In-Mould Decoration of Plastics
Many plastic components need to have a surface finish applied before use. This can act as a decorative layer, a protective layer, to smooth out surface defects, or to alter surface properties (for example, to enhance adhesion). If this surface effect is applied during the moulding process, it can reduce time, space, material and machinery requirements. It also allows processors to supply complete systems, rather than just moulded components. In-mould decoration techniques include the in-mould application of film, in-mould priming, in-mould labeling and the injection of paints into the mould.
In-mould decoration generally requires additional equipment, which can be expensive. The design is also critical for success. These factors need to be taken into consideration in corporate planning.
In-mould films are prepared by multi-layer extrusion or solvent casting. They can be a single colour or highly patterned with detailed graphics. They are stretched across a mould prior to injection, compression or blow moulding to produce a variety of decorative effects. This technique allows for great design flexibility and permits increased customer personalisation of products such as cars and mobile phones. Changing design between moulds is as simple as changing a roll of film. Film preparation is also discussed in this review.
Coatings comprising thermoplastic, pseudo-thermoplastic and uncured thermosetting materials can be injected or extruded into a mould. Here they act as paints in compression injection moulding and co-injection moulding. An additional benefit is that in-mould painting can reduce the release of volatile organic compounds (VOCs) into the atmosphere, which is a common problem in paint shops.
In-mould labeling can eliminate the requirement for adhesive. In the first example of this practice, paper labels for ice cream container lids were inserted into the mould prior to injection. Labels can also be applied as a film and made from the same plastic material as the component to facilitate bonding and create a continuous surface effect, i.e., the label becomes an integral part of the product.
These techniques have widespread use in the plastics industry and the marketplace is expanding. The car and mobile phone industries, packaging and toys are examples of key areas for growth.
Many new developments are taking place in this field. The indexed summaries of papers from the polymer library that are included with this review include a number of key patents. This reference section also provides a good indicator of the key companies involved in this area and the current applications of this technology.
The emphasis of this review is on practical applications of the techniques of in-mould decoration including advantages and disadvantages. This book provides an excellent source of information about a developing area of moulding, which will allow processors to add value to products and compete in the marketplace.
In-mould decoration generally requires additional equipment, which can be expensive. The design is also critical for success. These factors need to be taken into consideration in corporate planning.
In-mould films are prepared by multi-layer extrusion or solvent casting. They can be a single colour or highly patterned with detailed graphics. They are stretched across a mould prior to injection, compression or blow moulding to produce a variety of decorative effects. This technique allows for great design flexibility and permits increased customer personalisation of products such as cars and mobile phones. Changing design between moulds is as simple as changing a roll of film. Film preparation is also discussed in this review.
Coatings comprising thermoplastic, pseudo-thermoplastic and uncured thermosetting materials can be injected or extruded into a mould. Here they act as paints in compression injection moulding and co-injection moulding. An additional benefit is that in-mould painting can reduce the release of volatile organic compounds (VOCs) into the atmosphere, which is a common problem in paint shops.
In-mould labeling can eliminate the requirement for adhesive. In the first example of this practice, paper labels for ice cream container lids were inserted into the mould prior to injection. Labels can also be applied as a film and made from the same plastic material as the component to facilitate bonding and create a continuous surface effect, i.e., the label becomes an integral part of the product.
These techniques have widespread use in the plastics industry and the marketplace is expanding. The car and mobile phone industries, packaging and toys are examples of key areas for growth.
Many new developments are taking place in this field. The indexed summaries of papers from the polymer library that are included with this review include a number of key patents. This reference section also provides a good indicator of the key companies involved in this area and the current applications of this technology.
The emphasis of this review is on practical applications of the techniques of in-mould decoration including advantages and disadvantages. This book provides an excellent source of information about a developing area of moulding, which will allow processors to add value to products and compete in the marketplace.
1. Introduction
2. The Popularity of In-Mould Decoration
2.1 Customer Requirement
2.2 Costs
2.3 Environmental Legislation
2.4 A Strategic Decision
3. In-Mould Film Technologies
3.1 In-Mould Labelling
3.2 In-Mould Paint Films
3.2.1 The Structure of In-Mould Paint Films
3.2.2 Manufacturing Options
3.2.3 The Application of Paint Films in Moulding
3.2.4 Benefits of Using In-Mould Paint Films
3.2.5 Limitations of Using In-Mould Paint Films
3.3 In-Mould Textiles
3.4 In-Mould Decorating
4. Injection In-Mould Painting
4.1 Introduction
4.2 Paint Formulations
4.2.1 The Base Plastics
4.3 Adhesion Technologies
4.3.1 Compatible Materials
4.3.2 Encapsulation
4.3.3 Chemical Compatibilisation
4.4 Application Methods for Injection In-Mould Painting
4.4.1 Compression Injection Moulding
4.4.2 Simultaneous Co-Injection Moulding: Granular Injected Paint Technology (GIPT)
4.4.3 Moulded In Paint
4.4.4 FINIMOL
5. On-Mould Painting
5.1 Introduction
5.2 Coating Formulation
5.3 Application Methods
5.4 The Advantages and Limitations of On-Mould Painting
6. In-Mould Primer
6.1 Introduction
6.2 In-Mould Priming of PP Using Simultaneous Co-Injection Moulding
6.3 In-Mould Priming of Composites
7. Conclusions
Additional References
Abbreviations and Acronyms
Abstracts from the Polymer Library Databases
Subject Index
2. The Popularity of In-Mould Decoration
2.1 Customer Requirement
2.2 Costs
2.3 Environmental Legislation
2.4 A Strategic Decision
3. In-Mould Film Technologies
3.1 In-Mould Labelling
3.2 In-Mould Paint Films
3.2.1 The Structure of In-Mould Paint Films
3.2.2 Manufacturing Options
3.2.3 The Application of Paint Films in Moulding
3.2.4 Benefits of Using In-Mould Paint Films
3.2.5 Limitations of Using In-Mould Paint Films
3.3 In-Mould Textiles
3.4 In-Mould Decorating
4. Injection In-Mould Painting
4.1 Introduction
4.2 Paint Formulations
4.2.1 The Base Plastics
4.3 Adhesion Technologies
4.3.1 Compatible Materials
4.3.2 Encapsulation
4.3.3 Chemical Compatibilisation
4.4 Application Methods for Injection In-Mould Painting
4.4.1 Compression Injection Moulding
4.4.2 Simultaneous Co-Injection Moulding: Granular Injected Paint Technology (GIPT)
4.4.3 Moulded In Paint
4.4.4 FINIMOL
5. On-Mould Painting
5.1 Introduction
5.2 Coating Formulation
5.3 Application Methods
5.4 The Advantages and Limitations of On-Mould Painting
6. In-Mould Primer
6.1 Introduction
6.2 In-Mould Priming of PP Using Simultaneous Co-Injection Moulding
6.3 In-Mould Priming of Composites
7. Conclusions
Additional References
Abbreviations and Acronyms
Abstracts from the Polymer Library Databases
Subject Index
As a materials engineer, Jo Love has been researching in-mould decorating for five years. She is an expert in the development and use of the Granular Injected Paint Technology (GIPT) and has published papers and taught the principles of in-mould decorating internationally. Dr. Goodship is a Senior Research Fellow with 14 years experience in industry and expertise in co-injection moulding technology. The authors are based at the Warwick Manufacturing Group in the Advanced Technology Centre at the University of Warwick, which has strong links to the automotive sector.
Related Products
PVC Formulary
$300.00
{"id":4534955769949,"title":"PVC Formulary","handle":"pvc-formulary","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-63-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird edition\u003cbr\u003ePages: 410+x\u003cbr\u003eFigures: 132\u003cbr\u003eTables: 544\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In addition to the content of the previous edition, the book provides many new formulations which were introduced in the last six years. In the first introductory chapter, the new product development, product re-engineering tools and market for PVC products have been discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear way in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics needed by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains more than 600 formulations of products belonging to over 20 categories derived from typical methods of production. Formulations come from patents, publications in journals, and from the suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most critical parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This section results from a review of thousands of patents and research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, and use and application information. The data are based on information contained in over 1450 research papers, and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization also published in 2020) is to provide the reader with complete information and data required to formulate successful and durable products and\/or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Pharmaceutical products\u003cbr\u003e4.15 Powder coating \u003cbr\u003e4.16 Printing \u003cbr\u003e4.17 Rotational molding \u003cbr\u003e4.18 Sintering \u003cbr\u003e4.19 Slush molding \u003cbr\u003e4.20 Solvent casting \u003cbr\u003e4.21 Spraying \u003cbr\u003e4.22 Thermoforming \u003cbr\u003e4.23 Web coating \u003cbr\u003e4.23.1 General \u003cbr\u003e4.23.2 Coated fabrics \u003cbr\u003e4.23.3 Conveyor belts \u003cbr\u003e4.23.4 Flooring \u003cbr\u003e4.23.5 Swimming pool liners \u003cbr\u003e4.23.6 Tarpaulins \u003cbr\u003e4.23.7 Upholstery \u003cbr\u003e4.23.8 Wallcovering \u003cbr\u003e4.23.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 Wire \u0026amp; cable \u003cbr\u003e4.24.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.24.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.25 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:20:07-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","new","PVC"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943878705245,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Formulary","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-63-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885635-Case.png?v=1581110471"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885635-Case.png?v=1581110471","options":["Title"],"media":[{"alt":null,"id":6968064540765,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885635-Case.png?v=1581110471"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885635-Case.png?v=1581110471","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-63-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird edition\u003cbr\u003ePages: 410+x\u003cbr\u003eFigures: 132\u003cbr\u003eTables: 544\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In addition to the content of the previous edition, the book provides many new formulations which were introduced in the last six years. In the first introductory chapter, the new product development, product re-engineering tools and market for PVC products have been discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear way in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics needed by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains more than 600 formulations of products belonging to over 20 categories derived from typical methods of production. Formulations come from patents, publications in journals, and from the suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most critical parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This section results from a review of thousands of patents and research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, and use and application information. The data are based on information contained in over 1450 research papers, and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization also published in 2020) is to provide the reader with complete information and data required to formulate successful and durable products and\/or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Pharmaceutical products\u003cbr\u003e4.15 Powder coating \u003cbr\u003e4.16 Printing \u003cbr\u003e4.17 Rotational molding \u003cbr\u003e4.18 Sintering \u003cbr\u003e4.19 Slush molding \u003cbr\u003e4.20 Solvent casting \u003cbr\u003e4.21 Spraying \u003cbr\u003e4.22 Thermoforming \u003cbr\u003e4.23 Web coating \u003cbr\u003e4.23.1 General \u003cbr\u003e4.23.2 Coated fabrics \u003cbr\u003e4.23.3 Conveyor belts \u003cbr\u003e4.23.4 Flooring \u003cbr\u003e4.23.5 Swimming pool liners \u003cbr\u003e4.23.6 Tarpaulins \u003cbr\u003e4.23.7 Upholstery \u003cbr\u003e4.23.8 Wallcovering \u003cbr\u003e4.23.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 Wire \u0026amp; cable \u003cbr\u003e4.24.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.24.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.25 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
PVC Degradation and St...
$315.00
{"id":4534954426461,"title":"PVC Degradation and Stabilization","handle":"pvc-degradation-and-stabilization","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-61-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 510 + x\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 67\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFourth Edition of PVC Degradation and Stabilization is a wholly updated monographic source based on the most recent papers and patent literature. PVC stabilization, the most critical aspect of formulation and performance of this polymer, is discussed in detail. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains an analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by γ-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:17:36-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","new","PVC","PVC UV degradation"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943870808157,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-61-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885611-Case.png?v=1581110423"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885611-Case.png?v=1581110423","options":["Title"],"media":[{"alt":null,"id":6968063197277,"position":1,"preview_image":{"aspect_ratio":0.66,"height":450,"width":297,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885611-Case.png?v=1581110423"},"aspect_ratio":0.66,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885611-Case.png?v=1581110423","width":297}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-61-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 510 + x\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 67\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFourth Edition of PVC Degradation and Stabilization is a wholly updated monographic source based on the most recent papers and patent literature. PVC stabilization, the most critical aspect of formulation and performance of this polymer, is discussed in detail. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains an analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by γ-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Handbook of UV Degrada...
$315.00
{"id":4534952853597,"title":"Handbook of UV Degradation and Stabilization, 3nd Edition","handle":"handbook-of-uv-degradation-and-stabilization-3nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-57-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird Edition\u003cbr\u003ePages: 518\u003cbr\u003eFigures 124\u003cbr\u003eTables 256\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains completely updated version of previous edition with the most recent literature and patents. It has 12 chapters, each discussing different aspect of UV related phenomena occurring when materials are exposed to UV radiation.\u003cbr\u003e\u003cbr\u003eIn the introduction the existing literature has been reviewed to find out how plants, animals and humans protect themselves against UV radiation. This review permits comparison of mechanisms of protection against UV used by living things and the effect of UV radiation on materials derived from natural products and polymers and rubber. \u003cbr\u003e\u003cbr\u003ePhotophysics, discussed in the second chapter, helps to build understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process. \u003cbr\u003e\u003cbr\u003eThese effects are combined with photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a sets of data prepared according to a systematic outline as listed in the Table of Contents. \u003cbr\u003e\u003cbr\u003eStability of UV stabilizers, important for predicting lifetime of their protection is discussed in Chapter 5. Different reasons of instability are pointed out in evaluation.\u003cbr\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003cbr\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7 and over 40 groups of final products, which use majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003cbr\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential in further understanding of UV degradation and stabilization.\u003cbr\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and commercial use of the products (Chapter 12).\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Databook of UV stabilizers which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential for automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and large number of industries which derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:14:49-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","new","UV stabilizers"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943861600349,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of UV Degradation and Stabilization, 3nd Edition","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-57-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885574-Case.png?v=1581110318"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885574-Case.png?v=1581110318","options":["Title"],"media":[{"alt":null,"id":6968061067357,"position":1,"preview_image":{"aspect_ratio":0.673,"height":450,"width":303,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885574-Case.png?v=1581110318"},"aspect_ratio":0.673,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885574-Case.png?v=1581110318","width":303}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-57-4 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird Edition\u003cbr\u003ePages: 518\u003cbr\u003eFigures 124\u003cbr\u003eTables 256\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains completely updated version of previous edition with the most recent literature and patents. It has 12 chapters, each discussing different aspect of UV related phenomena occurring when materials are exposed to UV radiation.\u003cbr\u003e\u003cbr\u003eIn the introduction the existing literature has been reviewed to find out how plants, animals and humans protect themselves against UV radiation. This review permits comparison of mechanisms of protection against UV used by living things and the effect of UV radiation on materials derived from natural products and polymers and rubber. \u003cbr\u003e\u003cbr\u003ePhotophysics, discussed in the second chapter, helps to build understanding of physical phenomena occurring in materials when they are exposed to UV radiation. Potentially useful stabilization methods become obvious from the analysis of photophysics of the process. \u003cbr\u003e\u003cbr\u003eThese effects are combined with photochemical properties of stabilizers and their mechanisms of stabilization, which is the subject of Chapter 3.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on available UV stabilizers. It contains a sets of data prepared according to a systematic outline as listed in the Table of Contents. \u003cbr\u003e\u003cbr\u003eStability of UV stabilizers, important for predicting lifetime of their protection is discussed in Chapter 5. Different reasons of instability are pointed out in evaluation.\u003cbr\u003e\u003cbr\u003ePrinciples of stabilizer selection are given in Chapter 6. Ten areas of influence of stabilizer properties and expectations from the final products were selected for discussion in this chapter. \u003cbr\u003e\u003cbr\u003eChapters 7 and 8 give specific information on degradation and stabilization of different polymers \u0026amp; rubbers and final products manufactured from them, respectively. Over 50 polymers and rubbers are discussed in different sections of Chapter 7 and over 40 groups of final products, which use majority of UV stabilizers are discussed in Chapter 8. In addition, more focused information is provided in Chapter 9 for sunscreens. This is example of new developments in technology. The subjects discussed in each individual case of polymer or group of products are given in Table of Contents.\u003cbr\u003e\u003cbr\u003eSpecific effects of UV stabilizers which may affect formulation because of interaction between UV stabilizers and other components of formulations are discussed in Chapter 10. Analytical methods, which are most frequently used in UV stabilization, are discussed in Chapter 11 to show their potential in further understanding of UV degradation and stabilization.\u003cbr\u003e\u003cbr\u003eThe book is concluded with the effect of UV stabilizers on the health and safety of workers involved in their processing and commercial use of the products (Chapter 12).\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Databook of UV stabilizers which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential for automotive industry, aerospace, polymers and plastics, rubber, cosmetics, preservation of food products, and large number of industries which derive their products from polymers and rubber (e.g., adhesives, appliances, coatings, coil coated materials, construction, extruded profiles and their final products, greenhouse films, medical equipment, packaging materials, paints, pharmaceutical products, pipes and tubing, roofing materials, sealants, solar cells and collectors, siding, wire and cable, and wood).\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Photophysics and photochemistry\u003cbr\u003e3. Mechanisms of UV stabilization\u003cbr\u003e4. UV stabilizers (chemical composition, physical-chemical properties, UV absorption, forms, applications – polymers and final products, concentrations used)\u003cbr\u003e5. Stability of UV stabilizers\u003cbr\u003e6. Principles of stabilizer selection\u003cbr\u003e7. UV degradation and stabilization of polymers and rubbers (description according to the following outline: mechanisms and results of degradation, mechanisms and results of stabilization, and data on activation wavelength (spectral sensitivity), products of degradation, typical results of photodegradation, most important stabilizers, concentration of stabilizers in formulation, and examples of lifetime of typical polymeric materials)\u003cbr\u003e8. UV degradation and stabilization of industrial products (description according to the following outline: requirements, lifetime expectations, important changes and mechanisms, stabilization methods)\u003cbr\u003e9 Focus on technology - Sunscreen \u003cbr\u003e10 UV stabilizers and other components of formulation \u003cbr\u003e11 Analytical methods in UV degradation and stabilization studies\u003cbr\u003e12 UV stabilizers – health, safety, and environment\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}