Chemtec Publishing offers a large collection of books on polymers, plastics, and rubber.
- Grid List
Filter
Handbook of Solvents, ...
$295.00
{"id":11242240516,"title":"Handbook of Solvents, Volume 1, Properties","handle":"978-1895198-64-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA","published_at":"2017-06-22T21:14:44-04:00","created_at":"2017-06-22T21:14:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","book","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","p-additives","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents, Volume 1, Properties","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-64-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259","options":["Title"],"media":[{"alt":null,"id":356342956125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA"}
Surface Engineering of...
$205.00
{"id":11242240068,"title":"Surface Engineering of Polymeric Biomaterials","handle":"9781847356581","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Todorka G Vladkova \u003cbr\u003eISBN 9781847356581 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003ctable width=\"100%\" border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd class=\"pmore\"\u003ePublished: 2013\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\nHardcover Pages: 590\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties.\u003cbr\u003e\u003cbr\u003eThis book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered.\u003cbr\u003e\u003cbr\u003eThe theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials is presented. The book also includes information on the most used conventional and advanced surface engineering methods.\u003cbr\u003e\u003cbr\u003eThe book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e1.1 Specific Objectives of Biomaterial Surface Engineering \u003cbr\u003e1.2 Theoretical Basis of Biomaterial Surface Engineering \u003cbr\u003e1.2.1 Protein Adsorption \u003cbr\u003e1.2.1.1 Specific Protein Adsorption \u003cbr\u003e1.2.1.2 Non-specific Protein Adsorption \u003cbr\u003e1.2.2 Initial Cell\/Biomaterial Surface Interactions \u003cbr\u003e1.3 Biomaterial Surface Engineering Approaches \u003cbr\u003e\u003cbr\u003e2 Surface Engineering Methods \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Physicochemical Methods \u003cbr\u003e2.2.1 Blending\u003cbr\u003e2.2.2 Acid Etching \u003cbr\u003e2.2.3 Surface Grafting \u003cbr\u003e2.2.3.1 Graft Polymerisation \u003cbr\u003e2.2.3.2 Polymer Brushes. \u003cbr\u003e2.2.4 Plasma Techniques \u003cbr\u003e2.2.5 Photon Irradiation \u003cbr\u003e2.2.6 Ion-beam Modification \u003cbr\u003e2.2.7 Adsorption from Solution (Thin Film\/Coating Preparation Methods) \u003cbr\u003e2.2.7.1 Dip Coating\u003cbr\u003e2.2.7.2 Spin Coating \u003cbr\u003e2.2.7.3 Langmuir–Blodgett Films \u003cbr\u003e2.2.7.4 Self-assembled Monolayers \u003cbr\u003e2.2.7.5 Self-assembled Monolayers with Molecular Gradients \u003cbr\u003e2.2.7.6 Layer-by-Layer Assembly \u003cbr\u003e2.3 Biological Methods \u003cbr\u003e2.3.1 Biomolecule Immobilisation by Physical Adsorption \u003cbr\u003e2.3.2 Biomolecule Immobilisation by Blending \u003cbr\u003e2.3.3 Electrostatic Attachment of Biomolecules \u003cbr\u003e2.3.3.1 LbL Technique using Polyelectrolytes\u003cbr\u003e2.3.3.2 Electrochemical Polymerisation Using Conducting Polymers \u003cbr\u003e2.3.4 Covalent Bonding of Biomolecules \u003cbr\u003e2.3.4.1 Thiol-mediated Bonding\u003cbr\u003e2.3.4.2 Hydroxyl Group-Mediated Bonding \u003cbr\u003e2.3.4.3 Carboxylate Group-Mediated Bonding\u003cbr\u003e2.3.4.4 Photoinitiated Coupling of Biomolecules \u003cbr\u003e2.3.4.5 Enzymic Coagulation of Biomolecules\u003cbr\u003e2.3.4.6 iomolecules Bonding with ‘Click’ Reactions\u003cbr\u003e2.4 Surface Micro- and Nano-structuring \u003cbr\u003e2.4.1 Photolithography\u003cbr\u003e2.4.2 Ion Lithography and Focused Ion Beam Lithography\u003cbr\u003e2.4.3 Electron Lithography \u003cbr\u003e2.4.4 Soft Lithography\u003cbr\u003e2.4.5 Dip Pen Nanolithography \u003cbr\u003e2.4.6 Near-field Scanning Methods\u003cbr\u003e2.4.7 General Methods of Nano- and Micro-bioarray Patterning \u003cbr\u003e\u003cbr\u003e3 Surface Engineering of Biomaterials Reducing Protein Adsorption\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Surface Engineering of Biomaterials to Reduce Undesirable\/Uncontrolled Responses to Implants and Extracorporeal Devices \u003cbr\u003e3.2.1 Polyethylene Glycol-coated Surfaces \u003cbr\u003e3.2.1.1 Photopolymerised or Photocrosslinked Coatings\u003cbr\u003e3.2.1.2 Chemical Coupling of PEG \u003cbr\u003e3.2.1.2.1 \u003cspan\u003eChemical Coupling based on the Reactivity of the Terminal Hydroxyl Groups \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e3.2.1.2.2 \u003cspan\u003eCovalent Attachment by Employment of Functionalised\u003c\/span\u003e\u003cbr\u003e\u003cspan\u003ePEG (Derivative Terminal OH Groups)\u003c\/span\u003e\u003cbr\u003e3.2.1.3 Non-covalent Immobilisation\u003cbr\u003e3.2.2 Non-PEGylated Hydrophilic Surfaces \u003cbr\u003e3.2.3 Zwitterionic Polymer Thin Layers \u003cbr\u003e3.2.4 Hydrophilic Surfaces of Hyperbranched Polymers \u003cbr\u003e3.2.5 Multi-layer Thin Films \u003cbr\u003e3.2.6 Hydrogels and Hydrogel Coatings \u003cbr\u003e3.2.6.1 PEG-based Hydrogel Coatings \u003cbr\u003e3.2.6.2 Hydrogel Coatings of Other Polymers \u003cbr\u003e3.2.6.3 Hydrogels of Zwitterionic Polymers \u003cbr\u003e3.2.7 Patterned Surfaces\u003cbr\u003e3.2.7.1 Backfill Non-fouling Polymers and Procedures \u003cbr\u003e3.2.7.2 Micro- and Nano-patterning Techniques\u003cbr\u003e3.3 Surface Engineering of Biomaterial Surfaces\u003cbr\u003eReducing\/Eliminating Non-specific Adsorption on\u003cbr\u003eBiosensors and Bioassays \u003cbr\u003e3.4 Surface Engineering of Microfluidic Devices \u003cbr\u003e3.4.1 Dynamic Coating \u003cbr\u003e3.4.2 Permanent Coatings\u003cbr\u003e3.4.2.1 Plasma Treatments\u003cbr\u003e3.4.2.2 Laser Treatments.\u003cbr\u003e3.4.2.3 Surface Graft Polymerisation\u003cbr\u003e3.4.2.4 Patterning of Microfluidics\u003cbr\u003e3.4.2.5 Covalent Modification\u003cbr\u003e3.4.2.6 Self-assembled Monolayers\u003cbr\u003e3.4.2.7 Polyelectrolyte Multi-layer Coatings\u003cbr\u003e\u003cbr\u003e4 Surface Engineering of\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Strongly Hydrophilic and Strongly Hydrophobic Surfaces \u003cbr\u003e4.2.1 Strongly Hydrophilic Surfaces\u003cbr\u003e4.2.2 Strongly Hydrophobic Surfaces \u003cbr\u003e4.3 Biomaterials with Micro- and Nano-domain Surfaces\u003cbr\u003e4.4 The Immobilisation of Heparin and Other Bioactive Molecules \u003cbr\u003e4.4.1 Heparinised Surfaces \u003cbr\u003e4.4.2 Immobilisation of Other Bioactive Molecules \u003cbr\u003e4.5 Albumin Coating \u003cbr\u003e4.6 Endothelial Cells Attachment \u003cbr\u003e4.7 Natural Biomembrane Mimetic Surfaces\u003cbr\u003e4.8 Polyelectrolyte Multi-layers \u003cbr\u003e4.9 Micro- and Nanostructured Blood Contacting Surfaces \u003cbr\u003e\u003cbr\u003e5 Surface Engineering of Bio-interactive Biomaterials \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Surface Engineering of Biomaterials Promoting Cell Attachment\/Adhesion \u003cbr\u003e5.2.1 Cell\/Biomaterial Surface Interaction\u003cbr\u003e5.2.2 Surface Engineering of Cell Adhesive Biomaterials\u003cbr\u003evia Physicochemical Modification \u003cbr\u003e5.2.2.1 Control the Surface Energy (Hydrophilic\/Hydrophobic Balance) \u003cbr\u003eBlood Contacting Polymeric Biomaterials \u003cbr\u003e5.2.2.2 Creation of Positively Charged Surfaces\u003cbr\u003e5.2.2.3 Surface Micro-architecture Manipulation\u003cbr\u003e5.2.2.4 Creation of Polyelectrolyte Multi-layers \u003cbr\u003e5.2.2.5 Temperature-responsive Polymer Coatings \u003cbr\u003e5.2.2.6 Other Functional Polymer Coatings \u003cbr\u003e5.2.2.7 Multi-layer Thin Films for Cell\u003cbr\u003eEncapsulation \u003cbr\u003e5.2.3 Surface\u003cbr\u003evia Biomolecule Immobilisation \u003cbr\u003eEngineering of Cell Adhesive Biomaterials\u003cbr\u003e5.2.3.1 Cell Adhesion Ligands \u003cbr\u003e5.2.3.2 Non-covalent Immobilisation of Biomolecules \u003cbr\u003e5.2.3.3 Covalent Bonding of Biomolecules \u003cbr\u003e5.2.3.4 Patterning of Biomolecules on Biomaterial Surfaces \u003cbr\u003e5.3 Surface Engineering of Drug Delivery Systems \u003cbr\u003e5.3.1 Drug Delivery Systems \u003cbr\u003e5.3.1.1 Hydrogel Controlled Release Formulations \u003cbr\u003e5.3.1.2 Functionalised Electrospun Nanofibres Drug Delivery Carriers\u003cbr\u003e5.3.1.3 Drug Loaded Micro- and Nano-particles \u003cbr\u003e5.3.1.4 Drug Loaded Magnetic Nanoparticles\u003cbr\u003e5.3.1.5 Electrostimulated Drug Release Systems \u003cbr\u003e5.3.2 Polymeric Thin Films and Coatings for Drug and Gene Delivery\u003cbr\u003e5.3.3 Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.1 Matrices and Scaffolds for Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.2 Bioactive Proteins and Peptides \u003cbr\u003e5.3.3.3 Strategies for Bioactive Factors Controlled Delivery \u003cbr\u003eSurface Engineering of Polymeric Biomaterials\u003cbr\u003e5.4 Surface Engineering of Biomaterials Reducing Bacterial Adhesion\u003cbr\u003e5.4.1 Biomaterials Resistant to Bacterial Adhesion\u003cbr\u003e5.4.2 Nanocomposite Polymer Coatings Containing Inorganic Biocides\u003cbr\u003e5.4.3 Antibiotic Conjugated Polymer Coatings \u003cbr\u003e5.4.4 Biomimetic Antibacterial Coatings\u003cbr\u003e5.4.5 Antibacterial Coatings Based on Cationic Polymers \u003cbr\u003e\u003cbr\u003e6 Biomaterial Surface Characterisation \u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Surface Morphology Observation\u003cbr\u003e6.3 Contact Angle Measurements \u003cbr\u003e6.3.1 Surface Tension and Determination of its Components \u003cbr\u003e6.3.2 Methods of Contact Angle Measurement\u003cbr\u003e6.3.2.1 Drop and Bubble Methods for Contact Angle Measurement \u003cbr\u003e6.3.2.2 Wilhelmy Plate Method \u003cbr\u003e6.4 Surface Forces Measurement\u003cbr\u003e6.5 Ellipsometry Measurements \u003cbr\u003e6.6 Surface Chemical Composition Characterisation \u003cbr\u003e6.6.1 Spectroscopy Methods (ATR-FTIR, TOF-SIMS, and XPS) \u003cbr\u003e6.6.2 Colorimetric Determination of Surface Functional Groups Density \u003cbr\u003e6.6.3 Radiotracer Method \u003cbr\u003e6.6.4 Estimating the Thickness of Grafted Polymer Layers \u003cbr\u003e6.7 Characterisation of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.1 Estimating the Density and Thickness of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.2 Characterisation of Biomolecules Attachment to\/Detachment from Biomaterial Surfaces \u003cbr\u003e6.7.3 Bioactivity Evaluation of Proteins Immobilised on Biomaterial Surface\u003cbr\u003e6.7.4 Spatial Distribution of Proteins and Adhering Cell Characterisation\u003cbr\u003e6.8 Evaluation of Cell Behaviour on Biomaterial Surfaces. 500 \u003cbr\u003e6.8.1 Cell Proliferation\u003cbr\u003e6.8.2 Cell Imaging\u003cbr\u003e6.8.3 Cell Migration\u003cbr\u003e6.8.4 Cell Function Analysis\u003cbr\u003e6.9 Tests for Biocompatibility\u003cbr\u003e\u003cbr\u003e7 Summary and Outlook \u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:43-04:00","created_at":"2017-06-22T21:14:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","bioactive","biocides","biomaterials","biopolymer","biopolymers","book","coatings","drug delivery","micro- and nano-particles","polymeric biomaterials","polymers","surface","tin films"],"price":20500,"price_min":20500,"price_max":25000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433412,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"9781847356581","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Surface Engineering of Polymeric Biomaterials - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":25000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356581","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50451906692,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"9781847356581","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Surface Engineering of Polymeric Biomaterials - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":20500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356581","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107","options":["Cover"],"media":[{"alt":null,"id":358775554141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Todorka G Vladkova \u003cbr\u003eISBN 9781847356581 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003ctable width=\"100%\" border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd class=\"pmore\"\u003ePublished: 2013\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\nHardcover Pages: 590\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties.\u003cbr\u003e\u003cbr\u003eThis book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered.\u003cbr\u003e\u003cbr\u003eThe theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials is presented. The book also includes information on the most used conventional and advanced surface engineering methods.\u003cbr\u003e\u003cbr\u003eThe book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e1.1 Specific Objectives of Biomaterial Surface Engineering \u003cbr\u003e1.2 Theoretical Basis of Biomaterial Surface Engineering \u003cbr\u003e1.2.1 Protein Adsorption \u003cbr\u003e1.2.1.1 Specific Protein Adsorption \u003cbr\u003e1.2.1.2 Non-specific Protein Adsorption \u003cbr\u003e1.2.2 Initial Cell\/Biomaterial Surface Interactions \u003cbr\u003e1.3 Biomaterial Surface Engineering Approaches \u003cbr\u003e\u003cbr\u003e2 Surface Engineering Methods \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Physicochemical Methods \u003cbr\u003e2.2.1 Blending\u003cbr\u003e2.2.2 Acid Etching \u003cbr\u003e2.2.3 Surface Grafting \u003cbr\u003e2.2.3.1 Graft Polymerisation \u003cbr\u003e2.2.3.2 Polymer Brushes. \u003cbr\u003e2.2.4 Plasma Techniques \u003cbr\u003e2.2.5 Photon Irradiation \u003cbr\u003e2.2.6 Ion-beam Modification \u003cbr\u003e2.2.7 Adsorption from Solution (Thin Film\/Coating Preparation Methods) \u003cbr\u003e2.2.7.1 Dip Coating\u003cbr\u003e2.2.7.2 Spin Coating \u003cbr\u003e2.2.7.3 Langmuir–Blodgett Films \u003cbr\u003e2.2.7.4 Self-assembled Monolayers \u003cbr\u003e2.2.7.5 Self-assembled Monolayers with Molecular Gradients \u003cbr\u003e2.2.7.6 Layer-by-Layer Assembly \u003cbr\u003e2.3 Biological Methods \u003cbr\u003e2.3.1 Biomolecule Immobilisation by Physical Adsorption \u003cbr\u003e2.3.2 Biomolecule Immobilisation by Blending \u003cbr\u003e2.3.3 Electrostatic Attachment of Biomolecules \u003cbr\u003e2.3.3.1 LbL Technique using Polyelectrolytes\u003cbr\u003e2.3.3.2 Electrochemical Polymerisation Using Conducting Polymers \u003cbr\u003e2.3.4 Covalent Bonding of Biomolecules \u003cbr\u003e2.3.4.1 Thiol-mediated Bonding\u003cbr\u003e2.3.4.2 Hydroxyl Group-Mediated Bonding \u003cbr\u003e2.3.4.3 Carboxylate Group-Mediated Bonding\u003cbr\u003e2.3.4.4 Photoinitiated Coupling of Biomolecules \u003cbr\u003e2.3.4.5 Enzymic Coagulation of Biomolecules\u003cbr\u003e2.3.4.6 iomolecules Bonding with ‘Click’ Reactions\u003cbr\u003e2.4 Surface Micro- and Nano-structuring \u003cbr\u003e2.4.1 Photolithography\u003cbr\u003e2.4.2 Ion Lithography and Focused Ion Beam Lithography\u003cbr\u003e2.4.3 Electron Lithography \u003cbr\u003e2.4.4 Soft Lithography\u003cbr\u003e2.4.5 Dip Pen Nanolithography \u003cbr\u003e2.4.6 Near-field Scanning Methods\u003cbr\u003e2.4.7 General Methods of Nano- and Micro-bioarray Patterning \u003cbr\u003e\u003cbr\u003e3 Surface Engineering of Biomaterials Reducing Protein Adsorption\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Surface Engineering of Biomaterials to Reduce Undesirable\/Uncontrolled Responses to Implants and Extracorporeal Devices \u003cbr\u003e3.2.1 Polyethylene Glycol-coated Surfaces \u003cbr\u003e3.2.1.1 Photopolymerised or Photocrosslinked Coatings\u003cbr\u003e3.2.1.2 Chemical Coupling of PEG \u003cbr\u003e3.2.1.2.1 \u003cspan\u003eChemical Coupling based on the Reactivity of the Terminal Hydroxyl Groups \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e3.2.1.2.2 \u003cspan\u003eCovalent Attachment by Employment of Functionalised\u003c\/span\u003e\u003cbr\u003e\u003cspan\u003ePEG (Derivative Terminal OH Groups)\u003c\/span\u003e\u003cbr\u003e3.2.1.3 Non-covalent Immobilisation\u003cbr\u003e3.2.2 Non-PEGylated Hydrophilic Surfaces \u003cbr\u003e3.2.3 Zwitterionic Polymer Thin Layers \u003cbr\u003e3.2.4 Hydrophilic Surfaces of Hyperbranched Polymers \u003cbr\u003e3.2.5 Multi-layer Thin Films \u003cbr\u003e3.2.6 Hydrogels and Hydrogel Coatings \u003cbr\u003e3.2.6.1 PEG-based Hydrogel Coatings \u003cbr\u003e3.2.6.2 Hydrogel Coatings of Other Polymers \u003cbr\u003e3.2.6.3 Hydrogels of Zwitterionic Polymers \u003cbr\u003e3.2.7 Patterned Surfaces\u003cbr\u003e3.2.7.1 Backfill Non-fouling Polymers and Procedures \u003cbr\u003e3.2.7.2 Micro- and Nano-patterning Techniques\u003cbr\u003e3.3 Surface Engineering of Biomaterial Surfaces\u003cbr\u003eReducing\/Eliminating Non-specific Adsorption on\u003cbr\u003eBiosensors and Bioassays \u003cbr\u003e3.4 Surface Engineering of Microfluidic Devices \u003cbr\u003e3.4.1 Dynamic Coating \u003cbr\u003e3.4.2 Permanent Coatings\u003cbr\u003e3.4.2.1 Plasma Treatments\u003cbr\u003e3.4.2.2 Laser Treatments.\u003cbr\u003e3.4.2.3 Surface Graft Polymerisation\u003cbr\u003e3.4.2.4 Patterning of Microfluidics\u003cbr\u003e3.4.2.5 Covalent Modification\u003cbr\u003e3.4.2.6 Self-assembled Monolayers\u003cbr\u003e3.4.2.7 Polyelectrolyte Multi-layer Coatings\u003cbr\u003e\u003cbr\u003e4 Surface Engineering of\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Strongly Hydrophilic and Strongly Hydrophobic Surfaces \u003cbr\u003e4.2.1 Strongly Hydrophilic Surfaces\u003cbr\u003e4.2.2 Strongly Hydrophobic Surfaces \u003cbr\u003e4.3 Biomaterials with Micro- and Nano-domain Surfaces\u003cbr\u003e4.4 The Immobilisation of Heparin and Other Bioactive Molecules \u003cbr\u003e4.4.1 Heparinised Surfaces \u003cbr\u003e4.4.2 Immobilisation of Other Bioactive Molecules \u003cbr\u003e4.5 Albumin Coating \u003cbr\u003e4.6 Endothelial Cells Attachment \u003cbr\u003e4.7 Natural Biomembrane Mimetic Surfaces\u003cbr\u003e4.8 Polyelectrolyte Multi-layers \u003cbr\u003e4.9 Micro- and Nanostructured Blood Contacting Surfaces \u003cbr\u003e\u003cbr\u003e5 Surface Engineering of Bio-interactive Biomaterials \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Surface Engineering of Biomaterials Promoting Cell Attachment\/Adhesion \u003cbr\u003e5.2.1 Cell\/Biomaterial Surface Interaction\u003cbr\u003e5.2.2 Surface Engineering of Cell Adhesive Biomaterials\u003cbr\u003evia Physicochemical Modification \u003cbr\u003e5.2.2.1 Control the Surface Energy (Hydrophilic\/Hydrophobic Balance) \u003cbr\u003eBlood Contacting Polymeric Biomaterials \u003cbr\u003e5.2.2.2 Creation of Positively Charged Surfaces\u003cbr\u003e5.2.2.3 Surface Micro-architecture Manipulation\u003cbr\u003e5.2.2.4 Creation of Polyelectrolyte Multi-layers \u003cbr\u003e5.2.2.5 Temperature-responsive Polymer Coatings \u003cbr\u003e5.2.2.6 Other Functional Polymer Coatings \u003cbr\u003e5.2.2.7 Multi-layer Thin Films for Cell\u003cbr\u003eEncapsulation \u003cbr\u003e5.2.3 Surface\u003cbr\u003evia Biomolecule Immobilisation \u003cbr\u003eEngineering of Cell Adhesive Biomaterials\u003cbr\u003e5.2.3.1 Cell Adhesion Ligands \u003cbr\u003e5.2.3.2 Non-covalent Immobilisation of Biomolecules \u003cbr\u003e5.2.3.3 Covalent Bonding of Biomolecules \u003cbr\u003e5.2.3.4 Patterning of Biomolecules on Biomaterial Surfaces \u003cbr\u003e5.3 Surface Engineering of Drug Delivery Systems \u003cbr\u003e5.3.1 Drug Delivery Systems \u003cbr\u003e5.3.1.1 Hydrogel Controlled Release Formulations \u003cbr\u003e5.3.1.2 Functionalised Electrospun Nanofibres Drug Delivery Carriers\u003cbr\u003e5.3.1.3 Drug Loaded Micro- and Nano-particles \u003cbr\u003e5.3.1.4 Drug Loaded Magnetic Nanoparticles\u003cbr\u003e5.3.1.5 Electrostimulated Drug Release Systems \u003cbr\u003e5.3.2 Polymeric Thin Films and Coatings for Drug and Gene Delivery\u003cbr\u003e5.3.3 Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.1 Matrices and Scaffolds for Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.2 Bioactive Proteins and Peptides \u003cbr\u003e5.3.3.3 Strategies for Bioactive Factors Controlled Delivery \u003cbr\u003eSurface Engineering of Polymeric Biomaterials\u003cbr\u003e5.4 Surface Engineering of Biomaterials Reducing Bacterial Adhesion\u003cbr\u003e5.4.1 Biomaterials Resistant to Bacterial Adhesion\u003cbr\u003e5.4.2 Nanocomposite Polymer Coatings Containing Inorganic Biocides\u003cbr\u003e5.4.3 Antibiotic Conjugated Polymer Coatings \u003cbr\u003e5.4.4 Biomimetic Antibacterial Coatings\u003cbr\u003e5.4.5 Antibacterial Coatings Based on Cationic Polymers \u003cbr\u003e\u003cbr\u003e6 Biomaterial Surface Characterisation \u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Surface Morphology Observation\u003cbr\u003e6.3 Contact Angle Measurements \u003cbr\u003e6.3.1 Surface Tension and Determination of its Components \u003cbr\u003e6.3.2 Methods of Contact Angle Measurement\u003cbr\u003e6.3.2.1 Drop and Bubble Methods for Contact Angle Measurement \u003cbr\u003e6.3.2.2 Wilhelmy Plate Method \u003cbr\u003e6.4 Surface Forces Measurement\u003cbr\u003e6.5 Ellipsometry Measurements \u003cbr\u003e6.6 Surface Chemical Composition Characterisation \u003cbr\u003e6.6.1 Spectroscopy Methods (ATR-FTIR, TOF-SIMS, and XPS) \u003cbr\u003e6.6.2 Colorimetric Determination of Surface Functional Groups Density \u003cbr\u003e6.6.3 Radiotracer Method \u003cbr\u003e6.6.4 Estimating the Thickness of Grafted Polymer Layers \u003cbr\u003e6.7 Characterisation of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.1 Estimating the Density and Thickness of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.2 Characterisation of Biomolecules Attachment to\/Detachment from Biomaterial Surfaces \u003cbr\u003e6.7.3 Bioactivity Evaluation of Proteins Immobilised on Biomaterial Surface\u003cbr\u003e6.7.4 Spatial Distribution of Proteins and Adhering Cell Characterisation\u003cbr\u003e6.8 Evaluation of Cell Behaviour on Biomaterial Surfaces. 500 \u003cbr\u003e6.8.1 Cell Proliferation\u003cbr\u003e6.8.2 Cell Imaging\u003cbr\u003e6.8.3 Cell Migration\u003cbr\u003e6.8.4 Cell Function Analysis\u003cbr\u003e6.9 Tests for Biocompatibility\u003cbr\u003e\u003cbr\u003e7 Summary and Outlook \u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}
Update on Polymers for...
$99.00
{"id":11242239748,"title":"Update on Polymers for Oral Drug Delivery","handle":"9781847355379","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Fang Liu \u003cbr\u003eISBN 9781847355379\u003cbr\u003e\u003cbr\u003ePublish: 2011 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThe preferred route for drug delivery remains the oral route, but oral drug delivery has now developed beyond traditional dosage forms such as tablets and capsules. Nowadays it is possible to use polymers to allow drugs to be targeted to specific sites in the gastrointestinal tract, and to extend the drug release profile. In addition, polymers can be engineered to allow oral delivery of such complex molecules as proteins, peptides, and even genes.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis book gives a comprehensive summary of oral drug delivery systems, both conventional and novel, and the ways in which polymers have been adapted for these systems. Particular attention is devoted to gastrointestinal physiology and the physio-chemical properties of polymers in order to understand the factors affecting their performance in practice.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis update will interest everyone involved in the pharmaceutical world, whether in academia or in industry. It will be of particular value to those responsible for designing new oral drug delivery systems involving polymers. It will provide a useful reference text both for researchers and manufacturers, and will also be a helpful introduction for students of all levels to the application of polymers in pharmacy.\u003c\/div\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Gastrointestinal Physiology and its Influence on Oral Drug Delivery Systems\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 How the Stomach can Affect Various Polymer Dosage Forms\u003cbr\u003e1.2.1 Motility and Transit of Polymer Dosage Forms in the Stomach \u003cbr\u003e1.2.2 Fluid and Secretions in the Stomach\u003cbr\u003e1.3 How the Small Intestine can affect Polymeric Dosage Forms \u003cbr\u003e1.3.1 Fluid and Secretions in the Small Intestine \u003cbr\u003e1.3.2 Transit in the Small Intestine\u003cbr\u003e1.4 How the Colon can affect Polymeric Dosage Forms\u003cbr\u003e1.4.1 Fluid in the Colon \u003cbr\u003e1.4.2 Transit through the Colon\u003cbr\u003e1.4.3 Bacteria in the Colon \u003cbr\u003e1.5 The Effect of Polymers on the Gastrointestinal Tract\u003cbr\u003e1.6 The Fate of Polymers in the Gut \u003cbr\u003e1.7 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Polymers for Conventional Oral Dosage Forms\u003cbr\u003e2.1 Polymers for Immediate Release Granules and Tablets\u003cbr\u003e2.2 Polymers for Pellet Cores\u003cbr\u003e2.3 Polymers for Capsule Shells \u003cbr\u003e2.4 Polymers for Immediate-release Film Coatings\u003cbr\u003e2.4.1 Taste Masking\u003cbr\u003e2.4.2 Moisture Barrier Coatings\u003cbr\u003e2.4.3 Oxygen Barrier Coatings\u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Polymers for Extended or Sustained Drug Delivery\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Key Concepts in Controlled Drug Delivery\u003cbr\u003e3.3 Diffusion-controlled Drug Delivery Systems\u003cbr\u003e3.3.1 Reservoir Drug Delivery Systems\u003cbr\u003e3.3.2 Inert Matrix Systems for Controlled Drug Release\u003cbr\u003e3.4 Swelling-controlled Release Systems \u003cbr\u003e3.4.1 Overview \u003cbr\u003e3.4.2 Drug Release from Swelling Systems \u003cbr\u003e3.4.3 Case I Diffusion\u003cbr\u003e3.4.4 Case II Diffusion \u003cbr\u003e3.5 Osmotic Pump Systems\u003cbr\u003e3.5.1 Drug Solubility\u003cbr\u003e3.5.2 Osmotic Pressure\u003cbr\u003e3.5.3 Orifice Size\u003cbr\u003e3.5.4 The Semi-permeable Membrane\u003cbr\u003e3.6 Polysaccharides in Oral Drug Delivery\u003cbr\u003e3.6.1 Starch\u003cbr\u003e3.6.2 Cellulose\u003cbr\u003e3.6.3 Chitosan \u003cbr\u003e3.6.4 Alginates \u003cbr\u003e3.6.5 Xanthan Gum \u003cbr\u003e3.6.6 Guar Gum and Locust Bean Gum \u003cbr\u003e3.7 Hydrogels for Drug Delivery\u003cbr\u003e3.7.1 Stimulus-sensitive Hydrogels\u003cbr\u003e3.7.2 pH- and Temperature-triggered Drug Delivery\u003cbr\u003e3.7.3 Future Directions in Hydrogel Development \u003cbr\u003e3.8 Molecular Recognition as a Concept for Oral Drug Delivery\u003cbr\u003e3.9 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Site-specific Drug Delivery: Polymers for Gastroretention\u003cbr\u003e4.1 Gastroretention: The Challenges and Benefits \u003cbr\u003e4.2 How can Gastroretention be Achieved? \u003cbr\u003e4.2.1 Size-increasing Systems \u003cbr\u003e4.2.2 Floating Systems \u003cbr\u003e4.2.3 Mucoadhesive Systems\u003cbr\u003e4.3 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Enteric Polymers for Small Intestinal Drug Delivery \u003cbr\u003e 5.1 Polymers for Enteric Coatings\u003cbr\u003e5.1.1 Cellulose-based Enteric Polymers\u003cbr\u003e5.1.2 Polyvinyl Derivatives\u003cbr\u003e5.1.3 Polymethacrylates\u003cbr\u003e5.1.4 Aqueous Enteric Coatings \u003cbr\u003e5.2 Factors Influencing Enteric Polymer Dissolution \u003cbr\u003e5.2.1 Polymer Structure \u003cbr\u003e5.2.2 Dissolution Media\u003cbr\u003e5.3 In vivo Performance of Enteric Coatings\u003cbr\u003e5.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Polymers for Modified-release Site-specific Drug Delivery to the Colon\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 pH-triggered Enteric Drug Delivery to the Colon\u003cbr\u003e6.3 Microbially-triggered Colonic Delivery\u003cbr\u003e6.4 Time-dependent Colonic Delivery\u003cbr\u003e6.4.1 Pressure-controlled Colonic Delivery \u003cbr\u003e6.5 Combination Approaches to Colonic Delivery\u003cbr\u003e6.6 Conclusions \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Polymers for Site-specific Drug Delivery: Mucoadhesion\u003cbr\u003e7.1 Mucoadhesion as a Drug Delivery Concept\u003cbr\u003e7.2 The Mucus Layer\u003cbr\u003e7.3 Mucoadhesion \u003cbr\u003e7.4 Polymers Providing Mucoadhesion \u003cbr\u003e7.4.1 Natural Polymers \u003cbr\u003e 7.4.2 Semi-synthetic Polymers\u003cbr\u003e7.4.3 Acrylic Acid Derivatives\u003cbr\u003e7.4.4 Thiolated Polymers or Thiomers\u003cbr\u003e7.4.5 PEGylated polymers\u003cbr\u003e7.4.6 N-(2-Hydroxypropyl) Methacrylamide Copolymers \u003cbr\u003e7.5 Polymer Factors Influencing Mucoadhesive Potential\u003cbr\u003e7.5.1 Molecular Weight\u003cbr\u003e 7.5.2 Polymer Flexibility and Conformation\u003cbr\u003e7.5.3 Polymer Cohesiveness \u003cbr\u003e7.5.4 Polymer Concentration\u003cbr\u003e7.5.5 Chemical Structure of the Polymer\u003cbr\u003e7.5.6 Hydrophilicity of a Polymer\u003cbr\u003e7.6 In Vivo Examples of Mucoadhesion \u003cbr\u003e7.6.1 The Stomach \u003cbr\u003e7.6.2 The Small Intestine\u003cbr\u003e7.6.3 The Colon\u003cbr\u003e7.7 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Micro- and Nanoparticles for Oral Protein and Gene Delivery\u003cbr\u003e8.1 Protein and Gene Therapeutics \u003cbr\u003e8.2 Physiological Barriers in Oral Protein and Gene Delivery \u003cbr\u003e8.2.1 Degradation in the Gastrointestinal Environment \u003cbr\u003e 8.2.2 Permeability Barriers\u003cbr\u003e8.3 Polymers used in Microparticles and Nanoparticles\u003cbr\u003e8.4 Preparation Methods \u003cbr\u003e8.4.1 Emulsion Solvent Evaporation\u003cbr\u003e8.4.2 Emulsion Solvent Diffusion or Displacement \u003cbr\u003e8.4.3 Salting Out\u003cbr\u003e8.4.4 Ionic Gelation \u003cbr\u003e8.4.5 Complex Coacervation\u003cbr\u003e8.5 Factors Affecting the Mucosal Uptake of Particles \u003cbr\u003e8.5.1 Transport of Particles across Intestinal Mucosa\u003cbr\u003e8.5.2 Particle Size\u003cbr\u003e8.5.3 Surface Properties \u003cbr\u003e8.5.4 In Vivo Results\u003cbr\u003e8.6 Conclusions \u003cbr\u003eReferences\u003cbr\u003eAppendix\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:42-04:00","created_at":"2017-06-22T21:14:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","drug delivery","material","polymer"],"price":9900,"price_min":9900,"price_max":9900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433092,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Update on Polymers for Oral Drug Delivery","public_title":null,"options":["Default Title"],"price":9900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847355379","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847355379_2b41a7b8-79ee-4a83-bfc9-42591339d7ed.jpg?v=1499957068"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355379_2b41a7b8-79ee-4a83-bfc9-42591339d7ed.jpg?v=1499957068","options":["Title"],"media":[{"alt":null,"id":358841221213,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355379_2b41a7b8-79ee-4a83-bfc9-42591339d7ed.jpg?v=1499957068"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355379_2b41a7b8-79ee-4a83-bfc9-42591339d7ed.jpg?v=1499957068","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Fang Liu \u003cbr\u003eISBN 9781847355379\u003cbr\u003e\u003cbr\u003ePublish: 2011 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThe preferred route for drug delivery remains the oral route, but oral drug delivery has now developed beyond traditional dosage forms such as tablets and capsules. Nowadays it is possible to use polymers to allow drugs to be targeted to specific sites in the gastrointestinal tract, and to extend the drug release profile. In addition, polymers can be engineered to allow oral delivery of such complex molecules as proteins, peptides, and even genes.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis book gives a comprehensive summary of oral drug delivery systems, both conventional and novel, and the ways in which polymers have been adapted for these systems. Particular attention is devoted to gastrointestinal physiology and the physio-chemical properties of polymers in order to understand the factors affecting their performance in practice.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis update will interest everyone involved in the pharmaceutical world, whether in academia or in industry. It will be of particular value to those responsible for designing new oral drug delivery systems involving polymers. It will provide a useful reference text both for researchers and manufacturers, and will also be a helpful introduction for students of all levels to the application of polymers in pharmacy.\u003c\/div\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Gastrointestinal Physiology and its Influence on Oral Drug Delivery Systems\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 How the Stomach can Affect Various Polymer Dosage Forms\u003cbr\u003e1.2.1 Motility and Transit of Polymer Dosage Forms in the Stomach \u003cbr\u003e1.2.2 Fluid and Secretions in the Stomach\u003cbr\u003e1.3 How the Small Intestine can affect Polymeric Dosage Forms \u003cbr\u003e1.3.1 Fluid and Secretions in the Small Intestine \u003cbr\u003e1.3.2 Transit in the Small Intestine\u003cbr\u003e1.4 How the Colon can affect Polymeric Dosage Forms\u003cbr\u003e1.4.1 Fluid in the Colon \u003cbr\u003e1.4.2 Transit through the Colon\u003cbr\u003e1.4.3 Bacteria in the Colon \u003cbr\u003e1.5 The Effect of Polymers on the Gastrointestinal Tract\u003cbr\u003e1.6 The Fate of Polymers in the Gut \u003cbr\u003e1.7 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Polymers for Conventional Oral Dosage Forms\u003cbr\u003e2.1 Polymers for Immediate Release Granules and Tablets\u003cbr\u003e2.2 Polymers for Pellet Cores\u003cbr\u003e2.3 Polymers for Capsule Shells \u003cbr\u003e2.4 Polymers for Immediate-release Film Coatings\u003cbr\u003e2.4.1 Taste Masking\u003cbr\u003e2.4.2 Moisture Barrier Coatings\u003cbr\u003e2.4.3 Oxygen Barrier Coatings\u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Polymers for Extended or Sustained Drug Delivery\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Key Concepts in Controlled Drug Delivery\u003cbr\u003e3.3 Diffusion-controlled Drug Delivery Systems\u003cbr\u003e3.3.1 Reservoir Drug Delivery Systems\u003cbr\u003e3.3.2 Inert Matrix Systems for Controlled Drug Release\u003cbr\u003e3.4 Swelling-controlled Release Systems \u003cbr\u003e3.4.1 Overview \u003cbr\u003e3.4.2 Drug Release from Swelling Systems \u003cbr\u003e3.4.3 Case I Diffusion\u003cbr\u003e3.4.4 Case II Diffusion \u003cbr\u003e3.5 Osmotic Pump Systems\u003cbr\u003e3.5.1 Drug Solubility\u003cbr\u003e3.5.2 Osmotic Pressure\u003cbr\u003e3.5.3 Orifice Size\u003cbr\u003e3.5.4 The Semi-permeable Membrane\u003cbr\u003e3.6 Polysaccharides in Oral Drug Delivery\u003cbr\u003e3.6.1 Starch\u003cbr\u003e3.6.2 Cellulose\u003cbr\u003e3.6.3 Chitosan \u003cbr\u003e3.6.4 Alginates \u003cbr\u003e3.6.5 Xanthan Gum \u003cbr\u003e3.6.6 Guar Gum and Locust Bean Gum \u003cbr\u003e3.7 Hydrogels for Drug Delivery\u003cbr\u003e3.7.1 Stimulus-sensitive Hydrogels\u003cbr\u003e3.7.2 pH- and Temperature-triggered Drug Delivery\u003cbr\u003e3.7.3 Future Directions in Hydrogel Development \u003cbr\u003e3.8 Molecular Recognition as a Concept for Oral Drug Delivery\u003cbr\u003e3.9 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Site-specific Drug Delivery: Polymers for Gastroretention\u003cbr\u003e4.1 Gastroretention: The Challenges and Benefits \u003cbr\u003e4.2 How can Gastroretention be Achieved? \u003cbr\u003e4.2.1 Size-increasing Systems \u003cbr\u003e4.2.2 Floating Systems \u003cbr\u003e4.2.3 Mucoadhesive Systems\u003cbr\u003e4.3 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Enteric Polymers for Small Intestinal Drug Delivery \u003cbr\u003e 5.1 Polymers for Enteric Coatings\u003cbr\u003e5.1.1 Cellulose-based Enteric Polymers\u003cbr\u003e5.1.2 Polyvinyl Derivatives\u003cbr\u003e5.1.3 Polymethacrylates\u003cbr\u003e5.1.4 Aqueous Enteric Coatings \u003cbr\u003e5.2 Factors Influencing Enteric Polymer Dissolution \u003cbr\u003e5.2.1 Polymer Structure \u003cbr\u003e5.2.2 Dissolution Media\u003cbr\u003e5.3 In vivo Performance of Enteric Coatings\u003cbr\u003e5.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Polymers for Modified-release Site-specific Drug Delivery to the Colon\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 pH-triggered Enteric Drug Delivery to the Colon\u003cbr\u003e6.3 Microbially-triggered Colonic Delivery\u003cbr\u003e6.4 Time-dependent Colonic Delivery\u003cbr\u003e6.4.1 Pressure-controlled Colonic Delivery \u003cbr\u003e6.5 Combination Approaches to Colonic Delivery\u003cbr\u003e6.6 Conclusions \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Polymers for Site-specific Drug Delivery: Mucoadhesion\u003cbr\u003e7.1 Mucoadhesion as a Drug Delivery Concept\u003cbr\u003e7.2 The Mucus Layer\u003cbr\u003e7.3 Mucoadhesion \u003cbr\u003e7.4 Polymers Providing Mucoadhesion \u003cbr\u003e7.4.1 Natural Polymers \u003cbr\u003e 7.4.2 Semi-synthetic Polymers\u003cbr\u003e7.4.3 Acrylic Acid Derivatives\u003cbr\u003e7.4.4 Thiolated Polymers or Thiomers\u003cbr\u003e7.4.5 PEGylated polymers\u003cbr\u003e7.4.6 N-(2-Hydroxypropyl) Methacrylamide Copolymers \u003cbr\u003e7.5 Polymer Factors Influencing Mucoadhesive Potential\u003cbr\u003e7.5.1 Molecular Weight\u003cbr\u003e 7.5.2 Polymer Flexibility and Conformation\u003cbr\u003e7.5.3 Polymer Cohesiveness \u003cbr\u003e7.5.4 Polymer Concentration\u003cbr\u003e7.5.5 Chemical Structure of the Polymer\u003cbr\u003e7.5.6 Hydrophilicity of a Polymer\u003cbr\u003e7.6 In Vivo Examples of Mucoadhesion \u003cbr\u003e7.6.1 The Stomach \u003cbr\u003e7.6.2 The Small Intestine\u003cbr\u003e7.6.3 The Colon\u003cbr\u003e7.7 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Micro- and Nanoparticles for Oral Protein and Gene Delivery\u003cbr\u003e8.1 Protein and Gene Therapeutics \u003cbr\u003e8.2 Physiological Barriers in Oral Protein and Gene Delivery \u003cbr\u003e8.2.1 Degradation in the Gastrointestinal Environment \u003cbr\u003e 8.2.2 Permeability Barriers\u003cbr\u003e8.3 Polymers used in Microparticles and Nanoparticles\u003cbr\u003e8.4 Preparation Methods \u003cbr\u003e8.4.1 Emulsion Solvent Evaporation\u003cbr\u003e8.4.2 Emulsion Solvent Diffusion or Displacement \u003cbr\u003e8.4.3 Salting Out\u003cbr\u003e8.4.4 Ionic Gelation \u003cbr\u003e8.4.5 Complex Coacervation\u003cbr\u003e8.5 Factors Affecting the Mucosal Uptake of Particles \u003cbr\u003e8.5.1 Transport of Particles across Intestinal Mucosa\u003cbr\u003e8.5.2 Particle Size\u003cbr\u003e8.5.3 Surface Properties \u003cbr\u003e8.5.4 In Vivo Results\u003cbr\u003e8.6 Conclusions \u003cbr\u003eReferences\u003cbr\u003eAppendix\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Thermal Analysis of Ru...
$205.00
{"id":11242239812,"title":"Thermal Analysis of Rubbers and Rubbery Materials","handle":"978-1-84735-103-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.P. Dee, N. Roy Choudhury, and N.K. Dutta \u003cbr\u003eISBN 978-1-84735-103-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003ePages: 546\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal analysis is a group of techniques in which a physical property of a substance is measured as a function of temperature, while the substance is subjected to a controlled temperature programme. In the differential thermal analysis, the temperature difference that develops between a sample and an inert reference material is measured, when both are subjected to identical heat treatments. The related technique of differential scanning calorimetry relies on differences in energy required to maintain the sample and reference at an identical temperature.\u003cbr\u003e\u003cbr\u003eThermal Analysis of Rubbers and Rubbery Materials, a multi-authored handbook, describes the use of this technique:\u003cbr\u003e\u003cbr\u003e· For determining additives in rubbery materials\u003cbr\u003e· In recycling of rubbers\u003cbr\u003e· In understanding the interactions of rubber - fillers and the rubber matrix\u003cbr\u003e· Characterisation of rubber nano-composites and other modified rubbers and their blends\u003cbr\u003e· Instrumental techniques\u003cbr\u003e· Crystallisation of rubbers\u003cbr\u003e\u003cbr\u003eThermal Analysis of Rubbers and Rubbery Materials is a must for everybody involved in material and product development, testing, processing, quality assurance, or failure analysis in industry and laboratories.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Instrumental Techniques used for the Thermal Analysis of Rubbers and Rubber Materials\u003cbr\u003e3 Applications of DSC and TGA for the Characterisation of Rubbers and Rubbery Materials\u003cbr\u003e4 Dynamic Mechanical Analysis (DMA) for Characterisation of Polymers, Polymer Blends \u0026amp;\u003cbr\u003e Composites\u003cbr\u003e5 Characterisation of Rubbers and Rubber Composites with TMA \u003cbr\u003e6 Micro-thermal Analysis of Rubbery Materials \u003cbr\u003e7 Miscibility, Morphology and Crystallisation Behaviour of Rubber Based Polymer Blends \u003cbr\u003e8 Thermal Characterisation of Polymer Nanocomposites \u003cbr\u003e9 Thermal Analysis in Understanding RubberyMatrix and Rubber-Filler Interactions \u003cbr\u003e10 Study of Crystallisation of Natural Rubber with Differential Scanning Calorimetry \u003cbr\u003e11 Thermal Properties of Chemically Modified Elastomers \u003cbr\u003e12 Thermal Analysis of Rubber Products \u003cbr\u003e13 Thermal Analysis in Recycling of Waste Rubbery Materials \u003cbr\u003e14 Thermal Analysis of Biological Molecules and Biomedical Polymers\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:42-04:00","created_at":"2017-06-22T21:14:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","additives","book","nanocomposites","r-testing","rubber","thermal analysis"],"price":20500,"price_min":20500,"price_max":26500,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433156,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-103-6","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Analysis of Rubbers and Rubbery Materials - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":26500,"weight":0,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-103-6","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50531808900,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-84735-102-9","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Analysis of Rubbers and Rubbery Materials - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":20500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-102-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-103-6_277ca62d-c035-4a91-b2cb-e9aaae4ed94c.jpg?v=1499728259"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-103-6_277ca62d-c035-4a91-b2cb-e9aaae4ed94c.jpg?v=1499728259","options":["Cover"],"media":[{"alt":null,"id":358803079261,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-103-6_277ca62d-c035-4a91-b2cb-e9aaae4ed94c.jpg?v=1499728259"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-103-6_277ca62d-c035-4a91-b2cb-e9aaae4ed94c.jpg?v=1499728259","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.P. Dee, N. Roy Choudhury, and N.K. Dutta \u003cbr\u003eISBN 978-1-84735-103-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003ePages: 546\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal analysis is a group of techniques in which a physical property of a substance is measured as a function of temperature, while the substance is subjected to a controlled temperature programme. In the differential thermal analysis, the temperature difference that develops between a sample and an inert reference material is measured, when both are subjected to identical heat treatments. The related technique of differential scanning calorimetry relies on differences in energy required to maintain the sample and reference at an identical temperature.\u003cbr\u003e\u003cbr\u003eThermal Analysis of Rubbers and Rubbery Materials, a multi-authored handbook, describes the use of this technique:\u003cbr\u003e\u003cbr\u003e· For determining additives in rubbery materials\u003cbr\u003e· In recycling of rubbers\u003cbr\u003e· In understanding the interactions of rubber - fillers and the rubber matrix\u003cbr\u003e· Characterisation of rubber nano-composites and other modified rubbers and their blends\u003cbr\u003e· Instrumental techniques\u003cbr\u003e· Crystallisation of rubbers\u003cbr\u003e\u003cbr\u003eThermal Analysis of Rubbers and Rubbery Materials is a must for everybody involved in material and product development, testing, processing, quality assurance, or failure analysis in industry and laboratories.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Instrumental Techniques used for the Thermal Analysis of Rubbers and Rubber Materials\u003cbr\u003e3 Applications of DSC and TGA for the Characterisation of Rubbers and Rubbery Materials\u003cbr\u003e4 Dynamic Mechanical Analysis (DMA) for Characterisation of Polymers, Polymer Blends \u0026amp;\u003cbr\u003e Composites\u003cbr\u003e5 Characterisation of Rubbers and Rubber Composites with TMA \u003cbr\u003e6 Micro-thermal Analysis of Rubbery Materials \u003cbr\u003e7 Miscibility, Morphology and Crystallisation Behaviour of Rubber Based Polymer Blends \u003cbr\u003e8 Thermal Characterisation of Polymer Nanocomposites \u003cbr\u003e9 Thermal Analysis in Understanding RubberyMatrix and Rubber-Filler Interactions \u003cbr\u003e10 Study of Crystallisation of Natural Rubber with Differential Scanning Calorimetry \u003cbr\u003e11 Thermal Properties of Chemically Modified Elastomers \u003cbr\u003e12 Thermal Analysis of Rubber Products \u003cbr\u003e13 Thermal Analysis in Recycling of Waste Rubbery Materials \u003cbr\u003e14 Thermal Analysis of Biological Molecules and Biomedical Polymers\u003cbr\u003e\u003cbr\u003e"}
Mixing of Vulcanisable...
$125.00
{"id":11242240004,"title":"Mixing of Vulcanisable Rubbers and Thermoplastic Elastomers","handle":"978-1-85957-496-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.R. Wood \u003cbr\u003eISBN 978-1-85957-496-6 \u003cbr\u003e\u003cbr\u003ePages 127\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report describes the current state of the art in mixing from a practical viewpoint. \u003cbr\u003eDevelopments that have taken place in mixing equipment over the last eight or nine years have been significant, with almost all major machinery makers having made innovations of one type or another. Some developments have been as small as re-profiling rotors of relatively conventional design. Others have been the introduction of completely new rotor designs, both intermeshing and tangential. \u003cbr\u003e\u003cbr\u003eThis report begins by offering historical background against which the latest developments are set. It considers both batch and continuous systems, containing details of key developments by equipment manufacturers such as Kobe Steel, Techint Pomini, Farrel and ThyssenKrupp Elastomertechnik, with the different concepts discussed in layman’s terms. The report also summarises the range of mixing techniques applied in the industry. \u003cbr\u003e\u003cbr\u003eThe quality of rubber mixing depends not only on the mixer itself but also on control of the whole mixing process, from raw materials to the moment the compound leaves the mill room for further processing, and this review offers the relevant developments in ancillary equipment such as the drive, hopper arrangement, temperature measurement system and discharge system. Methods for monitoring mixing quality both off- and online are also covered, Recent academic research in rubber mixing is briefly considered, providing an indication of possible future practical advances in this field. \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e\u003cbr\u003e2 HISTORY \u003cbr\u003e\u003cbr\u003e3 BATCH MIXING MACHINERY: DEVELOPMENTS IN RECENT YEARS\u003cbr\u003e3.1 Mills\u003cbr\u003e3.2 Internal Mixers\u003cbr\u003e3.2.1 Definitions of Terms Used in Descriptions of Internal Mixers\u003cbr\u003e3.2.2 Tangential Rotor Internal Mixers\u003cbr\u003e3.2.3 Intermeshing Rotor Internal Mixers\u003cbr\u003e3.2.4 Hybrid Intermeshing Rotor Developments: the Co-flow-4 Rotor\u003cbr\u003e3.2.5 Other Batch Mixer Developments\u003cbr\u003e3.2.6 The Tandem Mixer\u003cbr\u003e3.3 How They Mix: A Comparison of Mixing Behaviour of Intermeshing and Tangential Rotor Mixers\u003cbr\u003e3.3.1 Tangential Rotor Mixing Machines\u003cbr\u003e3.3.2 Intermeshing Rotor Mixing Machines\u003cbr\u003e3.3.3 Hybrid Rotor Mixing Machines\u003cbr\u003e3.3.4 Summary of Observed Differences and Comparative Mixing Data\u003cbr\u003e3.4 Around the Batch Mixer\u003cbr\u003e3.4.1 Mixer Drive Systems\u003cbr\u003e3.4.2 Mixer Hopper and Ram Operation\u003cbr\u003e3.4.3 Mixing Temperature Measurement\u003cbr\u003e3.4.4 Mixer Temperature Control Systems\u003cbr\u003e3.4.5 Mixer Discharge Arrangements\u003cbr\u003e3.4.6 Materials Handling Systems and Feed Systems for Batch Mixers\u003cbr\u003e3.4.7 Mixing Plant Control and Data Acquisition \u003cbr\u003e\u003cbr\u003e4 MIXING TECHNIQUES IN BATCH MIXERS\u003cbr\u003e4.1 Single Stage Mixing\u003cbr\u003e4.2 Two-, or Multi-Stage, Mixing\u003cbr\u003e4.3 Upside Down Mixing\u003cbr\u003e4.4 Variable Rotor Speed\u003cbr\u003e4.5 Use of Ram Movement\u003cbr\u003e4.6 Machine Temperature\u003cbr\u003e4.7 Discharge of the Batch with the Ram Up or Down?\u003cbr\u003e4.8 Thermoplastic Elastomer Mixing \u003cbr\u003e\u003cbr\u003e5 DOWNSTREAM EQUIPMENT\u003cbr\u003e5.1 Curable Rubbers\u003cbr\u003e5.2 Thermoplastic Elastomers \u003cbr\u003e\u003cbr\u003e6 MONITORING MIXING QUALITY\u003cbr\u003e6.1 Off-Line Testing\u003cbr\u003e6.2 On-Line Testing \u003cbr\u003e\u003cbr\u003e7 DEVELOPMENTS IN CONTINUOUS MIXING MACHINERY\u003cbr\u003e7.1 Single-Screw Extruders\u003cbr\u003e7.2 Single Rotor Continuous Mixing Systems\u003cbr\u003e7.3 Twin Rotor, Contrarotating, Non-Intermeshing Continuous Mixers\u003cbr\u003e7.3.1 The Farrel Continuous Mixer (FCM)\u003cbr\u003e7.3.2 The MVX (Mixing, Venting, eXtruding) Machine\u003cbr\u003e7.4 Planetary Extruders\u003cbr\u003e7.5 Twin Rotor Contrarotating Intermeshing Extruders\u003cbr\u003e7.6 Twin Rotor Corotating Intermeshing Extruders\u003cbr\u003e7.7 Ring Extruders\u003cbr\u003e7.8 Other Machines \u003cbr\u003e\u003cbr\u003e8 OPERATION OF CONTINUOUS MIXING MACHINERY\u003cbr\u003e8.1 Material Suitability\u003cbr\u003e8.2 Production Scale\u003cbr\u003e8.3 Material Take-Off\u003cbr\u003e8.4 Quality Monitoring 8.5 Comparison with Batch Mixing\u003cbr\u003e8.6 Thermoplastic Elastomers \u003cbr\u003e\u003cbr\u003e9 RESEARCH AND DEVELOPMENT \u003cbr\u003e\u003cbr\u003e10 THE FUTURE? \u003cbr\u003eAuthor References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:42-04:00","created_at":"2017-06-22T21:14:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","book","contrarotating","curable rubbers","Farrel","Kobe Steel","p-processing","planetary extruders","poly","rotor corotating","rotor mixing","rubbers","single rotor","single-screw extruders","Techint Pomini","testing","thermoplastic elastomers","ThyssenKrupp","twin rotor","vulcanisable rubbers"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433348,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Mixing of Vulcanisable Rubbers and Thermoplastic Elastomers","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-496-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-496-6.jpg?v=1499951343"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-496-6.jpg?v=1499951343","options":["Title"],"media":[{"alt":null,"id":358513639517,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-496-6.jpg?v=1499951343"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-496-6.jpg?v=1499951343","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.R. Wood \u003cbr\u003eISBN 978-1-85957-496-6 \u003cbr\u003e\u003cbr\u003ePages 127\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report describes the current state of the art in mixing from a practical viewpoint. \u003cbr\u003eDevelopments that have taken place in mixing equipment over the last eight or nine years have been significant, with almost all major machinery makers having made innovations of one type or another. Some developments have been as small as re-profiling rotors of relatively conventional design. Others have been the introduction of completely new rotor designs, both intermeshing and tangential. \u003cbr\u003e\u003cbr\u003eThis report begins by offering historical background against which the latest developments are set. It considers both batch and continuous systems, containing details of key developments by equipment manufacturers such as Kobe Steel, Techint Pomini, Farrel and ThyssenKrupp Elastomertechnik, with the different concepts discussed in layman’s terms. The report also summarises the range of mixing techniques applied in the industry. \u003cbr\u003e\u003cbr\u003eThe quality of rubber mixing depends not only on the mixer itself but also on control of the whole mixing process, from raw materials to the moment the compound leaves the mill room for further processing, and this review offers the relevant developments in ancillary equipment such as the drive, hopper arrangement, temperature measurement system and discharge system. Methods for monitoring mixing quality both off- and online are also covered, Recent academic research in rubber mixing is briefly considered, providing an indication of possible future practical advances in this field. \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e\u003cbr\u003e2 HISTORY \u003cbr\u003e\u003cbr\u003e3 BATCH MIXING MACHINERY: DEVELOPMENTS IN RECENT YEARS\u003cbr\u003e3.1 Mills\u003cbr\u003e3.2 Internal Mixers\u003cbr\u003e3.2.1 Definitions of Terms Used in Descriptions of Internal Mixers\u003cbr\u003e3.2.2 Tangential Rotor Internal Mixers\u003cbr\u003e3.2.3 Intermeshing Rotor Internal Mixers\u003cbr\u003e3.2.4 Hybrid Intermeshing Rotor Developments: the Co-flow-4 Rotor\u003cbr\u003e3.2.5 Other Batch Mixer Developments\u003cbr\u003e3.2.6 The Tandem Mixer\u003cbr\u003e3.3 How They Mix: A Comparison of Mixing Behaviour of Intermeshing and Tangential Rotor Mixers\u003cbr\u003e3.3.1 Tangential Rotor Mixing Machines\u003cbr\u003e3.3.2 Intermeshing Rotor Mixing Machines\u003cbr\u003e3.3.3 Hybrid Rotor Mixing Machines\u003cbr\u003e3.3.4 Summary of Observed Differences and Comparative Mixing Data\u003cbr\u003e3.4 Around the Batch Mixer\u003cbr\u003e3.4.1 Mixer Drive Systems\u003cbr\u003e3.4.2 Mixer Hopper and Ram Operation\u003cbr\u003e3.4.3 Mixing Temperature Measurement\u003cbr\u003e3.4.4 Mixer Temperature Control Systems\u003cbr\u003e3.4.5 Mixer Discharge Arrangements\u003cbr\u003e3.4.6 Materials Handling Systems and Feed Systems for Batch Mixers\u003cbr\u003e3.4.7 Mixing Plant Control and Data Acquisition \u003cbr\u003e\u003cbr\u003e4 MIXING TECHNIQUES IN BATCH MIXERS\u003cbr\u003e4.1 Single Stage Mixing\u003cbr\u003e4.2 Two-, or Multi-Stage, Mixing\u003cbr\u003e4.3 Upside Down Mixing\u003cbr\u003e4.4 Variable Rotor Speed\u003cbr\u003e4.5 Use of Ram Movement\u003cbr\u003e4.6 Machine Temperature\u003cbr\u003e4.7 Discharge of the Batch with the Ram Up or Down?\u003cbr\u003e4.8 Thermoplastic Elastomer Mixing \u003cbr\u003e\u003cbr\u003e5 DOWNSTREAM EQUIPMENT\u003cbr\u003e5.1 Curable Rubbers\u003cbr\u003e5.2 Thermoplastic Elastomers \u003cbr\u003e\u003cbr\u003e6 MONITORING MIXING QUALITY\u003cbr\u003e6.1 Off-Line Testing\u003cbr\u003e6.2 On-Line Testing \u003cbr\u003e\u003cbr\u003e7 DEVELOPMENTS IN CONTINUOUS MIXING MACHINERY\u003cbr\u003e7.1 Single-Screw Extruders\u003cbr\u003e7.2 Single Rotor Continuous Mixing Systems\u003cbr\u003e7.3 Twin Rotor, Contrarotating, Non-Intermeshing Continuous Mixers\u003cbr\u003e7.3.1 The Farrel Continuous Mixer (FCM)\u003cbr\u003e7.3.2 The MVX (Mixing, Venting, eXtruding) Machine\u003cbr\u003e7.4 Planetary Extruders\u003cbr\u003e7.5 Twin Rotor Contrarotating Intermeshing Extruders\u003cbr\u003e7.6 Twin Rotor Corotating Intermeshing Extruders\u003cbr\u003e7.7 Ring Extruders\u003cbr\u003e7.8 Other Machines \u003cbr\u003e\u003cbr\u003e8 OPERATION OF CONTINUOUS MIXING MACHINERY\u003cbr\u003e8.1 Material Suitability\u003cbr\u003e8.2 Production Scale\u003cbr\u003e8.3 Material Take-Off\u003cbr\u003e8.4 Quality Monitoring 8.5 Comparison with Batch Mixing\u003cbr\u003e8.6 Thermoplastic Elastomers \u003cbr\u003e\u003cbr\u003e9 RESEARCH AND DEVELOPMENT \u003cbr\u003e\u003cbr\u003e10 THE FUTURE? \u003cbr\u003eAuthor References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e"}
Plastics and the Envir...
$165.00
{"id":11242239364,"title":"Plastics and the Environment","handle":"978-1-84735-491-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eleanor Garmson and Frances Gardiner \u003cbr\u003eISBN 978-1-84735-491-4 \u003cbr\u003e\u003cbr\u003ePages: 142, Hard cover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis multi-authored book - from some of the leading researchers and practitioners on this topic - is a distinctive look at how to maximize profitability through environmental compliance in the plastics supply chain, a topic of great and ever-growing interest in the industry.\u003cbr\u003e\u003cbr\u003eThis distinguished assembly of authors from across the global - and from both industry and academia - provides the reader with a distinctive perspective on this topic. Plastics and the Environment provide readers with a look into the environmental issues of plastics products throughout the complete product lifecycle - from material selection to product design to recycling.\u003cbr\u003e\u003cbr\u003eTopics covered include Plastics Materials and Sustainability, Environmental Design for Plastics Products, Energy Efficiency, Plastics, Recycling and Technology, and Life Cycle Assessment.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Developments in Polymer Technology Driven by the Need for Sustainability\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 What Drives Developments Forward?\u003cbr\u003e1.3 How can we save the World?\u003cbr\u003e1.4 Getting the Science Right\u003cbr\u003e1.5 Legislation and Design\u003cbr\u003e1.6 New Materials\u003cbr\u003e1.7 New Processes\u003cbr\u003e1.8 Conclusions\u003cbr\u003e\u003cbr\u003e2 A Medium Voltage Switchgear Mechanism which is Insensitive to its Environment \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Selection of the Most Appropriate Material\u003cbr\u003e2.3 Design of a New Range of Mechanisms\u003cbr\u003e2.4 Environmental Studies\u003cbr\u003e2.5 Material Balance Analysis\u003cbr\u003e2.6 LCA18\u003cbr\u003e2.7 Conclusion.20\u003cbr\u003e\u003cbr\u003e3 From Industrial Polymerisation Wastes to High Valued Material: Interfacial Agents for Polymer Blends and Composites based on Chemically Modified Atactic\u003cbr\u003ePolypropylenes\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Chemical Modification \u003cbr\u003e3.3 Role in Heterogeneous Materials Based on Polymers \u003cbr\u003e3.4 Conclusions and Perspectives \u003cbr\u003e\u003cbr\u003e4 Energy Efficiency Index for Plastic Processing Machines \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Aim and Benefits of the Energy Efficiency Label\u003cbr\u003e4.3 Definition of Energy Efficiency Labels\u003cbr\u003e4.4 Label Development Process\u003cbr\u003e4.4.1 Define the Kind of Label: Which Type of Label do we Need?\u003cbr\u003e4.4.2 Form a Project Team: Who should be Involved in the Label Development Process? Which Steps have to be Done and When?\u003cbr\u003e4.4.3 Definition of the Product Groups: Which Product Groups\/Segments can be Defined and Considered Together?\u003cbr\u003e4.4.4 Definition of Criteria: Which Efficiency Criterion can be used for the Evaluation of the Energy Efficiency?\u003cbr\u003e4.4.5 Developing Measurement Standards: How to Measure the Energy Consumption of the Product?\u003cbr\u003e4.4.6 Calculate the Energy Efficiency Index (EEI) How to Define an EEI?\u003cbr\u003e4.4.7 Classification of Energy Classes: How Can Products be Classified?\u003cbr\u003e4.4.8 Label Design: How the Label is Designed and which Information is Included?\u003cbr\u003e4.4.9 Energy Measurements: How to Provide Data for the Definition of the Measurement Standard and the Definition of the Energy Classes?\u003cbr\u003e4.4.10 Energy Efficiency Improvement: What are Possible Improvement Strategies for a Higher Energy Class?\u003cbr\u003e4.4.11 Label Introduction\u003cbr\u003e4.4.12 Label Monitoring\u003cbr\u003e4.5 Example: Plastic Extrusion Machines\u003cbr\u003e4.5.1 Label Definition and Project Team\u003cbr\u003e4.5.2 Label Development\u003cbr\u003e4.5.3 Energy Efficiency Criteria \u003cbr\u003e4.5.4 Energy Measurement and Measurement Standard\u003cbr\u003e4.5.5 Energy Efficiency Index\u003cbr\u003e4.5.6 Energy Efficiency Classes\u003cbr\u003e4.5.7 Label Design\u003cbr\u003e4.5.8 Market Introduction and Communication\u003cbr\u003e4.6 Product Improvement and Ecodesign\u003cbr\u003e4.7 Summary\u003cbr\u003e\u003cbr\u003e5 Comparative Analysis of the Carbon Footprint of Wood and Plastic Lumber Railway Sleepers in Brazil and Germany \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Waste Management System\u003cbr\u003e5.2.1 Brazil\u003cbr\u003e5.2.2 Germany\u003cbr\u003e5.3 Railway Sleepers Market\u003cbr\u003e5.3.1 Brazil\u003cbr\u003e5.3.2 Germany\u003cbr\u003e5.4 Scope Definition and Life Cycle Inventory (LCI)\u003cbr\u003e5.4.1 Functional Unit\u003cbr\u003e5.4.2 Intended Audience \u003cbr\u003e5.4.3 Product Systems and System Boundaries \u003cbr\u003e5.4.4 Data Collection\u003cbr\u003e5.5 Results \u003cbr\u003e5.5.1 Brazil\u003cbr\u003e5.5.2 Germany\u003cbr\u003e5.5.3 Scenario Analysis\u003cbr\u003e5.5.4 Brazilian Case\u003cbr\u003e5.5.5 German Case\u003cbr\u003e5.6 Discussions and Conclusions \u003cbr\u003e\u003cbr\u003e6 Perfect Sorting Solutions for Packaging Recycling \u003cbr\u003e6.1 Post-consumer Polyethylene Terephthalate Through the Ages \u003cbr\u003e6.2 Bottle Sorting, the First Step in the Recycling Process \u003cbr\u003e6.3 Quality Improvement and Decontamination during the Flake Washing and Sorting Process \u003cbr\u003e6.4 Bottle to Bottle Recycling - The Ecological Alternative \u003cbr\u003e\u003cbr\u003e7 UK Household Plastic Packaging Collection Survey 2009\u003cbr\u003e7.1 UK Household Plastics Packaging Recycling Survey Background\u003cbr\u003e7.2 UK Plastic Packaging Consumption Statistics\u003cbr\u003e7.3 Household Plastic Packaging Recycling Rates in 2008\u003cbr\u003e7.4 Plastic Bottle Collection Infrastructure Summary\u003cbr\u003e7.5 Bring Scheme Performance\u003cbr\u003e7.6 Kerbside Scheme Performance\u003cbr\u003e7.7 Reported Perceptions of Running Plastic Bottle Collections\u003cbr\u003e7.8 Collection of Non Bottle Plastics Packaging for Recycling\u003cbr\u003e7.9 Sale of Material\u003cbr\u003e7.10 Planned Developments\u003cbr\u003e7.10.1 Bring Schemes \u003cbr\u003e7.10.2 Kerbside Schemes \u003cbr\u003e7.11 Development of Non Bottle Plastics Packaging Collections\u003cbr\u003e\u003cbr\u003e8 Vinyl 2010: Experience and Perspectives in Polyvinyl Chloride (PVC) Sustainable Development\u003cbr\u003e8.1 PVC: Strengths and Concerns\u003cbr\u003e8.2 The Vinyl 2010 Initiative\u003cbr\u003e8.2.1 Vinyl 2010: Foundation, Structure, and Organisation\u003cbr\u003e8.2.2 Commitments \u003cbr\u003e8.2.2.1 Manufacturing\u003cbr\u003e8.2.2.2 Plasticisers \u003cbr\u003e8.2.2.3 Stabilisers\u003cbr\u003e8.2.2.4 Waste Management\u003cbr\u003e8.3 Activities and Achievements of Vinyl 2010 \u003cbr\u003e8.3.1 Manufacturing\u003cbr\u003e8.3.2 Stabilisers \u003cbr\u003e8.3.3 Plasticisers\u003cbr\u003e8.3.4 Waste Management\u003cbr\u003e8.3.4.1 Collection and Recycling for Specific Applications \u003cbr\u003e8.3.4.2 Mixed PVC Recycling \u003cbr\u003e8.3.4.3 Recovinyl\u003cbr\u003e8.3.4.4 Mechanical Recycling \u003cbr\u003e8.3.4.5 Feedstock Recycling\u003cbr\u003e8.3.4.6 Energy Recovery\u003cbr\u003e8.3.4.7 PVC Waste Statistics\u003cbr\u003e8.3.4.8 Partnership with Local Authorities\u003cbr\u003e8.3.4.9 Other Partnerships\u003cbr\u003e8.4 Lessons Learnt\u003cbr\u003e8.4.1 Manufacturing\u003cbr\u003e8.4.2 Additives\u003cbr\u003e8.4.3 Waste Management\u003cbr\u003e8.4.4 Recycling Technologies\u003cbr\u003e8.5 Future Challenges \u003cbr\u003e8.6 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","carbon footprint","composites","environment","life cycle assessment","plastic processing machines","plastics","polymer blends","Polyvinyl Chloride (PVC)","recycling"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics and the Environment","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-491-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851","options":["Title"],"media":[{"alt":null,"id":358534905949,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eleanor Garmson and Frances Gardiner \u003cbr\u003eISBN 978-1-84735-491-4 \u003cbr\u003e\u003cbr\u003ePages: 142, Hard cover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis multi-authored book - from some of the leading researchers and practitioners on this topic - is a distinctive look at how to maximize profitability through environmental compliance in the plastics supply chain, a topic of great and ever-growing interest in the industry.\u003cbr\u003e\u003cbr\u003eThis distinguished assembly of authors from across the global - and from both industry and academia - provides the reader with a distinctive perspective on this topic. Plastics and the Environment provide readers with a look into the environmental issues of plastics products throughout the complete product lifecycle - from material selection to product design to recycling.\u003cbr\u003e\u003cbr\u003eTopics covered include Plastics Materials and Sustainability, Environmental Design for Plastics Products, Energy Efficiency, Plastics, Recycling and Technology, and Life Cycle Assessment.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Developments in Polymer Technology Driven by the Need for Sustainability\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 What Drives Developments Forward?\u003cbr\u003e1.3 How can we save the World?\u003cbr\u003e1.4 Getting the Science Right\u003cbr\u003e1.5 Legislation and Design\u003cbr\u003e1.6 New Materials\u003cbr\u003e1.7 New Processes\u003cbr\u003e1.8 Conclusions\u003cbr\u003e\u003cbr\u003e2 A Medium Voltage Switchgear Mechanism which is Insensitive to its Environment \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Selection of the Most Appropriate Material\u003cbr\u003e2.3 Design of a New Range of Mechanisms\u003cbr\u003e2.4 Environmental Studies\u003cbr\u003e2.5 Material Balance Analysis\u003cbr\u003e2.6 LCA18\u003cbr\u003e2.7 Conclusion.20\u003cbr\u003e\u003cbr\u003e3 From Industrial Polymerisation Wastes to High Valued Material: Interfacial Agents for Polymer Blends and Composites based on Chemically Modified Atactic\u003cbr\u003ePolypropylenes\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Chemical Modification \u003cbr\u003e3.3 Role in Heterogeneous Materials Based on Polymers \u003cbr\u003e3.4 Conclusions and Perspectives \u003cbr\u003e\u003cbr\u003e4 Energy Efficiency Index for Plastic Processing Machines \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Aim and Benefits of the Energy Efficiency Label\u003cbr\u003e4.3 Definition of Energy Efficiency Labels\u003cbr\u003e4.4 Label Development Process\u003cbr\u003e4.4.1 Define the Kind of Label: Which Type of Label do we Need?\u003cbr\u003e4.4.2 Form a Project Team: Who should be Involved in the Label Development Process? Which Steps have to be Done and When?\u003cbr\u003e4.4.3 Definition of the Product Groups: Which Product Groups\/Segments can be Defined and Considered Together?\u003cbr\u003e4.4.4 Definition of Criteria: Which Efficiency Criterion can be used for the Evaluation of the Energy Efficiency?\u003cbr\u003e4.4.5 Developing Measurement Standards: How to Measure the Energy Consumption of the Product?\u003cbr\u003e4.4.6 Calculate the Energy Efficiency Index (EEI) How to Define an EEI?\u003cbr\u003e4.4.7 Classification of Energy Classes: How Can Products be Classified?\u003cbr\u003e4.4.8 Label Design: How the Label is Designed and which Information is Included?\u003cbr\u003e4.4.9 Energy Measurements: How to Provide Data for the Definition of the Measurement Standard and the Definition of the Energy Classes?\u003cbr\u003e4.4.10 Energy Efficiency Improvement: What are Possible Improvement Strategies for a Higher Energy Class?\u003cbr\u003e4.4.11 Label Introduction\u003cbr\u003e4.4.12 Label Monitoring\u003cbr\u003e4.5 Example: Plastic Extrusion Machines\u003cbr\u003e4.5.1 Label Definition and Project Team\u003cbr\u003e4.5.2 Label Development\u003cbr\u003e4.5.3 Energy Efficiency Criteria \u003cbr\u003e4.5.4 Energy Measurement and Measurement Standard\u003cbr\u003e4.5.5 Energy Efficiency Index\u003cbr\u003e4.5.6 Energy Efficiency Classes\u003cbr\u003e4.5.7 Label Design\u003cbr\u003e4.5.8 Market Introduction and Communication\u003cbr\u003e4.6 Product Improvement and Ecodesign\u003cbr\u003e4.7 Summary\u003cbr\u003e\u003cbr\u003e5 Comparative Analysis of the Carbon Footprint of Wood and Plastic Lumber Railway Sleepers in Brazil and Germany \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Waste Management System\u003cbr\u003e5.2.1 Brazil\u003cbr\u003e5.2.2 Germany\u003cbr\u003e5.3 Railway Sleepers Market\u003cbr\u003e5.3.1 Brazil\u003cbr\u003e5.3.2 Germany\u003cbr\u003e5.4 Scope Definition and Life Cycle Inventory (LCI)\u003cbr\u003e5.4.1 Functional Unit\u003cbr\u003e5.4.2 Intended Audience \u003cbr\u003e5.4.3 Product Systems and System Boundaries \u003cbr\u003e5.4.4 Data Collection\u003cbr\u003e5.5 Results \u003cbr\u003e5.5.1 Brazil\u003cbr\u003e5.5.2 Germany\u003cbr\u003e5.5.3 Scenario Analysis\u003cbr\u003e5.5.4 Brazilian Case\u003cbr\u003e5.5.5 German Case\u003cbr\u003e5.6 Discussions and Conclusions \u003cbr\u003e\u003cbr\u003e6 Perfect Sorting Solutions for Packaging Recycling \u003cbr\u003e6.1 Post-consumer Polyethylene Terephthalate Through the Ages \u003cbr\u003e6.2 Bottle Sorting, the First Step in the Recycling Process \u003cbr\u003e6.3 Quality Improvement and Decontamination during the Flake Washing and Sorting Process \u003cbr\u003e6.4 Bottle to Bottle Recycling - The Ecological Alternative \u003cbr\u003e\u003cbr\u003e7 UK Household Plastic Packaging Collection Survey 2009\u003cbr\u003e7.1 UK Household Plastics Packaging Recycling Survey Background\u003cbr\u003e7.2 UK Plastic Packaging Consumption Statistics\u003cbr\u003e7.3 Household Plastic Packaging Recycling Rates in 2008\u003cbr\u003e7.4 Plastic Bottle Collection Infrastructure Summary\u003cbr\u003e7.5 Bring Scheme Performance\u003cbr\u003e7.6 Kerbside Scheme Performance\u003cbr\u003e7.7 Reported Perceptions of Running Plastic Bottle Collections\u003cbr\u003e7.8 Collection of Non Bottle Plastics Packaging for Recycling\u003cbr\u003e7.9 Sale of Material\u003cbr\u003e7.10 Planned Developments\u003cbr\u003e7.10.1 Bring Schemes \u003cbr\u003e7.10.2 Kerbside Schemes \u003cbr\u003e7.11 Development of Non Bottle Plastics Packaging Collections\u003cbr\u003e\u003cbr\u003e8 Vinyl 2010: Experience and Perspectives in Polyvinyl Chloride (PVC) Sustainable Development\u003cbr\u003e8.1 PVC: Strengths and Concerns\u003cbr\u003e8.2 The Vinyl 2010 Initiative\u003cbr\u003e8.2.1 Vinyl 2010: Foundation, Structure, and Organisation\u003cbr\u003e8.2.2 Commitments \u003cbr\u003e8.2.2.1 Manufacturing\u003cbr\u003e8.2.2.2 Plasticisers \u003cbr\u003e8.2.2.3 Stabilisers\u003cbr\u003e8.2.2.4 Waste Management\u003cbr\u003e8.3 Activities and Achievements of Vinyl 2010 \u003cbr\u003e8.3.1 Manufacturing\u003cbr\u003e8.3.2 Stabilisers \u003cbr\u003e8.3.3 Plasticisers\u003cbr\u003e8.3.4 Waste Management\u003cbr\u003e8.3.4.1 Collection and Recycling for Specific Applications \u003cbr\u003e8.3.4.2 Mixed PVC Recycling \u003cbr\u003e8.3.4.3 Recovinyl\u003cbr\u003e8.3.4.4 Mechanical Recycling \u003cbr\u003e8.3.4.5 Feedstock Recycling\u003cbr\u003e8.3.4.6 Energy Recovery\u003cbr\u003e8.3.4.7 PVC Waste Statistics\u003cbr\u003e8.3.4.8 Partnership with Local Authorities\u003cbr\u003e8.3.4.9 Other Partnerships\u003cbr\u003e8.4 Lessons Learnt\u003cbr\u003e8.4.1 Manufacturing\u003cbr\u003e8.4.2 Additives\u003cbr\u003e8.4.3 Waste Management\u003cbr\u003e8.4.4 Recycling Technologies\u003cbr\u003e8.5 Future Challenges \u003cbr\u003e8.6 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e"}
Bonding Elastomers: A ...
$153.00
{"id":11242239556,"title":"Bonding Elastomers: A Review of Adhesives and Processes","handle":"978-1-85957-495-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G. Polaski, J. Means, B. Stull, P. Warren, K. Allen, D. Mowrey and B. Carney, Lord Corporation \u003cbr\u003eISBN 978-1-85957-495-9 \u003cbr\u003e\u003cbr\u003ePages 150\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review has been written as a practical approach to bonding various kinds of elastomers to substrates such as steel and plastics, as used in the manufacture of diverse products such as rubber covered rolls, urethane fork lift wheels, rubber lining for chemical storage or solid rocket motors, engine bushes and mounts, seals for transmissions, electrical power connectors and military tank track pads. \u003cbr\u003e\u003cbr\u003eThere are over 20 kinds of elastomeric polymer each having unique physical and chemical resistance characteristics. Through compounding, a given elastomer’s performance can be enhanced but no single elastomer can be compounded to meet all applications. In the same manner, no single adhesive can provide the needed levels of adhesion and environmental resistance to all polymers. Even when bonding a particular elastomer, the adhesive of choice can vary depending upon the compounding of the rubber including the cure system, the environmental application of the bonded assembly, the substrate to which the rubber is going to be bonded, the moulding method and the geometry of the part. Other factors affecting adhesive selection might include colour, conductivity, and means of application. \u003cbr\u003e\u003cbr\u003eThis review is based on the authors' years of experience working closely with end-use customers and offers a thorough overview of how to successfully bond rubber to a given substrate in the manufacture of quality rubber engineered components: \u003cbr\u003e\u003cbr\u003esubstrate preparation selection of adhesive adhesive preparation adhesive application moulding conditions testing and bond failure analysis future trends \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Forward \u003cbr\u003e2 Introduction\u003cbr\u003e2.1 The Process\u003cbr\u003e2.2 Primers\u003cbr\u003e2.3 Adhesives\u003cbr\u003e2.4 Environmental Concerns \u003cbr\u003e3 Adhesive Application\u003cbr\u003e3.1 Surface Preparation\u003cbr\u003e3.2 Adhesive Selection\u003cbr\u003e3.3 Adhesive Preparation\u003cbr\u003e3.4 Adhesive Application\u003cbr\u003e3.5 Film Thickness\u003cbr\u003e3.6 Drying\u003cbr\u003e3.7 Storage \u003cbr\u003e4 Moulding\u003cbr\u003e4.1 Methods of Mould Bonding\u003cbr\u003e4.2 Sweeping (Flow)\u003cbr\u003e4.3 Pre-bake Resistance\u003cbr\u003e4.4 Mould Release\u003cbr\u003e4.5 Demoulding \u003cbr\u003e5 Environmentally Preferred Adhesives\u003cbr\u003e5.1 Adhesive Description\u003cbr\u003e5.2 Formulations\u003cbr\u003e5.3 Application\u003cbr\u003e5.4 Rubber Formulations\u003cbr\u003e5.5 Testing\u003cbr\u003e5.5.1 Bond Performance\u003cbr\u003e5.5.2 Primary Adhesion\u003cbr\u003e5.5.3 Sweep\u003cbr\u003e5.5.4 Hot Tear\u003cbr\u003e5.5.5 Salt Spray\u003cbr\u003e5.6 Results\u003cbr\u003e5.7 Summary \u003cbr\u003e6 Aqueous Adhesives\u003cbr\u003e6.1 Aqueous versus Solvent Based Adhesives\u003cbr\u003e6.2 Experimental\u003cbr\u003e6.3 Results and Discussion\u003cbr\u003e6.4 Summary \u003cbr\u003e7 Troubleshooting\u003cbr\u003e7.1 Types of Failures\u003cbr\u003e7.1.1 Rubber Failure\u003cbr\u003e7.1.2 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.1.3 Cement-to Metal (CM) Failure\u003cbr\u003e7.1.4 Other Failures\u003cbr\u003e7.2 Failure Analysis\u003cbr\u003e7.2.1 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.2.2 Cement-to-Metal Failure\u003cbr\u003e7.3 Surface Analysis Techniques\u003cbr\u003e7.4 Root Cause\u003cbr\u003e7.5 Summary \u003cbr\u003e8 Testing \u003cbr\u003e9 Markets\u003cbr\u003e9.1 Bonding Rubber Rolls\u003cbr\u003e9.1.1 Core Preparation\u003cbr\u003e9.1.2 The Adhesive System Selection Process\u003cbr\u003e9.1.3 Handling, Mixing, and Application Processes\u003cbr\u003e9.1.4 Rubber Lay-Up and Curing\u003cbr\u003e9.1.5 Troubleshooting\u003cbr\u003e9.2 Bonding Urethane's\u003cbr\u003e9.2.1 Bonding Applications\u003cbr\u003e9.2.2 Adhesive System Selection\u003cbr\u003e9.2.3 Adhesive Application\u003cbr\u003e9.3 Thermoplastic Elastomer Bonding\u003cbr\u003e9.3.1 Bonding Applications\u003cbr\u003e9.3.2 Bonding Methods\u003cbr\u003e9.3.3 Adhesive Selection (for Use in Injection Moulding)\u003cbr\u003e9.3.4 Application\u003cbr\u003e9.3.5 Pre-Baking Adhesive Coated Parts Prior to Moulding\u003cbr\u003e9.3.6 Injection Moulding\u003cbr\u003e9.3.7 Checking Bond Adhesion\u003cbr\u003e9.3.8 Bond Performance\u003cbr\u003e9.4 Rubber Lining\u003cbr\u003e9.4.1 Surface Preparation\u003cbr\u003e9.4.2 Rubber Lining\u003cbr\u003e9.4.3 Rubber and the Cure System\u003cbr\u003e9.4.4 Primers\/Adhesives\/Tack Coats\u003cbr\u003e9.4.5 Adhesive Handling\u003cbr\u003e9.4.6 Application\u003cbr\u003e9.4.7 Quality Control\u003cbr\u003e9.4.8 Summary\u003cbr\u003e9.5 Adhesives for Seals and Gaskets\u003cbr\u003e9.5.1 Adhesive and Coating Selections\u003cbr\u003e9.5.2 Summary\u003cbr\u003e9.6 Adhesives for Automotive Weatherstripping\u003cbr\u003e9.6.1 Metal Profile Carriers\u003cbr\u003e9.6.2 Elastomeric Sealing Surfaces\u003cbr\u003e9.6.3 Extrusion Process\u003cbr\u003e9.6.4 Performance Testing\u003cbr\u003e9.6.5 Summary \u003cbr\u003e10 Future Trends in Rubber-to-Metal Bonding \u003cbr\u003eAbbreviations\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","adhesives","book","chemical","electrical properties","film thickness","gaskets","mechanical","mold release","molding","moulding","p-applications","poly","polyethylene","rheological","rubber","seals","thermal properties"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432900,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Bonding Elastomers: A Review of Adhesives and Processes","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-495-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579","options":["Title"],"media":[{"alt":null,"id":353925038173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G. Polaski, J. Means, B. Stull, P. Warren, K. Allen, D. Mowrey and B. Carney, Lord Corporation \u003cbr\u003eISBN 978-1-85957-495-9 \u003cbr\u003e\u003cbr\u003ePages 150\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review has been written as a practical approach to bonding various kinds of elastomers to substrates such as steel and plastics, as used in the manufacture of diverse products such as rubber covered rolls, urethane fork lift wheels, rubber lining for chemical storage or solid rocket motors, engine bushes and mounts, seals for transmissions, electrical power connectors and military tank track pads. \u003cbr\u003e\u003cbr\u003eThere are over 20 kinds of elastomeric polymer each having unique physical and chemical resistance characteristics. Through compounding, a given elastomer’s performance can be enhanced but no single elastomer can be compounded to meet all applications. In the same manner, no single adhesive can provide the needed levels of adhesion and environmental resistance to all polymers. Even when bonding a particular elastomer, the adhesive of choice can vary depending upon the compounding of the rubber including the cure system, the environmental application of the bonded assembly, the substrate to which the rubber is going to be bonded, the moulding method and the geometry of the part. Other factors affecting adhesive selection might include colour, conductivity, and means of application. \u003cbr\u003e\u003cbr\u003eThis review is based on the authors' years of experience working closely with end-use customers and offers a thorough overview of how to successfully bond rubber to a given substrate in the manufacture of quality rubber engineered components: \u003cbr\u003e\u003cbr\u003esubstrate preparation selection of adhesive adhesive preparation adhesive application moulding conditions testing and bond failure analysis future trends \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Forward \u003cbr\u003e2 Introduction\u003cbr\u003e2.1 The Process\u003cbr\u003e2.2 Primers\u003cbr\u003e2.3 Adhesives\u003cbr\u003e2.4 Environmental Concerns \u003cbr\u003e3 Adhesive Application\u003cbr\u003e3.1 Surface Preparation\u003cbr\u003e3.2 Adhesive Selection\u003cbr\u003e3.3 Adhesive Preparation\u003cbr\u003e3.4 Adhesive Application\u003cbr\u003e3.5 Film Thickness\u003cbr\u003e3.6 Drying\u003cbr\u003e3.7 Storage \u003cbr\u003e4 Moulding\u003cbr\u003e4.1 Methods of Mould Bonding\u003cbr\u003e4.2 Sweeping (Flow)\u003cbr\u003e4.3 Pre-bake Resistance\u003cbr\u003e4.4 Mould Release\u003cbr\u003e4.5 Demoulding \u003cbr\u003e5 Environmentally Preferred Adhesives\u003cbr\u003e5.1 Adhesive Description\u003cbr\u003e5.2 Formulations\u003cbr\u003e5.3 Application\u003cbr\u003e5.4 Rubber Formulations\u003cbr\u003e5.5 Testing\u003cbr\u003e5.5.1 Bond Performance\u003cbr\u003e5.5.2 Primary Adhesion\u003cbr\u003e5.5.3 Sweep\u003cbr\u003e5.5.4 Hot Tear\u003cbr\u003e5.5.5 Salt Spray\u003cbr\u003e5.6 Results\u003cbr\u003e5.7 Summary \u003cbr\u003e6 Aqueous Adhesives\u003cbr\u003e6.1 Aqueous versus Solvent Based Adhesives\u003cbr\u003e6.2 Experimental\u003cbr\u003e6.3 Results and Discussion\u003cbr\u003e6.4 Summary \u003cbr\u003e7 Troubleshooting\u003cbr\u003e7.1 Types of Failures\u003cbr\u003e7.1.1 Rubber Failure\u003cbr\u003e7.1.2 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.1.3 Cement-to Metal (CM) Failure\u003cbr\u003e7.1.4 Other Failures\u003cbr\u003e7.2 Failure Analysis\u003cbr\u003e7.2.1 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.2.2 Cement-to-Metal Failure\u003cbr\u003e7.3 Surface Analysis Techniques\u003cbr\u003e7.4 Root Cause\u003cbr\u003e7.5 Summary \u003cbr\u003e8 Testing \u003cbr\u003e9 Markets\u003cbr\u003e9.1 Bonding Rubber Rolls\u003cbr\u003e9.1.1 Core Preparation\u003cbr\u003e9.1.2 The Adhesive System Selection Process\u003cbr\u003e9.1.3 Handling, Mixing, and Application Processes\u003cbr\u003e9.1.4 Rubber Lay-Up and Curing\u003cbr\u003e9.1.5 Troubleshooting\u003cbr\u003e9.2 Bonding Urethane's\u003cbr\u003e9.2.1 Bonding Applications\u003cbr\u003e9.2.2 Adhesive System Selection\u003cbr\u003e9.2.3 Adhesive Application\u003cbr\u003e9.3 Thermoplastic Elastomer Bonding\u003cbr\u003e9.3.1 Bonding Applications\u003cbr\u003e9.3.2 Bonding Methods\u003cbr\u003e9.3.3 Adhesive Selection (for Use in Injection Moulding)\u003cbr\u003e9.3.4 Application\u003cbr\u003e9.3.5 Pre-Baking Adhesive Coated Parts Prior to Moulding\u003cbr\u003e9.3.6 Injection Moulding\u003cbr\u003e9.3.7 Checking Bond Adhesion\u003cbr\u003e9.3.8 Bond Performance\u003cbr\u003e9.4 Rubber Lining\u003cbr\u003e9.4.1 Surface Preparation\u003cbr\u003e9.4.2 Rubber Lining\u003cbr\u003e9.4.3 Rubber and the Cure System\u003cbr\u003e9.4.4 Primers\/Adhesives\/Tack Coats\u003cbr\u003e9.4.5 Adhesive Handling\u003cbr\u003e9.4.6 Application\u003cbr\u003e9.4.7 Quality Control\u003cbr\u003e9.4.8 Summary\u003cbr\u003e9.5 Adhesives for Seals and Gaskets\u003cbr\u003e9.5.1 Adhesive and Coating Selections\u003cbr\u003e9.5.2 Summary\u003cbr\u003e9.6 Adhesives for Automotive Weatherstripping\u003cbr\u003e9.6.1 Metal Profile Carriers\u003cbr\u003e9.6.2 Elastomeric Sealing Surfaces\u003cbr\u003e9.6.3 Extrusion Process\u003cbr\u003e9.6.4 Performance Testing\u003cbr\u003e9.6.5 Summary \u003cbr\u003e10 Future Trends in Rubber-to-Metal Bonding \u003cbr\u003eAbbreviations\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e"}
Advances in Nanofibre ...
$165.00
{"id":11242239492,"title":"Advances in Nanofibre Research","handle":"978-1-84735-603-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.K. Haghi and G.E. Zaikov \u003cbr\u003eISBN 978-1-84735-603-1 \u003cbr\u003e\u003cbr\u003ePages:204\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNanofibres are defined as fibers with diameters on the order of 100 nanometres. They can be produced by interfacial polymerisation and electrospinning. Nanofibres are included in garments, insulation and in energy storage. They are also used in medical applications, which include drug and gene delivery, artificial blood vessels, artificial organs and medical facemasks. \u003cbr\u003e\u003cbr\u003eThis book presents some fascinating phenomena associated with the remarkable features of nanofibres in electrospinning processes and new progress in applications of electrospun nanofibres. \u003cbr\u003e\u003cbr\u003eIt also provides an overview of structure-property relationships, synthesis and purification, and potential applications of electrospun nanofibres. The collection of topics in this book aims to reflect the diversity of recent advances in electrospun nanofibres with a broad perspective which may be useful for scientists as well as for graduate students and engineers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Electrospinning of Polymeric Nanofibres\u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Processing Condition \u003cbr\u003e1.2.1 Applied Voltage\u003cbr\u003e1.2.2 Feed Rate\u003cbr\u003e1.3 Theory and Modeling \u003cbr\u003e1.4 Concluding Remarks \u003cbr\u003e\u003cbr\u003e2 Polymeric Nanofibre Fabrication via Electrospinning Process\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Experimental \u003cbr\u003e2.2.1 Solution Preparation and Electrospinning \u003cbr\u003e2.2.2 Choice of Parameters and Range \u003cbr\u003e2.2.3 Experimental Design \u003cbr\u003e2.2.4 Response Surface Methodology \u003cbr\u003e2.3 Results and Discussion \u003cbr\u003e2.3.1 Response Surfaces for Mean Fibre Diameter \u003cbr\u003e2.3.1.1 Solution Concentration \u003cbr\u003e2.3.1.2 Spinning Distance \u003cbr\u003e2.3.1.3 Applied Voltage \u003cbr\u003e2.3.1.4 Volume Flow Rate \u003cbr\u003e2.3.2 Response Surfaces for Standard Deviation of Fibre Diameter \u003cbr\u003e2.3.2.1 Solution Concentration \u003cbr\u003e2.3.2.2 Spinning Distance \u003cbr\u003e2.3.2.3 Applied Voltage \u003cbr\u003e2.3.2.4 Volume Flow Rate \u003cbr\u003e2.4 Conclusion \u003cbr\u003e2.4.1 Mean Fibre Diameter \u003cbr\u003e2.4.2 Standard Deviation of Fibre Diameter\u003cbr\u003e\u003cbr\u003e3 Structure Formation of Polymeric Nanofibres in Electrospinning\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Methodology \u003cbr\u003e3.2.1 Simulation of Electrospun Webs \u003cbr\u003e3.2.2 Fibre Diameter Measurement \u003cbr\u003e3.2.2.1 Manual Method \u003cbr\u003e3.2.2.2 Distance Transform \u003cbr\u003e3.2.2.3 Direct Tracking \u003cbr\u003e3.2.3 Real Webs Treatment \u003cbr\u003e3.3 Experimental\u003cbr\u003e3.4 Results and Discussion \u003cbr\u003e3.5 Conclusion \u003cbr\u003e\u003cbr\u003e4 Optimisation of the Electrospinning Process\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Methodology \u003cbr\u003e4.2.1 Measurement of Fibre Diameter \u003cbr\u003e4.2.1.1 Manual Method \u003cbr\u003e4.2.1.2 Distance Transform Method \u003cbr\u003e4.2.1.3 New Distance Transform Method \u003cbr\u003e4.2.2 Validation of the Methods \u003cbr\u003e4.2.3 Thresholding \u003cbr\u003e4.3 Experimental\u003cbr\u003e4.4 Results and Discussion \u003cbr\u003e4.5 Conclusion \u003cbr\u003e\u003cbr\u003e5 Practical Hints on the Processing Parameters and Geometric Properties of Electrospun Nanofibres\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Methodology \u003cbr\u003e5.2.1 Sieving Methods \u003cbr\u003e5.2.2 Mercury Porosimetry \u003cbr\u003e5.2.3 Flow Porosimetry (Bubble Point Method) \u003cbr\u003e5.2.4 Image Analysis\u003cbr\u003e5.2.4.1 Real Webs \u003cbr\u003e5.2.4.2 Simulated Webs \u003cbr\u003e5.3 Experimental\u003cbr\u003e5.4 Results and Discussion \u003cbr\u003e5.5 Conclusion \u003cbr\u003e6 Practical Hints on the Production of Electrospun Nanofibres from Regenerated Silk Fibroin \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Effect of Systematic Parameters on Electrospun Nanofibres \u003cbr\u003e6.2.1 Solution Properties \u003cbr\u003e6.2.2 Viscosity \u003cbr\u003e6.2.3 Solution Concentration \u003cbr\u003e6.2.4 Molecular Weight \u003cbr\u003e6.2.5 Surface Tension \u003cbr\u003e6.2.6 Solution Conductivity \u003cbr\u003e6.2.7 Applied Voltage \u003cbr\u003e6.2.8 Feed Rate \u003cbr\u003e6.3 Experimental \u003cbr\u003e6.3.1 Electrospinning and Preparation of Nanofibrous Media \u003cbr\u003e6.3.2 Image Analysis using Image Processing Algorithms \u003cbr\u003e6.4 Results and Discussion \u003cbr\u003e6.4.1 Diameter Distribution of Nanofibres \u003cbr\u003e6.4.2 Distribution of Nanofibre Orientation\u003cbr\u003e6.4.3 Porosity \u003cbr\u003e6.5 Conclusions \u003cbr\u003e\u003cbr\u003e7 Characterisation of Polymeric Electrospun Nanofibres \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.1.1 Electrospinning Setup \u003cbr\u003e7.2 Effect of Systematic Parameters on Electrospun Nanofibres\u003cbr\u003e7.2.1 Solution Properties \u003cbr\u003e7.2.1.1 Viscosity \u003cbr\u003e7.2.1.2. Solution Concentration \u003cbr\u003e7.2.1.3 Molecular Weight \u003cbr\u003e7.2.1.4 Surface Tension \u003cbr\u003e7.2.1.5 Solution Conductivity \u003cbr\u003e7.2.2 Processing Condition \u003cbr\u003e7.2.2.1 Applied Voltage \u003cbr\u003e7.2.2.2 Feed Rate \u003cbr\u003e7.3 Experimental \u003cbr\u003e7.4 Result and Discussion \u003cbr\u003e7.5 Conclusion \u003cbr\u003e\u003cbr\u003e8 Formation of Polymeric Electrospun Nanofibres \u003cbr\u003e8.1 Overview\u003cbr\u003e8.2 Aim of the Project \u003cbr\u003e8.3 Experimental \u003cbr\u003e8.4 Results and Discussion \u003cbr\u003e8.5 Conclusion \u003cbr\u003e\u003cbr\u003e9 Experimental Study on Electrospinning of Polymeric Nanofibres \u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Experimental\u003cbr\u003e9.2.1 Materials\u003cbr\u003e9.2.2 Sample Preparation\u003cbr\u003e9.2.3 Electrospinning\u003cbr\u003e9.2.4 Characterisation \u003cbr\u003e9.3 Results and Discussion \u003cbr\u003e9.3.1 Effect of Polyaniline Content \u003cbr\u003e9.3.2 Effect of Electrospinning Temperature \u003cbr\u003e9.3.3 Effect of Applied Voltage \u003cbr\u003e9.4 Conclusions \u003cbr\u003eAbbreviations \u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","electrospinning","electrospun","nanofibers","polymeric nanofibers","polymers"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432772,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Advances in Nanofibre Research","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-603-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-603-1.jpg?v=1499720197"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-603-1.jpg?v=1499720197","options":["Title"],"media":[{"alt":null,"id":350147084381,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-603-1.jpg?v=1499720197"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-603-1.jpg?v=1499720197","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.K. Haghi and G.E. Zaikov \u003cbr\u003eISBN 978-1-84735-603-1 \u003cbr\u003e\u003cbr\u003ePages:204\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNanofibres are defined as fibers with diameters on the order of 100 nanometres. They can be produced by interfacial polymerisation and electrospinning. Nanofibres are included in garments, insulation and in energy storage. They are also used in medical applications, which include drug and gene delivery, artificial blood vessels, artificial organs and medical facemasks. \u003cbr\u003e\u003cbr\u003eThis book presents some fascinating phenomena associated with the remarkable features of nanofibres in electrospinning processes and new progress in applications of electrospun nanofibres. \u003cbr\u003e\u003cbr\u003eIt also provides an overview of structure-property relationships, synthesis and purification, and potential applications of electrospun nanofibres. The collection of topics in this book aims to reflect the diversity of recent advances in electrospun nanofibres with a broad perspective which may be useful for scientists as well as for graduate students and engineers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Electrospinning of Polymeric Nanofibres\u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Processing Condition \u003cbr\u003e1.2.1 Applied Voltage\u003cbr\u003e1.2.2 Feed Rate\u003cbr\u003e1.3 Theory and Modeling \u003cbr\u003e1.4 Concluding Remarks \u003cbr\u003e\u003cbr\u003e2 Polymeric Nanofibre Fabrication via Electrospinning Process\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Experimental \u003cbr\u003e2.2.1 Solution Preparation and Electrospinning \u003cbr\u003e2.2.2 Choice of Parameters and Range \u003cbr\u003e2.2.3 Experimental Design \u003cbr\u003e2.2.4 Response Surface Methodology \u003cbr\u003e2.3 Results and Discussion \u003cbr\u003e2.3.1 Response Surfaces for Mean Fibre Diameter \u003cbr\u003e2.3.1.1 Solution Concentration \u003cbr\u003e2.3.1.2 Spinning Distance \u003cbr\u003e2.3.1.3 Applied Voltage \u003cbr\u003e2.3.1.4 Volume Flow Rate \u003cbr\u003e2.3.2 Response Surfaces for Standard Deviation of Fibre Diameter \u003cbr\u003e2.3.2.1 Solution Concentration \u003cbr\u003e2.3.2.2 Spinning Distance \u003cbr\u003e2.3.2.3 Applied Voltage \u003cbr\u003e2.3.2.4 Volume Flow Rate \u003cbr\u003e2.4 Conclusion \u003cbr\u003e2.4.1 Mean Fibre Diameter \u003cbr\u003e2.4.2 Standard Deviation of Fibre Diameter\u003cbr\u003e\u003cbr\u003e3 Structure Formation of Polymeric Nanofibres in Electrospinning\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Methodology \u003cbr\u003e3.2.1 Simulation of Electrospun Webs \u003cbr\u003e3.2.2 Fibre Diameter Measurement \u003cbr\u003e3.2.2.1 Manual Method \u003cbr\u003e3.2.2.2 Distance Transform \u003cbr\u003e3.2.2.3 Direct Tracking \u003cbr\u003e3.2.3 Real Webs Treatment \u003cbr\u003e3.3 Experimental\u003cbr\u003e3.4 Results and Discussion \u003cbr\u003e3.5 Conclusion \u003cbr\u003e\u003cbr\u003e4 Optimisation of the Electrospinning Process\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Methodology \u003cbr\u003e4.2.1 Measurement of Fibre Diameter \u003cbr\u003e4.2.1.1 Manual Method \u003cbr\u003e4.2.1.2 Distance Transform Method \u003cbr\u003e4.2.1.3 New Distance Transform Method \u003cbr\u003e4.2.2 Validation of the Methods \u003cbr\u003e4.2.3 Thresholding \u003cbr\u003e4.3 Experimental\u003cbr\u003e4.4 Results and Discussion \u003cbr\u003e4.5 Conclusion \u003cbr\u003e\u003cbr\u003e5 Practical Hints on the Processing Parameters and Geometric Properties of Electrospun Nanofibres\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Methodology \u003cbr\u003e5.2.1 Sieving Methods \u003cbr\u003e5.2.2 Mercury Porosimetry \u003cbr\u003e5.2.3 Flow Porosimetry (Bubble Point Method) \u003cbr\u003e5.2.4 Image Analysis\u003cbr\u003e5.2.4.1 Real Webs \u003cbr\u003e5.2.4.2 Simulated Webs \u003cbr\u003e5.3 Experimental\u003cbr\u003e5.4 Results and Discussion \u003cbr\u003e5.5 Conclusion \u003cbr\u003e6 Practical Hints on the Production of Electrospun Nanofibres from Regenerated Silk Fibroin \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Effect of Systematic Parameters on Electrospun Nanofibres \u003cbr\u003e6.2.1 Solution Properties \u003cbr\u003e6.2.2 Viscosity \u003cbr\u003e6.2.3 Solution Concentration \u003cbr\u003e6.2.4 Molecular Weight \u003cbr\u003e6.2.5 Surface Tension \u003cbr\u003e6.2.6 Solution Conductivity \u003cbr\u003e6.2.7 Applied Voltage \u003cbr\u003e6.2.8 Feed Rate \u003cbr\u003e6.3 Experimental \u003cbr\u003e6.3.1 Electrospinning and Preparation of Nanofibrous Media \u003cbr\u003e6.3.2 Image Analysis using Image Processing Algorithms \u003cbr\u003e6.4 Results and Discussion \u003cbr\u003e6.4.1 Diameter Distribution of Nanofibres \u003cbr\u003e6.4.2 Distribution of Nanofibre Orientation\u003cbr\u003e6.4.3 Porosity \u003cbr\u003e6.5 Conclusions \u003cbr\u003e\u003cbr\u003e7 Characterisation of Polymeric Electrospun Nanofibres \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.1.1 Electrospinning Setup \u003cbr\u003e7.2 Effect of Systematic Parameters on Electrospun Nanofibres\u003cbr\u003e7.2.1 Solution Properties \u003cbr\u003e7.2.1.1 Viscosity \u003cbr\u003e7.2.1.2. Solution Concentration \u003cbr\u003e7.2.1.3 Molecular Weight \u003cbr\u003e7.2.1.4 Surface Tension \u003cbr\u003e7.2.1.5 Solution Conductivity \u003cbr\u003e7.2.2 Processing Condition \u003cbr\u003e7.2.2.1 Applied Voltage \u003cbr\u003e7.2.2.2 Feed Rate \u003cbr\u003e7.3 Experimental \u003cbr\u003e7.4 Result and Discussion \u003cbr\u003e7.5 Conclusion \u003cbr\u003e\u003cbr\u003e8 Formation of Polymeric Electrospun Nanofibres \u003cbr\u003e8.1 Overview\u003cbr\u003e8.2 Aim of the Project \u003cbr\u003e8.3 Experimental \u003cbr\u003e8.4 Results and Discussion \u003cbr\u003e8.5 Conclusion \u003cbr\u003e\u003cbr\u003e9 Experimental Study on Electrospinning of Polymeric Nanofibres \u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Experimental\u003cbr\u003e9.2.1 Materials\u003cbr\u003e9.2.2 Sample Preparation\u003cbr\u003e9.2.3 Electrospinning\u003cbr\u003e9.2.4 Characterisation \u003cbr\u003e9.3 Results and Discussion \u003cbr\u003e9.3.1 Effect of Polyaniline Content \u003cbr\u003e9.3.2 Effect of Electrospinning Temperature \u003cbr\u003e9.3.3 Effect of Applied Voltage \u003cbr\u003e9.4 Conclusions \u003cbr\u003eAbbreviations \u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e"}
Handbook of Conducting...
$299.00
{"id":11242239172,"title":"Handbook of Conducting Polymers, 3rd Ed. 2 Vol. Set","handle":"9781574446654","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. A. Skotheim, J. Reynolds \u003cbr\u003eISBN 9781574446654 \u003cbr\u003e\u003cbr\u003epages 1680\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAs the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two volumes, this third edition incorporates the latest developments in both the fundamental science and practical applications of polymers while maintaining the clear format of the previous editions and the expertise of the editors and world-renowned contributors.\u003cbr\u003e\u003cbr\u003eThe first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind p-conjugated materials and electron-lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.\u003cbr\u003e\u003cbr\u003ePicking up where the first volume left off, the second book concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators. \u003cbr\u003e\u003cbr\u003eAs the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eRetains the expertise of the world-renowned editors and contributors as well as the clear format from previous editions\u003c\/li\u003e\n\u003cli\u003eDescribes in detail the structure-property relationships of redox, interfacial, electrical, and optical phenomena unique to conducting polymers\u003c\/li\u003e\n\u003cli\u003eHighlights conducting and semiconducting polymers in light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators\u003c\/li\u003e\n\u003cli\u003eFeatures the most active and visible researchers in the field of conjugated and conducting polymers\u003c\/li\u003e\n\u003cli\u003eIncludes numerous equations, tables, and both black and white and color figures\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:40-04:00","created_at":"2017-06-22T21:14:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","actuators","biosensors","book","conducting","electrical","electrochromic panels","field effect","interfacial","optical","p-applications","polymer","polymers","redox","semiconducting polymers in light-emitting displays","solar cells","transistors"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432452,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Conducting Polymers, 3rd Ed. 2 Vol. Set","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781574446654","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880","options":["Title"],"media":[{"alt":null,"id":354810265693,"position":1,"preview_image":{"aspect_ratio":0.659,"height":499,"width":329,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880"},"aspect_ratio":0.659,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880","width":329}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. A. Skotheim, J. Reynolds \u003cbr\u003eISBN 9781574446654 \u003cbr\u003e\u003cbr\u003epages 1680\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAs the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two volumes, this third edition incorporates the latest developments in both the fundamental science and practical applications of polymers while maintaining the clear format of the previous editions and the expertise of the editors and world-renowned contributors.\u003cbr\u003e\u003cbr\u003eThe first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind p-conjugated materials and electron-lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.\u003cbr\u003e\u003cbr\u003ePicking up where the first volume left off, the second book concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators. \u003cbr\u003e\u003cbr\u003eAs the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eRetains the expertise of the world-renowned editors and contributors as well as the clear format from previous editions\u003c\/li\u003e\n\u003cli\u003eDescribes in detail the structure-property relationships of redox, interfacial, electrical, and optical phenomena unique to conducting polymers\u003c\/li\u003e\n\u003cli\u003eHighlights conducting and semiconducting polymers in light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators\u003c\/li\u003e\n\u003cli\u003eFeatures the most active and visible researchers in the field of conjugated and conducting polymers\u003c\/li\u003e\n\u003cli\u003eIncludes numerous equations, tables, and both black and white and color figures\u003c\/li\u003e\n\u003c\/ul\u003e"}
Chromatography Mass Sp...
$215.00
{"id":11242239300,"title":"Chromatography Mass Spectroscopy in Polymer Analysis","handle":"978-1-84735-482-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-482-2 \u003cbr\u003e\u003cbr\u003ePages: 236, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe combination of chromatography with mass spectroscopy is a very useful technique which is being increasingly used by polymer chemists to improve existing polymers and to discover new ones with specific physical properties such as thermal stability and retention of properties over a long service life.\u003cbr\u003e\u003cbr\u003eThis technique is extremely powerful for the analysis and characterisation of polymers and is often based on the use of controlled chromatography - mass spectroscopy to measure a polymer's decomposition with techniques such as pyrolysis, followed by chromatography to separate any breakdown product, and, finally, mass spectroscopy, to achieve an unequivocal identification of the pyrolysis products obtained. The detail that can be obtained by such methods includes structure of the polymer backbone, branching, end groups, isomeric detail and fine detail in the structure of copolymers.\u003cbr\u003e\u003cbr\u003eThe first three chapters of the book discuss the various chromatographic and mass spectroscopic techniques now available.\u003cbr\u003e\u003cbr\u003eChapters 3-8 cover the complementary methods, based on the combination of mass spectroscopy with various chromatographic techniques such as high-performance liquid chromatography, gas chromatography and supercritical fluid chromatography.\u003cbr\u003e\u003cbr\u003ePyrolysis chromatography-mass spectroscopy is a method of studying the structure of polymers which involves subjecting the polymer pyrolysis products to a chromatographic technique to simplify subsequent analysis and, finally mass spectroscopy to identify the pyrolysis products with the possibility of deducing finer details of polymer structure than were previously attainable by classical methods (Chapters 9-11).\u003cbr\u003e\u003cbr\u003eBy providing a thorough up-to-date review of work in this field it is hoped that the book will be of interest to all those engaged in polymer research and development, and polymer users in general.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chromatographic Techniques\u003cbr\u003e1.1 Gas Chromatography\u003cbr\u003e1.2 High Performance Liquid Chromatography\u003cbr\u003e1.2.1 Post-column Derivatisation: Fluorescence Detectors\u003cbr\u003e1.2.2 Diode Array Detectors\u003cbr\u003e1.2.3 Electrochemical Detectors\u003cbr\u003e1.2.3.1 The determination of Monomers\u003cbr\u003e1.2.3.2 Determination of Oligomers\u003cbr\u003e1.2.4 Fractionation\/Microstructure Studies\u003cbr\u003e1.3 Size Exclusion Chromatography\u003cbr\u003e1.3.1 Characterisation Studies\u003cbr\u003e1.3.2 Branching\u003cbr\u003e1.3.3 Compositional Analysis\u003cbr\u003e1.3.4 Molecular Weight\u003cbr\u003e1.3.5 Polymer Blends\u003cbr\u003e1.3.6 Polymer Additives\u003cbr\u003e1.4 Supercritical Fluid Chromatography\u003cbr\u003e1.4.1 Polymer Additives\u003cbr\u003e1.5 Thin Layer Chromatography\u003cbr\u003e1.6 Thermal Field Flow Fractionation\u003cbr\u003evi\u003cbr\u003eChromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e2 Mass Spectroscopic Techniques\u003cbr\u003e2.1 Time-of-Flight – Secondary Ion Mass Spectroscopy\u003cbr\u003e2.1.1 Adhesion Studies\u003cbr\u003e2.1.2 Polymer Interface Studies\u003cbr\u003e2.1.3 Vulcanisation Studies\u003cbr\u003e2.2 Matrix Assisted Laser Desorption Ionisation Mass Spectroscopy\u003cbr\u003e2.2.1 Applications\u003cbr\u003e2.3 Matrix Assisted Laser Desorption Ionisation Post\u003cbr\u003eSource Decay\u003cbr\u003e2.4 Electrospray Ionisation Mass Spectroscopy\u003cbr\u003e2.5 Field Desorption Mass Spectroscopy\u003cbr\u003e2.6 Tandem Mass Spectroscopy\u003cbr\u003e2.7 Fourier-transform Ion Cyclotron Mass Spectroscopy\u003cbr\u003e2.8 Fast Atom Bombardment Mass Spectroscopy\u003cbr\u003e2.9 Radio Frequency and Glow Discharge – Mass Spectroscopy\u003cbr\u003e3 Chemical Reaction Gas Chromatography\u003cbr\u003e3.1 Applications\u003cbr\u003e3.1.1 Saponification Procedures\u003cbr\u003e3.1.2 Zeisel Procedures\u003cbr\u003e3.1.3 Alkali Fusion\u003cbr\u003e3.1.4 Reactive Hydrolysis – Methylation – Pyrolysis –Chromatography\u003cbr\u003e4 Complementary High Performance Liquid Chromatography – Mass Spectroscopy\u003cbr\u003e4.1 Theory\u003cbr\u003e4.1 Applications Contents vii\u003cbr\u003e4.1.1 Polymer Characterisation\u003cbr\u003e4.1.2 Polymer Extractables\u003cbr\u003e4.1.3 Determination of Polymer Additives\u003cbr\u003e4.1.4 High Performance Liquid Chromatography –Infrared Spectroscopy\u003cbr\u003e5 Complementary Size Exclusion Chromatography – Mass Spectroscopy\u003cbr\u003e5.1 Applications\u003cbr\u003e5.1.1 Molecular Weight\u003cbr\u003e5.1.1.1 Polyesters\u003cbr\u003e5.1.1.2 Poly(N-methyl Perfluoro –octylsulfonamido Ethyl Acrylate)\u003cbr\u003e5.1.1.3 Polymethylmethacrylate\u003cbr\u003e5.1.1.4 2-Benzothiozolon-3-yl Acetic Acid-telechelic Polyethylene Oxides (PEG Esters)\u003cbr\u003e5.1.1.5 Polyesters\u003cbr\u003e5.1.1.6 Polyethers\u003cbr\u003e5.1.1.7 Hydrocarbon Types\u003cbr\u003e5.1.1.8 Nitrogen Containing Polymers\u003cbr\u003e5.1.1.9 Silicon Containing Polymers\u003cbr\u003e5.1.1.10 Miscellaneous Polymers\u003cbr\u003e5.2 Polymer Degradation Studies\u003cbr\u003e5.3 End-group Analysis\u003cbr\u003e6 Complementary Gas Chromatography – Mass Spectroscopy\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Polymer Characterisation\u003cbr\u003e6.1.1.1 Sulfur Containing Polymers\u003cbr\u003eviii Chromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e6.1.1.2 3-Glycidoxyproply-tri-methoxysilane sols\u003cbr\u003e6.1.1.3 Fluorine Containing Polymers\u003cbr\u003e6.1.2 Polymer Degradation Studies\u003cbr\u003e6.1.2.1 Low Molecular Weight Compounds or Degradation Products\u003cbr\u003e6.1.2.2 Molar Mass Changes during Degradation Analysed by Size Exclusion Chromatography and\/or Matrix Assisted Laser Desorption Ionisation\u003cbr\u003e6.1.2.3 Polybutylene Adipate and Polybutylene Succinate\u003cbr\u003e6.1.2.4 Rubbers\u003cbr\u003e6.1.2.5 Polystyrene Peroxide\u003cbr\u003e6.1.2.6 Polypropylene Hydroperoxides\u003cbr\u003e6.1.2.7 Polystyrene\u003cbr\u003e6.1.2.8 Polyethylene Oxide – Polypropylene Oxide Copolymers\u003cbr\u003e6.1.3 Food Packaging Applications\u003cbr\u003e6.1.4 Miscellaneous Polymers\u003cbr\u003e7 Complementary Supercritical Fluid Chromatography – Mass Spectroscopy\u003cbr\u003e8 Headspace Analysis – Mass Spectroscopy\u003cbr\u003e9 Pyrolysis Gas Chromatography – Mass Spectroscopy\u003cbr\u003e9.1 Applications\u003cbr\u003e9.1.1 Polyolefins\u003cbr\u003e9.1.1.1 Polyolefin Homopolymers\u003cbr\u003e9.1.1.2 Polypropylene Carbonate\u003cbr\u003eContents ix\u003cbr\u003e9.1.1.3 Polyolefin Copolymers\u003cbr\u003e9.1.1.4 Polystyrenes\u003cbr\u003e9.1.1.5 Polyesters\u003cbr\u003e9.1.1.6 Chlorine Containing Polymers\u003cbr\u003e9.1.1.7 Rubbers\u003cbr\u003e9.1.1.9 Nitrogen Containing Polymers\u003cbr\u003e9.1.1.10 Sulfur Containing Polymers\u003cbr\u003e9.1.1.11 Silicon Containing Polymers\u003cbr\u003e9.2 Polymer Additives\u003cbr\u003e9.3 Miscellaneous\u003cbr\u003e9.3.1 Py-GC-MS Methods\u003cbr\u003e9.3.2 Direct Pyrolysis – Gas Chromatography without Intervening Chromatographic Stage\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:40-04:00","created_at":"2017-06-22T21:14:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","acrylic polymers","additives","blends","book","chromatography","mass spectroscopy","monomers","oligomers","p-chemistry","polymer","polymers"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432580,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Chromatography Mass Spectroscopy in Polymer Analysis","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-482-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231","options":["Title"],"media":[{"alt":null,"id":353927364701,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-482-2 \u003cbr\u003e\u003cbr\u003ePages: 236, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe combination of chromatography with mass spectroscopy is a very useful technique which is being increasingly used by polymer chemists to improve existing polymers and to discover new ones with specific physical properties such as thermal stability and retention of properties over a long service life.\u003cbr\u003e\u003cbr\u003eThis technique is extremely powerful for the analysis and characterisation of polymers and is often based on the use of controlled chromatography - mass spectroscopy to measure a polymer's decomposition with techniques such as pyrolysis, followed by chromatography to separate any breakdown product, and, finally, mass spectroscopy, to achieve an unequivocal identification of the pyrolysis products obtained. The detail that can be obtained by such methods includes structure of the polymer backbone, branching, end groups, isomeric detail and fine detail in the structure of copolymers.\u003cbr\u003e\u003cbr\u003eThe first three chapters of the book discuss the various chromatographic and mass spectroscopic techniques now available.\u003cbr\u003e\u003cbr\u003eChapters 3-8 cover the complementary methods, based on the combination of mass spectroscopy with various chromatographic techniques such as high-performance liquid chromatography, gas chromatography and supercritical fluid chromatography.\u003cbr\u003e\u003cbr\u003ePyrolysis chromatography-mass spectroscopy is a method of studying the structure of polymers which involves subjecting the polymer pyrolysis products to a chromatographic technique to simplify subsequent analysis and, finally mass spectroscopy to identify the pyrolysis products with the possibility of deducing finer details of polymer structure than were previously attainable by classical methods (Chapters 9-11).\u003cbr\u003e\u003cbr\u003eBy providing a thorough up-to-date review of work in this field it is hoped that the book will be of interest to all those engaged in polymer research and development, and polymer users in general.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chromatographic Techniques\u003cbr\u003e1.1 Gas Chromatography\u003cbr\u003e1.2 High Performance Liquid Chromatography\u003cbr\u003e1.2.1 Post-column Derivatisation: Fluorescence Detectors\u003cbr\u003e1.2.2 Diode Array Detectors\u003cbr\u003e1.2.3 Electrochemical Detectors\u003cbr\u003e1.2.3.1 The determination of Monomers\u003cbr\u003e1.2.3.2 Determination of Oligomers\u003cbr\u003e1.2.4 Fractionation\/Microstructure Studies\u003cbr\u003e1.3 Size Exclusion Chromatography\u003cbr\u003e1.3.1 Characterisation Studies\u003cbr\u003e1.3.2 Branching\u003cbr\u003e1.3.3 Compositional Analysis\u003cbr\u003e1.3.4 Molecular Weight\u003cbr\u003e1.3.5 Polymer Blends\u003cbr\u003e1.3.6 Polymer Additives\u003cbr\u003e1.4 Supercritical Fluid Chromatography\u003cbr\u003e1.4.1 Polymer Additives\u003cbr\u003e1.5 Thin Layer Chromatography\u003cbr\u003e1.6 Thermal Field Flow Fractionation\u003cbr\u003evi\u003cbr\u003eChromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e2 Mass Spectroscopic Techniques\u003cbr\u003e2.1 Time-of-Flight – Secondary Ion Mass Spectroscopy\u003cbr\u003e2.1.1 Adhesion Studies\u003cbr\u003e2.1.2 Polymer Interface Studies\u003cbr\u003e2.1.3 Vulcanisation Studies\u003cbr\u003e2.2 Matrix Assisted Laser Desorption Ionisation Mass Spectroscopy\u003cbr\u003e2.2.1 Applications\u003cbr\u003e2.3 Matrix Assisted Laser Desorption Ionisation Post\u003cbr\u003eSource Decay\u003cbr\u003e2.4 Electrospray Ionisation Mass Spectroscopy\u003cbr\u003e2.5 Field Desorption Mass Spectroscopy\u003cbr\u003e2.6 Tandem Mass Spectroscopy\u003cbr\u003e2.7 Fourier-transform Ion Cyclotron Mass Spectroscopy\u003cbr\u003e2.8 Fast Atom Bombardment Mass Spectroscopy\u003cbr\u003e2.9 Radio Frequency and Glow Discharge – Mass Spectroscopy\u003cbr\u003e3 Chemical Reaction Gas Chromatography\u003cbr\u003e3.1 Applications\u003cbr\u003e3.1.1 Saponification Procedures\u003cbr\u003e3.1.2 Zeisel Procedures\u003cbr\u003e3.1.3 Alkali Fusion\u003cbr\u003e3.1.4 Reactive Hydrolysis – Methylation – Pyrolysis –Chromatography\u003cbr\u003e4 Complementary High Performance Liquid Chromatography – Mass Spectroscopy\u003cbr\u003e4.1 Theory\u003cbr\u003e4.1 Applications Contents vii\u003cbr\u003e4.1.1 Polymer Characterisation\u003cbr\u003e4.1.2 Polymer Extractables\u003cbr\u003e4.1.3 Determination of Polymer Additives\u003cbr\u003e4.1.4 High Performance Liquid Chromatography –Infrared Spectroscopy\u003cbr\u003e5 Complementary Size Exclusion Chromatography – Mass Spectroscopy\u003cbr\u003e5.1 Applications\u003cbr\u003e5.1.1 Molecular Weight\u003cbr\u003e5.1.1.1 Polyesters\u003cbr\u003e5.1.1.2 Poly(N-methyl Perfluoro –octylsulfonamido Ethyl Acrylate)\u003cbr\u003e5.1.1.3 Polymethylmethacrylate\u003cbr\u003e5.1.1.4 2-Benzothiozolon-3-yl Acetic Acid-telechelic Polyethylene Oxides (PEG Esters)\u003cbr\u003e5.1.1.5 Polyesters\u003cbr\u003e5.1.1.6 Polyethers\u003cbr\u003e5.1.1.7 Hydrocarbon Types\u003cbr\u003e5.1.1.8 Nitrogen Containing Polymers\u003cbr\u003e5.1.1.9 Silicon Containing Polymers\u003cbr\u003e5.1.1.10 Miscellaneous Polymers\u003cbr\u003e5.2 Polymer Degradation Studies\u003cbr\u003e5.3 End-group Analysis\u003cbr\u003e6 Complementary Gas Chromatography – Mass Spectroscopy\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Polymer Characterisation\u003cbr\u003e6.1.1.1 Sulfur Containing Polymers\u003cbr\u003eviii Chromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e6.1.1.2 3-Glycidoxyproply-tri-methoxysilane sols\u003cbr\u003e6.1.1.3 Fluorine Containing Polymers\u003cbr\u003e6.1.2 Polymer Degradation Studies\u003cbr\u003e6.1.2.1 Low Molecular Weight Compounds or Degradation Products\u003cbr\u003e6.1.2.2 Molar Mass Changes during Degradation Analysed by Size Exclusion Chromatography and\/or Matrix Assisted Laser Desorption Ionisation\u003cbr\u003e6.1.2.3 Polybutylene Adipate and Polybutylene Succinate\u003cbr\u003e6.1.2.4 Rubbers\u003cbr\u003e6.1.2.5 Polystyrene Peroxide\u003cbr\u003e6.1.2.6 Polypropylene Hydroperoxides\u003cbr\u003e6.1.2.7 Polystyrene\u003cbr\u003e6.1.2.8 Polyethylene Oxide – Polypropylene Oxide Copolymers\u003cbr\u003e6.1.3 Food Packaging Applications\u003cbr\u003e6.1.4 Miscellaneous Polymers\u003cbr\u003e7 Complementary Supercritical Fluid Chromatography – Mass Spectroscopy\u003cbr\u003e8 Headspace Analysis – Mass Spectroscopy\u003cbr\u003e9 Pyrolysis Gas Chromatography – Mass Spectroscopy\u003cbr\u003e9.1 Applications\u003cbr\u003e9.1.1 Polyolefins\u003cbr\u003e9.1.1.1 Polyolefin Homopolymers\u003cbr\u003e9.1.1.2 Polypropylene Carbonate\u003cbr\u003eContents ix\u003cbr\u003e9.1.1.3 Polyolefin Copolymers\u003cbr\u003e9.1.1.4 Polystyrenes\u003cbr\u003e9.1.1.5 Polyesters\u003cbr\u003e9.1.1.6 Chlorine Containing Polymers\u003cbr\u003e9.1.1.7 Rubbers\u003cbr\u003e9.1.1.9 Nitrogen Containing Polymers\u003cbr\u003e9.1.1.10 Sulfur Containing Polymers\u003cbr\u003e9.1.1.11 Silicon Containing Polymers\u003cbr\u003e9.2 Polymer Additives\u003cbr\u003e9.3 Miscellaneous\u003cbr\u003e9.3.1 Py-GC-MS Methods\u003cbr\u003e9.3.2 Direct Pyrolysis – Gas Chromatography without Intervening Chromatographic Stage\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
TPE 2001
$120.00
{"id":11242238660,"title":"TPE 2001","handle":"978-1-85957-276-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-276-4 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 18th-19th June 2001\u003cbr\u003epages 128\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe’s premier meeting place for the thermoplastic elastomers sector. The last two events brought together more than 200 key players involved in all stages of the TPE supply chain. \u003cbr\u003e\u003cbr\u003eThe TPE 2001 conference programme was even more comprehensive than those of previous years. It features expert presentations on key market trends, new application developments and the very latest material innovations. \u003cbr\u003e\u003cbr\u003eIf you are involved in manufacturing, researching, selling, selecting or processing TPEs, then these conference proceedings will give you a real competitive advantage, providing you with information on all the latest developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOlefinic and Styrenic TPEs: Markets, Economics, Intermaterials Competition, and the Role of Plastomers. Robert Eller, Robert Eller Associates, Inc., USA\u003c\/li\u003e\n\u003cli\u003eMarkets and Applications for TPE: A Changing World. Stephen J. Duckworth, PolyOne Compounds \u0026amp; Colours Group, PolyOne Corporation, Germany\u003c\/li\u003e\n\u003cli\u003eInnovative TPE-S and TPE-V in the Various Market Segments. Andrea Vivarelli and Antonio Citarella, So.F.TeR SpA, Italy\u003c\/li\u003e\n\u003cli\u003eA New Family of Heat and Oil Resistant TPVs. Christer Bergström and Johanna Lampinen, Optatech Corporation, Finland\u003c\/li\u003e\n\u003cli\u003eA Novel Oil-and Heat-Resistant TPE-V. Markus Beitzel and Stuart Cook, Kraiburg TPE, Germany and TARRC, UK\u003c\/li\u003e\n\u003cli\u003eInnovative TPVs Opening New Markets. Julian Barnett, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eProcessing and Properties of Thermoplastic Vulcanizates (TPV). Edward V. Prut, Institute of Chemical Physics of RAS, Russia\u003c\/li\u003e\n\u003cli\u003eNew TPV Grades for Airbag Covers. Cees Ozinga and Edwin Willems, DSM Thermoplastic Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eUltra-High Molecular Weight Siloxane Masterbatches in TPE Compounding. Vivian John, Dow Corning Limited, UK\u003c\/li\u003e\n\u003cli\u003eTool Development for 2K-TPE Components for the Automotive Industry using 3D-Simulation. Lothar H. Kallien and Markus Menchen, SIGMA Engineering GmbH, Germany and Beckunbach GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eSwiftool Keeps Ford Racing on Track. Nick Osborn, Swift Technologies, UK\u003c\/li\u003e\n\u003cli\u003eSoft Blends of Acrylate Elastomer and Thermoplastic Polyurethane: Properties and Applications. Thierry Reichmann and Guy R. Duval, ECTC - Goodyear Chemical Europe, France\u003c\/li\u003e\n\u003cli\u003eThermoplastic Polyurethanes Without Plasticizer Within the Hardness Range Shore 50-70 A. Stephen Horsley, Elastogran UK Limited, UK\u003c\/li\u003e\n\u003cli\u003eTechnological Advantages of Polyether Copolymer Based TPUs. Dennis H.W. Feijen, J.L. Müller, J. Julià, D. Salvatella, Maria Josep Riba, Merquinsa Mercados Quimicos S.L., Spain\u003c\/li\u003e\n\u003cli\u003eSealing Performance of TPVs and its Prediction From Sress Relaxation Testing Methods. Thierry Burton, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eSurface Modification of Sarlink TPV Sealing Systems. Mathias Wilms, DSM Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eA Novel, Fully Vulcanised EPDM\/PP TPV for Automotive and Construction Weather-Seal as Well as General Rubber Mechanical Goods. Jonas Angus, Thermoplastic Rubber Systems, USA. (Paper unavailable at time of print)\u003c\/li\u003e\n\u003cli\u003eDevelopments of TPE in Automotive Interiors. Giorgio Golinelli, So.F.Ter S.p.A., Italy\u003c\/li\u003e\n\u003cli\u003eTPEs Used in CVJ (Constant Velocity Joint) Boot Application - Current Status, Future Challenges. Nader Khoshoei, GKN Automotive GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eRutgers 1 and Ronald F.M. Lange 2, 1 DSM Engineering Plastics, The Netherlands and 2 DSM Research, The NThe Use of Co-poly(ether esters) (1) in Automotive Applications. Gerhard Netherlands\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:39-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","book","elastomers","p-chemistry","polymer","research","surface","thermoplastic"," hardness"," olefinic"," plasticizer"," polyether copolymer"," polyurethanes"," sealing"," sress"," styrenic"," testing methods"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378430788,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2001","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-276-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-276-4 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 18th-19th June 2001\u003cbr\u003epages 128\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe’s premier meeting place for the thermoplastic elastomers sector. The last two events brought together more than 200 key players involved in all stages of the TPE supply chain. \u003cbr\u003e\u003cbr\u003eThe TPE 2001 conference programme was even more comprehensive than those of previous years. It features expert presentations on key market trends, new application developments and the very latest material innovations. \u003cbr\u003e\u003cbr\u003eIf you are involved in manufacturing, researching, selling, selecting or processing TPEs, then these conference proceedings will give you a real competitive advantage, providing you with information on all the latest developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOlefinic and Styrenic TPEs: Markets, Economics, Intermaterials Competition, and the Role of Plastomers. Robert Eller, Robert Eller Associates, Inc., USA\u003c\/li\u003e\n\u003cli\u003eMarkets and Applications for TPE: A Changing World. Stephen J. Duckworth, PolyOne Compounds \u0026amp; Colours Group, PolyOne Corporation, Germany\u003c\/li\u003e\n\u003cli\u003eInnovative TPE-S and TPE-V in the Various Market Segments. Andrea Vivarelli and Antonio Citarella, So.F.TeR SpA, Italy\u003c\/li\u003e\n\u003cli\u003eA New Family of Heat and Oil Resistant TPVs. Christer Bergström and Johanna Lampinen, Optatech Corporation, Finland\u003c\/li\u003e\n\u003cli\u003eA Novel Oil-and Heat-Resistant TPE-V. Markus Beitzel and Stuart Cook, Kraiburg TPE, Germany and TARRC, UK\u003c\/li\u003e\n\u003cli\u003eInnovative TPVs Opening New Markets. Julian Barnett, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eProcessing and Properties of Thermoplastic Vulcanizates (TPV). Edward V. Prut, Institute of Chemical Physics of RAS, Russia\u003c\/li\u003e\n\u003cli\u003eNew TPV Grades for Airbag Covers. Cees Ozinga and Edwin Willems, DSM Thermoplastic Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eUltra-High Molecular Weight Siloxane Masterbatches in TPE Compounding. Vivian John, Dow Corning Limited, UK\u003c\/li\u003e\n\u003cli\u003eTool Development for 2K-TPE Components for the Automotive Industry using 3D-Simulation. Lothar H. Kallien and Markus Menchen, SIGMA Engineering GmbH, Germany and Beckunbach GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eSwiftool Keeps Ford Racing on Track. Nick Osborn, Swift Technologies, UK\u003c\/li\u003e\n\u003cli\u003eSoft Blends of Acrylate Elastomer and Thermoplastic Polyurethane: Properties and Applications. Thierry Reichmann and Guy R. Duval, ECTC - Goodyear Chemical Europe, France\u003c\/li\u003e\n\u003cli\u003eThermoplastic Polyurethanes Without Plasticizer Within the Hardness Range Shore 50-70 A. Stephen Horsley, Elastogran UK Limited, UK\u003c\/li\u003e\n\u003cli\u003eTechnological Advantages of Polyether Copolymer Based TPUs. Dennis H.W. Feijen, J.L. Müller, J. Julià, D. Salvatella, Maria Josep Riba, Merquinsa Mercados Quimicos S.L., Spain\u003c\/li\u003e\n\u003cli\u003eSealing Performance of TPVs and its Prediction From Sress Relaxation Testing Methods. Thierry Burton, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eSurface Modification of Sarlink TPV Sealing Systems. Mathias Wilms, DSM Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eA Novel, Fully Vulcanised EPDM\/PP TPV for Automotive and Construction Weather-Seal as Well as General Rubber Mechanical Goods. Jonas Angus, Thermoplastic Rubber Systems, USA. (Paper unavailable at time of print)\u003c\/li\u003e\n\u003cli\u003eDevelopments of TPE in Automotive Interiors. Giorgio Golinelli, So.F.Ter S.p.A., Italy\u003c\/li\u003e\n\u003cli\u003eTPEs Used in CVJ (Constant Velocity Joint) Boot Application - Current Status, Future Challenges. Nader Khoshoei, GKN Automotive GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eRutgers 1 and Ronald F.M. Lange 2, 1 DSM Engineering Plastics, The Netherlands and 2 DSM Research, The NThe Use of Co-poly(ether esters) (1) in Automotive Applications. Gerhard Netherlands\u003c\/li\u003e\n\u003c\/ul\u003e"}
Thermoplastic Elastome...
$72.00
{"id":11242238596,"title":"Thermoplastic Elastomers - Properties and Applications","handle":"978-1-85957-044-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J.A. Brydson \u003cbr\u003eISBN 978-1-85957-044-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003cbr\u003e\u003c\/span\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe nature and general properties of TPEs are explained and classes of materials considered. Developments in specific market sectors are outlined. The groups of materials considered include styrenics, polyether-esters, polyamides, polyurethanes, and polyolefins. The review is supported by extensive references and abstracts section containing over 400 abstracts. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e Styrenic block copolymers, polyether-ester block copolymers, thermoplastic polyamide elastomers, thermoplastic polyurethane elastomers, thermoplastic polyolefin elastomers, miscellaneous thermoplastic elastomers (6 groups). \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eGeneral Properties of Thermoplastic Elastomers\u003c\/li\u003e\n\u003cli\u003eClasses of Thermoplastic Elastomers (properties, processing, applications)\u003c\/li\u003e\n\u003cli\u003eApplications (automotive, footwear, hose, tube, wire, cable, medical)\u003c\/li\u003e\n\u003cli\u003eGeneral Prospects for Thermoplastic Elastomers\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","block copolymers","book","elastomers","p-chemistry","polyamide","polyamides","polyether-ester","polymer","polyolefins","polyurethane","polyurethanes","styrenic","thermoplastic"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378430148,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermoplastic Elastomers - Properties and Applications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-044-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778","options":["Title"],"media":[{"alt":null,"id":358823460957,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J.A. Brydson \u003cbr\u003eISBN 978-1-85957-044-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003cbr\u003e\u003c\/span\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe nature and general properties of TPEs are explained and classes of materials considered. Developments in specific market sectors are outlined. The groups of materials considered include styrenics, polyether-esters, polyamides, polyurethanes, and polyolefins. The review is supported by extensive references and abstracts section containing over 400 abstracts. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e Styrenic block copolymers, polyether-ester block copolymers, thermoplastic polyamide elastomers, thermoplastic polyurethane elastomers, thermoplastic polyolefin elastomers, miscellaneous thermoplastic elastomers (6 groups). \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eGeneral Properties of Thermoplastic Elastomers\u003c\/li\u003e\n\u003cli\u003eClasses of Thermoplastic Elastomers (properties, processing, applications)\u003c\/li\u003e\n\u003cli\u003eApplications (automotive, footwear, hose, tube, wire, cable, medical)\u003c\/li\u003e\n\u003cli\u003eGeneral Prospects for Thermoplastic Elastomers\u003c\/li\u003e\n\u003c\/ul\u003e"}
Electrical Properties ...
$229.00
{"id":11242238788,"title":"Electrical Properties of Polymers","handle":"978-0-824753467","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: E. Riande and R. Diaz-Calleja \u003cbr\u003eISBN 978-0-824753467 \u003cbr\u003e\u003cbr\u003epages 600\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOutlines the principles of electric birefringence under static fields and clarifies birefringence dynamics\u003c\/li\u003e\n\u003cli\u003eExplains molecular dynamics simulations of dynamic dielectric properties, including arrival at the time-dipole correlation coefficient\u003c\/li\u003e\n\u003cli\u003eDiscusses temperature dependence and long- and short-range relaxation dynamics of relaxation processes above glass transition temperature (Tg) or in the glassy state\u003c\/li\u003e\n\u003cli\u003eConsiders experimental approaches to studying dielectric polymers such as immitance analysis and thermostimulated currents\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:39-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","birefringence dynamics","book","Brownian motion","coefficient","currents","Debye theory","dielectric","dielectric properties","electric birefringence","entropy equations","glass transition","glassy state","Langevin","material","Maxwell","molecular dynamics","Onsager model","polymers","quasi-static dipoles","relaxation dynamics","relaxation processes","Smoluchowski equations","static fields","temperature","Tg","time-dipole"],"price":22900,"price_min":22900,"price_max":22900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378431684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Electrical Properties of Polymers","public_title":null,"options":["Default Title"],"price":22900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-824753467","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798","options":["Title"],"media":[{"alt":null,"id":354453815389,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: E. Riande and R. Diaz-Calleja \u003cbr\u003eISBN 978-0-824753467 \u003cbr\u003e\u003cbr\u003epages 600\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOutlines the principles of electric birefringence under static fields and clarifies birefringence dynamics\u003c\/li\u003e\n\u003cli\u003eExplains molecular dynamics simulations of dynamic dielectric properties, including arrival at the time-dipole correlation coefficient\u003c\/li\u003e\n\u003cli\u003eDiscusses temperature dependence and long- and short-range relaxation dynamics of relaxation processes above glass transition temperature (Tg) or in the glassy state\u003c\/li\u003e\n\u003cli\u003eConsiders experimental approaches to studying dielectric polymers such as immitance analysis and thermostimulated currents\u003c\/li\u003e\n\u003c\/ul\u003e"}
Recycling of Plastic M...
$109.00
{"id":11242238468,"title":"Recycling of Plastic Materials","handle":"1-895198-03-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","bottles","car","environment","film","packing","paper","PE","PET","plastic materials","plastics","polyamide-6. blends","polyethylene","polymer","pvc","recycling","rubber","tires","waste"],"price":10900,"price_min":10900,"price_max":10900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Recycling of Plastic Materials","public_title":null,"options":["Default Title"],"price":10900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-03-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Processing and Propert...
$125.00
{"id":11242238340,"title":"Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends","handle":"1-895198-04-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. D. Acierno, Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-04-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-04-1\u003c\/span\u003e\u003cbr\u003eUniversity of Salerno and University of Palermo, Italy\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e230 pages, 11 tables, 152 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nLiquid crystalline polymers receive a great deal of attention for their impact on polymer structure and morphology understanding and their practical applications. \u003cbr\u003ePractical benefits of LPCs use are numerous:\u003cbr\u003e\u003cbr\u003eA small addition (5%) reduces blend viscosity they are excellent processing aids LCPs can be blended with common thermoplasts using the existing process technology in situ composites produced in simple process small additions act as a reinforcing phase ultra-high moduli, characteristic for high performance materials, are due to a high degree of crystallinity and molecular orientation materials of high mechanical stiffness result LCP particles elongate into fibrils, oriented in machine direction LCPs lower polymer melting temperature that allows to process polymers whose high processing temperature represents severe restriction.\u003cbr\u003eThe above mentioned and other important phenomena are discussed and illustrated by numerous examples in this book.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStructure and rheology of Aramid solutions: relation to the Aramid fiber modulus. S. J. Picken, M. G. Northold, and S. van der Zwaag \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMechanical\/thermal pretreatment of LCP melts and its influence on the rheological behavior of these polymers. K. Geiger \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSynthesis, processing, and properties of semirigid, thermotropic LC copolymers. U. Pedretti, A. Roggero, V. Citta, E. Montani, F. P. La Mantia, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe rheology of LCP blends. M. Hawksworth, J. B. Hull, and A. A. Collyer \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMulticomponent blends based of LCP. V. Kulichikhin, A. Bilibin, M. Zabugina, A. Semakov, and R. Zakharyan \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMelt rheology and morphology of in situ composites. M. Kozlowski \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThermotropic polymer composites. E. Suokas, P. Jarvela, and P. Tormala \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eCharacterization of blends of poly(phenylene sulfide) with LC copolyesteramide. L. I. Minkova, S. De Petris, M. Paci, M. Pracella, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of polycarbonate with LCP. A. Valenza, V. Citta, U. Pedretti, F. P. La Mantia, M. Paci, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends based on engineering polymers: the effect of the inclusion of thermotropic LCPs on the physical properties of the matrix. M. R. Nobile, L. Incarnato, G. Marino, and D. Acierno \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eFormation and stability of LCP fibers in a thermoplastic elastomeric matrix. H. Verhoogt, C. R. J. Willems, H. C. Langelaan, J. van Dam, and A. Posthuma de Boer \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","applications","blends","book","crystalline","crystallinity","fibers","fibrils","LCP","liquid","melts","morphology","p-structural","polymer","polymerization","polymers","process","rheology","stability","stiffness","structure","viscosity"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428100,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-04-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768","options":["Title"],"media":[{"alt":null,"id":412803629149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. D. Acierno, Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-04-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-04-1\u003c\/span\u003e\u003cbr\u003eUniversity of Salerno and University of Palermo, Italy\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e230 pages, 11 tables, 152 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nLiquid crystalline polymers receive a great deal of attention for their impact on polymer structure and morphology understanding and their practical applications. \u003cbr\u003ePractical benefits of LPCs use are numerous:\u003cbr\u003e\u003cbr\u003eA small addition (5%) reduces blend viscosity they are excellent processing aids LCPs can be blended with common thermoplasts using the existing process technology in situ composites produced in simple process small additions act as a reinforcing phase ultra-high moduli, characteristic for high performance materials, are due to a high degree of crystallinity and molecular orientation materials of high mechanical stiffness result LCP particles elongate into fibrils, oriented in machine direction LCPs lower polymer melting temperature that allows to process polymers whose high processing temperature represents severe restriction.\u003cbr\u003eThe above mentioned and other important phenomena are discussed and illustrated by numerous examples in this book.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStructure and rheology of Aramid solutions: relation to the Aramid fiber modulus. S. J. Picken, M. G. Northold, and S. van der Zwaag \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMechanical\/thermal pretreatment of LCP melts and its influence on the rheological behavior of these polymers. K. Geiger \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSynthesis, processing, and properties of semirigid, thermotropic LC copolymers. U. Pedretti, A. Roggero, V. Citta, E. Montani, F. P. La Mantia, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe rheology of LCP blends. M. Hawksworth, J. B. Hull, and A. A. Collyer \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMulticomponent blends based of LCP. V. Kulichikhin, A. Bilibin, M. Zabugina, A. Semakov, and R. Zakharyan \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMelt rheology and morphology of in situ composites. M. Kozlowski \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThermotropic polymer composites. E. Suokas, P. Jarvela, and P. Tormala \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eCharacterization of blends of poly(phenylene sulfide) with LC copolyesteramide. L. I. Minkova, S. De Petris, M. Paci, M. Pracella, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of polycarbonate with LCP. A. Valenza, V. Citta, U. Pedretti, F. P. La Mantia, M. Paci, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends based on engineering polymers: the effect of the inclusion of thermotropic LCPs on the physical properties of the matrix. M. R. Nobile, L. Incarnato, G. Marino, and D. Acierno \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eFormation and stability of LCP fibers in a thermoplastic elastomeric matrix. H. Verhoogt, C. R. J. Willems, H. C. Langelaan, J. van Dam, and A. Posthuma de Boer \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Hansen Solubility Para...
$220.00
{"id":11242238532,"title":"Hansen Solubility Parameters: A User's Handbook, 2nd Ed.","handle":"9780849372483","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Charles M. Hansen \u003cbr\u003eISBN 9780849372483 \u003cbr\u003e\u003cbr\u003epages 544\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including polymers, inorganic salts, and biological materials. \u003cbr\u003e\u003cbr\u003eTo update his groundbreaking handbook with the latest advances and perspectives, Charles M. Hansen has invited five renowned experts to share their work, theories, and practical applications involving HSPs. New discussions include a new statistical thermodynamics approach for confirming existing HSPs and how they fit into other thermodynamic theories for polymer solutions. Entirely new chapters examine the prediction of environmental stress cracking as well as absorption and diffusion in polymers. Highlighting recent findings on interactions with DNA, the treatment of biological materials also includes skin tissue, proteins, natural fibers, and cholesterol. The book also covers the latest applications of HSPs, such as ozone-safe \"designer\" solvents, protective clothing, drug delivery systems, and petroleum applications. \u003cbr\u003e\u003cbr\u003ePresenting a comprehensive survey of the theoretical and practical aspects of HSPs, Hansen Solubility Parameters, Second Edition concludes with a detailed discussion on the necessary research, future directions, and potential applications for which HSPs can provide a useful means of prediction in areas such as biological materials, controlled release applications, nanotechnology, and self-assembly.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eEnables scientists to predict molecular affinities, calculate the quantitative effects of intermolecular bonds, and interpret chemical and structural properties\u003c\/li\u003e\n\u003cli\u003eCorrelates HSP data to properties including swelling, permeation, performance, chiral rotation, selective orientation, and more\u003c\/li\u003e\n\u003cli\u003ePresents methodology for predicting solubility behavior of carbon dioxide and other gases at different temperatures and pressures\u003c\/li\u003e\n\u003cli\u003eExplains how controlling the solubility of asphalt, bitumen, and crude oils can improve petroleum based products\u003c\/li\u003e\n\u003cli\u003eProvides extensive HSP tables which aid in the systematic substitution away of undesired chemicals as required by the EU REACH and similar legislation\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","asphalt","biological materials","bitumen","book","chemical and structural properties","crude oils","drug delivery","Hansen solubility","HSPs","inorganic salts","legislation","ozone-safe","p-properties","petroleum","polymer","polymers","protective clothing","solubility","solvents"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378429508,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Hansen Solubility Parameters: A User's Handbook, 2nd Ed.","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780849372483","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780849372483.jpg?v=1499477591"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780849372483.jpg?v=1499477591","options":["Title"],"media":[{"alt":null,"id":356397973597,"position":1,"preview_image":{"aspect_ratio":0.669,"height":499,"width":334,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780849372483.jpg?v=1499477591"},"aspect_ratio":0.669,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780849372483.jpg?v=1499477591","width":334}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Charles M. Hansen \u003cbr\u003eISBN 9780849372483 \u003cbr\u003e\u003cbr\u003epages 544\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including polymers, inorganic salts, and biological materials. \u003cbr\u003e\u003cbr\u003eTo update his groundbreaking handbook with the latest advances and perspectives, Charles M. Hansen has invited five renowned experts to share their work, theories, and practical applications involving HSPs. New discussions include a new statistical thermodynamics approach for confirming existing HSPs and how they fit into other thermodynamic theories for polymer solutions. Entirely new chapters examine the prediction of environmental stress cracking as well as absorption and diffusion in polymers. Highlighting recent findings on interactions with DNA, the treatment of biological materials also includes skin tissue, proteins, natural fibers, and cholesterol. The book also covers the latest applications of HSPs, such as ozone-safe \"designer\" solvents, protective clothing, drug delivery systems, and petroleum applications. \u003cbr\u003e\u003cbr\u003ePresenting a comprehensive survey of the theoretical and practical aspects of HSPs, Hansen Solubility Parameters, Second Edition concludes with a detailed discussion on the necessary research, future directions, and potential applications for which HSPs can provide a useful means of prediction in areas such as biological materials, controlled release applications, nanotechnology, and self-assembly.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eEnables scientists to predict molecular affinities, calculate the quantitative effects of intermolecular bonds, and interpret chemical and structural properties\u003c\/li\u003e\n\u003cli\u003eCorrelates HSP data to properties including swelling, permeation, performance, chiral rotation, selective orientation, and more\u003c\/li\u003e\n\u003cli\u003ePresents methodology for predicting solubility behavior of carbon dioxide and other gases at different temperatures and pressures\u003c\/li\u003e\n\u003cli\u003eExplains how controlling the solubility of asphalt, bitumen, and crude oils can improve petroleum based products\u003c\/li\u003e\n\u003cli\u003eProvides extensive HSP tables which aid in the systematic substitution away of undesired chemicals as required by the EU REACH and similar legislation\u003c\/li\u003e\n\u003c\/ul\u003e"}
Silicone Elastomers 2006
$140.00
{"id":11242237892,"title":"Silicone Elastomers 2006","handle":"978-1-84735-002-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Report \u003cbr\u003eISBN 978-1-84735-002-2 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 19-20 September 2006\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, gaskets, domestic appliances, fabric coatings (e.g. airbags), baby bottle teats, and medical devices. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties, such as high and low temperature stability, inertness (no smell or taste), low toxicity, colorability, and transparency, combined with good electrical properties. The hardness range is wide, from 10-80 Shore A. \u003cbr\u003e\u003cbr\u003eSilicones have been in use in medical applications for over 30 years because of their long-term stability and biocompatibility. High gas permeability is a positive property in many medical devices; silicones have up to 400 times the permeability of butyl rubber at room temperature. They are also used in cosmetic applications, where their colorability and sensory properties are important (a soft, skin-like touch and appearance can be achieved). \u003cbr\u003e\u003cbr\u003eThese proceedings from Rapra’s first international conference on Silicone Elastomers will be of interest to rubber manufacturers and technologists, with a common interest in silicone elastomer materials, applications, and technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1:\u003c\/strong\u003e TRENDS AND GROWTH IN SILICONE ELASTOMERS \u003cbr\u003ePaper 1 Silicone elastomers: introduction and basic considerations\u003cbr\u003eBarry Statham, Polymer Consultant, UK \u003cbr\u003ePaper 2 Silicone expansion: trend indicators for growth in the silicone elastomer market\u003cbr\u003eThomas Tangney \u0026amp; Rachelle Jacques, Dow Corning Corporation, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2:\u003c\/strong\u003e FOOD CONTACT STUDIES \u003cbr\u003ePaper 3 The use of GCXGC-TOFMS and LC-MS for the determination of migrants from silicone rubbers into food simulants and food products\u003cbr\u003eDr. Martin Forrest, Dr. SR Holding, D Howells and M Eardley Rapra Technology, UK \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 3:\u003c\/strong\u003e SILICONE ELASTOMER MATERIALS \u003cbr\u003ePaper 4 Silicone rubber: the material of choice to meet new challenges\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning Corporation, Germany \u003cbr\u003ePaper 5 Fluorinated silicone elastomers in automotive applications\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Boßhammer, GE Bayer Silicones GmbH \u0026amp; Co.KG, Germany \u003cbr\u003ePaper 6 Influence of the network structure of silicone rubber on time-dependent autohesion as mechanism for self-healing\u003cbr\u003eMarek Mikrut \u0026amp; JWM Noordermeer, University of Twente \u0026amp; G Verbeek, Océ Technologies BV, The Netherlands \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 4:\u003c\/strong\u003e LIQUID SILICONE RUBBER \u003cbr\u003ePaper 7 The five elements to run a successful LSR process\u003cbr\u003eKurt Manigatter, ELMET Elastomere Produktions und Dienstleistungs GmbH, Germany \u003cbr\u003ePaper 8 2-Component injection moulding of LSR\u003cbr\u003eClemens Trumm, GE Bayer Silicones GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 9 Machine technology for processing LSR\u003cbr\u003eDipl Ing Wolfgang Roth, Battenfeld, GmbH, Austria \u003cbr\u003ePaper 10 LSR processing with electric driven injection moulding machines - application and experiences\u003cbr\u003eDipl Ing (FH) Martin Neff, ARBURG GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 11 Innovative machine systems for moulding LSR components\u003cbr\u003eIng. Leo Praher, ENGEL Austria GmbH, Austria \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5:\u003c\/strong\u003e PROCESSING SILICONE ELASTOMERS \u003cbr\u003ePaper 12 New developments in silicone processing\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy \u003cbr\u003ePaper 13 Machine, mould and process technology for processing HTV silicones\u003cbr\u003eManfred Arning, Esitec, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6:\u003c\/strong\u003e ADDITIVES AND FINISHING FOR SILICONE ELASTOMERS \u003cbr\u003ePaper 14 New opportunities for using silicone rubber\u003cbr\u003eDr. Maike Benter, Nanon A\/S, Denmark \u003cbr\u003ePaper 15 Colours in silicone: the visible additive\u003cbr\u003eThomas Klehr, Holland Colours, The Netherlands \u003cbr\u003ePaper 16 Bonding silicone elastomers\u003cbr\u003eAissa Benarous \u0026amp; Dr. Keith Worthington, Technical Advisor, Chemical Innovations Ltd, UK \u003cbr\u003ePaper 17 Acetone cure 1-part RTVs – non-corrosive silicone adhesives that perform\u003cbr\u003eSean Stoodley, ACC Silicones Europe, UK \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7:\u003c\/strong\u003e MEDICAL APPLICATIONS OF SILICONE ELASTOMERS \u003cbr\u003ePaper 18 Pharmaceutical and medical device applications of novel silicones\u003cbr\u003eProf David S Jones, Queen’s University of Belfast, UK \u003cbr\u003ePaper 19 Silicone elastomer gels for medical devices: viscoelasticity and performance\u003cbr\u003eDr. Gilles Lorentz, Delphine Blanc \u0026amp; Ludovic Odoni, Rhodia Research \u0026amp; Technology CRTL, France \u003cbr\u003ePaper 20 Hydrophilization of silicone rubber for biomedical applications\u003cbr\u003eFarhang Abbasi \u0026amp; Kyoumars Jalili, Sahand University of Technology, Iran\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:37-04:00","created_at":"2017-06-22T21:14:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","applications","biocompatibility","book","colorability","cosmetics","determination","fluorinated silicone","food","hardness","medical","migrants","p-chemistry","polymer","rubber","silicone elastomer","stability","technology"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378425540,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2006","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-002-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889","options":["Title"],"media":[{"alt":null,"id":413511286877,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Report \u003cbr\u003eISBN 978-1-84735-002-2 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 19-20 September 2006\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, gaskets, domestic appliances, fabric coatings (e.g. airbags), baby bottle teats, and medical devices. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties, such as high and low temperature stability, inertness (no smell or taste), low toxicity, colorability, and transparency, combined with good electrical properties. The hardness range is wide, from 10-80 Shore A. \u003cbr\u003e\u003cbr\u003eSilicones have been in use in medical applications for over 30 years because of their long-term stability and biocompatibility. High gas permeability is a positive property in many medical devices; silicones have up to 400 times the permeability of butyl rubber at room temperature. They are also used in cosmetic applications, where their colorability and sensory properties are important (a soft, skin-like touch and appearance can be achieved). \u003cbr\u003e\u003cbr\u003eThese proceedings from Rapra’s first international conference on Silicone Elastomers will be of interest to rubber manufacturers and technologists, with a common interest in silicone elastomer materials, applications, and technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1:\u003c\/strong\u003e TRENDS AND GROWTH IN SILICONE ELASTOMERS \u003cbr\u003ePaper 1 Silicone elastomers: introduction and basic considerations\u003cbr\u003eBarry Statham, Polymer Consultant, UK \u003cbr\u003ePaper 2 Silicone expansion: trend indicators for growth in the silicone elastomer market\u003cbr\u003eThomas Tangney \u0026amp; Rachelle Jacques, Dow Corning Corporation, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2:\u003c\/strong\u003e FOOD CONTACT STUDIES \u003cbr\u003ePaper 3 The use of GCXGC-TOFMS and LC-MS for the determination of migrants from silicone rubbers into food simulants and food products\u003cbr\u003eDr. Martin Forrest, Dr. SR Holding, D Howells and M Eardley Rapra Technology, UK \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 3:\u003c\/strong\u003e SILICONE ELASTOMER MATERIALS \u003cbr\u003ePaper 4 Silicone rubber: the material of choice to meet new challenges\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning Corporation, Germany \u003cbr\u003ePaper 5 Fluorinated silicone elastomers in automotive applications\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Boßhammer, GE Bayer Silicones GmbH \u0026amp; Co.KG, Germany \u003cbr\u003ePaper 6 Influence of the network structure of silicone rubber on time-dependent autohesion as mechanism for self-healing\u003cbr\u003eMarek Mikrut \u0026amp; JWM Noordermeer, University of Twente \u0026amp; G Verbeek, Océ Technologies BV, The Netherlands \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 4:\u003c\/strong\u003e LIQUID SILICONE RUBBER \u003cbr\u003ePaper 7 The five elements to run a successful LSR process\u003cbr\u003eKurt Manigatter, ELMET Elastomere Produktions und Dienstleistungs GmbH, Germany \u003cbr\u003ePaper 8 2-Component injection moulding of LSR\u003cbr\u003eClemens Trumm, GE Bayer Silicones GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 9 Machine technology for processing LSR\u003cbr\u003eDipl Ing Wolfgang Roth, Battenfeld, GmbH, Austria \u003cbr\u003ePaper 10 LSR processing with electric driven injection moulding machines - application and experiences\u003cbr\u003eDipl Ing (FH) Martin Neff, ARBURG GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 11 Innovative machine systems for moulding LSR components\u003cbr\u003eIng. Leo Praher, ENGEL Austria GmbH, Austria \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5:\u003c\/strong\u003e PROCESSING SILICONE ELASTOMERS \u003cbr\u003ePaper 12 New developments in silicone processing\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy \u003cbr\u003ePaper 13 Machine, mould and process technology for processing HTV silicones\u003cbr\u003eManfred Arning, Esitec, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6:\u003c\/strong\u003e ADDITIVES AND FINISHING FOR SILICONE ELASTOMERS \u003cbr\u003ePaper 14 New opportunities for using silicone rubber\u003cbr\u003eDr. Maike Benter, Nanon A\/S, Denmark \u003cbr\u003ePaper 15 Colours in silicone: the visible additive\u003cbr\u003eThomas Klehr, Holland Colours, The Netherlands \u003cbr\u003ePaper 16 Bonding silicone elastomers\u003cbr\u003eAissa Benarous \u0026amp; Dr. Keith Worthington, Technical Advisor, Chemical Innovations Ltd, UK \u003cbr\u003ePaper 17 Acetone cure 1-part RTVs – non-corrosive silicone adhesives that perform\u003cbr\u003eSean Stoodley, ACC Silicones Europe, UK \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7:\u003c\/strong\u003e MEDICAL APPLICATIONS OF SILICONE ELASTOMERS \u003cbr\u003ePaper 18 Pharmaceutical and medical device applications of novel silicones\u003cbr\u003eProf David S Jones, Queen’s University of Belfast, UK \u003cbr\u003ePaper 19 Silicone elastomer gels for medical devices: viscoelasticity and performance\u003cbr\u003eDr. Gilles Lorentz, Delphine Blanc \u0026amp; Ludovic Odoni, Rhodia Research \u0026amp; Technology CRTL, France \u003cbr\u003ePaper 20 Hydrophilization of silicone rubber for biomedical applications\u003cbr\u003eFarhang Abbasi \u0026amp; Kyoumars Jalili, Sahand University of Technology, Iran\u003cbr\u003e\u003cbr\u003e"}
Injection Moulding 200...
$180.00
{"id":11242238212,"title":"Injection Moulding 2002, Barcelona, Spain, 18th- 19th March, 2002","handle":"978-1-85957-314-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings, 2002 \u003cbr\u003eISBN 978-1-85957-314-3 \u003cbr\u003e\u003cbr\u003eBarcelona, Spain, 18th- 19th March 2002\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive technical programme provided presentations from leading experts in the injection moulding and related fields. Papers covered material development and design solutions, optimisation of the injection moulding process through 3D simulation techniques and computer-aided engineering (CAE), issues of globalisation within the industry, opportunities provided by the internet and e-commerce, the use of gas and water assisted moulding techniques help to reduce cycle times and improve quality, and rapid tooling design and production processes. \u003cbr\u003e\u003cbr\u003eThe Injection Moulding 2002 conference provided an excellent opportunity to hear the latest injection moulding developments and gain a truly global perspective of this important industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable cellpadding=\"0\" cellspacing=\"10\" border=\"0\" class=\"rapcss\" width=\"100%\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd valign=\"top\"\u003e\n\u003ctable border=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd colspan=\"2\"\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" style=\"font-family: verdana, geneva;\"\u003e\u003cspan size=\"1\" style=\"font-size: xx-small;\"\u003eTrue 3D Simulation Techniques of Injection Moulding and Related Processes \u003cbr\u003e\u003ci\u003eDavid Hsu, CoreTech System Co, Taiwan \u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eUsing 3D Simulation for the Optimisation of Injection Moulded Thermoset Materials for Automotive Applications \u003cbr\u003e\u003ci\u003eLothar Kallien, Sigma Engineering GmbH, Germany \u003c\/i\u003eWhy Real-time Production and Process Monitoring \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndy Jewell, Mattec Corp, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eProfit from Redesign Tooling and Leadership Change \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eWilhelm O Morgan, Kangan Batman College of Technical and Further Education, Australia \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eOptimisation of the Plastic Injection Moulding Process via Expert Systems \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003elluis Chico, Fundacion ASCAMM, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Water Injection Technique (WIT) - Opportunities and Challenges \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eTim Jüntgen, Institute of Plastics Processing (IKV), Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eGas and Water Injection Moulding \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndreas Janisch, Factor GmbH, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eKoolgas: Cryogenic gas-assisted injection moulding - an alternative to conventional GAIM \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRui Magalhaes, University of Warwick, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRe-Shaping the future of Plastics (e-marketplace) \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJoachim Franke, Omnexus, Switzerland \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Impact of Patent Protection on the Globalization of the Mold and Hot Runner Industries \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eGeorge Olaru, Mold-Masters Ltd, Canada \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe International Capture of Intellect \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eWilhelm Morgan, Kangan Batman College of Technical and Further Education, Australia \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRecent developments in flame retardants systems to improve melt flow of thermoplastics \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRonald Wilmer, DSBG Eurobrom BV, The Netherlands \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eHybrid Technology \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEduardo Ortiz, Bayer Hispania SA, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eApplication of co-injection process to handles for the gear lever (multi-component injection mouldng) \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRafael B Garcia-Atxabe, Fundacion GAIKER, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eIn mould painting using granular injected paint technology \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJo C Love, University of Warwick, UK \u003c\/span\u003e\u003c\/i\u003e\u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSystem Solution for Decorated Mouldings by IMC \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJoachim Berthold, Battenfield GmbH, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Origin of the Surface Defect 'Tiger Stripes' on Injection Moulded Products \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAnabelle Legrix, Imerys Minerals Ltd, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSurface 'Marbling' in Mineral Filled Nylon: Origins and Solutions \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eArie Schepens, DSM Petrochemicals, The Netherlands \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eLong-term design for multi-shot moulding \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndi Clements, Rapra Technology, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe breakthrough in Rapid Tooling - Increasing precision and efficiency in Direct Metal Laser-Sintering with 20 micron layers \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eDietmar Frank, EOS GmbH - Electro Optical Systems, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" style=\"font-family: verdana, geneva;\"\u003e\u003cspan size=\"1\" style=\"font-size: xx-small;\"\u003eMagics Tooling Expert \u003cbr\u003e\u003ci\u003eJohan Pauwels, Materialise, Belgium\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003c\/td\u003e\n\u003ctd valign=\"top\" align=\"center\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e\u003c\/span\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e","published_at":"2017-06-22T21:14:37-04:00","created_at":"2017-06-22T21:14:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","3D simulation techniques","automotive applications","book","co-injection","cryogenic","injected paint technology","injection moulding","molding","multi component injection mouldng","optimisation","p-processing","polymer","process monitoring","surface defect","thermoset materials","tooling"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378427396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Injection Moulding 2002, Barcelona, Spain, 18th- 19th March, 2002","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-314-3.jpg?v=1499478985"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-314-3.jpg?v=1499478985","options":["Title"],"media":[{"alt":null,"id":356461740125,"position":1,"preview_image":{"aspect_ratio":0.715,"height":499,"width":357,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-314-3.jpg?v=1499478985"},"aspect_ratio":0.715,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-314-3.jpg?v=1499478985","width":357}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings, 2002 \u003cbr\u003eISBN 978-1-85957-314-3 \u003cbr\u003e\u003cbr\u003eBarcelona, Spain, 18th- 19th March 2002\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive technical programme provided presentations from leading experts in the injection moulding and related fields. Papers covered material development and design solutions, optimisation of the injection moulding process through 3D simulation techniques and computer-aided engineering (CAE), issues of globalisation within the industry, opportunities provided by the internet and e-commerce, the use of gas and water assisted moulding techniques help to reduce cycle times and improve quality, and rapid tooling design and production processes. \u003cbr\u003e\u003cbr\u003eThe Injection Moulding 2002 conference provided an excellent opportunity to hear the latest injection moulding developments and gain a truly global perspective of this important industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable cellpadding=\"0\" cellspacing=\"10\" border=\"0\" class=\"rapcss\" width=\"100%\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd valign=\"top\"\u003e\n\u003ctable border=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd colspan=\"2\"\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" style=\"font-family: verdana, geneva;\"\u003e\u003cspan size=\"1\" style=\"font-size: xx-small;\"\u003eTrue 3D Simulation Techniques of Injection Moulding and Related Processes \u003cbr\u003e\u003ci\u003eDavid Hsu, CoreTech System Co, Taiwan \u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eUsing 3D Simulation for the Optimisation of Injection Moulded Thermoset Materials for Automotive Applications \u003cbr\u003e\u003ci\u003eLothar Kallien, Sigma Engineering GmbH, Germany \u003c\/i\u003eWhy Real-time Production and Process Monitoring \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndy Jewell, Mattec Corp, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eProfit from Redesign Tooling and Leadership Change \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eWilhelm O Morgan, Kangan Batman College of Technical and Further Education, Australia \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eOptimisation of the Plastic Injection Moulding Process via Expert Systems \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003elluis Chico, Fundacion ASCAMM, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Water Injection Technique (WIT) - Opportunities and Challenges \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eTim Jüntgen, Institute of Plastics Processing (IKV), Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eGas and Water Injection Moulding \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndreas Janisch, Factor GmbH, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eKoolgas: Cryogenic gas-assisted injection moulding - an alternative to conventional GAIM \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRui Magalhaes, University of Warwick, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRe-Shaping the future of Plastics (e-marketplace) \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJoachim Franke, Omnexus, Switzerland \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Impact of Patent Protection on the Globalization of the Mold and Hot Runner Industries \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eGeorge Olaru, Mold-Masters Ltd, Canada \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe International Capture of Intellect \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eWilhelm Morgan, Kangan Batman College of Technical and Further Education, Australia \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRecent developments in flame retardants systems to improve melt flow of thermoplastics \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRonald Wilmer, DSBG Eurobrom BV, The Netherlands \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eHybrid Technology \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEduardo Ortiz, Bayer Hispania SA, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eApplication of co-injection process to handles for the gear lever (multi-component injection mouldng) \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRafael B Garcia-Atxabe, Fundacion GAIKER, Spain \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eIn mould painting using granular injected paint technology \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJo C Love, University of Warwick, UK \u003c\/span\u003e\u003c\/i\u003e\u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSystem Solution for Decorated Mouldings by IMC \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eJoachim Berthold, Battenfield GmbH, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe Origin of the Surface Defect 'Tiger Stripes' on Injection Moulded Products \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAnabelle Legrix, Imerys Minerals Ltd, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSurface 'Marbling' in Mineral Filled Nylon: Origins and Solutions \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eArie Schepens, DSM Petrochemicals, The Netherlands \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eLong-term design for multi-shot moulding \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eAndi Clements, Rapra Technology, UK \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"2\" face=\"verdana\" style=\"font-family: verdana; font-size: small;\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eThe breakthrough in Rapid Tooling - Increasing precision and efficiency in Direct Metal Laser-Sintering with 20 micron layers \u003cbr\u003e\u003c\/span\u003e\u003ci\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eDietmar Frank, EOS GmbH - Electro Optical Systems, Germany \u003c\/span\u003e\u003c\/i\u003e\u003ci\u003e\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" style=\"font-family: verdana, geneva;\"\u003e\u003cspan size=\"1\" style=\"font-size: xx-small;\"\u003eMagics Tooling Expert \u003cbr\u003e\u003ci\u003eJohan Pauwels, Materialise, Belgium\u003c\/i\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003c\/td\u003e\n\u003ctd valign=\"top\" align=\"center\"\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e\u003c\/span\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e"}
Designing with Plastics
$78.00
{"id":11242238084,"title":"Designing with Plastics","handle":"0-902348-75-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.R. Lewis \u003cbr\u003eISBN 0-902348-75-2 \u003cbr\u003e\u003cbr\u003eThe Open University, Department of Materials\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDr. Lewis surveys plastic design from the point of view of material properties and processing technology. Several are aspects are also included such as legal implications of intellectual property, product liability, ergonomic ans esthetic design, parts consolidation and recyclability.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eTable of Contents:\u003c\/strong\u003e \u003cbr\u003eIndustrial and Engineering Design \u003cbr\u003eLegal Constraints \u003cbr\u003eMaterial Selection \u003cbr\u003eManufacturing with Plastics \u003cbr\u003eProcess selection \u003cbr\u003eProduct Design \u003cbr\u003eInvention in Plastic Products\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:37-04:00","created_at":"2017-06-22T21:14:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","design","engineering","industrial","invention","legal constraints","manufacturing","material selection","p-formulation","plastic","plastics","polymer","process","process selection","product design","products"],"price":7800,"price_min":7800,"price_max":7800,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378426628,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Designing with Plastics","public_title":null,"options":["Default Title"],"price":7800,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"0-902348-75-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/0-902348-75-2.jpg?v=1499724387"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/0-902348-75-2.jpg?v=1499724387","options":["Title"],"media":[{"alt":null,"id":353971175517,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/0-902348-75-2.jpg?v=1499724387"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/0-902348-75-2.jpg?v=1499724387","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.R. Lewis \u003cbr\u003eISBN 0-902348-75-2 \u003cbr\u003e\u003cbr\u003eThe Open University, Department of Materials\u003cbr\u003e\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDr. Lewis surveys plastic design from the point of view of material properties and processing technology. Several are aspects are also included such as legal implications of intellectual property, product liability, ergonomic ans esthetic design, parts consolidation and recyclability.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eTable of Contents:\u003c\/strong\u003e \u003cbr\u003eIndustrial and Engineering Design \u003cbr\u003eLegal Constraints \u003cbr\u003eMaterial Selection \u003cbr\u003eManufacturing with Plastics \u003cbr\u003eProcess selection \u003cbr\u003eProduct Design \u003cbr\u003eInvention in Plastic Products\u003cbr\u003e\u003cbr\u003e"}
TPE 2004
$180.00
{"id":11242237764,"title":"TPE 2004","handle":"978-1-85957-450-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-85957-450-8 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 15-16 September 2004\u003cbr\u003e210 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eTo meet the market demands there are many technical developments in hand by TPE manufacturers and compounders such as greater thermal, oxidative and weathering stability; softer grades of premium TPEs; improved properties such as resilience, oil resistance, flammability, smoke emission, fogging, adhesion and transparency; foamable grades; and improved co-processibility. New types of dynamically vulcanized TPEs with improved properties, melt mixing as a low cost route to new types of TPE, and metallocene catalysed polyolefin materials are examples of developments pushing the boundaries even further.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: OVERVIEW\u003c\/strong\u003e\n\u003cp\u003ePaper 1 The thermoplastic elastomer scene in 2004 \u003cbr\u003eMr. Barry Statham, Polymer Consultant, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 2: ADVANCES IN THERMOPLASTICS VULCANISATES\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 2 Changing the game in TPVs, formulating advantages \u003cbr\u003eDr. Gary Williams, Du Pont Dow Elastomers, USA\u003c\/p\u003e\n\u003cp\u003ePaper 3 New thermoplastic vulcanizates (TPVs) with improved UV resistance and fogging properties \u003cbr\u003eMr. Alberto Dozeman, Yundong Wang, Hua Cai \u0026amp; Ryszard Brzoskowski, DSM Thermoplastic Elastomers, The Netherlands\u003c\/p\u003e\n\u003cp\u003ePaper 4 New thermoplastic vulcanizates (TPVs) with improved processibility for injection moulding applications \u003cbr\u003eDr. Jan-Tom Fernhout, Yundong Wang, Hua Cai \u0026amp; Ryszard Brzoskowski, DSM Thermoplastic Elastomers Inc, USA\u003c\/p\u003e\n\u003cp\u003ePaper 5 New developments in TPV \u003cbr\u003eMr. Brendan Chase, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/p\u003e\n\u003cp\u003ePaper 6 150°C heat and oil resistant TPVs - long-term fluid and spike temperature comparison \u003cbr\u003eMr. Jeff Dickerhoof, Sam Harber \u0026amp; Brian Cail, Zeon Chemicals, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 3: PROCESS OILS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 7 Process oils for TPE \u003cbr\u003eDr Arnaud Mahay, Exxonmobil, France\u003c\/p\u003e\n\u003cp\u003ePaper 8 Group II process oils \u003cbr\u003eRobert Plummer and Gene Robinson, Chevron Texaco Global Lubricants, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 4: RUBBER MARKETS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 9 Rubber trends and analyses \u003cbr\u003eMr. Darren Cooper, Dr. Prachaya Jumpasut \u0026amp; Dock No, IRSG, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 5: AUTOMOTIVE MARKETS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 10 Inter-TPE competition in an expanding global automotive market \u003cbr\u003eMr. Robert Eller, Robert Eller Associates Inc, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 6: ADVANCES IN STYRENIC BLOCK COPOLYMERS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 11 Superior aesthetics – performance – process – the new generation of TPE \u003cbr\u003eDr Hans Peter Wolf (Germany), Sophie Bechu \u0026amp; Alexis von Tschammer (France), Dow Corning\/Multibase\u003c\/p\u003e\n\u003cp\u003ePaper 12 New unique HSBC (hydogenated styrenic block co-polymer) with reactive hard blocks \u003cbr\u003eMr Katsunori Takamoto, Kuraray Europe GmbH, Germany\u003c\/p\u003e\n\u003cp\u003ePaper 13 Crosslinked SBR in block copolymer compounds to achieve certain EPDM TPV performance \u003cbr\u003eDr Manoj Ajbani, Goodyear Chemical Division, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 7: ADVANCES IN OTHER THERMOPLASTIC ELASTOMERS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 14 New test methods for the characterization of thermoplastic elastomers \u003cbr\u003eProf Norbert Vennemann and Klaus Bökamp, University of Applied Sciences Osnabrueck, Germany and Synco De Vogel, Kevin Cai, Satchit Srinivasan(Solvay Engineered Polymers), Germany\u003c\/p\u003e\n\u003cp\u003ePaper 15 Phase behaviour and structure of high hard block content polyurethanes \u003cbr\u003eDr Alberto Saiani, University of Manchester, UK\u003c\/p\u003e\n\u003cp\u003ePaper 16 Phase-separated microstructures of all-acrylic thermoplastic elastomers \u003cbr\u003eDr Philippe Leclére, Universite de Mons\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 8: DEVELOPMENTS IN PROCESSING\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 17 The potential of processing additives to improve extrusion performance of TPE-V compounds \u003cbr\u003eDr Lutz Kirchner, Mr Steffen Foese and Dr Joachim Bertrand, Schill \u0026amp; Seilacher \"Struktol\" AG, Germany\u003c\/p\u003e\n\u003cp\u003ePaper 18 TPE in the profiling industry \u003cbr\u003eMr Peter Nagl, LWB Steinl GmbH \u0026amp; Co KG, Germany\u003c\/p\u003e\n\u003cp\u003ePaper 19 Mould technology for multi-component injection moulding \u003cbr\u003eKlaus Rahnhoefer, Demag Plastics Group, Germany\u003c\/p\u003e\n\u003cp\u003ePaper 20 Moulding simulation for the thermoplastic elastomers \u003cbr\u003eWim Schermerhorn, Sigmasoft, Germany\u003c\/p\u003e","published_at":"2017-06-22T21:14:36-04:00","created_at":"2017-06-22T21:14:36-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","additives","automotive","book","copolymers","DSM","elastomers","extrusion","fogging","hard blocks","heat","injection moulding","molding","oil resistance","p-chemistry","poly","polyurethanes","resistance","rubber","styrenic","thermoplastic","UV","vulcanizates"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378425412,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2004","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-450-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-450-8_2ab9c664-24f7-40d3-9ca2-c0507e492146.jpg?v=1499728177"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-450-8_2ab9c664-24f7-40d3-9ca2-c0507e492146.jpg?v=1499728177","options":["Title"],"media":[{"alt":null,"id":358832472157,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-450-8_2ab9c664-24f7-40d3-9ca2-c0507e492146.jpg?v=1499728177"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-450-8_2ab9c664-24f7-40d3-9ca2-c0507e492146.jpg?v=1499728177","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-85957-450-8 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 15-16 September 2004\u003cbr\u003e210 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eTo meet the market demands there are many technical developments in hand by TPE manufacturers and compounders such as greater thermal, oxidative and weathering stability; softer grades of premium TPEs; improved properties such as resilience, oil resistance, flammability, smoke emission, fogging, adhesion and transparency; foamable grades; and improved co-processibility. New types of dynamically vulcanized TPEs with improved properties, melt mixing as a low cost route to new types of TPE, and metallocene catalysed polyolefin materials are examples of developments pushing the boundaries even further.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: OVERVIEW\u003c\/strong\u003e\n\u003cp\u003ePaper 1 The thermoplastic elastomer scene in 2004 \u003cbr\u003eMr. Barry Statham, Polymer Consultant, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 2: ADVANCES IN THERMOPLASTICS VULCANISATES\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 2 Changing the game in TPVs, formulating advantages \u003cbr\u003eDr. Gary Williams, Du Pont Dow Elastomers, USA\u003c\/p\u003e\n\u003cp\u003ePaper 3 New thermoplastic vulcanizates (TPVs) with improved UV resistance and fogging properties \u003cbr\u003eMr. Alberto Dozeman, Yundong Wang, Hua Cai \u0026amp; Ryszard Brzoskowski, DSM Thermoplastic Elastomers, The Netherlands\u003c\/p\u003e\n\u003cp\u003ePaper 4 New thermoplastic vulcanizates (TPVs) with improved processibility for injection moulding applications \u003cbr\u003eDr. Jan-Tom Fernhout, Yundong Wang, Hua Cai \u0026amp; Ryszard Brzoskowski, DSM Thermoplastic Elastomers Inc, USA\u003c\/p\u003e\n\u003cp\u003ePaper 5 New developments in TPV \u003cbr\u003eMr. Brendan Chase, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/p\u003e\n\u003cp\u003ePaper 6 150°C heat and oil resistant TPVs - long-term fluid and spike temperature comparison \u003cbr\u003eMr. Jeff Dickerhoof, Sam Harber \u0026amp; Brian Cail, Zeon Chemicals, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 3: PROCESS OILS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 7 Process oils for TPE \u003cbr\u003eDr Arnaud Mahay, Exxonmobil, France\u003c\/p\u003e\n\u003cp\u003ePaper 8 Group II process oils \u003cbr\u003eRobert Plummer and Gene Robinson, Chevron Texaco Global Lubricants, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 4: RUBBER MARKETS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 9 Rubber trends and analyses \u003cbr\u003eMr. Darren Cooper, Dr. Prachaya Jumpasut \u0026amp; Dock No, IRSG, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 5: AUTOMOTIVE MARKETS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 10 Inter-TPE competition in an expanding global automotive market \u003cbr\u003eMr. Robert Eller, Robert Eller Associates Inc, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 6: ADVANCES IN STYRENIC BLOCK COPOLYMERS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 11 Superior aesthetics – performance – process – the new generation of TPE \u003cbr\u003eDr Hans Peter Wolf (Germany), Sophie Bechu \u0026amp; Alexis von Tschammer (France), Dow Corning\/Multibase\u003c\/p\u003e\n\u003cp\u003ePaper 12 New unique HSBC (hydogenated styrenic block co-polymer) with reactive hard blocks \u003cbr\u003eMr Katsunori Takamoto, Kuraray Europe GmbH, Germany\u003c\/p\u003e\n\u003cp\u003ePaper 13 Crosslinked SBR in block copolymer compounds to achieve certain EPDM TPV performance \u003cbr\u003eDr Manoj Ajbani, Goodyear Chemical Division, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 7: ADVANCES IN OTHER THERMOPLASTIC ELASTOMERS\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 14 New test methods for the characterization of thermoplastic elastomers \u003cbr\u003eProf Norbert Vennemann and Klaus Bökamp, University of Applied Sciences Osnabrueck, Germany and Synco De Vogel, Kevin Cai, Satchit Srinivasan(Solvay Engineered Polymers), Germany\u003c\/p\u003e\n\u003cp\u003ePaper 15 Phase behaviour and structure of high hard block content polyurethanes \u003cbr\u003eDr Alberto Saiani, University of Manchester, UK\u003c\/p\u003e\n\u003cp\u003ePaper 16 Phase-separated microstructures of all-acrylic thermoplastic elastomers \u003cbr\u003eDr Philippe Leclére, Universite de Mons\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 8: DEVELOPMENTS IN PROCESSING\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003ePaper 17 The potential of processing additives to improve extrusion performance of TPE-V compounds \u003cbr\u003eDr Lutz Kirchner, Mr Steffen Foese and Dr Joachim Bertrand, Schill \u0026amp; Seilacher \"Struktol\" AG, Germany\u003c\/p\u003e\n\u003cp\u003ePaper 18 TPE in the profiling industry \u003cbr\u003eMr Peter Nagl, LWB Steinl GmbH \u0026amp; Co KG, Germany\u003c\/p\u003e\n\u003cp\u003ePaper 19 Mould technology for multi-component injection moulding \u003cbr\u003eKlaus Rahnhoefer, Demag Plastics Group, Germany\u003c\/p\u003e\n\u003cp\u003ePaper 20 Moulding simulation for the thermoplastic elastomers \u003cbr\u003eWim Schermerhorn, Sigmasoft, Germany\u003c\/p\u003e"}