Physical Testing of Plastics

Physical Testing of Plastics

Author: T. R. Crompton
ISBN 9781847354853 

$205.00
This book discusses the physical rather than the chemical examination of the properties of polymers on the basis of the type of equipment used, examples of the applications of these techniques are given.

Techniques examined include thermal analysis (thermogravimetric analysis and evolved gas analysis), dynamic mechanical analysis and thermomechanical analysis, dielectric thermal analysis, ESR, MALDI, luminescence testing, photocalorimetry testing and the full range of equipment for mechanical, thermal, electrical, rheological, particle size, molecular weight. 

1Mechanical Properties of Polymers
1.1Introduction
1.2Tensile Strength
1.2.1Electronic Dynamometer Testing of Tensile Properties
1.3Flexural Modulus (Modulus of Elasticity)
1.3.1Torsion Test
1.3.2Hand Test
1.4Elongation at Break
1.4.1Basic Creep Data
1.5Strain at Yield
1.5.1Isochronous Stress-strain Curves
1.5.2Stress-time Curves
1.5.3Stress-temperature Curves
1.5.4Extrapolation Techniques
1.5.5Basic Parameters
1.5.6Recovery in Stress Phenomena
1.5.7Stress Relaxation
1.5.8Rupture Data
1.5.9Long-term Strain-time Data
1.6Impact Strength Characteristics of Polymers
1.6.1Notched Izod Impact Strength
1.6.2Falling Weight Impact Test
1.6.3Notch Sensitivity
1.6.4Falling Weight Impact Tests: Further Discussion
1.6.5Effect of Molecular Parameters
1.7Shear Strength
1.8Elongation in Tension
1.9Deformation Under Load
1.10Compressive Set (Permanent Deformation)
1.11Mould Shrinkage
1.12Coefficient of Friction
1.13Fatigue Index
1.14Toughness
1.15Abrasion Resistance or Wear
1.16Effect of Reinforcing Agents and Fillers on Mechanical Properties
1.16.1Glass Fibres
1.16.1.1Poly Tetrafluoroethylene
1.16.2Polyethylene Terephthalate
1.16.2.1Polyether Ether Ketone
1.16.2.2Polyimide
1.16.2.3Polyamide Imide
1.16.3Calcium Carbonate
1.16.4Modified Clays
1.16.5Polymer-silicon Nanocomposites
1.16.6Carbon Fibres
1.16.7Carbon Nanotubes
1.16.8Miscellaneous Fillers/Reinforcing Agents
1.16.9Test Methods for Fibre Reinforced Plastics
1.17Application of Dynamic Mechanical Analysis
1.17.1Theory
1.17.2Instrumentation (Appendix 1)
1.17.3Fixed Frequency Mode
1.17.3.1Resonant Frequency Mode
1.17.3.2Stress Relaxation Mode
1.17.3.3Creep Mode
1.17.3.4Projection of Material Behaviour using Superpositioning
1.17.3.5Prediction of Polymer Impact Resistance
1.17.3.6Effect of Processing on Loss Modulus
1.17.3.7Material Selection for Elevated-temperature Applications
1.17.3.8Storage Modulus
1.17.3.9Frequency Dependence of Modulation and Elasticity
1.17.3.10Elastomer Low Temperature Properties
1.17.3.11Tensile Modulus
1.17.3.12Stress-strain Relationships
1.17.3.13Viscosity
1.17.3.14Miscellaneous Applications of Dynamic Mechanical Analysis
1.18Rheology and Viscoelasticity
1.19Physical Testing of Rubbers and Elastomers
1.19.1Measurement of Rheological Properties
1.19.2Viscosity and Elasticity
1.19.3Brittleness Point (Low-temperature Crystallisation)
1.19.4Flexing Test
1.19.5Deformation
1.19.6Tensile Properties
1.19.7Mechanical Stability of Natural and 
Synthetic Lattices
1.19.8Abrasion Test
1.19.9Peel Adhesion Test
1.19.10Ozone Resistance Test
1.20Physical Testing of Polymer Powders
1.20.1Ultraviolet and Outdoor Resistance
1.20.2Artificial Weathering
1.20.3Natural Weathering
1.20.4Reactivity
1.20.5Melt Viscosity
1.20.6Loss on Stoving
1.20.7True Density
1.20.8Bulk Density
1.20.9Powder Flow
1.20.10Test for Cure
1.20.11Electrical Properties.
1.20.12Thermal Analysis
1.20.13Particle-size Distribution
1.20.13.1Methods Based on Electrical Sensing 
Zone (Coulter Principle)
1.20.13.2Laser Particle Size Analysers
1.20.13.3Photon Correlation Spectroscopy 
(Autocorrelation Spectroscopy)
1.20.13.4Sedimentation.
1.20.13.5Acoustic Spectroscopy
1.20.13.6Capillary Hydrodynamic 
Fractionation.
1.20.13.7Small-angle Light Scattering
1.21Plastic Pipe Materials
1.22Plastic Film.




2Thermal Properties of Polymers
2.1Linear Co-efficient of Expansion
2.2Mould Shrinkage
2.3Distortion Temperature
2.3.1Heat Distortion Temperature at 0.45 MPa (°C)
2.3.2Heat Distortion Temperature at 1.80 MPa (°C)
2.4Brittleness Temperature (Low-temperature Embrittlement Temperature)
2.5Melting Temperature
2.6Maximum Operating Temperature
2.7Melt Flow Index
2.8VICAT Softening Point
2.9Thermal Conductivity
2.10Specific Heat
2.10.1Hot-wire Techniques
2.10.2Transient Plane Source Technique
2.10.3Laser Flash Technique
2.10.4Thermal Diffusivity
2.11Maximum Filming Temperature
2.12Heat at Volatilisation
2.13Glass Transition Temperature
2.13.1Differential Scanning Calorimetry
2.13.1.1Theory
2.14Thermomechanical Analysis
2.14.1Theory
2.15Dynamic Mechanical Analysis
2.16Differential Thermal Analysis and Thermogravimetric Analysis
2.17Nuclear Magnetic Resonance Spectroscopy
2.18Dielectric Thermal Analysis
2.19Inverse Gas Chromatography
2.20Alpha, Beta and Gamma Transitions
2.20.1Differential Thermal Analysis
2.20.2Dynamic Mechanical Analysis
2.20.3Dielectric Thermal Analysis
2.20.4Thermomechanical Analysis
2.20.5Infrared Spectroscopy


3Electrical Properties
3.1Volume Resistivity
3.2Dielectric Strength
3.3Dielectric Constant
3.4Dissipation Factor
3.5Surface Arc Resistance
3.6Tracking Resistance
3.7Electrical Resistance and Resistivity
3.8Electrical Conductivity
3.9Electronically Conducting Polymers
3.10Applications of Dielectric Thermal Analysis


4Other Physical Properties
4.1Surface Hardness
4.2Specific Gravity and Bulk Density
4.3Gas Barrier Properties
4.4Optical Properties
4.4.1Haze, Glass and Surface Roughness
4.4.2Light Scattering
4.4.3Optical Properties
4.4.4Electro-optical Effect
4.4.5Infrared Optical Properties
4.5Monitoring of Resin Cure
4.5.1Thermally Cured Resins
4.5.1.1Dynamic Mechanical Thermal 
Analysis Application in Resin Curing
4.5.1.2Dielectric Thermal Analysis
4.5.1.3Differential Scanning Calorimetry
4.5.1.4Fibreoptic Sensors to Monitor Resin Cure
4.5.1.5Thermal Conductivity
4.5.2Photo-chemically Cured Resins
4.5.2.1Differential Photo-calorimetry
4.5.2.2Infrared and Ultraviolet Spectroscopy
4.5.2.3Dynamic Mechanical Analysis
4.5.2.4Gas Chromatography-based Methods
4.6Adhesion Studies
4.7Viscoelastic and Rheological Properties
4.7.1Dynamic Mechanical Analysis
4.7.2Thermomechanical Analysis


5Thermal Stability
5.1Thermogravimetric Analysis
5.2Differential Thermal Analysis
5.3Differential Scanning Calorimetry
5.4Thermal Volatilisation Analysis
5.5Evolved Gas Analysis
5.6Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy
5.7Mass Spectroscopy
5.8Pyrolysis-Mass Spectrometry
5.9Effect of Metals on Heat Stability


6Thermo-oxidative Stability
6.1Thermogravimetric Analysis
6.2Differential Scanning Calorimetry
6.3Evolved Gas Analysis
6.4Infrared Spectroscopy
6.5Electron Spin Resonance Spectroscopy
6.6Matrix-assisted Laser Desorption/Ionisation Mass Spectrometry
6.7Imaging Chemiluminescence
6.8Pyrolysis-based Techniques


7Assessment of Polymer Stability
7.1Light Stability
7.1.1Ultraviolet Light Weathering
7.1.2Natural Weathering Tests
7.2Protective Action of Pigments and Stabilisers
7.2.1Effect of Pigments
7.2.2Effect of Carbon Black
7.2.3Effect of Sunlight on Impact Strength
7.2.4Effect of Thickness
7.2.5Effect of Stress during Exposure
7.3Gamma Radiation
7.4Electron Irradiation
7.5Irradiation by Carbon Ion Beam
7.6Irradiation by Alpha Particles and Protons
7.7Prediction of the Service Lifetimes of Polymers
7.8Water Absorption
7.9Chemical Resistance
7.9.1Detergent Resistance
7.10Hydrolytic Stability
7.11Resistance to Gases
7.12Resistance to Solvents


8Selecting a Suitable Polymer
8.1Selection of a Polymer to be used in the Manufacture of a Battery Case
8.2Selection of a Polymer that will be in Continuous use at High Temperatures
8.3Selection of a Polymer with Excellent 
Ultraviolet Stability
Appendix 1 – Instrument Suppliers.
Appendix 2 – Mechanical properties of polymers.
Appendix 3 – Thermal properties of polymers
Appendix 4 – Electrical properties of polymers
Appendix 5 – Other physical properties
Appendix 6 – Assessment of polymer stability
Abbreviations
Index