- Grid List
Filter
Handbook of Surface Im...
$320.00
{"id":7703518052509,"title":"Handbook of Surface Improvement and Modification, 2nd Edition","handle":"handbook-of-surface-improvement-and-modification-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003e\n\u003cp\u003e\u003cspan\u003eISBN 978-1- 77467-024-8 (hardcover)\u003c\/span\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: Jan 2023\u003cbr\u003e\u003c\/span\u003ePages 258+iv\u003cbr data-mce-fragment=\"1\"\u003eFigures 129\u003cbr data-mce-fragment=\"1\"\u003eTables 44\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book covers the comprehensive study of surface improvement and modification, including the introduction of a range of processing methods such as physical, chemical, and electrochemical treatments. The fundamentals of theory, design and application are thoroughly discussed. It offers an authoritative view on surface improvement technology to both researchers and practitioners in various industry fields.\u003cbr\u003e\u003cbr\u003eSurface appearance is one of the most important properties of many products. It must be tailored to the product needs, which are frequently very different in various applications.\u003cbr\u003e\u003cbr\u003eThis book is devoted to additives used for surface modification of materials a technology used in the production and processing of adhesives, appliances, automotive, bookbinding, building and construction, business machines, caulks, cellular phones, coatings, concrete, dental applications, electronics, flooring, footwear, furniture, graphic arts, hot-melt adhesives, hygiene, labels, lacquers, leather, lithographic inks, medicine, nanofluids, nonwovens, optical films, packaging, paints, paper, plastics, pressure-sensitive adhesives, printing inks, rubber, sealants, sporting goods, tapes, varnish, wire and cable, wood and many other materials. This book is the first known published book on this subject. The second edition brings, in addition to the verified content of the first edition, the discussion of the most recent findings and achievements in the field. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHandbook of Surface Improvement and Modification\u003c\/strong\u003e contains information on eleven groups of additives that are commercially available for the improvement and surface modification of manufactured materials. These include additives improving scratch and mar resistance, gloss, surface flattening, tack reduction, tack increase (tackifiers), surface tension reduction and wetting, surface cleaning, dirt pickup resistance, hydrophobization, anti-cratering, and leveling, and coefficient of static friction. They are discussed in separate chapters in the same order as above. \u003cbr\u003e\u003cbr\u003eThe highlights for each chapter are as follows.\u003cbr\u003eScratch and mar resistance: many important influences combined form mechanism of protection; scratch features (ironing, transition, stick-slip, tearing) determination; texture patterning and scratch visibility; self-healing; damage observation on nanoscale; violet laser scanning confocal microscope cross-section profile of scratch damage; silsesquioxanes\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGloss enhancement:\u003c\/strong\u003e magnetic resonance imaging measurements of human brain reactions; instrumental measurements; meso- and micro-scale roughness; hyperbranched resins; durability of gloss\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface matting:\u003c\/strong\u003e powder coatings; roughness formation; dull black coatings; curing rate and flattening; low-gloss soft-touch; anti-glare coatings\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTack-free:\u003c\/strong\u003e abhesion features; instrumental surface tack measurement; surface tension; nature-inspired; completeness of cure; dental applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTackifiers:\u003c\/strong\u003e balance of elastic and viscous properties; structure and origin of rosins; phase structure of tackifying system; compatibility; environmental solutions; pharmaceutical, cosmetics, and medical applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface tension and wetting:\u003c\/strong\u003e bottlebrush polymers; rigid-rod polymeric fiber; superhydrophobicity; superhydrophilicity; surface tension prediction; porosity and morphology; wettability surface gradient; surface free energy; bacterial adhesion; photo-induced hydrophilicity; orthopedic implants; high-speed printing; dry-erase inks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface cleaning and stain inhibition:\u003c\/strong\u003e in-source cleaner regeneration; the negative impact of perfluorinated acids; bio-inspired cleaning methods; hole generation and pollutant decomposition; photocatalytic self-cleaning; anti-graffiti coating, graffiti removal\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDirt pickup resistance:\u003c\/strong\u003e HDPE and carnauba waxes; mark and scuff resistance; decorative paints, wood stains, leather lacquers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWater-repelling:\u003c\/strong\u003e biomimetic solutions; superhydrophobic coatings; self-hydrophobization; superamphiphobic surfaces; chemical functionalization, microtextured surface; building structure protection; protection against ice formation\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAnti-cratering and leveling:\u003c\/strong\u003e thixotropic behavior; nanoparticles; leveling agents; superplasticizers; powder coatings; sag-leveling balance; pinhole prevention\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCoefficient of friction:\u003c\/strong\u003e tribometers; speed effect; dwell time effect; surface patterns and textured surfaces; elemental mapping; capillary bridge; human skin; dangling bonds; polymer brushes; lamellar tribofilm; microspheres, release agents; a film with a consistent coefficient of friction\u003cbr\u003e\u003cbr\u003eA companion book entitled \u003cstrong\u003eDatabook of Surface Modification Additives\u003c\/strong\u003e has also been published. It contains information and data on the additives commercially available to improve materials by the above-listed modifications. Both books do not repeat information. In this book, the focus is on the methods and mechanisms which are known to be responsible for the enhancement of material properties with the use of additives. The readers of these books may also be interested in a recently published book entitled \u003cstrong\u003eSelf-healing Materials\u003c\/strong\u003e. Principles \u0026amp; Technology that helps to understand available options in new technologies of surface self-repair. All three books provide the most comprehensive information on the subject of surface improvement available today.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Scratch and Mar Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e2.1 Methods and mechanisms of protection\u003cbr data-mce-fragment=\"1\"\u003e2.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e2.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Gloss Enhancement\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e3.1 Gloss perception\u003cbr data-mce-fragment=\"1\"\u003e3.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e3.3 Methods and mechanisms of gloss enhancement\u003cbr data-mce-fragment=\"1\"\u003e3.4 Durability of gloss\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Surface Matting (Flattening)\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e4.1 Methods and mechanisms of flattening\u003cbr data-mce-fragment=\"1\"\u003e4.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e4.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Tack-free Surface\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e5.1 Methods and mechanisms of tack reduction\u003cbr data-mce-fragment=\"1\"\u003e5.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e5.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e6 Tackifiers\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e6.1 Methods and mechanisms of tack enhancement\u003cbr data-mce-fragment=\"1\"\u003e6.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e6.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e7 Surface Tension and Wetting\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e7.1 Methods and mechanisms of surface tension reduction\u003cbr data-mce-fragment=\"1\"\u003e7.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e7.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e8 Easy Surface Cleaning and Stain Inhibition\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e8.1 Methods and mechanisms of surface cleaning\u003cbr data-mce-fragment=\"1\"\u003e8.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e8.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e9 Dirt Pickup Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e9.1 Methods and mechanisms of dirt pickup prevention\u003cbr data-mce-fragment=\"1\"\u003e9.2 Additives use\u003cbr data-mce-fragment=\"1\"\u003e9.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e10 Water Repelling (Hydrophobization)\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e10.1 Methods and mechanisms of hydrophobization\u003cbr data-mce-fragment=\"1\"\u003e10.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e10.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e11 Anti-cratering and Leveling\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e11.1 Methods and mechanisms of anti-cratering and leveling\u003cbr data-mce-fragment=\"1\"\u003e11.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e11.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e12 The Coefficient of Friction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e12.1 Methods and mechanisms of improvement of the coefficient of friction\u003cbr data-mce-fragment=\"1\"\u003e12.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e12.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2023-02-24T12:51:04-05:00","created_at":"2023-02-24T12:41:36-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","additive","additives","anti-cratering","book","cleaning","coefficient of friction","gloss","leveling and anti-cratering","matting","polymer","polymers","surface tension","tack-free surface","tackifiers","wetting"],"price":32000,"price_min":32000,"price_max":32000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393801814173,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Surface Improvement and Modification, 2nd Edition","public_title":null,"options":["Default Title"],"price":32000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927","options":["Title"],"media":[{"alt":null,"id":27339983683741,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003e\n\u003cp\u003e\u003cspan\u003eISBN 978-1- 77467-024-8 (hardcover)\u003c\/span\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: Jan 2023\u003cbr\u003e\u003c\/span\u003ePages 258+iv\u003cbr data-mce-fragment=\"1\"\u003eFigures 129\u003cbr data-mce-fragment=\"1\"\u003eTables 44\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book covers the comprehensive study of surface improvement and modification, including the introduction of a range of processing methods such as physical, chemical, and electrochemical treatments. The fundamentals of theory, design and application are thoroughly discussed. It offers an authoritative view on surface improvement technology to both researchers and practitioners in various industry fields.\u003cbr\u003e\u003cbr\u003eSurface appearance is one of the most important properties of many products. It must be tailored to the product needs, which are frequently very different in various applications.\u003cbr\u003e\u003cbr\u003eThis book is devoted to additives used for surface modification of materials a technology used in the production and processing of adhesives, appliances, automotive, bookbinding, building and construction, business machines, caulks, cellular phones, coatings, concrete, dental applications, electronics, flooring, footwear, furniture, graphic arts, hot-melt adhesives, hygiene, labels, lacquers, leather, lithographic inks, medicine, nanofluids, nonwovens, optical films, packaging, paints, paper, plastics, pressure-sensitive adhesives, printing inks, rubber, sealants, sporting goods, tapes, varnish, wire and cable, wood and many other materials. This book is the first known published book on this subject. The second edition brings, in addition to the verified content of the first edition, the discussion of the most recent findings and achievements in the field. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHandbook of Surface Improvement and Modification\u003c\/strong\u003e contains information on eleven groups of additives that are commercially available for the improvement and surface modification of manufactured materials. These include additives improving scratch and mar resistance, gloss, surface flattening, tack reduction, tack increase (tackifiers), surface tension reduction and wetting, surface cleaning, dirt pickup resistance, hydrophobization, anti-cratering, and leveling, and coefficient of static friction. They are discussed in separate chapters in the same order as above. \u003cbr\u003e\u003cbr\u003eThe highlights for each chapter are as follows.\u003cbr\u003eScratch and mar resistance: many important influences combined form mechanism of protection; scratch features (ironing, transition, stick-slip, tearing) determination; texture patterning and scratch visibility; self-healing; damage observation on nanoscale; violet laser scanning confocal microscope cross-section profile of scratch damage; silsesquioxanes\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGloss enhancement:\u003c\/strong\u003e magnetic resonance imaging measurements of human brain reactions; instrumental measurements; meso- and micro-scale roughness; hyperbranched resins; durability of gloss\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface matting:\u003c\/strong\u003e powder coatings; roughness formation; dull black coatings; curing rate and flattening; low-gloss soft-touch; anti-glare coatings\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTack-free:\u003c\/strong\u003e abhesion features; instrumental surface tack measurement; surface tension; nature-inspired; completeness of cure; dental applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTackifiers:\u003c\/strong\u003e balance of elastic and viscous properties; structure and origin of rosins; phase structure of tackifying system; compatibility; environmental solutions; pharmaceutical, cosmetics, and medical applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface tension and wetting:\u003c\/strong\u003e bottlebrush polymers; rigid-rod polymeric fiber; superhydrophobicity; superhydrophilicity; surface tension prediction; porosity and morphology; wettability surface gradient; surface free energy; bacterial adhesion; photo-induced hydrophilicity; orthopedic implants; high-speed printing; dry-erase inks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface cleaning and stain inhibition:\u003c\/strong\u003e in-source cleaner regeneration; the negative impact of perfluorinated acids; bio-inspired cleaning methods; hole generation and pollutant decomposition; photocatalytic self-cleaning; anti-graffiti coating, graffiti removal\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDirt pickup resistance:\u003c\/strong\u003e HDPE and carnauba waxes; mark and scuff resistance; decorative paints, wood stains, leather lacquers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWater-repelling:\u003c\/strong\u003e biomimetic solutions; superhydrophobic coatings; self-hydrophobization; superamphiphobic surfaces; chemical functionalization, microtextured surface; building structure protection; protection against ice formation\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAnti-cratering and leveling:\u003c\/strong\u003e thixotropic behavior; nanoparticles; leveling agents; superplasticizers; powder coatings; sag-leveling balance; pinhole prevention\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCoefficient of friction:\u003c\/strong\u003e tribometers; speed effect; dwell time effect; surface patterns and textured surfaces; elemental mapping; capillary bridge; human skin; dangling bonds; polymer brushes; lamellar tribofilm; microspheres, release agents; a film with a consistent coefficient of friction\u003cbr\u003e\u003cbr\u003eA companion book entitled \u003cstrong\u003eDatabook of Surface Modification Additives\u003c\/strong\u003e has also been published. It contains information and data on the additives commercially available to improve materials by the above-listed modifications. Both books do not repeat information. In this book, the focus is on the methods and mechanisms which are known to be responsible for the enhancement of material properties with the use of additives. The readers of these books may also be interested in a recently published book entitled \u003cstrong\u003eSelf-healing Materials\u003c\/strong\u003e. Principles \u0026amp; Technology that helps to understand available options in new technologies of surface self-repair. All three books provide the most comprehensive information on the subject of surface improvement available today.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Scratch and Mar Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e2.1 Methods and mechanisms of protection\u003cbr data-mce-fragment=\"1\"\u003e2.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e2.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Gloss Enhancement\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e3.1 Gloss perception\u003cbr data-mce-fragment=\"1\"\u003e3.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e3.3 Methods and mechanisms of gloss enhancement\u003cbr data-mce-fragment=\"1\"\u003e3.4 Durability of gloss\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Surface Matting (Flattening)\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e4.1 Methods and mechanisms of flattening\u003cbr data-mce-fragment=\"1\"\u003e4.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e4.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Tack-free Surface\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e5.1 Methods and mechanisms of tack reduction\u003cbr data-mce-fragment=\"1\"\u003e5.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e5.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e6 Tackifiers\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e6.1 Methods and mechanisms of tack enhancement\u003cbr data-mce-fragment=\"1\"\u003e6.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e6.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e7 Surface Tension and Wetting\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e7.1 Methods and mechanisms of surface tension reduction\u003cbr data-mce-fragment=\"1\"\u003e7.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e7.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e8 Easy Surface Cleaning and Stain Inhibition\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e8.1 Methods and mechanisms of surface cleaning\u003cbr data-mce-fragment=\"1\"\u003e8.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e8.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e9 Dirt Pickup Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e9.1 Methods and mechanisms of dirt pickup prevention\u003cbr data-mce-fragment=\"1\"\u003e9.2 Additives use\u003cbr data-mce-fragment=\"1\"\u003e9.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e10 Water Repelling (Hydrophobization)\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e10.1 Methods and mechanisms of hydrophobization\u003cbr data-mce-fragment=\"1\"\u003e10.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e10.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e11 Anti-cratering and Leveling\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e11.1 Methods and mechanisms of anti-cratering and leveling\u003cbr data-mce-fragment=\"1\"\u003e11.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e11.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e12 The Coefficient of Friction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e12.1 Methods and mechanisms of improvement of the coefficient of friction\u003cbr data-mce-fragment=\"1\"\u003e12.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e12.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Thermoplas...
$240.00
{"id":11242218116,"title":"Handbook of Thermoplastic Elastomers","handle":"978-08155-1549-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jiri George Drobny \u003cbr\u003eISBN 978-08155-1549-4 \u003cbr\u003e\u003cbr\u003ePages: 736 pp, Hardback, 315 Illustrations\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermoplastic elastomers are one of the most in-demand groups of materials today. Their most attractive feature is that they can be processed like plastics, yet they exhibit properties that are close to vulcanized rubber. Consequently, they can be produced in a highly cost-effective way, using short production cycles, with a considerably reduced energy consumption, and minimum production scrap. Moreover, because they are thermoplastics, production scrap as well as post-consumer scrap can be easily recycled.\u003cbr\u003e\u003cbr\u003eThis unique practical reference work compiles in one place the current working knowledge of chemistry, processing, physical and mechanical properties, as well as applications of thermoplastic elastomers. Because of the great number of thermoplastic elastomers and the variety of chemistries involved, the work is divided into chapters describing individual commercial groups. A significant part of this book is dedicated to processing methods, applications, and material data sheets. Chapters on processing methods and applications are enhanced with ample illustrations. Each chapter includes a comprehensive list of references for a more in-depth study. Other features are a list of current suppliers, ISO nomenclature, an extensive bibliography, a list of recent patents and a glossary of terms. The work is concluded by a chapter on newest developments and trends.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Elasticity and Elastomers \u003cbr\u003e1.2 Thermoplastic Elastomers \u003cbr\u003e\u003cstrong\u003e2 Brief History of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Additives\u003c\/strong\u003e\u003cbr\u003e3.1 Antioxidants \u003cbr\u003e3.2 Light Stabilizers \u003cbr\u003e3.3 Nucleating Agents \u003cbr\u003e3.4 Flame Retardants \u003cbr\u003e3.5 Colorants \u003cbr\u003e3.6 Antistatic Agents \u003cbr\u003e3.7 Slip Agents \u003cbr\u003e3.8 Antiblocking Agents \u003cbr\u003e3.9 Processing Aids \u003cbr\u003e3.10 Fillers and Reinforcements \u003cbr\u003e3.11 Plasticizers \u003cbr\u003e3.12 Other Additives \u003cbr\u003e3.13 Selection of Additives \u003cbr\u003e3.14 Health, Hygiene, and Safety \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4 Processing Methods Applicable to Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Mixing and Blending \u003cbr\u003e4.3 Extrusion \u003cbr\u003e4.4 Injection Molding \u003cbr\u003e4.5 Compression Molding \u003cbr\u003e4.6 Transfer Molding \u003cbr\u003e4.7 Blow Molding \u003cbr\u003e4.8 Rotational Molding \u003cbr\u003e4.9 Foaming of Thermoplastics \u003cbr\u003e4.10 Thermoforming \u003cbr\u003e4.11 Calendering \u003cbr\u003e4.12 Secondary Manufacturing Processes \u003cbr\u003e4.13 General Processing Technology of TPEs \u003cbr\u003e4.14 Process Simulation \u003cbr\u003e4.15 Product Development and Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Styrenic Block Copolymers\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Polystyrene– Polydiene Block Copolymers \u003cbr\u003e5.3 SBCs Synthesized by Carbocationic Polymerization \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Thermoplastic Elastomers Prepared by Dynamic Vulcanization\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 The Dynamic Vulcanization Process \u003cbr\u003e6.3 Properties of Blends Prepared by Dynamic Vulcanization \u003cbr\u003e6.4 Processing and Fabrication of TPVs \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e7 Polyolefin-Based Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Thermoplastic Polyolefin Blends \u003cbr\u003e7.3 Morphology \u003cbr\u003e7.4 Properties of TPOs \u003cbr\u003e7.5 Processing of TPOs \u003cbr\u003e7.6 Painting of TPOs\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Thermoplastic Elastomers Based on Halogen-Containing Polyolefins\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Blends of PVC with Nitrile Rubber (NBR) \u003cbr\u003e8.3 Blends of PVC with Other Elastomers \u003cbr\u003e8.4 Melt-Processable Rubber \u003cbr\u003e8.5 Thermoplastic Fluorocarbon Elastomer \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Thermoplastic Polyurethane Elastomers\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Synthesis of TPUs \u003cbr\u003e9.3 Morphology \u003cbr\u003e9.4 Thermal Transitions \u003cbr\u003e9.5 Properties \u003cbr\u003e9.6 Processing of TPUs \u003cbr\u003e9.7 Blends of TPU with Other Polymers \u003cbr\u003e9.8 Bonding and Welding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Thermoplastic Elastomers Based on Polyamides\u003c\/strong\u003e\u003cbr\u003e10.1 Introduction \u003cbr\u003e10.2 Synthesis \u003cbr\u003e10.3 Morphology \u003cbr\u003e10.4 Structure– Property Relationships \u003cbr\u003e10.5 Physical and Mechanical Properties \u003cbr\u003e10.6 Chemical and Solvent Resistance \u003cbr\u003e10.7 Electrical Properties \u003cbr\u003e10.8 Other Properties \u003cbr\u003e10.9 Compounding \u003cbr\u003e10.10 Processing \u003cbr\u003e10.11 Bonding and Welding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Thermoplastic Polyether Ester Elastomers\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Synthesis \u003cbr\u003e11.3 Morphology \u003cbr\u003e11.4 Properties of Commercial COPEs \u003cbr\u003e11.5 COPE Blends \u003cbr\u003e11.6 Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 Ionomeric Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Synthesis \u003cbr\u003e12.3 Morphology \u003cbr\u003e12.4 Properties and Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 Other Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e13.1 Elastomeric Star Block Copolymers \u003cbr\u003e13.2 TPEs Based on Interpenetrating Networks \u003cbr\u003e13.3 TPE Based on Polyacrylates \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 Thermoplastic Elastomers Based on Recycled Rubber and Plastics\u003c\/strong\u003e\u003cbr\u003e14.1 Introduction \u003cbr\u003e14.2 EPDM Scrap \u003cbr\u003e14.3 Butadiene-acrylonitrile Rubber (NBR) Scrap \u003cbr\u003e14.4 Recycled Rubber \u003cbr\u003e14.5 Waste Latex \u003cbr\u003e14.6 Waste Plastics \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 Applications of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e15.1 Introduction \u003cbr\u003e15.2 Applications for Styrenic TPEs \u003cbr\u003e15.3 Applications of Thermoplastic Vulcanizates (TPVs) and ETPVs \u003cbr\u003e15.4 Applications of Thermoplastic Polyolefin Elastomers (TPOs) \u003cbr\u003e15.5 Applications of Melt-Processable Rubber (MPR) \u003cbr\u003e15.6 Applications of PVC Blends \u003cbr\u003e15.7 Application of TPUs \u003cbr\u003e15.8 Application of Thermoplastic Polyether Ester Elastomers \u003cbr\u003e15.9 Applications of Polyamide TPEs \u003cbr\u003e15.10 Applications of Ionomeric TPEs \u003cbr\u003e15.11 Applications of Other TPEs \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 Recycling of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e16.1 Introduction \u003cbr\u003e16.2 Recycling Methods for Thermoplastic Elastomers (TPEs) \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 Recent Developments and Trends\u003c\/strong\u003e\u003cbr\u003e17.1 Current State \u003cbr\u003e17.2 Drivers for the Growth of TPEs \u003cbr\u003e17.3 Trends in Technical Development \u003cbr\u003e17.4 Other New Developments \u003cbr\u003eAppendix 1: Books, Conferences, Major Review Articles \u003cbr\u003eAppendix 2: Major Suppliers of Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 3: ISO Nomenclature for Thermoplastic Elastomers \u003cbr\u003eAppendix 4: Processing Data Sheets for Commercial Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 5: Technical Data Sheets for Commercial Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 6: Recent TPE Patents \u003cbr\u003eGlossary \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDrobny Polymer Associates, Inc.\u003cbr\u003eJiri George Drobny is a world renowned authority in the field of thermoplastic elastomers. His career spans over 40 years in the rubber and plastic processing industries in worldwide. He has been sought after for his multifaceted contributions to the field as an educator, lecturer, prolific author, and esteemed consultant.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:35-04:00","created_at":"2017-06-22T21:13:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additives","antiblocking","antioxidante","antistatics","book","calendering","compression","elasticity","elastomers","fillers","mixing extrusion","molding","moulding","NBR","p-chemistry","plasticizers","polymer","polyolefines blends","PVC blends","recycling","stabilizers","thermoplastics","TPE","TPU"],"price":24000,"price_min":24000,"price_max":24000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378361668,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thermoplastic Elastomers","public_title":null,"options":["Default Title"],"price":24000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-08155-1549-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-08155-1549-4.jpg?v=1499472490"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-08155-1549-4.jpg?v=1499472490","options":["Title"],"media":[{"alt":null,"id":356343119965,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-08155-1549-4.jpg?v=1499472490"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-08155-1549-4.jpg?v=1499472490","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jiri George Drobny \u003cbr\u003eISBN 978-08155-1549-4 \u003cbr\u003e\u003cbr\u003ePages: 736 pp, Hardback, 315 Illustrations\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermoplastic elastomers are one of the most in-demand groups of materials today. Their most attractive feature is that they can be processed like plastics, yet they exhibit properties that are close to vulcanized rubber. Consequently, they can be produced in a highly cost-effective way, using short production cycles, with a considerably reduced energy consumption, and minimum production scrap. Moreover, because they are thermoplastics, production scrap as well as post-consumer scrap can be easily recycled.\u003cbr\u003e\u003cbr\u003eThis unique practical reference work compiles in one place the current working knowledge of chemistry, processing, physical and mechanical properties, as well as applications of thermoplastic elastomers. Because of the great number of thermoplastic elastomers and the variety of chemistries involved, the work is divided into chapters describing individual commercial groups. A significant part of this book is dedicated to processing methods, applications, and material data sheets. Chapters on processing methods and applications are enhanced with ample illustrations. Each chapter includes a comprehensive list of references for a more in-depth study. Other features are a list of current suppliers, ISO nomenclature, an extensive bibliography, a list of recent patents and a glossary of terms. The work is concluded by a chapter on newest developments and trends.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Elasticity and Elastomers \u003cbr\u003e1.2 Thermoplastic Elastomers \u003cbr\u003e\u003cstrong\u003e2 Brief History of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Additives\u003c\/strong\u003e\u003cbr\u003e3.1 Antioxidants \u003cbr\u003e3.2 Light Stabilizers \u003cbr\u003e3.3 Nucleating Agents \u003cbr\u003e3.4 Flame Retardants \u003cbr\u003e3.5 Colorants \u003cbr\u003e3.6 Antistatic Agents \u003cbr\u003e3.7 Slip Agents \u003cbr\u003e3.8 Antiblocking Agents \u003cbr\u003e3.9 Processing Aids \u003cbr\u003e3.10 Fillers and Reinforcements \u003cbr\u003e3.11 Plasticizers \u003cbr\u003e3.12 Other Additives \u003cbr\u003e3.13 Selection of Additives \u003cbr\u003e3.14 Health, Hygiene, and Safety \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4 Processing Methods Applicable to Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Mixing and Blending \u003cbr\u003e4.3 Extrusion \u003cbr\u003e4.4 Injection Molding \u003cbr\u003e4.5 Compression Molding \u003cbr\u003e4.6 Transfer Molding \u003cbr\u003e4.7 Blow Molding \u003cbr\u003e4.8 Rotational Molding \u003cbr\u003e4.9 Foaming of Thermoplastics \u003cbr\u003e4.10 Thermoforming \u003cbr\u003e4.11 Calendering \u003cbr\u003e4.12 Secondary Manufacturing Processes \u003cbr\u003e4.13 General Processing Technology of TPEs \u003cbr\u003e4.14 Process Simulation \u003cbr\u003e4.15 Product Development and Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Styrenic Block Copolymers\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Polystyrene– Polydiene Block Copolymers \u003cbr\u003e5.3 SBCs Synthesized by Carbocationic Polymerization \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Thermoplastic Elastomers Prepared by Dynamic Vulcanization\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 The Dynamic Vulcanization Process \u003cbr\u003e6.3 Properties of Blends Prepared by Dynamic Vulcanization \u003cbr\u003e6.4 Processing and Fabrication of TPVs \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e7 Polyolefin-Based Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Thermoplastic Polyolefin Blends \u003cbr\u003e7.3 Morphology \u003cbr\u003e7.4 Properties of TPOs \u003cbr\u003e7.5 Processing of TPOs \u003cbr\u003e7.6 Painting of TPOs\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Thermoplastic Elastomers Based on Halogen-Containing Polyolefins\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Blends of PVC with Nitrile Rubber (NBR) \u003cbr\u003e8.3 Blends of PVC with Other Elastomers \u003cbr\u003e8.4 Melt-Processable Rubber \u003cbr\u003e8.5 Thermoplastic Fluorocarbon Elastomer \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Thermoplastic Polyurethane Elastomers\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Synthesis of TPUs \u003cbr\u003e9.3 Morphology \u003cbr\u003e9.4 Thermal Transitions \u003cbr\u003e9.5 Properties \u003cbr\u003e9.6 Processing of TPUs \u003cbr\u003e9.7 Blends of TPU with Other Polymers \u003cbr\u003e9.8 Bonding and Welding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Thermoplastic Elastomers Based on Polyamides\u003c\/strong\u003e\u003cbr\u003e10.1 Introduction \u003cbr\u003e10.2 Synthesis \u003cbr\u003e10.3 Morphology \u003cbr\u003e10.4 Structure– Property Relationships \u003cbr\u003e10.5 Physical and Mechanical Properties \u003cbr\u003e10.6 Chemical and Solvent Resistance \u003cbr\u003e10.7 Electrical Properties \u003cbr\u003e10.8 Other Properties \u003cbr\u003e10.9 Compounding \u003cbr\u003e10.10 Processing \u003cbr\u003e10.11 Bonding and Welding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Thermoplastic Polyether Ester Elastomers\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Synthesis \u003cbr\u003e11.3 Morphology \u003cbr\u003e11.4 Properties of Commercial COPEs \u003cbr\u003e11.5 COPE Blends \u003cbr\u003e11.6 Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 Ionomeric Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Synthesis \u003cbr\u003e12.3 Morphology \u003cbr\u003e12.4 Properties and Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 Other Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e13.1 Elastomeric Star Block Copolymers \u003cbr\u003e13.2 TPEs Based on Interpenetrating Networks \u003cbr\u003e13.3 TPE Based on Polyacrylates \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 Thermoplastic Elastomers Based on Recycled Rubber and Plastics\u003c\/strong\u003e\u003cbr\u003e14.1 Introduction \u003cbr\u003e14.2 EPDM Scrap \u003cbr\u003e14.3 Butadiene-acrylonitrile Rubber (NBR) Scrap \u003cbr\u003e14.4 Recycled Rubber \u003cbr\u003e14.5 Waste Latex \u003cbr\u003e14.6 Waste Plastics \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 Applications of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e15.1 Introduction \u003cbr\u003e15.2 Applications for Styrenic TPEs \u003cbr\u003e15.3 Applications of Thermoplastic Vulcanizates (TPVs) and ETPVs \u003cbr\u003e15.4 Applications of Thermoplastic Polyolefin Elastomers (TPOs) \u003cbr\u003e15.5 Applications of Melt-Processable Rubber (MPR) \u003cbr\u003e15.6 Applications of PVC Blends \u003cbr\u003e15.7 Application of TPUs \u003cbr\u003e15.8 Application of Thermoplastic Polyether Ester Elastomers \u003cbr\u003e15.9 Applications of Polyamide TPEs \u003cbr\u003e15.10 Applications of Ionomeric TPEs \u003cbr\u003e15.11 Applications of Other TPEs \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 Recycling of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e16.1 Introduction \u003cbr\u003e16.2 Recycling Methods for Thermoplastic Elastomers (TPEs) \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 Recent Developments and Trends\u003c\/strong\u003e\u003cbr\u003e17.1 Current State \u003cbr\u003e17.2 Drivers for the Growth of TPEs \u003cbr\u003e17.3 Trends in Technical Development \u003cbr\u003e17.4 Other New Developments \u003cbr\u003eAppendix 1: Books, Conferences, Major Review Articles \u003cbr\u003eAppendix 2: Major Suppliers of Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 3: ISO Nomenclature for Thermoplastic Elastomers \u003cbr\u003eAppendix 4: Processing Data Sheets for Commercial Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 5: Technical Data Sheets for Commercial Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 6: Recent TPE Patents \u003cbr\u003eGlossary \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDrobny Polymer Associates, Inc.\u003cbr\u003eJiri George Drobny is a world renowned authority in the field of thermoplastic elastomers. His career spans over 40 years in the rubber and plastic processing industries in worldwide. He has been sought after for his multifaceted contributions to the field as an educator, lecturer, prolific author, and esteemed consultant.\u003cbr\u003e\u003cbr\u003e"}
Handbook of Thermoset ...
$145.00
{"id":11242228548,"title":"Handbook of Thermoset Plastics, Second Edition","handle":"0-8155-1421-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sidney H. Goodman \u003cbr\u003eISBN 0-8155-1421-2 \u003cbr\u003e\u003cbr\u003ePages: 525, Figures: 160, Tables: 165\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Handbook of Thermoset Plastics is specifically aimed to help engineers, chemists, physicists, and students who need general, as well as technical, details concerning everything from historical data and terminology to highly specific curing and staging data. It is written so that both non-specialists and specialists can follow along easily while making available in-depth data for those who wish to expand their knowledge into new areas of expertise.\u003cbr\u003eThe thermoset plastics technology has increasingly become important to designers and users who work in specialty applications. Everything from toys to medical devices, and from automotive to sports and recreation products, are being manufactured using thermoset plastics. An increased understanding of thermoset plastics technology and processes has broadened their use exponentially over the last few years. In fact, the importance and contributions of unsaturated polyesters, urethanes, and epoxy thermosets have driven unprecedented sales and production figures that approach the definition of commodity materials.\u003cbr\u003eAs a survey of the technology, the handbook provides the reader with the practical implications of crosslinking, as well as establishing relationships between time, temperature, and mass often ignored in the general overviews allotted to thermoset plastics in other handbooks. The Handbook of Thermoset Plastics offers the complete collection of general and technical details available on this important subject.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction (history, definitions, crosslinking and curing, the influence of time, temperature, and mass, shelflife and pot life, curing, staging, stoichiometric considerations, prepolymerization and adducting). \u003cbr\u003e2. Phenol-formaldehyde (introduction, raw materials, resinification (production) of phenol-formaldehyde resins, phenolic resins in friction materials, phenolic resins trade names and manufacturers).\u003cbr\u003e3. Amino and furan resins (introduction, raw materials, amino resins, furan resins, properties of amino and furan resins, trade names).\u003cbr\u003e4. Unsaturated polyester and vinyl ester resins (unsaturated polyesters, vinyl ester resins, compounding of unsaturated polyester and vinyl ester resins, applicable manufacturing processes, recent developments, trade names and manufacturers of unsaturated polyester and vinyl esters).\u003cbr\u003e5. Allyls (introduction, chemistry, polymerization and processing, formulation, properties, applications).\u003cbr\u003e6. Epoxy resins (introduction, resin types, curatives and crosslinking reactions, alkaline curing agents, acid curing agents, formulation principles, properties, applications).\u003cbr\u003e7. Thermoset polyurethanes (introduction, environmental regulation and its impact on polyurethane technology, modification of amines for reaction with isocyanates, recent developments, amines, water-borne polyurethanes, catalysts, diisocyanates).\u003cbr\u003e8. High performance polyimidides and related thermoset polymers; past, present development, and future research (historical perspective, polyimides from condensation reactions, thermoplastic polyimides, addition-curable polyimides and other polymers, nadimide-terminated thermosetting polyimides, maleimide-terminated thermosetting polyimides, cyanate-terminated thermosetting polymers, high temperature thermosetting resins based on phthalonitrile, acetylene-terminated thermosetting polymers, propargyl-terminated oligomers, phenylethynyl-terminated thermosetting polymers, applicability of thermoset isoimides\/imides to resin transfer molding processing, application of high-performance polymers to improve galvanic corrosion of imide-based compounds, future demands in ultrahigh temperature resistant polymers, chemical structures suitable for ultrahigh temperature use, novel cross-linking mechanisms for stability at ultrahigh temperatures, polymer-ceramic materials).\u003cbr\u003e9. Silicones (introduction, silicone fluids, silicone rubbers, room-temperature-vulcanizing silicones, heat cured systems, silicone laminates, government specifications for silicone products).\u003cbr\u003e10. Crosslinked thermoplastics (introduction, crosslinking of thermoplastics, effects of crosslinking of the polymer, chemical crosslinking, rotational molding, post-irradiation effects, acrylates, trade names).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nSidney H. Goodman is a Senior Staff\/Principal Engineer at the Components \u0026amp; Materials Center, Hughes Aircraft Co., and a Senior Lecturer in the Department of Chemical Engineering, University of Southern California. He received his M.S. in Chemical Engineering from USC in 1970. He is a senior member of the Society of Plastics Engineers (SPE), a member of the Society for the Advancement of Materials and Process Engineers (SAMPE). He has published 12 papers and issued 1 patent in his twenty-plus years of industrial plastics experience.","published_at":"2017-06-22T21:14:08-04:00","created_at":"2017-06-22T21:14:08-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","acrylic polymers","book","crosslinked","imides","maleimide-terminated","molding","moulding","oligomers","p-chemistry","phthalonitrile","plastics","polyimides","polymer","product properties environmental\/safety issues each technology area. These papers are not contained main conference book. RAPRA Business Machines Appliances","propargyl","resines","silicones","thermoplastics","thermoset plastics"],"price":14500,"price_min":14500,"price_max":14500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378397060,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thermoset Plastics, Second Edition","public_title":null,"options":["Default Title"],"price":14500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"0-8155-1421-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sidney H. Goodman \u003cbr\u003eISBN 0-8155-1421-2 \u003cbr\u003e\u003cbr\u003ePages: 525, Figures: 160, Tables: 165\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Handbook of Thermoset Plastics is specifically aimed to help engineers, chemists, physicists, and students who need general, as well as technical, details concerning everything from historical data and terminology to highly specific curing and staging data. It is written so that both non-specialists and specialists can follow along easily while making available in-depth data for those who wish to expand their knowledge into new areas of expertise.\u003cbr\u003eThe thermoset plastics technology has increasingly become important to designers and users who work in specialty applications. Everything from toys to medical devices, and from automotive to sports and recreation products, are being manufactured using thermoset plastics. An increased understanding of thermoset plastics technology and processes has broadened their use exponentially over the last few years. In fact, the importance and contributions of unsaturated polyesters, urethanes, and epoxy thermosets have driven unprecedented sales and production figures that approach the definition of commodity materials.\u003cbr\u003eAs a survey of the technology, the handbook provides the reader with the practical implications of crosslinking, as well as establishing relationships between time, temperature, and mass often ignored in the general overviews allotted to thermoset plastics in other handbooks. The Handbook of Thermoset Plastics offers the complete collection of general and technical details available on this important subject.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction (history, definitions, crosslinking and curing, the influence of time, temperature, and mass, shelflife and pot life, curing, staging, stoichiometric considerations, prepolymerization and adducting). \u003cbr\u003e2. Phenol-formaldehyde (introduction, raw materials, resinification (production) of phenol-formaldehyde resins, phenolic resins in friction materials, phenolic resins trade names and manufacturers).\u003cbr\u003e3. Amino and furan resins (introduction, raw materials, amino resins, furan resins, properties of amino and furan resins, trade names).\u003cbr\u003e4. Unsaturated polyester and vinyl ester resins (unsaturated polyesters, vinyl ester resins, compounding of unsaturated polyester and vinyl ester resins, applicable manufacturing processes, recent developments, trade names and manufacturers of unsaturated polyester and vinyl esters).\u003cbr\u003e5. Allyls (introduction, chemistry, polymerization and processing, formulation, properties, applications).\u003cbr\u003e6. Epoxy resins (introduction, resin types, curatives and crosslinking reactions, alkaline curing agents, acid curing agents, formulation principles, properties, applications).\u003cbr\u003e7. Thermoset polyurethanes (introduction, environmental regulation and its impact on polyurethane technology, modification of amines for reaction with isocyanates, recent developments, amines, water-borne polyurethanes, catalysts, diisocyanates).\u003cbr\u003e8. High performance polyimidides and related thermoset polymers; past, present development, and future research (historical perspective, polyimides from condensation reactions, thermoplastic polyimides, addition-curable polyimides and other polymers, nadimide-terminated thermosetting polyimides, maleimide-terminated thermosetting polyimides, cyanate-terminated thermosetting polymers, high temperature thermosetting resins based on phthalonitrile, acetylene-terminated thermosetting polymers, propargyl-terminated oligomers, phenylethynyl-terminated thermosetting polymers, applicability of thermoset isoimides\/imides to resin transfer molding processing, application of high-performance polymers to improve galvanic corrosion of imide-based compounds, future demands in ultrahigh temperature resistant polymers, chemical structures suitable for ultrahigh temperature use, novel cross-linking mechanisms for stability at ultrahigh temperatures, polymer-ceramic materials).\u003cbr\u003e9. Silicones (introduction, silicone fluids, silicone rubbers, room-temperature-vulcanizing silicones, heat cured systems, silicone laminates, government specifications for silicone products).\u003cbr\u003e10. Crosslinked thermoplastics (introduction, crosslinking of thermoplastics, effects of crosslinking of the polymer, chemical crosslinking, rotational molding, post-irradiation effects, acrylates, trade names).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nSidney H. Goodman is a Senior Staff\/Principal Engineer at the Components \u0026amp; Materials Center, Hughes Aircraft Co., and a Senior Lecturer in the Department of Chemical Engineering, University of Southern California. He received his M.S. in Chemical Engineering from USC in 1970. He is a senior member of the Society of Plastics Engineers (SPE), a member of the Society for the Advancement of Materials and Process Engineers (SAMPE). He has published 12 papers and issued 1 patent in his twenty-plus years of industrial plastics experience."}
Handbook of Thin Film ...
$199.00
{"id":11242203780,"title":"Handbook of Thin Film Deposition, 3rd Edition","handle":"9781437778731","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K Seshan \u003cbr\u003eISBN 9781437778731 \u003cbr\u003e\u003cbr\u003ePages: 408\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- A practical survey of thin film technologies aimed at engineers and managers involved in all stages of the process: design, fabrication, quality assurance and applications.\u003cbr\u003e\u003cbr\u003e- Covers core processes and applications in the semiconductor industry and new developments in the photovoltaic and optical thin film industries.\u003cbr\u003e\u003cbr\u003e- The new edition takes covers the transition taking place in the semiconductor world from Al\/SiO2 to copper interconnects with low-k dielectrics.\u003cbr\u003e\u003cbr\u003e- Written by acknowledged industry experts from key companies in the semiconductor industry including Intel and IBM.\u003cbr\u003e\u003cbr\u003e- Foreword by Gordon E. Moore, co-founder of Intel and formulator of the renowned ‘Moore’s Law’ relating to the technology development cycle in the semiconductor industry.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe Handbook of Thin Film Deposition is a comprehensive reference focusing on thin film technologies and applications used in the semiconductor industry and the closely related areas of thin film deposition, thin film micro properties, photovoltaic solar energy applications, new materials for memory applications and methods for thin film optical processes. In a major restructuring, this edition of the handbook lays the foundations for an up-to-date treatment of lithography, contamination and yield management, and reliability of thin films. The established physical and chemical deposition processes and technologies are then covered, the last section of the book being devoted to more recent technological developments such as microelectromechanical systems, photovoltaic applications, digital cameras, CCD arrays, and optical thin films.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nForeword to the Third Edition\u003cbr\u003eScaling of Devices and Thermal Scaling\u003cbr\u003ePVD - Special Topics\u003cbr\u003eCVD New Developments\u003cbr\u003eCVD Equipment\u003cbr\u003eCMP Method and Practice\u003cbr\u003eProcess Technology for Copper Interconnects\u003cbr\u003eOptical Thin Films\u003cbr\u003eThin Films in Photovoltaics\u003cbr\u003eThin Films in Memory Applications\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eKrishna Seshan was formerly Assistant Professor in Materials Science at the University of Arizona and has extensive professional experience as a technologist with both the IBM and Intel Corporations.\u003c\/div\u003e","published_at":"2017-06-22T21:12:49-04:00","created_at":"2017-06-22T21:12:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","p-applications","polymer","quality assurance","technologies and applications in the semiconductors","thin films"],"price":19900,"price_min":19900,"price_max":19900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316612,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thin Film Deposition, 3rd Edition","public_title":null,"options":["Default Title"],"price":19900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781437778731","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781437778731.jpg?v=1499472868"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781437778731.jpg?v=1499472868","options":["Title"],"media":[{"alt":null,"id":356343414877,"position":1,"preview_image":{"aspect_ratio":0.629,"height":499,"width":314,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781437778731.jpg?v=1499472868"},"aspect_ratio":0.629,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781437778731.jpg?v=1499472868","width":314}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K Seshan \u003cbr\u003eISBN 9781437778731 \u003cbr\u003e\u003cbr\u003ePages: 408\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- A practical survey of thin film technologies aimed at engineers and managers involved in all stages of the process: design, fabrication, quality assurance and applications.\u003cbr\u003e\u003cbr\u003e- Covers core processes and applications in the semiconductor industry and new developments in the photovoltaic and optical thin film industries.\u003cbr\u003e\u003cbr\u003e- The new edition takes covers the transition taking place in the semiconductor world from Al\/SiO2 to copper interconnects with low-k dielectrics.\u003cbr\u003e\u003cbr\u003e- Written by acknowledged industry experts from key companies in the semiconductor industry including Intel and IBM.\u003cbr\u003e\u003cbr\u003e- Foreword by Gordon E. Moore, co-founder of Intel and formulator of the renowned ‘Moore’s Law’ relating to the technology development cycle in the semiconductor industry.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe Handbook of Thin Film Deposition is a comprehensive reference focusing on thin film technologies and applications used in the semiconductor industry and the closely related areas of thin film deposition, thin film micro properties, photovoltaic solar energy applications, new materials for memory applications and methods for thin film optical processes. In a major restructuring, this edition of the handbook lays the foundations for an up-to-date treatment of lithography, contamination and yield management, and reliability of thin films. The established physical and chemical deposition processes and technologies are then covered, the last section of the book being devoted to more recent technological developments such as microelectromechanical systems, photovoltaic applications, digital cameras, CCD arrays, and optical thin films.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nForeword to the Third Edition\u003cbr\u003eScaling of Devices and Thermal Scaling\u003cbr\u003ePVD - Special Topics\u003cbr\u003eCVD New Developments\u003cbr\u003eCVD Equipment\u003cbr\u003eCMP Method and Practice\u003cbr\u003eProcess Technology for Copper Interconnects\u003cbr\u003eOptical Thin Films\u003cbr\u003eThin Films in Photovoltaics\u003cbr\u003eThin Films in Memory Applications\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eKrishna Seshan was formerly Assistant Professor in Materials Science at the University of Arizona and has extensive professional experience as a technologist with both the IBM and Intel Corporations.\u003c\/div\u003e"}
Handbook of UV Degrada...
$275.00
{"id":11242220356,"title":"Handbook of UV Degradation and Stabilization","handle":"978-1-895198-46-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-895198-46-1 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eFirst Edition\u003cbr\u003ePages: 354\u003cbr\u003eChapters: 12\u003cbr\u003eFigures: 94\u003cbr\u003eTables: 232\u003c\/p\u003e\n\u003cp\u003eHardcover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book, the first monograph fully devoted to UV degradation and stabilization ever published in the English language, has 12 chapters, each discussing different aspect of UV related phenomena. In the introduction, the existing literature has been reviewed to find out how plants, animals, and humans protect themselves against UV radiation, and which lessons were already applied to the protection of man-made materials and final products, and which mechanisms work in living things but are not in the use of technical products.\n\u003cp\u003e\u003cbr\u003ePhotophysics is discussed in the second chapter to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process but these effects are also combined with photochemical properties of stabilizers and their mechanisms of stabilization, and this subject is discussed in Chapter 3.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a set of data prepared according to a systematic outline as listed in the Table of Contents. Stability of UV stabilizers, important for predicting the lifetime of their protection is discussed in Chapter 5. Different reasons of instability are included in the evaluation.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. 50 polymers and rubbers are discussed in different sections of Chapter 7 and 40 groups of final products which use a majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential in further understanding of UV degradation and stabilization.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and public using the products (Chapter 12).\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003cbr\u003e\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e2. Photophysics and photochemistry\u003cbr\u003e\u003cbr\u003e3. Mechanisms of UV stabilization\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e3.1. Absorption, reflection, and refraction\u003cbr\u003e\u003cbr\u003e3.2. Energy dissipation\u003cbr\u003e\u003cbr\u003e3.3. Radical deactivation and retarding propagation of reaction chain\u003cbr\u003e\u003cbr\u003e3.4. Singlet oxygen quenching\u003cbr\u003e\u003cbr\u003e3.5. Degree of hindrance\u003cbr\u003e\u003cbr\u003e3.6. Antioxidation\u003cbr\u003e\u003cbr\u003e3.7. Peroxide and hydroperoxide decomposition\u003cbr\u003e\u003cbr\u003e3.8. Acid neutralization\u003cbr\u003e\u003cbr\u003e3.9. Repairing defects caused by degradation\u003cbr\u003e\u003cbr\u003e3.10. Synergism\u003cbr\u003e\u003cbr\u003e3.11. Antagonism\u003cbr\u003e\u003cbr\u003e3.12. Effect of physical properties\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. UV stabilizers \u003c\/strong\u003e(chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e\u003cbr\u003e4.1. Organic UV absorbers\u003cbr\u003e\u003cbr\u003e4.2. Inorganic materials\u003cbr\u003e\u003cbr\u003e4.3. Particulate UV screeners\u003cbr\u003e\u003cbr\u003e4.4. Fiber\u003cbr\u003e\u003cbr\u003e4.5. Hindered amine stabilizers\u003cbr\u003e\u003cbr\u003e4.6. Phenolic antioxidants\u003cbr\u003e\u003cbr\u003e4.7. Phosphites \u0026amp; phosphonites\u003cbr\u003e\u003cbr\u003e4.8. Thiosynergists\u003cbr\u003e\u003cbr\u003e4.9. Amines\u003cbr\u003e\u003cbr\u003e4.10. Quencher\u003cbr\u003e\u003cbr\u003e4.11. Optical brighteners\u003cbr\u003e\u003cbr\u003e4.12. Synergistic mixtures of stabilizers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Stability of UV stabilizers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e5.1. UV degradation\u003cbr\u003e\u003cbr\u003e5.2. Electronic structure\u003cbr\u003e\u003cbr\u003e5.3. Chemical reactivity\u003cbr\u003e\u003cbr\u003e5.4. Volatility\u003cbr\u003e\u003cbr\u003e5.5. Effect of temperature\u003cbr\u003e\u003cbr\u003e5.6. Oxygen partial pressure\u003cbr\u003e\u003cbr\u003e5.7. Pollutants\u003cbr\u003e\u003cbr\u003e5.8. Acid neutralization\u003cbr\u003e\u003cbr\u003e5.9. Radical attack\u003cbr\u003e\u003cbr\u003e5.10. Diffusion and migration\u003cbr\u003e\u003cbr\u003e5.11. Grafting\u003cbr\u003e\u003cbr\u003e5.12. Polymerization and copolymerization\u003cbr\u003e\u003cbr\u003e5.13. Effect of pesticides\u003cbr\u003e\u003cbr\u003e5.14. Complexation and ligand formation\u003cbr\u003e\u003cbr\u003e5.15. Excited state interactions\u003cbr\u003e\u003cbr\u003e5.16. Sol-gel protective coatings\u003cbr\u003e\u003cbr\u003e5.17. Interaction with pigments\u003cbr\u003e\u003cbr\u003e5.18. Gas fading\u003cbr\u003e\u003cbr\u003e5.19. Effect of stress\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Principles of stabilizer selection\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e6.1. Polarity\u003cbr\u003e\u003cbr\u003e6.2. Acid\/base\u003cbr\u003e\u003cbr\u003e6.3. Hydrogen bonding\u003cbr\u003e\u003cbr\u003e6.4. Process temperature\u003cbr\u003e\u003cbr\u003e6.5. Color\u003cbr\u003e\u003cbr\u003e6.6. Part thickness\u003cbr\u003e\u003cbr\u003e6.7. Volatility, diffusion, migration, and extraction\u003cbr\u003e\u003cbr\u003e6.8. Food contact\u003cbr\u003e\u003cbr\u003e6.9. Thermal stabilizing performance\u003cbr\u003e\u003cbr\u003e6.10. State\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1. Polymers\u003cbr\u003e\u003cbr\u003e7.1.1. Acrylonitrile-styrene-acrylate\u003cbr\u003e\u003cbr\u003e7.1.2. Acrylonitrile-butadiene-styrene\u003cbr\u003e\u003cbr\u003e7.1.3. Acrylic resins\u003cbr\u003e\u003cbr\u003e7.1.4. Alkyd resins\u003cbr\u003e\u003cbr\u003e7.1.5. Cellulose-based polymers\u003cbr\u003e\u003cbr\u003e7.1.6. Chlorosulfonated polyethylene\u003cbr\u003e\u003cbr\u003e7.1.7. Copolymers\u003cbr\u003e\u003cbr\u003e7.1.8. Epoxy resin\u003cbr\u003e\u003cbr\u003e7.1.9. Ethylene-propylene copolymer\u003cbr\u003e\u003cbr\u003e7.1.10. Ethylene-propylene diene monomer\u003cbr\u003e\u003cbr\u003e7.1.11. Ethylene-tetrafluoroethylene copolymer\u003cbr\u003e\u003cbr\u003e7.1.12. Ethylene-vinyl acetate copolymer\u003cbr\u003e\u003cbr\u003e7.1.13. Fluorinated ethyl-propylene\u003cbr\u003e\u003cbr\u003e7.1.14. Polyacrylamide\u003cbr\u003e\u003cbr\u003e7.1.15. Polyacrylonitrile\u003cbr\u003e\u003cbr\u003e7.1.16. Polyalkylfluorene\u003cbr\u003e\u003cbr\u003e7.1.17. Polyamide\u003cbr\u003e\u003cbr\u003e7.1.18. Polyaniline\u003cbr\u003e\u003cbr\u003e7.1.19. Polyarylate\u003cbr\u003e\u003cbr\u003e7.1.20. Polybutylthiophene\u003cbr\u003e\u003cbr\u003e7.1.21. Polycarbonate\u003cbr\u003e\u003cbr\u003e7.1.22. Polyesters\u003cbr\u003e\u003cbr\u003e7.1.23. Polyetherimide\u003cbr\u003e\u003cbr\u003e7.1.24. Polyethylene\u003cbr\u003e\u003cbr\u003e7.1.25. Polyfluorenes\u003cbr\u003e\u003cbr\u003e7.1.26. Polyimide\u003cbr\u003e\u003cbr\u003e7.1.27. Poly(L-lactic acid)\u003cbr\u003e\u003cbr\u003e7.1.28. Polymethylmethacrylate\u003cbr\u003e\u003cbr\u003e7.1.29. Polymethylpentene\u003cbr\u003e\u003cbr\u003e7.1.30. Polyoxymethylene\u003cbr\u003e\u003cbr\u003e7.1.31. Polyphthalamide\u003cbr\u003e\u003cbr\u003e7.1.32. Poly(phenylene oxide)\u003cbr\u003e\u003cbr\u003e7.1.33. Poly(p-phenylene sulfide)\u003cbr\u003e\u003cbr\u003e7.1.34. Polypropylene\u003cbr\u003e\u003cbr\u003e7.1.35. Polypyrrole\u003cbr\u003e\u003cbr\u003e7.1.36. Polystyrene\u003cbr\u003e\u003cbr\u003e7.1.37. Polytetrafluoroethylene\u003cbr\u003e\u003cbr\u003e7.1.38. Polyurethane\u003cbr\u003e\u003cbr\u003e7.1.39. Poly(vinyl chloride)\u003cbr\u003e\u003cbr\u003e7.1.40. Poly(vinyl fluoride)\u003cbr\u003e\u003cbr\u003e7.1.41. Poly(vinylidene fluoride)\u003cbr\u003e\u003cbr\u003e7.1.42. Silicone\u003cbr\u003e\u003cbr\u003e7.1.43. Styrene-acrylonitrile\u003cbr\u003e\u003cbr\u003e7.1.44. Vinyl ester resin\u003cbr\u003e\u003cbr\u003e7.2. Rubber\u003cbr\u003e\u003cbr\u003e7.2.1. Polybutadiene\u003cbr\u003e\u003cbr\u003e7.2.2. Polychloroprene\u003cbr\u003e\u003cbr\u003e7.2.3. Polyisoprene\u003cbr\u003e\u003cbr\u003e7.2.4. Polyisobutylene\u003cbr\u003e\u003cbr\u003e7.2.5. Styrene-butadiene rubber\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003e8.1. Adhesives\u003cbr\u003e\u003cbr\u003e8.2. Aerospace\u003cbr\u003e\u003cbr\u003e8.3. Agriculture\u003cbr\u003e\u003cbr\u003e8.4. Automotive\u003cbr\u003e\u003cbr\u003e8.5. Biology\u003cbr\u003e\u003cbr\u003e8.6. Coated fabrics\u003cbr\u003e\u003cbr\u003e8.7. Coatings and paints\u003cbr\u003e\u003cbr\u003e8.8. Coil-coated materials\u003cbr\u003e\u003cbr\u003e8.9. Cosmetics\u003cbr\u003e\u003cbr\u003e8.10. Dental\u003cbr\u003e\u003cbr\u003e8.11. Door and window profiles\u003cbr\u003e\u003cbr\u003e8.12. Electrical and electronic applications\u003cbr\u003e\u003cbr\u003e8.13. Fibers and yarns\u003cbr\u003e\u003cbr\u003e8.14. Films\u003cbr\u003e\u003cbr\u003e8.15. Fishing net\u003cbr\u003e\u003cbr\u003e8.16. Foams\u003cbr\u003e\u003cbr\u003e8.17. Food\u003cbr\u003e\u003cbr\u003e8.18. Furniture\u003cbr\u003e\u003cbr\u003e8.19. Geosynthetics\u003cbr\u003e\u003cbr\u003e8.20. Glazing\u003cbr\u003e\u003cbr\u003e8.21. Medical supplies\u003cbr\u003e\u003cbr\u003e8.22. Optical fibers\u003cbr\u003e\u003cbr\u003e8.23. Packaging\u003cbr\u003e\u003cbr\u003e8.24. Pharmaceutical\u003cbr\u003e\u003cbr\u003e8.25. Pipes\u003cbr\u003e\u003cbr\u003e8.26. Pulp and paper\u003cbr\u003e\u003cbr\u003e8.27. Railway materials\u003cbr\u003e\u003cbr\u003e8.28. Rotational molded products\u003cbr\u003e\u003cbr\u003e8.29. Roofing materials\u003cbr\u003e\u003cbr\u003e8.30. Sealants\u003cbr\u003e\u003cbr\u003e8.31. Sensors and switches\u003cbr\u003e\u003cbr\u003e8.32. Sheets\u003cbr\u003e\u003cbr\u003e8.33. Siding\u003cbr\u003e\u003cbr\u003e8.34. Solar cells and solar energy applications\u003cbr\u003e\u003cbr\u003e8.35. Sporting equipment\u003cbr\u003e\u003cbr\u003e8.36. Tapes\u003cbr\u003e\u003cbr\u003e8.37. Textiles\u003cbr\u003e\u003cbr\u003e8.38. Windshield\u003cbr\u003e\u003cbr\u003e8.39. Wire and cable\u003cbr\u003e\u003cbr\u003e8.40. Wood\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9 Focus on technology - Sunscreen \u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eChristine Mendrok-Edinger, DSM Nutritional Products Ltd., Switzerland\u003cbr\u003e\u003cbr\u003e9.1 Introduction and history of sunscreens\u003cbr\u003e\u003cbr\u003e9.2 Photoreactions of UV absorbers in cosmetic sunscreens\u003cbr\u003e\u003cbr\u003e9.3 Ways of photostabilization in sunscreen products\u003cbr\u003e\u003cbr\u003e9.4 Formulating for photostability\u003cbr\u003e\u003cbr\u003e9.5 Summary\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 UV stabilizers and other components of formulation \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Analytical methods in UV degradation and stabilization studies\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e11.1 Quality control of UV stabilizers\u003cbr\u003e\u003cbr\u003e11.2 Lifetime prediction\u003cbr\u003e\u003cbr\u003e11.3 Molecular weight\u003cbr\u003e\u003cbr\u003e11.4 Color change\u003cbr\u003e\u003cbr\u003e11.5 Mechanical properties\u003cbr\u003e\u003cbr\u003e11.6 Microscopy\u003cbr\u003e\u003cbr\u003e11.7 Impedance measurement\u003cbr\u003e\u003cbr\u003e11.8 Surface roughness\u003cbr\u003e\u003cbr\u003e11.9 Imaging techniques\u003cbr\u003e\u003cbr\u003e11.10 Chromatography\u003cbr\u003e\u003cbr\u003e11.11 Spectroscopy\u003cbr\u003e\u003cbr\u003e11.11.1 ESR\u003cbr\u003e\u003cbr\u003e11.11.2 DART-MS\u003cbr\u003e\u003cbr\u003e11.11.3 FTIR\u003cbr\u003e\u003cbr\u003e11.11.4 NMR\u003cbr\u003e\u003cbr\u003e11.11.5 UV\u003cbr\u003e\u003cbr\u003e11.12 Hydroperoxide determination\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 UV stabilizers - health \u0026amp; safety\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e12.1 Toxic substance control\u003cbr\u003e\u003cbr\u003e12.2 Carcinogenic effect\u003cbr\u003e\u003cbr\u003e12.3 Workplace exposure limits\u003cbr\u003e\u003cbr\u003e12.4 Food regulatory acts\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 16 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization, Handbook of UV Degradation and Stabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:42-04:00","created_at":"2017-06-22T21:13:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","mechanisms of UV degradation","mechanisms of UV stabilization","p-properties","photophysics and photochemistry","poly","polymer","PVC degradation","sustainability of polymers materials","thermal stabilizing performance","uv degradation","UV stabilizers","UV stabilizers health and safety","weathering"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371908,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of UV Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-46-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-46-1.jpg?v=1503341840"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-46-1.jpg?v=1503341840","options":["Title"],"media":[{"alt":null,"id":407359193181,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-46-1.jpg?v=1503341840"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-46-1.jpg?v=1503341840","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-895198-46-1 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eFirst Edition\u003cbr\u003ePages: 354\u003cbr\u003eChapters: 12\u003cbr\u003eFigures: 94\u003cbr\u003eTables: 232\u003c\/p\u003e\n\u003cp\u003eHardcover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book, the first monograph fully devoted to UV degradation and stabilization ever published in the English language, has 12 chapters, each discussing different aspect of UV related phenomena. In the introduction, the existing literature has been reviewed to find out how plants, animals, and humans protect themselves against UV radiation, and which lessons were already applied to the protection of man-made materials and final products, and which mechanisms work in living things but are not in the use of technical products.\n\u003cp\u003e\u003cbr\u003ePhotophysics is discussed in the second chapter to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process but these effects are also combined with photochemical properties of stabilizers and their mechanisms of stabilization, and this subject is discussed in Chapter 3.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a set of data prepared according to a systematic outline as listed in the Table of Contents. Stability of UV stabilizers, important for predicting the lifetime of their protection is discussed in Chapter 5. Different reasons of instability are included in the evaluation.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. 50 polymers and rubbers are discussed in different sections of Chapter 7 and 40 groups of final products which use a majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential in further understanding of UV degradation and stabilization.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and public using the products (Chapter 12).\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003cbr\u003e\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e2. Photophysics and photochemistry\u003cbr\u003e\u003cbr\u003e3. Mechanisms of UV stabilization\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e3.1. Absorption, reflection, and refraction\u003cbr\u003e\u003cbr\u003e3.2. Energy dissipation\u003cbr\u003e\u003cbr\u003e3.3. Radical deactivation and retarding propagation of reaction chain\u003cbr\u003e\u003cbr\u003e3.4. Singlet oxygen quenching\u003cbr\u003e\u003cbr\u003e3.5. Degree of hindrance\u003cbr\u003e\u003cbr\u003e3.6. Antioxidation\u003cbr\u003e\u003cbr\u003e3.7. Peroxide and hydroperoxide decomposition\u003cbr\u003e\u003cbr\u003e3.8. Acid neutralization\u003cbr\u003e\u003cbr\u003e3.9. Repairing defects caused by degradation\u003cbr\u003e\u003cbr\u003e3.10. Synergism\u003cbr\u003e\u003cbr\u003e3.11. Antagonism\u003cbr\u003e\u003cbr\u003e3.12. Effect of physical properties\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. UV stabilizers \u003c\/strong\u003e(chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e\u003cbr\u003e4.1. Organic UV absorbers\u003cbr\u003e\u003cbr\u003e4.2. Inorganic materials\u003cbr\u003e\u003cbr\u003e4.3. Particulate UV screeners\u003cbr\u003e\u003cbr\u003e4.4. Fiber\u003cbr\u003e\u003cbr\u003e4.5. Hindered amine stabilizers\u003cbr\u003e\u003cbr\u003e4.6. Phenolic antioxidants\u003cbr\u003e\u003cbr\u003e4.7. Phosphites \u0026amp; phosphonites\u003cbr\u003e\u003cbr\u003e4.8. Thiosynergists\u003cbr\u003e\u003cbr\u003e4.9. Amines\u003cbr\u003e\u003cbr\u003e4.10. Quencher\u003cbr\u003e\u003cbr\u003e4.11. Optical brighteners\u003cbr\u003e\u003cbr\u003e4.12. Synergistic mixtures of stabilizers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Stability of UV stabilizers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e5.1. UV degradation\u003cbr\u003e\u003cbr\u003e5.2. Electronic structure\u003cbr\u003e\u003cbr\u003e5.3. Chemical reactivity\u003cbr\u003e\u003cbr\u003e5.4. Volatility\u003cbr\u003e\u003cbr\u003e5.5. Effect of temperature\u003cbr\u003e\u003cbr\u003e5.6. Oxygen partial pressure\u003cbr\u003e\u003cbr\u003e5.7. Pollutants\u003cbr\u003e\u003cbr\u003e5.8. Acid neutralization\u003cbr\u003e\u003cbr\u003e5.9. Radical attack\u003cbr\u003e\u003cbr\u003e5.10. Diffusion and migration\u003cbr\u003e\u003cbr\u003e5.11. Grafting\u003cbr\u003e\u003cbr\u003e5.12. Polymerization and copolymerization\u003cbr\u003e\u003cbr\u003e5.13. Effect of pesticides\u003cbr\u003e\u003cbr\u003e5.14. Complexation and ligand formation\u003cbr\u003e\u003cbr\u003e5.15. Excited state interactions\u003cbr\u003e\u003cbr\u003e5.16. Sol-gel protective coatings\u003cbr\u003e\u003cbr\u003e5.17. Interaction with pigments\u003cbr\u003e\u003cbr\u003e5.18. Gas fading\u003cbr\u003e\u003cbr\u003e5.19. Effect of stress\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Principles of stabilizer selection\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e6.1. Polarity\u003cbr\u003e\u003cbr\u003e6.2. Acid\/base\u003cbr\u003e\u003cbr\u003e6.3. Hydrogen bonding\u003cbr\u003e\u003cbr\u003e6.4. Process temperature\u003cbr\u003e\u003cbr\u003e6.5. Color\u003cbr\u003e\u003cbr\u003e6.6. Part thickness\u003cbr\u003e\u003cbr\u003e6.7. Volatility, diffusion, migration, and extraction\u003cbr\u003e\u003cbr\u003e6.8. Food contact\u003cbr\u003e\u003cbr\u003e6.9. Thermal stabilizing performance\u003cbr\u003e\u003cbr\u003e6.10. State\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1. Polymers\u003cbr\u003e\u003cbr\u003e7.1.1. Acrylonitrile-styrene-acrylate\u003cbr\u003e\u003cbr\u003e7.1.2. Acrylonitrile-butadiene-styrene\u003cbr\u003e\u003cbr\u003e7.1.3. Acrylic resins\u003cbr\u003e\u003cbr\u003e7.1.4. Alkyd resins\u003cbr\u003e\u003cbr\u003e7.1.5. Cellulose-based polymers\u003cbr\u003e\u003cbr\u003e7.1.6. Chlorosulfonated polyethylene\u003cbr\u003e\u003cbr\u003e7.1.7. Copolymers\u003cbr\u003e\u003cbr\u003e7.1.8. Epoxy resin\u003cbr\u003e\u003cbr\u003e7.1.9. Ethylene-propylene copolymer\u003cbr\u003e\u003cbr\u003e7.1.10. Ethylene-propylene diene monomer\u003cbr\u003e\u003cbr\u003e7.1.11. Ethylene-tetrafluoroethylene copolymer\u003cbr\u003e\u003cbr\u003e7.1.12. Ethylene-vinyl acetate copolymer\u003cbr\u003e\u003cbr\u003e7.1.13. Fluorinated ethyl-propylene\u003cbr\u003e\u003cbr\u003e7.1.14. Polyacrylamide\u003cbr\u003e\u003cbr\u003e7.1.15. Polyacrylonitrile\u003cbr\u003e\u003cbr\u003e7.1.16. Polyalkylfluorene\u003cbr\u003e\u003cbr\u003e7.1.17. Polyamide\u003cbr\u003e\u003cbr\u003e7.1.18. Polyaniline\u003cbr\u003e\u003cbr\u003e7.1.19. Polyarylate\u003cbr\u003e\u003cbr\u003e7.1.20. Polybutylthiophene\u003cbr\u003e\u003cbr\u003e7.1.21. Polycarbonate\u003cbr\u003e\u003cbr\u003e7.1.22. Polyesters\u003cbr\u003e\u003cbr\u003e7.1.23. Polyetherimide\u003cbr\u003e\u003cbr\u003e7.1.24. Polyethylene\u003cbr\u003e\u003cbr\u003e7.1.25. Polyfluorenes\u003cbr\u003e\u003cbr\u003e7.1.26. Polyimide\u003cbr\u003e\u003cbr\u003e7.1.27. Poly(L-lactic acid)\u003cbr\u003e\u003cbr\u003e7.1.28. Polymethylmethacrylate\u003cbr\u003e\u003cbr\u003e7.1.29. Polymethylpentene\u003cbr\u003e\u003cbr\u003e7.1.30. Polyoxymethylene\u003cbr\u003e\u003cbr\u003e7.1.31. Polyphthalamide\u003cbr\u003e\u003cbr\u003e7.1.32. Poly(phenylene oxide)\u003cbr\u003e\u003cbr\u003e7.1.33. Poly(p-phenylene sulfide)\u003cbr\u003e\u003cbr\u003e7.1.34. Polypropylene\u003cbr\u003e\u003cbr\u003e7.1.35. Polypyrrole\u003cbr\u003e\u003cbr\u003e7.1.36. Polystyrene\u003cbr\u003e\u003cbr\u003e7.1.37. Polytetrafluoroethylene\u003cbr\u003e\u003cbr\u003e7.1.38. Polyurethane\u003cbr\u003e\u003cbr\u003e7.1.39. Poly(vinyl chloride)\u003cbr\u003e\u003cbr\u003e7.1.40. Poly(vinyl fluoride)\u003cbr\u003e\u003cbr\u003e7.1.41. Poly(vinylidene fluoride)\u003cbr\u003e\u003cbr\u003e7.1.42. Silicone\u003cbr\u003e\u003cbr\u003e7.1.43. Styrene-acrylonitrile\u003cbr\u003e\u003cbr\u003e7.1.44. Vinyl ester resin\u003cbr\u003e\u003cbr\u003e7.2. Rubber\u003cbr\u003e\u003cbr\u003e7.2.1. Polybutadiene\u003cbr\u003e\u003cbr\u003e7.2.2. Polychloroprene\u003cbr\u003e\u003cbr\u003e7.2.3. Polyisoprene\u003cbr\u003e\u003cbr\u003e7.2.4. Polyisobutylene\u003cbr\u003e\u003cbr\u003e7.2.5. Styrene-butadiene rubber\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003e8.1. Adhesives\u003cbr\u003e\u003cbr\u003e8.2. Aerospace\u003cbr\u003e\u003cbr\u003e8.3. Agriculture\u003cbr\u003e\u003cbr\u003e8.4. Automotive\u003cbr\u003e\u003cbr\u003e8.5. Biology\u003cbr\u003e\u003cbr\u003e8.6. Coated fabrics\u003cbr\u003e\u003cbr\u003e8.7. Coatings and paints\u003cbr\u003e\u003cbr\u003e8.8. Coil-coated materials\u003cbr\u003e\u003cbr\u003e8.9. Cosmetics\u003cbr\u003e\u003cbr\u003e8.10. Dental\u003cbr\u003e\u003cbr\u003e8.11. Door and window profiles\u003cbr\u003e\u003cbr\u003e8.12. Electrical and electronic applications\u003cbr\u003e\u003cbr\u003e8.13. Fibers and yarns\u003cbr\u003e\u003cbr\u003e8.14. Films\u003cbr\u003e\u003cbr\u003e8.15. Fishing net\u003cbr\u003e\u003cbr\u003e8.16. Foams\u003cbr\u003e\u003cbr\u003e8.17. Food\u003cbr\u003e\u003cbr\u003e8.18. Furniture\u003cbr\u003e\u003cbr\u003e8.19. Geosynthetics\u003cbr\u003e\u003cbr\u003e8.20. Glazing\u003cbr\u003e\u003cbr\u003e8.21. Medical supplies\u003cbr\u003e\u003cbr\u003e8.22. Optical fibers\u003cbr\u003e\u003cbr\u003e8.23. Packaging\u003cbr\u003e\u003cbr\u003e8.24. Pharmaceutical\u003cbr\u003e\u003cbr\u003e8.25. Pipes\u003cbr\u003e\u003cbr\u003e8.26. Pulp and paper\u003cbr\u003e\u003cbr\u003e8.27. Railway materials\u003cbr\u003e\u003cbr\u003e8.28. Rotational molded products\u003cbr\u003e\u003cbr\u003e8.29. Roofing materials\u003cbr\u003e\u003cbr\u003e8.30. Sealants\u003cbr\u003e\u003cbr\u003e8.31. Sensors and switches\u003cbr\u003e\u003cbr\u003e8.32. Sheets\u003cbr\u003e\u003cbr\u003e8.33. Siding\u003cbr\u003e\u003cbr\u003e8.34. Solar cells and solar energy applications\u003cbr\u003e\u003cbr\u003e8.35. Sporting equipment\u003cbr\u003e\u003cbr\u003e8.36. Tapes\u003cbr\u003e\u003cbr\u003e8.37. Textiles\u003cbr\u003e\u003cbr\u003e8.38. Windshield\u003cbr\u003e\u003cbr\u003e8.39. Wire and cable\u003cbr\u003e\u003cbr\u003e8.40. Wood\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9 Focus on technology - Sunscreen \u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eChristine Mendrok-Edinger, DSM Nutritional Products Ltd., Switzerland\u003cbr\u003e\u003cbr\u003e9.1 Introduction and history of sunscreens\u003cbr\u003e\u003cbr\u003e9.2 Photoreactions of UV absorbers in cosmetic sunscreens\u003cbr\u003e\u003cbr\u003e9.3 Ways of photostabilization in sunscreen products\u003cbr\u003e\u003cbr\u003e9.4 Formulating for photostability\u003cbr\u003e\u003cbr\u003e9.5 Summary\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 UV stabilizers and other components of formulation \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Analytical methods in UV degradation and stabilization studies\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e11.1 Quality control of UV stabilizers\u003cbr\u003e\u003cbr\u003e11.2 Lifetime prediction\u003cbr\u003e\u003cbr\u003e11.3 Molecular weight\u003cbr\u003e\u003cbr\u003e11.4 Color change\u003cbr\u003e\u003cbr\u003e11.5 Mechanical properties\u003cbr\u003e\u003cbr\u003e11.6 Microscopy\u003cbr\u003e\u003cbr\u003e11.7 Impedance measurement\u003cbr\u003e\u003cbr\u003e11.8 Surface roughness\u003cbr\u003e\u003cbr\u003e11.9 Imaging techniques\u003cbr\u003e\u003cbr\u003e11.10 Chromatography\u003cbr\u003e\u003cbr\u003e11.11 Spectroscopy\u003cbr\u003e\u003cbr\u003e11.11.1 ESR\u003cbr\u003e\u003cbr\u003e11.11.2 DART-MS\u003cbr\u003e\u003cbr\u003e11.11.3 FTIR\u003cbr\u003e\u003cbr\u003e11.11.4 NMR\u003cbr\u003e\u003cbr\u003e11.11.5 UV\u003cbr\u003e\u003cbr\u003e11.12 Hydroperoxide determination\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 UV stabilizers - health \u0026amp; safety\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e12.1 Toxic substance control\u003cbr\u003e\u003cbr\u003e12.2 Carcinogenic effect\u003cbr\u003e\u003cbr\u003e12.3 Workplace exposure limits\u003cbr\u003e\u003cbr\u003e12.4 Food regulatory acts\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 16 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization, Handbook of UV Degradation and Stabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of UV Degrada...
$275.00
{"id":11242220420,"title":"Handbook of UV Degradation and Stabilization, 2nd Edition","handle":"978-1-895198-86-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-86-7 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 420\u003c\/div\u003e\n\u003cdiv\u003eFigures 101\u003c\/div\u003e\n\u003cdiv\u003eTables 256\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book, the first monograph fully devoted to UV degradation and stabilization ever published in the English language, has 12 chapters, each discussing different aspect of UV related phenomena occurring when polymeric materials are exposed to UV radiation.\u003cbr\u003e\u003cbr\u003eIn the introduction, the existing literature has been reviewed to find out how plants, animals, and humans protect themselves against UV radiation. This review permits evaluation of mechanisms of protection against UV used by living things and potential application of these mechanisms in the protection of natural and synthetic polymeric materials. \u003cbr\u003e\u003cbr\u003ePhotophysics, discussed in the second chapter, helps to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process. \u003cbr\u003e\u003cbr\u003eThese effects are combined with photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a set of data prepared according to a systematic outline as listed in the Table of Contents. \u003cbr\u003e\u003cbr\u003eStability of UV stabilizers, important for predicting the lifetime of their protection is discussed in Chapter 5. Different reasons of instability are pointed out in the evaluation.\u003cbr\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003cbr\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7 and 38 groups of final products, which use the majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003cbr\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential for further understanding of UV degradation and stabilization.\u003cbr\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and commercial use of the products (Chapter 12).\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 16 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization, Handbook of UV Degradation and Stabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:43-04:00","created_at":"2017-06-22T21:13:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","environment","health and safety","mechanisms of UV degradation","mechanisms of UV stabilization","p-properties","photophysics and photochemistry","polymer","PVC degradation","sunscreen","sustainability of polymers materials","uv degradation","UV stabilizers","UV stabilizers health and safety"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371972,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of UV Degradation and Stabilization, 2nd Edition","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-86-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-86-7.jpg?v=1499887422"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-86-7.jpg?v=1499887422","options":["Title"],"media":[{"alt":null,"id":356343447645,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-86-7.jpg?v=1499887422"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-86-7.jpg?v=1499887422","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-86-7 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 420\u003c\/div\u003e\n\u003cdiv\u003eFigures 101\u003c\/div\u003e\n\u003cdiv\u003eTables 256\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book, the first monograph fully devoted to UV degradation and stabilization ever published in the English language, has 12 chapters, each discussing different aspect of UV related phenomena occurring when polymeric materials are exposed to UV radiation.\u003cbr\u003e\u003cbr\u003eIn the introduction, the existing literature has been reviewed to find out how plants, animals, and humans protect themselves against UV radiation. This review permits evaluation of mechanisms of protection against UV used by living things and potential application of these mechanisms in the protection of natural and synthetic polymeric materials. \u003cbr\u003e\u003cbr\u003ePhotophysics, discussed in the second chapter, helps to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process. \u003cbr\u003e\u003cbr\u003eThese effects are combined with photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a set of data prepared according to a systematic outline as listed in the Table of Contents. \u003cbr\u003e\u003cbr\u003eStability of UV stabilizers, important for predicting the lifetime of their protection is discussed in Chapter 5. Different reasons of instability are pointed out in the evaluation.\u003cbr\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003cbr\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7 and 38 groups of final products, which use the majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003cbr\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential for further understanding of UV degradation and stabilization.\u003cbr\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and commercial use of the products (Chapter 12).\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 16 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization, Handbook of UV Degradation and Stabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Hansen Solubility Para...
$220.00
{"id":11242238532,"title":"Hansen Solubility Parameters: A User's Handbook, 2nd Ed.","handle":"9780849372483","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Charles M. Hansen \u003cbr\u003eISBN 9780849372483 \u003cbr\u003e\u003cbr\u003epages 544\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including polymers, inorganic salts, and biological materials. \u003cbr\u003e\u003cbr\u003eTo update his groundbreaking handbook with the latest advances and perspectives, Charles M. Hansen has invited five renowned experts to share their work, theories, and practical applications involving HSPs. New discussions include a new statistical thermodynamics approach for confirming existing HSPs and how they fit into other thermodynamic theories for polymer solutions. Entirely new chapters examine the prediction of environmental stress cracking as well as absorption and diffusion in polymers. Highlighting recent findings on interactions with DNA, the treatment of biological materials also includes skin tissue, proteins, natural fibers, and cholesterol. The book also covers the latest applications of HSPs, such as ozone-safe \"designer\" solvents, protective clothing, drug delivery systems, and petroleum applications. \u003cbr\u003e\u003cbr\u003ePresenting a comprehensive survey of the theoretical and practical aspects of HSPs, Hansen Solubility Parameters, Second Edition concludes with a detailed discussion on the necessary research, future directions, and potential applications for which HSPs can provide a useful means of prediction in areas such as biological materials, controlled release applications, nanotechnology, and self-assembly.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eEnables scientists to predict molecular affinities, calculate the quantitative effects of intermolecular bonds, and interpret chemical and structural properties\u003c\/li\u003e\n\u003cli\u003eCorrelates HSP data to properties including swelling, permeation, performance, chiral rotation, selective orientation, and more\u003c\/li\u003e\n\u003cli\u003ePresents methodology for predicting solubility behavior of carbon dioxide and other gases at different temperatures and pressures\u003c\/li\u003e\n\u003cli\u003eExplains how controlling the solubility of asphalt, bitumen, and crude oils can improve petroleum based products\u003c\/li\u003e\n\u003cli\u003eProvides extensive HSP tables which aid in the systematic substitution away of undesired chemicals as required by the EU REACH and similar legislation\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","asphalt","biological materials","bitumen","book","chemical and structural properties","crude oils","drug delivery","Hansen solubility","HSPs","inorganic salts","legislation","ozone-safe","p-properties","petroleum","polymer","polymers","protective clothing","solubility","solvents"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378429508,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Hansen Solubility Parameters: A User's Handbook, 2nd Ed.","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780849372483","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780849372483.jpg?v=1499477591"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780849372483.jpg?v=1499477591","options":["Title"],"media":[{"alt":null,"id":356397973597,"position":1,"preview_image":{"aspect_ratio":0.669,"height":499,"width":334,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780849372483.jpg?v=1499477591"},"aspect_ratio":0.669,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780849372483.jpg?v=1499477591","width":334}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Charles M. Hansen \u003cbr\u003eISBN 9780849372483 \u003cbr\u003e\u003cbr\u003epages 544\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including polymers, inorganic salts, and biological materials. \u003cbr\u003e\u003cbr\u003eTo update his groundbreaking handbook with the latest advances and perspectives, Charles M. Hansen has invited five renowned experts to share their work, theories, and practical applications involving HSPs. New discussions include a new statistical thermodynamics approach for confirming existing HSPs and how they fit into other thermodynamic theories for polymer solutions. Entirely new chapters examine the prediction of environmental stress cracking as well as absorption and diffusion in polymers. Highlighting recent findings on interactions with DNA, the treatment of biological materials also includes skin tissue, proteins, natural fibers, and cholesterol. The book also covers the latest applications of HSPs, such as ozone-safe \"designer\" solvents, protective clothing, drug delivery systems, and petroleum applications. \u003cbr\u003e\u003cbr\u003ePresenting a comprehensive survey of the theoretical and practical aspects of HSPs, Hansen Solubility Parameters, Second Edition concludes with a detailed discussion on the necessary research, future directions, and potential applications for which HSPs can provide a useful means of prediction in areas such as biological materials, controlled release applications, nanotechnology, and self-assembly.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eEnables scientists to predict molecular affinities, calculate the quantitative effects of intermolecular bonds, and interpret chemical and structural properties\u003c\/li\u003e\n\u003cli\u003eCorrelates HSP data to properties including swelling, permeation, performance, chiral rotation, selective orientation, and more\u003c\/li\u003e\n\u003cli\u003ePresents methodology for predicting solubility behavior of carbon dioxide and other gases at different temperatures and pressures\u003c\/li\u003e\n\u003cli\u003eExplains how controlling the solubility of asphalt, bitumen, and crude oils can improve petroleum based products\u003c\/li\u003e\n\u003cli\u003eProvides extensive HSP tables which aid in the systematic substitution away of undesired chemicals as required by the EU REACH and similar legislation\u003c\/li\u003e\n\u003c\/ul\u003e"}
High Performance Plast...
$165.00
{"id":11242255364,"title":"High Performance Plastics 2011","handle":"978-1-84735-625-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-625-3 \u003cbr\u003e\u003cbr\u003eAvailable in April\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe event was dedicated to the advances in plastic materials that are tuned to excel even in harsh environments and tough service conditions. Some key driving factors for the continued growth of these materials include:\u003cbr\u003e\u003cbr\u003eOil and gas where the exploitation of hotter and deeper wells has necessitated the transition to new, higher performing plastics\u003cbr\u003eAerospace, a market which has seen the proliferation of lightweight composites to replace traditional materials like metal\u003cbr\u003eMicroelectronics and semiconductor applications where reliability, longevity and ultra-low contamination levels are needed for example in wafer and hard drive handling operations\u003cbr\u003eMembranes for water treatment, biomedical and fuel cell applications\u003cbr\u003ePhotovoltaics where extreme UV durability and inertness are prerequisites\u003cbr\u003eElectrical insulation for defense, aerospace and nuclear related applications\u003cbr\u003eWear resistant and self-lubricating materials for applications from CMP rings to gears and bearings\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis exciting and dynamic area is characterised by differentiation and diversity. The challenge is to create customised materials to meet the demands of today and to be ready for the new emerging applications of tomorrow.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered all aspects from the resins to blends, specialty fillers, stabilisers, compatibilisers and other modifiers.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:30-04:00","created_at":"2017-06-22T21:15:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","blends","book","compatibilisers","microelectronics","modifiers","p-additives","p-chemistry","plastics","polymer","resins","semiconductor","specialty fillers","stabilisers"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378491332,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"High Performance Plastics 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-625-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-625-3.jpg?v=1499477983"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-625-3.jpg?v=1499477983","options":["Title"],"media":[{"alt":null,"id":356418551901,"position":1,"preview_image":{"aspect_ratio":0.709,"height":499,"width":354,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-625-3.jpg?v=1499477983"},"aspect_ratio":0.709,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-625-3.jpg?v=1499477983","width":354}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-625-3 \u003cbr\u003e\u003cbr\u003eAvailable in April\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe event was dedicated to the advances in plastic materials that are tuned to excel even in harsh environments and tough service conditions. Some key driving factors for the continued growth of these materials include:\u003cbr\u003e\u003cbr\u003eOil and gas where the exploitation of hotter and deeper wells has necessitated the transition to new, higher performing plastics\u003cbr\u003eAerospace, a market which has seen the proliferation of lightweight composites to replace traditional materials like metal\u003cbr\u003eMicroelectronics and semiconductor applications where reliability, longevity and ultra-low contamination levels are needed for example in wafer and hard drive handling operations\u003cbr\u003eMembranes for water treatment, biomedical and fuel cell applications\u003cbr\u003ePhotovoltaics where extreme UV durability and inertness are prerequisites\u003cbr\u003eElectrical insulation for defense, aerospace and nuclear related applications\u003cbr\u003eWear resistant and self-lubricating materials for applications from CMP rings to gears and bearings\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis exciting and dynamic area is characterised by differentiation and diversity. The challenge is to create customised materials to meet the demands of today and to be ready for the new emerging applications of tomorrow.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered all aspects from the resins to blends, specialty fillers, stabilisers, compatibilisers and other modifiers.\u003cbr\u003e\u003cbr\u003e"}
Hot Runners in Injecti...
$200.00
{"id":11242213252,"title":"Hot Runners in Injection Moulds","handle":"978-1-85957-208-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D. Frenkler and H. Zawistowski \u003cbr\u003eISBN 978-1-85957-208-5 \u003cbr\u003e\u003cbr\u003epages 354\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe technology of hot runners in plastic moulds is becoming more widely used, and this has been accompanied by an increase in the range of hot runner systems available. This development has meant that in manufacturing practice, the user of hot runner moulds is faced with the problem of how to make an informed comparison between the systems on offer from the mass of technical information at his disposal. The large range of hot runner systems on the market and the complex link between their design and the result obtained in practice means that many designers and users have difficulty in making the best choice. Besides economic and technical considerations, this choice must also take into account the specific properties of the plastics. An understanding of the physical processes taking place in the mould during injection forms a basis for informed mould building and optimum selection of the hot runner system, and for its subsequent operation. This is an aspect to which this book gives special attention. \u003cbr\u003e\u003cbr\u003eThe aim of this book is to give an objective view of the topic based on personal experience. It introduces a logical division of hot runner systems, illustrates the design of nozzles, manifolds, and other system components, discusses the principles of selection, building, installation and use, analyses the causes of faults and suggests ways of eliminating them and presents examples of applications. \u003cbr\u003e\u003cbr\u003eSubjects covered are: \u003cbr\u003e-Types of Hot Runner System \u003cbr\u003e-Conditions for Use of Hot Runners \u003cbr\u003e-Links with Technology \u003cbr\u003e-Structure of a Hot Runner \u003cbr\u003e-Thermal Balance and Temperature Control \u003cbr\u003e-Filling Balance \u003cbr\u003e-Choosing a Hot Runner System \u003cbr\u003e-Special Injection Processes using Hot Runners \u003cbr\u003e-Special Hot Runner Mould Designs \u003cbr\u003e-Use of Moulds with Hot Runners \u003cbr\u003e-Disruptions to the Operation of Hot Runner Moulds and Typical Moulding Defects \u003cbr\u003e-The Way Ahead for Hot Runner Technology \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDaniel Frenkler has nearly 40 years of experience in the plastic and tool industry in Poland and Sweden. His management career in the fields of injection moulding technology, mould making, mould and product design in Poland, and from 1981 specialisation in mould design in Sweden, make him the ideal person to write this book. \u003cbr\u003e\u003cbr\u003eHe is a co-author (with Henryk Zawistowski) of two fundamental mould design handbooks (1971 and 1984). He has published over 50 articles in technical magazines about the design of hot runners and injection moulds. \u003cbr\u003e\u003cbr\u003eHenryk Zawistowski, too, has nearly 40 years of experience in industry and education in Poland. He worked as a mould designer, and from 1970-1977 was a consultant to BASF, in Poland. In 1980 he became a lecturer at the Technical University in Warsaw, where he devised a theory for shaping internal quality features in injection moulded items. \u003cbr\u003e\u003cbr\u003eBased on his industry knowledge and scientific experience, he developed a system of professional training for technicians in the area of injection moulding, mould design and use of injection moulding machines. In 1990 he established an education centre, PLASTECH and a publishing company PLASTECH. Henryk Zawistowski has published widely in the field of injection moulding.\u003cbr\u003e\u003cbr\u003eThe authors: Daniel Frenkler and Henryk Zawistowski, both graduated in mechanical engineering from the Technical University of Warsaw.","published_at":"2017-06-22T21:13:18-04:00","created_at":"2017-06-22T21:13:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","book","hot runner","injection moulding","injection processes","molding","mould designs","moulding","moulding defects","p-processing","polymer","thermal balance"],"price":20000,"price_min":20000,"price_max":20000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378347780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Hot Runners in Injection Moulds","public_title":null,"options":["Default Title"],"price":20000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-208-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5.jpg?v=1499478202"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5.jpg?v=1499478202","options":["Title"],"media":[{"alt":null,"id":356430315613,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5.jpg?v=1499478202"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5.jpg?v=1499478202","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D. Frenkler and H. Zawistowski \u003cbr\u003eISBN 978-1-85957-208-5 \u003cbr\u003e\u003cbr\u003epages 354\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe technology of hot runners in plastic moulds is becoming more widely used, and this has been accompanied by an increase in the range of hot runner systems available. This development has meant that in manufacturing practice, the user of hot runner moulds is faced with the problem of how to make an informed comparison between the systems on offer from the mass of technical information at his disposal. The large range of hot runner systems on the market and the complex link between their design and the result obtained in practice means that many designers and users have difficulty in making the best choice. Besides economic and technical considerations, this choice must also take into account the specific properties of the plastics. An understanding of the physical processes taking place in the mould during injection forms a basis for informed mould building and optimum selection of the hot runner system, and for its subsequent operation. This is an aspect to which this book gives special attention. \u003cbr\u003e\u003cbr\u003eThe aim of this book is to give an objective view of the topic based on personal experience. It introduces a logical division of hot runner systems, illustrates the design of nozzles, manifolds, and other system components, discusses the principles of selection, building, installation and use, analyses the causes of faults and suggests ways of eliminating them and presents examples of applications. \u003cbr\u003e\u003cbr\u003eSubjects covered are: \u003cbr\u003e-Types of Hot Runner System \u003cbr\u003e-Conditions for Use of Hot Runners \u003cbr\u003e-Links with Technology \u003cbr\u003e-Structure of a Hot Runner \u003cbr\u003e-Thermal Balance and Temperature Control \u003cbr\u003e-Filling Balance \u003cbr\u003e-Choosing a Hot Runner System \u003cbr\u003e-Special Injection Processes using Hot Runners \u003cbr\u003e-Special Hot Runner Mould Designs \u003cbr\u003e-Use of Moulds with Hot Runners \u003cbr\u003e-Disruptions to the Operation of Hot Runner Moulds and Typical Moulding Defects \u003cbr\u003e-The Way Ahead for Hot Runner Technology \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDaniel Frenkler has nearly 40 years of experience in the plastic and tool industry in Poland and Sweden. His management career in the fields of injection moulding technology, mould making, mould and product design in Poland, and from 1981 specialisation in mould design in Sweden, make him the ideal person to write this book. \u003cbr\u003e\u003cbr\u003eHe is a co-author (with Henryk Zawistowski) of two fundamental mould design handbooks (1971 and 1984). He has published over 50 articles in technical magazines about the design of hot runners and injection moulds. \u003cbr\u003e\u003cbr\u003eHenryk Zawistowski, too, has nearly 40 years of experience in industry and education in Poland. He worked as a mould designer, and from 1970-1977 was a consultant to BASF, in Poland. In 1980 he became a lecturer at the Technical University in Warsaw, where he devised a theory for shaping internal quality features in injection moulded items. \u003cbr\u003e\u003cbr\u003eBased on his industry knowledge and scientific experience, he developed a system of professional training for technicians in the area of injection moulding, mould design and use of injection moulding machines. In 1990 he established an education centre, PLASTECH and a publishing company PLASTECH. Henryk Zawistowski has published widely in the field of injection moulding.\u003cbr\u003e\u003cbr\u003eThe authors: Daniel Frenkler and Henryk Zawistowski, both graduated in mechanical engineering from the Technical University of Warsaw."}
Imaging and Image Anal...
$215.00
{"id":11242232132,"title":"Imaging and Image Analysis Applications for Plastics","handle":"1-884207-81-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Behnam Pourdeyhimi \u003cbr\u003eISBN 1-884207-81-2 \u003cbr\u003e\u003cbr\u003e308 pages, 224 figures, 36 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is of interest for all functions in research, development, new product implementation, production, product engineering in industries which process polymers and plastics. Those who already made use of image analysis in their practice will find useful hints on how to improve and better utilize their methods. Others who did not use these methods so far will find that these inexpensive techniques can provide answers to many important technical problems which are not resolved because just a few years ago these methods were not available or too expensive to apply. Only several years ago, these observations were either not quantified at all or various graphical standards were used for comparison to develop a point scale to assign observed images. This was not precise and confusing. The advent of high-speed digital cameras working with image processing software is changing this situation. The list of some topics included in the book shows the wealth of opportunities. This book presents results of studies in which imaging and image analyses were used to quantify many important determinants of production technology and product performance such as flow and mixing behavior, optimization of equipment configuration and material homogenization, morphology of plastics, size of polymers domains in blends, compatibilization methods and conditions, effects of grafting, reasons for surface roughness, scratch and mar resistance, fiber orientation, improved barrier properties, improved magnetic permeability, improved mechanical properties, distribution of voids in laminates, determination of cell sizes in cellular plastics, formation of crazes during fatigue, fiber radius determination during spinning, blister formation and adhesion, effects of glass fiber orientation on weld strength, analysis of welding process, dispersion of agglomerates formed by additives and the effect of mixing and transport conditions, formation of gels and impurities, particles structure and distribution, rate of crystallization, and many others. Having numerical data it is possible to optimize the processes to increase output, decrease a reject rate, save materials, and improve product properties.\u003cbr\u003eConsidering that every product must appeal to a customer and perform under conditions of its use, these studies are the most important for optimizing numerous conflicting properties. For example in one research, product performance is combined with high output rate and requirement of low weight. The potential applications of image analysis allow following these interrelations to optimize a product which is why research and production are eager to apply this emerging technology. The number of research reports on this subject is systematically growing. The methods of observation, such as various forms of microscopy, tracers, and lasers, are simple and in most cases available in most facilities.\u003cbr\u003e\u003cbr\u003eThe book contains references to various applications already in use, methods of image capture, data processing, hardware and software required. The examples of processes discussed include: extrusion, extruding reactors, injection molding, impregnation, foam production, film manufacture, compression molding, vulcanization, melt spinning, reactive blending, welding, blow molding, conveying, composite manufacture, compounding, and thermosetting. The examples of studies and improvements include: increased homogeneity of dye, pigment and filler mixing, improved fiber orientation, increased tooth stiffness in composite gears, the rate of spherulites growth, optimization of screw configuration, increased miscibility in polymer blends, study of polymer crystallization rate, melt flow analysis, void content, particle size in polymer blends, pore size and shape in foams, cell density in foams, modifier dispersion, improvement of bidirectional properties, effect of low molecular additives on morphology, interparticle distance, effect of mixing conditions and geometry on morphology, crack formation during fatigue testing, mechanism of crazing, chemical resistance, oil penetration, kinetic measurement of fiber diameter, stress profile, quantified flow visualization, effect of compatibilization, domain distribution, correlation of morphology with mechanical performance, analysis of melt fracture aids, surface roughness, droplet\/fiber transition, barrier properties, effect of orientation on electric conductivity, peel adhesion, fiber length after processing, fractal dimension, nucleation, thermography, thermal imaging, failure analysis, agglomerate dispersion, and impurity monitoring. The large variety of processing methods, possible studies and improvements show that this book is of interest to the entire cross-section of plastic manufacturing industry. It offers data which not only allow to better understand materials and processing methods but the book helps in process optimization and development of processes having higher throughput and superior performance.\u003cbr\u003eThis book is about the design and processing of various materials rather than algorithms and design of image analysis equipment. But by showing actual research and data in a form familiar to any technologist in the plastics industry, it demonstrates benefits and capabilities of the methods.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e• The Optimized Performance of Linear Vibration Welded Nylon 6 and Nylon 66 Butt Joints\u003cbr\u003e• Image Analysis of Polypropylene Melt Fiber Stretching\u003cbr\u003e• The Effect of Fiber Orientation on Distribution on the Tooth Stiffness of a Polymer Composite Gear\u003cbr\u003e• Novel Processing and Performance of Aligned Discontinuous Fiber Polymer Composites\u003cbr\u003e• Characterization of Kneading Block Performance on Co-Rotating Twin Screw Extruders\u003cbr\u003e• A Quantitative Description of the Effects of Molecular Weight and Atactic Level on the Spherulite Growth Rate of Ziegler-Natta Isotactic Polypropylene\u003cbr\u003e• Miscibility and Co-Continuous Morphology of Polypropylene-Polyethylene Blends\u003cbr\u003e• Flow Visualization for Extensional Viscosity Assessment\u003cbr\u003e• PP\/LLDPE\/EDPM Blends: Effect of Elastomer Viscosity on Impact\u003cbr\u003e• Mixing of a Low Molecular Weight Additive in a Co-Rotating TSE: Morphological Analysis of a HDPE\/PDMS Systems\u003cbr\u003e• The in situ Compatibilization of HDPE\/PET Blends\u003cbr\u003e• Evaluation of Process Aids for Controlling Surface Roughness of Extruded LLDPE\u003cbr\u003e• Evaluation of Scratch and Mar Resistance in Automotive Coatings: Nanoscratching by Atomic Force Microscope\u003cbr\u003e• Study of the Morphology and Tensile Mechanical Properties of Biaxially Oriented PET\/PP Blends\u003cbr\u003e• Improved Barrier and Mechanical Properties of Laminar Polymer Blends\u003cbr\u003e• Relative Magnetic Permeability of Injection Molded Composites as Affected by the Flow Induced Orientation of Ferromagnetic Particles\u003cbr\u003e• Processing-Structure-Property Relations in PS\/PE Blends: Compression versus Injection Molding\u003cbr\u003e• Polyetherimide Epoxy-Based Prepreg Systems with Variable Temperature Cure Capability\u003cbr\u003e• CO 2 Blown PETG Foams\u003cbr\u003e• Tear Strength Enhancement Mechanisms in TPO Films\u003cbr\u003e• Morphological Study of Fatigue Induced Damage in Semicrystalline Polymers\u003cbr\u003e• The Effect of Several Kinds of Oils on the Oil Resistance Behavior of Polystyrenic Thermoplastic Vulcanizate\u003cbr\u003e• Visualization of Polymer Melt Convergent Flows in Extrusion\u003cbr\u003e• Evaluation of the Constrained Blister Test for Measurement of an Intrinsic Adhesion\u003cbr\u003e• Fractal Analysis and Radiographic Inspection of Microwave Welded HDPE Bars\u003cbr\u003e• Application of Thermography for the Optimization of the Blow Molding Process\u003cbr\u003e• The Use of Video and the Development of Solids Conveying Theory\u003cbr\u003e• Microcellular PET Foams Produced by the Solid State Process\u003cbr\u003e• Thermal Wave Imaging of Propagating Cracks in Polypropylene and a Thermoplastic Olefin\u003cbr\u003e• The Division of Agglomerates in Molten Environment of Polymers: A Physical Model for Mathematical Description\u003cbr\u003e• A New On-Line Technique for Morphology Analysis and Residence Time Measurement in a Twin-Screw Extruder\u003cbr\u003e• Controlled Order Thermosets for Electronic Packaging\u003cbr\u003e• Fatigue Fracture in Polypropylene with Different Spherulitic Sizes\u003cbr\u003e• Brittle-Ductile Transition of PP\/Rubber\/Filler Hybrids\u003cbr\u003e• Index\u003c\/p\u003e","published_at":"2017-06-22T21:14:19-04:00","created_at":"2017-06-22T21:14:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","agglomerates","automotive","blister test","book","coatings","composite gears","cracks","crystallization rate","environment","fatigue","fibers","foams","imaging","increased miscibility polymer blends","LLDPE","magnetic permeability","Mar resistance","melt flow analysis","morphology","optimization screw configuration","p-testing","particle size","PET\/PP","polymer","polymer blends","PS\/PE","rate spherulites growth","scratch","semicrystalline","tear strength","tensile"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412420,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Imaging and Image Analysis Applications for Plastics","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-81-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805","options":["Title"],"media":[{"alt":null,"id":356441260125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Behnam Pourdeyhimi \u003cbr\u003eISBN 1-884207-81-2 \u003cbr\u003e\u003cbr\u003e308 pages, 224 figures, 36 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is of interest for all functions in research, development, new product implementation, production, product engineering in industries which process polymers and plastics. Those who already made use of image analysis in their practice will find useful hints on how to improve and better utilize their methods. Others who did not use these methods so far will find that these inexpensive techniques can provide answers to many important technical problems which are not resolved because just a few years ago these methods were not available or too expensive to apply. Only several years ago, these observations were either not quantified at all or various graphical standards were used for comparison to develop a point scale to assign observed images. This was not precise and confusing. The advent of high-speed digital cameras working with image processing software is changing this situation. The list of some topics included in the book shows the wealth of opportunities. This book presents results of studies in which imaging and image analyses were used to quantify many important determinants of production technology and product performance such as flow and mixing behavior, optimization of equipment configuration and material homogenization, morphology of plastics, size of polymers domains in blends, compatibilization methods and conditions, effects of grafting, reasons for surface roughness, scratch and mar resistance, fiber orientation, improved barrier properties, improved magnetic permeability, improved mechanical properties, distribution of voids in laminates, determination of cell sizes in cellular plastics, formation of crazes during fatigue, fiber radius determination during spinning, blister formation and adhesion, effects of glass fiber orientation on weld strength, analysis of welding process, dispersion of agglomerates formed by additives and the effect of mixing and transport conditions, formation of gels and impurities, particles structure and distribution, rate of crystallization, and many others. Having numerical data it is possible to optimize the processes to increase output, decrease a reject rate, save materials, and improve product properties.\u003cbr\u003eConsidering that every product must appeal to a customer and perform under conditions of its use, these studies are the most important for optimizing numerous conflicting properties. For example in one research, product performance is combined with high output rate and requirement of low weight. The potential applications of image analysis allow following these interrelations to optimize a product which is why research and production are eager to apply this emerging technology. The number of research reports on this subject is systematically growing. The methods of observation, such as various forms of microscopy, tracers, and lasers, are simple and in most cases available in most facilities.\u003cbr\u003e\u003cbr\u003eThe book contains references to various applications already in use, methods of image capture, data processing, hardware and software required. The examples of processes discussed include: extrusion, extruding reactors, injection molding, impregnation, foam production, film manufacture, compression molding, vulcanization, melt spinning, reactive blending, welding, blow molding, conveying, composite manufacture, compounding, and thermosetting. The examples of studies and improvements include: increased homogeneity of dye, pigment and filler mixing, improved fiber orientation, increased tooth stiffness in composite gears, the rate of spherulites growth, optimization of screw configuration, increased miscibility in polymer blends, study of polymer crystallization rate, melt flow analysis, void content, particle size in polymer blends, pore size and shape in foams, cell density in foams, modifier dispersion, improvement of bidirectional properties, effect of low molecular additives on morphology, interparticle distance, effect of mixing conditions and geometry on morphology, crack formation during fatigue testing, mechanism of crazing, chemical resistance, oil penetration, kinetic measurement of fiber diameter, stress profile, quantified flow visualization, effect of compatibilization, domain distribution, correlation of morphology with mechanical performance, analysis of melt fracture aids, surface roughness, droplet\/fiber transition, barrier properties, effect of orientation on electric conductivity, peel adhesion, fiber length after processing, fractal dimension, nucleation, thermography, thermal imaging, failure analysis, agglomerate dispersion, and impurity monitoring. The large variety of processing methods, possible studies and improvements show that this book is of interest to the entire cross-section of plastic manufacturing industry. It offers data which not only allow to better understand materials and processing methods but the book helps in process optimization and development of processes having higher throughput and superior performance.\u003cbr\u003eThis book is about the design and processing of various materials rather than algorithms and design of image analysis equipment. But by showing actual research and data in a form familiar to any technologist in the plastics industry, it demonstrates benefits and capabilities of the methods.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e• The Optimized Performance of Linear Vibration Welded Nylon 6 and Nylon 66 Butt Joints\u003cbr\u003e• Image Analysis of Polypropylene Melt Fiber Stretching\u003cbr\u003e• The Effect of Fiber Orientation on Distribution on the Tooth Stiffness of a Polymer Composite Gear\u003cbr\u003e• Novel Processing and Performance of Aligned Discontinuous Fiber Polymer Composites\u003cbr\u003e• Characterization of Kneading Block Performance on Co-Rotating Twin Screw Extruders\u003cbr\u003e• A Quantitative Description of the Effects of Molecular Weight and Atactic Level on the Spherulite Growth Rate of Ziegler-Natta Isotactic Polypropylene\u003cbr\u003e• Miscibility and Co-Continuous Morphology of Polypropylene-Polyethylene Blends\u003cbr\u003e• Flow Visualization for Extensional Viscosity Assessment\u003cbr\u003e• PP\/LLDPE\/EDPM Blends: Effect of Elastomer Viscosity on Impact\u003cbr\u003e• Mixing of a Low Molecular Weight Additive in a Co-Rotating TSE: Morphological Analysis of a HDPE\/PDMS Systems\u003cbr\u003e• The in situ Compatibilization of HDPE\/PET Blends\u003cbr\u003e• Evaluation of Process Aids for Controlling Surface Roughness of Extruded LLDPE\u003cbr\u003e• Evaluation of Scratch and Mar Resistance in Automotive Coatings: Nanoscratching by Atomic Force Microscope\u003cbr\u003e• Study of the Morphology and Tensile Mechanical Properties of Biaxially Oriented PET\/PP Blends\u003cbr\u003e• Improved Barrier and Mechanical Properties of Laminar Polymer Blends\u003cbr\u003e• Relative Magnetic Permeability of Injection Molded Composites as Affected by the Flow Induced Orientation of Ferromagnetic Particles\u003cbr\u003e• Processing-Structure-Property Relations in PS\/PE Blends: Compression versus Injection Molding\u003cbr\u003e• Polyetherimide Epoxy-Based Prepreg Systems with Variable Temperature Cure Capability\u003cbr\u003e• CO 2 Blown PETG Foams\u003cbr\u003e• Tear Strength Enhancement Mechanisms in TPO Films\u003cbr\u003e• Morphological Study of Fatigue Induced Damage in Semicrystalline Polymers\u003cbr\u003e• The Effect of Several Kinds of Oils on the Oil Resistance Behavior of Polystyrenic Thermoplastic Vulcanizate\u003cbr\u003e• Visualization of Polymer Melt Convergent Flows in Extrusion\u003cbr\u003e• Evaluation of the Constrained Blister Test for Measurement of an Intrinsic Adhesion\u003cbr\u003e• Fractal Analysis and Radiographic Inspection of Microwave Welded HDPE Bars\u003cbr\u003e• Application of Thermography for the Optimization of the Blow Molding Process\u003cbr\u003e• The Use of Video and the Development of Solids Conveying Theory\u003cbr\u003e• Microcellular PET Foams Produced by the Solid State Process\u003cbr\u003e• Thermal Wave Imaging of Propagating Cracks in Polypropylene and a Thermoplastic Olefin\u003cbr\u003e• The Division of Agglomerates in Molten Environment of Polymers: A Physical Model for Mathematical Description\u003cbr\u003e• A New On-Line Technique for Morphology Analysis and Residence Time Measurement in a Twin-Screw Extruder\u003cbr\u003e• Controlled Order Thermosets for Electronic Packaging\u003cbr\u003e• Fatigue Fracture in Polypropylene with Different Spherulitic Sizes\u003cbr\u003e• Brittle-Ductile Transition of PP\/Rubber\/Filler Hybrids\u003cbr\u003e• Index\u003c\/p\u003e"}
Industrial Biofouling
$260.00
{"id":11242241988,"title":"Industrial Biofouling","handle":"978-0-444-53224-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. Reg Bott, School of Chemical Engineering, the University of Birmingham, Edgbaston, UK \u003cbr\u003eISBN 978-0-444-53224-4 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eHardbound, 220 pages\u003c\/p\u003e\n\u003cp\u003epublication date: 2011\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIndustrial Biofouling discusses the challenges--and to a lesser extent, the benefits--of biofilms on industrial processing surfaces. It addresses the operating problems caused by establishment and growth of microorganisms, thereby enabling effective equipment design and operation that minimizes biofouling.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eDiscusses the chemical and physical control of biofilm growth, with coverage of dosing techniques, equipment cleaning, and cost management\u003c\/p\u003e\n\u003cp\u003ePresents methods for monitoring and evaluating the effectiveness of control techniques\u003c\/p\u003e\n\u003cp\u003eIncorporates explicit figures and diagrams to aid in understanding\u003c\/p\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cp style=\"text-align: justify; line-height: 18px; margin: 0px 0px 18px; outline-width: 0px; font-family: inherit; color: #3e3d3d; font-size: 11px; vertical-align: baseline; border-width: 0px; padding: 0px;\"\u003e \u003c\/p\u003e\n\u003cspan class=\"Apple-style-span\" style=\"line-height: 18px; font-family: Verdana, 'Bitstream Vera Sans', sans-serif; color: #3e3d3d; font-size: 11px;\"\u003e\u003ca name=\"2\"\u003e\u003c\/a\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Fluid flow, mass and heat transfer \u003cbr\u003e3. Biofilms \u003cbr\u003e4. Biofouling control \u003cbr\u003e5. Biofouling monitoring \u003cbr\u003e6. Industrial review \u003cbr\u003e7. Conclusions\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:50-04:00","created_at":"2017-06-22T21:14:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biofilms","Biofouling","biofouling control","book","p-applications","polymer"],"price":26000,"price_min":26000,"price_max":26000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378442948,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Industrial Biofouling","public_title":null,"options":["Default Title"],"price":26000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-444-53224-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53224-4.jpg?v=1499478677"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53224-4.jpg?v=1499478677","options":["Title"],"media":[{"alt":null,"id":356452696157,"position":1,"preview_image":{"aspect_ratio":0.627,"height":499,"width":313,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53224-4.jpg?v=1499478677"},"aspect_ratio":0.627,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53224-4.jpg?v=1499478677","width":313}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. Reg Bott, School of Chemical Engineering, the University of Birmingham, Edgbaston, UK \u003cbr\u003eISBN 978-0-444-53224-4 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eHardbound, 220 pages\u003c\/p\u003e\n\u003cp\u003epublication date: 2011\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIndustrial Biofouling discusses the challenges--and to a lesser extent, the benefits--of biofilms on industrial processing surfaces. It addresses the operating problems caused by establishment and growth of microorganisms, thereby enabling effective equipment design and operation that minimizes biofouling.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eDiscusses the chemical and physical control of biofilm growth, with coverage of dosing techniques, equipment cleaning, and cost management\u003c\/p\u003e\n\u003cp\u003ePresents methods for monitoring and evaluating the effectiveness of control techniques\u003c\/p\u003e\n\u003cp\u003eIncorporates explicit figures and diagrams to aid in understanding\u003c\/p\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cp style=\"text-align: justify; line-height: 18px; margin: 0px 0px 18px; outline-width: 0px; font-family: inherit; color: #3e3d3d; font-size: 11px; vertical-align: baseline; border-width: 0px; padding: 0px;\"\u003e \u003c\/p\u003e\n\u003cspan class=\"Apple-style-span\" style=\"line-height: 18px; font-family: Verdana, 'Bitstream Vera Sans', sans-serif; color: #3e3d3d; font-size: 11px;\"\u003e\u003ca name=\"2\"\u003e\u003c\/a\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Fluid flow, mass and heat transfer \u003cbr\u003e3. Biofilms \u003cbr\u003e4. Biofouling control \u003cbr\u003e5. Biofouling monitoring \u003cbr\u003e6. Industrial review \u003cbr\u003e7. Conclusions\u003cbr\u003e\u003cbr\u003e"}
Industry Guide to Poly...
$200.00
{"id":11242245572,"title":"Industry Guide to Polymer Nanocomposites","handle":"978-1-90647-904-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Günter Beyer (Editor) \u003cbr\u003eISBN 978-1-90647-904-6 \u003cbr\u003e\u003cbr\u003e386 pages, Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA truly practical guide, which aims to cut through the hype and show where these new ‘wonder materials’ will really fit into your industry and products.\u003cbr\u003e\u003cbr\u003eThe editor has drawn together contributions from academics, materials suppliers, product manufacturers, NASA and the US army, which show how these materials really perform, and where they are already finding uses. Flame retardancy and barrier properties are key benefits.\u003cbr\u003e\u003cbr\u003ePerformance, however, is only part of the story. To achieve commercial success new materials must also deliver these properties safely and predictably. Processing is a key issue when investment in new equipment may not be an option. There are questions regarding the health impacts of all nanoscale particles. All these topics and more are covered in the following sections:\u003cbr\u003e\u003cbr\u003e• Developments in Commercial Polymer Nanocomposite Materials\u003cbr\u003e\u003cbr\u003e• Working with Polymer Nanocomposite Materials\u003cbr\u003e\u003cbr\u003e• Unique Properties of Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e• Polymer Nanocomposites in Demanding Industrial Applications\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eDevelopments in Commercial Polymer Nanocomposite Materials \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e1. Synthesis, structure, properties, and characterization of organically modified clay minerals by Hendrik Heinz, University of Akron, USA \u003c\/strong\u003e \u003c\/p\u003e\n1.1 Overview of clay minerals \u003cbr\u003e1.2 Synthesis of organically modified clay minerals \u003cbr\u003e1.3 Structure of organically modified clay minerals \u003cbr\u003e1.3.1 Effect of cation density on the surface and the inorganic interface \u003cbr\u003e1.3.2 Low packing density \u003cbr\u003e1.3.3 Medium packing density \u003cbr\u003e1.3.4 High packing density \u003cbr\u003e1.3.5 Non-quantitative ion exchange \u003cbr\u003e1.4 Characterization and properties of organically modified clay minerals \u003cbr\u003e1.4.1 X-ray diffraction, microscopy, and structural properties \u003cbr\u003e1.4.2 DSC, DTG, thermal transitions, and thermal decomposition \u003cbr\u003e1.4.3 IR\/Raman spectroscopy, NMR spectroscopy, and chain conformation \u003cbr\u003e1.4.4 Dielectric, elastic, and tilt angle measurements \u003cbr\u003e1.4.5 Surface tension measurements and cleavage energies \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Polymer nanocomposites formulated with hectorite nanoclays by Günter Beyer, Kabelwerk Eupen AG, Eupen, Belgium \u003c\/strong\u003e\u003c\/p\u003e\n2.1 Introduction \u003cbr\u003e2.2 Thermal stability of hectorite-based nanoclays and nanocomposites \u003cbr\u003e2.2.1 Nanoclay stability \u003cbr\u003e2.2.2. Effect of the nanoclay on the degradation process of the matrix polymer \u003cbr\u003e2.2.3 Thermal stability of the produced nanocomposites \u003cbr\u003e2.3 Flame Retardant properties of hectorite-based nanocomposites \u003cbr\u003e2.4 Barrier properties of hectorite-based nanocomposites \u003cbr\u003e2.5 Nanocomposite foams formulated with hectorite nanoclay \u003cbr\u003e2.6 Nanoclay dispersion in thermoplastics \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e3. Polymer nanocomposites based on carbon nanotubes by Olivier Decroly, Nanocyl SA, Sambreville, Belgium \u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction \u003cbr\u003e3.2 Carbon nanotube nanocomposites \u003cbr\u003e3.2.1 Conductive Carbon nanotube nanocomposites \u003cbr\u003e3.2.2 Structural composite applications \u003cbr\u003e3.2.3 Coatings applications \u003cbr\u003eWorking with Polymer Nanocomposite Materials \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e4. Processing of polymer nanocomposites by Daniel Schmidt, Dept of Plastics Engineering, University of Massachusetts, USA \u003c\/strong\u003e\u003c\/p\u003e\n4.1 What is processing and why is it necessary? \u003cbr\u003e4.2 What is needed to process a polymer nanocomposite? \u003cbr\u003e4.2.1 Enhancing polymer mobility \u003cbr\u003e4.2.2 The consequences of processing \u003cbr\u003e4.2.3 A balanced approach \u003cbr\u003e4.3 Does the polymer have to be a solid at room temperature? \u003cbr\u003e4.4 Do we need to start with a polymer at all? \u003cbr\u003e4.5 Can we do away with the pre-formed nanofiller as well? \u003cbr\u003e4.6 What are our options as far as pre-formed nanofillers? \u003cbr\u003e4.7 What makes a nanofiller disperse in a particular polymer during processing? \u003cbr\u003e4.7.1 The thermodynamics of dispersion: entropy \u003cbr\u003e4.7.2 The thermodynamics of dispersion: enthalpy \u003cbr\u003e4.7.3 Complications: crystallinity \u003cbr\u003e4.7.4 Complications: multi-phase systems \u003cbr\u003e4.7.5 Achieving thermodynamic compatibility – practical considerations \u003cbr\u003e4.7.6 The kinetics of physical dispersion \u003cbr\u003e4.7.7 Dispersion kinetics in the presence of chemical reactions \u003cbr\u003e4.8 What should a “well-processed” polymer nanocomposite look like \u003cbr\u003e4.8.1 The realities of nanocomposite processing \u003cbr\u003e4.9 What are our options for nanocomposite processing? \u003cbr\u003e4.9.1 The importance of pre-processing \u003cbr\u003e4.10 What processing techniques involve just polymer and nanofiller? \u003cbr\u003e4.10.1 Physical mixing\/dry blending \u003cbr\u003e4.10.2 Compaction \u003cbr\u003e4.10.3 Solid state shear processing \u003cbr\u003e4.10.4 Melt blending \u003cbr\u003e4.11 What additional options do we have with solutions \u003cbr\u003e4.11.1 Physical mixing\/“wet blending” \u003cbr\u003e4.12 What about reactive processing? \u003cbr\u003e4.13 Are there any additional considerations? \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e5. Stabilisation of polymer nanocomposites by Rudolf Pfändner, Ciba Lampertheim GmbH, Lampertheim, Germany \u003c\/strong\u003e\u003c\/p\u003e\n5.1 Introduction \u003cbr\u003e5.2 Challenges of stabilisation of filled polymers \u003cbr\u003e5.3 Processing and long-term thermal stabilisation of polymer nanocomposites \u003cbr\u003e5.4 Light stabilisation of polymer nanocomposites \u003cbr\u003e5.5 Summary and outlook \u003cbr\u003eList of stabilisers \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e6. Toxicology of nanoparticles relevant to polymer by Paul Borm, Centre of Expertise Life Sciences (CEL), Hogeschool Zuyd, Heerlen, Netherlands \u003c\/strong\u003e\u003c\/p\u003e\n6.1 Introduction \u003cbr\u003e6.2 Toxicological effects of nanoparticles \u003cbr\u003e6.2.1 Particle definitions \u003cbr\u003e6.2.2 Effects of nanoparticles upon inhalation \u003cbr\u003e6.3 Nanoparticles used in nanocomposites \u003cbr\u003e6.3.1 Carbon nanotubes \u003cbr\u003e6.3.2 Metal oxide particles \u003cbr\u003e6.3.3 Silica and organoclays \u003cbr\u003e6.4 Need for unifying concepts \u003cbr\u003e\n\u003cp\u003eUnique Properties of Polymer Nanocomposites\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e7. Flame retardancy from polymer nanocomposites – from research to technical products by Günter Beyer, Kabelwerk Eupen AG, Eupen, Belgium \u003c\/strong\u003e\u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Organoclay nanocomposites \u003cbr\u003e7.2.1 Processing and structure of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.2 Thermal stability of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.3 Flammability properties of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.4 NMR investigation and FR mechanism of nanocomposites \u003cbr\u003e7.2.5 Intercalation versus exfoliation in EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.6 Combination of the classical flame retardant filler ATH with organoclays \u003cbr\u003e7.3 Cable Applications \u003cbr\u003e7.3.1 Coaxial cable passing UL 1666 fi retest with an organoclay\/ATH-based outer sheath \u003cbr\u003e7.3.2 Medium voltage cables with organoclay\/ATH-based outer sheaths \u003cbr\u003e7.3.4 Energy cables passing prEN 50399 with an organoclay ATH-based outer sheath \u003cbr\u003e7.4 Synergistic effects with halogenated flame retardants \u003cbr\u003e7.5 Commercial examples of nanocomposite-based compounds \u003cbr\u003e7.6 Carbon nanotube composites \u003cbr\u003e7.6.1 General properties of carbon nanotubes \u003cbr\u003e7.6.2 Synthesis and purification of CNTs \u003cbr\u003e7.6.3 Flammability of EVA\/MWCNT compounds and EVA\/MWCNT\/organoclay compounds \u003cbr\u003e7.6.4 Crack density and surface results of charred MWCNT compounds \u003cbr\u003e7.6.5 Flammability of LDPE\/CNT compounds \u003cbr\u003e7.6.6 Cable with the new fire retardant system MWCNT\/organoclay\/ATH \u003cbr\u003e7.7 Outlook \u003cbr\u003e\n\u003cp\u003e7.8 Summary\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e8. Polyhedral oligomeric silsesquioxane flame retardancy by Joseph Lichtenhan, Hybrid Plastics Inc., Hattiesburg, USA \u003c\/strong\u003e \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 POSS chemical technology and unique features \u003cbr\u003e8.3 Successful use of POSS as a fire retardant \u003cbr\u003e8.4 Conventional fire retardants and POSS \u003cbr\u003e8.5 POSS and fire-retardant coatings for textiles \u003cbr\u003e8.6 Commercial applications \u003cbr\u003e8.7 Conclusions \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9. Barrier property enhancement by polymer nanocomposites by Tie Lan and Ying Liang, Nanocor Inc., Hoffman Estates, USA \u003c\/strong\u003e \u003c\/p\u003e\n9.1 Introduction \u003cbr\u003e9.1.1 Organoclay materials \u003cbr\u003e9.2 Formation of polymer-clay nanocomposites \u003cbr\u003e\n\u003cp\u003e9.3 Nano-effects in barrier enhancement \u003c\/p\u003e\n\u003cp\u003e9.4 Summary \u003c\/p\u003e\n\u003cstrong\u003e10. Status of biodegradable polymer nanocomposites for industrial applications by Jo Ann Ratto, Christopher Thellen and Jean Lucciarini, US Army Natick Soldier Research, Development, and Engineering Centre, USA \u003c\/strong\u003e\u003cbr\u003e10.1 Introduction \u003cbr\u003e10.2 Biodegradable polymers \u003cbr\u003e10.3 Nanocomposites \u003cbr\u003e10.3.1 Structure of montmorillonite layered silicates (MLS) \u003cbr\u003e10.3.2 Morphology of polymer\/MLS nanocomposites \u003cbr\u003e10.4 Biodegradable nanocomposites \u003cbr\u003e10.5 Biodegradability \u003cbr\u003e10.5.1 A recent study of PHB nanocomposites \u003cbr\u003e10.6 Processability issues \u003cbr\u003e10.6.1 A recent study of PCL nanocomposites \u003cbr\u003e10.7 Attainable properties \u003cbr\u003e10.7.1 A recent study of PLA\/PCL nanocomposites \u003cbr\u003e10.8 Performance data \u003cbr\u003e10.9 Commercially viable materials \u003cbr\u003e10.9.1 A recent study comparing biodegradable nanocomposites to polyethylene terephthalate (PET) \u003cbr\u003e10.10 Applications \u003cbr\u003e10.10.1 A recent patent on biodegradable polymeric nanocomposite compositions \u003cbr\u003e10.11 The future of biodegradable nanocomposites \u003cbr\u003e10.11.1 Life cycle assessment for biodegradable nanocomposites \u003cbr\u003e10.11.2 Safety of biodegradable nanocomposites \u003cbr\u003e\n\u003cp\u003e10.12 Summary \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e11 Thermal properties of polymers with graphitic nanofibres by Ernst Hammel, Andreas Eder and Xinhe Tang, Electorvac AB, Klosterneuburg, Austria \u003c\/strong\u003e\u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Thermal Interface Materials \u003cbr\u003e11.3 Thermally Conductive Plastics \u003cbr\u003e11.4 Conclusions \u003cbr\u003ePolymer Nanocomposites in Demanding Industrial Applications \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e12. Automotive industry applications of polymer nanocomposites by William Rodgers, General Motors Corp. Research and Development Center, Warren, USA \u003c\/strong\u003e\u003c\/p\u003e\n12.1 Introduction \u003cbr\u003e12.2 Requirements for the automotive industry \u003cbr\u003e12.2.1 Surface appearance \u003cbr\u003e12.2.2 Measurement techniques \u003cbr\u003e12.2.3 Aspect Ratio \u003cbr\u003e12.2.4 Minimization of mass \u003cbr\u003e12.3 Manufacture of nanocomposite systems \u003cbr\u003e12.3.1 In-situ polymerization \u003cbr\u003e12.3.2 Melt processing \u003cbr\u003e12.3.3 Injection moulding \u003cbr\u003e12.4 Applications of nanocomposites in the automotive industry \u003cbr\u003e12.4.1 Applications using carbon nanotubes \u003cbr\u003e12.4.2 Applications of organoclay nanocomposites \u003cbr\u003e12.4.2.1 Underhood applications \u003cbr\u003e12.4.2.2 Exterior applications \u003cbr\u003e12.4.2.3 Interior applications \u003cbr\u003e12.5 The future of nanoclay composites \u003cbr\u003e12.5.1 Alternative conventional filler materials \u003cbr\u003e12.5.2 Exfoliation issues with olefinic resins \u003cbr\u003e12.5.3 New nanomaterials \u003cbr\u003e12.6 Concluding remarks \u003cbr\u003e13. Polymer nanocomposites in aerospace applications by Michael Meador, NASA Glenn Research Centre, Cleveland, USA \u003cbr\u003e3.1 Background \u003cbr\u003e12.3.2 Melt processing \u003cbr\u003e12.3.3 Injection moulding \u003cbr\u003e12.4 Applications of nanocomposites in the automotive industry \u003cbr\u003e12.4.1 Applications using carbon nanotubes \u003cbr\u003e12.4.2 Applications of organoclay nanocomposites \u003cbr\u003e12.4.2.1 Underhood applications \u003cbr\u003e12.4.2.2 Exterior applications \u003cbr\u003e12.4.2.3 Interior applications \u003cbr\u003e12.5 The future of nanoclay composites \u003cbr\u003e12.5.1 Alternative conventional filler materials \u003cbr\u003e12.5.2 Exfoliation issues with olefinic resins \u003cbr\u003e12.5.3 New nanomaterials \u003cbr\u003e12.6 Concluding remarks \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e13. Polymer nanocomposites in aerospace applications by Michael Meador, NASA Glenn Research Centre, Cleveland, USA \u003c\/strong\u003e\u003c\/p\u003e\n13.1 Background \u003cbr\u003e13.2 Clays \u003cbr\u003e13.2.1 Background \u003cbr\u003e13.2.2 Cryotanks \u003cbr\u003e13.2.2.1 Permeability \u003cbr\u003e13.2.2.2 Toughness \u003cbr\u003e13.2.3 Other structures \u003cbr\u003e13.3 Carbon-based nanostructured additives \u003cbr\u003e13.3.1 Carbon nanotubes \u003cbr\u003e13.3.1.1 Synthesis methods \u003cbr\u003e13.3.1.2 Purification \u003cbr\u003e13.3.1.3 Functionalization \u003cbr\u003e13.3.2 Carbon nanotube-based nanocomposites \u003cbr\u003e13.3.2.1 Electrical and thermal conductivity \u003cbr\u003e13.3.2.2 Mechanical properties \u003cbr\u003e13.3.3 Carbon nanotube-based fibres \u003cbr\u003e13.3.4 Other nanoscale carbon additives \u003cbr\u003e13.3.4.1 Expanded graphite and nanocomposites \u003cbr\u003e13.3.4.2 Graphite oxides and nanocomposites \u003cbr\u003e13.3.4.3 Functionalized graphene sheets and nanocomposites \u003cbr\u003e13.4 Conclusions \u003cbr\u003eGlossary of materials and techniques referred to in this chapter \u003cbr\u003eReferences \u003cbr\u003eAppendix \u003cbr\u003eGlossary of abbreviations \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:00-04:00","created_at":"2017-06-22T21:15:00-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","applications","book","carbon nanotubes","nano","nanoclay","nanocomposites","nanofiller","polymer","thermal properties"],"price":20000,"price_min":20000,"price_max":20000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378452036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Industry Guide to Polymer Nanocomposites","public_title":null,"options":["Default Title"],"price":20000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-90647-904-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-90647-904-6.jpg?v=1499724598"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-90647-904-6.jpg?v=1499724598","options":["Title"],"media":[{"alt":null,"id":356459413597,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-90647-904-6.jpg?v=1499724598"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-90647-904-6.jpg?v=1499724598","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. Günter Beyer (Editor) \u003cbr\u003eISBN 978-1-90647-904-6 \u003cbr\u003e\u003cbr\u003e386 pages, Hardback\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA truly practical guide, which aims to cut through the hype and show where these new ‘wonder materials’ will really fit into your industry and products.\u003cbr\u003e\u003cbr\u003eThe editor has drawn together contributions from academics, materials suppliers, product manufacturers, NASA and the US army, which show how these materials really perform, and where they are already finding uses. Flame retardancy and barrier properties are key benefits.\u003cbr\u003e\u003cbr\u003ePerformance, however, is only part of the story. To achieve commercial success new materials must also deliver these properties safely and predictably. Processing is a key issue when investment in new equipment may not be an option. There are questions regarding the health impacts of all nanoscale particles. All these topics and more are covered in the following sections:\u003cbr\u003e\u003cbr\u003e• Developments in Commercial Polymer Nanocomposite Materials\u003cbr\u003e\u003cbr\u003e• Working with Polymer Nanocomposite Materials\u003cbr\u003e\u003cbr\u003e• Unique Properties of Polymer Nanocomposites\u003cbr\u003e\u003cbr\u003e• Polymer Nanocomposites in Demanding Industrial Applications\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eDevelopments in Commercial Polymer Nanocomposite Materials \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e1. Synthesis, structure, properties, and characterization of organically modified clay minerals by Hendrik Heinz, University of Akron, USA \u003c\/strong\u003e \u003c\/p\u003e\n1.1 Overview of clay minerals \u003cbr\u003e1.2 Synthesis of organically modified clay minerals \u003cbr\u003e1.3 Structure of organically modified clay minerals \u003cbr\u003e1.3.1 Effect of cation density on the surface and the inorganic interface \u003cbr\u003e1.3.2 Low packing density \u003cbr\u003e1.3.3 Medium packing density \u003cbr\u003e1.3.4 High packing density \u003cbr\u003e1.3.5 Non-quantitative ion exchange \u003cbr\u003e1.4 Characterization and properties of organically modified clay minerals \u003cbr\u003e1.4.1 X-ray diffraction, microscopy, and structural properties \u003cbr\u003e1.4.2 DSC, DTG, thermal transitions, and thermal decomposition \u003cbr\u003e1.4.3 IR\/Raman spectroscopy, NMR spectroscopy, and chain conformation \u003cbr\u003e1.4.4 Dielectric, elastic, and tilt angle measurements \u003cbr\u003e1.4.5 Surface tension measurements and cleavage energies \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Polymer nanocomposites formulated with hectorite nanoclays by Günter Beyer, Kabelwerk Eupen AG, Eupen, Belgium \u003c\/strong\u003e\u003c\/p\u003e\n2.1 Introduction \u003cbr\u003e2.2 Thermal stability of hectorite-based nanoclays and nanocomposites \u003cbr\u003e2.2.1 Nanoclay stability \u003cbr\u003e2.2.2. Effect of the nanoclay on the degradation process of the matrix polymer \u003cbr\u003e2.2.3 Thermal stability of the produced nanocomposites \u003cbr\u003e2.3 Flame Retardant properties of hectorite-based nanocomposites \u003cbr\u003e2.4 Barrier properties of hectorite-based nanocomposites \u003cbr\u003e2.5 Nanocomposite foams formulated with hectorite nanoclay \u003cbr\u003e2.6 Nanoclay dispersion in thermoplastics \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e3. Polymer nanocomposites based on carbon nanotubes by Olivier Decroly, Nanocyl SA, Sambreville, Belgium \u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction \u003cbr\u003e3.2 Carbon nanotube nanocomposites \u003cbr\u003e3.2.1 Conductive Carbon nanotube nanocomposites \u003cbr\u003e3.2.2 Structural composite applications \u003cbr\u003e3.2.3 Coatings applications \u003cbr\u003eWorking with Polymer Nanocomposite Materials \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e4. Processing of polymer nanocomposites by Daniel Schmidt, Dept of Plastics Engineering, University of Massachusetts, USA \u003c\/strong\u003e\u003c\/p\u003e\n4.1 What is processing and why is it necessary? \u003cbr\u003e4.2 What is needed to process a polymer nanocomposite? \u003cbr\u003e4.2.1 Enhancing polymer mobility \u003cbr\u003e4.2.2 The consequences of processing \u003cbr\u003e4.2.3 A balanced approach \u003cbr\u003e4.3 Does the polymer have to be a solid at room temperature? \u003cbr\u003e4.4 Do we need to start with a polymer at all? \u003cbr\u003e4.5 Can we do away with the pre-formed nanofiller as well? \u003cbr\u003e4.6 What are our options as far as pre-formed nanofillers? \u003cbr\u003e4.7 What makes a nanofiller disperse in a particular polymer during processing? \u003cbr\u003e4.7.1 The thermodynamics of dispersion: entropy \u003cbr\u003e4.7.2 The thermodynamics of dispersion: enthalpy \u003cbr\u003e4.7.3 Complications: crystallinity \u003cbr\u003e4.7.4 Complications: multi-phase systems \u003cbr\u003e4.7.5 Achieving thermodynamic compatibility – practical considerations \u003cbr\u003e4.7.6 The kinetics of physical dispersion \u003cbr\u003e4.7.7 Dispersion kinetics in the presence of chemical reactions \u003cbr\u003e4.8 What should a “well-processed” polymer nanocomposite look like \u003cbr\u003e4.8.1 The realities of nanocomposite processing \u003cbr\u003e4.9 What are our options for nanocomposite processing? \u003cbr\u003e4.9.1 The importance of pre-processing \u003cbr\u003e4.10 What processing techniques involve just polymer and nanofiller? \u003cbr\u003e4.10.1 Physical mixing\/dry blending \u003cbr\u003e4.10.2 Compaction \u003cbr\u003e4.10.3 Solid state shear processing \u003cbr\u003e4.10.4 Melt blending \u003cbr\u003e4.11 What additional options do we have with solutions \u003cbr\u003e4.11.1 Physical mixing\/“wet blending” \u003cbr\u003e4.12 What about reactive processing? \u003cbr\u003e4.13 Are there any additional considerations? \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e5. Stabilisation of polymer nanocomposites by Rudolf Pfändner, Ciba Lampertheim GmbH, Lampertheim, Germany \u003c\/strong\u003e\u003c\/p\u003e\n5.1 Introduction \u003cbr\u003e5.2 Challenges of stabilisation of filled polymers \u003cbr\u003e5.3 Processing and long-term thermal stabilisation of polymer nanocomposites \u003cbr\u003e5.4 Light stabilisation of polymer nanocomposites \u003cbr\u003e5.5 Summary and outlook \u003cbr\u003eList of stabilisers \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e6. Toxicology of nanoparticles relevant to polymer by Paul Borm, Centre of Expertise Life Sciences (CEL), Hogeschool Zuyd, Heerlen, Netherlands \u003c\/strong\u003e\u003c\/p\u003e\n6.1 Introduction \u003cbr\u003e6.2 Toxicological effects of nanoparticles \u003cbr\u003e6.2.1 Particle definitions \u003cbr\u003e6.2.2 Effects of nanoparticles upon inhalation \u003cbr\u003e6.3 Nanoparticles used in nanocomposites \u003cbr\u003e6.3.1 Carbon nanotubes \u003cbr\u003e6.3.2 Metal oxide particles \u003cbr\u003e6.3.3 Silica and organoclays \u003cbr\u003e6.4 Need for unifying concepts \u003cbr\u003e\n\u003cp\u003eUnique Properties of Polymer Nanocomposites\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e7. Flame retardancy from polymer nanocomposites – from research to technical products by Günter Beyer, Kabelwerk Eupen AG, Eupen, Belgium \u003c\/strong\u003e\u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Organoclay nanocomposites \u003cbr\u003e7.2.1 Processing and structure of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.2 Thermal stability of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.3 Flammability properties of EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.4 NMR investigation and FR mechanism of nanocomposites \u003cbr\u003e7.2.5 Intercalation versus exfoliation in EVA\/organoclay-based nanocomposites \u003cbr\u003e7.2.6 Combination of the classical flame retardant filler ATH with organoclays \u003cbr\u003e7.3 Cable Applications \u003cbr\u003e7.3.1 Coaxial cable passing UL 1666 fi retest with an organoclay\/ATH-based outer sheath \u003cbr\u003e7.3.2 Medium voltage cables with organoclay\/ATH-based outer sheaths \u003cbr\u003e7.3.4 Energy cables passing prEN 50399 with an organoclay ATH-based outer sheath \u003cbr\u003e7.4 Synergistic effects with halogenated flame retardants \u003cbr\u003e7.5 Commercial examples of nanocomposite-based compounds \u003cbr\u003e7.6 Carbon nanotube composites \u003cbr\u003e7.6.1 General properties of carbon nanotubes \u003cbr\u003e7.6.2 Synthesis and purification of CNTs \u003cbr\u003e7.6.3 Flammability of EVA\/MWCNT compounds and EVA\/MWCNT\/organoclay compounds \u003cbr\u003e7.6.4 Crack density and surface results of charred MWCNT compounds \u003cbr\u003e7.6.5 Flammability of LDPE\/CNT compounds \u003cbr\u003e7.6.6 Cable with the new fire retardant system MWCNT\/organoclay\/ATH \u003cbr\u003e7.7 Outlook \u003cbr\u003e\n\u003cp\u003e7.8 Summary\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e8. Polyhedral oligomeric silsesquioxane flame retardancy by Joseph Lichtenhan, Hybrid Plastics Inc., Hattiesburg, USA \u003c\/strong\u003e \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 POSS chemical technology and unique features \u003cbr\u003e8.3 Successful use of POSS as a fire retardant \u003cbr\u003e8.4 Conventional fire retardants and POSS \u003cbr\u003e8.5 POSS and fire-retardant coatings for textiles \u003cbr\u003e8.6 Commercial applications \u003cbr\u003e8.7 Conclusions \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9. Barrier property enhancement by polymer nanocomposites by Tie Lan and Ying Liang, Nanocor Inc., Hoffman Estates, USA \u003c\/strong\u003e \u003c\/p\u003e\n9.1 Introduction \u003cbr\u003e9.1.1 Organoclay materials \u003cbr\u003e9.2 Formation of polymer-clay nanocomposites \u003cbr\u003e\n\u003cp\u003e9.3 Nano-effects in barrier enhancement \u003c\/p\u003e\n\u003cp\u003e9.4 Summary \u003c\/p\u003e\n\u003cstrong\u003e10. Status of biodegradable polymer nanocomposites for industrial applications by Jo Ann Ratto, Christopher Thellen and Jean Lucciarini, US Army Natick Soldier Research, Development, and Engineering Centre, USA \u003c\/strong\u003e\u003cbr\u003e10.1 Introduction \u003cbr\u003e10.2 Biodegradable polymers \u003cbr\u003e10.3 Nanocomposites \u003cbr\u003e10.3.1 Structure of montmorillonite layered silicates (MLS) \u003cbr\u003e10.3.2 Morphology of polymer\/MLS nanocomposites \u003cbr\u003e10.4 Biodegradable nanocomposites \u003cbr\u003e10.5 Biodegradability \u003cbr\u003e10.5.1 A recent study of PHB nanocomposites \u003cbr\u003e10.6 Processability issues \u003cbr\u003e10.6.1 A recent study of PCL nanocomposites \u003cbr\u003e10.7 Attainable properties \u003cbr\u003e10.7.1 A recent study of PLA\/PCL nanocomposites \u003cbr\u003e10.8 Performance data \u003cbr\u003e10.9 Commercially viable materials \u003cbr\u003e10.9.1 A recent study comparing biodegradable nanocomposites to polyethylene terephthalate (PET) \u003cbr\u003e10.10 Applications \u003cbr\u003e10.10.1 A recent patent on biodegradable polymeric nanocomposite compositions \u003cbr\u003e10.11 The future of biodegradable nanocomposites \u003cbr\u003e10.11.1 Life cycle assessment for biodegradable nanocomposites \u003cbr\u003e10.11.2 Safety of biodegradable nanocomposites \u003cbr\u003e\n\u003cp\u003e10.12 Summary \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003e11 Thermal properties of polymers with graphitic nanofibres by Ernst Hammel, Andreas Eder and Xinhe Tang, Electorvac AB, Klosterneuburg, Austria \u003c\/strong\u003e\u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Thermal Interface Materials \u003cbr\u003e11.3 Thermally Conductive Plastics \u003cbr\u003e11.4 Conclusions \u003cbr\u003ePolymer Nanocomposites in Demanding Industrial Applications \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e12. Automotive industry applications of polymer nanocomposites by William Rodgers, General Motors Corp. Research and Development Center, Warren, USA \u003c\/strong\u003e\u003c\/p\u003e\n12.1 Introduction \u003cbr\u003e12.2 Requirements for the automotive industry \u003cbr\u003e12.2.1 Surface appearance \u003cbr\u003e12.2.2 Measurement techniques \u003cbr\u003e12.2.3 Aspect Ratio \u003cbr\u003e12.2.4 Minimization of mass \u003cbr\u003e12.3 Manufacture of nanocomposite systems \u003cbr\u003e12.3.1 In-situ polymerization \u003cbr\u003e12.3.2 Melt processing \u003cbr\u003e12.3.3 Injection moulding \u003cbr\u003e12.4 Applications of nanocomposites in the automotive industry \u003cbr\u003e12.4.1 Applications using carbon nanotubes \u003cbr\u003e12.4.2 Applications of organoclay nanocomposites \u003cbr\u003e12.4.2.1 Underhood applications \u003cbr\u003e12.4.2.2 Exterior applications \u003cbr\u003e12.4.2.3 Interior applications \u003cbr\u003e12.5 The future of nanoclay composites \u003cbr\u003e12.5.1 Alternative conventional filler materials \u003cbr\u003e12.5.2 Exfoliation issues with olefinic resins \u003cbr\u003e12.5.3 New nanomaterials \u003cbr\u003e12.6 Concluding remarks \u003cbr\u003e13. Polymer nanocomposites in aerospace applications by Michael Meador, NASA Glenn Research Centre, Cleveland, USA \u003cbr\u003e3.1 Background \u003cbr\u003e12.3.2 Melt processing \u003cbr\u003e12.3.3 Injection moulding \u003cbr\u003e12.4 Applications of nanocomposites in the automotive industry \u003cbr\u003e12.4.1 Applications using carbon nanotubes \u003cbr\u003e12.4.2 Applications of organoclay nanocomposites \u003cbr\u003e12.4.2.1 Underhood applications \u003cbr\u003e12.4.2.2 Exterior applications \u003cbr\u003e12.4.2.3 Interior applications \u003cbr\u003e12.5 The future of nanoclay composites \u003cbr\u003e12.5.1 Alternative conventional filler materials \u003cbr\u003e12.5.2 Exfoliation issues with olefinic resins \u003cbr\u003e12.5.3 New nanomaterials \u003cbr\u003e12.6 Concluding remarks \u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e13. Polymer nanocomposites in aerospace applications by Michael Meador, NASA Glenn Research Centre, Cleveland, USA \u003c\/strong\u003e\u003c\/p\u003e\n13.1 Background \u003cbr\u003e13.2 Clays \u003cbr\u003e13.2.1 Background \u003cbr\u003e13.2.2 Cryotanks \u003cbr\u003e13.2.2.1 Permeability \u003cbr\u003e13.2.2.2 Toughness \u003cbr\u003e13.2.3 Other structures \u003cbr\u003e13.3 Carbon-based nanostructured additives \u003cbr\u003e13.3.1 Carbon nanotubes \u003cbr\u003e13.3.1.1 Synthesis methods \u003cbr\u003e13.3.1.2 Purification \u003cbr\u003e13.3.1.3 Functionalization \u003cbr\u003e13.3.2 Carbon nanotube-based nanocomposites \u003cbr\u003e13.3.2.1 Electrical and thermal conductivity \u003cbr\u003e13.3.2.2 Mechanical properties \u003cbr\u003e13.3.3 Carbon nanotube-based fibres \u003cbr\u003e13.3.4 Other nanoscale carbon additives \u003cbr\u003e13.3.4.1 Expanded graphite and nanocomposites \u003cbr\u003e13.3.4.2 Graphite oxides and nanocomposites \u003cbr\u003e13.3.4.3 Functionalized graphene sheets and nanocomposites \u003cbr\u003e13.4 Conclusions \u003cbr\u003eGlossary of materials and techniques referred to in this chapter \u003cbr\u003eReferences \u003cbr\u003eAppendix \u003cbr\u003eGlossary of abbreviations \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Injection Moulding 200...
$180.00
{"id":11242238212,"title":"Injection Moulding 2002, Barcelona, Spain, 18th- 19th March, 2002","handle":"978-1-85957-314-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings, 2002 \u003cbr\u003eISBN 978-1-85957-314-3 \u003cbr\u003e\u003cbr\u003eBarcelona, Spain, 18th- 19th March 2002\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive technical programme provided presentations from leading experts in the injection moulding and related fields. Papers covered material development and design solutions, optimisation of the injection moulding process through 3D simulation techniques and computer-aided engineering (CAE), issues of globalisation within the industry, opportunities provided by the internet and e-commerce, the use of gas and water assisted moulding techniques help to reduce cycle times and improve quality, and rapid tooling design and production processes. \u003cbr\u003e\u003cbr\u003eThe Injection Moulding 2002 conference provided an excellent opportunity to hear the latest injection moulding developments and gain a truly global perspective of this important industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable cellpadding=\"0\" cellspacing=\"10\" border=\"0\" class=\"rapcss\" width=\"100%\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd valign=\"top\"\u003e\n\u003ctable border=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd colspan=\"2\"\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" style=\"font-family: verdana, geneva;\"\u003e\u003cspan size=\"1\" style=\"font-size: xx-small;\"\u003eTrue 3D Simulation Techniques of Injection Moulding and Related Processes \u003cbr\u003e\u003ci\u003eDavid Hsu, CoreTech System Co, Taiwan \u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eUsing 3D Simulation for the Optimisation of Injection Moulded Thermoset Materials for Automotive Applications \u003cbr\u003e\u003ci\u003eLothar Kallien, Sigma Engineering GmbH, Germany \u003c\/i\u003eWhy Real-time Production and Process Monitoring \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndy Jewell, Mattec Corp, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eProfit from Redesign Tooling and Leadership Change \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eWilhelm O Morgan, Kangan Batman College of Technical and Further Education, Australia \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eOptimisation of the Plastic Injection Moulding Process via Expert Systems \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003elluis Chico, Fundacion ASCAMM, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Water Injection Technique (WIT) - Opportunities and Challenges \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eTim Jüntgen, Institute of Plastics Processing (IKV), Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eGas and Water Injection Moulding \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndreas Janisch, Factor GmbH, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eKoolgas: Cryogenic gas-assisted injection moulding - an alternative to conventional GAIM \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRui Magalhaes, University of Warwick, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRe-Shaping the future of Plastics (e-marketplace) \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJoachim Franke, Omnexus, Switzerland \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Impact of Patent Protection on the Globalization of the Mold and Hot Runner Industries \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eGeorge Olaru, Mold-Masters Ltd, Canada \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe International Capture of Intellect \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eWilhelm Morgan, Kangan Batman College of Technical and Further Education, Australia \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRecent developments in flame retardants systems to improve melt flow of thermoplastics \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRonald Wilmer, DSBG Eurobrom BV, The Netherlands \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eHybrid Technology \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEduardo Ortiz, Bayer Hispania SA, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eApplication of co-injection process to handles for the gear lever (multi-component injection mouldng) \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRafael B Garcia-Atxabe, Fundacion GAIKER, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eIn mould painting using granular injected paint technology \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJo C Love, University of Warwick, UK \u003c\/span\u003e\u003c\/i\u003e\u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSystem Solution for Decorated Mouldings by IMC \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJoachim Berthold, Battenfield GmbH, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Origin of the Surface Defect 'Tiger Stripes' on Injection Moulded Products \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAnabelle Legrix, Imerys Minerals Ltd, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSurface 'Marbling' in Mineral Filled Nylon: Origins and Solutions \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eArie Schepens, DSM Petrochemicals, The Netherlands \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eLong-term design for multi-shot moulding \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndi Clements, Rapra Technology, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe breakthrough in Rapid Tooling - Increasing precision and efficiency in Direct Metal Laser-Sintering with 20 micron layers \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eDietmar Frank, EOS GmbH - Electro Optical Systems, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" style=\"font-family: verdana, geneva;\"\u003e\u003cspan size=\"1\" style=\"font-size: xx-small;\"\u003eMagics Tooling Expert \u003cbr\u003e\u003ci\u003eJohan Pauwels, Materialise, Belgium\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003c\/td\u003e\n\u003ctd valign=\"top\" align=\"center\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e\u003c\/span\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e","published_at":"2017-06-22T21:14:37-04:00","created_at":"2017-06-22T21:14:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","3D simulation techniques","automotive applications","book","co-injection","cryogenic","injected paint technology","injection moulding","molding","multi component injection mouldng","optimisation","p-processing","polymer","process monitoring","surface defect","thermoset materials","tooling"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378427396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Injection Moulding 2002, Barcelona, Spain, 18th- 19th March, 2002","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-314-3.jpg?v=1499478985"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-314-3.jpg?v=1499478985","options":["Title"],"media":[{"alt":null,"id":356461740125,"position":1,"preview_image":{"aspect_ratio":0.715,"height":499,"width":357,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-314-3.jpg?v=1499478985"},"aspect_ratio":0.715,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-314-3.jpg?v=1499478985","width":357}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings, 2002 \u003cbr\u003eISBN 978-1-85957-314-3 \u003cbr\u003e\u003cbr\u003eBarcelona, Spain, 18th- 19th March 2002\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive technical programme provided presentations from leading experts in the injection moulding and related fields. Papers covered material development and design solutions, optimisation of the injection moulding process through 3D simulation techniques and computer-aided engineering (CAE), issues of globalisation within the industry, opportunities provided by the internet and e-commerce, the use of gas and water assisted moulding techniques help to reduce cycle times and improve quality, and rapid tooling design and production processes. \u003cbr\u003e\u003cbr\u003eThe Injection Moulding 2002 conference provided an excellent opportunity to hear the latest injection moulding developments and gain a truly global perspective of this important industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable cellpadding=\"0\" cellspacing=\"10\" border=\"0\" class=\"rapcss\" width=\"100%\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd valign=\"top\"\u003e\n\u003ctable border=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd colspan=\"2\"\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" style=\"font-family: verdana, geneva;\"\u003e\u003cspan size=\"1\" style=\"font-size: xx-small;\"\u003eTrue 3D Simulation Techniques of Injection Moulding and Related Processes \u003cbr\u003e\u003ci\u003eDavid Hsu, CoreTech System Co, Taiwan \u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eUsing 3D Simulation for the Optimisation of Injection Moulded Thermoset Materials for Automotive Applications \u003cbr\u003e\u003ci\u003eLothar Kallien, Sigma Engineering GmbH, Germany \u003c\/i\u003eWhy Real-time Production and Process Monitoring \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndy Jewell, Mattec Corp, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eProfit from Redesign Tooling and Leadership Change \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eWilhelm O Morgan, Kangan Batman College of Technical and Further Education, Australia \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eOptimisation of the Plastic Injection Moulding Process via Expert Systems \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003elluis Chico, Fundacion ASCAMM, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Water Injection Technique (WIT) - Opportunities and Challenges \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eTim Jüntgen, Institute of Plastics Processing (IKV), Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eGas and Water Injection Moulding \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndreas Janisch, Factor GmbH, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eKoolgas: Cryogenic gas-assisted injection moulding - an alternative to conventional GAIM \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRui Magalhaes, University of Warwick, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRe-Shaping the future of Plastics (e-marketplace) \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJoachim Franke, Omnexus, Switzerland \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Impact of Patent Protection on the Globalization of the Mold and Hot Runner Industries \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eGeorge Olaru, Mold-Masters Ltd, Canada \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe International Capture of Intellect \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eWilhelm Morgan, Kangan Batman College of Technical and Further Education, Australia \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRecent developments in flame retardants systems to improve melt flow of thermoplastics \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRonald Wilmer, DSBG Eurobrom BV, The Netherlands \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eHybrid Technology \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEduardo Ortiz, Bayer Hispania SA, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eApplication of co-injection process to handles for the gear lever (multi-component injection mouldng) \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRafael B Garcia-Atxabe, Fundacion GAIKER, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eIn mould painting using granular injected paint technology \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJo C Love, University of Warwick, UK \u003c\/span\u003e\u003c\/i\u003e\u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSystem Solution for Decorated Mouldings by IMC \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJoachim Berthold, Battenfield GmbH, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Origin of the Surface Defect 'Tiger Stripes' on Injection Moulded Products \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAnabelle Legrix, Imerys Minerals Ltd, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSurface 'Marbling' in Mineral Filled Nylon: Origins and Solutions \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eArie Schepens, DSM Petrochemicals, The Netherlands \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eLong-term design for multi-shot moulding \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndi Clements, Rapra Technology, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe breakthrough in Rapid Tooling - Increasing precision and efficiency in Direct Metal Laser-Sintering with 20 micron layers \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eDietmar Frank, EOS GmbH - Electro Optical Systems, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" style=\"font-family: verdana, geneva;\"\u003e\u003cspan size=\"1\" style=\"font-size: xx-small;\"\u003eMagics Tooling Expert \u003cbr\u003e\u003ci\u003eJohan Pauwels, Materialise, Belgium\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003c\/td\u003e\n\u003ctd valign=\"top\" align=\"center\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e\u003c\/span\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e"}
Introduction to Automo...
$144.00
{"id":11242224580,"title":"Introduction to Automotive Composites","handle":"978-1-85957-279-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Tucker WMG, Warwick, and K. Lindsey, Gibbs Technology Ltd., Nuneaton \u003cbr\u003eISBN 978-1-85957-279-5 \u003cbr\u003e\u003cbr\u003epages: 200\n\u003ch5\u003eSummary\u003c\/h5\u003e\nComposites are being used more and more in the automotive industry, because of their strength, weight, quality and cost advantages. In 1998-1999, to further knowledge of composites, the Rover Group in conjunction with the Warwick Manufacturing Group devised a Composite Awareness course. This book is an updated and expanded version of the course notes. \u003cbr\u003e\u003cbr\u003eThis book is intended to give readers an appreciation of composites, materials properties, manufacturing technologies and the wider implications of using composites in the automotive sector. It will be useful for those already working with composites in automotive applications and for those who are considering using them in the future.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 What are Composites? \u003cbr\u003eThis chapter deals with the properties of composites, the types of composite commonly used for automotive applications and reinforcement with fibres. \u003cbr\u003e\u003cbr\u003e2 Polymer Chemistry and Physics \u003cbr\u003eThis chapter explains how polymers are formed and how the structure affects the physical and chemical properties of the resulting composite. \u003cbr\u003e\u003cbr\u003e3 Composite Ingredients \u003cbr\u003eThe differences between thermoplastics and thermosets are discussed. \u003cbr\u003e\u003cbr\u003e4 General Properties of Composites \u003cbr\u003eThe physical properties of composites, stiffness, strength, and toughness are explained and how these properties influence what sort of composite is obtained. Test methods and manufacturing methods are also covered. \u003cbr\u003e\u003cbr\u003e5 How can we use Composites in Car Manufacture? \u003cbr\u003eThe reasons for using composites are discussed. Examples are given of the use of composites in specific automotive examples. \u003cbr\u003e\u003cbr\u003e6 Manufacturing with Thermoset Composites. \u003cbr\u003eThis chapter covers manufacturing methods, such as resin infusion, pre-pregging, resin transfer moulding, structural reaction injection moulding, filament winding, and pultrusion. \u003cbr\u003e\u003cbr\u003e7 Manufacturing with Thermoplastic Composites \u003cbr\u003eThis chapter discusses manufacturing methods such as log fibre GMT and short fibre injection moulding. \u003cbr\u003e\u003cbr\u003e8 Economics of Composites Manufacture \u003cbr\u003eCovers cost analysis, comparison of materials costs and parts integration and modules. \u003cbr\u003e\u003cbr\u003e9 What to do with Composites at the end of Vehicle Life. \u003cbr\u003eMechanical and chemical recycling, thermal conversion and energy recovery are all covered in this chapter. \u003cbr\u003e\u003cbr\u003e10 The Future of Composites. \u003cbr\u003eThis chapter discusses the advantages of using composites, hypercars, and gives examples of future uses of composites indoors, bonnets and other automotive structures. \u003cbr\u003e\u003cbr\u003e11 Design Guidelines for Composites. \u003cbr\u003eThis chapter covers designing for composites, including choice of materials.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNick Tucker's first involvement in composites was a teenager, making canoes and motorcycle parts, after several adventures in further and higher education he started his industrial career in minerals processing. After reading for a Ph.D. at the University of Bradford based on the control of a reaction injection moulding (RIM) machine, he worked as a contract researcher at PERA. He then manufactured fire-resistant polyurethane foam articles including prison mattresses and the insulating linings for the air conditioning system in Hong Kong International Airport, before moving to the Warwick Manufacturing Group, where he is now the Faraday research fellow. He is now working to provide research and development facilities for small to medium sized enterprises and researching into the manufacture of composites from sustainable origin materials. \u003cbr\u003e\u003cbr\u003eKevin Lindsey studied at Brunel University, where he gained a first-class degree in materials science. After graduation, he took up a position at ICI in the acrylics business group. During this time Kevin started work on developing resin systems for improved mechanical properties, in particular, he developed techniques investigation of fibre\/matrix interface adhesion. Kevin continued his studies in this subject at the University of Nottingham where he gained a Ph.D. in mechanical engineering. He then joined the Rover Group where he worked on research projects investigating low mass materials for vehicle bodies, including the SALVO projects with the Warwick Manufacturing Group. He is now a Principal Engineer with Gibbs Technologies Ltd., working on the development of a novel niche vehicle.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:55-04:00","created_at":"2017-06-22T21:13:55-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","composites","fiber","filament winding","injection moulding","materials properties","molding","p-structural","plastic","polymer","pultrusion","rubber","technology"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378385476,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Introduction to Automotive Composites","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-279-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5_2f35f4e9-dfca-42a9-8766-e7f32404fb5a.jpg?v=1499724646"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5_2f35f4e9-dfca-42a9-8766-e7f32404fb5a.jpg?v=1499724646","options":["Title"],"media":[{"alt":null,"id":356471701597,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5_2f35f4e9-dfca-42a9-8766-e7f32404fb5a.jpg?v=1499724646"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-208-5_2f35f4e9-dfca-42a9-8766-e7f32404fb5a.jpg?v=1499724646","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Tucker WMG, Warwick, and K. Lindsey, Gibbs Technology Ltd., Nuneaton \u003cbr\u003eISBN 978-1-85957-279-5 \u003cbr\u003e\u003cbr\u003epages: 200\n\u003ch5\u003eSummary\u003c\/h5\u003e\nComposites are being used more and more in the automotive industry, because of their strength, weight, quality and cost advantages. In 1998-1999, to further knowledge of composites, the Rover Group in conjunction with the Warwick Manufacturing Group devised a Composite Awareness course. This book is an updated and expanded version of the course notes. \u003cbr\u003e\u003cbr\u003eThis book is intended to give readers an appreciation of composites, materials properties, manufacturing technologies and the wider implications of using composites in the automotive sector. It will be useful for those already working with composites in automotive applications and for those who are considering using them in the future.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 What are Composites? \u003cbr\u003eThis chapter deals with the properties of composites, the types of composite commonly used for automotive applications and reinforcement with fibres. \u003cbr\u003e\u003cbr\u003e2 Polymer Chemistry and Physics \u003cbr\u003eThis chapter explains how polymers are formed and how the structure affects the physical and chemical properties of the resulting composite. \u003cbr\u003e\u003cbr\u003e3 Composite Ingredients \u003cbr\u003eThe differences between thermoplastics and thermosets are discussed. \u003cbr\u003e\u003cbr\u003e4 General Properties of Composites \u003cbr\u003eThe physical properties of composites, stiffness, strength, and toughness are explained and how these properties influence what sort of composite is obtained. Test methods and manufacturing methods are also covered. \u003cbr\u003e\u003cbr\u003e5 How can we use Composites in Car Manufacture? \u003cbr\u003eThe reasons for using composites are discussed. Examples are given of the use of composites in specific automotive examples. \u003cbr\u003e\u003cbr\u003e6 Manufacturing with Thermoset Composites. \u003cbr\u003eThis chapter covers manufacturing methods, such as resin infusion, pre-pregging, resin transfer moulding, structural reaction injection moulding, filament winding, and pultrusion. \u003cbr\u003e\u003cbr\u003e7 Manufacturing with Thermoplastic Composites \u003cbr\u003eThis chapter discusses manufacturing methods such as log fibre GMT and short fibre injection moulding. \u003cbr\u003e\u003cbr\u003e8 Economics of Composites Manufacture \u003cbr\u003eCovers cost analysis, comparison of materials costs and parts integration and modules. \u003cbr\u003e\u003cbr\u003e9 What to do with Composites at the end of Vehicle Life. \u003cbr\u003eMechanical and chemical recycling, thermal conversion and energy recovery are all covered in this chapter. \u003cbr\u003e\u003cbr\u003e10 The Future of Composites. \u003cbr\u003eThis chapter discusses the advantages of using composites, hypercars, and gives examples of future uses of composites indoors, bonnets and other automotive structures. \u003cbr\u003e\u003cbr\u003e11 Design Guidelines for Composites. \u003cbr\u003eThis chapter covers designing for composites, including choice of materials.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNick Tucker's first involvement in composites was a teenager, making canoes and motorcycle parts, after several adventures in further and higher education he started his industrial career in minerals processing. After reading for a Ph.D. at the University of Bradford based on the control of a reaction injection moulding (RIM) machine, he worked as a contract researcher at PERA. He then manufactured fire-resistant polyurethane foam articles including prison mattresses and the insulating linings for the air conditioning system in Hong Kong International Airport, before moving to the Warwick Manufacturing Group, where he is now the Faraday research fellow. He is now working to provide research and development facilities for small to medium sized enterprises and researching into the manufacture of composites from sustainable origin materials. \u003cbr\u003e\u003cbr\u003eKevin Lindsey studied at Brunel University, where he gained a first-class degree in materials science. After graduation, he took up a position at ICI in the acrylics business group. During this time Kevin started work on developing resin systems for improved mechanical properties, in particular, he developed techniques investigation of fibre\/matrix interface adhesion. Kevin continued his studies in this subject at the University of Nottingham where he gained a Ph.D. in mechanical engineering. He then joined the Rover Group where he worked on research projects investigating low mass materials for vehicle bodies, including the SALVO projects with the Warwick Manufacturing Group. He is now a Principal Engineer with Gibbs Technologies Ltd., working on the development of a novel niche vehicle.\u003cbr\u003e\u003cbr\u003e"}
Introduction to Fluoro...
$169.00
{"id":11242203268,"title":"Introduction to Fluoropolymers, 1st Edition","handle":"9781455774425","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ebnesajjad \u003cbr\u003eISBN 9781455774425 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eMaterials, Technology, and Applications\u003c\/p\u003e\n\u003cp\u003ePages: 336 \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Demystifies fluoropolymers for a broad audience of engineers in areas such as product design and manufacturing.\u003cbr\u003e\u003cbr\u003e- Unlocks the potential of fluoropolymers for a wide range of applications across sectors such as aerospace, energy, and medical devices.\u003cbr\u003e\u003cbr\u003e- Ideal for both recently qualified engineers, and experienced engineers with limited experience of fluoropolymers. Also provides background knowledge for non-engineers requiring a grounding in fluoropolymers, e.g. technical management, technical sales, and support.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eDr. Ebnesajjad demystifies fluoropolymers for a wide audience of designers, engineers and product designers--providing them with the toolkit required to unlock the potential of this important group of high performance polymers for applications across a wide range of market sectors: automotive, aerospace, medical devices, high performance apparel, oil \u0026amp; gas, renewable energy \/ solar photovoltaics, electronics \/ semiconductor, pharmaceuticals, chemical processing, etc.\u003cbr\u003e\u003cbr\u003eProperties and applications are illustrated by real-world examples as diverse as waterproof clothing, vascular grafts, and coatings for aircraft interiors. The different applications of fluoropolymers show the benefits of a group of materials that are highly water-repellent and flame-retardant, with unrivaled lubrication properties and a high level of biocompatibility. Health and safety and environmental aspects are also covered throughout the book.\u003cbr\u003e\u003cbr\u003eThis practical guide to fluoropolymers is ideal for both recently qualified engineers and experienced engineers with limited experience of the polymer group. The material on the development of fluoropolymers and their applications will provide an easy entry point for technicians and technical sales and will also be of interest to those for whom fluoropolymers are their specialty.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1 A Day with the Smiths: Fluoropolymers in Daily Life\u003cbr\u003eChapter 2 Fluorine and Fluorocarbons\u003cbr\u003eChapter 3 History and Applications of Fluoropolymers\u003cbr\u003eChapter 4 History and Applications of Expanded Polytetrafluoroethylene (aka Gore-Tex® Membranes\u003cbr\u003eChapter 5 History and Applications of Polyvinyl Fluoride\u003cbr\u003eChapter 6 Introduction to Tetrafluoroethylene Polymers (incl. APFO and its Replacements)\u003cbr\u003eChapter 7 Manufacturing of Polytetrafluoroethylene\u003cbr\u003eChapter 8 Fluorinated Additives\u003cbr\u003eChapter 9 Introduction to Vinylidene Fluoride Polymers\u003cbr\u003eChapter 10 Introduction to Fluoroelastomers\u003cbr\u003eChapter 11 History and Applications of Non-Stick Coatings\u003cbr\u003eChapter 12 History and Applications of Fluorinated Ionomers\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eDr. Sina Ebnesajjad\u003c\/div\u003e\n\u003cdiv\u003eFluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:47-04:00","created_at":"2017-06-22T21:12:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","aerospace","applications of fluoropolymers","book","energy","fluoropolymers","medical","p-chemistry","polymer"],"price":16900,"price_min":16900,"price_max":16900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316100,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Introduction to Fluoropolymers, 1st Edition","public_title":null,"options":["Default Title"],"price":16900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781455774425","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ebnesajjad \u003cbr\u003eISBN 9781455774425 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eMaterials, Technology, and Applications\u003c\/p\u003e\n\u003cp\u003ePages: 336 \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Demystifies fluoropolymers for a broad audience of engineers in areas such as product design and manufacturing.\u003cbr\u003e\u003cbr\u003e- Unlocks the potential of fluoropolymers for a wide range of applications across sectors such as aerospace, energy, and medical devices.\u003cbr\u003e\u003cbr\u003e- Ideal for both recently qualified engineers, and experienced engineers with limited experience of fluoropolymers. Also provides background knowledge for non-engineers requiring a grounding in fluoropolymers, e.g. technical management, technical sales, and support.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eDr. Ebnesajjad demystifies fluoropolymers for a wide audience of designers, engineers and product designers--providing them with the toolkit required to unlock the potential of this important group of high performance polymers for applications across a wide range of market sectors: automotive, aerospace, medical devices, high performance apparel, oil \u0026amp; gas, renewable energy \/ solar photovoltaics, electronics \/ semiconductor, pharmaceuticals, chemical processing, etc.\u003cbr\u003e\u003cbr\u003eProperties and applications are illustrated by real-world examples as diverse as waterproof clothing, vascular grafts, and coatings for aircraft interiors. The different applications of fluoropolymers show the benefits of a group of materials that are highly water-repellent and flame-retardant, with unrivaled lubrication properties and a high level of biocompatibility. Health and safety and environmental aspects are also covered throughout the book.\u003cbr\u003e\u003cbr\u003eThis practical guide to fluoropolymers is ideal for both recently qualified engineers and experienced engineers with limited experience of the polymer group. The material on the development of fluoropolymers and their applications will provide an easy entry point for technicians and technical sales and will also be of interest to those for whom fluoropolymers are their specialty.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1 A Day with the Smiths: Fluoropolymers in Daily Life\u003cbr\u003eChapter 2 Fluorine and Fluorocarbons\u003cbr\u003eChapter 3 History and Applications of Fluoropolymers\u003cbr\u003eChapter 4 History and Applications of Expanded Polytetrafluoroethylene (aka Gore-Tex® Membranes\u003cbr\u003eChapter 5 History and Applications of Polyvinyl Fluoride\u003cbr\u003eChapter 6 Introduction to Tetrafluoroethylene Polymers (incl. APFO and its Replacements)\u003cbr\u003eChapter 7 Manufacturing of Polytetrafluoroethylene\u003cbr\u003eChapter 8 Fluorinated Additives\u003cbr\u003eChapter 9 Introduction to Vinylidene Fluoride Polymers\u003cbr\u003eChapter 10 Introduction to Fluoroelastomers\u003cbr\u003eChapter 11 History and Applications of Non-Stick Coatings\u003cbr\u003eChapter 12 History and Applications of Fluorinated Ionomers\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eDr. Sina Ebnesajjad\u003c\/div\u003e\n\u003cdiv\u003eFluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Introduction to Plasti...
$120.00
{"id":11242216068,"title":"Introduction to Plastics Recycling, 2nd Edition","handle":"978-1-84735-078-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-078-7 \u003cbr\u003e\u003cbr\u003eSoft-backed, 173 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAlthough recycling has a long history, it is only relatively recently that environmental protection and waste management issues have come to the forefront of both public and political awareness. Outside the fields of expertise, generally little is known about either plastics or their recyclability. \u003cbr\u003e\u003cbr\u003eAs in the successful first edition, this book provides straightforward information on plastic materials and technology, including the options for recycling plastics, with a special focus on mechanical recycling. It touches on all the major problems associated with recovering and recycling plastics at a level intended to be accessible to any reader with an interest in this field, whatever their background. It also looks at some of the broader issues surrounding successful waste management of plastics. \u003cbr\u003e\u003cbr\u003eThis new edition reflects the great strides that have been made to increase recycling rates worldwide in recent years. It considers the expansion of infrastructure in the UK to support plastic recycling and major achievements that have been made in gaining widespread public support and participation for recycling schemes; specifically the need to manage waste on an individual household level. Current issues surrounding council recycling of plastic bottles, and the practice of providing free plastic carrier bags by supermarkets, are also considered. \u003cbr\u003e\u003cbr\u003eBiopolymers are expected to have a major impact on plastic markets in the future and therefore some of the issues of biodegradability versus recycling are expanded in this second edition, as is the wider context of life cycle analysis and legislation. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features...\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eClear, easy to understand text\u003c\/li\u003e\n\u003cli\u003eWritten for a broad audience both within and outside the polymer industry\u003c\/li\u003e\n\u003cli\u003eGood introduction to plastic materials and technology with useful illustrations\u003c\/li\u003e\n\u003cli\u003eExplains recycling terminology, technology, and material quality issues\u003c\/li\u003e\n\u003cli\u003eUp-to-date information on the plastics recycling infrastructure and recent developments\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nReviewed.\u003cbr\u003e\u003cbr\u003eAbout the 1st Edition\u003cbr\u003e\"...This book has been well written and great care is taken to make the information accessible. The lucid style and numerous internet based references should help any reader explore a promising area, and should, by design, lead to many returns.\" \u003cbr\u003e\u003cbr\u003eProf Roger C Hiorns \u003cbr\u003e[DOI: 10.1002\/pi.1471] \u003cbr\u003e2004 Society of Chemical Industry. Polymer International 0959–8103\/2004\u003cbr\u003e\u003cbr\u003ePreface \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e1. Introduction \u003cbr\u003e\u003cbr\u003e2. Back to Basics\u003c\/strong\u003e \u003cbr\u003e2.1 Polymers \u003cbr\u003e2.2 Thermoplastics \u003cbr\u003e2.2.1 Polyolefins \u003cbr\u003e2.2.2 Polyamides \u003cbr\u003e2.3 Thermosets \u003cbr\u003e2.4 The Formulation of Plastics \u003cbr\u003e2.5 Why Does Recyclate Always Seem to be Black? \u003cbr\u003e2.6 What Are Recyclates Used For? \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. The Effects of Processing on Thermoplastics\u003c\/strong\u003e \u003cbr\u003e3.1 Rheology \u003cbr\u003e3.2 Heat \u003cbr\u003e3.3 Physical and Chemical Changes \u003cbr\u003e3.4 Assessing Property Deterioration Caused by Repeated Cycling by Injection Moulding \u003cbr\u003e3.5 Short-Term Mechanical Testing \u003cbr\u003e3.5.1 Tensile Testing \u003cbr\u003e3.5.2 Impact Testing \u003cbr\u003e3.5.3 Tensile and Impact Testing of Recycled Expanded Polystyrene \u003cbr\u003e\u003cbr\u003e4. Why Plastics Need to be Sorted \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Reprocessing of Thermoplastic Recyclates\u003c\/strong\u003e \u003cbr\u003e5.1 Contaminants \u003cbr\u003e5.2 Recycling Techniques \u003cbr\u003e5.3 Size Reduction \u003cbr\u003e5.4 Washing \u003cbr\u003e5.5 Identification and Sorting of Plastics \u003cbr\u003e5.6 Agglomeration \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Processing Techniques\u003c\/strong\u003e \u003cbr\u003e6.1 Extrusion \u003cbr\u003e6.1.1 Introduction \u003cbr\u003e6.1.2 Compounding \u003cbr\u003e6.1.3 Single-Screw Extruders \u003cbr\u003e6.1.4 Twin-Screw Extruders \u003cbr\u003e6.1.5 Co-Extrusion \u003cbr\u003e6.2 Supply Chains for Compounds \u003cbr\u003e6.3 Injection Moulding \u003cbr\u003e6.3.1 Waste During the Injection Moulding Process \u003cbr\u003e6.3.2 Co-Injection Moulding \u003cbr\u003e6.4 Blow Moulding \u003cbr\u003e6.4.1 Extrusion Blow Moulding \u003cbr\u003e6.4.2 Injection Blow Moulding \u003cbr\u003e6.5 Weld Lines \u003cbr\u003e6.6 Film Blowing \u003cbr\u003e6.7 Compression Moulding \u003cbr\u003e6.8 Thermoforming \u003cbr\u003e6.9 Processes for Incorporating Mixed Plastic Waste \u003cbr\u003e6.9.1 Intrusion Moulding \u003cbr\u003e6.9.2 Transfer Moulding \u003cbr\u003e6.9.3 Sinter Moulding \u003cbr\u003e6.10 Conclusion \u003cbr\u003e6.11 Case Study: Plastic Lumber \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Additives for Recyclates\u003c\/strong\u003e \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 The Degradation of Plastics \u003cbr\u003e7.3 Restabilisation of Recyclates \u003cbr\u003e7.4 Testing the Effects of Stabilisers \u003cbr\u003e7.4.1 Processing Stability \u003cbr\u003e7.4.2 Heat Stability \u003cbr\u003e7.4.3 Light Stability \u003cbr\u003e7.5 Stabilisers \u003cbr\u003e7.5.1 Thermal Stabilisation \u003cbr\u003e7.5.2 Light Stabilisation \u003cbr\u003e7.5.3 Additive Combinations for Specific Purposes \u003cbr\u003e7.6 Modifying the Properties of Plastics Through Incorporation of Miscellaneous Additives \u003cbr\u003e7.6.1 Degradable Plastics \u003cbr\u003e7.6.2 Compatibilisers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Other Methods of Recycling and Waste Disposal Options\u003c\/strong\u003e \u003cbr\u003e8.1 The Case of Thermosets \u003cbr\u003e8.2 Chemical Recycling \u003cbr\u003e8.3 Thermal Conversion Technologies \u003cbr\u003e8.3.1 Pyrolysis \u003cbr\u003e8.3.2 Hydrogenation \u003cbr\u003e8.3.3 Gasification \u003cbr\u003e8.4 Energy Recovery \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9. Creation of a Recycling and Recovery Infrastructure for Plastics \u003cbr\u003e\u003c\/strong\u003e9.1 Development \u003cbr\u003e9.2 Design for Disassembly and Recycling \u003cbr\u003e9.3 Developing Recyclate Markets \u003cbr\u003e9.4 Logistics \u003cbr\u003e9.5 Quality \u003cbr\u003e9.6 Education \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10. The Problem in Perspective: Europe\u003c\/strong\u003e \u003cbr\u003e10.1 Case Study: Packaging \u003cbr\u003e10.2 Integrated Product Policy \u003cbr\u003e10.2.1 Waste Electrical and Electronic Equipment Directive (WEEE) 2002\/96\/EC \u003cbr\u003e10.2.2 End of Life Vehicles Directive (ELV) 200\/53\/EC \u003cbr\u003e10.3 Conclusion \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11. Rise of the Biopolymers: Recycling versus Degradation\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eGlossary \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. She has now worked in the field of polymer processing for over twenty-four years and has published work on a variety of plastic related subjects.","published_at":"2017-06-22T21:13:28-04:00","created_at":"2017-06-22T21:13:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additives","biopolymers","book","plastics","polymer","processing","recycling","reprocessing","thermoplastics","waste disposal"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378356036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Introduction to Plastics Recycling, 2nd Edition","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-078-7 \u003cbr\u003e\u003cbr\u003eSoft-backed, 173 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAlthough recycling has a long history, it is only relatively recently that environmental protection and waste management issues have come to the forefront of both public and political awareness. Outside the fields of expertise, generally little is known about either plastics or their recyclability. \u003cbr\u003e\u003cbr\u003eAs in the successful first edition, this book provides straightforward information on plastic materials and technology, including the options for recycling plastics, with a special focus on mechanical recycling. It touches on all the major problems associated with recovering and recycling plastics at a level intended to be accessible to any reader with an interest in this field, whatever their background. It also looks at some of the broader issues surrounding successful waste management of plastics. \u003cbr\u003e\u003cbr\u003eThis new edition reflects the great strides that have been made to increase recycling rates worldwide in recent years. It considers the expansion of infrastructure in the UK to support plastic recycling and major achievements that have been made in gaining widespread public support and participation for recycling schemes; specifically the need to manage waste on an individual household level. Current issues surrounding council recycling of plastic bottles, and the practice of providing free plastic carrier bags by supermarkets, are also considered. \u003cbr\u003e\u003cbr\u003eBiopolymers are expected to have a major impact on plastic markets in the future and therefore some of the issues of biodegradability versus recycling are expanded in this second edition, as is the wider context of life cycle analysis and legislation. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features...\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eClear, easy to understand text\u003c\/li\u003e\n\u003cli\u003eWritten for a broad audience both within and outside the polymer industry\u003c\/li\u003e\n\u003cli\u003eGood introduction to plastic materials and technology with useful illustrations\u003c\/li\u003e\n\u003cli\u003eExplains recycling terminology, technology, and material quality issues\u003c\/li\u003e\n\u003cli\u003eUp-to-date information on the plastics recycling infrastructure and recent developments\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nReviewed.\u003cbr\u003e\u003cbr\u003eAbout the 1st Edition\u003cbr\u003e\"...This book has been well written and great care is taken to make the information accessible. The lucid style and numerous internet based references should help any reader explore a promising area, and should, by design, lead to many returns.\" \u003cbr\u003e\u003cbr\u003eProf Roger C Hiorns \u003cbr\u003e[DOI: 10.1002\/pi.1471] \u003cbr\u003e2004 Society of Chemical Industry. Polymer International 0959–8103\/2004\u003cbr\u003e\u003cbr\u003ePreface \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e1. Introduction \u003cbr\u003e\u003cbr\u003e2. Back to Basics\u003c\/strong\u003e \u003cbr\u003e2.1 Polymers \u003cbr\u003e2.2 Thermoplastics \u003cbr\u003e2.2.1 Polyolefins \u003cbr\u003e2.2.2 Polyamides \u003cbr\u003e2.3 Thermosets \u003cbr\u003e2.4 The Formulation of Plastics \u003cbr\u003e2.5 Why Does Recyclate Always Seem to be Black? \u003cbr\u003e2.6 What Are Recyclates Used For? \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. The Effects of Processing on Thermoplastics\u003c\/strong\u003e \u003cbr\u003e3.1 Rheology \u003cbr\u003e3.2 Heat \u003cbr\u003e3.3 Physical and Chemical Changes \u003cbr\u003e3.4 Assessing Property Deterioration Caused by Repeated Cycling by Injection Moulding \u003cbr\u003e3.5 Short-Term Mechanical Testing \u003cbr\u003e3.5.1 Tensile Testing \u003cbr\u003e3.5.2 Impact Testing \u003cbr\u003e3.5.3 Tensile and Impact Testing of Recycled Expanded Polystyrene \u003cbr\u003e\u003cbr\u003e4. Why Plastics Need to be Sorted \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Reprocessing of Thermoplastic Recyclates\u003c\/strong\u003e \u003cbr\u003e5.1 Contaminants \u003cbr\u003e5.2 Recycling Techniques \u003cbr\u003e5.3 Size Reduction \u003cbr\u003e5.4 Washing \u003cbr\u003e5.5 Identification and Sorting of Plastics \u003cbr\u003e5.6 Agglomeration \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Processing Techniques\u003c\/strong\u003e \u003cbr\u003e6.1 Extrusion \u003cbr\u003e6.1.1 Introduction \u003cbr\u003e6.1.2 Compounding \u003cbr\u003e6.1.3 Single-Screw Extruders \u003cbr\u003e6.1.4 Twin-Screw Extruders \u003cbr\u003e6.1.5 Co-Extrusion \u003cbr\u003e6.2 Supply Chains for Compounds \u003cbr\u003e6.3 Injection Moulding \u003cbr\u003e6.3.1 Waste During the Injection Moulding Process \u003cbr\u003e6.3.2 Co-Injection Moulding \u003cbr\u003e6.4 Blow Moulding \u003cbr\u003e6.4.1 Extrusion Blow Moulding \u003cbr\u003e6.4.2 Injection Blow Moulding \u003cbr\u003e6.5 Weld Lines \u003cbr\u003e6.6 Film Blowing \u003cbr\u003e6.7 Compression Moulding \u003cbr\u003e6.8 Thermoforming \u003cbr\u003e6.9 Processes for Incorporating Mixed Plastic Waste \u003cbr\u003e6.9.1 Intrusion Moulding \u003cbr\u003e6.9.2 Transfer Moulding \u003cbr\u003e6.9.3 Sinter Moulding \u003cbr\u003e6.10 Conclusion \u003cbr\u003e6.11 Case Study: Plastic Lumber \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Additives for Recyclates\u003c\/strong\u003e \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 The Degradation of Plastics \u003cbr\u003e7.3 Restabilisation of Recyclates \u003cbr\u003e7.4 Testing the Effects of Stabilisers \u003cbr\u003e7.4.1 Processing Stability \u003cbr\u003e7.4.2 Heat Stability \u003cbr\u003e7.4.3 Light Stability \u003cbr\u003e7.5 Stabilisers \u003cbr\u003e7.5.1 Thermal Stabilisation \u003cbr\u003e7.5.2 Light Stabilisation \u003cbr\u003e7.5.3 Additive Combinations for Specific Purposes \u003cbr\u003e7.6 Modifying the Properties of Plastics Through Incorporation of Miscellaneous Additives \u003cbr\u003e7.6.1 Degradable Plastics \u003cbr\u003e7.6.2 Compatibilisers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Other Methods of Recycling and Waste Disposal Options\u003c\/strong\u003e \u003cbr\u003e8.1 The Case of Thermosets \u003cbr\u003e8.2 Chemical Recycling \u003cbr\u003e8.3 Thermal Conversion Technologies \u003cbr\u003e8.3.1 Pyrolysis \u003cbr\u003e8.3.2 Hydrogenation \u003cbr\u003e8.3.3 Gasification \u003cbr\u003e8.4 Energy Recovery \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9. Creation of a Recycling and Recovery Infrastructure for Plastics \u003cbr\u003e\u003c\/strong\u003e9.1 Development \u003cbr\u003e9.2 Design for Disassembly and Recycling \u003cbr\u003e9.3 Developing Recyclate Markets \u003cbr\u003e9.4 Logistics \u003cbr\u003e9.5 Quality \u003cbr\u003e9.6 Education \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10. The Problem in Perspective: Europe\u003c\/strong\u003e \u003cbr\u003e10.1 Case Study: Packaging \u003cbr\u003e10.2 Integrated Product Policy \u003cbr\u003e10.2.1 Waste Electrical and Electronic Equipment Directive (WEEE) 2002\/96\/EC \u003cbr\u003e10.2.2 End of Life Vehicles Directive (ELV) 200\/53\/EC \u003cbr\u003e10.3 Conclusion \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11. Rise of the Biopolymers: Recycling versus Degradation\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eGlossary \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. She has now worked in the field of polymer processing for over twenty-four years and has published work on a variety of plastic related subjects."}
Joining Plastics 2006
$180.00
{"id":11242250116,"title":"Joining Plastics 2006","handle":"978-1-85957-570-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference \u003cbr\u003eISBN 978-1-85957-570-3 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eManufacturing with plastics often involves a bonding step from packaging, electronic and medical devices to large scale automotive, aerospace and construction projects. This is a continually developing field and experts at this second international conference on joining plastics debated the best methods and options for different applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eSponsored by The National Physical Laboratory, TWI Limited and Faraday Plastics this conference was an excellent opportunity for plastics manufacturers, design engineers and product developers to talk to experts in the field and discuss the latest developments.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1. ADHESIVES\u003cbr\u003eDr. Ewen Kellar, TWI Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 1: Bonding Plastics Stuck for a solution\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 2: Joining of plastics by adhesive bonding in automotive engineering\u003cbr\u003eDr. Hartwig Lohse, Ashland - Drew Ameroid Deutschland GmbH, Germany \u0026amp; Stephen Pitman, Ashland UK Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 3: New silicone reactive hot melt for plastic bonding\u003cbr\u003eDr. Patrick Vandereecken (Belgium), Dr. Loren Lower (USA), Dr. Klaus Kunz (Germany) \u0026amp; Ross Noel (USA), Dow Corning\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 4: Industrial applications bonding plastics with cyanoacrylates and UV curing adhesives\u003cbr\u003eBob Goss, Henkel Loctite Adhesives Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 2. ADHESIVE TESTING\u003cbr\u003eDr. William Broughton, National Physical Laboratory, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 5: A guide to adhesive testing\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 3. INFRARED WELDING, RESISTANCE WELDING, AND HOT PLATE WELDING\u003cbr\u003eProf Yasuo Kurosaki, University of Electro-Communications, Tomoya Matayoshi, Mitsui Chemicals Inc. \u0026amp; Kimitoshi Sato, Hiroshima Institute of Technology, Japan\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 6: An infrared radiation welding of natural thermoplastics using a solid heat sink without causing surface thermal damage\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 7: Innovations and potentials of high-speed hotplate welding\u003cbr\u003eProf Dr. Helmut Potente, Dr. Joachim Schnieders \u0026amp; Maik Bssing, University of Paderborn, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 4. COMPOSITE JOINTS\u003cbr\u003eGina Gohorianu, Robert Pique \u0026amp; Frdric Lachaud, ENSICA \u0026amp; Jean-Jacques Barrau, Paul Sabatier University, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 8: Composite bolted joints behaviour: Effects of hole machining defects\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 9: Single-bolt tension joints in pultruded GRP plate - effects of elevated temperature on failure loads, failure modes, load orientation and joint efficiency\u003cbr\u003eDr. Geoff Turvey, Lancaster University, UK \u0026amp; P Wang, Schlumberger, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 10: Energy absorbing joints between fibre reinforced plastics and metals\u003cbr\u003eDr. Ewen Kellar \u0026amp; Dr. Faye Smith, TWI Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 5. RESISTANCE WELDING\u003cbr\u003eDr. Ali Yousefpour, Marc-Andr Octeau \u0026amp; Mehdi Hojjati, Institute for Aerospace Research, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Resistance welding of thermoplastic composites using metal mesh heating elements\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 6. PRETREATMENT\u003cbr\u003ePaul Lippens, Europlasma NV, Belgium\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 12: Vacuum plasma pre-treatment enhances adhesive bonding of plastics in an environmentally friendly and cost-effective way\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 13: Surface treatment \u0026amp; engineering of plastics by online atmospheric plasma for industrial applications\u003cbr\u003eDr. Bhukan Parbhoo, Surface Chemistry Performance, UK \u0026amp; Dr.Thierry Sindzingre, Mr. Mathieu Thomachot \u0026amp; Ms. Eva Jouvet, AcXys Technologies, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 7. BONDING FLUOROPLASTICS\u003cbr\u003eDr. Derek Brewis \u0026amp; Dr. Ralf Dahm, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 14: Adhesion to Fluoropolymers\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 8. ULTRASONIC WELDING AND VIBRATION WELDING\u003cbr\u003ePeter Wells, Branson Ultrasonics, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 15: Ultrasonic \u0026amp; linear vibration welding of plastics - process selection \u0026amp; part design\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 16: Innovative component and joint designs for successful ultrasonic welding and joining of thermoplastics\u003cbr\u003eDr. Frank Rawson \u0026amp; Sue Osborne, FFR Ultrasonics Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 9. HEATED TOOL WELDING\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 17: Influence of internal properties to the weld seam quality\u003cbr\u003eProf. Dr.- Ing. Schmachtenberg, Dr.-Ing. Reiner Luetzeler \u0026amp; Dr.-Ing. Carsten Tuechert, Aachen University of Technology, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 10. LASER WELDING\u003cbr\u003eDr. Marcus Warwick \u0026amp; Marcus Gordon, TWI Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 18: Application studies using through-transmission laser welding of polymers\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 19: Laser welding of plastics - process and production technology\u003cbr\u003eDr. Dirk Hnsch, ProLas GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 20: Creating transparent laser weldings on thermoplastic components\u003cbr\u003eDr-Ing Rolf Klein \u0026amp; Dr. Gareth McGrath (UK), Gentex Corporation, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 21: Engineering plastics for laser welding\u003cbr\u003eEric van der Vegte \u0026amp; Dr Marnix van Gurp, DSM Engineering Plastics \u0026amp; Hans Hoekstra \u0026amp; Dr Alexa","published_at":"2017-06-22T21:15:15-04:00","created_at":"2017-06-22T21:15:15-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","adhesion","bonding","bonding fluoroplastics","book","laser welding","p-applications","plastics","polymer","surface","welding"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471236,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Joining Plastics 2006","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-570-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference \u003cbr\u003eISBN 978-1-85957-570-3 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eManufacturing with plastics often involves a bonding step from packaging, electronic and medical devices to large scale automotive, aerospace and construction projects. This is a continually developing field and experts at this second international conference on joining plastics debated the best methods and options for different applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eSponsored by The National Physical Laboratory, TWI Limited and Faraday Plastics this conference was an excellent opportunity for plastics manufacturers, design engineers and product developers to talk to experts in the field and discuss the latest developments.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1. ADHESIVES\u003cbr\u003eDr. Ewen Kellar, TWI Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 1: Bonding Plastics Stuck for a solution\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 2: Joining of plastics by adhesive bonding in automotive engineering\u003cbr\u003eDr. Hartwig Lohse, Ashland - Drew Ameroid Deutschland GmbH, Germany \u0026amp; Stephen Pitman, Ashland UK Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 3: New silicone reactive hot melt for plastic bonding\u003cbr\u003eDr. Patrick Vandereecken (Belgium), Dr. Loren Lower (USA), Dr. Klaus Kunz (Germany) \u0026amp; Ross Noel (USA), Dow Corning\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 4: Industrial applications bonding plastics with cyanoacrylates and UV curing adhesives\u003cbr\u003eBob Goss, Henkel Loctite Adhesives Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 2. ADHESIVE TESTING\u003cbr\u003eDr. William Broughton, National Physical Laboratory, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 5: A guide to adhesive testing\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 3. INFRARED WELDING, RESISTANCE WELDING, AND HOT PLATE WELDING\u003cbr\u003eProf Yasuo Kurosaki, University of Electro-Communications, Tomoya Matayoshi, Mitsui Chemicals Inc. \u0026amp; Kimitoshi Sato, Hiroshima Institute of Technology, Japan\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 6: An infrared radiation welding of natural thermoplastics using a solid heat sink without causing surface thermal damage\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 7: Innovations and potentials of high-speed hotplate welding\u003cbr\u003eProf Dr. Helmut Potente, Dr. Joachim Schnieders \u0026amp; Maik Bssing, University of Paderborn, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 4. COMPOSITE JOINTS\u003cbr\u003eGina Gohorianu, Robert Pique \u0026amp; Frdric Lachaud, ENSICA \u0026amp; Jean-Jacques Barrau, Paul Sabatier University, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 8: Composite bolted joints behaviour: Effects of hole machining defects\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 9: Single-bolt tension joints in pultruded GRP plate - effects of elevated temperature on failure loads, failure modes, load orientation and joint efficiency\u003cbr\u003eDr. Geoff Turvey, Lancaster University, UK \u0026amp; P Wang, Schlumberger, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 10: Energy absorbing joints between fibre reinforced plastics and metals\u003cbr\u003eDr. Ewen Kellar \u0026amp; Dr. Faye Smith, TWI Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 5. RESISTANCE WELDING\u003cbr\u003eDr. Ali Yousefpour, Marc-Andr Octeau \u0026amp; Mehdi Hojjati, Institute for Aerospace Research, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 11 Resistance welding of thermoplastic composites using metal mesh heating elements\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 6. PRETREATMENT\u003cbr\u003ePaul Lippens, Europlasma NV, Belgium\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 12: Vacuum plasma pre-treatment enhances adhesive bonding of plastics in an environmentally friendly and cost-effective way\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 13: Surface treatment \u0026amp; engineering of plastics by online atmospheric plasma for industrial applications\u003cbr\u003eDr. Bhukan Parbhoo, Surface Chemistry Performance, UK \u0026amp; Dr.Thierry Sindzingre, Mr. Mathieu Thomachot \u0026amp; Ms. Eva Jouvet, AcXys Technologies, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 7. BONDING FLUOROPLASTICS\u003cbr\u003eDr. Derek Brewis \u0026amp; Dr. Ralf Dahm, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 14: Adhesion to Fluoropolymers\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 8. ULTRASONIC WELDING AND VIBRATION WELDING\u003cbr\u003ePeter Wells, Branson Ultrasonics, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 15: Ultrasonic \u0026amp; linear vibration welding of plastics - process selection \u0026amp; part design\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 16: Innovative component and joint designs for successful ultrasonic welding and joining of thermoplastics\u003cbr\u003eDr. Frank Rawson \u0026amp; Sue Osborne, FFR Ultrasonics Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 9. HEATED TOOL WELDING\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 17: Influence of internal properties to the weld seam quality\u003cbr\u003eProf. Dr.- Ing. Schmachtenberg, Dr.-Ing. Reiner Luetzeler \u0026amp; Dr.-Ing. Carsten Tuechert, Aachen University of Technology, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eSESSION 10. LASER WELDING\u003cbr\u003eDr. Marcus Warwick \u0026amp; Marcus Gordon, TWI Ltd., UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 18: Application studies using through-transmission laser welding of polymers\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 19: Laser welding of plastics - process and production technology\u003cbr\u003eDr. Dirk Hnsch, ProLas GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 20: Creating transparent laser weldings on thermoplastic components\u003cbr\u003eDr-Ing Rolf Klein \u0026amp; Dr. Gareth McGrath (UK), Gentex Corporation, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 21: Engineering plastics for laser welding\u003cbr\u003eEric van der Vegte \u0026amp; Dr Marnix van Gurp, DSM Engineering Plastics \u0026amp; Hans Hoekstra \u0026amp; Dr Alexa"}
Liquid Chromatography
$165.00
{"id":11242203460,"title":"Liquid Chromatography","handle":"978-0-12-415807-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds; Fanali; Haddad; Poole; Schoenmakers; Lloyd \u003cbr\u003eISBN 978-0-12-415807-8 \u003cbr\u003e\u003cbr\u003eHardbound, 516 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eA single source of authoritative information on all aspects of the practice of modern liquid chromatography suitable for advanced students and professionals working in a laboratory or managerial capacity\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePractitioners of distillation and separation science looking for a quick access to the newest knowledge; graduate students searching for special applications; chemists; professional scientists in academia, industry and government laboratories; environmental engineers; mechanical engineers\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nMilestones in the Development of Liquid Chromatography\u003cbr\u003e\u003cbr\u003eKinetic Theory of Liquid Chromatography\u003cbr\u003e\u003cbr\u003eColumn Technology in Liquid Chromatography\u003cbr\u003e\u003cbr\u003eReversed-phase Liquid Chromatography\u003cbr\u003e\u003cbr\u003eSecondary Chemical Equilibria in Reversed-Phase Liquid Chromatography\u003cbr\u003e\u003cbr\u003eHydrophilic Interaction Liquid Chromatography\u003cbr\u003e\u003cbr\u003eHydrophobic Interaction Liquid Chromatography\u003cbr\u003e\u003cbr\u003eLiquid-Solid Chromatography\u003cbr\u003e\u003cbr\u003eIon Chromatography\u003cbr\u003e\u003cbr\u003eSize-exclusion chromatography\u003cbr\u003e\u003cbr\u003eSolvent Selection for Liquid Chromatography\u003cbr\u003e\u003cbr\u003eMethod development in Liquid Chromatography\u003cbr\u003e\u003cbr\u003eTheory and Practice of Gradient Elution Liquid Chromatography\u003cbr\u003e\u003cbr\u003eCoupled-Column Liquid Chromatography\u003cbr\u003e\u003cbr\u003eGeneral Instrumentation\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: Mass Spectrometry\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: FTIR and Raman\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: Nuclear Magnetic Resonance\u003cbr\u003e\u003cbr\u003eData Analysis Methods\u003cbr\u003e\u003cbr\u003eQuantitative Structure-Retention and Property Relationships\u003cbr\u003e\u003cbr\u003eModeling of Preparative Liquid Chromatography\u003cbr\u003e\u003cbr\u003eProcess Concepts in Preparative Liquid Chromatography\u003cbr\u003e\u003cbr\u003ePreparative Chromatography of Biopolymers\u003cbr\u003e\u003cbr\u003eMiniaturization and Microfluidics\u003cbr\u003e\u003cbr\u003eCapillary Electrochromatography\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eEdited by\u003c\/div\u003e\n\u003cdiv\u003eSalvatore Fanali, Istituto di Metodologie, CNR, Rome, Italy\u003c\/div\u003e\n\u003cdiv\u003ePaul R. Haddad, School of Chemistry, Univ. of Tasmania, Hobart, Australia\u003c\/div\u003e\n\u003cdiv\u003eColin Poole, Wayne State University, Detroit, MI, USA\u003c\/div\u003e\n\u003cdiv\u003ePeter Schoenmakers, University of Amsterdam, The Netherlands\u003c\/div\u003e\n\u003cdiv\u003eDavid Lloyd, Bristol-Myers Squibb, New Brunswick, NJ, USA\u003c\/div\u003e","published_at":"2017-06-22T21:12:48-04:00","created_at":"2017-06-22T21:12:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","advanced apectroscopic detectors","biopolymers","book","electrochromatography","liquid chromatography","p-chemical","polymer"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316292,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Liquid Chromatography","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-12-415807-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415807-8.jpg?v=1499624163"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415807-8.jpg?v=1499624163","options":["Title"],"media":[{"alt":null,"id":358509019229,"position":1,"preview_image":{"aspect_ratio":0.729,"height":499,"width":364,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415807-8.jpg?v=1499624163"},"aspect_ratio":0.729,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-12-415807-8.jpg?v=1499624163","width":364}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds; Fanali; Haddad; Poole; Schoenmakers; Lloyd \u003cbr\u003eISBN 978-0-12-415807-8 \u003cbr\u003e\u003cbr\u003eHardbound, 516 Pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eA single source of authoritative information on all aspects of the practice of modern liquid chromatography suitable for advanced students and professionals working in a laboratory or managerial capacity\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePractitioners of distillation and separation science looking for a quick access to the newest knowledge; graduate students searching for special applications; chemists; professional scientists in academia, industry and government laboratories; environmental engineers; mechanical engineers\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nMilestones in the Development of Liquid Chromatography\u003cbr\u003e\u003cbr\u003eKinetic Theory of Liquid Chromatography\u003cbr\u003e\u003cbr\u003eColumn Technology in Liquid Chromatography\u003cbr\u003e\u003cbr\u003eReversed-phase Liquid Chromatography\u003cbr\u003e\u003cbr\u003eSecondary Chemical Equilibria in Reversed-Phase Liquid Chromatography\u003cbr\u003e\u003cbr\u003eHydrophilic Interaction Liquid Chromatography\u003cbr\u003e\u003cbr\u003eHydrophobic Interaction Liquid Chromatography\u003cbr\u003e\u003cbr\u003eLiquid-Solid Chromatography\u003cbr\u003e\u003cbr\u003eIon Chromatography\u003cbr\u003e\u003cbr\u003eSize-exclusion chromatography\u003cbr\u003e\u003cbr\u003eSolvent Selection for Liquid Chromatography\u003cbr\u003e\u003cbr\u003eMethod development in Liquid Chromatography\u003cbr\u003e\u003cbr\u003eTheory and Practice of Gradient Elution Liquid Chromatography\u003cbr\u003e\u003cbr\u003eCoupled-Column Liquid Chromatography\u003cbr\u003e\u003cbr\u003eGeneral Instrumentation\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: Mass Spectrometry\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: FTIR and Raman\u003cbr\u003e\u003cbr\u003eAdvanced Spectroscopic Detectors for Identification and Quantification: Nuclear Magnetic Resonance\u003cbr\u003e\u003cbr\u003eData Analysis Methods\u003cbr\u003e\u003cbr\u003eQuantitative Structure-Retention and Property Relationships\u003cbr\u003e\u003cbr\u003eModeling of Preparative Liquid Chromatography\u003cbr\u003e\u003cbr\u003eProcess Concepts in Preparative Liquid Chromatography\u003cbr\u003e\u003cbr\u003ePreparative Chromatography of Biopolymers\u003cbr\u003e\u003cbr\u003eMiniaturization and Microfluidics\u003cbr\u003e\u003cbr\u003eCapillary Electrochromatography\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eEdited by\u003c\/div\u003e\n\u003cdiv\u003eSalvatore Fanali, Istituto di Metodologie, CNR, Rome, Italy\u003c\/div\u003e\n\u003cdiv\u003ePaul R. Haddad, School of Chemistry, Univ. of Tasmania, Hobart, Australia\u003c\/div\u003e\n\u003cdiv\u003eColin Poole, Wayne State University, Detroit, MI, USA\u003c\/div\u003e\n\u003cdiv\u003ePeter Schoenmakers, University of Amsterdam, The Netherlands\u003c\/div\u003e\n\u003cdiv\u003eDavid Lloyd, Bristol-Myers Squibb, New Brunswick, NJ, USA\u003c\/div\u003e"}
Low Environmental Impa...
$170.00
{"id":11242224324,"title":"Low Environmental Impact Polymers","handle":"978-1-85957-384-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Nick Tucker and Mark Johnson \u003cbr\u003eISBN 978-1-85957-384-6 \u003cbr\u003e\u003cbr\u003eWarwick Manufacturing Group, International Automotive Research Centre, University of Warwick\u003cbr\u003e\u003cbr\u003e360 pages\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years the use of renewable resources as chemical feedstocks for the synthesis of polymeric materials has attracted considerable attention. The reason for such activity is due to the finite nature of traditional petrochemical derived compounds in addition to economic and environmental considerations. Thus a key goal of the coming years will be the development of sustainable raw materials for the chemical industry that will replace current fossil-based feedstocks. The challenge for researchers is to develop natural and man-made synthetics that would reduce the emission of gases. \u003cbr\u003e\u003cbr\u003eThis book gives a thorough overview of the manufacture and uses of low environmental impact polymers. This book will provide information for the experienced user of polymers wanting to use biodegradable materials and also be useful to designers, specifiers, end users and waste managers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nCONTRIBUTORS\u003cbr\u003ePREFACE\u003cbr\u003eGUEST INTRODUCTION \u003cbr\u003e\u003cbr\u003e1 SYNTHESIS OF POLYMERS FROM SUSTAINABLE RESOURCE ORIGIN RAW MATERIALS\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Carbohydrates as Renewable Resources\u003cbr\u003e1.2.1 Cellulose\u003cbr\u003e1.2.2 Starch\u003cbr\u003e1.2.3 Hemicelluloses\u003cbr\u003e1.2.4 Polylactic acid\u003cbr\u003e1.2.5 Polyhydroxy-alkanoates (PHA)\u003cbr\u003e1.3 Oils and Fats as Chemical Feedstocks\u003cbr\u003e1.3.1 Hydroxylation (Ring Opening) of Vegetable Oil\u003cbr\u003e1.3.2 Vegetable Oils as Feedstocks for Polyurethane Polymers\u003cbr\u003e1.4 Conclusions\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 CHEMISTRY AND BIOLOGY OF POLYMER DEGRADATION\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Microbial Degradation of Natural and Synthetic Polyesters\u003cbr\u003e2.2.1 Polyhydroxyalkanoates\u003cbr\u003e2.2.2 Synthetic Polyesters\u003cbr\u003e2.3 Biodegradable Blends and Composites: Preparation, Characterisation, and Properties\u003cbr\u003e2.3.1 Microbial Polyesters\u003cbr\u003e2.3.2 PHB and PHBV Blend with other Polymer Blends\u003cbr\u003e2.3.3 Polycaprolactone (PCL)\u003cbr\u003e2.3.4 Starch\/Polymer Blends\u003cbr\u003e2.3.5 Polyesters\/High Amylose Starch Composites by Reactive Blending\u003cbr\u003e2.3.6 PCL\/PVOH\u003cbr\u003e2.3.7 Polylactide (PLA)\u003cbr\u003e2.3.8 PLA\/Bionolle\u003cbr\u003e2.4 Conclusions\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 QUANTIFYING THE RANGE OF PROPERTIES IN NATURAL RAW MATERIAL ORIGIN POLYMERS AND FIBRES\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Properties\u003cbr\u003e3.3 Variability in Natural Origin Materials\u003cbr\u003e3.4 The Influence of the Chemistry and Structure of Natural Origin Fibres Upon Their Properties\u003cbr\u003e3.4.1 The Chemistry and Ultrastructure of Natural Fibres\u003cbr\u003e3.4.2 The Influence of Fibre Ultrastructure Upon its Mechanical Properties\u003cbr\u003e3.5 The Influence of Fibre Extraction, Isolation and Processing upon the Properties of Bast Fibres\u003cbr\u003e3.5.1 Dew Retting\u003cbr\u003e3.5.2 Water Retting\u003cbr\u003e3.5.3 Enzyme Retting\u003cbr\u003e3.5.4 Chemical Retting\u003cbr\u003e3.6 The Influence of Fibre Damage upon the Mechanical Properties of Natural Fibres\u003cbr\u003e3.6.1 Micro-Compressive Damage or ‘Kink Bands’ in Lignocellulosic Fibres\u003cbr\u003e3.7 Mechanical Properties of Natural Fibres\u003cbr\u003e3.7.1 Regenerated Cellulose Fibres\u003cbr\u003e3.8 Fibre Testing\u003cbr\u003e3.9 Biopolymers\u003cbr\u003e3.9.1 Introduction\u003cbr\u003e3.9.2 Biopolymer Types\u003cbr\u003e3.9.3 Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 NATURAL FIBRES AS FILLERS\/REINFORCEMENTS IN THERMOPLASTICS\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.1.1 Agro-Fibres and Their Use in Thermoplastics\u003cbr\u003e4.2 Processing Considerations and Techniques\u003cbr\u003e4.3 Properties\u003cbr\u003e4.3.1 Mechanical Properties: Effects of Coupling and Fibre Content and Type\u003cbr\u003e4.3.2 Effect of Fibre and Polymer\u003cbr\u003e4.3.3 High Fibre-Filled Composites\u003cbr\u003e4.3.4 Dynamic Mechanical Properties, Temperature and Creep Behaviour\u003cbr\u003e4.3.5 Water Absorption\u003cbr\u003e4.3.6 Recycling and Reprocessing\u003cbr\u003e4.3.7 Accelerated Environmental Tests\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 MANUFACTURING TECHNOLOGIES FOR BIOPOLYMERS\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Manufacturing Methods\u003cbr\u003e5.2.1 Spinning and Fibre Production\u003cbr\u003e5.2.2 Extrusion and Compounding\u003cbr\u003e5.2.3 Injection Moulding\u003cbr\u003e5.2.4 Thermoset Injection Moulding\u003cbr\u003e5.2.5 Film Blowing\u003cbr\u003e5.2.6 Calendering and Coating\u003cbr\u003e5.2.7 Blow Moulding\u003cbr\u003e5.2.8 Thermoforming\u003cbr\u003e5.2.9 Compression Moulding\u003cbr\u003e5.2.10 Pultrusion\u003cbr\u003e5.2.11 RTM (Resin Transfer Moulding) and RIM (Reaction Injection Moulding)\u003cbr\u003e5.3 Processing Conditions\u003cbr\u003e5.4 Additives or Admixtures\u003cbr\u003e5.4.1 Plasticisers\u003cbr\u003e5.4.2 Fillers\u003cbr\u003e5.4.3 Flame Retardants\u003cbr\u003e5.4.4 Lubricants\u003cbr\u003e5.4.5 Colorants\u003cbr\u003e5.4.6 Blowing (Foaming) Agents\u003cbr\u003e5.4.7 Crosslinkers\u003cbr\u003e5.4.8 Biocides and Antimicrobials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 THE ECONOMICS AND MARKET POTENTIAL FOR LOW ENVIRONMENTAL IMPACT POLYMERS\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 A Brief History of Biopolymers\u003cbr\u003e6.3 Market Size\u003cbr\u003e6.4 Classifications and Costs of Biopolymers\u003cbr\u003e6.5 Current Uses of Biopolymers\u003cbr\u003e6.6 Driving Forces\u003cbr\u003e6.7 Political\u003cbr\u003e6.7.1 Legislation\u003cbr\u003e6.7.2 Government Initiatives\u003cbr\u003e6.8 Economic\u003cbr\u003e6.8.1 Increased Disposal Costs\u003cbr\u003e6.8.2 Increased Competition\u003cbr\u003e6.8.3 Polluter Pays\u003cbr\u003e6.8.4 The Rising Costs of Finite Resources\u003cbr\u003e6.9 Social\u003cbr\u003e6.9.1 The ‘Greening’ of Consumers\u003cbr\u003e6.9.2 Acceptance of Biopolymers\u003cbr\u003e6.10 Technical\u003cbr\u003e6.10.1 Economies of Scale\u003cbr\u003e6.10.2 ‘Organic’ Recycling versus Mechanical Recycling\u003cbr\u003e6.10.3 Further Development\u003cbr\u003e6.10.4 Incorporation of Fillers\u003cbr\u003e6.11 The Future for Biopolymers\u003cbr\u003e6.11.1 Short-Term\u003cbr\u003e6.11.2 Medium-Term\u003cbr\u003e6.11.3 Long-Term\u003cbr\u003e6.12 Conclusions\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 ECODESIGN\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Development of Ecodesign\u003cbr\u003e7.2.1 Ecodesign Theory\u003cbr\u003e7.2.2 Ecodesign Models\u003cbr\u003e7.2.3 Ecodesign Practice\u003cbr\u003e7.3 Implementing Ecodesign\u003cbr\u003e7.3.1 LiDS Wheel\u003cbr\u003e7.4 Examples of Ecodesign Projects\u003cbr\u003e7.4.1 Case Study 1: Philips NV\u003cbr\u003e7.4.2 Case Study 2: Dishlex\u003cbr\u003e7.4.3 Case Study 3: Kodak’s Recyclable Camera\u003cbr\u003e7.4.4 Case Study 4: Eco Kitchen\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 CASEIN ADHESIVES\u003cbr\u003e8.1 History\u003cbr\u003e8.2 Manufacture\u003cbr\u003e8.3 Types of Casein Glues and Their Uses\u003cbr\u003e8.3.1 Wood Glues\u003cbr\u003e8.3.2 Label Pastes\u003cbr\u003e8.3.3 Casein Latex\u003cbr\u003e8.4 Current and Future Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 PHA-BASED POLYMERS: MATERIALS FOR THE 21ST CENTURY\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 History of PHA\u003cbr\u003e9.3 Production\u003cbr\u003e9.4 Applications\u003cbr\u003eReference \u003cbr\u003e\u003cbr\u003e10 RENEWABLE RESOURCE-BASED POLYMERS\u003cbr\u003e10.1 NatureWorks PLA – The Technology\u003cbr\u003e10.2 Performance Without Sacrifice\u003cbr\u003e10.3 Environmental Benefits and Disposal Options\u003cbr\u003e10.4 ‘Committed to Sustainability Options’ \u003cbr\u003e\u003cbr\u003e11 POLYHYDROXYALKANOATES: THE NEXT GENERATION OF BIOPLASTICS\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.1.1 Scientific Achievements\u003cbr\u003e11.1.2 Commercial Developments\u003cbr\u003e11.1.3 Environmental Concerns\u003cbr\u003e11.2 Production of PHA\u003cbr\u003e11.2.1 Fermentations\u003cbr\u003e11.2.2 Production in Plants\u003cbr\u003e11.2.3 Chemical Synthesis\u003cbr\u003e11.2.4 Extraction and Purification\u003cbr\u003e11.3 General Properties\u003cbr\u003e11.3.1 Physico-Chemical Properties\u003cbr\u003e11.3.2 Degradation\u003cbr\u003e11.4 Industrial Applications\u003cbr\u003e11.4.1 Compounding\u003cbr\u003e11.4.2 Coating and Packaging\u003cbr\u003e11.4.3 Plastic Food Services Items\u003cbr\u003e11.4.4 Toner\u003cbr\u003e11.4.5 Paint\u003cbr\u003e11.4.6 Food Applications\u003cbr\u003e11.4.7 Other Applications\u003cbr\u003e11.5 Conclusion\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 THERMOSET PHENOLIC BIOPOLYMERS\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 Natural Plant-Based Resins\u003cbr\u003e12.2.1 General Reactions of Phenols\u003cbr\u003e12.2.2 Cashew Nut Shell Liquid\u003cbr\u003e12.3 Conclusions\u003cbr\u003eAcknowledgement\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 COMMERCIALLY AVAILABLE LOW ENVIRONMENTAL IMPACT POLYMERS\u003cbr\u003eAdditional Information\u003cbr\u003eReferences \u003cbr\u003eABBREVIATIONS\u003cbr\u003eINDEX\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNick Tucker has spent about half his working life in the manufacturing industry, working on production improvement in technical ceramics and as a line manager in fire retardant comfort foam manufacture. His gained his PhD at the University of Bradford, working on the manufacture of advanced composites and 2K mouldings by reaction injection moulding. Since he joined Warwick Manufacturing Group, he has developed a research portfolio covering the manufacture of low environmental impact biodegradable composites from sustainable resources – biological origin fibres such as hemp, flax, and jute, coupled with thermoset and thermoplastic biopolymers. Mark Johnson holds a Degree in Mechanical Engineering from the University of Northumbria and an MSc in Engineering Business Management from the University of Warwick. He is currently finishing his doctorate in Engineering Business Management at the University of Warwick. He has worked as a production engineer in composite fabrication, in addition to completing other projects including: kaizen implementation, time compression in service functions and optimisation of factory layouts. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry","published_at":"2017-06-22T21:13:55-04:00","created_at":"2017-06-22T21:13:55-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","biodegreadable","book","environment","environmental","feedstocks","health","microbial degradation","polymer","polymers","synthesis","waste"],"price":17000,"price_min":17000,"price_max":17000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378384516,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Low Environmental Impact Polymers","public_title":null,"options":["Default Title"],"price":17000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-384-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-384-6.jpg?v=1499624358"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-384-6.jpg?v=1499624358","options":["Title"],"media":[{"alt":null,"id":358509838429,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-384-6.jpg?v=1499624358"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-384-6.jpg?v=1499624358","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Nick Tucker and Mark Johnson \u003cbr\u003eISBN 978-1-85957-384-6 \u003cbr\u003e\u003cbr\u003eWarwick Manufacturing Group, International Automotive Research Centre, University of Warwick\u003cbr\u003e\u003cbr\u003e360 pages\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years the use of renewable resources as chemical feedstocks for the synthesis of polymeric materials has attracted considerable attention. The reason for such activity is due to the finite nature of traditional petrochemical derived compounds in addition to economic and environmental considerations. Thus a key goal of the coming years will be the development of sustainable raw materials for the chemical industry that will replace current fossil-based feedstocks. The challenge for researchers is to develop natural and man-made synthetics that would reduce the emission of gases. \u003cbr\u003e\u003cbr\u003eThis book gives a thorough overview of the manufacture and uses of low environmental impact polymers. This book will provide information for the experienced user of polymers wanting to use biodegradable materials and also be useful to designers, specifiers, end users and waste managers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nCONTRIBUTORS\u003cbr\u003ePREFACE\u003cbr\u003eGUEST INTRODUCTION \u003cbr\u003e\u003cbr\u003e1 SYNTHESIS OF POLYMERS FROM SUSTAINABLE RESOURCE ORIGIN RAW MATERIALS\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Carbohydrates as Renewable Resources\u003cbr\u003e1.2.1 Cellulose\u003cbr\u003e1.2.2 Starch\u003cbr\u003e1.2.3 Hemicelluloses\u003cbr\u003e1.2.4 Polylactic acid\u003cbr\u003e1.2.5 Polyhydroxy-alkanoates (PHA)\u003cbr\u003e1.3 Oils and Fats as Chemical Feedstocks\u003cbr\u003e1.3.1 Hydroxylation (Ring Opening) of Vegetable Oil\u003cbr\u003e1.3.2 Vegetable Oils as Feedstocks for Polyurethane Polymers\u003cbr\u003e1.4 Conclusions\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 CHEMISTRY AND BIOLOGY OF POLYMER DEGRADATION\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Microbial Degradation of Natural and Synthetic Polyesters\u003cbr\u003e2.2.1 Polyhydroxyalkanoates\u003cbr\u003e2.2.2 Synthetic Polyesters\u003cbr\u003e2.3 Biodegradable Blends and Composites: Preparation, Characterisation, and Properties\u003cbr\u003e2.3.1 Microbial Polyesters\u003cbr\u003e2.3.2 PHB and PHBV Blend with other Polymer Blends\u003cbr\u003e2.3.3 Polycaprolactone (PCL)\u003cbr\u003e2.3.4 Starch\/Polymer Blends\u003cbr\u003e2.3.5 Polyesters\/High Amylose Starch Composites by Reactive Blending\u003cbr\u003e2.3.6 PCL\/PVOH\u003cbr\u003e2.3.7 Polylactide (PLA)\u003cbr\u003e2.3.8 PLA\/Bionolle\u003cbr\u003e2.4 Conclusions\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 QUANTIFYING THE RANGE OF PROPERTIES IN NATURAL RAW MATERIAL ORIGIN POLYMERS AND FIBRES\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Properties\u003cbr\u003e3.3 Variability in Natural Origin Materials\u003cbr\u003e3.4 The Influence of the Chemistry and Structure of Natural Origin Fibres Upon Their Properties\u003cbr\u003e3.4.1 The Chemistry and Ultrastructure of Natural Fibres\u003cbr\u003e3.4.2 The Influence of Fibre Ultrastructure Upon its Mechanical Properties\u003cbr\u003e3.5 The Influence of Fibre Extraction, Isolation and Processing upon the Properties of Bast Fibres\u003cbr\u003e3.5.1 Dew Retting\u003cbr\u003e3.5.2 Water Retting\u003cbr\u003e3.5.3 Enzyme Retting\u003cbr\u003e3.5.4 Chemical Retting\u003cbr\u003e3.6 The Influence of Fibre Damage upon the Mechanical Properties of Natural Fibres\u003cbr\u003e3.6.1 Micro-Compressive Damage or ‘Kink Bands’ in Lignocellulosic Fibres\u003cbr\u003e3.7 Mechanical Properties of Natural Fibres\u003cbr\u003e3.7.1 Regenerated Cellulose Fibres\u003cbr\u003e3.8 Fibre Testing\u003cbr\u003e3.9 Biopolymers\u003cbr\u003e3.9.1 Introduction\u003cbr\u003e3.9.2 Biopolymer Types\u003cbr\u003e3.9.3 Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 NATURAL FIBRES AS FILLERS\/REINFORCEMENTS IN THERMOPLASTICS\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.1.1 Agro-Fibres and Their Use in Thermoplastics\u003cbr\u003e4.2 Processing Considerations and Techniques\u003cbr\u003e4.3 Properties\u003cbr\u003e4.3.1 Mechanical Properties: Effects of Coupling and Fibre Content and Type\u003cbr\u003e4.3.2 Effect of Fibre and Polymer\u003cbr\u003e4.3.3 High Fibre-Filled Composites\u003cbr\u003e4.3.4 Dynamic Mechanical Properties, Temperature and Creep Behaviour\u003cbr\u003e4.3.5 Water Absorption\u003cbr\u003e4.3.6 Recycling and Reprocessing\u003cbr\u003e4.3.7 Accelerated Environmental Tests\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 MANUFACTURING TECHNOLOGIES FOR BIOPOLYMERS\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Manufacturing Methods\u003cbr\u003e5.2.1 Spinning and Fibre Production\u003cbr\u003e5.2.2 Extrusion and Compounding\u003cbr\u003e5.2.3 Injection Moulding\u003cbr\u003e5.2.4 Thermoset Injection Moulding\u003cbr\u003e5.2.5 Film Blowing\u003cbr\u003e5.2.6 Calendering and Coating\u003cbr\u003e5.2.7 Blow Moulding\u003cbr\u003e5.2.8 Thermoforming\u003cbr\u003e5.2.9 Compression Moulding\u003cbr\u003e5.2.10 Pultrusion\u003cbr\u003e5.2.11 RTM (Resin Transfer Moulding) and RIM (Reaction Injection Moulding)\u003cbr\u003e5.3 Processing Conditions\u003cbr\u003e5.4 Additives or Admixtures\u003cbr\u003e5.4.1 Plasticisers\u003cbr\u003e5.4.2 Fillers\u003cbr\u003e5.4.3 Flame Retardants\u003cbr\u003e5.4.4 Lubricants\u003cbr\u003e5.4.5 Colorants\u003cbr\u003e5.4.6 Blowing (Foaming) Agents\u003cbr\u003e5.4.7 Crosslinkers\u003cbr\u003e5.4.8 Biocides and Antimicrobials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 THE ECONOMICS AND MARKET POTENTIAL FOR LOW ENVIRONMENTAL IMPACT POLYMERS\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 A Brief History of Biopolymers\u003cbr\u003e6.3 Market Size\u003cbr\u003e6.4 Classifications and Costs of Biopolymers\u003cbr\u003e6.5 Current Uses of Biopolymers\u003cbr\u003e6.6 Driving Forces\u003cbr\u003e6.7 Political\u003cbr\u003e6.7.1 Legislation\u003cbr\u003e6.7.2 Government Initiatives\u003cbr\u003e6.8 Economic\u003cbr\u003e6.8.1 Increased Disposal Costs\u003cbr\u003e6.8.2 Increased Competition\u003cbr\u003e6.8.3 Polluter Pays\u003cbr\u003e6.8.4 The Rising Costs of Finite Resources\u003cbr\u003e6.9 Social\u003cbr\u003e6.9.1 The ‘Greening’ of Consumers\u003cbr\u003e6.9.2 Acceptance of Biopolymers\u003cbr\u003e6.10 Technical\u003cbr\u003e6.10.1 Economies of Scale\u003cbr\u003e6.10.2 ‘Organic’ Recycling versus Mechanical Recycling\u003cbr\u003e6.10.3 Further Development\u003cbr\u003e6.10.4 Incorporation of Fillers\u003cbr\u003e6.11 The Future for Biopolymers\u003cbr\u003e6.11.1 Short-Term\u003cbr\u003e6.11.2 Medium-Term\u003cbr\u003e6.11.3 Long-Term\u003cbr\u003e6.12 Conclusions\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 ECODESIGN\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Development of Ecodesign\u003cbr\u003e7.2.1 Ecodesign Theory\u003cbr\u003e7.2.2 Ecodesign Models\u003cbr\u003e7.2.3 Ecodesign Practice\u003cbr\u003e7.3 Implementing Ecodesign\u003cbr\u003e7.3.1 LiDS Wheel\u003cbr\u003e7.4 Examples of Ecodesign Projects\u003cbr\u003e7.4.1 Case Study 1: Philips NV\u003cbr\u003e7.4.2 Case Study 2: Dishlex\u003cbr\u003e7.4.3 Case Study 3: Kodak’s Recyclable Camera\u003cbr\u003e7.4.4 Case Study 4: Eco Kitchen\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 CASEIN ADHESIVES\u003cbr\u003e8.1 History\u003cbr\u003e8.2 Manufacture\u003cbr\u003e8.3 Types of Casein Glues and Their Uses\u003cbr\u003e8.3.1 Wood Glues\u003cbr\u003e8.3.2 Label Pastes\u003cbr\u003e8.3.3 Casein Latex\u003cbr\u003e8.4 Current and Future Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 PHA-BASED POLYMERS: MATERIALS FOR THE 21ST CENTURY\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 History of PHA\u003cbr\u003e9.3 Production\u003cbr\u003e9.4 Applications\u003cbr\u003eReference \u003cbr\u003e\u003cbr\u003e10 RENEWABLE RESOURCE-BASED POLYMERS\u003cbr\u003e10.1 NatureWorks PLA – The Technology\u003cbr\u003e10.2 Performance Without Sacrifice\u003cbr\u003e10.3 Environmental Benefits and Disposal Options\u003cbr\u003e10.4 ‘Committed to Sustainability Options’ \u003cbr\u003e\u003cbr\u003e11 POLYHYDROXYALKANOATES: THE NEXT GENERATION OF BIOPLASTICS\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.1.1 Scientific Achievements\u003cbr\u003e11.1.2 Commercial Developments\u003cbr\u003e11.1.3 Environmental Concerns\u003cbr\u003e11.2 Production of PHA\u003cbr\u003e11.2.1 Fermentations\u003cbr\u003e11.2.2 Production in Plants\u003cbr\u003e11.2.3 Chemical Synthesis\u003cbr\u003e11.2.4 Extraction and Purification\u003cbr\u003e11.3 General Properties\u003cbr\u003e11.3.1 Physico-Chemical Properties\u003cbr\u003e11.3.2 Degradation\u003cbr\u003e11.4 Industrial Applications\u003cbr\u003e11.4.1 Compounding\u003cbr\u003e11.4.2 Coating and Packaging\u003cbr\u003e11.4.3 Plastic Food Services Items\u003cbr\u003e11.4.4 Toner\u003cbr\u003e11.4.5 Paint\u003cbr\u003e11.4.6 Food Applications\u003cbr\u003e11.4.7 Other Applications\u003cbr\u003e11.5 Conclusion\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 THERMOSET PHENOLIC BIOPOLYMERS\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 Natural Plant-Based Resins\u003cbr\u003e12.2.1 General Reactions of Phenols\u003cbr\u003e12.2.2 Cashew Nut Shell Liquid\u003cbr\u003e12.3 Conclusions\u003cbr\u003eAcknowledgement\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 COMMERCIALLY AVAILABLE LOW ENVIRONMENTAL IMPACT POLYMERS\u003cbr\u003eAdditional Information\u003cbr\u003eReferences \u003cbr\u003eABBREVIATIONS\u003cbr\u003eINDEX\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNick Tucker has spent about half his working life in the manufacturing industry, working on production improvement in technical ceramics and as a line manager in fire retardant comfort foam manufacture. His gained his PhD at the University of Bradford, working on the manufacture of advanced composites and 2K mouldings by reaction injection moulding. Since he joined Warwick Manufacturing Group, he has developed a research portfolio covering the manufacture of low environmental impact biodegradable composites from sustainable resources – biological origin fibres such as hemp, flax, and jute, coupled with thermoset and thermoplastic biopolymers. Mark Johnson holds a Degree in Mechanical Engineering from the University of Northumbria and an MSc in Engineering Business Management from the University of Warwick. He is currently finishing his doctorate in Engineering Business Management at the University of Warwick. He has worked as a production engineer in composite fabrication, in addition to completing other projects including: kaizen implementation, time compression in service functions and optimisation of factory layouts. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry"}
Metallocene Catalyzed ...
$212.00
{"id":11242248068,"title":"Metallocene Catalyzed Polymers","handle":"1-884207-59-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George M. Benedikt and Brian L. Goodall \u003cbr\u003eISBN 1-884207-59-6 \n\u003cdiv class=\"weak inline printman\"\u003e\u003c\/div\u003e\n\u003cdiv class=\"weak inline printman\"\u003ePages 410\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book brings the most recent advances in metallocene technology. In the first part of the book, catalysts and their effect and economy are discussed for the major groups of polymers in which these catalysts found their commercial applications. The well-known specialists in the field discuss the details of the metallocene technology. The second part discusses the effect of metallocene catalysts on key processing properties of metallocene catalyzed polymers. Morphology, crystallization behavior, structure, rheological properties and the others and their effect on processing parameters are discussed here. It is stressed that polymers can be tailored and optimized for application in mind. The third part of the book deals with processing of this new group of materials available in the market. Also, potential benefits of these new products are discussed together with a comparison with the properties of traditional materials used for applications at present. This gives the information to the manufacturers on what is to be expected in the future markets. The last is further developed in the series of contributions on the impact of metallocene catalyzed polymers on the future position of various traditional polymeric materials.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPolyethylene\u003cbr\u003ePolypropylene\u003cbr\u003ePolystyrene\u003cbr\u003eEthylene-Olefin\u003cbr\u003eEthylene-Propylene-Diene (EPDM)\u003cbr\u003eNonbornene Copolymers\u003cbr\u003eThe Market\u003cbr\u003eSpecial Attributes","published_at":"2017-06-22T21:15:08-04:00","created_at":"2017-06-22T21:15:08-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","additives","book","catalysts","catalytic methods","crystallization","EPDM","ethylene-olefin","ethylene-propylene-diene","metallocene","molding","morphology","nonbornene copolymers","p-chemistry","polyethylene","polymer","polymers","polypropylene","polystyrene","resins","rheology","structure","technology"],"price":21200,"price_min":21200,"price_max":21200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378467076,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Metallocene Catalyzed Polymers","public_title":null,"options":["Default Title"],"price":21200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-59-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-59-6.jpg?v=1499716352"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-59-6.jpg?v=1499716352","options":["Title"],"media":[{"alt":null,"id":358511509597,"position":1,"preview_image":{"aspect_ratio":0.824,"height":500,"width":412,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-59-6.jpg?v=1499716352"},"aspect_ratio":0.824,"height":500,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-59-6.jpg?v=1499716352","width":412}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George M. Benedikt and Brian L. Goodall \u003cbr\u003eISBN 1-884207-59-6 \n\u003cdiv class=\"weak inline printman\"\u003e\u003c\/div\u003e\n\u003cdiv class=\"weak inline printman\"\u003ePages 410\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book brings the most recent advances in metallocene technology. In the first part of the book, catalysts and their effect and economy are discussed for the major groups of polymers in which these catalysts found their commercial applications. The well-known specialists in the field discuss the details of the metallocene technology. The second part discusses the effect of metallocene catalysts on key processing properties of metallocene catalyzed polymers. Morphology, crystallization behavior, structure, rheological properties and the others and their effect on processing parameters are discussed here. It is stressed that polymers can be tailored and optimized for application in mind. The third part of the book deals with processing of this new group of materials available in the market. Also, potential benefits of these new products are discussed together with a comparison with the properties of traditional materials used for applications at present. This gives the information to the manufacturers on what is to be expected in the future markets. The last is further developed in the series of contributions on the impact of metallocene catalyzed polymers on the future position of various traditional polymeric materials.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPolyethylene\u003cbr\u003ePolypropylene\u003cbr\u003ePolystyrene\u003cbr\u003eEthylene-Olefin\u003cbr\u003eEthylene-Propylene-Diene (EPDM)\u003cbr\u003eNonbornene Copolymers\u003cbr\u003eThe Market\u003cbr\u003eSpecial Attributes"}