Practical Guide to Chemical Safety Testing
There are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances.
Health and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R&D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required.
A Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results.
There is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment.
Ecotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals.
Regulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers.
This book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.
Health and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R&D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required.
A Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results.
There is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment.
Ecotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals.
Regulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers.
This book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.
1 Introduction
1.1 Purpose of the Book
1.2 Purpose of Safety Evaluation
1.3 Safety Studies
1.4 Risk Assessment and Safety Data
1.5 Regulatory Schemes
1.6 Summary
2 Mammalian Toxicology
2.1 Introduction
2.2 Acute Toxicity Studies
2.2.1 Nature and Relevance of Tests
2.2.2 Methodology
2.2.3 Acute Oral Toxicity Studies
2.2.4 Dermal Toxicity Studies
2.2.5 Inhalation Toxicity Studies
2.2.6 Alternative Acute Oral Toxicity Methods
2.2.7 Local Tolerance Tests
2.2.8 Contact Sensitisation
2.3 Repeated Dose Toxicity Studies
2.3.1 Nature and Relevance of Tests
2.3.2 Importance of Repeated Dose Toxicity
2.3.3 Methodology
2.4 Reproduction Toxicology
2.4.1 Nature and Relevance of Tests
2.4.2 Methodology
2.4.3 Alternative Approaches
2.5 Carcinogenicity
2.5.1 Nature and Relevance of Tests
2.5.2 Methodology
2.5.3 Dose Levels
2.5.4 Conduct of Study
2.5.5 Data Evaluation
2.5.6 Risk Assessment
2.5.7 Alternative Approaches
2.6 Medical Device Testing
2.6.1 Exposure Routes
2.6.2 Dose Preparation
2.6.3 Cytotoxicity Testing of Medical Devices
3 Genetic Toxicology
3.1 Introduction
3.2 Mechanisms of Mutation – Genes and Chromosomes
3.3 Standard Genetic Toxicology Assays
3.4 Bacterial Mutagenicity Assays
3.5 Chromosome Aberration Tests In Vitro
3.6 Mammalian Cell Gene Mutation Assays In Vitro
3.7 The In Vivo Micronucleus Test
3.8 The Unscheduled DNA Synthesis Assay
3.9 Conclusions
4 Ecotoxicology
4.1 Introduction
4.2 Bacterial Toxicity Testing
4.3 Biodegradation Tests
4.3.1 Ready Biodegradation Tests
4.3.2 Inherent Biodegradation Tests
4.3.3 Simulation Tests
4.3.4 Anaerobic Biodegradation Tests
4.4 Aquatic Toxicity Testing
4.4.1 Acute Tests
4.4.2 Analytical Measurements
4.4.3 Difficult Substances
4.4.4 Chronic Tests
4.5 Fish Bioaccumulation Test
4.6 Sediment Toxicity Tests
4.7 Terrestrial Toxicity Tests
4.7.1 Earthworms
4.7.2 Bees and Beneficial
4.7.3 Plant Growth Tests
4.8 Microcosm and Mesocosm Studies
4.9 Conclusion
5 Physico-Chemical Properties
5.1 Introduction
5.2 Performance of the General Physico-Chemical Tests
5.2.1 Melting Temperature/Melting Range (OECD Test Guideline 102)
5.2.2 Boiling Point (OECD Test Guideline 103)
5.2.3 Vapour Pressure (OECD Test Guideline 104)
5.2.4 Water Solubility (OECD Test Guideline 105)
5.2.5 Partition Coefficient (OECD Test Guidelines and 117)
5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)
5.2.7 Density/Relative Density (OECD Test Guideline 109)
5.2.8 Particle Size Distribution (OECD Test Guideline 110)
5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)
5.2.10 Dissociation Constant (OECD Test Guideline 112)
5.2.11 Surface Tension (OECD Test Guideline 115)
5.2.12 Fat Solubility (OECD Test Guideline 116)
5.3 Performance of the Polymer Specific Physico-Chemical Tests
5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)
5.3.2 Solution/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)
5.4 Performance of the Hazardous Physico-Chemical Tests
5.4.1 Flash Point (EC Method A9)
5.4.2 Flammable Solids (EC Method A10)
5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)
5.4.4 Explosive Properties (EC Method A14)
5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)
5.4.6 Oxidising Properties (EC Method A17)
5.5 Order in which Physico-Chemical Tests are Performed
5.6 Conclusion
6 Alternatives to Animal Testing for Safety Evaluation
6.1 Introduction
6.2 Validation of Alternative Methods
6.3 Aspects of Human Toxicity Targeted By In Vitro Assays
6.3.1 Systemic Toxicological Properties
6.3.2 Validated Tests Currently in Use in the EU
6.4 Structure-Activity Relationships and Prediction of Properties
6.5 Strategies to Minimise Use of Animals
6.6 Future Developments and Conclusions
7 Toxicological Assessment within a Risk Assessment Framework
7.1 Introduction
7.2 Definitions and Concepts
7.2.1 Risk
7.2.2 Toxicology
7.3 Exposure Scenarios
7.3.1 Routes of Administration
7.3.2 Exposure Prediction
7.4 Judgements
7.4.1 The ‘Precautionary Principle’
7.4.2 What Test and When?
7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes
7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity
7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity
7.5 Risk Management
7.6 Final Word
8 Environmental Risk Assessment
8.1 Introduction
8.2 Exposure Assessment
8.2.1 Identification of the Target Compartments
8.2.2 Estimation of Emissions or Releases
8.2.3 Distribution and Degradation in the Environment (Environmental Fate)
8.2.4 Predicted Environmental Concentrations
8.3 Effects Assessment
8.3.1 Estimating PNECs by Applying Uncertainty Factors
8.3.2 The Statistical Extrapolation Method
8.4 Risk Characterisation
8.5 Conclusion
PART 2: REGULATORY FRAMEWORK
9 EU Chemical Legislation
9.1 EU Legislation within the European Economic Area and Europe
9.2 Notification of New Substances
9.2.1 History of the Notification Process
9.2.2 Data Sharing
9.2.3 Base Set Studies for Full Notification
9.2.4 Reduced Notification Studies
9.2.5 Level 1 and Level 2 Notification Studies
9.2.6 The Notification Summary Form
9.2.7 The Sole-Representative Facility
9.2.8 Polymers
9.2.9 Derogations/Exemptions from Notification
9.2.10 Confidentiality
9.3 Risk Assessment
9.3.1 Human Health Risk Assessment
9.3.2 Environment Risk Assessment
9.4 Existing Chemicals Regulation
9.4.1 Data Collection
9.4.2 Priority Setting
9.4.3 Risk Assessment
9.5 Chemical Hazard Communication
9.5.1 Classification and Labelling of Dangerous Substances
9.5.2 Classification and Labelling of Dangerous Preparations
9.5.3 Safety Data Sheets
9.6 Transport Regulations
9.6.1 Introduction
9.6.2 The United Nations Transportation Classification Scheme
9.6.3 Transport of Marine Pollutants
9.7 National Chemical Control Measures
9.7.1 National Product Registers
9.7.2 German Water Hazard Classification Scheme
9.8 Other EU Legislation for Specific Product Types
9.8.1 Control of Cosmetics in the EU
9.8.2 Detergents
9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic
9.9 Summary and Future Developments
10 Chemical Control in Japan
10.1 Introduction to the Japanese Regulatory Culture
10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law
10.2.1 Introduction
10.2.2 The Inventory of Existing Substances
10.2.3 Exemptions from Notification
10.2.4 Standard Notification
10.2.5 Polymer Notification
10.2.6 Class I and II Specified and Designated Substances
10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law
10.4 Hazard Communication and Product Liability
10.5 Other Chemical Legislation
10.6 Summary
11 Chemical Control in the US and the Rest of the World
11.1 Introduction
11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)
11.2.1 Key Objectives of TSCA
11.2.2 The TSCA Inventory
11.2.3 Testing of Existing Substances
11.2.4 Manufacturing and Processing Notices
11.2.5 PMN Requirements
11.2.6 Significant New Use Rules (SNURs)
11.2.7 Exemptions from PMN
11.3 US Occupational Safety and Health Act (OSHA)
11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals
11.4.1 Voluntary Challenge Programme
11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals
11.4.3 US Voluntary Children’s Chemical Evaluation Program
11.5 Chemical Control Legislation in Canada
11.5.1 The Canadian Environmental Protection Act
11.5.2 Inventories
11.5.3 Environmental Assessment Regulations
11.5.4 Data Requirements for Notification
11.5.5 Significant New Activity Notice
11.5.6 Administration
11.5.7 Inspection, Enforcement and Penalties
11.5.8 Future Changes
11.5.9 The Workplace Hazardous Materials Information System
11.6 Chemical Control Legislation in Switzerland
11.6.1 The Federal Law on Trade in Toxic Substances
11.6.2 The Federal Law on Environmental Protection
11.7 Notification of New Chemical Substances in Australia
11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme
11.7.2 Inventory
11.7.3 Data Requirements for Notification
11.7.4 Existing Substances
11.7.5 Hazard Communication
11.8 Chemical Control in Korea
11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification
11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination
11.8.3 Hazard Communication
11.9 Chemical Control in the Philippines
11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act
11.9.2 Inventory
11.9.3 Data Requirements for Notification
11.9.4 Administration
11.9.5 Priority Chemicals List (PCL)
11.10 Chemical Control in The People’s Republic of China
11.10.1 Latest Developments
11.10.2 First Import and Toxic Chemicals Regulations
11.10.3 Inventory
11.10.4 Hazard Communication
11.11 Chemical Control in New Zealand
11.11.1 Toxic Substances Act
11.11.2 Resource Management Act
11.11.3 Hazardous Substances and New Organisms Act
11.11.4 Data Requirements for Notification
11.11.5 Hazard Communication
11.12 Mexico
11.12.1 Legislation
11.12.2 Safety Data Sheets
11.13 Singapore
11.14 Malaysia
11.15 Thailand
11.16 Indonesia
11.17 Taiwan
11.18 HPV Programmes
11.18.1 OECD
11.18.2 International Council of Chemical Associations Global Initiative
11.19 Useful Web Sites
12 Notification of Polymers Worldwide
12.1 Introduction
12.2 North America
12.2.1 USA
12.2.2 Canada
12.3 Asia Pacific
12.3.1 Japan
12.3.2 Australia
12.3.3 New Zealand
12.3.4 Korea
12.3.5 Philippines
12.3.6 China
12.4 Europe
12.4.1 EU
12.4.2 Switzerland
12.5 Overall Comparison of the Nine Polymer Notification Schemes
13 Medical Device Regulation
13.1 Introduction
13.2 European Economic Area
13.2.1 Background
13.2.2 Before Marketing
13.2.3 After Marketing
13.3 United States of America
13.3.1 Background
13.3.2 Before Marketing
13.3.3 After Marketing
13.4 Japan
13.4.1 Background
13.4.2 Before Marketing
13.4.3 After Marketing
13.5 Conclusion
14 Regulation of Food Packaging in the EU and US
14.1 Introduction
14.2 Control of Food Packaging in the EU
14.2.1 EU Framework Directive
14.2.2 Food Contact Plastics in the EU
14.2.3 Future Developments for Food Plastics in the EU
14.2.4 Other EU Food Packaging Measures
14.2.5 Strategy for Food Contact Plastic Approval in the EU
14.3 National Controls on Food Packaging in EU Countries
14.3.1 Germany
14.3.2 France
14.3.3 The Netherlands
14.3.4 Belgium
14.3.5 Italy
14.4 Council of Europe Work on Food Packaging
14.4.1 Introduction
14.4.2 Completed Council of Europe Resolutions
14.4.3 Council of Europe Ongoing Work
14.5 Food Packaging in the USA
14.5.1 Introduction
14.5.2 History and Development of US Food Packaging Legislation
14.5.3 The FDA Petition
14.5.4 Threshold of Regulation Process
14.5.5 The Pre-Marketing Notification Scheme
15 Regulation of Biocides
15.1 Introduction
15.2 Control of Biocides in the EU
15.2.1 Introduction
15.2.2 Main Features of the Directive
15.2.3 System of Approval
15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive
15.2.5 Authorisation of Biocidal Products
15.2.6 Hazard Communication
15.2.7 The Review Programme for Existing Active Substances
15.2.8 Technical Guidance
15.3 Control of Biocides in the USA
15.3.1 Introduction
15.3.2 Data Requirements for Registration
15.3.3 Registration Applications
15.3.4 Data Compensation
15.3.5 Re-Registration of Existing Pesticides
15.3.6 Petition for a Pesticide Tolerance
15.3.7 Regulation of Food Contact Biocides
15.4 Regulation of Biocides in Other Countries
Abbreviations and Acronyms
Index
1.1 Purpose of the Book
1.2 Purpose of Safety Evaluation
1.3 Safety Studies
1.4 Risk Assessment and Safety Data
1.5 Regulatory Schemes
1.6 Summary
2 Mammalian Toxicology
2.1 Introduction
2.2 Acute Toxicity Studies
2.2.1 Nature and Relevance of Tests
2.2.2 Methodology
2.2.3 Acute Oral Toxicity Studies
2.2.4 Dermal Toxicity Studies
2.2.5 Inhalation Toxicity Studies
2.2.6 Alternative Acute Oral Toxicity Methods
2.2.7 Local Tolerance Tests
2.2.8 Contact Sensitisation
2.3 Repeated Dose Toxicity Studies
2.3.1 Nature and Relevance of Tests
2.3.2 Importance of Repeated Dose Toxicity
2.3.3 Methodology
2.4 Reproduction Toxicology
2.4.1 Nature and Relevance of Tests
2.4.2 Methodology
2.4.3 Alternative Approaches
2.5 Carcinogenicity
2.5.1 Nature and Relevance of Tests
2.5.2 Methodology
2.5.3 Dose Levels
2.5.4 Conduct of Study
2.5.5 Data Evaluation
2.5.6 Risk Assessment
2.5.7 Alternative Approaches
2.6 Medical Device Testing
2.6.1 Exposure Routes
2.6.2 Dose Preparation
2.6.3 Cytotoxicity Testing of Medical Devices
3 Genetic Toxicology
3.1 Introduction
3.2 Mechanisms of Mutation – Genes and Chromosomes
3.3 Standard Genetic Toxicology Assays
3.4 Bacterial Mutagenicity Assays
3.5 Chromosome Aberration Tests In Vitro
3.6 Mammalian Cell Gene Mutation Assays In Vitro
3.7 The In Vivo Micronucleus Test
3.8 The Unscheduled DNA Synthesis Assay
3.9 Conclusions
4 Ecotoxicology
4.1 Introduction
4.2 Bacterial Toxicity Testing
4.3 Biodegradation Tests
4.3.1 Ready Biodegradation Tests
4.3.2 Inherent Biodegradation Tests
4.3.3 Simulation Tests
4.3.4 Anaerobic Biodegradation Tests
4.4 Aquatic Toxicity Testing
4.4.1 Acute Tests
4.4.2 Analytical Measurements
4.4.3 Difficult Substances
4.4.4 Chronic Tests
4.5 Fish Bioaccumulation Test
4.6 Sediment Toxicity Tests
4.7 Terrestrial Toxicity Tests
4.7.1 Earthworms
4.7.2 Bees and Beneficial
4.7.3 Plant Growth Tests
4.8 Microcosm and Mesocosm Studies
4.9 Conclusion
5 Physico-Chemical Properties
5.1 Introduction
5.2 Performance of the General Physico-Chemical Tests
5.2.1 Melting Temperature/Melting Range (OECD Test Guideline 102)
5.2.2 Boiling Point (OECD Test Guideline 103)
5.2.3 Vapour Pressure (OECD Test Guideline 104)
5.2.4 Water Solubility (OECD Test Guideline 105)
5.2.5 Partition Coefficient (OECD Test Guidelines and 117)
5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)
5.2.7 Density/Relative Density (OECD Test Guideline 109)
5.2.8 Particle Size Distribution (OECD Test Guideline 110)
5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)
5.2.10 Dissociation Constant (OECD Test Guideline 112)
5.2.11 Surface Tension (OECD Test Guideline 115)
5.2.12 Fat Solubility (OECD Test Guideline 116)
5.3 Performance of the Polymer Specific Physico-Chemical Tests
5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)
5.3.2 Solution/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)
5.4 Performance of the Hazardous Physico-Chemical Tests
5.4.1 Flash Point (EC Method A9)
5.4.2 Flammable Solids (EC Method A10)
5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)
5.4.4 Explosive Properties (EC Method A14)
5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)
5.4.6 Oxidising Properties (EC Method A17)
5.5 Order in which Physico-Chemical Tests are Performed
5.6 Conclusion
6 Alternatives to Animal Testing for Safety Evaluation
6.1 Introduction
6.2 Validation of Alternative Methods
6.3 Aspects of Human Toxicity Targeted By In Vitro Assays
6.3.1 Systemic Toxicological Properties
6.3.2 Validated Tests Currently in Use in the EU
6.4 Structure-Activity Relationships and Prediction of Properties
6.5 Strategies to Minimise Use of Animals
6.6 Future Developments and Conclusions
7 Toxicological Assessment within a Risk Assessment Framework
7.1 Introduction
7.2 Definitions and Concepts
7.2.1 Risk
7.2.2 Toxicology
7.3 Exposure Scenarios
7.3.1 Routes of Administration
7.3.2 Exposure Prediction
7.4 Judgements
7.4.1 The ‘Precautionary Principle’
7.4.2 What Test and When?
7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes
7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity
7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity
7.5 Risk Management
7.6 Final Word
8 Environmental Risk Assessment
8.1 Introduction
8.2 Exposure Assessment
8.2.1 Identification of the Target Compartments
8.2.2 Estimation of Emissions or Releases
8.2.3 Distribution and Degradation in the Environment (Environmental Fate)
8.2.4 Predicted Environmental Concentrations
8.3 Effects Assessment
8.3.1 Estimating PNECs by Applying Uncertainty Factors
8.3.2 The Statistical Extrapolation Method
8.4 Risk Characterisation
8.5 Conclusion
PART 2: REGULATORY FRAMEWORK
9 EU Chemical Legislation
9.1 EU Legislation within the European Economic Area and Europe
9.2 Notification of New Substances
9.2.1 History of the Notification Process
9.2.2 Data Sharing
9.2.3 Base Set Studies for Full Notification
9.2.4 Reduced Notification Studies
9.2.5 Level 1 and Level 2 Notification Studies
9.2.6 The Notification Summary Form
9.2.7 The Sole-Representative Facility
9.2.8 Polymers
9.2.9 Derogations/Exemptions from Notification
9.2.10 Confidentiality
9.3 Risk Assessment
9.3.1 Human Health Risk Assessment
9.3.2 Environment Risk Assessment
9.4 Existing Chemicals Regulation
9.4.1 Data Collection
9.4.2 Priority Setting
9.4.3 Risk Assessment
9.5 Chemical Hazard Communication
9.5.1 Classification and Labelling of Dangerous Substances
9.5.2 Classification and Labelling of Dangerous Preparations
9.5.3 Safety Data Sheets
9.6 Transport Regulations
9.6.1 Introduction
9.6.2 The United Nations Transportation Classification Scheme
9.6.3 Transport of Marine Pollutants
9.7 National Chemical Control Measures
9.7.1 National Product Registers
9.7.2 German Water Hazard Classification Scheme
9.8 Other EU Legislation for Specific Product Types
9.8.1 Control of Cosmetics in the EU
9.8.2 Detergents
9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic
9.9 Summary and Future Developments
10 Chemical Control in Japan
10.1 Introduction to the Japanese Regulatory Culture
10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law
10.2.1 Introduction
10.2.2 The Inventory of Existing Substances
10.2.3 Exemptions from Notification
10.2.4 Standard Notification
10.2.5 Polymer Notification
10.2.6 Class I and II Specified and Designated Substances
10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law
10.4 Hazard Communication and Product Liability
10.5 Other Chemical Legislation
10.6 Summary
11 Chemical Control in the US and the Rest of the World
11.1 Introduction
11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)
11.2.1 Key Objectives of TSCA
11.2.2 The TSCA Inventory
11.2.3 Testing of Existing Substances
11.2.4 Manufacturing and Processing Notices
11.2.5 PMN Requirements
11.2.6 Significant New Use Rules (SNURs)
11.2.7 Exemptions from PMN
11.3 US Occupational Safety and Health Act (OSHA)
11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals
11.4.1 Voluntary Challenge Programme
11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals
11.4.3 US Voluntary Children’s Chemical Evaluation Program
11.5 Chemical Control Legislation in Canada
11.5.1 The Canadian Environmental Protection Act
11.5.2 Inventories
11.5.3 Environmental Assessment Regulations
11.5.4 Data Requirements for Notification
11.5.5 Significant New Activity Notice
11.5.6 Administration
11.5.7 Inspection, Enforcement and Penalties
11.5.8 Future Changes
11.5.9 The Workplace Hazardous Materials Information System
11.6 Chemical Control Legislation in Switzerland
11.6.1 The Federal Law on Trade in Toxic Substances
11.6.2 The Federal Law on Environmental Protection
11.7 Notification of New Chemical Substances in Australia
11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme
11.7.2 Inventory
11.7.3 Data Requirements for Notification
11.7.4 Existing Substances
11.7.5 Hazard Communication
11.8 Chemical Control in Korea
11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification
11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination
11.8.3 Hazard Communication
11.9 Chemical Control in the Philippines
11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act
11.9.2 Inventory
11.9.3 Data Requirements for Notification
11.9.4 Administration
11.9.5 Priority Chemicals List (PCL)
11.10 Chemical Control in The People’s Republic of China
11.10.1 Latest Developments
11.10.2 First Import and Toxic Chemicals Regulations
11.10.3 Inventory
11.10.4 Hazard Communication
11.11 Chemical Control in New Zealand
11.11.1 Toxic Substances Act
11.11.2 Resource Management Act
11.11.3 Hazardous Substances and New Organisms Act
11.11.4 Data Requirements for Notification
11.11.5 Hazard Communication
11.12 Mexico
11.12.1 Legislation
11.12.2 Safety Data Sheets
11.13 Singapore
11.14 Malaysia
11.15 Thailand
11.16 Indonesia
11.17 Taiwan
11.18 HPV Programmes
11.18.1 OECD
11.18.2 International Council of Chemical Associations Global Initiative
11.19 Useful Web Sites
12 Notification of Polymers Worldwide
12.1 Introduction
12.2 North America
12.2.1 USA
12.2.2 Canada
12.3 Asia Pacific
12.3.1 Japan
12.3.2 Australia
12.3.3 New Zealand
12.3.4 Korea
12.3.5 Philippines
12.3.6 China
12.4 Europe
12.4.1 EU
12.4.2 Switzerland
12.5 Overall Comparison of the Nine Polymer Notification Schemes
13 Medical Device Regulation
13.1 Introduction
13.2 European Economic Area
13.2.1 Background
13.2.2 Before Marketing
13.2.3 After Marketing
13.3 United States of America
13.3.1 Background
13.3.2 Before Marketing
13.3.3 After Marketing
13.4 Japan
13.4.1 Background
13.4.2 Before Marketing
13.4.3 After Marketing
13.5 Conclusion
14 Regulation of Food Packaging in the EU and US
14.1 Introduction
14.2 Control of Food Packaging in the EU
14.2.1 EU Framework Directive
14.2.2 Food Contact Plastics in the EU
14.2.3 Future Developments for Food Plastics in the EU
14.2.4 Other EU Food Packaging Measures
14.2.5 Strategy for Food Contact Plastic Approval in the EU
14.3 National Controls on Food Packaging in EU Countries
14.3.1 Germany
14.3.2 France
14.3.3 The Netherlands
14.3.4 Belgium
14.3.5 Italy
14.4 Council of Europe Work on Food Packaging
14.4.1 Introduction
14.4.2 Completed Council of Europe Resolutions
14.4.3 Council of Europe Ongoing Work
14.5 Food Packaging in the USA
14.5.1 Introduction
14.5.2 History and Development of US Food Packaging Legislation
14.5.3 The FDA Petition
14.5.4 Threshold of Regulation Process
14.5.5 The Pre-Marketing Notification Scheme
15 Regulation of Biocides
15.1 Introduction
15.2 Control of Biocides in the EU
15.2.1 Introduction
15.2.2 Main Features of the Directive
15.2.3 System of Approval
15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive
15.2.5 Authorisation of Biocidal Products
15.2.6 Hazard Communication
15.2.7 The Review Programme for Existing Active Substances
15.2.8 Technical Guidance
15.3 Control of Biocides in the USA
15.3.1 Introduction
15.3.2 Data Requirements for Registration
15.3.3 Registration Applications
15.3.4 Data Compensation
15.3.5 Re-Registration of Existing Pesticides
15.3.6 Petition for a Pesticide Tolerance
15.3.7 Regulation of Food Contact Biocides
15.4 Regulation of Biocides in Other Countries
Abbreviations and Acronyms
Index
Dr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides.
Mike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.
Mike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.
Related Products
Handbook of UV Degrada...
$350.00
{"id":8694780461213,"title":"Handbook of UV Degradation and Stabilization, 4th Edition","handle":"handbook-of-uv-degradation-and-stabilization-4th-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1- 77467-078-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2026\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 636+x\u003cbr\u003eFigures 300\u003cbr\u003eTables 260\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThis book is a completely updated version of the previous edition, with the most recent literature and patents. It has 12 chapters, each discussing a different aspect of UV-related phenomena that occur when materials are exposed to UV radiation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThe introduction reviews the existing literature to determine how plants, animals, and humans protect themselves against UV radiation. This review permits comparing mechanisms of protection against UV used by living things and the effect of UV radiation on materials derived from natural products, polymers, and rubber. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003ePhotophysics, discussed in the second chapter, helps to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of the process's photophysics. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThese effects are combined with the photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 4 contains information on available UV stabilizers. It contains data prepared according to a systematic outline, as listed in the Table of Contents. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 5 discusses the stability of UV stabilizers, which is important for predicting the lifetime of their protection. The evaluation points out different reasons for instability.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 6 provides the principles of stabilizer selection. This chapter discusses ten areas of influence of stabilizer properties and expectations from the final products. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapters 7 and 8 give specific information on the degradation and stabilization of different polymers \u0026amp; rubbers and the final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7, and over 40 groups of final products, which use the majority of UV stabilizers, are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in the Table of Contents.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 10 discusses specific effects of UV stabilizers that may affect formulation because of interactions between UV stabilizers and other formulation components. Chapter 11 discusses analytical methods, which are most frequently used in UV stabilization, to show their potential in further understanding UV degradation and stabilization.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThe book concludes with the effect of UV stabilizers on the health and safety of workers involved in the processing and commercial use of the products (Chapter 12).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003eThis book is an excellent companion to the \u003cb style=\"mso-bidi-font-weight: normal;\"\u003eDatabook of UV Stabilizers\u003c\/b\u003e, which was also recently published. Both books supplement each other without repeating the same information—one contains data, another theory, mechanisms of action, practical effects, and implications of application.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003eThe information contained in both books is essential for the automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and the large number of industries that derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n\u003cp\u003e1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms, and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, the concentration of stabilizers in formulation, and examples of a lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of the formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e","published_at":"2025-11-14T09:29:17-05:00","created_at":"2025-08-27T11:57:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2026","book","new","UV stabilizers"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":47159619223709,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":null,"requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of UV Degradation and Stabilization, 4th Edition","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 77467-078-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/files\/9781774670781-Case.jpg?v=1763130783"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670781-Case.jpg?v=1763130783","options":["Title"],"media":[{"alt":null,"id":32417810055325,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670781-Case.jpg?v=1763130783"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670781-Case.jpg?v=1763130783","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1- 77467-078-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2026\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 636+x\u003cbr\u003eFigures 300\u003cbr\u003eTables 260\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThis book is a completely updated version of the previous edition, with the most recent literature and patents. It has 12 chapters, each discussing a different aspect of UV-related phenomena that occur when materials are exposed to UV radiation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThe introduction reviews the existing literature to determine how plants, animals, and humans protect themselves against UV radiation. This review permits comparing mechanisms of protection against UV used by living things and the effect of UV radiation on materials derived from natural products, polymers, and rubber. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003ePhotophysics, discussed in the second chapter, helps to build an understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of the process's photophysics. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThese effects are combined with the photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 4 contains information on available UV stabilizers. It contains data prepared according to a systematic outline, as listed in the Table of Contents. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 5 discusses the stability of UV stabilizers, which is important for predicting the lifetime of their protection. The evaluation points out different reasons for instability.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 6 provides the principles of stabilizer selection. This chapter discusses ten areas of influence of stabilizer properties and expectations from the final products. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapters 7 and 8 give specific information on the degradation and stabilization of different polymers \u0026amp; rubbers and the final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7, and over 40 groups of final products, which use the majority of UV stabilizers, are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is an example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in the Table of Contents.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eChapter 10 discusses specific effects of UV stabilizers that may affect formulation because of interactions between UV stabilizers and other formulation components. Chapter 11 discusses analytical methods, which are most frequently used in UV stabilization, to show their potential in further understanding UV degradation and stabilization.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003eThe book concludes with the effect of UV stabilizers on the health and safety of workers involved in the processing and commercial use of the products (Chapter 12).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003eThis book is an excellent companion to the \u003cb style=\"mso-bidi-font-weight: normal;\"\u003eDatabook of UV Stabilizers\u003c\/b\u003e, which was also recently published. Both books supplement each other without repeating the same information—one contains data, another theory, mechanisms of action, practical effects, and implications of application.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\"\u003eThe information contained in both books is essential for the automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and the large number of industries that derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan lang=\"EN-CA\" style=\"mso-fareast-language: EN-CA;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n\u003cp\u003e1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms, and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, the concentration of stabilizers in formulation, and examples of a lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of the formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e"}
Handbook of Polyuretha...
$350.00
{"id":8694779642013,"title":"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates","handle":"handbook-of-polyurethanes-polyureas-and-polyisocyanurates","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-092-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublished: May 2026\u003c\/span\u003e\u003cbr\u003ePages: 530\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 80\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe \u003cb\u003eHandbook of Polyurethanes, Polyureas, and Polyisocyanurates\u003c\/b\u003e begins with an \u003cb\u003eintroduction\u003c\/b\u003e defining key terms for understanding these versatile materials' chemistry and applications. Following this, a \u003cb\u003ehistorical timeline\u003c\/b\u003e provides context by tracing the development of polyurethanes from their inception to present-day innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook focuses heavily on the \u003cb\u003eraw materials for polyurethane synthesis\u003c\/b\u003e. It explores various \u003cb\u003eisocyanates\u003c\/b\u003e and \u003cb\u003epolyols\u003c\/b\u003e, detailing their chemical properties and roles in creating diverse polymer structures. The section also discusses \u003cb\u003eamines, solvents, catalysts,\u003c\/b\u003e and \u003cb\u003eadditives\u003c\/b\u003e that enhance the synthesis process, including \u003cb\u003eprepolymers\u003c\/b\u003e, which serve as intermediates in production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe text delves into \u003cb\u003etypical methods of synthesis\u003c\/b\u003e, examining the \u003cb\u003emechanisms of catalysis\u003c\/b\u003e that speed up reactions, factors affecting \u003cb\u003ereaction rates\u003c\/b\u003e, and potential \u003cb\u003eside reactions\u003c\/b\u003e that can occur during polymerization. This leads to a discussion on the \u003cb\u003estructures of linear and crosslinked polyurethanes\u003c\/b\u003e, highlighting how these configurations influence the physical and chemical properties of the final products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eUnderstanding polyurethanes' domain morphology and crystalline structure is crucial, as these factors play a significant role in phase separation and hydrogen bonding, which impact material performance. The handbook also details \u003cb\u003etypical methods for analyzing polyurethanes\u003c\/b\u003e, allowing for assessment of their characteristics and qualities.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe following is a comprehensive review of the physical-mechanical properties of polyurethanes, addressing attributes such as elasticity, tensile strength, and thermal stability. The interactions between polyurethanes and various \u003cb\u003esubstrates\u003c\/b\u003e are also explored, highlighting their compatibility in different applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eDegradation mechanisms, including thermal, UV, and chemical degradation, and strategies for polyurethane stabilization to enhance durability are critically examined.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook discusses the creation of \u003cb\u003epolyurethane blends\u003c\/b\u003e and \u003cb\u003einterpenetrating networks\u003c\/b\u003e, which can combine different material properties for improved performance.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eAn extensive section on \u003cb\u003eadditives\u003c\/b\u003e used with polyurethanes covers a wide range of substances, such as \u003cb\u003eplasticizers\u003c\/b\u003e, \u003cb\u003epigments\u003c\/b\u003e, \u003cb\u003eflame retardants\u003c\/b\u003e, and many others, each contributing to specific attributes in the final product.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe chapter on \u003cb\u003epolyurethane processing\u003c\/b\u003e outlines essential techniques, including \u003cb\u003emetering, mixing,\u003c\/b\u003e and \u003cb\u003estorage\u003c\/b\u003e, which are vital for efficient production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eIn terms of applications, the handbook provides a thorough overview of the myriad uses of polyurethanes, from \u003cb\u003eautomotive parts\u003c\/b\u003e and \u003cb\u003ebedding\u003c\/b\u003e to \u003cb\u003emedical devices\u003c\/b\u003e and \u003cb\u003epackaging\u003c\/b\u003e, emphasizing the properties and formulations unique to each application.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook underscores the importance of health and safety by offering guidelines for safely handling and using polyurethane materials. Finally, it addresses \u003cb\u003ewaste disposal, processing,\u003c\/b\u003e and \u003cb\u003erecycling\u003c\/b\u003e strategies, promoting environmentally responsible practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThis summary encapsulates the core themes and topics of the handbook, providing an overview of what readers can expect from each section. The table of contents also includes concise information about the contents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eHere are some suggestions for potential users of the \"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates\":\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e1. Researchers and Academics\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To gain comprehensive knowledge of polyurethane synthesis, properties, and applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a reference for literature reviews, experimental designs, and foundational understanding in materials science.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e2. Chemists and Material Scientists\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To explore polyurethanes' chemical and physical properties and their raw materials.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidance on material selection, synthesis techniques, and formulation development.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e3. Industrial Engineers and Process Designers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the processing methods and operational parameters for manufacturing polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a resource for optimizing production processes and enhancing product quality.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e4. Product Development Teams\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To develop new polyurethane-based products across various industries (e.g., automotive, construction, medical).\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights on additives, formulation strategies, and application-specific properties.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e5. Quality Control and Assurance Professionals\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To ensure the quality and performance of polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a guide for analytical methods and testing protocols.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e6. Environmental Scientists and Sustainability Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the environmental impact of polyurethane production and disposal.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For strategies on waste management, recycling, and sustainable practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e7. Health and Safety Officers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To establish safety protocols and ensure compliance with regulations when handling polyurethanes.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidelines on safe practices and material safety data.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e8. Students and Educators\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To learn about polymer science and materials engineering.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a textbook or supplementary resource for coursework and research projects.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e9. Consultants and Industry Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To provide informed advice to companies on polyurethane applications and innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a comprehensive source for current knowledge and trends in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e10. Manufacturers of Polyurethane Products\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To stay updated on the latest developments and best practices in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights into formulation, processing, and application methods.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1. Introduction – definition of terms\u003cbr\u003e2. Historical timeline\u003cbr\u003e3. Raw materials for polyurethane synthesis\u003cbr\u003ea. Isocyanates\u003cbr\u003eb. Polyols\u003cbr\u003ec. Amines\u003cbr\u003ed. Non-isocyanate synthesis components (cyclic carbonates and amines)\u003cbr\u003ee. Solvents\u003cbr\u003ef. Catalysts\u003cbr\u003eg. Blocking agents\u003cbr\u003eh. Other additives\u003cbr\u003e4. Typical methods of synthesis\u003cbr\u003ea. Mechanisms of catalysis\u003cbr\u003eb. Reaction rates\u003cbr\u003ec. Side reactions (allophanates, biurets, carbodiimides, and dimers)\u003cbr\u003e5. Structures of linear and crosslinked polyurethanes \u003cbr\u003e6. Domain morphology\u003cbr\u003e7. Crystalline structure, phase separation, and hydrogen bonding\u003cbr\u003e8. Typical methods of polyurethane analysis\u003cbr\u003e9. Physical-mechanical properties of polyurethanes\u003cbr\u003e10. Interaction with other materials (substrates\u003cbr\u003e11. Polyurethane degradation\u003cbr\u003ea. Thermal\u003cbr\u003eb. UV\u003cbr\u003ec. Chemical\u003cbr\u003e12. Polyurethane stabilization\u003cbr\u003e13. Polyurethane blends and interpenetrating networks\u003cbr\u003e14. Additives used with polyurethanes \u003cbr\u003ea. Plasticizers \u003cbr\u003eb. Pigments \u003cbr\u003ec. Blowing agents\u003cbr\u003ed. Surfactants \u003cbr\u003ee. Adhesion promoters\u003cbr\u003ef. Rheological additives\u003cbr\u003eg. Fillers and nanofillers \u003cbr\u003eh. Flame retardants\u003cbr\u003ei. Antibacterial additives\u003cbr\u003e15. Polyurethane processing\u003cbr\u003ea. Prepolymers processing\u003cbr\u003eb. Storage \u003cbr\u003ec. Metering\u003cbr\u003ed. Mixing \u003cbr\u003e16. Applications, properties, and formulations\u003cbr\u003ea. 3D printing\u003cbr\u003eb. Adhesives and sealants\u003cbr\u003ec. Appliances\u003cbr\u003ed. Artificial leather\u003cbr\u003ee. Automotive\u003cbr\u003ef. Bedding \u003cbr\u003eg. Building and construction\u003cbr\u003eh. Carpet underlay\u003cbr\u003ei. Coatings and paints\u003cbr\u003ej. Composite wood\u003cbr\u003ek. Electrical and electronics\u003cbr\u003el. Fiber and textiles\u003cbr\u003em. Flooring\u003cbr\u003en. Foams \u003cbr\u003eo. Footwear \u003cbr\u003ep. Furniture\u003cbr\u003eq. Marine\u003cbr\u003er. Roofing\u003cbr\u003es. Medical\u003cbr\u003et. Packaging\u003cbr\u003eu. Pharmaceutical \u003cbr\u003ev. Reaction injection molding\u003cbr\u003ew. Seals and gaskets\u003cbr\u003ex. Shape memory\u003cbr\u003ey. Sporting equipment\u003cbr\u003ez. Straps \u003cbr\u003eaa. Tires\u003cbr\u003ebb. Waterproofing\u003cbr\u003e17. Health and safety\u003cbr\u003e18. Waste disposal, processing, and recycling\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp;amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp;amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp;amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp;amp; Sons, PVC Degradation \u0026amp;amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003cbr\u003e\u003c\/p\u003e","published_at":"2025-11-14T09:38:00-05:00","created_at":"2025-08-27T11:55:11-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2026","book","electronics","new","nucleating agent","nucleating agents"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":47159612407965,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":null,"requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-092-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068","options":["Title"],"media":[{"alt":null,"id":32417817723037,"position":1,"preview_image":{"aspect_ratio":0.656,"height":450,"width":295,"src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068"},"aspect_ratio":0.656,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068","width":295}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-092-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublished: May 2026\u003c\/span\u003e\u003cbr\u003ePages: 530\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 80\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe \u003cb\u003eHandbook of Polyurethanes, Polyureas, and Polyisocyanurates\u003c\/b\u003e begins with an \u003cb\u003eintroduction\u003c\/b\u003e defining key terms for understanding these versatile materials' chemistry and applications. Following this, a \u003cb\u003ehistorical timeline\u003c\/b\u003e provides context by tracing the development of polyurethanes from their inception to present-day innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook focuses heavily on the \u003cb\u003eraw materials for polyurethane synthesis\u003c\/b\u003e. It explores various \u003cb\u003eisocyanates\u003c\/b\u003e and \u003cb\u003epolyols\u003c\/b\u003e, detailing their chemical properties and roles in creating diverse polymer structures. The section also discusses \u003cb\u003eamines, solvents, catalysts,\u003c\/b\u003e and \u003cb\u003eadditives\u003c\/b\u003e that enhance the synthesis process, including \u003cb\u003eprepolymers\u003c\/b\u003e, which serve as intermediates in production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe text delves into \u003cb\u003etypical methods of synthesis\u003c\/b\u003e, examining the \u003cb\u003emechanisms of catalysis\u003c\/b\u003e that speed up reactions, factors affecting \u003cb\u003ereaction rates\u003c\/b\u003e, and potential \u003cb\u003eside reactions\u003c\/b\u003e that can occur during polymerization. This leads to a discussion on the \u003cb\u003estructures of linear and crosslinked polyurethanes\u003c\/b\u003e, highlighting how these configurations influence the physical and chemical properties of the final products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eUnderstanding polyurethanes' domain morphology and crystalline structure is crucial, as these factors play a significant role in phase separation and hydrogen bonding, which impact material performance. The handbook also details \u003cb\u003etypical methods for analyzing polyurethanes\u003c\/b\u003e, allowing for assessment of their characteristics and qualities.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe following is a comprehensive review of the physical-mechanical properties of polyurethanes, addressing attributes such as elasticity, tensile strength, and thermal stability. The interactions between polyurethanes and various \u003cb\u003esubstrates\u003c\/b\u003e are also explored, highlighting their compatibility in different applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eDegradation mechanisms, including thermal, UV, and chemical degradation, and strategies for polyurethane stabilization to enhance durability are critically examined.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook discusses the creation of \u003cb\u003epolyurethane blends\u003c\/b\u003e and \u003cb\u003einterpenetrating networks\u003c\/b\u003e, which can combine different material properties for improved performance.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eAn extensive section on \u003cb\u003eadditives\u003c\/b\u003e used with polyurethanes covers a wide range of substances, such as \u003cb\u003eplasticizers\u003c\/b\u003e, \u003cb\u003epigments\u003c\/b\u003e, \u003cb\u003eflame retardants\u003c\/b\u003e, and many others, each contributing to specific attributes in the final product.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe chapter on \u003cb\u003epolyurethane processing\u003c\/b\u003e outlines essential techniques, including \u003cb\u003emetering, mixing,\u003c\/b\u003e and \u003cb\u003estorage\u003c\/b\u003e, which are vital for efficient production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eIn terms of applications, the handbook provides a thorough overview of the myriad uses of polyurethanes, from \u003cb\u003eautomotive parts\u003c\/b\u003e and \u003cb\u003ebedding\u003c\/b\u003e to \u003cb\u003emedical devices\u003c\/b\u003e and \u003cb\u003epackaging\u003c\/b\u003e, emphasizing the properties and formulations unique to each application.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook underscores the importance of health and safety by offering guidelines for safely handling and using polyurethane materials. Finally, it addresses \u003cb\u003ewaste disposal, processing,\u003c\/b\u003e and \u003cb\u003erecycling\u003c\/b\u003e strategies, promoting environmentally responsible practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThis summary encapsulates the core themes and topics of the handbook, providing an overview of what readers can expect from each section. The table of contents also includes concise information about the contents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eHere are some suggestions for potential users of the \"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates\":\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e1. Researchers and Academics\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To gain comprehensive knowledge of polyurethane synthesis, properties, and applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a reference for literature reviews, experimental designs, and foundational understanding in materials science.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e2. Chemists and Material Scientists\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To explore polyurethanes' chemical and physical properties and their raw materials.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidance on material selection, synthesis techniques, and formulation development.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e3. Industrial Engineers and Process Designers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the processing methods and operational parameters for manufacturing polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a resource for optimizing production processes and enhancing product quality.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e4. Product Development Teams\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To develop new polyurethane-based products across various industries (e.g., automotive, construction, medical).\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights on additives, formulation strategies, and application-specific properties.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e5. Quality Control and Assurance Professionals\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To ensure the quality and performance of polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a guide for analytical methods and testing protocols.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e6. Environmental Scientists and Sustainability Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the environmental impact of polyurethane production and disposal.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For strategies on waste management, recycling, and sustainable practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e7. Health and Safety Officers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To establish safety protocols and ensure compliance with regulations when handling polyurethanes.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidelines on safe practices and material safety data.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e8. Students and Educators\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To learn about polymer science and materials engineering.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a textbook or supplementary resource for coursework and research projects.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e9. Consultants and Industry Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To provide informed advice to companies on polyurethane applications and innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a comprehensive source for current knowledge and trends in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e10. Manufacturers of Polyurethane Products\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To stay updated on the latest developments and best practices in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights into formulation, processing, and application methods.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1. Introduction – definition of terms\u003cbr\u003e2. Historical timeline\u003cbr\u003e3. Raw materials for polyurethane synthesis\u003cbr\u003ea. Isocyanates\u003cbr\u003eb. Polyols\u003cbr\u003ec. Amines\u003cbr\u003ed. Non-isocyanate synthesis components (cyclic carbonates and amines)\u003cbr\u003ee. Solvents\u003cbr\u003ef. Catalysts\u003cbr\u003eg. Blocking agents\u003cbr\u003eh. Other additives\u003cbr\u003e4. Typical methods of synthesis\u003cbr\u003ea. Mechanisms of catalysis\u003cbr\u003eb. Reaction rates\u003cbr\u003ec. Side reactions (allophanates, biurets, carbodiimides, and dimers)\u003cbr\u003e5. Structures of linear and crosslinked polyurethanes \u003cbr\u003e6. Domain morphology\u003cbr\u003e7. Crystalline structure, phase separation, and hydrogen bonding\u003cbr\u003e8. Typical methods of polyurethane analysis\u003cbr\u003e9. Physical-mechanical properties of polyurethanes\u003cbr\u003e10. Interaction with other materials (substrates\u003cbr\u003e11. Polyurethane degradation\u003cbr\u003ea. Thermal\u003cbr\u003eb. UV\u003cbr\u003ec. Chemical\u003cbr\u003e12. Polyurethane stabilization\u003cbr\u003e13. Polyurethane blends and interpenetrating networks\u003cbr\u003e14. Additives used with polyurethanes \u003cbr\u003ea. Plasticizers \u003cbr\u003eb. Pigments \u003cbr\u003ec. Blowing agents\u003cbr\u003ed. Surfactants \u003cbr\u003ee. Adhesion promoters\u003cbr\u003ef. Rheological additives\u003cbr\u003eg. Fillers and nanofillers \u003cbr\u003eh. Flame retardants\u003cbr\u003ei. Antibacterial additives\u003cbr\u003e15. Polyurethane processing\u003cbr\u003ea. Prepolymers processing\u003cbr\u003eb. Storage \u003cbr\u003ec. Metering\u003cbr\u003ed. Mixing \u003cbr\u003e16. Applications, properties, and formulations\u003cbr\u003ea. 3D printing\u003cbr\u003eb. Adhesives and sealants\u003cbr\u003ec. Appliances\u003cbr\u003ed. Artificial leather\u003cbr\u003ee. Automotive\u003cbr\u003ef. Bedding \u003cbr\u003eg. Building and construction\u003cbr\u003eh. Carpet underlay\u003cbr\u003ei. Coatings and paints\u003cbr\u003ej. Composite wood\u003cbr\u003ek. Electrical and electronics\u003cbr\u003el. Fiber and textiles\u003cbr\u003em. Flooring\u003cbr\u003en. Foams \u003cbr\u003eo. Footwear \u003cbr\u003ep. Furniture\u003cbr\u003eq. Marine\u003cbr\u003er. Roofing\u003cbr\u003es. Medical\u003cbr\u003et. Packaging\u003cbr\u003eu. Pharmaceutical \u003cbr\u003ev. Reaction injection molding\u003cbr\u003ew. Seals and gaskets\u003cbr\u003ex. Shape memory\u003cbr\u003ey. Sporting equipment\u003cbr\u003ez. Straps \u003cbr\u003eaa. Tires\u003cbr\u003ebb. Waterproofing\u003cbr\u003e17. Health and safety\u003cbr\u003e18. Waste disposal, processing, and recycling\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp;amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp;amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp;amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp;amp; Sons, PVC Degradation \u0026amp;amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003cbr\u003e\u003c\/p\u003e"}
Handbook of Nucleating...
$350.00
{"id":8694778331293,"title":"Handbook of Nucleating Agents, 3rd Ed","handle":"2026-handbook-of-nucleating-agents-3rd-ed","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-084-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublished: Jan 2026\u003c\/span\u003e\u003cbr\u003ePages: 364+viii\u003cbr\u003eFigures: 116\u003cbr\u003eTables: 15\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb style=\"mso-bidi-font-weight: normal;\"\u003eHandbook of Nucleating Agents\u003c\/b\u003e is the most extensive monograph on the subject ever written. In addition to the Handbook, \u003cb style=\"mso-bidi-font-weight: normal;\"\u003eDatabook of Nucleating Agents\u003c\/b\u003e is simultaneously published to give readers comprehensive information on this important subject. The third editions of these books contain updates on new developments during the last 5 years\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003eHandbook of Nucleating Agents\u003c\/b\u003e gives information on how to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce the haze of polymeric products with proper selection of nucleating agents (and\/or the so-called clarifying agents). Handbook of Nucleating Agents brings analyses of important publications found in open and patent literature. Special attention is given to the findings of the last five years which brought many new important developments.\u003cspan style=\"mso-spacerun: yes;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe book is divided into 14 chapters, each of which concentrates on the essential performance of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in \u003cb style=\"mso-bidi-font-weight: normal;\"\u003eDatabook of Nucleating Agents\u003c\/b\u003e, which is published as a separate book to help in the selection of products available in the commercial markets and analyze the properties of different products. Information in Databook and Handbook is totally different without any repetition.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe next six chapters of the Handbook discuss the most essential theoretical knowledge required for the proper selection and use of nucleating and clarifying agents. These include polymer crystallization with and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, measures of nucleation efficiency, mechanisms of nucleation, and effective methods of dispersion of nucleating agents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe following three chapters concentrate on the application aspects in different formulations. Here, extensive use is being made of patent literature and research papers available for different applications. Discussed are 19 polymer processing methods that require the use of nucleating agents, 40 different polymers that are known to use nucleating agents, and 16 groups of commercial products in which nucleating agents found applications. This shows that the modern use of nucleating agents is widespread in industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe last three chapters discuss the effects of nucleating agents on the physical and mechanical properties of materials, the essential analytical techniques used to analyze systems containing nucleating agents, and health and safety in the use of nucleating agents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan style=\"font-size: 11.0pt; line-height: 115%; font-family: 'Calibri',sans-serif; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;\"\u003eThese important and timely publications should not be missed. They contain essential information for upgrading production to a more economical level and products to today's highest performance standards. \u003c\/span\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e2 Chemical Origin of Nucleating Agents \u003cbr\u003e2.1 Acids \u003cbr\u003e2.2 Amides \u003cbr\u003e2.3 Carbon nanotubes \u003cbr\u003e2.4 Graphene derivatives \u003cbr\u003e2.5 Hydrazides \u003cbr\u003e2.6 Inorganic materials \u003cbr\u003e2.6.1 Boron nitride \u003cbr\u003e2.6.2 Calcium carbonate \u003cbr\u003e2.6.3 Hydroxides and oxides\u003cbr\u003e2.6.4 Silica \u003cbr\u003e2.6.5 Talc \u003cbr\u003e2.6.6 Others \u003cbr\u003e2.7 Masterbatch \u003cbr\u003e2.8 Phosphate salts \u003cbr\u003e2.9 Polymeric \u003cbr\u003e2.10 Proprietary nucleating agents\u003cbr\u003e2.11 Renewable resource \u003cbr\u003e2.12 Salts of carboxylic acids \u003cbr\u003e2.13 Sorbitol derivatives \u003cbr\u003e2.14 Xylan esters \u003cbr\u003e2.15 Other nucleating agents \u003cbr\u003e3 Polymer Crystallization with and without Nucleating Agents\u003cbr\u003e4 Parameters of Crystallization \u003cbr\u003e5 What Influences Nucleation?\u003cbr\u003e5.1 Concentration \u003cbr\u003e5.2 Solubility of the nucleating agent in the polymer \u003cbr\u003e5.3 Shear rate and time \u003cbr\u003e5.4 Form of nucleating agent \u003cbr\u003e5.5 Mixtures of nucleating agents \u003cbr\u003e6 Nucleation Efficiency Measures \u003cbr\u003e6.1 Nuclei density\u003cbr\u003e6.2 Nucleation activity and constant \u003cbr\u003e6.3 Nucleation efficiency \u003cbr\u003e6.4 Activation energy \u003cbr\u003e7 Mechanisms of Crystallization \u003cbr\u003e8 Dispersion of Nucleating Agents \u003cbr\u003e9 Nucleating Agents in Different Processing Methods \u003cbr\u003e9.1 Blow molding \u003cbr\u003e9.2 Blown film extrusion \u003cbr\u003e9.3 Calendering \u003cbr\u003e9.4 Compression molding \u003cbr\u003e9.5 Dip coating \u003cbr\u003e9.6 Extrusion \u003cbr\u003e9.7 Foaming \u003cbr\u003e9.8 Hot-melt coating \u003cbr\u003e9.9 Injection molding \u003cbr\u003e9.10 Micro-injection molding \u003cbr\u003e9.11 Powder injection molding \u003cbr\u003e9.12 Pultrusion \u003cbr\u003e9.13 Reaction injection molding \u003cbr\u003e9.14 Rotational molding \u003cbr\u003e9.15 Sheet molding \u003cbr\u003e9.16 Spinning \u003cbr\u003e9.17 Thermoforming \u003cbr\u003e9.18 Welding and machining \u003cbr\u003e9.19 Wire coating\u003cbr\u003e10 Application of Nucleating Agents in Specific Polymers \u003cbr\u003e10.1 Poly(acrylonitrile-co-butadiene-co-styrene) \u003cbr\u003e10.2 Cellulose acetate \u003cbr\u003e10.3 Epoxy resin \u003cbr\u003e10.4 Ethylene-propylene diene terpolymer \u003cbr\u003e10.5 Ethylene-vinyl acetate copolymer \u003cbr\u003e10.6 Fluorinated ethylene-propylene copolymer \u003cbr\u003e10.7 Liquid crystalline polymer \u003cbr\u003e10.8 Polyamide \u003cbr\u003e10.9 Poly(acrylic acid) \u003cbr\u003e10.10 Polyacrylonitrile \u003cbr\u003e10.11 Polyaniline\u003cbr\u003e10.12 Poly(butylene terephthalate) \u003cbr\u003e10.13 Polycarbonate\u003cbr\u003e10.14 Poly(-caprolactone) \u003cbr\u003e10.15 Polychlorotrifluoroethylene \u003cbr\u003e10.16 Polyethylene \u003cbr\u003e10.17 Polyetheretherketone \u003cbr\u003e10.18 Polyetherketoneketone \u003cbr\u003e10.19 Poly(ethylene oxide) \u003cbr\u003e10.20 Poly(ether sulfone) \u003cbr\u003e10.21 Poly(ethylene terephthalate) \u003cbr\u003e10.22 Polyethylene, silane-crosslinkable \u003cbr\u003e10.23 Poly(glycolic acid) \u003cbr\u003e10.24 Poly(3-hydroxybutyrate) \u003cbr\u003e10.25 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)\u003cbr\u003e10.26 Polyimide \u003cbr\u003e10.27 Poly(lactic acid) \u003cbr\u003e10.28 Polyoxymethylene \u003cbr\u003e10.29 Polypropylene \u003cbr\u003e10.30 Polyphthalamide \u003cbr\u003e10.31 Poly(p-phenylene sulfide)\u003cbr\u003e10.32 Polystyrene \u003cbr\u003e10.33 Poly(trimethylene terephthalate) \u003cbr\u003e10.34 Polyurethane \u003cbr\u003e10.35 Poly(vinyl alcohol) \u003cbr\u003e10.36 Poly(vinylidene fluoride) \u003cbr\u003e10.37 Poly(vinylidene fluoride-co-hexafluoropropylene) \u003cbr\u003e10.38 Poly(vinyl fluoride) \u003cbr\u003e10.39 Poly(N-vinyl carbazole) \u003cbr\u003e10.40 Unsaturated polyester \u003cbr\u003e11 Nucleating Agents in Various Products\u003cbr\u003e11.1 Adhesives\u003cbr\u003e11.2 Aerospace \u003cbr\u003e11.3 Appliances \u003cbr\u003e11.4 Automotive materials \u003cbr\u003e11.5 Bottles \u003cbr\u003e11.6 Building construction \u003cbr\u003e11.7 Cable \u0026amp; wire \u003cbr\u003e11.8 Coatings \u0026amp; paints \u003cbr\u003e11.9 Electronics and electrical \u003cbr\u003e11.10 Fibers \u003cbr\u003e11.11 Films \u003cbr\u003e11.12 Medical applications \u003cbr\u003e11.13 Pharmaceutical applications \u003cbr\u003e11.14 Railway \u003cbr\u003e11.15 Roofing \u003cbr\u003e11.16 Window profiles \u003cbr\u003e12 Effect of Nucleating Agents on Physical-mechanical Properties \u003cbr\u003e12.1 Physical properties\u003cbr\u003e12.1.1 Agglomeration \u003cbr\u003e12.1.2 Aspect ratio \u003cbr\u003e12.1.3 Crystalline structure \u003cbr\u003e12.1.4 Hydrophilic\/hydrophobic properties \u003cbr\u003e12.1.5 Melting temperature \u003cbr\u003e12.1.6 Moisture \u003cbr\u003e12.1.7 Optical properties \u003cbr\u003e12.1.8 Particle size \u003cbr\u003e12.1.9 Refractive index \u003cbr\u003e12.1.10 Shape memory \u003cbr\u003e12.1.11 Solubility \u003cbr\u003e12.1.12 Surface energy\u003cbr\u003e12.1.13 Thermal conductivity \u003cbr\u003e12.1.14 Transition temperature \u003cbr\u003e12.1.15 Zeta potential \u003cbr\u003e12.2 Mechanical properties \u003cbr\u003e12.2.1 Flexural strength\u003cbr\u003e12.2.2 Hardness\u003cbr\u003e12.2.3 Impact strength \u003cbr\u003e12.2.4 Residual stress \u003cbr\u003e12.2.5 Scratch resistance \u003cbr\u003e12.2.6 Shrinkage \u003cbr\u003e12.2.7 Tear strength \u003cbr\u003e12.2.8 Thermal deformation \u003cbr\u003e12.2.9 Tensile strength \u003cbr\u003e13 Important Analytical Methods Used in the Studies of Nucleating Agents \u003cbr\u003e13.1 Crystallinity \u003cbr\u003e13.2 Crystallization half-time \u003cbr\u003e13.3 Differential scanning calorimetry \u003cbr\u003e13.4 Fast scanning chip calorimetry\u003cbr\u003e13.5 FTIR \u003cbr\u003e13.6 Haze\u003cbr\u003e13.7 Orientation degree \u003cbr\u003e13.8 Polarized light microscopy \u003cbr\u003e13.9 Quenching device\u003cbr\u003e13.10 Small-angle x-ray diffraction \u003cbr\u003e13.11 Spherulite size \u003cbr\u003e13.12 Thermogravimetric analysis \u003cbr\u003e13.13 Vicat softening temperature \u003cbr\u003e13.14 Wide angle x-ray diffraction\u003cbr\u003e14 Health and Safety with Nucleating Agents \u003cbr\u003e Index\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp;amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp;amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp;amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp;amp; Sons, PVC Degradation \u0026amp;amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003cbr\u003e\u003c\/p\u003e","published_at":"2025-11-14T09:39:33-05:00","created_at":"2025-08-27T11:52:00-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2026","book","electronics","new","nucleating agent","nucleating agents"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":47159608606877,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":null,"requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Nucleating Agents, 3rd Ed","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-084-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/files\/9781774670842-Case.jpg?v=1763131164"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670842-Case.jpg?v=1763131164","options":["Title"],"media":[{"alt":null,"id":32417819984029,"position":1,"preview_image":{"aspect_ratio":0.662,"height":450,"width":298,"src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670842-Case.jpg?v=1763131164"},"aspect_ratio":0.662,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670842-Case.jpg?v=1763131164","width":298}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-084-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublished: Jan 2026\u003c\/span\u003e\u003cbr\u003ePages: 364+viii\u003cbr\u003eFigures: 116\u003cbr\u003eTables: 15\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb style=\"mso-bidi-font-weight: normal;\"\u003eHandbook of Nucleating Agents\u003c\/b\u003e is the most extensive monograph on the subject ever written. In addition to the Handbook, \u003cb style=\"mso-bidi-font-weight: normal;\"\u003eDatabook of Nucleating Agents\u003c\/b\u003e is simultaneously published to give readers comprehensive information on this important subject. The third editions of these books contain updates on new developments during the last 5 years\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003eHandbook of Nucleating Agents\u003c\/b\u003e gives information on how to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce the haze of polymeric products with proper selection of nucleating agents (and\/or the so-called clarifying agents). Handbook of Nucleating Agents brings analyses of important publications found in open and patent literature. Special attention is given to the findings of the last five years which brought many new important developments.\u003cspan style=\"mso-spacerun: yes;\"\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe book is divided into 14 chapters, each of which concentrates on the essential performance of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in \u003cb style=\"mso-bidi-font-weight: normal;\"\u003eDatabook of Nucleating Agents\u003c\/b\u003e, which is published as a separate book to help in the selection of products available in the commercial markets and analyze the properties of different products. Information in Databook and Handbook is totally different without any repetition.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe next six chapters of the Handbook discuss the most essential theoretical knowledge required for the proper selection and use of nucleating and clarifying agents. These include polymer crystallization with and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, measures of nucleation efficiency, mechanisms of nucleation, and effective methods of dispersion of nucleating agents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe following three chapters concentrate on the application aspects in different formulations. Here, extensive use is being made of patent literature and research papers available for different applications. Discussed are 19 polymer processing methods that require the use of nucleating agents, 40 different polymers that are known to use nucleating agents, and 16 groups of commercial products in which nucleating agents found applications. This shows that the modern use of nucleating agents is widespread in industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe last three chapters discuss the effects of nucleating agents on the physical and mechanical properties of materials, the essential analytical techniques used to analyze systems containing nucleating agents, and health and safety in the use of nucleating agents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cspan style=\"font-size: 11.0pt; line-height: 115%; font-family: 'Calibri',sans-serif; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: 'Times New Roman'; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;\"\u003eThese important and timely publications should not be missed. They contain essential information for upgrading production to a more economical level and products to today's highest performance standards. \u003c\/span\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e2 Chemical Origin of Nucleating Agents \u003cbr\u003e2.1 Acids \u003cbr\u003e2.2 Amides \u003cbr\u003e2.3 Carbon nanotubes \u003cbr\u003e2.4 Graphene derivatives \u003cbr\u003e2.5 Hydrazides \u003cbr\u003e2.6 Inorganic materials \u003cbr\u003e2.6.1 Boron nitride \u003cbr\u003e2.6.2 Calcium carbonate \u003cbr\u003e2.6.3 Hydroxides and oxides\u003cbr\u003e2.6.4 Silica \u003cbr\u003e2.6.5 Talc \u003cbr\u003e2.6.6 Others \u003cbr\u003e2.7 Masterbatch \u003cbr\u003e2.8 Phosphate salts \u003cbr\u003e2.9 Polymeric \u003cbr\u003e2.10 Proprietary nucleating agents\u003cbr\u003e2.11 Renewable resource \u003cbr\u003e2.12 Salts of carboxylic acids \u003cbr\u003e2.13 Sorbitol derivatives \u003cbr\u003e2.14 Xylan esters \u003cbr\u003e2.15 Other nucleating agents \u003cbr\u003e3 Polymer Crystallization with and without Nucleating Agents\u003cbr\u003e4 Parameters of Crystallization \u003cbr\u003e5 What Influences Nucleation?\u003cbr\u003e5.1 Concentration \u003cbr\u003e5.2 Solubility of the nucleating agent in the polymer \u003cbr\u003e5.3 Shear rate and time \u003cbr\u003e5.4 Form of nucleating agent \u003cbr\u003e5.5 Mixtures of nucleating agents \u003cbr\u003e6 Nucleation Efficiency Measures \u003cbr\u003e6.1 Nuclei density\u003cbr\u003e6.2 Nucleation activity and constant \u003cbr\u003e6.3 Nucleation efficiency \u003cbr\u003e6.4 Activation energy \u003cbr\u003e7 Mechanisms of Crystallization \u003cbr\u003e8 Dispersion of Nucleating Agents \u003cbr\u003e9 Nucleating Agents in Different Processing Methods \u003cbr\u003e9.1 Blow molding \u003cbr\u003e9.2 Blown film extrusion \u003cbr\u003e9.3 Calendering \u003cbr\u003e9.4 Compression molding \u003cbr\u003e9.5 Dip coating \u003cbr\u003e9.6 Extrusion \u003cbr\u003e9.7 Foaming \u003cbr\u003e9.8 Hot-melt coating \u003cbr\u003e9.9 Injection molding \u003cbr\u003e9.10 Micro-injection molding \u003cbr\u003e9.11 Powder injection molding \u003cbr\u003e9.12 Pultrusion \u003cbr\u003e9.13 Reaction injection molding \u003cbr\u003e9.14 Rotational molding \u003cbr\u003e9.15 Sheet molding \u003cbr\u003e9.16 Spinning \u003cbr\u003e9.17 Thermoforming \u003cbr\u003e9.18 Welding and machining \u003cbr\u003e9.19 Wire coating\u003cbr\u003e10 Application of Nucleating Agents in Specific Polymers \u003cbr\u003e10.1 Poly(acrylonitrile-co-butadiene-co-styrene) \u003cbr\u003e10.2 Cellulose acetate \u003cbr\u003e10.3 Epoxy resin \u003cbr\u003e10.4 Ethylene-propylene diene terpolymer \u003cbr\u003e10.5 Ethylene-vinyl acetate copolymer \u003cbr\u003e10.6 Fluorinated ethylene-propylene copolymer \u003cbr\u003e10.7 Liquid crystalline polymer \u003cbr\u003e10.8 Polyamide \u003cbr\u003e10.9 Poly(acrylic acid) \u003cbr\u003e10.10 Polyacrylonitrile \u003cbr\u003e10.11 Polyaniline\u003cbr\u003e10.12 Poly(butylene terephthalate) \u003cbr\u003e10.13 Polycarbonate\u003cbr\u003e10.14 Poly(-caprolactone) \u003cbr\u003e10.15 Polychlorotrifluoroethylene \u003cbr\u003e10.16 Polyethylene \u003cbr\u003e10.17 Polyetheretherketone \u003cbr\u003e10.18 Polyetherketoneketone \u003cbr\u003e10.19 Poly(ethylene oxide) \u003cbr\u003e10.20 Poly(ether sulfone) \u003cbr\u003e10.21 Poly(ethylene terephthalate) \u003cbr\u003e10.22 Polyethylene, silane-crosslinkable \u003cbr\u003e10.23 Poly(glycolic acid) \u003cbr\u003e10.24 Poly(3-hydroxybutyrate) \u003cbr\u003e10.25 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)\u003cbr\u003e10.26 Polyimide \u003cbr\u003e10.27 Poly(lactic acid) \u003cbr\u003e10.28 Polyoxymethylene \u003cbr\u003e10.29 Polypropylene \u003cbr\u003e10.30 Polyphthalamide \u003cbr\u003e10.31 Poly(p-phenylene sulfide)\u003cbr\u003e10.32 Polystyrene \u003cbr\u003e10.33 Poly(trimethylene terephthalate) \u003cbr\u003e10.34 Polyurethane \u003cbr\u003e10.35 Poly(vinyl alcohol) \u003cbr\u003e10.36 Poly(vinylidene fluoride) \u003cbr\u003e10.37 Poly(vinylidene fluoride-co-hexafluoropropylene) \u003cbr\u003e10.38 Poly(vinyl fluoride) \u003cbr\u003e10.39 Poly(N-vinyl carbazole) \u003cbr\u003e10.40 Unsaturated polyester \u003cbr\u003e11 Nucleating Agents in Various Products\u003cbr\u003e11.1 Adhesives\u003cbr\u003e11.2 Aerospace \u003cbr\u003e11.3 Appliances \u003cbr\u003e11.4 Automotive materials \u003cbr\u003e11.5 Bottles \u003cbr\u003e11.6 Building construction \u003cbr\u003e11.7 Cable \u0026amp; wire \u003cbr\u003e11.8 Coatings \u0026amp; paints \u003cbr\u003e11.9 Electronics and electrical \u003cbr\u003e11.10 Fibers \u003cbr\u003e11.11 Films \u003cbr\u003e11.12 Medical applications \u003cbr\u003e11.13 Pharmaceutical applications \u003cbr\u003e11.14 Railway \u003cbr\u003e11.15 Roofing \u003cbr\u003e11.16 Window profiles \u003cbr\u003e12 Effect of Nucleating Agents on Physical-mechanical Properties \u003cbr\u003e12.1 Physical properties\u003cbr\u003e12.1.1 Agglomeration \u003cbr\u003e12.1.2 Aspect ratio \u003cbr\u003e12.1.3 Crystalline structure \u003cbr\u003e12.1.4 Hydrophilic\/hydrophobic properties \u003cbr\u003e12.1.5 Melting temperature \u003cbr\u003e12.1.6 Moisture \u003cbr\u003e12.1.7 Optical properties \u003cbr\u003e12.1.8 Particle size \u003cbr\u003e12.1.9 Refractive index \u003cbr\u003e12.1.10 Shape memory \u003cbr\u003e12.1.11 Solubility \u003cbr\u003e12.1.12 Surface energy\u003cbr\u003e12.1.13 Thermal conductivity \u003cbr\u003e12.1.14 Transition temperature \u003cbr\u003e12.1.15 Zeta potential \u003cbr\u003e12.2 Mechanical properties \u003cbr\u003e12.2.1 Flexural strength\u003cbr\u003e12.2.2 Hardness\u003cbr\u003e12.2.3 Impact strength \u003cbr\u003e12.2.4 Residual stress \u003cbr\u003e12.2.5 Scratch resistance \u003cbr\u003e12.2.6 Shrinkage \u003cbr\u003e12.2.7 Tear strength \u003cbr\u003e12.2.8 Thermal deformation \u003cbr\u003e12.2.9 Tensile strength \u003cbr\u003e13 Important Analytical Methods Used in the Studies of Nucleating Agents \u003cbr\u003e13.1 Crystallinity \u003cbr\u003e13.2 Crystallization half-time \u003cbr\u003e13.3 Differential scanning calorimetry \u003cbr\u003e13.4 Fast scanning chip calorimetry\u003cbr\u003e13.5 FTIR \u003cbr\u003e13.6 Haze\u003cbr\u003e13.7 Orientation degree \u003cbr\u003e13.8 Polarized light microscopy \u003cbr\u003e13.9 Quenching device\u003cbr\u003e13.10 Small-angle x-ray diffraction \u003cbr\u003e13.11 Spherulite size \u003cbr\u003e13.12 Thermogravimetric analysis \u003cbr\u003e13.13 Vicat softening temperature \u003cbr\u003e13.14 Wide angle x-ray diffraction\u003cbr\u003e14 Health and Safety with Nucleating Agents \u003cbr\u003e Index\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp;amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp;amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp;amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp;amp; Sons, PVC Degradation \u0026amp;amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003cbr\u003e\u003c\/p\u003e"}