003cbr\u003e3.2.2.1 Polypropylene Carbonate \u003cbr\u003e3.2.2.2 Miscellaneous Polymers \u003cbr\u003e4 Evolved Gas Analysis \u003cbr\u003e4.1 Theoretical Considerations \u003cbr\u003e4.2 Applications. \u003cbr\u003e4.2.1 Polypropylene \u003cbr\u003e4.2.2 Polyethylene Oxide\u003cbr\u003e4.2.3 Cellulosic Flame Retardants \u003cbr\u003e4.3 TGA – GC based Evolved Gas Analysis \u003cbr\u003e4.3.1 Thermoresist Rubbers\u003cbr\u003e4.4 Pyrolysis-evolved Gas–infrared Spectroscopy \u003cbr\u003e4.5 Antioxidant Degradation \u003cbr\u003e5 Thermal Volatilisation Analysis\u003cbr\u003e5.1 Applications\u003cbr\u003e6 Thermal Volatilisation Analysis\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Measurement of Polymer Transitions\u003cbr\u003e6.1.2 Phase Change\u003cbr\u003e6.1.3 Curing Kinetics\u003cbr\u003e6.1.4 Polymer Degradation Studies\u003cbr\u003e6.1.5 Thermal and Oxidative Stability \u003cbr\u003e6.1.6 Polymer Characterisation\u003cbr\u003e6.1.7 Crystallinity \u003cbr\u003e6.1.8 Miscellaneous Applications\u003cbr\u003e6.2 Complimentary Differential Thermal Analysis–Mass Spectrometry \u003cbr\u003e7 Differential Scanning Calorimetry \u003cbr\u003e7.1 Instrumentation\u003cbr\u003e7.2 Applications\u003cbr\u003e7.2.1 Determination of Crystallinity \u003cbr\u003e7.2.2 Effect of Solvents on Crystallinity \u003cbr\u003e7.2.3 Crystallisation Kinetics\u003cbr\u003e7.2.4 Effects of Fillers on Crystallinity \u003cbr\u003e7.2.5 Crystallisation Temperature \u003cbr\u003e7.2.6 Curing Kinetics \u003cbr\u003e7.2.7 Measurement of Transition Temperatures, Glass Transition, other Transitions \u003cbr\u003e7.2.8 Preparation of Phase Diagrams\u003cbr\u003e7.2.9 Melting Temperature \u003cbr\u003e7.2.10 Miscellaneous Applications of DSC \u003cbr\u003e8 Dynamic Mechanical Thermal Analysis \u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Measurement of Glass Transition Temperature and other Transitions =\u003cbr\u003e8.1.2 Resin Cure Studies \u003cbr\u003e8.1.3 Modulus Measurements\u003cbr\u003e8.1.4 Stress–strain Measurements \u003cbr\u003e8.1.5 Rheological Properties and Viscosity \u003cbr\u003e8.1.6 Relaxation Phenomena \u003cbr\u003e8.1.7 Morphology\u003cbr\u003e8.1.8 Thermal Properties \u003cbr\u003e8.1.9 Other Applications \u003cbr\u003e9 Thermomechanical Analysis\u003cbr\u003e9.1 Theoretical Considerations \u003cbr\u003e9.2 Instrumentation \u003cbr\u003e9.3 Applications \u003cbr\u003e9.3.1 Mechanical and Thermal Properties\u003cbr\u003e9.3.2 Transitions \u003cbr\u003e9.3.3 Fibre Stress–strain Measurements \u003cbr\u003e9.2.4 Polymer Characterisation Studies\u003cbr\u003e9.3.5 Viscoelastic and Rheological Properties \u003cbr\u003e9.3.6 Gel Time Measurement \u003cbr\u003e10 Microthermal Analysis \u003cbr\u003e10.1 Theoretical Considerations \u003cbr\u003e10.2 Atomic Force Microscopy \u003cbr\u003e10.3 Instrumentation \u003cbr\u003e10.4 Applications \u003cbr\u003e10.4.1 Morphology\u003cbr\u003e10.4.2 Topography Studies\u003cbr\u003e10.4.3 Depth Profiling \u003cbr\u003e10.4.4 Glass Transition\u003cbr\u003e11 Differential Photocalorimetry \u003cbr\u003e11.1 Theoretical Considerations \u003cbr\u003e11.2 Instrumentation \u003cbr\u003e11.3 Applications \u003cbr\u003e11.3.1 Photocure Rates\u003cbr\u003e11.3.2 Degree of Cure \u003cbr\u003e11.3.3 Dependence of Reactivity upon Functionalisation\u003cbr\u003e11.3.3.1 Influence of Wavelength \u003cbr\u003e11.3.3.2 Influence of Photoinitiator Concentration \u003cbr\u003e11.3.3.3 Influence of Humidity \u003cbr\u003e11.3.4 Miscellaneous Applications \u003cbr\u003e12 Dielectric Thermal Analysis \u003cbr\u003e12.1 Theoretical Considerations \u003cbr\u003e12.2 Applications \u003cbr\u003e12.2.1 Resin Cure Studies \u003cbr\u003e12.2.2 Viscoelastic and Rheological Properties \u003cbr\u003e12.2.2.1 Flow and Cure of an Aerospace Adhesive \u003cbr\u003e12.2.2.2 Influence of Thermal History on Nylon \u003cbr\u003e12.2.3 Thermal Transitions\u003cbr\u003e12.2.4 Polymer Characterisation \u003cbr\u003e13 Resin Cure Studies \u003cbr\u003e13.1 Techniques \u003cbr\u003e13.1.1 Differential Photocalorimetry\u003cbr\u003e13.1.2 Dielectric Thermal Analysis\u003cbr\u003e13.1.3 Differential Scanning Calorimetry\u003cbr\u003e13.1.4 Dynamic Mechanical Analysis \u003cbr\u003e14 Thermal Degradation Mechanisms \u003cbr\u003e14.1 Theoretical Considerations \u003cbr\u003e14.2 Pyrolysis-Gas Chromatography-Mass Spectrometry \u003cbr\u003e14.2.1 Polypropylene Carbonate Decomposition \u003cbr\u003e14.2.2 Polyisobutylene Decomposition \u003cbr\u003e14.2.3 Polystyrene Decompositions \u003cbr\u003e14.2.4 Nitrogen-Containing Polymers \u003cbr\u003e14.2.5 Sulfur Containing Polymers \u003cbr\u003e14.2.6 Miscellaneous Polymers \u003cbr\u003e14.3 Pyrolysis–FT-IR Spectroscopy \u003cbr\u003e14.4 Derivitisation–Pyrolysis–Mass Spectrometry\u003cbr\u003e14.5 Differential Scanning Calorimetry and Thermogravimetry\u003cbr\u003e14.6 Pyrolysis – Mass Spectrometry (Without an Intervening Chromatographic Stage)\u003cbr\u003e14.7 Examination of Thermal Stability \u003cbr\u003eAppendix 1\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","analysis","book","p-properties","polymer"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436228,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Methods of Polymer Analysis","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356611","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231","options":["Title"],"media":[{"alt":null,"id":358806388829,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847356611 \u003cbr\u003e\u003cbr\u003epages 242, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book reviews the various thermal methods used for the characterisation of polymer properties and composition. All these methods study the properties of polymers as they change with temperature.\u003cbr\u003e\u003cbr\u003eThe methods discussed in this book are: differential photocalorimetry, differential scanning calorimetry, dielectric thermal analysis, differential thermal analysis, dynamic mechanical analysis, evolved gas analysis, gas chromatography, gas chromatography combined with mass spectrometry, mass spectrometry, microthermal analysis, thermal volatilisation, thermogravimetric analysis and thermomechanical analysis.\u003cbr\u003e\u003cbr\u003eEach technique is discussed in detail and examples of the use of each technique are also given. Each chapter has an extensive list of references so that the reader can follow up topics of interest.\u003cbr\u003e\u003cbr\u003eThis book will be a useful reference for those who already use any of these thermal methods but will also be of interest to undergraduates and those who are just starting to use these techniques.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Pyrolysis–Gas Chromatography Techniques \u003cbr\u003e1.1 Theoretical Considerations \u003cbr\u003e1.2 Instrumentation \u003cbr\u003e1.2.1 Combustion Furnace Pyrolyser \u003cbr\u003e1.2.2 Filament Pyrolyser \u003cbr\u003e1.2.3 Curie Point Pyrolyser \u003cbr\u003e1.2.4 Laser Pyrolysis \u003cbr\u003e1.3 Polymer Degradation Mechanisms \u003cbr\u003e1.3.1 Depolymerisation \u003cbr\u003e1.3.2 Side Group Elimination \u003cbr\u003e1.4 Polypropylene \u003cbr\u003e1.5 Determination of the Degree of Cure of Rubber\u003cbr\u003e1.6 Polybutadiene \u003cbr\u003e1.7 Polyacrylates and Polymethacrylates \u003cbr\u003e1.8 Polyethylene Oxide \u003cbr\u003e1.9 Polysulfides \u003cbr\u003e1.10 Silicon Polymers\u003cbr\u003e1.11 Determination of Unsaturation in Ethylene–Propylene–Diene Terpolymers \u003cbr\u003e1.12 Polyethylene Acrylate and Ethylene-vinyl Acetate Copolymers \u003cbr\u003e1.13 Styrene-based Copolymers \u003cbr\u003e1.13.1 Styrene-n-butyl Acrylate Copolymers\u003cbr\u003e1.14 Styrene–Methylymethacrylate Copolymers \u003cbr\u003e1.15 Styrene–isoprene Copolymers \u003cbr\u003e1.16 Styrene Divinylbenzene \u003cbr\u003e1.17 Chloromethylated Polystyrene–Divinylbenzene Copolymers \u003cbr\u003e1.18 Vinyl Chloride–Vinylidene Chloride Copolymers \u003cbr\u003e1.19 Comonomer Units in Polyhexafluoropropylene–Vinylidene Chloride Copolymers\u003cbr\u003e1.20 Nitrile–butadiene \u003cbr\u003e1.21 Miscellaneous Copolymers \u003cbr\u003e2 Thermogravimetric Analysis \u003cbr\u003e2.1 Theoretical Considerations \u003cbr\u003e2.2 Applications\u003cbr\u003e2.2.1 Thermal Stability Studies \u003cbr\u003e2.2.2 Degradation Studies \u003cbr\u003e2.2.3 Complementary Pyrolysis Studies \u003cbr\u003e2.2.4 Activation Energy \u003cbr\u003e2.2.5 Polymer Transitions \u003cbr\u003e2.2.6 Effect of Antioxidants on Polymer Ageing \u003cbr\u003e2.2.7 Polymer Lifetime Measurements \u003cbr\u003e2.2.8 Combustion Inhibition \u003cbr\u003e3 Complementary Thermogravimetry, Gas chromatography-Mass Spectroscopy and Fourier-Transform-Infrared Spectroscopy \u003cbr\u003e3.1 Thermogravimetry – Gas chromatography-Mass Spectroscopy Techniques \u003cbr\u003e3.1.1 Instrumentation \u003cbr\u003e3.1.2 Applications \u003cbr\u003e3.1.2.1 Ethylene–polystyrene Copolymer \u003cbr\u003e3.1.2.2 Ethylene-vinyl Acetate \u003cbr\u003e3.1.2.3 Epoxy Resins \u003cbr\u003e3.1.2.4 Phosphorus-Containing Polymers \u003cbr\u003e3.1.2.5 Polyimides. \u003cbr\u003e3.1.2.6 Miscellaneous Polymers \u003cbr\u003e3.2 Thermogravimetric Analysis–FT-IR \u003cbr\u003e3.2.1 Instrumentation \u003cbr\u003e3.2.2 Applications \u003cbr\u003e3.2.2.1 Polypropylene Carbonate \u003cbr\u003e3.2.2.2 Miscellaneous Polymers \u003cbr\u003e4 Evolved Gas Analysis \u003cbr\u003e4.1 Theoretical Considerations \u003cbr\u003e4.2 Applications. \u003cbr\u003e4.2.1 Polypropylene \u003cbr\u003e4.2.2 Polyethylene Oxide\u003cbr\u003e4.2.3 Cellulosic Flame Retardants \u003cbr\u003e4.3 TGA – GC based Evolved Gas Analysis \u003cbr\u003e4.3.1 Thermoresist Rubbers\u003cbr\u003e4.4 Pyrolysis-evolved Gas–infrared Spectroscopy \u003cbr\u003e4.5 Antioxidant Degradation \u003cbr\u003e5 Thermal Volatilisation Analysis\u003cbr\u003e5.1 Applications\u003cbr\u003e6 Thermal Volatilisation Analysis\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Measurement of Polymer Transitions\u003cbr\u003e6.1.2 Phase Change\u003cbr\u003e6.1.3 Curing Kinetics\u003cbr\u003e6.1.4 Polymer Degradation Studies\u003cbr\u003e6.1.5 Thermal and Oxidative Stability \u003cbr\u003e6.1.6 Polymer Characterisation\u003cbr\u003e6.1.7 Crystallinity \u003cbr\u003e6.1.8 Miscellaneous Applications\u003cbr\u003e6.2 Complimentary Differential Thermal Analysis–Mass Spectrometry \u003cbr\u003e7 Differential Scanning Calorimetry \u003cbr\u003e7.1 Instrumentation\u003cbr\u003e7.2 Applications\u003cbr\u003e7.2.1 Determination of Crystallinity \u003cbr\u003e7.2.2 Effect of Solvents on Crystallinity \u003cbr\u003e7.2.3 Crystallisation Kinetics\u003cbr\u003e7.2.4 Effects of Fillers on Crystallinity \u003cbr\u003e7.2.5 Crystallisation Temperature \u003cbr\u003e7.2.6 Curing Kinetics \u003cbr\u003e7.2.7 Measurement of Transition Temperatures, Glass Transition, other Transitions \u003cbr\u003e7.2.8 Preparation of Phase Diagrams\u003cbr\u003e7.2.9 Melting Temperature \u003cbr\u003e7.2.10 Miscellaneous Applications of DSC \u003cbr\u003e8 Dynamic Mechanical Thermal Analysis \u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Measurement of Glass Transition Temperature and other Transitions =\u003cbr\u003e8.1.2 Resin Cure Studies \u003cbr\u003e8.1.3 Modulus Measurements\u003cbr\u003e8.1.4 Stress–strain Measurements \u003cbr\u003e8.1.5 Rheological Properties and Viscosity \u003cbr\u003e8.1.6 Relaxation Phenomena \u003cbr\u003e8.1.7 Morphology\u003cbr\u003e8.1.8 Thermal Properties \u003cbr\u003e8.1.9 Other Applications \u003cbr\u003e9 Thermomechanical Analysis\u003cbr\u003e9.1 Theoretical Considerations \u003cbr\u003e9.2 Instrumentation \u003cbr\u003e9.3 Applications \u003cbr\u003e9.3.1 Mechanical and Thermal Properties\u003cbr\u003e9.3.2 Transitions \u003cbr\u003e9.3.3 Fibre Stress–strain Measurements \u003cbr\u003e9.2.4 Polymer Characterisation Studies\u003cbr\u003e9.3.5 Viscoelastic and Rheological Properties \u003cbr\u003e9.3.6 Gel Time Measurement \u003cbr\u003e10 Microthermal Analysis \u003cbr\u003e10.1 Theoretical Considerations \u003cbr\u003e10.2 Atomic Force Microscopy \u003cbr\u003e10.3 Instrumentation \u003cbr\u003e10.4 Applications \u003cbr\u003e10.4.1 Morphology\u003cbr\u003e10.4.2 Topography Studies\u003cbr\u003e10.4.3 Depth Profiling \u003cbr\u003e10.4.4 Glass Transition\u003cbr\u003e11 Differential Photocalorimetry \u003cbr\u003e11.1 Theoretical Considerations \u003cbr\u003e11.2 Instrumentation \u003cbr\u003e11.3 Applications \u003cbr\u003e11.3.1 Photocure Rates\u003cbr\u003e11.3.2 Degree of Cure \u003cbr\u003e11.3.3 Dependence of Reactivity upon Functionalisation\u003cbr\u003e11.3.3.1 Influence of Wavelength \u003cbr\u003e11.3.3.2 Influence of Photoinitiator Concentration \u003cbr\u003e11.3.3.3 Influence of Humidity \u003cbr\u003e11.3.4 Miscellaneous Applications \u003cbr\u003e12 Dielectric Thermal Analysis \u003cbr\u003e12.1 Theoretical Considerations \u003cbr\u003e12.2 Applications \u003cbr\u003e12.2.1 Resin Cure Studies \u003cbr\u003e12.2.2 Viscoelastic and Rheological Properties \u003cbr\u003e12.2.2.1 Flow and Cure of an Aerospace Adhesive \u003cbr\u003e12.2.2.2 Influence of Thermal History on Nylon \u003cbr\u003e12.2.3 Thermal Transitions\u003cbr\u003e12.2.4 Polymer Characterisation \u003cbr\u003e13 Resin Cure Studies \u003cbr\u003e13.1 Techniques \u003cbr\u003e13.1.1 Differential Photocalorimetry\u003cbr\u003e13.1.2 Dielectric Thermal Analysis\u003cbr\u003e13.1.3 Differential Scanning Calorimetry\u003cbr\u003e13.1.4 Dynamic Mechanical Analysis \u003cbr\u003e14 Thermal Degradation Mechanisms \u003cbr\u003e14.1 Theoretical Considerations \u003cbr\u003e14.2 Pyrolysis-Gas Chromatography-Mass Spectrometry \u003cbr\u003e14.2.1 Polypropylene Carbonate Decomposition \u003cbr\u003e14.2.2 Polyisobutylene Decomposition \u003cbr\u003e14.2.3 Polystyrene Decompositions \u003cbr\u003e14.2.4 Nitrogen-Containing Polymers \u003cbr\u003e14.2.5 Sulfur Containing Polymers \u003cbr\u003e14.2.6 Miscellaneous Polymers \u003cbr\u003e14.3 Pyrolysis–FT-IR Spectroscopy \u003cbr\u003e14.4 Derivitisation–Pyrolysis–Mass Spectrometry\u003cbr\u003e14.5 Differential Scanning Calorimetry and Thermogravimetry\u003cbr\u003e14.6 Pyrolysis – Mass Spectrometry (Without an Intervening Chromatographic Stage)\u003cbr\u003e14.7 Examination of Thermal Stability \u003cbr\u003eAppendix 1\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Thermo-oxidative Degra...
$165.00
{"id":11242228292,"title":"Thermo-oxidative Degradation of Polymers","handle":"978-1-84735-472-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-472-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eAvailable in July 2010\u003c\/p\u003e\n\u003cp\u003eFormat: Hard-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe oxidative and thermal degradation of polymers has very important implications on their suitability for particular end-user applications. Particularly in relation to their physical properties and the lifetime over which the manufactured article retains these properties, after which they become unsuitable for purpose.\u003cbr\u003e\u003cbr\u003eThis book brings together information on the thermooxidative resistance of polymers to change during processing and end-use life.\u003cbr\u003e\u003cbr\u003eOur present understanding of the chemical changes of the polymer that accompany degradation are also reviewed and the analytical methods by which changes can be ascertained are also discussed.\u003cbr\u003e\u003cbr\u003eThe principal techniques used in thermooxidative studies are based on thermal analysis methods such as thermogravimetric analysis and differential scanning calorimetry and on methods based on polymer pyrolysis followed by gas chromatography and mass spectrometry and\/or infrared spectroscopy of the volatiles produced. Other techniques which have been including nuclear magnetic spectroscopy, electron spin resonance spectroscopy, and methods based on chemiluminescence and positron annihilation lifetime mass spectrometry.\u003cbr\u003e\u003cbr\u003eThis book will be of interest to those involved in the investigation of polymer stability and studies of the mechanics of polymer degradation, to polymer manufacturers and those who use polymers to manufacture end-use articles.\u003cbr\u003e\u003cbr\u003eThe book will also be of interest to those involved in the manufacture of stabilisers for oxidation resistance for use in polymer manufacture, mechanical engineers, and designers of polymer products.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoy Crompton was Head of the polymer analysis research department of a major international polymer producer for some 15 years. In the early fifties, he was heavily engaged in the development of methods of analysis for low-pressure polyolefins produced by the Ziegler-Natta route, including work on high-density polyethylene and polypropylene. He was responsible for the development of methods of analysis of the organoaluminum catalysts used for the synthesis of these polymers. He was also responsible for the development of thin-layer chromatography for the determination of various types of additives in polymers and did pioneering work on the use of TLC to separate polymer additives and to examine the separated additives by infrared and mass spectrometry. He retired in 1988 and has since been engaged as a consultant in the field of analytical chemistry and has written extensively on this subject, with some 20 books published.","published_at":"2017-06-22T21:14:07-04:00","created_at":"2017-06-22T21:14:07-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","acrylic polymers","book","degradation","EGA","environmentally friendly polymers","epoxy resins","oxidative degradation","p-properties","polyesters","polymer","polyoxymethylene","PVC","stability","TGA","thermal-oxidative","Thermooxidative"],"price":16500,"price_min":16500,"price_max":20000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378396484,"title":"Hard Cover","option1":"Hard Cover","option2":null,"option3":null,"sku":"978-1-84735-471-6","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermo-oxidative Degradation of Polymers - Hard Cover","public_title":"Hard Cover","options":["Hard Cover"],"price":20000,"weight":0,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-471-6","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50532067332,"title":"Soft Cover","option1":"Soft Cover","option2":null,"option3":null,"sku":"978-1-84735-472-3","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermo-oxidative Degradation of Polymers - Soft Cover","public_title":"Soft Cover","options":["Soft Cover"],"price":16500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-472-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-472-3_b0d2c085-4c49-4953-99c8-d322c9416a55.jpg?v=1499725290"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-472-3_b0d2c085-4c49-4953-99c8-d322c9416a55.jpg?v=1499725290","options":["Cover"],"media":[{"alt":null,"id":358808485981,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-472-3_b0d2c085-4c49-4953-99c8-d322c9416a55.jpg?v=1499725290"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-472-3_b0d2c085-4c49-4953-99c8-d322c9416a55.jpg?v=1499725290","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-472-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eAvailable in July 2010\u003c\/p\u003e\n\u003cp\u003eFormat: Hard-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe oxidative and thermal degradation of polymers has very important implications on their suitability for particular end-user applications. Particularly in relation to their physical properties and the lifetime over which the manufactured article retains these properties, after which they become unsuitable for purpose.\u003cbr\u003e\u003cbr\u003eThis book brings together information on the thermooxidative resistance of polymers to change during processing and end-use life.\u003cbr\u003e\u003cbr\u003eOur present understanding of the chemical changes of the polymer that accompany degradation are also reviewed and the analytical methods by which changes can be ascertained are also discussed.\u003cbr\u003e\u003cbr\u003eThe principal techniques used in thermooxidative studies are based on thermal analysis methods such as thermogravimetric analysis and differential scanning calorimetry and on methods based on polymer pyrolysis followed by gas chromatography and mass spectrometry and\/or infrared spectroscopy of the volatiles produced. Other techniques which have been including nuclear magnetic spectroscopy, electron spin resonance spectroscopy, and methods based on chemiluminescence and positron annihilation lifetime mass spectrometry.\u003cbr\u003e\u003cbr\u003eThis book will be of interest to those involved in the investigation of polymer stability and studies of the mechanics of polymer degradation, to polymer manufacturers and those who use polymers to manufacture end-use articles.\u003cbr\u003e\u003cbr\u003eThe book will also be of interest to those involved in the manufacture of stabilisers for oxidation resistance for use in polymer manufacture, mechanical engineers, and designers of polymer products.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoy Crompton was Head of the polymer analysis research department of a major international polymer producer for some 15 years. In the early fifties, he was heavily engaged in the development of methods of analysis for low-pressure polyolefins produced by the Ziegler-Natta route, including work on high-density polyethylene and polypropylene. He was responsible for the development of methods of analysis of the organoaluminum catalysts used for the synthesis of these polymers. He was also responsible for the development of thin-layer chromatography for the determination of various types of additives in polymers and did pioneering work on the use of TLC to separate polymer additives and to examine the separated additives by infrared and mass spectrometry. He retired in 1988 and has since been engaged as a consultant in the field of analytical chemistry and has written extensively on this subject, with some 20 books published."}
Thermoforming of Singl...
$149.00
{"id":11242249476,"title":"Thermoforming of Single and Multilayer Laminates, 1st Edition","handle":"9781455731725","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ashter \u003cbr\u003eISBN 9781455731725 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePlastic Films Technologies, Testing, and Applications\u003cbr\u003ePublished: 2013\u003c\/p\u003e\n\u003cp\u003ePages: 352\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• First comprehensive source of information and hands-on guide for the thermoforming of multilayered laminates\u003cbr\u003e\u003cbr\u003e• Covers applications across such sectors as automotive, packaging, home goods, and construction\u003cbr\u003e\u003cbr\u003e• Introduces new testing methods leveraging protocols used for metals\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermoforming of Single and Multilayer Laminates explains the fundamentals of lamination and plastics thermoforming technologies along with current and new developments. It focuses on properties and thermoforming mechanics of plastic films and in particular single and multilayered laminates, including barrier films.\u003cbr\u003e\u003cbr\u003eFor environmental and economic reasons, laminates are becoming increasingly important as a replacement for solid sheets and paint finishes in many industries, including transportation, packaging, and construction. Yet the processes of film formability during the extensive deformation and elevated temperatures experienced in conventional processing technologies, such as thermoforming, are poorly understood by most engineers.\u003cbr\u003e\u003cbr\u003eThis book covers production processes, such as extrusion, calendaring, and casting, as well as mechanical and impact testing methods. It also describes how testing protocols developed for metals can be leveraged for plastic films and laminates and includes a thorough discussion on methods for performing optical strain analysis.\u003cbr\u003e\u003cbr\u003eApplications in transportation vehicles and packaging, including packaging for food, medical and electronics applications, sports equipment, and household appliances, are discussed. Safety, recycling and environmental aspects of thermoforming and its products complete the book.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEngineers working with plastics films or products using plastic films (OEM level to the actual part manufacturer of thermoforming) in industries such as Automotive\/ transportation manufacturing, Packaging, Plastics Industry, Paint Industry; Personnel involved in testing and QA of products using plastics films, and managers; Academic Institutions\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eAcknowledgments\u003cbr\u003e1. Introduction to Thermoforming\u003cbr\u003e1.1 History\u003cbr\u003e1.2 Market and Applications\u003cbr\u003eReferences\u003cbr\u003e2. The Thermoforming Process\u003cbr\u003e2.1 Background\u003cbr\u003e2.2 Basic Principles of Thermoforming\u003cbr\u003e2.3 Difference between Plastic Sheets and Laminates\u003cbr\u003e2.4 Theory of Forming Process\u003cbr\u003e2.5 Forming Characteristics\u003cbr\u003e2.6 Machinery\u003cbr\u003eReferences\u003cbr\u003e3. Review of Characteristics of Common Plastics for Thermoforming\u003cbr\u003e3.1 Impact of Main Variables\u003cbr\u003eReferences\u003cbr\u003e4. Lamination\u003cbr\u003e4.1 Why Laminates?\u003cbr\u003e4.2 Elements of Laminates\u003cbr\u003e4.3 Typical Commercial Laminates\u003cbr\u003e4.4 Hot-Roll Lamination\u003cbr\u003e4.5 Extrusion Lamination\u003cbr\u003e4.6 Flame Lamination\u003cbr\u003e4.7 Adhesive Lamination\u003cbr\u003eReferences\u003cbr\u003e5. New Developments\u003cbr\u003e5.1 Heating Technology\u003cbr\u003e5.2 Trimming Technology\u003cbr\u003e5.3 Thickness Reduction\u003cbr\u003e5.4 Pressure Forming\u003cbr\u003e5.5 Vacuum Forming\u003cbr\u003e5.6 Twin-Sheet Forming\u003cbr\u003e5.7 Reinforced-Sheet Forming\u003cbr\u003e5.8 Multilayer Sheet Forming\u003cbr\u003e5.9 Biaxial Bulge\u003cbr\u003e5.10 Biaxial Strain\u003cbr\u003e5.11 Bulge Test Models\u003cbr\u003eReferences\u003cbr\u003e6. Mechanics of Materials\u003cbr\u003e6.1 Stress\u003cbr\u003e6.2 Strain\u003cbr\u003e6.3 Stress Relaxation and Creep\u003cbr\u003e6.4 Creep and Stress Relaxation Models\u003cbr\u003e6.5 Peeling\u003cbr\u003e6.6 Delamination\u003cbr\u003eReferences\u003cbr\u003e7. Characterization\u003cbr\u003e7.1 Mechanical Testing\u003cbr\u003e7.2 Impact Testing\u003cbr\u003e7.3 Biaxial Bulge Testing\u003cbr\u003e7.4 Rheological Testing\u003cbr\u003e7.5 Differential Scanning Calorimetry (DSC)\u003cbr\u003e7.6 Color Test\u003cbr\u003e7.7 Specular Gloss Test\u003cbr\u003eReferences\u003cbr\u003e8. Matching Material Characteristics to Commercial Thermoforming\u003cbr\u003e8.1 Packaging\u003cbr\u003e8.2 Appliances\u003cbr\u003e8.3 Bathroom\u003cbr\u003e8.4 Transportation\u003cbr\u003e8.5 Sports\u003cbr\u003eReferences\u003cbr\u003e9. Safety, Recycling and Environmental Issues of Thermoforming and its Products\u003cbr\u003e9.1 Safety\u003cbr\u003e9.2 Safety Guards\u003cbr\u003e9.3 Recycling\u003cbr\u003e9.4 The Economics of Recycling\u003cbr\u003e9.5 Handling of Scrap\u003cbr\u003e9.6 Contamination\u003cbr\u003e9.7 Environmental Impact\u003cbr\u003eReferences\u003cbr\u003e10. Other Processing Approaches\u003cbr\u003e10.1 Melt Extrusion\u003cbr\u003e10.2 Coextrusion\u003cbr\u003e10.3 Calendering\u003cbr\u003e10.4 Casting\u003cbr\u003e10.5 Coating\u003cbr\u003eReferences\u003cbr\u003e11. Modeling of Thermoforming: A Literature Review\u003cbr\u003e11.1 Models\u003cbr\u003eReferences\u003cbr\u003e12. Troubleshooting\u003cbr\u003e12.1 Thermoforming\u003cbr\u003e12.2 Hot-Roll Lamination\u003cbr\u003eReferences\u003cbr\u003eIndex","published_at":"2017-06-22T21:15:13-04:00","created_at":"2017-06-22T21:15:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","biaxial","book","characterization","environment","laminates","lamination","market and applications","p-processing","plastics","polymer","recycling","safety","technology","thermoforming","troubleshooting"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378469828,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermoforming of Single and Multilayer Laminates, 1st Edition","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781455731725","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280","options":["Title"],"media":[{"alt":null,"id":358810157149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ashter \u003cbr\u003eISBN 9781455731725 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePlastic Films Technologies, Testing, and Applications\u003cbr\u003ePublished: 2013\u003c\/p\u003e\n\u003cp\u003ePages: 352\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• First comprehensive source of information and hands-on guide for the thermoforming of multilayered laminates\u003cbr\u003e\u003cbr\u003e• Covers applications across such sectors as automotive, packaging, home goods, and construction\u003cbr\u003e\u003cbr\u003e• Introduces new testing methods leveraging protocols used for metals\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermoforming of Single and Multilayer Laminates explains the fundamentals of lamination and plastics thermoforming technologies along with current and new developments. It focuses on properties and thermoforming mechanics of plastic films and in particular single and multilayered laminates, including barrier films.\u003cbr\u003e\u003cbr\u003eFor environmental and economic reasons, laminates are becoming increasingly important as a replacement for solid sheets and paint finishes in many industries, including transportation, packaging, and construction. Yet the processes of film formability during the extensive deformation and elevated temperatures experienced in conventional processing technologies, such as thermoforming, are poorly understood by most engineers.\u003cbr\u003e\u003cbr\u003eThis book covers production processes, such as extrusion, calendaring, and casting, as well as mechanical and impact testing methods. It also describes how testing protocols developed for metals can be leveraged for plastic films and laminates and includes a thorough discussion on methods for performing optical strain analysis.\u003cbr\u003e\u003cbr\u003eApplications in transportation vehicles and packaging, including packaging for food, medical and electronics applications, sports equipment, and household appliances, are discussed. Safety, recycling and environmental aspects of thermoforming and its products complete the book.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEngineers working with plastics films or products using plastic films (OEM level to the actual part manufacturer of thermoforming) in industries such as Automotive\/ transportation manufacturing, Packaging, Plastics Industry, Paint Industry; Personnel involved in testing and QA of products using plastics films, and managers; Academic Institutions\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eAcknowledgments\u003cbr\u003e1. Introduction to Thermoforming\u003cbr\u003e1.1 History\u003cbr\u003e1.2 Market and Applications\u003cbr\u003eReferences\u003cbr\u003e2. The Thermoforming Process\u003cbr\u003e2.1 Background\u003cbr\u003e2.2 Basic Principles of Thermoforming\u003cbr\u003e2.3 Difference between Plastic Sheets and Laminates\u003cbr\u003e2.4 Theory of Forming Process\u003cbr\u003e2.5 Forming Characteristics\u003cbr\u003e2.6 Machinery\u003cbr\u003eReferences\u003cbr\u003e3. Review of Characteristics of Common Plastics for Thermoforming\u003cbr\u003e3.1 Impact of Main Variables\u003cbr\u003eReferences\u003cbr\u003e4. Lamination\u003cbr\u003e4.1 Why Laminates?\u003cbr\u003e4.2 Elements of Laminates\u003cbr\u003e4.3 Typical Commercial Laminates\u003cbr\u003e4.4 Hot-Roll Lamination\u003cbr\u003e4.5 Extrusion Lamination\u003cbr\u003e4.6 Flame Lamination\u003cbr\u003e4.7 Adhesive Lamination\u003cbr\u003eReferences\u003cbr\u003e5. New Developments\u003cbr\u003e5.1 Heating Technology\u003cbr\u003e5.2 Trimming Technology\u003cbr\u003e5.3 Thickness Reduction\u003cbr\u003e5.4 Pressure Forming\u003cbr\u003e5.5 Vacuum Forming\u003cbr\u003e5.6 Twin-Sheet Forming\u003cbr\u003e5.7 Reinforced-Sheet Forming\u003cbr\u003e5.8 Multilayer Sheet Forming\u003cbr\u003e5.9 Biaxial Bulge\u003cbr\u003e5.10 Biaxial Strain\u003cbr\u003e5.11 Bulge Test Models\u003cbr\u003eReferences\u003cbr\u003e6. Mechanics of Materials\u003cbr\u003e6.1 Stress\u003cbr\u003e6.2 Strain\u003cbr\u003e6.3 Stress Relaxation and Creep\u003cbr\u003e6.4 Creep and Stress Relaxation Models\u003cbr\u003e6.5 Peeling\u003cbr\u003e6.6 Delamination\u003cbr\u003eReferences\u003cbr\u003e7. Characterization\u003cbr\u003e7.1 Mechanical Testing\u003cbr\u003e7.2 Impact Testing\u003cbr\u003e7.3 Biaxial Bulge Testing\u003cbr\u003e7.4 Rheological Testing\u003cbr\u003e7.5 Differential Scanning Calorimetry (DSC)\u003cbr\u003e7.6 Color Test\u003cbr\u003e7.7 Specular Gloss Test\u003cbr\u003eReferences\u003cbr\u003e8. Matching Material Characteristics to Commercial Thermoforming\u003cbr\u003e8.1 Packaging\u003cbr\u003e8.2 Appliances\u003cbr\u003e8.3 Bathroom\u003cbr\u003e8.4 Transportation\u003cbr\u003e8.5 Sports\u003cbr\u003eReferences\u003cbr\u003e9. Safety, Recycling and Environmental Issues of Thermoforming and its Products\u003cbr\u003e9.1 Safety\u003cbr\u003e9.2 Safety Guards\u003cbr\u003e9.3 Recycling\u003cbr\u003e9.4 The Economics of Recycling\u003cbr\u003e9.5 Handling of Scrap\u003cbr\u003e9.6 Contamination\u003cbr\u003e9.7 Environmental Impact\u003cbr\u003eReferences\u003cbr\u003e10. Other Processing Approaches\u003cbr\u003e10.1 Melt Extrusion\u003cbr\u003e10.2 Coextrusion\u003cbr\u003e10.3 Calendering\u003cbr\u003e10.4 Casting\u003cbr\u003e10.5 Coating\u003cbr\u003eReferences\u003cbr\u003e11. Modeling of Thermoforming: A Literature Review\u003cbr\u003e11.1 Models\u003cbr\u003eReferences\u003cbr\u003e12. Troubleshooting\u003cbr\u003e12.1 Thermoforming\u003cbr\u003e12.2 Hot-Roll Lamination\u003cbr\u003eReferences\u003cbr\u003eIndex"}
Thermophysical Propert...
$276.00
{"id":11242212228,"title":"Thermophysical Properties of Chemicals and Hydrocarbons","handle":"9780815515968","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Carl L. Yaws \u003cbr\u003eISBN 9780815515968 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003e826 pages \n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe most comprehensive collection of data on thermo-physical properties of chemicals and hydrocarbons ever compiled.\u003cbr\u003e\u003cstrong\u003eAUDIENCE\u003c\/strong\u003e\u003cbr\u003eChemical Engineers; Process Engineers; Chemists; Chemical Engineering Students; Engineers working in process design, plant operations, R\u0026amp;D, and industrial health and safety.\u003cbr\u003e\u003cstrong\u003eDESCRIPTION\u003c\/strong\u003e\u003cbr\u003eCarl Yaws, a leading authority on chemical compounds in the chemical engineering field, has done it again. In Thermophysical Properties of Chemicals and Hydrocarbons -- an essential volume for any chemist or chemical engineer’s library -- he has amassed over 7,800 organic and inorganic chemicals, and hydrocarbons. Spanning gases, liquids, and solids, and covering all critical properties (including the acentric factor, density, enthalpy of vaporization, and surface tension), this volume represents more properties on more chemicals than any single work of its kind.\u003cbr\u003e\u003cbr\u003eFrom C1 to C100 organics and Ac to Zr inorganics, the data in this handbook was designed and formatted for the field, lab or classroom usage. Organic and inorganic compounds are provided for: critical properties and acentric factor; density of liquid; density of solid; enthalpy of vaporization; enthalpy of vaporization at boiling point; enthalpy of fusion; solubility parameter and liquid volume; Van Der Waals area and volume; radius of gyration; dipole moment; and surface tension. By collecting a massive amount of information in one source, this handbook will simplify your research and significantly reduce the amount of time that you spend collecting properties data.\u003cbr\u003e\u003cbr\u003eChemical and process engineers, chemists, chemical engineering students, and anyone involved in process design, plant operations, R\u0026amp;D, industrial health and safety – and many other fields where finding properties data is important – will appreciate the unparalleled access to the invaluable data found in Thermophysical Properties of Chemicals and Hydrocarbons. \u003cbr\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC009010: TECHNOLOGY \/ Chemical \u0026amp; Biochemical\u003cbr\u003eSCI013060: SCIENCE \/ Chemistry \/ Industrial \u0026amp; Technical\u003cbr\u003eSCI013000: SCIENCE \/ Chemistry \/ General \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nProperties Covered:\u003cbr\u003e\u003cbr\u003e1. Critical Properties and Acentric Factor – Organic Compound \u003cbr\u003e\u003cbr\u003e2. Critical Properties and Acentric Factor – Inorganic Compounds \u003cbr\u003e\u003cbr\u003e3. Density of Liquid – Organic Compounds \u003cbr\u003e\u003cbr\u003e4. Density of Liquid – Inorganic Compounds \u003cbr\u003e\u003cbr\u003e5. Density of Solid – Organic Compounds \u003cbr\u003e\u003cbr\u003e6. Density of Solid – Inorganic Compounds \u003cbr\u003e\u003cbr\u003e7. Enthalpy of Vaporization - Organic Compounds\u003cbr\u003e\u003cbr\u003e8. Enthalpy of Vaporization - Inorganic Compounds \u003cbr\u003e\u003cbr\u003e9. Enthalpy of Vaporization at Boiling Point - Organic Compounds \u003cbr\u003e\u003cbr\u003e10. Enthalpy of Vaporization at Boiling Point - Inorganic Compounds\u003cbr\u003e\u003cbr\u003e11. Enthalpy of Fusion - Organic Compounds \u003cbr\u003e\u003cbr\u003e12. Enthalpy of Fusion - Inorganic Compounds \u003cbr\u003e\u003cbr\u003e13. Solubility Parameter and Liquid Volume - Organic Compounds \u003cbr\u003e\u003cbr\u003e14. Solubility Parameter and Liquid Volume - Inorganic Compounds \u003cbr\u003e\u003cbr\u003e15. Van Der Waals Area and Volume – Organic Compounds\u003cbr\u003e\u003cbr\u003e16. Van Der Waals Area and Volume – Inorganic Compounds\u003cbr\u003e\u003cbr\u003e17. Radius of Gyration – Organic Compounds\u003cbr\u003e\u003cbr\u003e18. Radius of Gyration – Inorganic Compounds\u003cbr\u003e\u003cbr\u003e19. Dipole Moment – Organic Compounds \u003cbr\u003e\u003cbr\u003e20. Dipole Moment – Inorganic Compounds \u003cbr\u003e\u003cbr\u003e21. Surface Tension - Organic Compounds \u003cbr\u003e\u003cbr\u003e22. Surface Tension - Inorganic Compounds\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCarl L. Yaws, Ph.D. is the professor of chemical engineering at Lamar University, Beaumont, Texas. He has industrial experience in process engineering, research, development, and design at Exxon, Ethyl and Texas Instruments. He is the author of 32 books and has published more than 660 technical papers in process engineering, property data, and pollution prevention.","published_at":"2017-06-22T21:13:15-04:00","created_at":"2017-06-22T21:13:15-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","acentric factor","book","critical properties","density","Dipole Moment","enthalpy of fusion","enthalpy of vaporization","general","hydrocarbons","liquids and solids","organic and inorganic chemicals","p-chemical","polymer","Radius of Gyration","solubility","Spanning gases","surface tension","thermo-physical properties","Van Der Waals"],"price":27600,"price_min":27600,"price_max":27600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378339396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermophysical Properties of Chemicals and Hydrocarbons","public_title":null,"options":["Default Title"],"price":27600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780815515968","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780815515968_6103941d-c24a-4fdd-92d9-fad0339d762a.jpg?v=1499956717"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780815515968_6103941d-c24a-4fdd-92d9-fad0339d762a.jpg?v=1499956717","options":["Title"],"media":[{"alt":null,"id":358820085853,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780815515968_6103941d-c24a-4fdd-92d9-fad0339d762a.jpg?v=1499956717"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780815515968_6103941d-c24a-4fdd-92d9-fad0339d762a.jpg?v=1499956717","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Carl L. Yaws \u003cbr\u003eISBN 9780815515968 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003e826 pages \n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe most comprehensive collection of data on thermo-physical properties of chemicals and hydrocarbons ever compiled.\u003cbr\u003e\u003cstrong\u003eAUDIENCE\u003c\/strong\u003e\u003cbr\u003eChemical Engineers; Process Engineers; Chemists; Chemical Engineering Students; Engineers working in process design, plant operations, R\u0026amp;D, and industrial health and safety.\u003cbr\u003e\u003cstrong\u003eDESCRIPTION\u003c\/strong\u003e\u003cbr\u003eCarl Yaws, a leading authority on chemical compounds in the chemical engineering field, has done it again. In Thermophysical Properties of Chemicals and Hydrocarbons -- an essential volume for any chemist or chemical engineer’s library -- he has amassed over 7,800 organic and inorganic chemicals, and hydrocarbons. Spanning gases, liquids, and solids, and covering all critical properties (including the acentric factor, density, enthalpy of vaporization, and surface tension), this volume represents more properties on more chemicals than any single work of its kind.\u003cbr\u003e\u003cbr\u003eFrom C1 to C100 organics and Ac to Zr inorganics, the data in this handbook was designed and formatted for the field, lab or classroom usage. Organic and inorganic compounds are provided for: critical properties and acentric factor; density of liquid; density of solid; enthalpy of vaporization; enthalpy of vaporization at boiling point; enthalpy of fusion; solubility parameter and liquid volume; Van Der Waals area and volume; radius of gyration; dipole moment; and surface tension. By collecting a massive amount of information in one source, this handbook will simplify your research and significantly reduce the amount of time that you spend collecting properties data.\u003cbr\u003e\u003cbr\u003eChemical and process engineers, chemists, chemical engineering students, and anyone involved in process design, plant operations, R\u0026amp;D, industrial health and safety – and many other fields where finding properties data is important – will appreciate the unparalleled access to the invaluable data found in Thermophysical Properties of Chemicals and Hydrocarbons. \u003cbr\u003e\u003cstrong\u003eBISAC SUBJECT HEADINGS\u003c\/strong\u003e\u003cbr\u003eTEC009010: TECHNOLOGY \/ Chemical \u0026amp; Biochemical\u003cbr\u003eSCI013060: SCIENCE \/ Chemistry \/ Industrial \u0026amp; Technical\u003cbr\u003eSCI013000: SCIENCE \/ Chemistry \/ General \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nProperties Covered:\u003cbr\u003e\u003cbr\u003e1. Critical Properties and Acentric Factor – Organic Compound \u003cbr\u003e\u003cbr\u003e2. Critical Properties and Acentric Factor – Inorganic Compounds \u003cbr\u003e\u003cbr\u003e3. Density of Liquid – Organic Compounds \u003cbr\u003e\u003cbr\u003e4. Density of Liquid – Inorganic Compounds \u003cbr\u003e\u003cbr\u003e5. Density of Solid – Organic Compounds \u003cbr\u003e\u003cbr\u003e6. Density of Solid – Inorganic Compounds \u003cbr\u003e\u003cbr\u003e7. Enthalpy of Vaporization - Organic Compounds\u003cbr\u003e\u003cbr\u003e8. Enthalpy of Vaporization - Inorganic Compounds \u003cbr\u003e\u003cbr\u003e9. Enthalpy of Vaporization at Boiling Point - Organic Compounds \u003cbr\u003e\u003cbr\u003e10. Enthalpy of Vaporization at Boiling Point - Inorganic Compounds\u003cbr\u003e\u003cbr\u003e11. Enthalpy of Fusion - Organic Compounds \u003cbr\u003e\u003cbr\u003e12. Enthalpy of Fusion - Inorganic Compounds \u003cbr\u003e\u003cbr\u003e13. Solubility Parameter and Liquid Volume - Organic Compounds \u003cbr\u003e\u003cbr\u003e14. Solubility Parameter and Liquid Volume - Inorganic Compounds \u003cbr\u003e\u003cbr\u003e15. Van Der Waals Area and Volume – Organic Compounds\u003cbr\u003e\u003cbr\u003e16. Van Der Waals Area and Volume – Inorganic Compounds\u003cbr\u003e\u003cbr\u003e17. Radius of Gyration – Organic Compounds\u003cbr\u003e\u003cbr\u003e18. Radius of Gyration – Inorganic Compounds\u003cbr\u003e\u003cbr\u003e19. Dipole Moment – Organic Compounds \u003cbr\u003e\u003cbr\u003e20. Dipole Moment – Inorganic Compounds \u003cbr\u003e\u003cbr\u003e21. Surface Tension - Organic Compounds \u003cbr\u003e\u003cbr\u003e22. Surface Tension - Inorganic Compounds\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCarl L. Yaws, Ph.D. is the professor of chemical engineering at Lamar University, Beaumont, Texas. He has industrial experience in process engineering, research, development, and design at Exxon, Ethyl and Texas Instruments. He is the author of 32 books and has published more than 660 technical papers in process engineering, property data, and pollution prevention."}
Thermoplastic Elastome...
$72.00
{"id":11242238596,"title":"Thermoplastic Elastomers - Properties and Applications","handle":"978-1-85957-044-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J.A. Brydson \u003cbr\u003eISBN 978-1-85957-044-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003cbr\u003e\u003c\/span\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe nature and general properties of TPEs are explained and classes of materials considered. Developments in specific market sectors are outlined. The groups of materials considered include styrenics, polyether-esters, polyamides, polyurethanes, and polyolefins. The review is supported by extensive references and abstracts section containing over 400 abstracts. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e Styrenic block copolymers, polyether-ester block copolymers, thermoplastic polyamide elastomers, thermoplastic polyurethane elastomers, thermoplastic polyolefin elastomers, miscellaneous thermoplastic elastomers (6 groups). \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eGeneral Properties of Thermoplastic Elastomers\u003c\/li\u003e\n\u003cli\u003eClasses of Thermoplastic Elastomers (properties, processing, applications)\u003c\/li\u003e\n\u003cli\u003eApplications (automotive, footwear, hose, tube, wire, cable, medical)\u003c\/li\u003e\n\u003cli\u003eGeneral Prospects for Thermoplastic Elastomers\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","block copolymers","book","elastomers","p-chemistry","polyamide","polyamides","polyether-ester","polymer","polyolefins","polyurethane","polyurethanes","styrenic","thermoplastic"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378430148,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermoplastic Elastomers - Properties and Applications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-044-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778","options":["Title"],"media":[{"alt":null,"id":358823460957,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J.A. Brydson \u003cbr\u003eISBN 978-1-85957-044-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003cbr\u003e\u003c\/span\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe nature and general properties of TPEs are explained and classes of materials considered. Developments in specific market sectors are outlined. The groups of materials considered include styrenics, polyether-esters, polyamides, polyurethanes, and polyolefins. The review is supported by extensive references and abstracts section containing over 400 abstracts. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e Styrenic block copolymers, polyether-ester block copolymers, thermoplastic polyamide elastomers, thermoplastic polyurethane elastomers, thermoplastic polyolefin elastomers, miscellaneous thermoplastic elastomers (6 groups). \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eGeneral Properties of Thermoplastic Elastomers\u003c\/li\u003e\n\u003cli\u003eClasses of Thermoplastic Elastomers (properties, processing, applications)\u003c\/li\u003e\n\u003cli\u003eApplications (automotive, footwear, hose, tube, wire, cable, medical)\u003c\/li\u003e\n\u003cli\u003eGeneral Prospects for Thermoplastic Elastomers\u003c\/li\u003e\n\u003c\/ul\u003e"}
Toxicity and Safe Hand...
$310.00
{"id":11242258308,"title":"Toxicity and Safe Handling of Rubber Chemicals, Fourth Edition","handle":"978-1-85957-174-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Technology and BRMA \u003cbr\u003eISBN 978-1-85957-174-3 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 1999 \u003c\/span\u003e\u003cbr\u003ePages 380, \u003cspan\u003eSpiral-bound\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n‘Reliable and authoritative information on the risks associated with the handling and use of chemicals is a prerequisite for their proper control and for preventing risks to health and safety…..To have this key information assembled in a readily accessible and user-friendly form is a considerable bonus, and in publishing this much-revised version of their Code of Practice, the BRMA has performed a valuable service for all the people, managers and workers alike, who earn their livelihoods in the rubber industry.’ - Andrew Porter, Chairman of the Rubber Industry Advisory Committee. \u003cbr\u003e\u003cbr\u003eThis reference book provides an essential guide to health and safety in the rubber processing industry. The British Rubber Manufacturers’ Association and Rapra Technology Limited have combined forces to update the information on hundreds of different rubber chemicals. New data has been compiled from reputable manufacturers and suppliers, and from standard sources of health and safety data. The book includes an introduction to the regulations governing the labeling and use of chemicals, together with definitions of toxicity, carcinogenicity, mutagenicity, and effects on reproduction. Specific hazard, risk, and safety labels are explained. The issue of health surveillance in the industry is dealt with in detail. \u003cbr\u003e\u003cbr\u003eMany rubber chemicals are examined individually in the form of abbreviated safety data sheets. They are listed under categories of use: reinforcing agents and fillers, accelerators and retarders, vulcanising agents, antidegradants, organic peroxides, peptisers and processing aids, ester plasticisers, blowing agents, bonding agents, latex auxiliaries, pigments and miscellaneous. Each chemical has a data sheet including trade names, suppliers, physical data, fire hazards (including explosion risk), regulatory labeling, health hazards, emergency first aid, and food contact listings (FDA and BgVV). New to this edition is the addition of CAS and EINECS numbers to aid identification of materials. \u003cbr\u003e\u003cbr\u003eOther rubber chemicals are discussed as groups: natural and synthetic polymers, process oils and chlorinated waxes, tackifying and reinforcing resins, and rubber solvents. In the section on process oils, there is a discussion on the introduction of new synthetic oils, with reduced aromatic content. \u003cbr\u003e\u003cbr\u003eEnvironmental control is a key issue in today’s world. This book devotes a chapter to the subject of dust and vapour emissions during rubber processing and methods of monitoring. The section on dust includes the latest guidelines, definitions, and significance of respirable and inhalable fractions. There are details of monitoring exposure to mixtures of hydrocarbon solvents, and also of measuring specific vapours (more than thirty different chemicals are listed separately). \u003cbr\u003e\u003cbr\u003eA bibliography is provided for those who wish to study a particular subject in depth. This lists standard toxicology reference books, epidemiological case studies from the rubber industry, and useful publications from the Health and Safety Executive (including the Rubber Industry Advisory Committee, RUBIAC).\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:38-04:00","created_at":"2017-06-22T21:15:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","accelerators","antidegradants","blowing agents","bonding agents","book","emergency","explosion risk","fillers","fire hazards","first aid","food contact","health hazards","labelling","latex auxiliaries","oils","organic peroxides","peptisers","physical data","pigments","plasticisers","polymer","polymers","processing aids","r-health","reinforcing agents","retarders","rubber","solvents.","suppliers","tackifying","vulcanising agents","waxes"],"price":31000,"price_min":31000,"price_max":31000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378505156,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Toxicity and Safe Handling of Rubber Chemicals, Fourth Edition","public_title":null,"options":["Default Title"],"price":31000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-174-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Technology and BRMA \u003cbr\u003eISBN 978-1-85957-174-3 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 1999 \u003c\/span\u003e\u003cbr\u003ePages 380, \u003cspan\u003eSpiral-bound\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n‘Reliable and authoritative information on the risks associated with the handling and use of chemicals is a prerequisite for their proper control and for preventing risks to health and safety…..To have this key information assembled in a readily accessible and user-friendly form is a considerable bonus, and in publishing this much-revised version of their Code of Practice, the BRMA has performed a valuable service for all the people, managers and workers alike, who earn their livelihoods in the rubber industry.’ - Andrew Porter, Chairman of the Rubber Industry Advisory Committee. \u003cbr\u003e\u003cbr\u003eThis reference book provides an essential guide to health and safety in the rubber processing industry. The British Rubber Manufacturers’ Association and Rapra Technology Limited have combined forces to update the information on hundreds of different rubber chemicals. New data has been compiled from reputable manufacturers and suppliers, and from standard sources of health and safety data. The book includes an introduction to the regulations governing the labeling and use of chemicals, together with definitions of toxicity, carcinogenicity, mutagenicity, and effects on reproduction. Specific hazard, risk, and safety labels are explained. The issue of health surveillance in the industry is dealt with in detail. \u003cbr\u003e\u003cbr\u003eMany rubber chemicals are examined individually in the form of abbreviated safety data sheets. They are listed under categories of use: reinforcing agents and fillers, accelerators and retarders, vulcanising agents, antidegradants, organic peroxides, peptisers and processing aids, ester plasticisers, blowing agents, bonding agents, latex auxiliaries, pigments and miscellaneous. Each chemical has a data sheet including trade names, suppliers, physical data, fire hazards (including explosion risk), regulatory labeling, health hazards, emergency first aid, and food contact listings (FDA and BgVV). New to this edition is the addition of CAS and EINECS numbers to aid identification of materials. \u003cbr\u003e\u003cbr\u003eOther rubber chemicals are discussed as groups: natural and synthetic polymers, process oils and chlorinated waxes, tackifying and reinforcing resins, and rubber solvents. In the section on process oils, there is a discussion on the introduction of new synthetic oils, with reduced aromatic content. \u003cbr\u003e\u003cbr\u003eEnvironmental control is a key issue in today’s world. This book devotes a chapter to the subject of dust and vapour emissions during rubber processing and methods of monitoring. The section on dust includes the latest guidelines, definitions, and significance of respirable and inhalable fractions. There are details of monitoring exposure to mixtures of hydrocarbon solvents, and also of measuring specific vapours (more than thirty different chemicals are listed separately). \u003cbr\u003e\u003cbr\u003eA bibliography is provided for those who wish to study a particular subject in depth. This lists standard toxicology reference books, epidemiological case studies from the rubber industry, and useful publications from the Health and Safety Executive (including the Rubber Industry Advisory Committee, RUBIAC).\u003cbr\u003e\u003cbr\u003e"}
Toxicology of Solvents
$135.00
{"id":11242245764,"title":"Toxicology of Solvents","handle":"978-1-85957-296-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by M. McParland and N. Bates, National Poisons Information Service (London Center) \u003cbr\u003eISBN 978-1-85957-296-2\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e \u003cbr\u003ePages 400\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHealth and safety have become priority issues in industries across the world. Cases of neglect have cost companies dearly. This book reviews the evidence on the effects of exposure to common industrial solvents. \u003cbr\u003e\u003cbr\u003eSolvents have been the cause of occupational health problems for many years. Workers have been exposed through skin contact, by breathing in vapours, by splashes in the eye and, in extreme cases, by ingestion. This book examines the clinical consequences of exposure to different solvents, particularly in the workplace. \u003cbr\u003e\u003cbr\u003eThe authors have examined material from key medical and toxicological libraries, books, databases and their own case studies, to find the key effects of solvent exposure. They have gone back to original case reports to verify facts. The information is summarised here in ordered sections, including cancer-causing activity, skin and eye exposure effects, inhalation effects, reproductive effects and potential genetic effects. Both acute (short-term) and chronic (long-term) exposures are reviewed. Glycol ethers and esters are covered in one chapter, other common solvents are reviewed in individual chapters. \u003cbr\u003e\u003cbr\u003eA very useful section on first aid is included, with precautions to be taken to avoid rescuers being affected. Medical professionals will find useful information about antidotes, tests for exposure, and hospital management of affected patients. A glossary of medical terms is included to assist non-medical readers in understanding the text.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eFirst aid \u003cbr\u003eAcetone \u003cbr\u003eBenzene \u003cbr\u003eCarbon disulphide \u003cbr\u003eCarbon tetrachloride \u003cbr\u003eChloroform \u003cbr\u003eDiacetone alcohol \u003cbr\u003eDiisobutyl ketone \u003cbr\u003eDimethylformamide (DMF) \u003cbr\u003eEthanol \u003cbr\u003eEthyl amyl ketone \u003cbr\u003eGlycol ethers and esters \u003cbr\u003eHexane\/n-hexane \u003cbr\u003eIsopropanol \u003cbr\u003eMethanol \u003cbr\u003eMethylene chloride \u003cbr\u003eMethyl n-butyl ketone (MnBK) \u003cbr\u003eMethyl ethyl ketone (MEK) \u003cbr\u003eMethyl isobutyl ketone (MIBK) \u003cbr\u003eN-methyl-2-pyrrolidone (NMP) \u003cbr\u003eTetrachloroethylene \u003cbr\u003eToluene \u003cbr\u003e1,1,1-Trichloroethane (1,1,1-TCE) \u003cbr\u003eTrichloroethylene \u003cbr\u003eWhite spirit \u003cbr\u003eXylene \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eGlossary \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:01-04:00","created_at":"2017-06-22T21:15:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","acute","book","cancer","chronic","environment","esters","exposure","eye exposure","genetic effects","glycol ethers","health","inhalation effects","isopropanol","MEK","methanol","methyl ethyl ketone","methylene chloride Methyl n-butyl ketone","MnBK","n-hexane","polymer","reproductive effects","safety","skin","solvents"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378452292,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Toxicology of Solvents","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by M. McParland and N. Bates, National Poisons Information Service (London Center) \u003cbr\u003eISBN 978-1-85957-296-2\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e \u003cbr\u003ePages 400\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHealth and safety have become priority issues in industries across the world. Cases of neglect have cost companies dearly. This book reviews the evidence on the effects of exposure to common industrial solvents. \u003cbr\u003e\u003cbr\u003eSolvents have been the cause of occupational health problems for many years. Workers have been exposed through skin contact, by breathing in vapours, by splashes in the eye and, in extreme cases, by ingestion. This book examines the clinical consequences of exposure to different solvents, particularly in the workplace. \u003cbr\u003e\u003cbr\u003eThe authors have examined material from key medical and toxicological libraries, books, databases and their own case studies, to find the key effects of solvent exposure. They have gone back to original case reports to verify facts. The information is summarised here in ordered sections, including cancer-causing activity, skin and eye exposure effects, inhalation effects, reproductive effects and potential genetic effects. Both acute (short-term) and chronic (long-term) exposures are reviewed. Glycol ethers and esters are covered in one chapter, other common solvents are reviewed in individual chapters. \u003cbr\u003e\u003cbr\u003eA very useful section on first aid is included, with precautions to be taken to avoid rescuers being affected. Medical professionals will find useful information about antidotes, tests for exposure, and hospital management of affected patients. A glossary of medical terms is included to assist non-medical readers in understanding the text.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eFirst aid \u003cbr\u003eAcetone \u003cbr\u003eBenzene \u003cbr\u003eCarbon disulphide \u003cbr\u003eCarbon tetrachloride \u003cbr\u003eChloroform \u003cbr\u003eDiacetone alcohol \u003cbr\u003eDiisobutyl ketone \u003cbr\u003eDimethylformamide (DMF) \u003cbr\u003eEthanol \u003cbr\u003eEthyl amyl ketone \u003cbr\u003eGlycol ethers and esters \u003cbr\u003eHexane\/n-hexane \u003cbr\u003eIsopropanol \u003cbr\u003eMethanol \u003cbr\u003eMethylene chloride \u003cbr\u003eMethyl n-butyl ketone (MnBK) \u003cbr\u003eMethyl ethyl ketone (MEK) \u003cbr\u003eMethyl isobutyl ketone (MIBK) \u003cbr\u003eN-methyl-2-pyrrolidone (NMP) \u003cbr\u003eTetrachloroethylene \u003cbr\u003eToluene \u003cbr\u003e1,1,1-Trichloroethane (1,1,1-TCE) \u003cbr\u003eTrichloroethylene \u003cbr\u003eWhite spirit \u003cbr\u003eXylene \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eGlossary \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
TPE 2001
$120.00
{"id":11242238660,"title":"TPE 2001","handle":"978-1-85957-276-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-276-4 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 18th-19th June 2001\u003cbr\u003epages 128\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe’s premier meeting place for the thermoplastic elastomers sector. The last two events brought together more than 200 key players involved in all stages of the TPE supply chain. \u003cbr\u003e\u003cbr\u003eThe TPE 2001 conference programme was even more comprehensive than those of previous years. It features expert presentations on key market trends, new application developments and the very latest material innovations. \u003cbr\u003e\u003cbr\u003eIf you are involved in manufacturing, researching, selling, selecting or processing TPEs, then these conference proceedings will give you a real competitive advantage, providing you with information on all the latest developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOlefinic and Styrenic TPEs: Markets, Economics, Intermaterials Competition, and the Role of Plastomers. Robert Eller, Robert Eller Associates, Inc., USA\u003c\/li\u003e\n\u003cli\u003eMarkets and Applications for TPE: A Changing World. Stephen J. Duckworth, PolyOne Compounds \u0026amp; Colours Group, PolyOne Corporation, Germany\u003c\/li\u003e\n\u003cli\u003eInnovative TPE-S and TPE-V in the Various Market Segments. Andrea Vivarelli and Antonio Citarella, So.F.TeR SpA, Italy\u003c\/li\u003e\n\u003cli\u003eA New Family of Heat and Oil Resistant TPVs. Christer Bergström and Johanna Lampinen, Optatech Corporation, Finland\u003c\/li\u003e\n\u003cli\u003eA Novel Oil-and Heat-Resistant TPE-V. Markus Beitzel and Stuart Cook, Kraiburg TPE, Germany and TARRC, UK\u003c\/li\u003e\n\u003cli\u003eInnovative TPVs Opening New Markets. Julian Barnett, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eProcessing and Properties of Thermoplastic Vulcanizates (TPV). Edward V. Prut, Institute of Chemical Physics of RAS, Russia\u003c\/li\u003e\n\u003cli\u003eNew TPV Grades for Airbag Covers. Cees Ozinga and Edwin Willems, DSM Thermoplastic Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eUltra-High Molecular Weight Siloxane Masterbatches in TPE Compounding. Vivian John, Dow Corning Limited, UK\u003c\/li\u003e\n\u003cli\u003eTool Development for 2K-TPE Components for the Automotive Industry using 3D-Simulation. Lothar H. Kallien and Markus Menchen, SIGMA Engineering GmbH, Germany and Beckunbach GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eSwiftool Keeps Ford Racing on Track. Nick Osborn, Swift Technologies, UK\u003c\/li\u003e\n\u003cli\u003eSoft Blends of Acrylate Elastomer and Thermoplastic Polyurethane: Properties and Applications. Thierry Reichmann and Guy R. Duval, ECTC - Goodyear Chemical Europe, France\u003c\/li\u003e\n\u003cli\u003eThermoplastic Polyurethanes Without Plasticizer Within the Hardness Range Shore 50-70 A. Stephen Horsley, Elastogran UK Limited, UK\u003c\/li\u003e\n\u003cli\u003eTechnological Advantages of Polyether Copolymer Based TPUs. Dennis H.W. Feijen, J.L. Müller, J. Julià, D. Salvatella, Maria Josep Riba, Merquinsa Mercados Quimicos S.L., Spain\u003c\/li\u003e\n\u003cli\u003eSealing Performance of TPVs and its Prediction From Sress Relaxation Testing Methods. Thierry Burton, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eSurface Modification of Sarlink TPV Sealing Systems. Mathias Wilms, DSM Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eA Novel, Fully Vulcanised EPDM\/PP TPV for Automotive and Construction Weather-Seal as Well as General Rubber Mechanical Goods. Jonas Angus, Thermoplastic Rubber Systems, USA. (Paper unavailable at time of print)\u003c\/li\u003e\n\u003cli\u003eDevelopments of TPE in Automotive Interiors. Giorgio Golinelli, So.F.Ter S.p.A., Italy\u003c\/li\u003e\n\u003cli\u003eTPEs Used in CVJ (Constant Velocity Joint) Boot Application - Current Status, Future Challenges. Nader Khoshoei, GKN Automotive GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eRutgers 1 and Ronald F.M. Lange 2, 1 DSM Engineering Plastics, The Netherlands and 2 DSM Research, The NThe Use of Co-poly(ether esters) (1) in Automotive Applications. Gerhard Netherlands\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:39-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","book","elastomers","p-chemistry","polymer","research","surface","thermoplastic"," hardness"," olefinic"," plasticizer"," polyether copolymer"," polyurethanes"," sealing"," sress"," styrenic"," testing methods"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378430788,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2001","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-276-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-276-4 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 18th-19th June 2001\u003cbr\u003epages 128\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe’s premier meeting place for the thermoplastic elastomers sector. The last two events brought together more than 200 key players involved in all stages of the TPE supply chain. \u003cbr\u003e\u003cbr\u003eThe TPE 2001 conference programme was even more comprehensive than those of previous years. It features expert presentations on key market trends, new application developments and the very latest material innovations. \u003cbr\u003e\u003cbr\u003eIf you are involved in manufacturing, researching, selling, selecting or processing TPEs, then these conference proceedings will give you a real competitive advantage, providing you with information on all the latest developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOlefinic and Styrenic TPEs: Markets, Economics, Intermaterials Competition, and the Role of Plastomers. Robert Eller, Robert Eller Associates, Inc., USA\u003c\/li\u003e\n\u003cli\u003eMarkets and Applications for TPE: A Changing World. Stephen J. Duckworth, PolyOne Compounds \u0026amp; Colours Group, PolyOne Corporation, Germany\u003c\/li\u003e\n\u003cli\u003eInnovative TPE-S and TPE-V in the Various Market Segments. Andrea Vivarelli and Antonio Citarella, So.F.TeR SpA, Italy\u003c\/li\u003e\n\u003cli\u003eA New Family of Heat and Oil Resistant TPVs. Christer Bergström and Johanna Lampinen, Optatech Corporation, Finland\u003c\/li\u003e\n\u003cli\u003eA Novel Oil-and Heat-Resistant TPE-V. Markus Beitzel and Stuart Cook, Kraiburg TPE, Germany and TARRC, UK\u003c\/li\u003e\n\u003cli\u003eInnovative TPVs Opening New Markets. Julian Barnett, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eProcessing and Properties of Thermoplastic Vulcanizates (TPV). Edward V. Prut, Institute of Chemical Physics of RAS, Russia\u003c\/li\u003e\n\u003cli\u003eNew TPV Grades for Airbag Covers. Cees Ozinga and Edwin Willems, DSM Thermoplastic Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eUltra-High Molecular Weight Siloxane Masterbatches in TPE Compounding. Vivian John, Dow Corning Limited, UK\u003c\/li\u003e\n\u003cli\u003eTool Development for 2K-TPE Components for the Automotive Industry using 3D-Simulation. Lothar H. Kallien and Markus Menchen, SIGMA Engineering GmbH, Germany and Beckunbach GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eSwiftool Keeps Ford Racing on Track. Nick Osborn, Swift Technologies, UK\u003c\/li\u003e\n\u003cli\u003eSoft Blends of Acrylate Elastomer and Thermoplastic Polyurethane: Properties and Applications. Thierry Reichmann and Guy R. Duval, ECTC - Goodyear Chemical Europe, France\u003c\/li\u003e\n\u003cli\u003eThermoplastic Polyurethanes Without Plasticizer Within the Hardness Range Shore 50-70 A. Stephen Horsley, Elastogran UK Limited, UK\u003c\/li\u003e\n\u003cli\u003eTechnological Advantages of Polyether Copolymer Based TPUs. Dennis H.W. Feijen, J.L. Müller, J. Julià, D. Salvatella, Maria Josep Riba, Merquinsa Mercados Quimicos S.L., Spain\u003c\/li\u003e\n\u003cli\u003eSealing Performance of TPVs and its Prediction From Sress Relaxation Testing Methods. Thierry Burton, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eSurface Modification of Sarlink TPV Sealing Systems. Mathias Wilms, DSM Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eA Novel, Fully Vulcanised EPDM\/PP TPV for Automotive and Construction Weather-Seal as Well as General Rubber Mechanical Goods. Jonas Angus, Thermoplastic Rubber Systems, USA. (Paper unavailable at time of print)\u003c\/li\u003e\n\u003cli\u003eDevelopments of TPE in Automotive Interiors. Giorgio Golinelli, So.F.Ter S.p.A., Italy\u003c\/li\u003e\n\u003cli\u003eTPEs Used in CVJ (Constant Velocity Joint) Boot Application - Current Status, Future Challenges. Nader Khoshoei, GKN Automotive GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eRutgers 1 and Ronald F.M. Lange 2, 1 DSM Engineering Plastics, The Netherlands and 2 DSM Research, The NThe Use of Co-poly(ether esters) (1) in Automotive Applications. Gerhard Netherlands\u003c\/li\u003e\n\u003c\/ul\u003e"}
TPE 2002
$180.00
{"id":11242250692,"title":"TPE 2002","handle":"978-1-85957-317-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-317-4 \u003cbr\u003e\u003cbr\u003eHotel Le Plaza, Brussels, Belgium, 24th- 25th June 2002\u003cbr\u003e\u003cbr\u003epages 160\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe's premier meeting place for the thermoplastics elastomers sector. The last three events which were held in London, Amsterdam and Brussels each brought together more than 200 key players involved in all stages of the TPEs supply chain. \u003cbr\u003e\u003cbr\u003eThe TPEs 2002 conference program featured expert presentations on key market trends, new application developments and the very latest material innovations.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION ONE: INTRODUCTION AND MARKET TRENDS \u003cbr\u003ePaper 1: Keynote - Thermoplastic Elastomers - Materials of Great Promise and Potential \u003cbr\u003eBarry Statham, Consultant, UK \u003cbr\u003ePaper 2: TPE Growth and Value Applications in Auto Interiors and Body Seals \u003cbr\u003eRobert Eller, Robert Eller Associates, USA \u003cbr\u003ePaper 3: Recent Trends and Outlook for Elastomers \u003cbr\u003ePrachaya Jumpasut, International Rubber Study Group, UK \u003cbr\u003e\u003cbr\u003eSESSION TWO: MATERIALS INNOVATION \u003cbr\u003ePaper 4: Freedom to Innovate - The Changing Face of the TPE Industry \u003cbr\u003eRoger Morgan, KRATON Polymers LLC, Germany \u003cbr\u003ePaper 5: The Development of a New Elastomeric Homopolymer Polypropylene \u003cbr\u003eGian De Belder \u0026amp; Emily Boswell, Procter \u0026amp; Gamble, UK \u003cbr\u003e\u003cbr\u003eSESSION THREE: BONDING AND ADHESION \u003cbr\u003ePaper 6: New TPV Bonding Technologies \u003cbr\u003eJuergen Kautt, Advanced Elastomer Systems, USA \u003cbr\u003ePaper 7: Hard \/ Soft Combinations with THERMOLAST K (TPE-S): Material Combinations Processing Testing Method \u003cbr\u003eJörg Sänger, KRAIBURG TPE GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION FOUR: MATERIAL AND APPLICATION DEVELOPMENTS \u003cbr\u003ePaper 8: \"Case-Study\": From Concept to Commercialisation \u003cbr\u003eTony Carroll, PolyOne Engineered Materials UK, UK \u003cbr\u003ePaper 9: TPE and Wine: A Toast Deserving Combination \u003cbr\u003eat van Veelen, Wittenburg BV, The Netherlands \u003cbr\u003ePaper unavailable at time of print \u003cbr\u003e\u003cbr\u003eSESSION FIVE: AUTOMOTIVE APPLICATIONS \u003cbr\u003ePaper 10: Comparison of Sealing Performance between EPDM and TPV Weatherstrip Profiles \u003cbr\u003eZuoxing (Steven) Yu, Cooper Standard Automotive Canada Ltd, Canada \u003cbr\u003ePaper 11: Development of a Polypropylene\/Ethylene-octene Based TPE for Automotive Fluid Handling Applications \u003cbr\u003eTony McNally, P McShane, G M McNally W R Murphy M Cook \u0026amp; A Miller, Queen's University Belfast, UK \u003cbr\u003ePaper 12: Evaluation of Slip Coat Materials Co-Extruded on TPVS for Automotive Weatherseal \u003cbr\u003eJan Tom Fernhout, Reza Sadeghi, Hua Cai, Chris La Tulippe, Ryszard Brzoskowski \u0026amp; Edwin Currie, DSM Elastomers, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION SIX: ADVANCES IN MATERIALS PRODUCTION TECHNOLOGY \u003cbr\u003ePaper 13: Dimerised Fatty Acid Technology for Rubbery Thermoplastic Polyurethane Elastomers \u003cbr\u003ePaul Cameron, Uniqema Ltd (ICI), UK \u003cbr\u003e\u003cbr\u003eSESSION SEVEN: PROCESSING AND RECYCLING ISSUES \u003cbr\u003ePaper 14: 3D Flow Simulation of TPEs \u003cbr\u003eLothar Kallien, Sigma Engineering GmbH, Germany \u003cbr\u003ePaper 15: Foaming and Applications of TPV \u003cbr\u003eAbdelhadi Sahnoune, Advanced Elastomer Systems, USA \u003cbr\u003ePaper 16 A Method for the Multiple Recycling of Thermoplastic Polyurethane Elastomers which Retains their Mechanical Strength Properties \u003cbr\u003eClaude Hepburn (Professor of Polymer Engineering) \u0026amp; G Knox, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:17-04:00","created_at":"2017-06-22T21:15:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","acrylic polymers","adhesion","application","automotive","bonding","book","elastomers","EPDM","foams","p-chemistry","poly","polymer","polymers","polypropylene","polyurethane","recycling","sealing","thermoplastics","TPE","TPV","weatherstrip"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378472516,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2002","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-317-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-317-4.jpg?v=1499207826"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-317-4.jpg?v=1499207826","options":["Title"],"media":[{"alt":null,"id":353944272989,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-317-4.jpg?v=1499207826"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-317-4.jpg?v=1499207826","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-317-4 \u003cbr\u003e\u003cbr\u003eHotel Le Plaza, Brussels, Belgium, 24th- 25th June 2002\u003cbr\u003e\u003cbr\u003epages 160\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe's premier meeting place for the thermoplastics elastomers sector. The last three events which were held in London, Amsterdam and Brussels each brought together more than 200 key players involved in all stages of the TPEs supply chain. \u003cbr\u003e\u003cbr\u003eThe TPEs 2002 conference program featured expert presentations on key market trends, new application developments and the very latest material innovations.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION ONE: INTRODUCTION AND MARKET TRENDS \u003cbr\u003ePaper 1: Keynote - Thermoplastic Elastomers - Materials of Great Promise and Potential \u003cbr\u003eBarry Statham, Consultant, UK \u003cbr\u003ePaper 2: TPE Growth and Value Applications in Auto Interiors and Body Seals \u003cbr\u003eRobert Eller, Robert Eller Associates, USA \u003cbr\u003ePaper 3: Recent Trends and Outlook for Elastomers \u003cbr\u003ePrachaya Jumpasut, International Rubber Study Group, UK \u003cbr\u003e\u003cbr\u003eSESSION TWO: MATERIALS INNOVATION \u003cbr\u003ePaper 4: Freedom to Innovate - The Changing Face of the TPE Industry \u003cbr\u003eRoger Morgan, KRATON Polymers LLC, Germany \u003cbr\u003ePaper 5: The Development of a New Elastomeric Homopolymer Polypropylene \u003cbr\u003eGian De Belder \u0026amp; Emily Boswell, Procter \u0026amp; Gamble, UK \u003cbr\u003e\u003cbr\u003eSESSION THREE: BONDING AND ADHESION \u003cbr\u003ePaper 6: New TPV Bonding Technologies \u003cbr\u003eJuergen Kautt, Advanced Elastomer Systems, USA \u003cbr\u003ePaper 7: Hard \/ Soft Combinations with THERMOLAST K (TPE-S): Material Combinations Processing Testing Method \u003cbr\u003eJörg Sänger, KRAIBURG TPE GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION FOUR: MATERIAL AND APPLICATION DEVELOPMENTS \u003cbr\u003ePaper 8: \"Case-Study\": From Concept to Commercialisation \u003cbr\u003eTony Carroll, PolyOne Engineered Materials UK, UK \u003cbr\u003ePaper 9: TPE and Wine: A Toast Deserving Combination \u003cbr\u003eat van Veelen, Wittenburg BV, The Netherlands \u003cbr\u003ePaper unavailable at time of print \u003cbr\u003e\u003cbr\u003eSESSION FIVE: AUTOMOTIVE APPLICATIONS \u003cbr\u003ePaper 10: Comparison of Sealing Performance between EPDM and TPV Weatherstrip Profiles \u003cbr\u003eZuoxing (Steven) Yu, Cooper Standard Automotive Canada Ltd, Canada \u003cbr\u003ePaper 11: Development of a Polypropylene\/Ethylene-octene Based TPE for Automotive Fluid Handling Applications \u003cbr\u003eTony McNally, P McShane, G M McNally W R Murphy M Cook \u0026amp; A Miller, Queen's University Belfast, UK \u003cbr\u003ePaper 12: Evaluation of Slip Coat Materials Co-Extruded on TPVS for Automotive Weatherseal \u003cbr\u003eJan Tom Fernhout, Reza Sadeghi, Hua Cai, Chris La Tulippe, Ryszard Brzoskowski \u0026amp; Edwin Currie, DSM Elastomers, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION SIX: ADVANCES IN MATERIALS PRODUCTION TECHNOLOGY \u003cbr\u003ePaper 13: Dimerised Fatty Acid Technology for Rubbery Thermoplastic Polyurethane Elastomers \u003cbr\u003ePaul Cameron, Uniqema Ltd (ICI), UK \u003cbr\u003e\u003cbr\u003eSESSION SEVEN: PROCESSING AND RECYCLING ISSUES \u003cbr\u003ePaper 14: 3D Flow Simulation of TPEs \u003cbr\u003eLothar Kallien, Sigma Engineering GmbH, Germany \u003cbr\u003ePaper 15: Foaming and Applications of TPV \u003cbr\u003eAbdelhadi Sahnoune, Advanced Elastomer Systems, USA \u003cbr\u003ePaper 16 A Method for the Multiple Recycling of Thermoplastic Polyurethane Elastomers which Retains their Mechanical Strength Properties \u003cbr\u003eClaude Hepburn (Professor of Polymer Engineering) \u0026amp; G Knox, UK\u003cbr\u003e\u003cbr\u003e"}
TPE 2003
$190.00
{"id":11242232196,"title":"TPE 2003","handle":"978-1-85957-368-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-85957-368-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003e188 pages, 21 papers pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe use of thermoplastic elastomers is developing rapidly into a major success story, both as a replacement for vulcanised rubber and also for totally new applications. Several important factors are driving developments forward such as legislation on recycling materials in cars and electrical\/electronic goods, and continued growth of soft-touch applications.\u003c\/p\u003e\n\u003cp\u003eTo meet these demands there are many technical developments in hand by TPE manufacturers and compounders such as greater thermal, oxidative and weathering stability; softer grades of premium TPEs; improved properties such as resilience, oil resistance, flammability, smoke emission, fogging, adhesion and transparency; foamable grades and improved co-processibility.New types of dynamically vulcanised TPEs with improved properties, melt mixing as a low-cost route to new types of TPE, and metallocene catalysed polyolefin materials are examples of developments pushing the boundaries even further.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cb\u003eSESSION 1: INTRODUCTION AND MARKET TRENDS\u003c\/b\u003e\u003c\/p\u003e\n\u003cli\u003ePaper 1: Recent Trends and Outlook for Elastomers \u003cbr\u003e\u003ci\u003eDock No, Darren Cooper \u0026amp; Prachaya Jumpasut, International Rubber Study Group, UK\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 2: TPE Value and Growth Opportunities \u003cbr\u003e\u003ci\u003eRobert Eller, Robert Eller Associates Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 3: A New Application of TPV in Korea; Roofing and Geomembrane \u003cbr\u003e\u003ci\u003eMinjae Hwang\u003csup\u003e1\u003c\/sup\u003e, J S Kim\u003csup\u003e1\u003c\/sup\u003e, M K Yang\u003csup\u003e1\u003c\/sup\u003e, J S Choi\u003csup\u003e2\u003c\/sup\u003e \u0026amp; T S Jung\u003csup\u003e3\u003c\/sup\u003e, Honam Petrochemical Corp, Korea\u003csup\u003e1\u003c\/sup\u003e, Sung Jin Construction Co\u003csup\u003e2\u003c\/sup\u003e \u0026amp; Daeheung Industrial Co\u003csup\u003e3\u003c\/sup\u003e\u003c\/i\u003e\n\u003cp\u003e\u003cb\u003eSESSION 2: MATERIAL SELECTION\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 4: New TPEs for Durable Soft Touch Applications \u003cbr\u003e \u003ci\u003eJeffrey McCoy \u0026amp; Jane Maselli, A Schulman Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 5: Performance, Processing and Design Advantages of Santoprene® Thermoplastic Vulcanizate over Thermoset Rubber \u003cbr\u003e \u003ci\u003eBrendan Chase, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 3: NEW DEVELOPMENTS IN THERMOPLASTIC VULCANISATES\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 6: Nordel® MG - “The Game Changer” - ... For TPV \u003cbr\u003e \u003ci\u003eGary Williams, Du Pont Dow Elastomers, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 7: Short Dynamic Vulcanisation: A New and Simpler Way to Produce TPV \u003cbr\u003e\u003ci\u003eDino Bacci, Roberta Marchini \u0026amp; Maria Teresa Scrivani, Basell Polyolefins, Italy\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 8: Sarlink 6000: A new TPV Technology bringing Unique Features to the Market \u003cbr\u003e\u003ci\u003eAlberto Dozeman \u0026amp; Gart Kostemans, DSM Elastomers, The Netherlands\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 9: A Polyester Based TPV with Excellent Oil Resistance at High Temperatures \u003cbr\u003e\u003ci\u003eChrister Bergstrom, Optatech Corporation, Finland\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 10: Zeotherm: A New 150°C Capable Heat and Oil Resistant Thermoplastic Vulcanizate (TPV) \u003cbr\u003e\u003ci\u003eBrian Cail \u0026amp; Robert DeMarco, Zeon Chemicals LP, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 11: A New TPV with Excellent Recovery Performance \u003cbr\u003e \u003ci\u003eStuart Cook, TARRC, UK\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 4: AUTOMOTIVE APPLICATIONS\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 12: Intelligent Material Choice for Automotive Applications \u003cbr\u003e \u003ci\u003eMarc Setzen, PolyOne, Belgium\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 13: TPSiV™ Thermoplastic Elastomers Improve Automotive Hose Assembly Performance While Reducing Overall Costs \u003cbr\u003e\u003ci\u003eJonathan Bryant, Daniel Miles \u0026amp; Alain Bayet, Multibase (A Dow Corning Company), France\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 14: Slip Coat Materials Co-Extruded on Sarlink TPVs for Automotive Weatherstrips \u003cbr\u003e\u003ci\u003eJan Tom Fernhout \u0026amp; Ed Deckers, DSM Thermoplastic Elastomers, The Netherlands\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 15: Microcellular Foam TPV Automotive Weather Seals \u003cbr\u003e\u003ci\u003eKent Blizard, Trexel Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 16: Polyolefin TPV for Automotive Interior Applications \u003cbr\u003e \u003ci\u003eSynco de Vogel\u003csup\u003e1\u003c\/sup\u003e, Charles G Reid\u003csup\u003e2\u003c\/sup\u003e, Kevin G Cai\u003csup\u003e2\u003c\/sup\u003e, Hoan Tran\u003csup\u003e2\u003c\/sup\u003e \u0026amp; Norbert Vennemann\u003csup\u003e3\u003c\/sup\u003e, Solvay Engineered Polymers, Germany\u003csup\u003e1\u003c\/sup\u003e \u0026amp; USA\u003csup\u003e2\u003c\/sup\u003e \u0026amp; University of Applied Sciences, Germany\u003csup\u003e3\u003c\/sup\u003e\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 5: ADVANCES IN STRYENIC BLOCK COPOLYMERS\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 17: Styrene-Butadiene Random Copolymer for Enhancing Performance of Styrenic Block Copolymer Containing Thermoplastics Elastomers \u003cbr\u003e \u003ci\u003eManoj Ajbani, Thierry Materne, Chris Kiehl \u0026amp; Andy Takacs, The Goodyear Tire and Rubber Co, Chemical Division, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 18: Recent Developments of Kraton G Polymers for TPE-S Compounds \u003cbr\u003e\u003ci\u003eHenk de Groot, Kraton Polymers, Belgium\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 19: SEBS Nanocomposites \u003cbr\u003e\u003ci\u003eTony McNally, Queen's University Belfast, UK\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 20: Development of High Butylene SEBS as Compatibilizer for PP\/PS Blends \u003cbr\u003e\u003ci\u003eYuji Hongu, Kazuhisa Kodama, Nobuyuki Toyoda, Iwakazu Hattori, Masashi Shimakage\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 21: Recent Styrenic Block Co-Polymer Development - Differentiated SEPTON™ and HYBRAR™ Grades \u003cbr\u003e \u003ci\u003eKatsunori Takamoto, Kururay Europe GmbH, Germany\u003c\/i\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:14:19-04:00","created_at":"2017-06-22T21:14:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","adhesion","automotive","blends","book","eubber","flammability","fogging","market","nanocomposites","oil resistance","p-chemistry","polymer","smoke emission","stability","styrenic","weathering"," elastomers"," processibility"," properties"," resilience"," transparency"," vulcanisation"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2003","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-368-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-368-6_4eae7768-a5e4-4def-acd1-31997f4816ed.jpg?v=1499650813"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-368-6_4eae7768-a5e4-4def-acd1-31997f4816ed.jpg?v=1499650813","options":["Title"],"media":[{"alt":null,"id":358830964829,"position":1,"preview_image":{"aspect_ratio":0.712,"height":500,"width":356,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-368-6_4eae7768-a5e4-4def-acd1-31997f4816ed.jpg?v=1499650813"},"aspect_ratio":0.712,"height":500,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-368-6_4eae7768-a5e4-4def-acd1-31997f4816ed.jpg?v=1499650813","width":356}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-85957-368-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003e188 pages, 21 papers pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe use of thermoplastic elastomers is developing rapidly into a major success story, both as a replacement for vulcanised rubber and also for totally new applications. Several important factors are driving developments forward such as legislation on recycling materials in cars and electrical\/electronic goods, and continued growth of soft-touch applications.\u003c\/p\u003e\n\u003cp\u003eTo meet these demands there are many technical developments in hand by TPE manufacturers and compounders such as greater thermal, oxidative and weathering stability; softer grades of premium TPEs; improved properties such as resilience, oil resistance, flammability, smoke emission, fogging, adhesion and transparency; foamable grades and improved co-processibility.New types of dynamically vulcanised TPEs with improved properties, melt mixing as a low-cost route to new types of TPE, and metallocene catalysed polyolefin materials are examples of developments pushing the boundaries even further.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cb\u003eSESSION 1: INTRODUCTION AND MARKET TRENDS\u003c\/b\u003e\u003c\/p\u003e\n\u003cli\u003ePaper 1: Recent Trends and Outlook for Elastomers \u003cbr\u003e\u003ci\u003eDock No, Darren Cooper \u0026amp; Prachaya Jumpasut, International Rubber Study Group, UK\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 2: TPE Value and Growth Opportunities \u003cbr\u003e\u003ci\u003eRobert Eller, Robert Eller Associates Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 3: A New Application of TPV in Korea; Roofing and Geomembrane \u003cbr\u003e\u003ci\u003eMinjae Hwang\u003csup\u003e1\u003c\/sup\u003e, J S Kim\u003csup\u003e1\u003c\/sup\u003e, M K Yang\u003csup\u003e1\u003c\/sup\u003e, J S Choi\u003csup\u003e2\u003c\/sup\u003e \u0026amp; T S Jung\u003csup\u003e3\u003c\/sup\u003e, Honam Petrochemical Corp, Korea\u003csup\u003e1\u003c\/sup\u003e, Sung Jin Construction Co\u003csup\u003e2\u003c\/sup\u003e \u0026amp; Daeheung Industrial Co\u003csup\u003e3\u003c\/sup\u003e\u003c\/i\u003e\n\u003cp\u003e\u003cb\u003eSESSION 2: MATERIAL SELECTION\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 4: New TPEs for Durable Soft Touch Applications \u003cbr\u003e \u003ci\u003eJeffrey McCoy \u0026amp; Jane Maselli, A Schulman Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 5: Performance, Processing and Design Advantages of Santoprene® Thermoplastic Vulcanizate over Thermoset Rubber \u003cbr\u003e \u003ci\u003eBrendan Chase, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 3: NEW DEVELOPMENTS IN THERMOPLASTIC VULCANISATES\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 6: Nordel® MG - “The Game Changer” - ... For TPV \u003cbr\u003e \u003ci\u003eGary Williams, Du Pont Dow Elastomers, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 7: Short Dynamic Vulcanisation: A New and Simpler Way to Produce TPV \u003cbr\u003e\u003ci\u003eDino Bacci, Roberta Marchini \u0026amp; Maria Teresa Scrivani, Basell Polyolefins, Italy\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 8: Sarlink 6000: A new TPV Technology bringing Unique Features to the Market \u003cbr\u003e\u003ci\u003eAlberto Dozeman \u0026amp; Gart Kostemans, DSM Elastomers, The Netherlands\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 9: A Polyester Based TPV with Excellent Oil Resistance at High Temperatures \u003cbr\u003e\u003ci\u003eChrister Bergstrom, Optatech Corporation, Finland\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 10: Zeotherm: A New 150°C Capable Heat and Oil Resistant Thermoplastic Vulcanizate (TPV) \u003cbr\u003e\u003ci\u003eBrian Cail \u0026amp; Robert DeMarco, Zeon Chemicals LP, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 11: A New TPV with Excellent Recovery Performance \u003cbr\u003e \u003ci\u003eStuart Cook, TARRC, UK\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 4: AUTOMOTIVE APPLICATIONS\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 12: Intelligent Material Choice for Automotive Applications \u003cbr\u003e \u003ci\u003eMarc Setzen, PolyOne, Belgium\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 13: TPSiV™ Thermoplastic Elastomers Improve Automotive Hose Assembly Performance While Reducing Overall Costs \u003cbr\u003e\u003ci\u003eJonathan Bryant, Daniel Miles \u0026amp; Alain Bayet, Multibase (A Dow Corning Company), France\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 14: Slip Coat Materials Co-Extruded on Sarlink TPVs for Automotive Weatherstrips \u003cbr\u003e\u003ci\u003eJan Tom Fernhout \u0026amp; Ed Deckers, DSM Thermoplastic Elastomers, The Netherlands\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 15: Microcellular Foam TPV Automotive Weather Seals \u003cbr\u003e\u003ci\u003eKent Blizard, Trexel Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 16: Polyolefin TPV for Automotive Interior Applications \u003cbr\u003e \u003ci\u003eSynco de Vogel\u003csup\u003e1\u003c\/sup\u003e, Charles G Reid\u003csup\u003e2\u003c\/sup\u003e, Kevin G Cai\u003csup\u003e2\u003c\/sup\u003e, Hoan Tran\u003csup\u003e2\u003c\/sup\u003e \u0026amp; Norbert Vennemann\u003csup\u003e3\u003c\/sup\u003e, Solvay Engineered Polymers, Germany\u003csup\u003e1\u003c\/sup\u003e \u0026amp; USA\u003csup\u003e2\u003c\/sup\u003e \u0026amp; University of Applied Sciences, Germany\u003csup\u003e3\u003c\/sup\u003e\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 5: ADVANCES IN STRYENIC BLOCK COPOLYMERS\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 17: Styrene-Butadiene Random Copolymer for Enhancing Performance of Styrenic Block Copolymer Containing Thermoplastics Elastomers \u003cbr\u003e \u003ci\u003eManoj Ajbani, Thierry Materne, Chris Kiehl \u0026amp; Andy Takacs, The Goodyear Tire and Rubber Co, Chemical Division, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 18: Recent Developments of Kraton G Polymers for TPE-S Compounds \u003cbr\u003e\u003ci\u003eHenk de Groot, Kraton Polymers, Belgium\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 19: SEBS Nanocomposites \u003cbr\u003e\u003ci\u003eTony McNally, Queen's University Belfast, UK\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 20: Development of High Butylene SEBS as Compatibilizer for PP\/PS Blends \u003cbr\u003e\u003ci\u003eYuji Hongu, Kazuhisa Kodama, Nobuyuki Toyoda, Iwakazu Hattori, Masashi Shimakage\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 21: Recent Styrenic Block Co-Polymer Development - Differentiated SEPTON™ and HYBRAR™ Grades \u003cbr\u003e \u003ci\u003eKatsunori Takamoto, Kururay Europe GmbH, Germany\u003c\/i\u003e\n\u003c\/li\u003e"}
Troubleshooting Inject...
$125.00
{"id":11242229508,"title":"Troubleshooting Injection Moulding","handle":"978-1-85957-470-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-85957-470-6 \u003cbr\u003e\u003cbr\u003e138 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nInjection moulding is one of the most commonly used processing technologies for plastics materials. Proper machine set up, part and mould design, and material selection can lead to high-quality production. This review outlines common factors to check when preparing for injection mould components so that costly mistakes can be avoided. Sometimes problems occur in producing parts of the desired quality and there are visible surface defects. Due to the complex interrelationship between the part and the mould, the moulding compound, and the processing, it is often hard to recognise the source of the problem to remedy it. Defects can be classified into: sink marks, streaks, gloss differences, visible weld lines, jetting, diesel effect (burns), record grooves effect, stress whitening or cracking, incompletely filled parts, flash, visible ejector marks, deformation during demoulding, flaking of the surface, cold slugs or cold flow lines, entrapped air and blister formation, dark spots, and dull spots near the sprue. \u003cbr\u003e\u003cbr\u003eThis review examines the different types of surface defects that can be identified in plastics parts and looks at ways of solving these problems. Useful flow charts to illustrate possible ways forward are included. Case studies and a large number of figures make this a very useful report.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Optimising the Moulding Part \u003cbr\u003e2. Detection, Classification and Troubleshooting Defects \u003cbr\u003e2.1 Classification \u003cbr\u003e2.2 Flow Charts for Troubleshooting \u003cbr\u003e2.3 Sink Marks \u003cbr\u003e2.3.1 Physical Cause \u003cbr\u003e2.3.2 Correcting Sink Marks \u003cbr\u003e2.4 Streaks \u003cbr\u003e2.4.1 Burnt Streaks (Brown or Silver) \u003cbr\u003e2.4.2 Moisture Streaks \u003cbr\u003e2.4.3 Colour Streaks \u003cbr\u003e2.4.4 Air Streaks\/Air Hooks \u003cbr\u003e2.4.5 Glass Fibre Streaks \u003cbr\u003e2.5 Gloss\/Gloss Differences \u003cbr\u003e2.5.1 Physical Cause \u003cbr\u003e2.5.2 Correcting Gloss\/Gloss Differences \u003cbr\u003e2.6 Weld Line (Visible Notch or Colour Change) \u003cbr\u003e2.6.1 Physical Cause \u003cbr\u003e2.6.2 Improving a Weld Line (Visible Notch or Colour Change) \u003cbr\u003e2.7 Jetting \u003cbr\u003e2.7.1 Physical Cause \u003cbr\u003e2.7.2 Correcting Jetting \u003cbr\u003e2.8 Diesel Effect (Burns) \u003cbr\u003e2.8.1 Physical Cause \u003cbr\u003e2.8.2 Correcting Diesel Effect (Burns) \u003cbr\u003e2.9 Record Grooves Effect \u003cbr\u003e2.9.1 Physical Cause \u003cbr\u003e2.9.2 Correcting Record Grooves Effect \u003cbr\u003e2.10 Stress Whitening\/Stress Cracks \u003cbr\u003e2.10.1 Physical Cause \u003cbr\u003e2.10.2 Correcting Stress Whitening\/Stress Cracks \u003cbr\u003e2.11 Incompletely Filled Parts \u003cbr\u003e2.11.1 Physical Cause \u003cbr\u003e2.11.2 Correcting Incompletely Filled Parts \u003cbr\u003e2.12 Oversprayed Parts (Flashes) \u003cbr\u003e2.12.1 Physical Cause \u003cbr\u003e2.12.2 Correcting Oversprayed Parts (Flashes) \u003cbr\u003e2.13 Visible Ejector Marks \u003cbr\u003e2.13.1 Physical Cause \u003cbr\u003e2.13.2 Correcting Visible Ejector Marks \u003cbr\u003e2.14 Deformation During Demoulding \u003cbr\u003e2.14.1 Physical Cause \u003cbr\u003e2.14.2 Correcting Deformation During Demoulding \u003cbr\u003e2.15 Flaking of the Surface Layer \u003cbr\u003e2.15.1 Physical Cause \u003cbr\u003e2.15.2 Correcting Flaking of the Surface Layer \u003cbr\u003e2.16 Cold Slugs\/Cold Flow Lines \u003cbr\u003e2.16.1 Physical Cause \u003cbr\u003e2.16.2 Correcting Cold Slug\/Cold Flow Lines \u003cbr\u003e2.17 Entrapped Air (Blister Formation) \u003cbr\u003e2.17.1 Physical Cause \u003cbr\u003e2.17.2 Correcting Entrapped Air (Blister Formation) \u003cbr\u003e2.18 Dark Spots \u003cbr\u003e2.18.1 Physical Cause \u003cbr\u003e2.18.2 Correcting Dark Spots \u003cbr\u003e2.19 Dull Spots Near the Sprue \u003cbr\u003e2.19.1 Physical Cause \u003cbr\u003e2.19.2 Correcting Dull Spots Near the Sprue \u003cbr\u003e3. Case Studies of Injection Moulded Components \u003cbr\u003e3.1 Threaded Connecting Sleeves for Ink Drafting Apparatus \u003cbr\u003e3.2 Meter Cases \u003cbr\u003e3.3 Wristwatch Glass \u003cbr\u003e3.4 Alarm Clock Glass \u003cbr\u003e3.5 Glass Cover for Digital Gauge \u003cbr\u003e3.6 Plug Boards with Insert Pins \u003cbr\u003e4. Effects of Injection Moulding Parameters \u003cbr\u003e4.1 Internal Mould Temperature and Pressure \u003cbr\u003e4.2 Relationship of Injection and Mould Cavity Pressures \u003cbr\u003e4.3 Injection Pressure and Injection Time \u003cbr\u003e4.4 Filling Speed \u003cbr\u003e4.5 Filling Speed and Orientation \u003cbr\u003e4.6 Effects of Too High Filling Speed \u003cbr\u003e5. Machine Specifications \u003cbr\u003e5.1 Clamp Force \u003cbr\u003e5.2 Injection Unit \u003cbr\u003e5.3 Feeding Hopper \u003cbr\u003e5.4 Barrel Residence Time \u003cbr\u003e5.5 Precompression of the Melt \u003cbr\u003e5.6 Check Valve \u003cbr\u003e5.7 The Nozzle \u003cbr\u003e5.8 The Feed System \u003cbr\u003e5.9 The Mould Temperature \u003cbr\u003e5.10 The Importance of Adequate Venting \u003cbr\u003e5.11 Multi-Cavity Moulds \u003cbr\u003eGeneral Information on Wear and Tear \u003cbr\u003e6. Conclusion \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eAbstracts from the Polymer Library Database \u003cbr\u003eSubject Index \u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nThe editor, Dr. Vannessa Goodship, is a Senior Research Fellow with 15 years\u003cbr\u003eexperience in industry and expertise in injection moulding technology. She\u003cbr\u003eis based at the Warwick Manufacturing Group in the Advanced Technology\u003cbr\u003eCentre at the University of Warwick.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:11-04:00","created_at":"2017-06-22T21:14:12-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","barrel","blister","book","cavity","colour","dark spots","dull spots","entrapped air","feed system","feeding hopper","filling speed","flow line","glass cover","gloss","injection moulding","insert pins","melt","moisture streaks","molding","nozzle","p-processing","parameters","plastic","polymer","precompression","pressure","pressures","specifications","temperature","valve","venting","wristwatch glass"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378399108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Troubleshooting Injection Moulding","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-470-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-470-6_57ea8892-cd62-4382-8ea0-7fccdc0d39aa.jpg?v=1499956929"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-470-6_57ea8892-cd62-4382-8ea0-7fccdc0d39aa.jpg?v=1499956929","options":["Title"],"media":[{"alt":null,"id":358833717341,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-470-6_57ea8892-cd62-4382-8ea0-7fccdc0d39aa.jpg?v=1499956929"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-470-6_57ea8892-cd62-4382-8ea0-7fccdc0d39aa.jpg?v=1499956929","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-85957-470-6 \u003cbr\u003e\u003cbr\u003e138 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nInjection moulding is one of the most commonly used processing technologies for plastics materials. Proper machine set up, part and mould design, and material selection can lead to high-quality production. This review outlines common factors to check when preparing for injection mould components so that costly mistakes can be avoided. Sometimes problems occur in producing parts of the desired quality and there are visible surface defects. Due to the complex interrelationship between the part and the mould, the moulding compound, and the processing, it is often hard to recognise the source of the problem to remedy it. Defects can be classified into: sink marks, streaks, gloss differences, visible weld lines, jetting, diesel effect (burns), record grooves effect, stress whitening or cracking, incompletely filled parts, flash, visible ejector marks, deformation during demoulding, flaking of the surface, cold slugs or cold flow lines, entrapped air and blister formation, dark spots, and dull spots near the sprue. \u003cbr\u003e\u003cbr\u003eThis review examines the different types of surface defects that can be identified in plastics parts and looks at ways of solving these problems. Useful flow charts to illustrate possible ways forward are included. Case studies and a large number of figures make this a very useful report.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Optimising the Moulding Part \u003cbr\u003e2. Detection, Classification and Troubleshooting Defects \u003cbr\u003e2.1 Classification \u003cbr\u003e2.2 Flow Charts for Troubleshooting \u003cbr\u003e2.3 Sink Marks \u003cbr\u003e2.3.1 Physical Cause \u003cbr\u003e2.3.2 Correcting Sink Marks \u003cbr\u003e2.4 Streaks \u003cbr\u003e2.4.1 Burnt Streaks (Brown or Silver) \u003cbr\u003e2.4.2 Moisture Streaks \u003cbr\u003e2.4.3 Colour Streaks \u003cbr\u003e2.4.4 Air Streaks\/Air Hooks \u003cbr\u003e2.4.5 Glass Fibre Streaks \u003cbr\u003e2.5 Gloss\/Gloss Differences \u003cbr\u003e2.5.1 Physical Cause \u003cbr\u003e2.5.2 Correcting Gloss\/Gloss Differences \u003cbr\u003e2.6 Weld Line (Visible Notch or Colour Change) \u003cbr\u003e2.6.1 Physical Cause \u003cbr\u003e2.6.2 Improving a Weld Line (Visible Notch or Colour Change) \u003cbr\u003e2.7 Jetting \u003cbr\u003e2.7.1 Physical Cause \u003cbr\u003e2.7.2 Correcting Jetting \u003cbr\u003e2.8 Diesel Effect (Burns) \u003cbr\u003e2.8.1 Physical Cause \u003cbr\u003e2.8.2 Correcting Diesel Effect (Burns) \u003cbr\u003e2.9 Record Grooves Effect \u003cbr\u003e2.9.1 Physical Cause \u003cbr\u003e2.9.2 Correcting Record Grooves Effect \u003cbr\u003e2.10 Stress Whitening\/Stress Cracks \u003cbr\u003e2.10.1 Physical Cause \u003cbr\u003e2.10.2 Correcting Stress Whitening\/Stress Cracks \u003cbr\u003e2.11 Incompletely Filled Parts \u003cbr\u003e2.11.1 Physical Cause \u003cbr\u003e2.11.2 Correcting Incompletely Filled Parts \u003cbr\u003e2.12 Oversprayed Parts (Flashes) \u003cbr\u003e2.12.1 Physical Cause \u003cbr\u003e2.12.2 Correcting Oversprayed Parts (Flashes) \u003cbr\u003e2.13 Visible Ejector Marks \u003cbr\u003e2.13.1 Physical Cause \u003cbr\u003e2.13.2 Correcting Visible Ejector Marks \u003cbr\u003e2.14 Deformation During Demoulding \u003cbr\u003e2.14.1 Physical Cause \u003cbr\u003e2.14.2 Correcting Deformation During Demoulding \u003cbr\u003e2.15 Flaking of the Surface Layer \u003cbr\u003e2.15.1 Physical Cause \u003cbr\u003e2.15.2 Correcting Flaking of the Surface Layer \u003cbr\u003e2.16 Cold Slugs\/Cold Flow Lines \u003cbr\u003e2.16.1 Physical Cause \u003cbr\u003e2.16.2 Correcting Cold Slug\/Cold Flow Lines \u003cbr\u003e2.17 Entrapped Air (Blister Formation) \u003cbr\u003e2.17.1 Physical Cause \u003cbr\u003e2.17.2 Correcting Entrapped Air (Blister Formation) \u003cbr\u003e2.18 Dark Spots \u003cbr\u003e2.18.1 Physical Cause \u003cbr\u003e2.18.2 Correcting Dark Spots \u003cbr\u003e2.19 Dull Spots Near the Sprue \u003cbr\u003e2.19.1 Physical Cause \u003cbr\u003e2.19.2 Correcting Dull Spots Near the Sprue \u003cbr\u003e3. Case Studies of Injection Moulded Components \u003cbr\u003e3.1 Threaded Connecting Sleeves for Ink Drafting Apparatus \u003cbr\u003e3.2 Meter Cases \u003cbr\u003e3.3 Wristwatch Glass \u003cbr\u003e3.4 Alarm Clock Glass \u003cbr\u003e3.5 Glass Cover for Digital Gauge \u003cbr\u003e3.6 Plug Boards with Insert Pins \u003cbr\u003e4. Effects of Injection Moulding Parameters \u003cbr\u003e4.1 Internal Mould Temperature and Pressure \u003cbr\u003e4.2 Relationship of Injection and Mould Cavity Pressures \u003cbr\u003e4.3 Injection Pressure and Injection Time \u003cbr\u003e4.4 Filling Speed \u003cbr\u003e4.5 Filling Speed and Orientation \u003cbr\u003e4.6 Effects of Too High Filling Speed \u003cbr\u003e5. Machine Specifications \u003cbr\u003e5.1 Clamp Force \u003cbr\u003e5.2 Injection Unit \u003cbr\u003e5.3 Feeding Hopper \u003cbr\u003e5.4 Barrel Residence Time \u003cbr\u003e5.5 Precompression of the Melt \u003cbr\u003e5.6 Check Valve \u003cbr\u003e5.7 The Nozzle \u003cbr\u003e5.8 The Feed System \u003cbr\u003e5.9 The Mould Temperature \u003cbr\u003e5.10 The Importance of Adequate Venting \u003cbr\u003e5.11 Multi-Cavity Moulds \u003cbr\u003eGeneral Information on Wear and Tear \u003cbr\u003e6. Conclusion \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eAbstracts from the Polymer Library Database \u003cbr\u003eSubject Index \u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nThe editor, Dr. Vannessa Goodship, is a Senior Research Fellow with 15 years\u003cbr\u003eexperience in industry and expertise in injection moulding technology. She\u003cbr\u003eis based at the Warwick Manufacturing Group in the Advanced Technology\u003cbr\u003eCentre at the University of Warwick.\u003cbr\u003e\u003cbr\u003e"}
Update on Medical Plas...
$135.00
{"id":11242216452,"title":"Update on Medical Plasticised PVC","handle":"978-1-84735-208-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Xiaobin Zhao and James M. Courtney \u003cbr\u003eISBN 978-1-84735-208-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2009 \u003cbr\u003e\u003c\/span\u003ePages: 112\u003cbr\u003eHardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPoly (vinyl chloride) (PVC) is the most versatile of all the commodity polymers. It can satisfy a wide range of product function, safety, performance, and cost criteria.\u003cbr\u003e\u003cbr\u003eUpdate on Medical Plasticised PVC considers the history of plasticised PVC in medical applications and the manufacturing and processing of plasticised PVC together with its properties are reviewed. The selection of plasticisers is a particular focus. In Chapters 4 and 5, and the blood compatibility of plasticised PVC is examined, based on the most recent information.\u003cbr\u003e\u003cbr\u003eThe regulatory requirements and environment concerns over the leaching of plasticisers and the generating of dioxins during the incineration of PVC-P medical products after use are discussed in detail.\u003cbr\u003e\u003cbr\u003eUpdate on Medical Plasticised PVC will be of interest both to those who manufacture products using plasticised PVC, and to those who use the products and need to know about the using PVC in medical applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Brief history of the medical applications of plasticised PVC \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. PVC-P formulation \u003c\/strong\u003e\u003cbr\u003e2.1 PVC raw material \u003cbr\u003e2.1.1 Suspension polymerisation \u003cbr\u003e2.1.2 Emulsion polymerisation \u003cbr\u003e2.1.3 Mass or bulk polymerisation \u003cbr\u003e2.2 Additives \u003cbr\u003e2.2.1 Plasticiser \u003cbr\u003e2.2.2 Other additives \u003cbr\u003e2.3 PVC-P formulation \u003cbr\u003e2.3.1 Selection of plasticiser \u003cbr\u003e2.3.2 PVC-P compounding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Properties of PVC-P \u003c\/strong\u003e\u003cbr\u003e3.1 Mechanical properties \u003cbr\u003e3.2 Low-temperature properties \u003cbr\u003e3.3 Electrical properties \u003cbr\u003e3.4 Surface properties \u003cbr\u003e3.5 Permanence properties \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. PVC-P as a biomaterial \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Advantages of PVC-P \u003cbr\u003e4.3 Disadvantages \u003cbr\u003e4.4 PVC-P as a blood-contacting biomaterial \u003cbr\u003e4.5 Other applications of PVC-P as a biomaterial \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Blood compatibility of PVC-P \u003c\/strong\u003e \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Blood-biomaterial interactions \u003cbr\u003e5.3 Factors influencing blood response to PVC-P \u003cbr\u003e5.3.1 PVC formulation \u003cbr\u003e5.3.2 Selection of plasticiser \u003cbr\u003e5.3.3 Plasticiser concentration\u003cbr\u003e5.3.4 Plasticiser surface level \u003cbr\u003e5.3.5 Plasticiser surface distribution \u003cbr\u003e5.3.6 Surface modification \u003cbr\u003e5.3.7 Nature of application as devices\u003cbr\u003e5.3.8 Blood nature and evaluation procedures\u003cbr\u003e5.4 Plasticiser migration and regulation \u003cbr\u003e5.4.1 DEHP migration and extraction \u003cbr\u003e5.4.2 Toxicity of DEHP \u003cbr\u003e5.4.3 Alternatives to DEHP \u003cbr\u003e5.4.4 Alternatives to PVC-P as a blood-contacting biomaterial\u003cbr\u003e5.4.5 New development of PVC-P biomaterials \u003cbr\u003e5.4.6 Summary \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Modification of PVC-P surface for improved blood compatibility \u003c\/strong\u003e \u003cbr\u003e6.1 Physical treatment \u003cbr\u003e6.2 Chemical treatment \u003cbr\u003e6.3 Biological treatment \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Future perspectives \u003c\/strong\u003e\u003cbr\u003e7.1 Environmental and health concerns and regulatory issues \u003cbr\u003e7.1.1 Sterilisation \u003cbr\u003e7.2 Market needs \u003cbr\u003e7.2.1 Market for PVC \u003cbr\u003e7.2.2 Market for PVC medical devices \u003cbr\u003e7.3 Emerging technology \u003cbr\u003e\u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr Xiaobin Zhao obtained his BSc in Polymer Chemistry and MSc in Biomaterial Science in Nanjing University, China and PhD in Bioengineering Unit, University of Strathclyde in Glasgow. He was an associate of Scottish Network International (SNI) and has been working in the UK biomaterial industry since 1998. \u003cbr\u003e\u003cbr\u003eDr Zhao is the inventor of Double X-Linking Technology (DXL TM) for Mentor. He is a UK Chartered Scientist and Chemist. He is a Fellow of Royal Society of Chemistry, Professional Member of Institute of Materials in UK and Society for Biomaterial in USA. He has published more than 45 scientific papers, book chapters and gained numbers of patents on his name world widely. He holds visiting professorship in University of Strathclyde and Visiting Professorship in Lanzhou University in China.\u003cbr\u003e\u003cbr\u003eCurrently he is visiting Professor in Strathclyde University and Director of UK China Research Academy of Bioactive Molecules and Materials.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:29-04:00","created_at":"2017-06-22T21:13:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","additives","biomaterials","book","DEHP","formulation","medical applications","p-application","plasticisers","polymer","PVC","sterilisation","surface"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378357252,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Update on Medical Plasticised PVC","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-208-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-208-8_59758bb0-b66f-47eb-83be-0077ae0ebd84.jpg?v=1499957004"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-208-8_59758bb0-b66f-47eb-83be-0077ae0ebd84.jpg?v=1499957004","options":["Title"],"media":[{"alt":null,"id":358838665309,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-208-8_59758bb0-b66f-47eb-83be-0077ae0ebd84.jpg?v=1499957004"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-208-8_59758bb0-b66f-47eb-83be-0077ae0ebd84.jpg?v=1499957004","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Xiaobin Zhao and James M. Courtney \u003cbr\u003eISBN 978-1-84735-208-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2009 \u003cbr\u003e\u003c\/span\u003ePages: 112\u003cbr\u003eHardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPoly (vinyl chloride) (PVC) is the most versatile of all the commodity polymers. It can satisfy a wide range of product function, safety, performance, and cost criteria.\u003cbr\u003e\u003cbr\u003eUpdate on Medical Plasticised PVC considers the history of plasticised PVC in medical applications and the manufacturing and processing of plasticised PVC together with its properties are reviewed. The selection of plasticisers is a particular focus. In Chapters 4 and 5, and the blood compatibility of plasticised PVC is examined, based on the most recent information.\u003cbr\u003e\u003cbr\u003eThe regulatory requirements and environment concerns over the leaching of plasticisers and the generating of dioxins during the incineration of PVC-P medical products after use are discussed in detail.\u003cbr\u003e\u003cbr\u003eUpdate on Medical Plasticised PVC will be of interest both to those who manufacture products using plasticised PVC, and to those who use the products and need to know about the using PVC in medical applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Brief history of the medical applications of plasticised PVC \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. PVC-P formulation \u003c\/strong\u003e\u003cbr\u003e2.1 PVC raw material \u003cbr\u003e2.1.1 Suspension polymerisation \u003cbr\u003e2.1.2 Emulsion polymerisation \u003cbr\u003e2.1.3 Mass or bulk polymerisation \u003cbr\u003e2.2 Additives \u003cbr\u003e2.2.1 Plasticiser \u003cbr\u003e2.2.2 Other additives \u003cbr\u003e2.3 PVC-P formulation \u003cbr\u003e2.3.1 Selection of plasticiser \u003cbr\u003e2.3.2 PVC-P compounding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Properties of PVC-P \u003c\/strong\u003e\u003cbr\u003e3.1 Mechanical properties \u003cbr\u003e3.2 Low-temperature properties \u003cbr\u003e3.3 Electrical properties \u003cbr\u003e3.4 Surface properties \u003cbr\u003e3.5 Permanence properties \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. PVC-P as a biomaterial \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Advantages of PVC-P \u003cbr\u003e4.3 Disadvantages \u003cbr\u003e4.4 PVC-P as a blood-contacting biomaterial \u003cbr\u003e4.5 Other applications of PVC-P as a biomaterial \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Blood compatibility of PVC-P \u003c\/strong\u003e \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Blood-biomaterial interactions \u003cbr\u003e5.3 Factors influencing blood response to PVC-P \u003cbr\u003e5.3.1 PVC formulation \u003cbr\u003e5.3.2 Selection of plasticiser \u003cbr\u003e5.3.3 Plasticiser concentration\u003cbr\u003e5.3.4 Plasticiser surface level \u003cbr\u003e5.3.5 Plasticiser surface distribution \u003cbr\u003e5.3.6 Surface modification \u003cbr\u003e5.3.7 Nature of application as devices\u003cbr\u003e5.3.8 Blood nature and evaluation procedures\u003cbr\u003e5.4 Plasticiser migration and regulation \u003cbr\u003e5.4.1 DEHP migration and extraction \u003cbr\u003e5.4.2 Toxicity of DEHP \u003cbr\u003e5.4.3 Alternatives to DEHP \u003cbr\u003e5.4.4 Alternatives to PVC-P as a blood-contacting biomaterial\u003cbr\u003e5.4.5 New development of PVC-P biomaterials \u003cbr\u003e5.4.6 Summary \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Modification of PVC-P surface for improved blood compatibility \u003c\/strong\u003e \u003cbr\u003e6.1 Physical treatment \u003cbr\u003e6.2 Chemical treatment \u003cbr\u003e6.3 Biological treatment \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Future perspectives \u003c\/strong\u003e\u003cbr\u003e7.1 Environmental and health concerns and regulatory issues \u003cbr\u003e7.1.1 Sterilisation \u003cbr\u003e7.2 Market needs \u003cbr\u003e7.2.1 Market for PVC \u003cbr\u003e7.2.2 Market for PVC medical devices \u003cbr\u003e7.3 Emerging technology \u003cbr\u003e\u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr Xiaobin Zhao obtained his BSc in Polymer Chemistry and MSc in Biomaterial Science in Nanjing University, China and PhD in Bioengineering Unit, University of Strathclyde in Glasgow. He was an associate of Scottish Network International (SNI) and has been working in the UK biomaterial industry since 1998. \u003cbr\u003e\u003cbr\u003eDr Zhao is the inventor of Double X-Linking Technology (DXL TM) for Mentor. He is a UK Chartered Scientist and Chemist. He is a Fellow of Royal Society of Chemistry, Professional Member of Institute of Materials in UK and Society for Biomaterial in USA. He has published more than 45 scientific papers, book chapters and gained numbers of patents on his name world widely. He holds visiting professorship in University of Strathclyde and Visiting Professorship in Lanzhou University in China.\u003cbr\u003e\u003cbr\u003eCurrently he is visiting Professor in Strathclyde University and Director of UK China Research Academy of Bioactive Molecules and Materials.\u003cbr\u003e\u003cbr\u003e"}
Update on Polylactide ...
$130.00
{"id":11242243076,"title":"Update on Polylactide Based Materials","handle":"9781847355829","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Minna Hakkarainen and Anna-Finne Wistrand \u003cbr\u003eISBN 9781847355829 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2011 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolylactides are aliphatic polyesters derived from lactic acid, and various derivatives thereof, and are one of the most promising of polymers based on starting materials available from renewable resources. Materials based on these polymers are at the cutting edge of progress in sustainable materials science.\u003cbr\u003e\u003cbr\u003eThis book provides an overview of the latest developments in a number of aspects of polylactide research. Chapters cover synthesis using novel catalysts and modified monomers, new copolymers, blends of polylactides with other polymers, stereocomplexes and nanocomposites. The information contained therein will be of interest to all involved in the development of polylactides and other polymers based on sustainable resources, with discussions on how to modify and improve these materials to expand their capabilities even further.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Polylactide \u003cbr\u003e1.2 Polymerisation\u003cbr\u003e1.3 Applications \u003cbr\u003e1.4 Polylactide and the Environment\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Developments in the Polymerisation of Polylactide-based Materials \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Polycondensation \u003cbr\u003e2.1.2 Ring-opening Polymerisation\u003cbr\u003e2.2 Polymerisation in Supercritical Fluids \u003cbr\u003e2.3 Biosynthesis of Polylactide\u003cbr\u003e2.3.1 Enzymes, Homogeneous Systems\u003cbr\u003e2.3.2 Lactide-polymerising Enzyme\u003cbr\u003e2.3.3 Extrusion\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Polylactide Copolymers\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Macromolecular Design in Lactide Copolymerisation \u003cbr\u003e3.2.1 Lactide Copolymers in Nanoparticles\u003cbr\u003e3.2.2 Electroactive Lactide Copolymers \u003cbr\u003eUpdate on Polylactide Based Materials \u003cbr\u003e3.3 Combination of Ring-opening Polymerisation of Lactide and Nitroxide-mediated Polymerisation\u003cbr\u003e3.3.1 Linear Block Copolymers \u003cbr\u003e3.3.2 Graft Copolymers \u003cbr\u003e3.4 Combination of Ring-Opening Polymerisation of Lactide and Reversible Addition Fragmentation Chain Transfer \u003cbr\u003e3.4.1 Linear Block Copolymers \u003cbr\u003e3.4.2 Graft Copolymers \u003cbr\u003e3.4.3 Amphiphilic Copolymers \u003cbr\u003e3.4.4 Thermosensitive Copolymers \u003cbr\u003e3.5 Combination of Ring-Opening Polymerisation of Lactide and Atom Transfer Radical Polymerisation\u003cbr\u003e3.5.1 Block Copolymers \u003cbr\u003e3.5.2 Graft Copolymers \u003cbr\u003e3.5.3 Dendrimer-like Copolymers \u003cbr\u003e3.5.4 Amphiphilic Block Copolymers \u003cbr\u003e3.5.5 Carbohydrates as Initiators for the Ring-opening Polymerisation of Lactide \u003cbr\u003e3.6 Combinations \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Polylactide Blends\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Blends with other Polyesters\u003cbr\u003e4.2.1 Polycaprolactone \u003cbr\u003e4.2.2 Poly (hydroxyalkanoates) \u003cbr\u003e4.2.3 Poly (butylene succinate), Poly(butylene adipate) and Related Polymers \u003cbr\u003e4.2.4 Aliphatic-aromatic Polyesters \u003cbr\u003e4.3 Polylactide\/Starch Blends\u003cbr\u003e4.3.1 Grafting Approaches for Improving the Compatibility \u003cbr\u003e4.3.2 Ternary Blends and Plasticisation\u003cbr\u003e4.3.3 Biodegradation \u003cbr\u003e4.4 Other Biodegradable Blends \u003cbr\u003e4.4.1 Poly(ethylene glycol) and Poly(propylene glycol)\u003cbr\u003e4.4.2 Poly(vinyl alcohol)\u003cbr\u003e4.4.3 Chitosan Blends \u003cbr\u003e4.4.4 Soy Protein Blends\u003cbr\u003e4.4.5 Soya Bean Oil Blends \u003cbr\u003e4.4.6 Other Polylactide Blends \u003cbr\u003e4.5 Blends of Polylactide with Inert Polymers\u003cbr\u003e4.5.1 Polyethylene and Polypropylene \u003cbr\u003e4.5.2 Polystyrene \u003cbr\u003e4.5.3 Poly(methyl methacrylate) \u003cbr\u003e4.5.4 Elastomers and Rubbers \u003cbr\u003e4.5.5 Poly(vinyl phenol)\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Polylactide Stereocomplexes\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Stereocomplex Formation \u003cbr\u003e5.2.1 Stereocomplexation in Solution\u003cbr\u003e5.2.2 Stereocomplexation from the Melt \u003cbr\u003e5.2.3 Stereocomplexation under other Conditions \u003cbr\u003e5.3 Poly(l-lactide)\/Poly(d-lactide) Blends\u003cbr\u003e5.4 Block Copolymers \u003cbr\u003e5.5 Micelles, Hydrogels and Crosslinked Materials \u003cbr\u003e5.6 Characterisation and Properties\u003cbr\u003e5.7 Hydrolytic and Thermal Degradation\u003cbr\u003e5.8 Applications \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Polylactide Nanocomposites\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Nanoclay Composites\u003cbr\u003e6.2.1 Processing and Preparation\u003cbr\u003e6.2.2 Properties and Characteristics\u003cbr\u003e6.2.3 Biotic and Hydrolytic Degradation\u003cbr\u003e6.3 Metal Oxide and Silver Nanocomposites\u003cbr\u003e6.3.1 Titanium Dioxide\u003cbr\u003e 6.3.2 Silicon Dioxide\u003cbr\u003e6.3.3 Silver\u003cbr\u003e6.4 Carbon Nanotubes\u003cbr\u003e6.4.1 The Effect of Surface Modification\u003cbr\u003e6.4.2 Degradation \u003cbr\u003e6.5 Other Nanofiller\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Polylactide Biocomposites \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Wood Composites \u003cbr\u003e7.2.1 Physicomechanical and Thermal Properties \u003cbr\u003e7.2.2 Effect of Moisture Uptake and Hygro expansion\u003cbr\u003e7.2.3 Biodegradation \u003cbr\u003e7.3 Composites with Microcrystalline Cellulose\u003cbr\u003e7.4 Flax Fibre Composites \u003cbr\u003e7.5 Jute Fibre Composites\u003cbr\u003e7.6 Kenaf and Hemp Fibre Composites \u003cbr\u003e7.7 Other Green Polylactide Composites \u003cbr\u003e7.8 Recycling\u003cbr\u003e7.9 Comparison of Mechanical Properties for Different Polylactide Biocomposites\u003cbr\u003e References\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Future Perspectives\u003cbr\u003eAbbreviations \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:53-04:00","created_at":"2017-06-22T21:14:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biocomposite","biodegradable materials","biodegradable polymers","book","copolymers","nanocomosite","p-chemistry","polyester","polylactide popolymers","polymer","ring-opening","sustainable materials"],"price":13000,"price_min":13000,"price_max":13000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Update on Polylactide Based Materials","public_title":null,"options":["Default Title"],"price":13000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847355829","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847355829_d0a4e929-89c2-4a14-863e-57c922ad6041.jpg?v=1499957042"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355829_d0a4e929-89c2-4a14-863e-57c922ad6041.jpg?v=1499957042","options":["Title"],"media":[{"alt":null,"id":358840467549,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355829_d0a4e929-89c2-4a14-863e-57c922ad6041.jpg?v=1499957042"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355829_d0a4e929-89c2-4a14-863e-57c922ad6041.jpg?v=1499957042","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Minna Hakkarainen and Anna-Finne Wistrand \u003cbr\u003eISBN 9781847355829 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2011 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolylactides are aliphatic polyesters derived from lactic acid, and various derivatives thereof, and are one of the most promising of polymers based on starting materials available from renewable resources. Materials based on these polymers are at the cutting edge of progress in sustainable materials science.\u003cbr\u003e\u003cbr\u003eThis book provides an overview of the latest developments in a number of aspects of polylactide research. Chapters cover synthesis using novel catalysts and modified monomers, new copolymers, blends of polylactides with other polymers, stereocomplexes and nanocomposites. The information contained therein will be of interest to all involved in the development of polylactides and other polymers based on sustainable resources, with discussions on how to modify and improve these materials to expand their capabilities even further.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Polylactide \u003cbr\u003e1.2 Polymerisation\u003cbr\u003e1.3 Applications \u003cbr\u003e1.4 Polylactide and the Environment\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Developments in the Polymerisation of Polylactide-based Materials \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Polycondensation \u003cbr\u003e2.1.2 Ring-opening Polymerisation\u003cbr\u003e2.2 Polymerisation in Supercritical Fluids \u003cbr\u003e2.3 Biosynthesis of Polylactide\u003cbr\u003e2.3.1 Enzymes, Homogeneous Systems\u003cbr\u003e2.3.2 Lactide-polymerising Enzyme\u003cbr\u003e2.3.3 Extrusion\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Polylactide Copolymers\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Macromolecular Design in Lactide Copolymerisation \u003cbr\u003e3.2.1 Lactide Copolymers in Nanoparticles\u003cbr\u003e3.2.2 Electroactive Lactide Copolymers \u003cbr\u003eUpdate on Polylactide Based Materials \u003cbr\u003e3.3 Combination of Ring-opening Polymerisation of Lactide and Nitroxide-mediated Polymerisation\u003cbr\u003e3.3.1 Linear Block Copolymers \u003cbr\u003e3.3.2 Graft Copolymers \u003cbr\u003e3.4 Combination of Ring-Opening Polymerisation of Lactide and Reversible Addition Fragmentation Chain Transfer \u003cbr\u003e3.4.1 Linear Block Copolymers \u003cbr\u003e3.4.2 Graft Copolymers \u003cbr\u003e3.4.3 Amphiphilic Copolymers \u003cbr\u003e3.4.4 Thermosensitive Copolymers \u003cbr\u003e3.5 Combination of Ring-Opening Polymerisation of Lactide and Atom Transfer Radical Polymerisation\u003cbr\u003e3.5.1 Block Copolymers \u003cbr\u003e3.5.2 Graft Copolymers \u003cbr\u003e3.5.3 Dendrimer-like Copolymers \u003cbr\u003e3.5.4 Amphiphilic Block Copolymers \u003cbr\u003e3.5.5 Carbohydrates as Initiators for the Ring-opening Polymerisation of Lactide \u003cbr\u003e3.6 Combinations \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Polylactide Blends\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Blends with other Polyesters\u003cbr\u003e4.2.1 Polycaprolactone \u003cbr\u003e4.2.2 Poly (hydroxyalkanoates) \u003cbr\u003e4.2.3 Poly (butylene succinate), Poly(butylene adipate) and Related Polymers \u003cbr\u003e4.2.4 Aliphatic-aromatic Polyesters \u003cbr\u003e4.3 Polylactide\/Starch Blends\u003cbr\u003e4.3.1 Grafting Approaches for Improving the Compatibility \u003cbr\u003e4.3.2 Ternary Blends and Plasticisation\u003cbr\u003e4.3.3 Biodegradation \u003cbr\u003e4.4 Other Biodegradable Blends \u003cbr\u003e4.4.1 Poly(ethylene glycol) and Poly(propylene glycol)\u003cbr\u003e4.4.2 Poly(vinyl alcohol)\u003cbr\u003e4.4.3 Chitosan Blends \u003cbr\u003e4.4.4 Soy Protein Blends\u003cbr\u003e4.4.5 Soya Bean Oil Blends \u003cbr\u003e4.4.6 Other Polylactide Blends \u003cbr\u003e4.5 Blends of Polylactide with Inert Polymers\u003cbr\u003e4.5.1 Polyethylene and Polypropylene \u003cbr\u003e4.5.2 Polystyrene \u003cbr\u003e4.5.3 Poly(methyl methacrylate) \u003cbr\u003e4.5.4 Elastomers and Rubbers \u003cbr\u003e4.5.5 Poly(vinyl phenol)\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Polylactide Stereocomplexes\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Stereocomplex Formation \u003cbr\u003e5.2.1 Stereocomplexation in Solution\u003cbr\u003e5.2.2 Stereocomplexation from the Melt \u003cbr\u003e5.2.3 Stereocomplexation under other Conditions \u003cbr\u003e5.3 Poly(l-lactide)\/Poly(d-lactide) Blends\u003cbr\u003e5.4 Block Copolymers \u003cbr\u003e5.5 Micelles, Hydrogels and Crosslinked Materials \u003cbr\u003e5.6 Characterisation and Properties\u003cbr\u003e5.7 Hydrolytic and Thermal Degradation\u003cbr\u003e5.8 Applications \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Polylactide Nanocomposites\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Nanoclay Composites\u003cbr\u003e6.2.1 Processing and Preparation\u003cbr\u003e6.2.2 Properties and Characteristics\u003cbr\u003e6.2.3 Biotic and Hydrolytic Degradation\u003cbr\u003e6.3 Metal Oxide and Silver Nanocomposites\u003cbr\u003e6.3.1 Titanium Dioxide\u003cbr\u003e 6.3.2 Silicon Dioxide\u003cbr\u003e6.3.3 Silver\u003cbr\u003e6.4 Carbon Nanotubes\u003cbr\u003e6.4.1 The Effect of Surface Modification\u003cbr\u003e6.4.2 Degradation \u003cbr\u003e6.5 Other Nanofiller\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Polylactide Biocomposites \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Wood Composites \u003cbr\u003e7.2.1 Physicomechanical and Thermal Properties \u003cbr\u003e7.2.2 Effect of Moisture Uptake and Hygro expansion\u003cbr\u003e7.2.3 Biodegradation \u003cbr\u003e7.3 Composites with Microcrystalline Cellulose\u003cbr\u003e7.4 Flax Fibre Composites \u003cbr\u003e7.5 Jute Fibre Composites\u003cbr\u003e7.6 Kenaf and Hemp Fibre Composites \u003cbr\u003e7.7 Other Green Polylactide Composites \u003cbr\u003e7.8 Recycling\u003cbr\u003e7.9 Comparison of Mechanical Properties for Different Polylactide Biocomposites\u003cbr\u003e References\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Future Perspectives\u003cbr\u003eAbbreviations \u003cbr\u003eIndex"}