Chemtec Publishing offers a large collection of books on polymers, plastics, and rubber.
- Grid List
Filter
Shape Memory Polymers:...
$205.00
{"id":11242241156,"title":"Shape Memory Polymers: Fundamentals, Advances and Applications","handle":"9781909030329","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","blends","book","mechanical properties","medical applications","modelling","morphology","p-applications","p-structural","polymer","polymer composite","polymers","shape-memory","structure","textile applications"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Shape Memory Polymers: Fundamentals, Advances and Applications","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781909030329","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","options":["Title"],"media":[{"alt":null,"id":358743539805,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}
Food Industry and Pack...
$205.00
{"id":11242241284,"title":"Food Industry and Packaging Materials - Performance-oriented Guidelines for Users","handle":"9781847356093","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9781847356093 \u003cbr\u003e\u003cbr\u003epage 398\n\u003ch5\u003eSummary\u003c\/h5\u003e\nQuality inspection of packaging materials is a difficult task for food producers because the technical tests for packaging are mainly designed to measure the 'performance' of materials in relation to their chemical formulation, processing data, and intended uses. This may be difficult for food producers because their knowledge is essentially orientated to the performance of the final products (the packaged food).\u003cbr\u003e\u003cbr\u003eHowever, the assessment of the suitability of food packaging materials has to be legally demonstrated by food producers in the European Union.\u003cbr\u003e\u003cbr\u003eThis book provides detailed and comprehensible information about Quality Control (QC) in the industry. Different viewpoints are explained in relation to food companies, packaging producers, and technical experts, including regulatory aspects. One of the most important steps is the comprehension of QC failures in relation to the ‘food product’ (food\/packaging).\u003cbr\u003e\u003cbr\u003eThe book also presents a detailed selection of proposals about new testing methods. On the basis of regulatory obligations in the EU about the technological suitability of food packaging materials, a list of ‘performance-oriented’ guidelines is proposed. Food sectors are mentioned in relation to products, related packaging materials, known failures and existing quality control procedures.\u003cbr\u003e\u003cbr\u003eThis volume serves as a practical guide on food packaging and QC methods and a quick reference to food operators, official safety inspectors, public health institutions, Certification bodies, students and researchers from the academia and the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 The Essential Role of Quality Control Procedures: General Principles.\u003cbr\u003e1.1 Basic Concepts for Quality Control \u003cbr\u003e1.1.1 Quality in the Food and Beverage Field \u003cbr\u003e1.1.2 Quality: Management Systems and Control-based Procedures \u003cbr\u003e1.2 Statistical Consideration: Sampling Plans \u003cbr\u003e1.2.1 Influence of Numbers \u003cbr\u003e1.2.2 Influence of Analytical Results \u003cbr\u003e1.3 Quality Control and Economic Sustainability \u003cbr\u003e1.4 The Quality Control Team: Organisation, Duties, and Responsibilities \u003cbr\u003e\u003cbr\u003e2 Differences between Food Companies and Other Industries: Safety Concepts \u003cbr\u003e2.1 Quality in the Food Industry: Hazard Analysis and Critical \u003cbr\u003eControl Points and Different Risk Levels \u003cbr\u003e2.2 Quality in Chemical Industries: The Analytical Approach \u003cbr\u003e2.3 Quality in Manufacturing Industries: The Packaging \u003cbr\u003e2.4 Theory of Food Packaging and Practical Considerations\u003cbr\u003e2.5 Quality in Packaging Industries: Hybrid Testing Methods \u003cbr\u003e\u003cbr\u003e3 Food Industries: Chemistry, Microbiology, and Safety of Related Products \u003cbr\u003e3.1 Chemistry of Food Products - General Considerations \u003cbr\u003e3.1.1 Food Technology of Commerce - Standardisation of Production, Packing and Storage Processes\u003cbr\u003e3.1.2 Relation between Sensory Features and Chemical Composition \u003cbr\u003e3.1.3 Preventive Definition of Chemical and Microbiological Modifications \u003cbr\u003e3.1.4 Evaluation of Food Products - Chemical Contamination \u003cbr\u003e3.2 Microbiology of Food Products - Technological Implications \u003cbr\u003e3.3 Microbiology and Safety \u003cbr\u003e3.3.1 Microbiological Quality: Microbial Markers \u003cbr\u003e3.3.2 Pathogenic Bacteria \u003cbr\u003e3.4 Other Hazard Analysis and Critical Control Points Risks \u003cbr\u003e3.5 Food Alterations: The Problem of Shelf Life Assessment \u003cbr\u003e\u003cbr\u003e4 Packaging Industries: Chemistry and Technology of Packaging Materials \u003cbr\u003e4.1 Plastic Packaging \u003cbr\u003e4.2 Metal Packaging \u003cbr\u003e4.2.1 Metal Packages: General Features \u003cbr\u003e4.2.2 Metal Packaging: Production and Technology \u003cbr\u003e4.2.3 Metal Packages: The Metallic Support \u003cbr\u003e4.2.4 Plastic Coatings \u003cbr\u003e4.3 Paper and Paper-based Packaging \u003cbr\u003e4.4 Glass-based Packages \u003cbr\u003e4.5 Coupled Packages \u003cbr\u003e4.6 Smart and Intelligent Packages \u003cbr\u003e4.6.1 Active Packages \u003cbr\u003e4.6.2 Intelligent Packages \u003cbr\u003e\u003cbr\u003e5 Packaging and Processing Methods in the Food Industry: Most Common Failures \u003cbr\u003e5.1 Vegetables and Canned Foods \u003cbr\u003e5.1.1 Plastic Packages \u003cbr\u003e5.1.2 Metal Packages \u003cbr\u003e5.1.3 Paper and Paper-based Packages \u003cbr\u003e5.1.4 Glass Packages \u003cbr\u003e5.1.5 Polycoupled Packages \u003cbr\u003e5.1.6 Smart Packages \u003cbr\u003e5.2 Meat Foods \u003cbr\u003e5.2.1 Plastic Packages \u003cbr\u003e5.2.2 Metal Packages \u003cbr\u003e5.2.3 Paper and Paper-based Packages \u003cbr\u003e5.2.4 Glass Packages \u003cbr\u003e5.2.5 Coupled Packages \u003cbr\u003e5.2.6 Smart and Intelligent Packages \u003cbr\u003e5.3 Dairy Products \u003cbr\u003e5.3.1 Plastic Packages \u003cbr\u003e5.3.2 Metal Packages \u003cbr\u003e5.3.3 Paper and Paper-based Packages \u003cbr\u003e5.3.4 Glass Packages \u003cbr\u003e5.3.5 Coupled Packages \u003cbr\u003e5.4 Fish Products \u003cbr\u003e5.4.1 Plastic Packages \u003cbr\u003e5.4.2 Metal Packages \u003cbr\u003e5.4.3 Paper and Paper-based Packages \u003cbr\u003e5.4.4 Glass Packages \u003cbr\u003e5.4.5 Coupled Packages \u003cbr\u003e5.5 Other Food Products \u003cbr\u003e\u003cbr\u003e6 Analytical Methods for Food Products \u003cbr\u003e6.1 Chemical Analyses \u003cbr\u003e6.1.1 The Evaluation of Chemical Risks \u003cbr\u003e6.2 Microbiological Analyses \u003cbr\u003e6.2.1 Total Viable Count \u003cbr\u003e6.2.2 Food Alterations: Microbial Markers \u003cbr\u003e6.2.3 Pathogenic Microorganisms \u003cbr\u003e6.3 Detection of Foreign Substances \u003cbr\u003e6.4 Evaluation of Shelf Life Values \u003cbr\u003e\u003cbr\u003e7 Analytical and Testing Methods for Food Packaging \u003cbr\u003e7.1 Chemical Analyses \u003cbr\u003e7.2 Mechanical Tests \u003cbr\u003e7.3 Thermal Testing - Sterilisation and Other Treatments \u003cbr\u003e7.4 Other Simple Testing Methods \u003cbr\u003e\u003cbr\u003e8 Legal Requirements for Food Products and Packaging Materials in the European Union \u003cbr\u003e8.1 Food Products - Hygiene and Safety Requirements in the European Union \u003cbr\u003e8.2 Food Packaging - Legal Requirements in the European Union \u003cbr\u003e\u003cbr\u003e9 Conceptual Barriers between Packaging Producers and Food Industries: \u003cbr\u003eProposals for a ‘Second Level’ Quality Control \u003cbr\u003e9.1 Food Operators and their Competence in Packaging\u003cbr\u003e9.2 Collaborative Design of Packaging Materials \u003cbr\u003e9.3 Food Industries Needs New Approaches about Quality Control for Accessory Materials \u003cbr\u003e\u003cbr\u003e10 Food Packaging for Dairy Products \u003cbr\u003e10.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e10.1.1 Food Packaging Failures and Food Products: A Short Discussion about the Assessment of Technological Suitability \u003cbr\u003e10.1.2 Food Packaging Failures and Food Products: Sampling Plans and Simplified Advice \u003cbr\u003e10.1.3 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e10.1.3.1 Defective Closure and Sealing (Different Causes and Damages) . \u003cbr\u003e10.1.3.2 Migration of Macroscopic and Microscopic Bodies and Particles from Food Packaging Materials to Foods (Different Causes and Damages) \u003cbr\u003e10.1.3.3 Migration of Printing Inks (Ghosting Effect and Similar Situations) \u003cbr\u003e10.1.3.4 Superficial Damage and Ageing Correlation \u003cbr\u003e10.1.4 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e10.1.4.1 Superficial Damage, Microscopic Fractures, Scratches, Micro-bubbles and Dewetting. \u003cbr\u003e10.1.4.2 Presence of Foreign Bodies (Different Causes) \u003cbr\u003e10.1.4.3 Ghosting Effect \u003cbr\u003e10.1.4.4 Different Colorimetric Variations \u003cbr\u003e10.1.4.5 Workability Failures \u003cbr\u003e10.1.5 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e10.1.5.1 Excessive Rigidity of Cellulosic Materials \u003cbr\u003e10.1.5.2 Colorimetric Variations \u003cbr\u003e10.1.5.3 Paper Wrinkling \u003cbr\u003e10.1.5.4 Ghosting Effect \u003cbr\u003e10.1.5.5 Bleeding Effect \u003cbr\u003e10.1.5.6 Adhesion Defects (or Excessive Dripping) \u003cbr\u003e10.1.5.7 Paper Pulverisation \u003cbr\u003e10.1.5.8 Final Thoughts about Paper Food Packaging Materials \u003cbr\u003e10.1.6 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e10.1.6.1 Micro-bubbling \u003cbr\u003e10.1.6.2 Scratches \u003cbr\u003e10.1.6.3 Micro Fractures \u003cbr\u003e10.1.6.4 Macro Fractures \u003cbr\u003e10.1.6.5 Final Considerations: Other Failures \u003cbr\u003e10.2 Microbiological Contamination \u003cbr\u003e10.3 Hybrid Tests \u003cbr\u003e10.3.1 A Necessary Premise \u003cbr\u003e10.3.2 Workability Testing Methods \u003cbr\u003e10.3.2.1 Abrasion Test according to Parisi - Method for the Evaluation of the Laceration of Rigid Boxes for MAP Packed Cheeses \u003cbr\u003e10.3.2.1.1 Objective \u003cbr\u003e10.3.2.1.2 Preliminary Note \u003cbr\u003e10.3.2.1.3 Materials \u003cbr\u003e10.3.2.1.4 Method \u003cbr\u003e10.3.2.1.5 Evaluation of Results \u003cbr\u003e10.3.2.1.6 Final Observations \u003cbr\u003e10.3.3 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e10.3.3.1 Evaluation of Hydric Apparent Absorption and Related Modifications in Packed Cheeses with Different Food Packaging Materials (Comparison Test) \u003cbr\u003e10.3.3.1.1 Objective \u003cbr\u003e10.3.3.1.2 Preliminary Note \u003cbr\u003e10.3.3.1.3 Materials \u003cbr\u003e10.3.3.1.4 Method \u003cbr\u003e10.3.3.1.5 Evaluation of Results \u003cbr\u003e10.3.3.1.6 Final Observations \u003cbr\u003e10.3.4 Estimation of Shelf Life for Integrated Food Products (Comparison Test) \u003cbr\u003e10.3.4.1 Variation of Shelf Life Values in Packed, Semi-hard Cheeses in Relation to the Use of Different Food Packaging Materials \u003cbr\u003e10.3.4.1.1 Objective \u003cbr\u003e10.3.4.1.2 Preliminary Note \u003cbr\u003e10.3.4.1.3 Materials \u003cbr\u003e10.3.4.1.4 Method \u003cbr\u003e10.3.4.1.5 Evaluation of Results \u003cbr\u003e10.3.4.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e10.3.4.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e10.3.4.1.6 Final Observations\u003cbr\u003e10.4 Digital Image Analysis and Processing \u003cbr\u003e10.4.1 Colorimetry \u003cbr\u003e10.4.2 Digital Acquisition and Interpretation of Pictures \u003cbr\u003e10.4.3 Image Analysis and Processing - Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.4 Image Analysis and Processing - Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e10.4.5 Image Analysis and Processing: Practical Examples\u003cbr\u003e10.4.5.1 Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.5.2 Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e\u003cbr\u003e11 Food Packaging for Meat and Meat-based Foods \u003cbr\u003e11.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e11.1.1 Food Packaging Failures and Meat Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e11.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e11.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e11.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect\u003cbr\u003e11.1.1.4 Possible Fractures of Edible and Plastic Casings \u003cbr\u003e11.1.2 Food Packaging Failures and Meat Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e11.1.2.1 Superficial Damages, Microscopic Fractures, Scratches, Micro-bubbles, Dewetting\u003cbr\u003e11.1.2.2 External Lithography and Related Defects \u003cbr\u003e11.1.3 Food Packaging Failures and Meat Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e11.1.3.1 Colorimetric Variations \u003cbr\u003e11.1.3.2 Paper Pulverisation \u003cbr\u003e11.1.4 Food Packaging Failures and Meat Products - Visually Detectable Failures: Glass-Based Packages \u003cbr\u003e11.1.4.1 Micro-bubbling \u003cbr\u003e11.2 Microbiological Contamination \u003cbr\u003e11.3 Hybrid Tests \u003cbr\u003e11.3.1 Workability Testing Methods \u003cbr\u003e11.3.1.1 Method for the Evaluation of Impact Resistance of Infrangible Glass Containers (Final Use: Pasteurised Meat Preparations) \u003cbr\u003e11.3.1.1.1 Objective \u003cbr\u003e11.3.1.1.2 Preliminary Note \u003cbr\u003e11.3.1.1.3 Materials \u003cbr\u003e11.3.1.1.4 Method \u003cbr\u003e11.3.1.1.5 Evaluation of Results \u003cbr\u003e11.3.1.1.6 Final Observations \u003cbr\u003e11.3.2 ‘Performance’ Estimation for Integrated Food Products\u003cbr\u003e11.3.3 Estimation of the Shelf Life for Integrated Meat Products (Comparison Test) \u003cbr\u003e11.3.3.1 Variation of Shelf Life Values in Modified Atmosphere Packaging Fresh Meats with the Use of Different Food Packaging Materials \u003cbr\u003e11.3.3.1.1 Objective \u003cbr\u003e11.3.3.1.2 Preliminary Note \u003cbr\u003e11.3.3.1.3 Materials \u003cbr\u003e11.3.3.1.4 Method \u003cbr\u003e11.3.3.1.5 Evaluation of Results \u003cbr\u003e11.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e11.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e11.3.3.1.6 Final Observations\u003cbr\u003e\u003cbr\u003e12 Food Packaging for Fish Products \u003cbr\u003e12.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e12.1.1 Food Packaging Failures and Fish Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e12.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e12.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e12.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect \u003cbr\u003e12.1.1.4 Micro-bubbling and Bursting \u003cbr\u003e12.1.2 Food Packaging Failures and Fish Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e12.1.2.1 Canned Fish and Vegetable Products - Specific Colorimetric Variations\u003cbr\u003e12.1.3 Food Packaging Failures and Fish Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e12.1.4 Food Packaging Failures and Fish Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e12.2 Microbiological Contamination \u003cbr\u003e12.3 Hybrid Tests \u003cbr\u003e12.3.1 Workability Testing Methods \u003cbr\u003e12.3.1.1 Delamination Test on Sealable Polycoupled Packages (Easy Peel Pouches) for Tuna Fish \u003cbr\u003ein Water \u003cbr\u003e12.3.1.1.1 Objective \u003cbr\u003e12.3.1.1.2 Preliminary Note \u003cbr\u003e12.3.1.1.3 Materials \u003cbr\u003e12.3.1.1.4 Method \u003cbr\u003e12.3.1.1.5 Evaluation of Results \u003cbr\u003e12.3.1.1.6 Final Observations \u003cbr\u003e12.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e12.3.3 Estimation of Shelf Life for Integrated Fish Products (Comparison Test) \u003cbr\u003e12.3.3.1 Variation of Shelf Life Values in Vacuum Packed and Frozen Fish in Relation to the \u003cbr\u003eUse of Different Food Packaging Materials \u003cbr\u003e12.3.3.1.1 Objective \u003cbr\u003e12.3.3.1.2 Preliminary Note \u003cbr\u003e12.3.3.1.3 Materials \u003cbr\u003e12.3.3.1.4 Method \u003cbr\u003e12.3.3.1.5 Evaluation of Results \u003cbr\u003e12.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value \u003cbr\u003e12.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e12.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e13 Food Packaging for Fruits, Vegetables and Canned Foods \u003cbr\u003e13.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e13.1.1 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e13.1.2 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e13.1.2.1 Specific Colorimetric Variations \u003cbr\u003e13.1.3 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e13.1.4 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e13.2 Microbiological Contamination \u003cbr\u003e13.3 Hybrid Tests \u003cbr\u003e13.3.1 Workability Testing Methods \u003cbr\u003e13.3.1.1 Sterilisation Test on Metal Cans for Double Concentrated Tomato Sauce \u003cbr\u003e13.3.1.1.1 Objective \u003cbr\u003e13.3.1.1.2 Preliminary Note \u003cbr\u003e13.3.1.1.3 Materials \u003cbr\u003e13.3.1.1.4 Method \u003cbr\u003e13.3.1.1.5 Evaluation of Results \u003cbr\u003e13.3.1.1.6 Final Observations \u003cbr\u003e13.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e13.3.3 Estimation of Shelf Life for Integrated Products (Comparison Test) \u003cbr\u003e13.3.3.1 Variation of Shelf Life Values in Canned Peas with Reference to the Use of Different Food Packaging Materials\u003cbr\u003e13.3.3.1.1 Objective\u003cbr\u003e13.3.3.1.2 Preliminary Note \u003cbr\u003e13.3.3.1.3 Materials \u003cbr\u003e13.3.3.1.4 Method \u003cbr\u003e13.3.3.1.5 Evaluation of Results \u003cbr\u003e13.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e14 Food Packaging for Other Food Products \u003cbr\u003e14.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e14.1.1 Smart Packages \u003cbr\u003e14.1.1.1 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (High Sensibility)\u003cbr\u003e14.1.1.1.1 Objective \u003cbr\u003e14.1.1.1.2 Materials \u003cbr\u003e14.1.1.1.3 Method \u003cbr\u003e14.1.1.1.4 Evaluation of Results \u003cbr\u003e14.1.1.2 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (Low Sensibility) \u003cbr\u003e14.1.1.2.1 Objective \u003cbr\u003e14.1.1.2.2 Materials \u003cbr\u003e14.1.1.2.3 Method \u003cbr\u003e14.1.1.2.4 Evaluation of Results \u003cbr\u003e14.2 Microbiological Contamination \u003cbr\u003e14.3 Hybrid Tests \u003cbr\u003e\u003cbr\u003e15 Conclusions \u003cbr\u003e15.1 Food Producers Will Need More Training \u003cbr\u003e15.2 Will Official Regulations Follow Voluntary Testing Methods? \u003cbr\u003e15.3 Performance-Oriented Guidelines - Perspectives for Advanced Training in Academia \u003cbr\u003e15.4 The Viewpoint of Certification Bodies \u003cbr\u003eAppendix 1 List of Accredited Organisations with Recognised Authority \u003cbr\u003e(Analytical Testing Methods)\u003cbr\u003eAbbreviations \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","environment","food","formulation","health","management system","microbiology","p-applications","packaging","polymer","quality","quality control"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378438084,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Food Industry and Packaging Materials - Performance-oriented Guidelines for Users","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356093","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787","options":["Title"],"media":[{"alt":null,"id":354808594525,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9781847356093 \u003cbr\u003e\u003cbr\u003epage 398\n\u003ch5\u003eSummary\u003c\/h5\u003e\nQuality inspection of packaging materials is a difficult task for food producers because the technical tests for packaging are mainly designed to measure the 'performance' of materials in relation to their chemical formulation, processing data, and intended uses. This may be difficult for food producers because their knowledge is essentially orientated to the performance of the final products (the packaged food).\u003cbr\u003e\u003cbr\u003eHowever, the assessment of the suitability of food packaging materials has to be legally demonstrated by food producers in the European Union.\u003cbr\u003e\u003cbr\u003eThis book provides detailed and comprehensible information about Quality Control (QC) in the industry. Different viewpoints are explained in relation to food companies, packaging producers, and technical experts, including regulatory aspects. One of the most important steps is the comprehension of QC failures in relation to the ‘food product’ (food\/packaging).\u003cbr\u003e\u003cbr\u003eThe book also presents a detailed selection of proposals about new testing methods. On the basis of regulatory obligations in the EU about the technological suitability of food packaging materials, a list of ‘performance-oriented’ guidelines is proposed. Food sectors are mentioned in relation to products, related packaging materials, known failures and existing quality control procedures.\u003cbr\u003e\u003cbr\u003eThis volume serves as a practical guide on food packaging and QC methods and a quick reference to food operators, official safety inspectors, public health institutions, Certification bodies, students and researchers from the academia and the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 The Essential Role of Quality Control Procedures: General Principles.\u003cbr\u003e1.1 Basic Concepts for Quality Control \u003cbr\u003e1.1.1 Quality in the Food and Beverage Field \u003cbr\u003e1.1.2 Quality: Management Systems and Control-based Procedures \u003cbr\u003e1.2 Statistical Consideration: Sampling Plans \u003cbr\u003e1.2.1 Influence of Numbers \u003cbr\u003e1.2.2 Influence of Analytical Results \u003cbr\u003e1.3 Quality Control and Economic Sustainability \u003cbr\u003e1.4 The Quality Control Team: Organisation, Duties, and Responsibilities \u003cbr\u003e\u003cbr\u003e2 Differences between Food Companies and Other Industries: Safety Concepts \u003cbr\u003e2.1 Quality in the Food Industry: Hazard Analysis and Critical \u003cbr\u003eControl Points and Different Risk Levels \u003cbr\u003e2.2 Quality in Chemical Industries: The Analytical Approach \u003cbr\u003e2.3 Quality in Manufacturing Industries: The Packaging \u003cbr\u003e2.4 Theory of Food Packaging and Practical Considerations\u003cbr\u003e2.5 Quality in Packaging Industries: Hybrid Testing Methods \u003cbr\u003e\u003cbr\u003e3 Food Industries: Chemistry, Microbiology, and Safety of Related Products \u003cbr\u003e3.1 Chemistry of Food Products - General Considerations \u003cbr\u003e3.1.1 Food Technology of Commerce - Standardisation of Production, Packing and Storage Processes\u003cbr\u003e3.1.2 Relation between Sensory Features and Chemical Composition \u003cbr\u003e3.1.3 Preventive Definition of Chemical and Microbiological Modifications \u003cbr\u003e3.1.4 Evaluation of Food Products - Chemical Contamination \u003cbr\u003e3.2 Microbiology of Food Products - Technological Implications \u003cbr\u003e3.3 Microbiology and Safety \u003cbr\u003e3.3.1 Microbiological Quality: Microbial Markers \u003cbr\u003e3.3.2 Pathogenic Bacteria \u003cbr\u003e3.4 Other Hazard Analysis and Critical Control Points Risks \u003cbr\u003e3.5 Food Alterations: The Problem of Shelf Life Assessment \u003cbr\u003e\u003cbr\u003e4 Packaging Industries: Chemistry and Technology of Packaging Materials \u003cbr\u003e4.1 Plastic Packaging \u003cbr\u003e4.2 Metal Packaging \u003cbr\u003e4.2.1 Metal Packages: General Features \u003cbr\u003e4.2.2 Metal Packaging: Production and Technology \u003cbr\u003e4.2.3 Metal Packages: The Metallic Support \u003cbr\u003e4.2.4 Plastic Coatings \u003cbr\u003e4.3 Paper and Paper-based Packaging \u003cbr\u003e4.4 Glass-based Packages \u003cbr\u003e4.5 Coupled Packages \u003cbr\u003e4.6 Smart and Intelligent Packages \u003cbr\u003e4.6.1 Active Packages \u003cbr\u003e4.6.2 Intelligent Packages \u003cbr\u003e\u003cbr\u003e5 Packaging and Processing Methods in the Food Industry: Most Common Failures \u003cbr\u003e5.1 Vegetables and Canned Foods \u003cbr\u003e5.1.1 Plastic Packages \u003cbr\u003e5.1.2 Metal Packages \u003cbr\u003e5.1.3 Paper and Paper-based Packages \u003cbr\u003e5.1.4 Glass Packages \u003cbr\u003e5.1.5 Polycoupled Packages \u003cbr\u003e5.1.6 Smart Packages \u003cbr\u003e5.2 Meat Foods \u003cbr\u003e5.2.1 Plastic Packages \u003cbr\u003e5.2.2 Metal Packages \u003cbr\u003e5.2.3 Paper and Paper-based Packages \u003cbr\u003e5.2.4 Glass Packages \u003cbr\u003e5.2.5 Coupled Packages \u003cbr\u003e5.2.6 Smart and Intelligent Packages \u003cbr\u003e5.3 Dairy Products \u003cbr\u003e5.3.1 Plastic Packages \u003cbr\u003e5.3.2 Metal Packages \u003cbr\u003e5.3.3 Paper and Paper-based Packages \u003cbr\u003e5.3.4 Glass Packages \u003cbr\u003e5.3.5 Coupled Packages \u003cbr\u003e5.4 Fish Products \u003cbr\u003e5.4.1 Plastic Packages \u003cbr\u003e5.4.2 Metal Packages \u003cbr\u003e5.4.3 Paper and Paper-based Packages \u003cbr\u003e5.4.4 Glass Packages \u003cbr\u003e5.4.5 Coupled Packages \u003cbr\u003e5.5 Other Food Products \u003cbr\u003e\u003cbr\u003e6 Analytical Methods for Food Products \u003cbr\u003e6.1 Chemical Analyses \u003cbr\u003e6.1.1 The Evaluation of Chemical Risks \u003cbr\u003e6.2 Microbiological Analyses \u003cbr\u003e6.2.1 Total Viable Count \u003cbr\u003e6.2.2 Food Alterations: Microbial Markers \u003cbr\u003e6.2.3 Pathogenic Microorganisms \u003cbr\u003e6.3 Detection of Foreign Substances \u003cbr\u003e6.4 Evaluation of Shelf Life Values \u003cbr\u003e\u003cbr\u003e7 Analytical and Testing Methods for Food Packaging \u003cbr\u003e7.1 Chemical Analyses \u003cbr\u003e7.2 Mechanical Tests \u003cbr\u003e7.3 Thermal Testing - Sterilisation and Other Treatments \u003cbr\u003e7.4 Other Simple Testing Methods \u003cbr\u003e\u003cbr\u003e8 Legal Requirements for Food Products and Packaging Materials in the European Union \u003cbr\u003e8.1 Food Products - Hygiene and Safety Requirements in the European Union \u003cbr\u003e8.2 Food Packaging - Legal Requirements in the European Union \u003cbr\u003e\u003cbr\u003e9 Conceptual Barriers between Packaging Producers and Food Industries: \u003cbr\u003eProposals for a ‘Second Level’ Quality Control \u003cbr\u003e9.1 Food Operators and their Competence in Packaging\u003cbr\u003e9.2 Collaborative Design of Packaging Materials \u003cbr\u003e9.3 Food Industries Needs New Approaches about Quality Control for Accessory Materials \u003cbr\u003e\u003cbr\u003e10 Food Packaging for Dairy Products \u003cbr\u003e10.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e10.1.1 Food Packaging Failures and Food Products: A Short Discussion about the Assessment of Technological Suitability \u003cbr\u003e10.1.2 Food Packaging Failures and Food Products: Sampling Plans and Simplified Advice \u003cbr\u003e10.1.3 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e10.1.3.1 Defective Closure and Sealing (Different Causes and Damages) . \u003cbr\u003e10.1.3.2 Migration of Macroscopic and Microscopic Bodies and Particles from Food Packaging Materials to Foods (Different Causes and Damages) \u003cbr\u003e10.1.3.3 Migration of Printing Inks (Ghosting Effect and Similar Situations) \u003cbr\u003e10.1.3.4 Superficial Damage and Ageing Correlation \u003cbr\u003e10.1.4 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e10.1.4.1 Superficial Damage, Microscopic Fractures, Scratches, Micro-bubbles and Dewetting. \u003cbr\u003e10.1.4.2 Presence of Foreign Bodies (Different Causes) \u003cbr\u003e10.1.4.3 Ghosting Effect \u003cbr\u003e10.1.4.4 Different Colorimetric Variations \u003cbr\u003e10.1.4.5 Workability Failures \u003cbr\u003e10.1.5 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e10.1.5.1 Excessive Rigidity of Cellulosic Materials \u003cbr\u003e10.1.5.2 Colorimetric Variations \u003cbr\u003e10.1.5.3 Paper Wrinkling \u003cbr\u003e10.1.5.4 Ghosting Effect \u003cbr\u003e10.1.5.5 Bleeding Effect \u003cbr\u003e10.1.5.6 Adhesion Defects (or Excessive Dripping) \u003cbr\u003e10.1.5.7 Paper Pulverisation \u003cbr\u003e10.1.5.8 Final Thoughts about Paper Food Packaging Materials \u003cbr\u003e10.1.6 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e10.1.6.1 Micro-bubbling \u003cbr\u003e10.1.6.2 Scratches \u003cbr\u003e10.1.6.3 Micro Fractures \u003cbr\u003e10.1.6.4 Macro Fractures \u003cbr\u003e10.1.6.5 Final Considerations: Other Failures \u003cbr\u003e10.2 Microbiological Contamination \u003cbr\u003e10.3 Hybrid Tests \u003cbr\u003e10.3.1 A Necessary Premise \u003cbr\u003e10.3.2 Workability Testing Methods \u003cbr\u003e10.3.2.1 Abrasion Test according to Parisi - Method for the Evaluation of the Laceration of Rigid Boxes for MAP Packed Cheeses \u003cbr\u003e10.3.2.1.1 Objective \u003cbr\u003e10.3.2.1.2 Preliminary Note \u003cbr\u003e10.3.2.1.3 Materials \u003cbr\u003e10.3.2.1.4 Method \u003cbr\u003e10.3.2.1.5 Evaluation of Results \u003cbr\u003e10.3.2.1.6 Final Observations \u003cbr\u003e10.3.3 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e10.3.3.1 Evaluation of Hydric Apparent Absorption and Related Modifications in Packed Cheeses with Different Food Packaging Materials (Comparison Test) \u003cbr\u003e10.3.3.1.1 Objective \u003cbr\u003e10.3.3.1.2 Preliminary Note \u003cbr\u003e10.3.3.1.3 Materials \u003cbr\u003e10.3.3.1.4 Method \u003cbr\u003e10.3.3.1.5 Evaluation of Results \u003cbr\u003e10.3.3.1.6 Final Observations \u003cbr\u003e10.3.4 Estimation of Shelf Life for Integrated Food Products (Comparison Test) \u003cbr\u003e10.3.4.1 Variation of Shelf Life Values in Packed, Semi-hard Cheeses in Relation to the Use of Different Food Packaging Materials \u003cbr\u003e10.3.4.1.1 Objective \u003cbr\u003e10.3.4.1.2 Preliminary Note \u003cbr\u003e10.3.4.1.3 Materials \u003cbr\u003e10.3.4.1.4 Method \u003cbr\u003e10.3.4.1.5 Evaluation of Results \u003cbr\u003e10.3.4.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e10.3.4.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e10.3.4.1.6 Final Observations\u003cbr\u003e10.4 Digital Image Analysis and Processing \u003cbr\u003e10.4.1 Colorimetry \u003cbr\u003e10.4.2 Digital Acquisition and Interpretation of Pictures \u003cbr\u003e10.4.3 Image Analysis and Processing - Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.4 Image Analysis and Processing - Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e10.4.5 Image Analysis and Processing: Practical Examples\u003cbr\u003e10.4.5.1 Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.5.2 Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e\u003cbr\u003e11 Food Packaging for Meat and Meat-based Foods \u003cbr\u003e11.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e11.1.1 Food Packaging Failures and Meat Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e11.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e11.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e11.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect\u003cbr\u003e11.1.1.4 Possible Fractures of Edible and Plastic Casings \u003cbr\u003e11.1.2 Food Packaging Failures and Meat Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e11.1.2.1 Superficial Damages, Microscopic Fractures, Scratches, Micro-bubbles, Dewetting\u003cbr\u003e11.1.2.2 External Lithography and Related Defects \u003cbr\u003e11.1.3 Food Packaging Failures and Meat Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e11.1.3.1 Colorimetric Variations \u003cbr\u003e11.1.3.2 Paper Pulverisation \u003cbr\u003e11.1.4 Food Packaging Failures and Meat Products - Visually Detectable Failures: Glass-Based Packages \u003cbr\u003e11.1.4.1 Micro-bubbling \u003cbr\u003e11.2 Microbiological Contamination \u003cbr\u003e11.3 Hybrid Tests \u003cbr\u003e11.3.1 Workability Testing Methods \u003cbr\u003e11.3.1.1 Method for the Evaluation of Impact Resistance of Infrangible Glass Containers (Final Use: Pasteurised Meat Preparations) \u003cbr\u003e11.3.1.1.1 Objective \u003cbr\u003e11.3.1.1.2 Preliminary Note \u003cbr\u003e11.3.1.1.3 Materials \u003cbr\u003e11.3.1.1.4 Method \u003cbr\u003e11.3.1.1.5 Evaluation of Results \u003cbr\u003e11.3.1.1.6 Final Observations \u003cbr\u003e11.3.2 ‘Performance’ Estimation for Integrated Food Products\u003cbr\u003e11.3.3 Estimation of the Shelf Life for Integrated Meat Products (Comparison Test) \u003cbr\u003e11.3.3.1 Variation of Shelf Life Values in Modified Atmosphere Packaging Fresh Meats with the Use of Different Food Packaging Materials \u003cbr\u003e11.3.3.1.1 Objective \u003cbr\u003e11.3.3.1.2 Preliminary Note \u003cbr\u003e11.3.3.1.3 Materials \u003cbr\u003e11.3.3.1.4 Method \u003cbr\u003e11.3.3.1.5 Evaluation of Results \u003cbr\u003e11.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e11.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e11.3.3.1.6 Final Observations\u003cbr\u003e\u003cbr\u003e12 Food Packaging for Fish Products \u003cbr\u003e12.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e12.1.1 Food Packaging Failures and Fish Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e12.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e12.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e12.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect \u003cbr\u003e12.1.1.4 Micro-bubbling and Bursting \u003cbr\u003e12.1.2 Food Packaging Failures and Fish Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e12.1.2.1 Canned Fish and Vegetable Products - Specific Colorimetric Variations\u003cbr\u003e12.1.3 Food Packaging Failures and Fish Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e12.1.4 Food Packaging Failures and Fish Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e12.2 Microbiological Contamination \u003cbr\u003e12.3 Hybrid Tests \u003cbr\u003e12.3.1 Workability Testing Methods \u003cbr\u003e12.3.1.1 Delamination Test on Sealable Polycoupled Packages (Easy Peel Pouches) for Tuna Fish \u003cbr\u003ein Water \u003cbr\u003e12.3.1.1.1 Objective \u003cbr\u003e12.3.1.1.2 Preliminary Note \u003cbr\u003e12.3.1.1.3 Materials \u003cbr\u003e12.3.1.1.4 Method \u003cbr\u003e12.3.1.1.5 Evaluation of Results \u003cbr\u003e12.3.1.1.6 Final Observations \u003cbr\u003e12.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e12.3.3 Estimation of Shelf Life for Integrated Fish Products (Comparison Test) \u003cbr\u003e12.3.3.1 Variation of Shelf Life Values in Vacuum Packed and Frozen Fish in Relation to the \u003cbr\u003eUse of Different Food Packaging Materials \u003cbr\u003e12.3.3.1.1 Objective \u003cbr\u003e12.3.3.1.2 Preliminary Note \u003cbr\u003e12.3.3.1.3 Materials \u003cbr\u003e12.3.3.1.4 Method \u003cbr\u003e12.3.3.1.5 Evaluation of Results \u003cbr\u003e12.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value \u003cbr\u003e12.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e12.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e13 Food Packaging for Fruits, Vegetables and Canned Foods \u003cbr\u003e13.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e13.1.1 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e13.1.2 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e13.1.2.1 Specific Colorimetric Variations \u003cbr\u003e13.1.3 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e13.1.4 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e13.2 Microbiological Contamination \u003cbr\u003e13.3 Hybrid Tests \u003cbr\u003e13.3.1 Workability Testing Methods \u003cbr\u003e13.3.1.1 Sterilisation Test on Metal Cans for Double Concentrated Tomato Sauce \u003cbr\u003e13.3.1.1.1 Objective \u003cbr\u003e13.3.1.1.2 Preliminary Note \u003cbr\u003e13.3.1.1.3 Materials \u003cbr\u003e13.3.1.1.4 Method \u003cbr\u003e13.3.1.1.5 Evaluation of Results \u003cbr\u003e13.3.1.1.6 Final Observations \u003cbr\u003e13.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e13.3.3 Estimation of Shelf Life for Integrated Products (Comparison Test) \u003cbr\u003e13.3.3.1 Variation of Shelf Life Values in Canned Peas with Reference to the Use of Different Food Packaging Materials\u003cbr\u003e13.3.3.1.1 Objective\u003cbr\u003e13.3.3.1.2 Preliminary Note \u003cbr\u003e13.3.3.1.3 Materials \u003cbr\u003e13.3.3.1.4 Method \u003cbr\u003e13.3.3.1.5 Evaluation of Results \u003cbr\u003e13.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e14 Food Packaging for Other Food Products \u003cbr\u003e14.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e14.1.1 Smart Packages \u003cbr\u003e14.1.1.1 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (High Sensibility)\u003cbr\u003e14.1.1.1.1 Objective \u003cbr\u003e14.1.1.1.2 Materials \u003cbr\u003e14.1.1.1.3 Method \u003cbr\u003e14.1.1.1.4 Evaluation of Results \u003cbr\u003e14.1.1.2 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (Low Sensibility) \u003cbr\u003e14.1.1.2.1 Objective \u003cbr\u003e14.1.1.2.2 Materials \u003cbr\u003e14.1.1.2.3 Method \u003cbr\u003e14.1.1.2.4 Evaluation of Results \u003cbr\u003e14.2 Microbiological Contamination \u003cbr\u003e14.3 Hybrid Tests \u003cbr\u003e\u003cbr\u003e15 Conclusions \u003cbr\u003e15.1 Food Producers Will Need More Training \u003cbr\u003e15.2 Will Official Regulations Follow Voluntary Testing Methods? \u003cbr\u003e15.3 Performance-Oriented Guidelines - Perspectives for Advanced Training in Academia \u003cbr\u003e15.4 The Viewpoint of Certification Bodies \u003cbr\u003eAppendix 1 List of Accredited Organisations with Recognised Authority \u003cbr\u003e(Analytical Testing Methods)\u003cbr\u003eAbbreviations \u003cbr\u003eIndex"}
Thermal Methods of Pol...
$205.00
{"id":11242241028,"title":"Thermal Methods of Polymer Analysis","handle":"9781847356611","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847356611 \u003cbr\u003e\u003cbr\u003epages 242, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book reviews the various thermal methods used for the characterisation of polymer properties and composition. All these methods study the properties of polymers as they change with temperature.\u003cbr\u003e\u003cbr\u003eThe methods discussed in this book are: differential photocalorimetry, differential scanning calorimetry, dielectric thermal analysis, differential thermal analysis, dynamic mechanical analysis, evolved gas analysis, gas chromatography, gas chromatography combined with mass spectrometry, mass spectrometry, microthermal analysis, thermal volatilisation, thermogravimetric analysis and thermomechanical analysis.\u003cbr\u003e\u003cbr\u003eEach technique is discussed in detail and examples of the use of each technique are also given. Each chapter has an extensive list of references so that the reader can follow up topics of interest.\u003cbr\u003e\u003cbr\u003eThis book will be a useful reference for those who already use any of these thermal methods but will also be of interest to undergraduates and those who are just starting to use these techniques.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Pyrolysis–Gas Chromatography Techniques \u003cbr\u003e1.1 Theoretical Considerations \u003cbr\u003e1.2 Instrumentation \u003cbr\u003e1.2.1 Combustion Furnace Pyrolyser \u003cbr\u003e1.2.2 Filament Pyrolyser \u003cbr\u003e1.2.3 Curie Point Pyrolyser \u003cbr\u003e1.2.4 Laser Pyrolysis \u003cbr\u003e1.3 Polymer Degradation Mechanisms \u003cbr\u003e1.3.1 Depolymerisation \u003cbr\u003e1.3.2 Side Group Elimination \u003cbr\u003e1.4 Polypropylene \u003cbr\u003e1.5 Determination of the Degree of Cure of Rubber\u003cbr\u003e1.6 Polybutadiene \u003cbr\u003e1.7 Polyacrylates and Polymethacrylates \u003cbr\u003e1.8 Polyethylene Oxide \u003cbr\u003e1.9 Polysulfides \u003cbr\u003e1.10 Silicon Polymers\u003cbr\u003e1.11 Determination of Unsaturation in Ethylene–Propylene–Diene Terpolymers \u003cbr\u003e1.12 Polyethylene Acrylate and Ethylene-vinyl Acetate Copolymers \u003cbr\u003e1.13 Styrene-based Copolymers \u003cbr\u003e1.13.1 Styrene-n-butyl Acrylate Copolymers\u003cbr\u003e1.14 Styrene–Methylymethacrylate Copolymers \u003cbr\u003e1.15 Styrene–isoprene Copolymers \u003cbr\u003e1.16 Styrene Divinylbenzene \u003cbr\u003e1.17 Chloromethylated Polystyrene–Divinylbenzene Copolymers \u003cbr\u003e1.18 Vinyl Chloride–Vinylidene Chloride Copolymers \u003cbr\u003e1.19 Comonomer Units in Polyhexafluoropropylene–Vinylidene Chloride Copolymers\u003cbr\u003e1.20 Nitrile–butadiene \u003cbr\u003e1.21 Miscellaneous Copolymers \u003cbr\u003e2 Thermogravimetric Analysis \u003cbr\u003e2.1 Theoretical Considerations \u003cbr\u003e2.2 Applications\u003cbr\u003e2.2.1 Thermal Stability Studies \u003cbr\u003e2.2.2 Degradation Studies \u003cbr\u003e2.2.3 Complementary Pyrolysis Studies \u003cbr\u003e2.2.4 Activation Energy \u003cbr\u003e2.2.5 Polymer Transitions \u003cbr\u003e2.2.6 Effect of Antioxidants on Polymer Ageing \u003cbr\u003e2.2.7 Polymer Lifetime Measurements \u003cbr\u003e2.2.8 Combustion Inhibition \u003cbr\u003e3 Complementary Thermogravimetry, Gas chromatography-Mass Spectroscopy and Fourier-Transform-Infrared Spectroscopy \u003cbr\u003e3.1 Thermogravimetry – Gas chromatography-Mass Spectroscopy Techniques \u003cbr\u003e3.1.1 Instrumentation \u003cbr\u003e3.1.2 Applications \u003cbr\u003e3.1.2.1 Ethylene–polystyrene Copolymer \u003cbr\u003e3.1.2.2 Ethylene-vinyl Acetate \u003cbr\u003e3.1.2.3 Epoxy Resins \u003cbr\u003e3.1.2.4 Phosphorus-Containing Polymers \u003cbr\u003e3.1.2.5 Polyimides. \u003cbr\u003e3.1.2.6 Miscellaneous Polymers \u003cbr\u003e3.2 Thermogravimetric Analysis–FT-IR \u003cbr\u003e3.2.1 Instrumentation \u003cbr\u003e3.2.2 Applications \u003cbr\u003e3.2.2.1 Polypropylene Carbonate \u003cbr\u003e3.2.2.2 Miscellaneous Polymers \u003cbr\u003e4 Evolved Gas Analysis \u003cbr\u003e4.1 Theoretical Considerations \u003cbr\u003e4.2 Applications. \u003cbr\u003e4.2.1 Polypropylene \u003cbr\u003e4.2.2 Polyethylene Oxide\u003cbr\u003e4.2.3 Cellulosic Flame Retardants \u003cbr\u003e4.3 TGA – GC based Evolved Gas Analysis \u003cbr\u003e4.3.1 Thermoresist Rubbers\u003cbr\u003e4.4 Pyrolysis-evolved Gas–infrared Spectroscopy \u003cbr\u003e4.5 Antioxidant Degradation \u003cbr\u003e5 Thermal Volatilisation Analysis\u003cbr\u003e5.1 Applications\u003cbr\u003e6 Thermal Volatilisation Analysis\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Measurement of Polymer Transitions\u003cbr\u003e6.1.2 Phase Change\u003cbr\u003e6.1.3 Curing Kinetics\u003cbr\u003e6.1.4 Polymer Degradation Studies\u003cbr\u003e6.1.5 Thermal and Oxidative Stability \u003cbr\u003e6.1.6 Polymer Characterisation\u003cbr\u003e6.1.7 Crystallinity \u003cbr\u003e6.1.8 Miscellaneous Applications\u003cbr\u003e6.2 Complimentary Differential Thermal Analysis–Mass Spectrometry \u003cbr\u003e7 Differential Scanning Calorimetry \u003cbr\u003e7.1 Instrumentation\u003cbr\u003e7.2 Applications\u003cbr\u003e7.2.1 Determination of Crystallinity \u003cbr\u003e7.2.2 Effect of Solvents on Crystallinity \u003cbr\u003e7.2.3 Crystallisation Kinetics\u003cbr\u003e7.2.4 Effects of Fillers on Crystallinity \u003cbr\u003e7.2.5 Crystallisation Temperature \u003cbr\u003e7.2.6 Curing Kinetics \u003cbr\u003e7.2.7 Measurement of Transition Temperatures, Glass Transition, other Transitions \u003cbr\u003e7.2.8 Preparation of Phase Diagrams\u003cbr\u003e7.2.9 Melting Temperature \u003cbr\u003e7.2.10 Miscellaneous Applications of DSC \u003cbr\u003e8 Dynamic Mechanical Thermal Analysis \u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Measurement of Glass Transition Temperature and other Transitions =\u003cbr\u003e8.1.2 Resin Cure Studies \u003cbr\u003e8.1.3 Modulus Measurements\u003cbr\u003e8.1.4 Stress–strain Measurements \u003cbr\u003e8.1.5 Rheological Properties and Viscosity \u003cbr\u003e8.1.6 Relaxation Phenomena \u003cbr\u003e8.1.7 Morphology\u003cbr\u003e8.1.8 Thermal Properties \u003cbr\u003e8.1.9 Other Applications \u003cbr\u003e9 Thermomechanical Analysis\u003cbr\u003e9.1 Theoretical Considerations \u003cbr\u003e9.2 Instrumentation \u003cbr\u003e9.3 Applications \u003cbr\u003e9.3.1 Mechanical and Thermal Properties\u003cbr\u003e9.3.2 Transitions \u003cbr\u003e9.3.3 Fibre Stress–strain Measurements \u003cbr\u003e9.2.4 Polymer Characterisation Studies\u003cbr\u003e9.3.5 Viscoelastic and Rheological Properties \u003cbr\u003e9.3.6 Gel Time Measurement \u003cbr\u003e10 Microthermal Analysis \u003cbr\u003e10.1 Theoretical Considerations \u003cbr\u003e10.2 Atomic Force Microscopy \u003cbr\u003e10.3 Instrumentation \u003cbr\u003e10.4 Applications \u003cbr\u003e10.4.1 Morphology\u003cbr\u003e10.4.2 Topography Studies\u003cbr\u003e10.4.3 Depth Profiling \u003cbr\u003e10.4.4 Glass Transition\u003cbr\u003e11 Differential Photocalorimetry \u003cbr\u003e11.1 Theoretical Considerations \u003cbr\u003e11.2 Instrumentation \u003cbr\u003e11.3 Applications \u003cbr\u003e11.3.1 Photocure Rates\u003cbr\u003e11.3.2 Degree of Cure \u003cbr\u003e11.3.3 Dependence of Reactivity upon Functionalisation\u003cbr\u003e11.3.3.1 Influence of Wavelength \u003cbr\u003e11.3.3.2 Influence of Photoinitiator Concentration \u003cbr\u003e11.3.3.3 Influence of Humidity \u003cbr\u003e11.3.4 Miscellaneous Applications \u003cbr\u003e12 Dielectric Thermal Analysis \u003cbr\u003e12.1 Theoretical Considerations \u003cbr\u003e12.2 Applications \u003cbr\u003e12.2.1 Resin Cure Studies \u003cbr\u003e12.2.2 Viscoelastic and Rheological Properties \u003cbr\u003e12.2.2.1 Flow and Cure of an Aerospace Adhesive \u003cbr\u003e12.2.2.2 Influence of Thermal History on Nylon \u003cbr\u003e12.2.3 Thermal Transitions\u003cbr\u003e12.2.4 Polymer Characterisation \u003cbr\u003e13 Resin Cure Studies \u003cbr\u003e13.1 Techniques \u003cbr\u003e13.1.1 Differential Photocalorimetry\u003cbr\u003e13.1.2 Dielectric Thermal Analysis\u003cbr\u003e13.1.3 Differential Scanning Calorimetry\u003cbr\u003e13.1.4 Dynamic Mechanical Analysis \u003cbr\u003e14 Thermal Degradation Mechanisms \u003cbr\u003e14.1 Theoretical Considerations \u003cbr\u003e14.2 Pyrolysis-Gas Chromatography-Mass Spectrometry \u003cbr\u003e14.2.1 Polypropylene Carbonate Decomposition \u003cbr\u003e14.2.2 Polyisobutylene Decomposition \u003cbr\u003e14.2.3 Polystyrene Decompositions \u003cbr\u003e14.2.4 Nitrogen-Containing Polymers \u003cbr\u003e14.2.5 Sulfur Containing Polymers \u003cbr\u003e14.2.6 Miscellaneous Polymers \u003cbr\u003e14.3 Pyrolysis–FT-IR Spectroscopy \u003cbr\u003e14.4 Derivitisation–Pyrolysis–Mass Spectrometry\u003cbr\u003e14.5 Differential Scanning Calorimetry and Thermogravimetry\u003cbr\u003e14.6 Pyrolysis – Mass Spectrometry (Without an Intervening Chromatographic Stage)\u003cbr\u003e14.7 Examination of Thermal Stability \u003cbr\u003eAppendix 1\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","analysis","book","p-properties","polymer"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436228,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Methods of Polymer Analysis","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356611","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231","options":["Title"],"media":[{"alt":null,"id":358806388829,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847356611 \u003cbr\u003e\u003cbr\u003epages 242, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book reviews the various thermal methods used for the characterisation of polymer properties and composition. All these methods study the properties of polymers as they change with temperature.\u003cbr\u003e\u003cbr\u003eThe methods discussed in this book are: differential photocalorimetry, differential scanning calorimetry, dielectric thermal analysis, differential thermal analysis, dynamic mechanical analysis, evolved gas analysis, gas chromatography, gas chromatography combined with mass spectrometry, mass spectrometry, microthermal analysis, thermal volatilisation, thermogravimetric analysis and thermomechanical analysis.\u003cbr\u003e\u003cbr\u003eEach technique is discussed in detail and examples of the use of each technique are also given. Each chapter has an extensive list of references so that the reader can follow up topics of interest.\u003cbr\u003e\u003cbr\u003eThis book will be a useful reference for those who already use any of these thermal methods but will also be of interest to undergraduates and those who are just starting to use these techniques.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Pyrolysis–Gas Chromatography Techniques \u003cbr\u003e1.1 Theoretical Considerations \u003cbr\u003e1.2 Instrumentation \u003cbr\u003e1.2.1 Combustion Furnace Pyrolyser \u003cbr\u003e1.2.2 Filament Pyrolyser \u003cbr\u003e1.2.3 Curie Point Pyrolyser \u003cbr\u003e1.2.4 Laser Pyrolysis \u003cbr\u003e1.3 Polymer Degradation Mechanisms \u003cbr\u003e1.3.1 Depolymerisation \u003cbr\u003e1.3.2 Side Group Elimination \u003cbr\u003e1.4 Polypropylene \u003cbr\u003e1.5 Determination of the Degree of Cure of Rubber\u003cbr\u003e1.6 Polybutadiene \u003cbr\u003e1.7 Polyacrylates and Polymethacrylates \u003cbr\u003e1.8 Polyethylene Oxide \u003cbr\u003e1.9 Polysulfides \u003cbr\u003e1.10 Silicon Polymers\u003cbr\u003e1.11 Determination of Unsaturation in Ethylene–Propylene–Diene Terpolymers \u003cbr\u003e1.12 Polyethylene Acrylate and Ethylene-vinyl Acetate Copolymers \u003cbr\u003e1.13 Styrene-based Copolymers \u003cbr\u003e1.13.1 Styrene-n-butyl Acrylate Copolymers\u003cbr\u003e1.14 Styrene–Methylymethacrylate Copolymers \u003cbr\u003e1.15 Styrene–isoprene Copolymers \u003cbr\u003e1.16 Styrene Divinylbenzene \u003cbr\u003e1.17 Chloromethylated Polystyrene–Divinylbenzene Copolymers \u003cbr\u003e1.18 Vinyl Chloride–Vinylidene Chloride Copolymers \u003cbr\u003e1.19 Comonomer Units in Polyhexafluoropropylene–Vinylidene Chloride Copolymers\u003cbr\u003e1.20 Nitrile–butadiene \u003cbr\u003e1.21 Miscellaneous Copolymers \u003cbr\u003e2 Thermogravimetric Analysis \u003cbr\u003e2.1 Theoretical Considerations \u003cbr\u003e2.2 Applications\u003cbr\u003e2.2.1 Thermal Stability Studies \u003cbr\u003e2.2.2 Degradation Studies \u003cbr\u003e2.2.3 Complementary Pyrolysis Studies \u003cbr\u003e2.2.4 Activation Energy \u003cbr\u003e2.2.5 Polymer Transitions \u003cbr\u003e2.2.6 Effect of Antioxidants on Polymer Ageing \u003cbr\u003e2.2.7 Polymer Lifetime Measurements \u003cbr\u003e2.2.8 Combustion Inhibition \u003cbr\u003e3 Complementary Thermogravimetry, Gas chromatography-Mass Spectroscopy and Fourier-Transform-Infrared Spectroscopy \u003cbr\u003e3.1 Thermogravimetry – Gas chromatography-Mass Spectroscopy Techniques \u003cbr\u003e3.1.1 Instrumentation \u003cbr\u003e3.1.2 Applications \u003cbr\u003e3.1.2.1 Ethylene–polystyrene Copolymer \u003cbr\u003e3.1.2.2 Ethylene-vinyl Acetate \u003cbr\u003e3.1.2.3 Epoxy Resins \u003cbr\u003e3.1.2.4 Phosphorus-Containing Polymers \u003cbr\u003e3.1.2.5 Polyimides. \u003cbr\u003e3.1.2.6 Miscellaneous Polymers \u003cbr\u003e3.2 Thermogravimetric Analysis–FT-IR \u003cbr\u003e3.2.1 Instrumentation \u003cbr\u003e3.2.2 Applications \u003cbr\u003e3.2.2.1 Polypropylene Carbonate \u003cbr\u003e3.2.2.2 Miscellaneous Polymers \u003cbr\u003e4 Evolved Gas Analysis \u003cbr\u003e4.1 Theoretical Considerations \u003cbr\u003e4.2 Applications. \u003cbr\u003e4.2.1 Polypropylene \u003cbr\u003e4.2.2 Polyethylene Oxide\u003cbr\u003e4.2.3 Cellulosic Flame Retardants \u003cbr\u003e4.3 TGA – GC based Evolved Gas Analysis \u003cbr\u003e4.3.1 Thermoresist Rubbers\u003cbr\u003e4.4 Pyrolysis-evolved Gas–infrared Spectroscopy \u003cbr\u003e4.5 Antioxidant Degradation \u003cbr\u003e5 Thermal Volatilisation Analysis\u003cbr\u003e5.1 Applications\u003cbr\u003e6 Thermal Volatilisation Analysis\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Measurement of Polymer Transitions\u003cbr\u003e6.1.2 Phase Change\u003cbr\u003e6.1.3 Curing Kinetics\u003cbr\u003e6.1.4 Polymer Degradation Studies\u003cbr\u003e6.1.5 Thermal and Oxidative Stability \u003cbr\u003e6.1.6 Polymer Characterisation\u003cbr\u003e6.1.7 Crystallinity \u003cbr\u003e6.1.8 Miscellaneous Applications\u003cbr\u003e6.2 Complimentary Differential Thermal Analysis–Mass Spectrometry \u003cbr\u003e7 Differential Scanning Calorimetry \u003cbr\u003e7.1 Instrumentation\u003cbr\u003e7.2 Applications\u003cbr\u003e7.2.1 Determination of Crystallinity \u003cbr\u003e7.2.2 Effect of Solvents on Crystallinity \u003cbr\u003e7.2.3 Crystallisation Kinetics\u003cbr\u003e7.2.4 Effects of Fillers on Crystallinity \u003cbr\u003e7.2.5 Crystallisation Temperature \u003cbr\u003e7.2.6 Curing Kinetics \u003cbr\u003e7.2.7 Measurement of Transition Temperatures, Glass Transition, other Transitions \u003cbr\u003e7.2.8 Preparation of Phase Diagrams\u003cbr\u003e7.2.9 Melting Temperature \u003cbr\u003e7.2.10 Miscellaneous Applications of DSC \u003cbr\u003e8 Dynamic Mechanical Thermal Analysis \u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Measurement of Glass Transition Temperature and other Transitions =\u003cbr\u003e8.1.2 Resin Cure Studies \u003cbr\u003e8.1.3 Modulus Measurements\u003cbr\u003e8.1.4 Stress–strain Measurements \u003cbr\u003e8.1.5 Rheological Properties and Viscosity \u003cbr\u003e8.1.6 Relaxation Phenomena \u003cbr\u003e8.1.7 Morphology\u003cbr\u003e8.1.8 Thermal Properties \u003cbr\u003e8.1.9 Other Applications \u003cbr\u003e9 Thermomechanical Analysis\u003cbr\u003e9.1 Theoretical Considerations \u003cbr\u003e9.2 Instrumentation \u003cbr\u003e9.3 Applications \u003cbr\u003e9.3.1 Mechanical and Thermal Properties\u003cbr\u003e9.3.2 Transitions \u003cbr\u003e9.3.3 Fibre Stress–strain Measurements \u003cbr\u003e9.2.4 Polymer Characterisation Studies\u003cbr\u003e9.3.5 Viscoelastic and Rheological Properties \u003cbr\u003e9.3.6 Gel Time Measurement \u003cbr\u003e10 Microthermal Analysis \u003cbr\u003e10.1 Theoretical Considerations \u003cbr\u003e10.2 Atomic Force Microscopy \u003cbr\u003e10.3 Instrumentation \u003cbr\u003e10.4 Applications \u003cbr\u003e10.4.1 Morphology\u003cbr\u003e10.4.2 Topography Studies\u003cbr\u003e10.4.3 Depth Profiling \u003cbr\u003e10.4.4 Glass Transition\u003cbr\u003e11 Differential Photocalorimetry \u003cbr\u003e11.1 Theoretical Considerations \u003cbr\u003e11.2 Instrumentation \u003cbr\u003e11.3 Applications \u003cbr\u003e11.3.1 Photocure Rates\u003cbr\u003e11.3.2 Degree of Cure \u003cbr\u003e11.3.3 Dependence of Reactivity upon Functionalisation\u003cbr\u003e11.3.3.1 Influence of Wavelength \u003cbr\u003e11.3.3.2 Influence of Photoinitiator Concentration \u003cbr\u003e11.3.3.3 Influence of Humidity \u003cbr\u003e11.3.4 Miscellaneous Applications \u003cbr\u003e12 Dielectric Thermal Analysis \u003cbr\u003e12.1 Theoretical Considerations \u003cbr\u003e12.2 Applications \u003cbr\u003e12.2.1 Resin Cure Studies \u003cbr\u003e12.2.2 Viscoelastic and Rheological Properties \u003cbr\u003e12.2.2.1 Flow and Cure of an Aerospace Adhesive \u003cbr\u003e12.2.2.2 Influence of Thermal History on Nylon \u003cbr\u003e12.2.3 Thermal Transitions\u003cbr\u003e12.2.4 Polymer Characterisation \u003cbr\u003e13 Resin Cure Studies \u003cbr\u003e13.1 Techniques \u003cbr\u003e13.1.1 Differential Photocalorimetry\u003cbr\u003e13.1.2 Dielectric Thermal Analysis\u003cbr\u003e13.1.3 Differential Scanning Calorimetry\u003cbr\u003e13.1.4 Dynamic Mechanical Analysis \u003cbr\u003e14 Thermal Degradation Mechanisms \u003cbr\u003e14.1 Theoretical Considerations \u003cbr\u003e14.2 Pyrolysis-Gas Chromatography-Mass Spectrometry \u003cbr\u003e14.2.1 Polypropylene Carbonate Decomposition \u003cbr\u003e14.2.2 Polyisobutylene Decomposition \u003cbr\u003e14.2.3 Polystyrene Decompositions \u003cbr\u003e14.2.4 Nitrogen-Containing Polymers \u003cbr\u003e14.2.5 Sulfur Containing Polymers \u003cbr\u003e14.2.6 Miscellaneous Polymers \u003cbr\u003e14.3 Pyrolysis–FT-IR Spectroscopy \u003cbr\u003e14.4 Derivitisation–Pyrolysis–Mass Spectrometry\u003cbr\u003e14.5 Differential Scanning Calorimetry and Thermogravimetry\u003cbr\u003e14.6 Pyrolysis – Mass Spectrometry (Without an Intervening Chromatographic Stage)\u003cbr\u003e14.7 Examination of Thermal Stability \u003cbr\u003eAppendix 1\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Applications of Polyme...
$250.00
{"id":11242240964,"title":"Applications of Polymers in Drug Delivery","handle":"9781847358516","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","delivery system","drug absorption","drug delivery","gastric drug delivery","mucaodhesive drug delivery","ocular drug delivery","oral drug delivery","p-applications","patch delivery system","polymer","polymeric system","r-formulation","transdermal drug delivery"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applications of Polymers in Drug Delivery","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847358516","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","options":["Title"],"media":[{"alt":null,"id":350156095581,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex"}
REACH for the Polymer ...
$125.00
{"id":11242240836,"title":"REACH for the Polymer Industry - A Practical Guide","handle":"9781847356208","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Polymer REACH Consortium \u003cbr\u003eISBN 9781847356208 \u003cbr\u003e\u003cbr\u003ePublished: 2012\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book has been produced by the EU Leonardo Project called Polymer REACH. The overall objective of Polymer REACH was to develop an e-learning platform and training materials for the European polymer industry to learn and understand how to manage their obligations under the European legislation - Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). \u003cbr\u003e\u003cbr\u003eThis book forms part of the training materials which will complement the industry-specific e-learning platform to enable the polymer industry to learn how to manage their obligations under REACH. The overall impact will be an increase in the knowledge base of the polymer industry on REACH, which will in turn help to increase competitiveness and sustainability of the sector.\u003cbr\u003e\u003cbr\u003eThis book will be useful to anyone who works with polymers or the chemicals that are used to make polymers, whether they are end-users or suppliers. REACH is affecting everyone concerned with the polymer industry and this book will help them to prepare for the impact and consequences of the REACH legislation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Mechanical Properties of Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Tensile Strength\u003cbr\u003e1.2.1 Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3 Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1 Torsion Test\u003cbr\u003e1.3.2 Hand Test\u003cbr\u003e1.4 Elongation at Break\u003cbr\u003e1.4.1 Basic Creep Data\u003cbr\u003e1.5 Strain at Yield\u003cbr\u003e1.5.1 Isochronous Stress-strain Curves\u003cbr\u003e1.5.2 Stress-time Curves\u003cbr\u003e1.5.3 Stress-temperature Curves\u003cbr\u003e1.5.4 Extrapolation Techniques\u003cbr\u003e1.5.5 Basic Parameters\u003cbr\u003e1.5.6 Recovery in Stress Phenomena\u003cbr\u003e1.5.7 Stress Relaxation\u003cbr\u003e1.5.8 Rupture Data\u003cbr\u003e1.5.9 Long-term Strain-time Data\u003cbr\u003e1.6 Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1 Notched Izod Impact Strength\u003cbr\u003e1.6.2 Falling Weight Impact Test\u003cbr\u003e1.6.3 Notch Sensitivity\u003cbr\u003e1.6.4 Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5 Effect of Molecular Parameters\u003cbr\u003e1.7 Shear Strength\u003cbr\u003e1.8 Elongation in Tension\u003cbr\u003e1.9 Deformation Under Load\u003cbr\u003e1.10 Compressive Set (Permanent Deformation)\u003cbr\u003e1.11 Mould Shrinkage\u003cbr\u003e1.12 Coefficient of Friction\u003cbr\u003e1.13 Fatigue Index\u003cbr\u003e1.14 Toughness\u003cbr\u003e1.15 Abrasion Resistance or Wear\u003cbr\u003e1.16 Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1 Glass Fibres\u003cbr\u003e1.16.1.1 Poly Tetrafluoroethylene\u003cbr\u003e1.16.2 Polyethylene Terephthalate\u003cbr\u003e1.16.2.1 Polyether Ether Ketone\u003cbr\u003e1.16.2.2 Polyimide\u003cbr\u003e1.16.2.3 Polyamide Imide\u003cbr\u003e1.16.3 Calcium Carbonate\u003cbr\u003e1.16.4 Modified Clays\u003cbr\u003e1.16.5 Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6 Carbon Fibres\u003cbr\u003e1.16.7 Carbon Nanotubes\u003cbr\u003e1.16.8 Miscellaneous Fillers\/Reinforcing Agents.\u003cbr\u003e1.16.9 Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17 Application of Dynamic Mechanical Analysis.\u003cbr\u003e1.17.1 Theory\u003cbr\u003e1.17.2 Instrumentation (Appendix 1)\u003cbr\u003e1.17.3 Fixed Frequency Mode\u003cbr\u003e1.17.3.1 Resonant Frequency Mode\u003cbr\u003e1.17.3.2 Stress Relaxation Mode\u003cbr\u003e1.17.3.3 Creep Mode\u003cbr\u003e1.17.3.4 Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5 Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6 Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7 Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8 Storage Modulus\u003cbr\u003e1.17.3.9 Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10 Elastomer Low-Temperature Properties\u003cbr\u003e1.17.3.11 Tensile Modulus\u003cbr\u003e1.17.3.12 Stress-strain Relationships\u003cbr\u003e1.17.3.13 Viscosity\u003cbr\u003e1.17.3.14 Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18 Rheology and Viscoelasticity\u003cbr\u003e1.19 Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1 Measurement of Rheological Properties\u003cbr\u003e1.19.2 Viscosity and Elasticity\u003cbr\u003e1.19.3 Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4 Flexing Test\u003cbr\u003e1.19.5 Deformation\u003cbr\u003e1.19.6 Tensile Properties\u003cbr\u003e1.19.7 Mechanical Stability of Natural and Synthetic Lattices\u003cbr\u003e1.19.8 Abrasion Test\u003cbr\u003e1.19.9 Peel Adhesion Test\u003cbr\u003e1.19.10 Ozone Resistance Test\u003cbr\u003e1.20 Physical Testing of Polymer Powders\u003cbr\u003e1.20.1 Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2 Artificial Weathering\u003cbr\u003e1.20.3 Natural Weathering\u003cbr\u003e1.20.4 Reactivity\u003cbr\u003e1.20.5 Melt Viscosity\u003cbr\u003e1.20.6 Loss on Stoving\u003cbr\u003e1.20.7 True Density\u003cbr\u003e1.20.8 Bulk Density\u003cbr\u003e1.20.9 Powder Flow\u003cbr\u003e1.20.10 Test for Cure\u003cbr\u003e1.20.11 Electrical Properties\u003cbr\u003e1.20.12 Thermal Analysis\u003cbr\u003e1.20.13 Particle-size Distribution\u003cbr\u003e1.20.13.1 Methods Based on Electrical Sensing Zone (Coulter Principle)\u003cbr\u003e1.20.13.2 Laser Particle Size Analysers\u003cbr\u003e1.20.13.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4 Sedimentation.\u003cbr\u003e1.20.13.5 Acoustic Spectroscopy\u003cbr\u003e1.20.13.6 Capillary Hydrodynamic Fractionation\u003cbr\u003e1.20.13.7 Small-angle Light Scattering\u003cbr\u003e1.21 Plastic Pipe Materials\u003cbr\u003e1.22 Plastic Film\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Thermal Properties of Polymers\u003cbr\u003e2.1 Linear Co-efficient of Expansion\u003cbr\u003e2.2 Mould Shrinkage\u003cbr\u003e2.3 Distortion Temperature\u003cbr\u003e2.3.1 Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2 Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4 Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5 Melting Temperature\u003cbr\u003e2.6 Maximum Operating Temperature\u003cbr\u003e2.7 Melt Flow Index\u003cbr\u003e2.8 VICAT Softening Point\u003cbr\u003e2.9 Thermal Conductivity\u003cbr\u003e2.10 Specific Heat\u003cbr\u003e2.10.1 Hot-wire Techniques\u003cbr\u003e2.10.2 Transient Plane Source Technique\u003cbr\u003e2.10.3 Laser Flash Technique\u003cbr\u003e2.10.4 Thermal Diffusivity\u003cbr\u003e2.11 Maximum Filming Temperature\u003cbr\u003e2.12 Heat at Volatilisation\u003cbr\u003e2.13 Glass Transition Temperature\u003cbr\u003e2.13.1 Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1 Theory\u003cbr\u003e2.14 Thermomechanical Analysis\u003cbr\u003e2.14.1 Theory\u003cbr\u003e2.15 Dynamic Mechanical Analysis\u003cbr\u003e2.16 Differential Thermal Analysis and \u003cbr\u003eThermogravimetric Analysis\u003cbr\u003e2.17 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18 Dielectric Thermal Analysis\u003cbr\u003e2.19 Inverse Gas Chromatography\u003cbr\u003e2.20 Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1 Differential Thermal Analysis\u003cbr\u003e2.20.2 Dynamic Mechanical Analysis\u003cbr\u003e2.20.3 Dielectric Thermal Analysis\u003cbr\u003e2.20.4 Thermomechanical Analysis\u003cbr\u003e2.20.5 Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Electrical Properties\u003cbr\u003e3.1 Volume Resistivity\u003cbr\u003e3.2 Dielectric Strength\u003cbr\u003e3.3 Dielectric Constant\u003cbr\u003e3.4 Dissipation Factor\u003cbr\u003e3.5 Surface Arc Resistance\u003cbr\u003e3.6 Tracking Resistance\u003cbr\u003e3.7 Electrical Resistance and Resistivity\u003cbr\u003e3.8 Electrical Conductivity\u003cbr\u003e3.9 Electronically Conducting Polymers\u003cbr\u003e3.10 Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Other Physical Properties\u003cbr\u003e4.1 Surface Hardness\u003cbr\u003e4.2 Specific Gravity and Bulk Density\u003cbr\u003e4.3 Gas Barrier Properties\u003cbr\u003e4.4 Optical Properties\u003cbr\u003e4.4.1 Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2 Light Scattering\u003cbr\u003e4.4.3 Optical Properties\u003cbr\u003e4.4.4 Electro-optical Effect\u003cbr\u003e4.4.5 Infrared Optical Properties\u003cbr\u003e4.5 Monitoring of Resin Cure\u003cbr\u003e4.5.1 Thermally Cured Resins\u003cbr\u003e4.5.1.1 Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2 Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3 Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4 Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5 Thermal Conductivity\u003cbr\u003e4.5.2 Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1 Differential Photo-calorimetry\u003cbr\u003e4.5.2.2 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3 Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4 Gas Chromatography-based Methods\u003cbr\u003e4.6 Adhesion Studies\u003cbr\u003e4.7 Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1 Dynamic Mechanical Analysis\u003cbr\u003e4.7.2 Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Thermal Stability\u003cbr\u003e5.1 Thermogravimetric Analysis\u003cbr\u003e5.2 Differential Thermal Analysis\u003cbr\u003e5.3 Differential Scanning Calorimetry\u003cbr\u003e5.4 Thermal Volatilisation Analysis\u003cbr\u003e5.5 Evolved Gas Analysis\u003cbr\u003e5.6 Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7 Mass Spectroscopy\u003cbr\u003e5.8 Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9 Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Thermo-oxidative Stability\u003cbr\u003e6.1 Thermogravimetric Analysis\u003cbr\u003e6.2 Differential Scanning Calorimetry\u003cbr\u003e6.3 Evolved Gas Analysis\u003cbr\u003e6.4 Infrared Spectroscopy\u003cbr\u003e6.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6 Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7 Imaging Chemiluminescence\u003cbr\u003e6.8 Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Assessment of Polymer Stability\u003cbr\u003e7.1 Light Stability\u003cbr\u003e7.1.1 Ultraviolet Light Weathering\u003cbr\u003e7.1.2 Natural Weathering Tests\u003cbr\u003e7.2 Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1 Effect of Pigments\u003cbr\u003e7.2.2 Effect of Carbon Black\u003cbr\u003e7.2.3 Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4 Effect of Thickness\u003cbr\u003e7.2.5 Effect of Stress during Exposure\u003cbr\u003e7.3 Gamma Radiation\u003cbr\u003e7.4 Electron Irradiation\u003cbr\u003e7.5 Irradiation by Carbon Ion Beam\u003cbr\u003e7.6 Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7 Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8 Water Absorption\u003cbr\u003e7.9 Chemical Resistance\u003cbr\u003e7.9.1 Detergent Resistance\u003cbr\u003e7.10 Hydrolytic Stability\u003cbr\u003e7.11 Resistance to Gases\u003cbr\u003e7.12 Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Selecting a Suitable Polymer\u003cbr\u003e8.1 Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2 Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3 Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers\u003cbr\u003eAppendix 2 – Mechanical properties of polymers\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:45-04:00","created_at":"2017-06-22T21:14:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","adhesion","book","electrical properties","elongation","mechanical propertis","p-properties","polymer REACH","polymer stability","properties of polymer","REACH legislation","thermal properties","thermal stability","thermo-oxidative stability"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378435140,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"REACH for the Polymer Industry - A Practical Guide","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356208","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947","options":["Title"],"media":[{"alt":null,"id":358729023581,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Polymer REACH Consortium \u003cbr\u003eISBN 9781847356208 \u003cbr\u003e\u003cbr\u003ePublished: 2012\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book has been produced by the EU Leonardo Project called Polymer REACH. The overall objective of Polymer REACH was to develop an e-learning platform and training materials for the European polymer industry to learn and understand how to manage their obligations under the European legislation - Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). \u003cbr\u003e\u003cbr\u003eThis book forms part of the training materials which will complement the industry-specific e-learning platform to enable the polymer industry to learn how to manage their obligations under REACH. The overall impact will be an increase in the knowledge base of the polymer industry on REACH, which will in turn help to increase competitiveness and sustainability of the sector.\u003cbr\u003e\u003cbr\u003eThis book will be useful to anyone who works with polymers or the chemicals that are used to make polymers, whether they are end-users or suppliers. REACH is affecting everyone concerned with the polymer industry and this book will help them to prepare for the impact and consequences of the REACH legislation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Mechanical Properties of Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Tensile Strength\u003cbr\u003e1.2.1 Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3 Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1 Torsion Test\u003cbr\u003e1.3.2 Hand Test\u003cbr\u003e1.4 Elongation at Break\u003cbr\u003e1.4.1 Basic Creep Data\u003cbr\u003e1.5 Strain at Yield\u003cbr\u003e1.5.1 Isochronous Stress-strain Curves\u003cbr\u003e1.5.2 Stress-time Curves\u003cbr\u003e1.5.3 Stress-temperature Curves\u003cbr\u003e1.5.4 Extrapolation Techniques\u003cbr\u003e1.5.5 Basic Parameters\u003cbr\u003e1.5.6 Recovery in Stress Phenomena\u003cbr\u003e1.5.7 Stress Relaxation\u003cbr\u003e1.5.8 Rupture Data\u003cbr\u003e1.5.9 Long-term Strain-time Data\u003cbr\u003e1.6 Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1 Notched Izod Impact Strength\u003cbr\u003e1.6.2 Falling Weight Impact Test\u003cbr\u003e1.6.3 Notch Sensitivity\u003cbr\u003e1.6.4 Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5 Effect of Molecular Parameters\u003cbr\u003e1.7 Shear Strength\u003cbr\u003e1.8 Elongation in Tension\u003cbr\u003e1.9 Deformation Under Load\u003cbr\u003e1.10 Compressive Set (Permanent Deformation)\u003cbr\u003e1.11 Mould Shrinkage\u003cbr\u003e1.12 Coefficient of Friction\u003cbr\u003e1.13 Fatigue Index\u003cbr\u003e1.14 Toughness\u003cbr\u003e1.15 Abrasion Resistance or Wear\u003cbr\u003e1.16 Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1 Glass Fibres\u003cbr\u003e1.16.1.1 Poly Tetrafluoroethylene\u003cbr\u003e1.16.2 Polyethylene Terephthalate\u003cbr\u003e1.16.2.1 Polyether Ether Ketone\u003cbr\u003e1.16.2.2 Polyimide\u003cbr\u003e1.16.2.3 Polyamide Imide\u003cbr\u003e1.16.3 Calcium Carbonate\u003cbr\u003e1.16.4 Modified Clays\u003cbr\u003e1.16.5 Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6 Carbon Fibres\u003cbr\u003e1.16.7 Carbon Nanotubes\u003cbr\u003e1.16.8 Miscellaneous Fillers\/Reinforcing Agents.\u003cbr\u003e1.16.9 Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17 Application of Dynamic Mechanical Analysis.\u003cbr\u003e1.17.1 Theory\u003cbr\u003e1.17.2 Instrumentation (Appendix 1)\u003cbr\u003e1.17.3 Fixed Frequency Mode\u003cbr\u003e1.17.3.1 Resonant Frequency Mode\u003cbr\u003e1.17.3.2 Stress Relaxation Mode\u003cbr\u003e1.17.3.3 Creep Mode\u003cbr\u003e1.17.3.4 Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5 Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6 Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7 Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8 Storage Modulus\u003cbr\u003e1.17.3.9 Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10 Elastomer Low-Temperature Properties\u003cbr\u003e1.17.3.11 Tensile Modulus\u003cbr\u003e1.17.3.12 Stress-strain Relationships\u003cbr\u003e1.17.3.13 Viscosity\u003cbr\u003e1.17.3.14 Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18 Rheology and Viscoelasticity\u003cbr\u003e1.19 Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1 Measurement of Rheological Properties\u003cbr\u003e1.19.2 Viscosity and Elasticity\u003cbr\u003e1.19.3 Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4 Flexing Test\u003cbr\u003e1.19.5 Deformation\u003cbr\u003e1.19.6 Tensile Properties\u003cbr\u003e1.19.7 Mechanical Stability of Natural and Synthetic Lattices\u003cbr\u003e1.19.8 Abrasion Test\u003cbr\u003e1.19.9 Peel Adhesion Test\u003cbr\u003e1.19.10 Ozone Resistance Test\u003cbr\u003e1.20 Physical Testing of Polymer Powders\u003cbr\u003e1.20.1 Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2 Artificial Weathering\u003cbr\u003e1.20.3 Natural Weathering\u003cbr\u003e1.20.4 Reactivity\u003cbr\u003e1.20.5 Melt Viscosity\u003cbr\u003e1.20.6 Loss on Stoving\u003cbr\u003e1.20.7 True Density\u003cbr\u003e1.20.8 Bulk Density\u003cbr\u003e1.20.9 Powder Flow\u003cbr\u003e1.20.10 Test for Cure\u003cbr\u003e1.20.11 Electrical Properties\u003cbr\u003e1.20.12 Thermal Analysis\u003cbr\u003e1.20.13 Particle-size Distribution\u003cbr\u003e1.20.13.1 Methods Based on Electrical Sensing Zone (Coulter Principle)\u003cbr\u003e1.20.13.2 Laser Particle Size Analysers\u003cbr\u003e1.20.13.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4 Sedimentation.\u003cbr\u003e1.20.13.5 Acoustic Spectroscopy\u003cbr\u003e1.20.13.6 Capillary Hydrodynamic Fractionation\u003cbr\u003e1.20.13.7 Small-angle Light Scattering\u003cbr\u003e1.21 Plastic Pipe Materials\u003cbr\u003e1.22 Plastic Film\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Thermal Properties of Polymers\u003cbr\u003e2.1 Linear Co-efficient of Expansion\u003cbr\u003e2.2 Mould Shrinkage\u003cbr\u003e2.3 Distortion Temperature\u003cbr\u003e2.3.1 Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2 Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4 Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5 Melting Temperature\u003cbr\u003e2.6 Maximum Operating Temperature\u003cbr\u003e2.7 Melt Flow Index\u003cbr\u003e2.8 VICAT Softening Point\u003cbr\u003e2.9 Thermal Conductivity\u003cbr\u003e2.10 Specific Heat\u003cbr\u003e2.10.1 Hot-wire Techniques\u003cbr\u003e2.10.2 Transient Plane Source Technique\u003cbr\u003e2.10.3 Laser Flash Technique\u003cbr\u003e2.10.4 Thermal Diffusivity\u003cbr\u003e2.11 Maximum Filming Temperature\u003cbr\u003e2.12 Heat at Volatilisation\u003cbr\u003e2.13 Glass Transition Temperature\u003cbr\u003e2.13.1 Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1 Theory\u003cbr\u003e2.14 Thermomechanical Analysis\u003cbr\u003e2.14.1 Theory\u003cbr\u003e2.15 Dynamic Mechanical Analysis\u003cbr\u003e2.16 Differential Thermal Analysis and \u003cbr\u003eThermogravimetric Analysis\u003cbr\u003e2.17 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18 Dielectric Thermal Analysis\u003cbr\u003e2.19 Inverse Gas Chromatography\u003cbr\u003e2.20 Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1 Differential Thermal Analysis\u003cbr\u003e2.20.2 Dynamic Mechanical Analysis\u003cbr\u003e2.20.3 Dielectric Thermal Analysis\u003cbr\u003e2.20.4 Thermomechanical Analysis\u003cbr\u003e2.20.5 Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Electrical Properties\u003cbr\u003e3.1 Volume Resistivity\u003cbr\u003e3.2 Dielectric Strength\u003cbr\u003e3.3 Dielectric Constant\u003cbr\u003e3.4 Dissipation Factor\u003cbr\u003e3.5 Surface Arc Resistance\u003cbr\u003e3.6 Tracking Resistance\u003cbr\u003e3.7 Electrical Resistance and Resistivity\u003cbr\u003e3.8 Electrical Conductivity\u003cbr\u003e3.9 Electronically Conducting Polymers\u003cbr\u003e3.10 Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Other Physical Properties\u003cbr\u003e4.1 Surface Hardness\u003cbr\u003e4.2 Specific Gravity and Bulk Density\u003cbr\u003e4.3 Gas Barrier Properties\u003cbr\u003e4.4 Optical Properties\u003cbr\u003e4.4.1 Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2 Light Scattering\u003cbr\u003e4.4.3 Optical Properties\u003cbr\u003e4.4.4 Electro-optical Effect\u003cbr\u003e4.4.5 Infrared Optical Properties\u003cbr\u003e4.5 Monitoring of Resin Cure\u003cbr\u003e4.5.1 Thermally Cured Resins\u003cbr\u003e4.5.1.1 Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2 Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3 Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4 Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5 Thermal Conductivity\u003cbr\u003e4.5.2 Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1 Differential Photo-calorimetry\u003cbr\u003e4.5.2.2 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3 Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4 Gas Chromatography-based Methods\u003cbr\u003e4.6 Adhesion Studies\u003cbr\u003e4.7 Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1 Dynamic Mechanical Analysis\u003cbr\u003e4.7.2 Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Thermal Stability\u003cbr\u003e5.1 Thermogravimetric Analysis\u003cbr\u003e5.2 Differential Thermal Analysis\u003cbr\u003e5.3 Differential Scanning Calorimetry\u003cbr\u003e5.4 Thermal Volatilisation Analysis\u003cbr\u003e5.5 Evolved Gas Analysis\u003cbr\u003e5.6 Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7 Mass Spectroscopy\u003cbr\u003e5.8 Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9 Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Thermo-oxidative Stability\u003cbr\u003e6.1 Thermogravimetric Analysis\u003cbr\u003e6.2 Differential Scanning Calorimetry\u003cbr\u003e6.3 Evolved Gas Analysis\u003cbr\u003e6.4 Infrared Spectroscopy\u003cbr\u003e6.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6 Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7 Imaging Chemiluminescence\u003cbr\u003e6.8 Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Assessment of Polymer Stability\u003cbr\u003e7.1 Light Stability\u003cbr\u003e7.1.1 Ultraviolet Light Weathering\u003cbr\u003e7.1.2 Natural Weathering Tests\u003cbr\u003e7.2 Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1 Effect of Pigments\u003cbr\u003e7.2.2 Effect of Carbon Black\u003cbr\u003e7.2.3 Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4 Effect of Thickness\u003cbr\u003e7.2.5 Effect of Stress during Exposure\u003cbr\u003e7.3 Gamma Radiation\u003cbr\u003e7.4 Electron Irradiation\u003cbr\u003e7.5 Irradiation by Carbon Ion Beam\u003cbr\u003e7.6 Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7 Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8 Water Absorption\u003cbr\u003e7.9 Chemical Resistance\u003cbr\u003e7.9.1 Detergent Resistance\u003cbr\u003e7.10 Hydrolytic Stability\u003cbr\u003e7.11 Resistance to Gases\u003cbr\u003e7.12 Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Selecting a Suitable Polymer\u003cbr\u003e8.1 Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2 Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3 Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers\u003cbr\u003eAppendix 2 – Mechanical properties of polymers\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Fluorinated Ionomers, ...
$180.00
{"id":11242240580,"title":"Fluorinated Ionomers, 2nd Edition","handle":"978-1-4377-4457-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Walther Grot, Ion Power, Inc. (former DuPont), Delaware, U.S.A. \u003cbr\u003eISBN 978-1-4377-4457-6 \u003cbr\u003e\u003cbr\u003eHardbound, 312 Pages \n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFluorinated ionomer polymers form impermeable membranes that conduct electricity, properties that have been put to use in large-scale electrochemical applications, revolutionizing the chlor-alkali industry and transforming production methods of some of the world’s highest-production commodity chemicals: chlorine, sodium hydroxide, and potassium hydroxide. The use of fluorinated ionomers such as Nafion® has removed the need for mercury and asbestos in these processes and led to a massive reduction in electricity usage in these highly energy-intensive processes. Polymers in this group have also found uses in fuel-cells, metal-ion recovery, water electrolysis, plating, surface treatment of metals, batteries, sensors, drug release technologies, gas drying and humidification, and super-acid catalysis used in the production of specialty chemicals. Walther Grot, who invented Nafion® while working for DuPont, has written this book as a practical guide to engineers and scientists working in electrochemistry, the fuel cell industry and other areas of application. His book is a unique guide to this important polymer group and its applications, in membranes and other forms. The 2e expands this handbook by over a third, with new sections covering developments in electrolysis and membranes, additional information about the synthesis and science of the polymer group, and an enhanced provision of reference data. \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience:\u003c\/b\u003e \u003c\/p\u003e\n\u003cp\u003eIndustrial Chemists, Chemical Engineers and Electrical Engineers involved in product development and technical service in the Chlor-alkali and fuel cell industries. Engineers involved in applications using fluorinated ionomers, e.g. chemical industry, energy\/cleantech, automotive industry. Fluoropolymer manufacturers \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e1.1 Polymers\u003cbr\u003e\u003cbr\u003e1.2 Physical Shapes\u003cbr\u003e\u003cbr\u003e1.3 References\u003cbr\u003e\u003cbr\u003e2 History\u003cbr\u003e\u003cbr\u003e2.1 References\u003cbr\u003e\u003cbr\u003e3 Manufacture\u003cbr\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e\u003cbr\u003e3.2 Perfluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.3 Polymerization\u003cbr\u003e\u003cbr\u003e3.4 Fabrication\u003cbr\u003e\u003cbr\u003e3.5 Hydrolysis and Acid Exchange\u003cbr\u003e\u003cbr\u003e3.6 Finishing and Testing\u003cbr\u003e\u003cbr\u003e3.7 Liquid Compositions\u003cbr\u003e\u003cbr\u003e3.8 Fluorinated Ionomers with Phosphonic or Sulfonyl Imide Functional Groups\u003cbr\u003e\u003cbr\u003e3.9 Partially Fluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.10 Composite Materials of Ionomers and Inorganic Oxides\u003cbr\u003e\u003cbr\u003e3.11 Composite Materials of Ionomers and a Porous Matrix\u003cbr\u003e\u003cbr\u003e3.12 Remanufactured Membranes\u003cbr\u003e\u003cbr\u003e3.13 References\u003cbr\u003e\u003cbr\u003e4 Properties\u003cbr\u003e\u003cbr\u003e4.1 Properties of the Precursor Polymers\u003cbr\u003e\u003cbr\u003e4.2 Properties of the Ionic Forms\u003cbr\u003e\u003cbr\u003e4.3 Morphology\u003cbr\u003e\u003cbr\u003e4.4 Transport Properties\u003cbr\u003e\u003cbr\u003e4.5 Optical Properties\u003cbr\u003e\u003cbr\u003e4.6 Thermal Properties\u003cbr\u003e\u003cbr\u003e4.7 Stability\u003cbr\u003e\u003cbr\u003e4.8 References\u003cbr\u003e\u003cbr\u003e5 Applications\u003cbr\u003e\u003cbr\u003e5.1 Electrolysis\u003cbr\u003e\u003cbr\u003e5.2 Sensors and Actuators\u003cbr\u003e\u003cbr\u003e5.3 Dialysis\u003cbr\u003e\u003cbr\u003e5.4 Gas and Vapor Diffusion\u003cbr\u003e\u003cbr\u003e5.5 Protective Clothing\u003cbr\u003e\u003cbr\u003e5.6 Catalysis\u003cbr\u003e\u003cbr\u003e5.7 References\u003cbr\u003e\u003cbr\u003e6 Fuel Cells and Batteries\u003cbr\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e\u003cbr\u003e6.2 Operating Parameters\u003cbr\u003e\u003cbr\u003e6.3 Ionomer Stability\u003cbr\u003e\u003cbr\u003e6.4 Direct Methanol Fuel Cells (DMFCs)\u003cbr\u003e\u003cbr\u003e6.5 Manufacture of MEAs\u003cbr\u003e\u003cbr\u003e6.6 Rechargeable Flow Through Batteries\u003cbr\u003e\u003cbr\u003e6.7 References\u003cbr\u003e\u003cbr\u003e6.8 Further Reading\u003cbr\u003e\u003cbr\u003e7 Commercial Membrane Types\u003cbr\u003e\u003cbr\u003e7.1 Unreinforced Perfluorinated Sulfonic Acid Films\u003cbr\u003e\u003cbr\u003e7.2 Reinforced Perfluorinated Membranes\u003cbr\u003e\u003cbr\u003e8 Economic Aspects\u003cbr\u003e\u003cbr\u003e8.1 Chlor-Alkali Cells\u003cbr\u003e\u003cbr\u003e8.2 Fuel Cells\u003cbr\u003e\u003cbr\u003e8.3 References\u003cbr\u003e\u003cbr\u003e9 Experimental Methods\u003cbr\u003e\u003cbr\u003e9.1 Infrared Spectra\u003cbr\u003e\u003cbr\u003e9.2 Hydrolysis, Surface Hydrolysis, and Staining\u003cbr\u003e\u003cbr\u003e9.3 Other Reactions of the Precursor Polymer\u003cbr\u003e\u003cbr\u003e9.4 Ion Exchange Equilibrium\u003cbr\u003e\u003cbr\u003e9.5 Determination of EW by Titration or Infrared Analysis\u003cbr\u003e\u003cbr\u003e9.6 Determining Melt Flow\u003cbr\u003e\u003cbr\u003e9.7 Distinguishing the Precursor Polymer from Various Ionic Forms\u003cbr\u003e\u003cbr\u003e9.8 Fenton’s Test for Oxidative Stability\u003cbr\u003e\u003cbr\u003e9.9 Examination of a Membrane\u003cbr\u003e\u003cbr\u003e9.10 Determining the Permselectivity\u003cbr\u003e\u003cbr\u003e9.11 Measuring Pervaporation Rates\u003cbr\u003e\u003cbr\u003e9.12 Simple Electrolytic Cells\u003cbr\u003e\u003cbr\u003e9.13 References\u003cbr\u003e\u003cbr\u003e10 Heat Sealing and Repair\u003cbr\u003e\u003cbr\u003e10.1 Reference\u003cbr\u003e\u003cbr\u003e11 Handling and Storage\u003cbr\u003e\u003cbr\u003e11.1 Handling the Film\u003cbr\u003e\u003cbr\u003e11.2 Pretreatment\u003cbr\u003e\u003cbr\u003e11.3 Installation\u003cbr\u003e\u003cbr\u003e11.4 Sealing and Gasketing\u003cbr\u003e\u003cbr\u003e12 Toxicology, Safety and Disposal\u003cbr\u003e\u003cbr\u003e12.1 Toxicology\u003cbr\u003e\u003cbr\u003e12.2 Safety\u003cbr\u003e\u003cbr\u003e12.3 Disposal\u003cbr\u003e\u003cbr\u003e12.4 References\u003cbr\u003e\u003cbr\u003eAppendix A A Chromic Acid Regeneration System\u003cbr\u003e\u003cbr\u003eAppendix B Laboratory Chlor-alkali Cell\u003cbr\u003e\u003cbr\u003eAppendix C Solution Cast Nafion Film\u003cbr\u003e\u003cbr\u003eAppendix D Plastic-Based Bipolar Plates\u003cbr\u003e\u003cbr\u003eSuppliers and Resources\u003cbr\u003e\u003cbr\u003eGlossary and Web Sites\u003cbr\u003e\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:45-04:00","created_at":"2017-06-22T21:14:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","composite","fluorinated ionomers","fluoropolymers","ionic forms","ionomers","Nafion","p-chemistry","polymer"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433988,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fluorinated Ionomers, 2nd Edition","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-4457-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526","options":["Title"],"media":[{"alt":null,"id":354807447645,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Walther Grot, Ion Power, Inc. (former DuPont), Delaware, U.S.A. \u003cbr\u003eISBN 978-1-4377-4457-6 \u003cbr\u003e\u003cbr\u003eHardbound, 312 Pages \n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFluorinated ionomer polymers form impermeable membranes that conduct electricity, properties that have been put to use in large-scale electrochemical applications, revolutionizing the chlor-alkali industry and transforming production methods of some of the world’s highest-production commodity chemicals: chlorine, sodium hydroxide, and potassium hydroxide. The use of fluorinated ionomers such as Nafion® has removed the need for mercury and asbestos in these processes and led to a massive reduction in electricity usage in these highly energy-intensive processes. Polymers in this group have also found uses in fuel-cells, metal-ion recovery, water electrolysis, plating, surface treatment of metals, batteries, sensors, drug release technologies, gas drying and humidification, and super-acid catalysis used in the production of specialty chemicals. Walther Grot, who invented Nafion® while working for DuPont, has written this book as a practical guide to engineers and scientists working in electrochemistry, the fuel cell industry and other areas of application. His book is a unique guide to this important polymer group and its applications, in membranes and other forms. The 2e expands this handbook by over a third, with new sections covering developments in electrolysis and membranes, additional information about the synthesis and science of the polymer group, and an enhanced provision of reference data. \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience:\u003c\/b\u003e \u003c\/p\u003e\n\u003cp\u003eIndustrial Chemists, Chemical Engineers and Electrical Engineers involved in product development and technical service in the Chlor-alkali and fuel cell industries. Engineers involved in applications using fluorinated ionomers, e.g. chemical industry, energy\/cleantech, automotive industry. Fluoropolymer manufacturers \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e1.1 Polymers\u003cbr\u003e\u003cbr\u003e1.2 Physical Shapes\u003cbr\u003e\u003cbr\u003e1.3 References\u003cbr\u003e\u003cbr\u003e2 History\u003cbr\u003e\u003cbr\u003e2.1 References\u003cbr\u003e\u003cbr\u003e3 Manufacture\u003cbr\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e\u003cbr\u003e3.2 Perfluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.3 Polymerization\u003cbr\u003e\u003cbr\u003e3.4 Fabrication\u003cbr\u003e\u003cbr\u003e3.5 Hydrolysis and Acid Exchange\u003cbr\u003e\u003cbr\u003e3.6 Finishing and Testing\u003cbr\u003e\u003cbr\u003e3.7 Liquid Compositions\u003cbr\u003e\u003cbr\u003e3.8 Fluorinated Ionomers with Phosphonic or Sulfonyl Imide Functional Groups\u003cbr\u003e\u003cbr\u003e3.9 Partially Fluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.10 Composite Materials of Ionomers and Inorganic Oxides\u003cbr\u003e\u003cbr\u003e3.11 Composite Materials of Ionomers and a Porous Matrix\u003cbr\u003e\u003cbr\u003e3.12 Remanufactured Membranes\u003cbr\u003e\u003cbr\u003e3.13 References\u003cbr\u003e\u003cbr\u003e4 Properties\u003cbr\u003e\u003cbr\u003e4.1 Properties of the Precursor Polymers\u003cbr\u003e\u003cbr\u003e4.2 Properties of the Ionic Forms\u003cbr\u003e\u003cbr\u003e4.3 Morphology\u003cbr\u003e\u003cbr\u003e4.4 Transport Properties\u003cbr\u003e\u003cbr\u003e4.5 Optical Properties\u003cbr\u003e\u003cbr\u003e4.6 Thermal Properties\u003cbr\u003e\u003cbr\u003e4.7 Stability\u003cbr\u003e\u003cbr\u003e4.8 References\u003cbr\u003e\u003cbr\u003e5 Applications\u003cbr\u003e\u003cbr\u003e5.1 Electrolysis\u003cbr\u003e\u003cbr\u003e5.2 Sensors and Actuators\u003cbr\u003e\u003cbr\u003e5.3 Dialysis\u003cbr\u003e\u003cbr\u003e5.4 Gas and Vapor Diffusion\u003cbr\u003e\u003cbr\u003e5.5 Protective Clothing\u003cbr\u003e\u003cbr\u003e5.6 Catalysis\u003cbr\u003e\u003cbr\u003e5.7 References\u003cbr\u003e\u003cbr\u003e6 Fuel Cells and Batteries\u003cbr\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e\u003cbr\u003e6.2 Operating Parameters\u003cbr\u003e\u003cbr\u003e6.3 Ionomer Stability\u003cbr\u003e\u003cbr\u003e6.4 Direct Methanol Fuel Cells (DMFCs)\u003cbr\u003e\u003cbr\u003e6.5 Manufacture of MEAs\u003cbr\u003e\u003cbr\u003e6.6 Rechargeable Flow Through Batteries\u003cbr\u003e\u003cbr\u003e6.7 References\u003cbr\u003e\u003cbr\u003e6.8 Further Reading\u003cbr\u003e\u003cbr\u003e7 Commercial Membrane Types\u003cbr\u003e\u003cbr\u003e7.1 Unreinforced Perfluorinated Sulfonic Acid Films\u003cbr\u003e\u003cbr\u003e7.2 Reinforced Perfluorinated Membranes\u003cbr\u003e\u003cbr\u003e8 Economic Aspects\u003cbr\u003e\u003cbr\u003e8.1 Chlor-Alkali Cells\u003cbr\u003e\u003cbr\u003e8.2 Fuel Cells\u003cbr\u003e\u003cbr\u003e8.3 References\u003cbr\u003e\u003cbr\u003e9 Experimental Methods\u003cbr\u003e\u003cbr\u003e9.1 Infrared Spectra\u003cbr\u003e\u003cbr\u003e9.2 Hydrolysis, Surface Hydrolysis, and Staining\u003cbr\u003e\u003cbr\u003e9.3 Other Reactions of the Precursor Polymer\u003cbr\u003e\u003cbr\u003e9.4 Ion Exchange Equilibrium\u003cbr\u003e\u003cbr\u003e9.5 Determination of EW by Titration or Infrared Analysis\u003cbr\u003e\u003cbr\u003e9.6 Determining Melt Flow\u003cbr\u003e\u003cbr\u003e9.7 Distinguishing the Precursor Polymer from Various Ionic Forms\u003cbr\u003e\u003cbr\u003e9.8 Fenton’s Test for Oxidative Stability\u003cbr\u003e\u003cbr\u003e9.9 Examination of a Membrane\u003cbr\u003e\u003cbr\u003e9.10 Determining the Permselectivity\u003cbr\u003e\u003cbr\u003e9.11 Measuring Pervaporation Rates\u003cbr\u003e\u003cbr\u003e9.12 Simple Electrolytic Cells\u003cbr\u003e\u003cbr\u003e9.13 References\u003cbr\u003e\u003cbr\u003e10 Heat Sealing and Repair\u003cbr\u003e\u003cbr\u003e10.1 Reference\u003cbr\u003e\u003cbr\u003e11 Handling and Storage\u003cbr\u003e\u003cbr\u003e11.1 Handling the Film\u003cbr\u003e\u003cbr\u003e11.2 Pretreatment\u003cbr\u003e\u003cbr\u003e11.3 Installation\u003cbr\u003e\u003cbr\u003e11.4 Sealing and Gasketing\u003cbr\u003e\u003cbr\u003e12 Toxicology, Safety and Disposal\u003cbr\u003e\u003cbr\u003e12.1 Toxicology\u003cbr\u003e\u003cbr\u003e12.2 Safety\u003cbr\u003e\u003cbr\u003e12.3 Disposal\u003cbr\u003e\u003cbr\u003e12.4 References\u003cbr\u003e\u003cbr\u003eAppendix A A Chromic Acid Regeneration System\u003cbr\u003e\u003cbr\u003eAppendix B Laboratory Chlor-alkali Cell\u003cbr\u003e\u003cbr\u003eAppendix C Solution Cast Nafion Film\u003cbr\u003e\u003cbr\u003eAppendix D Plastic-Based Bipolar Plates\u003cbr\u003e\u003cbr\u003eSuppliers and Resources\u003cbr\u003e\u003cbr\u003eGlossary and Web Sites\u003cbr\u003e\u003cbr\u003eIndex"}
Handbook of Solvents, ...
$295.00
{"id":11242240516,"title":"Handbook of Solvents, Volume 1, Properties","handle":"978-1895198-64-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA","published_at":"2017-06-22T21:14:44-04:00","created_at":"2017-06-22T21:14:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","book","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","p-additives","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents, Volume 1, Properties","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-64-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259","options":["Title"],"media":[{"alt":null,"id":356342956125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA"}
Surface Engineering of...
$205.00
{"id":11242240068,"title":"Surface Engineering of Polymeric Biomaterials","handle":"9781847356581","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Todorka G Vladkova \u003cbr\u003eISBN 9781847356581 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003ctable width=\"100%\" border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd class=\"pmore\"\u003ePublished: 2013\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\nHardcover Pages: 590\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties.\u003cbr\u003e\u003cbr\u003eThis book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered.\u003cbr\u003e\u003cbr\u003eThe theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials is presented. The book also includes information on the most used conventional and advanced surface engineering methods.\u003cbr\u003e\u003cbr\u003eThe book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e1.1 Specific Objectives of Biomaterial Surface Engineering \u003cbr\u003e1.2 Theoretical Basis of Biomaterial Surface Engineering \u003cbr\u003e1.2.1 Protein Adsorption \u003cbr\u003e1.2.1.1 Specific Protein Adsorption \u003cbr\u003e1.2.1.2 Non-specific Protein Adsorption \u003cbr\u003e1.2.2 Initial Cell\/Biomaterial Surface Interactions \u003cbr\u003e1.3 Biomaterial Surface Engineering Approaches \u003cbr\u003e\u003cbr\u003e2 Surface Engineering Methods \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Physicochemical Methods \u003cbr\u003e2.2.1 Blending\u003cbr\u003e2.2.2 Acid Etching \u003cbr\u003e2.2.3 Surface Grafting \u003cbr\u003e2.2.3.1 Graft Polymerisation \u003cbr\u003e2.2.3.2 Polymer Brushes. \u003cbr\u003e2.2.4 Plasma Techniques \u003cbr\u003e2.2.5 Photon Irradiation \u003cbr\u003e2.2.6 Ion-beam Modification \u003cbr\u003e2.2.7 Adsorption from Solution (Thin Film\/Coating Preparation Methods) \u003cbr\u003e2.2.7.1 Dip Coating\u003cbr\u003e2.2.7.2 Spin Coating \u003cbr\u003e2.2.7.3 Langmuir–Blodgett Films \u003cbr\u003e2.2.7.4 Self-assembled Monolayers \u003cbr\u003e2.2.7.5 Self-assembled Monolayers with Molecular Gradients \u003cbr\u003e2.2.7.6 Layer-by-Layer Assembly \u003cbr\u003e2.3 Biological Methods \u003cbr\u003e2.3.1 Biomolecule Immobilisation by Physical Adsorption \u003cbr\u003e2.3.2 Biomolecule Immobilisation by Blending \u003cbr\u003e2.3.3 Electrostatic Attachment of Biomolecules \u003cbr\u003e2.3.3.1 LbL Technique using Polyelectrolytes\u003cbr\u003e2.3.3.2 Electrochemical Polymerisation Using Conducting Polymers \u003cbr\u003e2.3.4 Covalent Bonding of Biomolecules \u003cbr\u003e2.3.4.1 Thiol-mediated Bonding\u003cbr\u003e2.3.4.2 Hydroxyl Group-Mediated Bonding \u003cbr\u003e2.3.4.3 Carboxylate Group-Mediated Bonding\u003cbr\u003e2.3.4.4 Photoinitiated Coupling of Biomolecules \u003cbr\u003e2.3.4.5 Enzymic Coagulation of Biomolecules\u003cbr\u003e2.3.4.6 iomolecules Bonding with ‘Click’ Reactions\u003cbr\u003e2.4 Surface Micro- and Nano-structuring \u003cbr\u003e2.4.1 Photolithography\u003cbr\u003e2.4.2 Ion Lithography and Focused Ion Beam Lithography\u003cbr\u003e2.4.3 Electron Lithography \u003cbr\u003e2.4.4 Soft Lithography\u003cbr\u003e2.4.5 Dip Pen Nanolithography \u003cbr\u003e2.4.6 Near-field Scanning Methods\u003cbr\u003e2.4.7 General Methods of Nano- and Micro-bioarray Patterning \u003cbr\u003e\u003cbr\u003e3 Surface Engineering of Biomaterials Reducing Protein Adsorption\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Surface Engineering of Biomaterials to Reduce Undesirable\/Uncontrolled Responses to Implants and Extracorporeal Devices \u003cbr\u003e3.2.1 Polyethylene Glycol-coated Surfaces \u003cbr\u003e3.2.1.1 Photopolymerised or Photocrosslinked Coatings\u003cbr\u003e3.2.1.2 Chemical Coupling of PEG \u003cbr\u003e3.2.1.2.1 \u003cspan\u003eChemical Coupling based on the Reactivity of the Terminal Hydroxyl Groups \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e3.2.1.2.2 \u003cspan\u003eCovalent Attachment by Employment of Functionalised\u003c\/span\u003e\u003cbr\u003e\u003cspan\u003ePEG (Derivative Terminal OH Groups)\u003c\/span\u003e\u003cbr\u003e3.2.1.3 Non-covalent Immobilisation\u003cbr\u003e3.2.2 Non-PEGylated Hydrophilic Surfaces \u003cbr\u003e3.2.3 Zwitterionic Polymer Thin Layers \u003cbr\u003e3.2.4 Hydrophilic Surfaces of Hyperbranched Polymers \u003cbr\u003e3.2.5 Multi-layer Thin Films \u003cbr\u003e3.2.6 Hydrogels and Hydrogel Coatings \u003cbr\u003e3.2.6.1 PEG-based Hydrogel Coatings \u003cbr\u003e3.2.6.2 Hydrogel Coatings of Other Polymers \u003cbr\u003e3.2.6.3 Hydrogels of Zwitterionic Polymers \u003cbr\u003e3.2.7 Patterned Surfaces\u003cbr\u003e3.2.7.1 Backfill Non-fouling Polymers and Procedures \u003cbr\u003e3.2.7.2 Micro- and Nano-patterning Techniques\u003cbr\u003e3.3 Surface Engineering of Biomaterial Surfaces\u003cbr\u003eReducing\/Eliminating Non-specific Adsorption on\u003cbr\u003eBiosensors and Bioassays \u003cbr\u003e3.4 Surface Engineering of Microfluidic Devices \u003cbr\u003e3.4.1 Dynamic Coating \u003cbr\u003e3.4.2 Permanent Coatings\u003cbr\u003e3.4.2.1 Plasma Treatments\u003cbr\u003e3.4.2.2 Laser Treatments.\u003cbr\u003e3.4.2.3 Surface Graft Polymerisation\u003cbr\u003e3.4.2.4 Patterning of Microfluidics\u003cbr\u003e3.4.2.5 Covalent Modification\u003cbr\u003e3.4.2.6 Self-assembled Monolayers\u003cbr\u003e3.4.2.7 Polyelectrolyte Multi-layer Coatings\u003cbr\u003e\u003cbr\u003e4 Surface Engineering of\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Strongly Hydrophilic and Strongly Hydrophobic Surfaces \u003cbr\u003e4.2.1 Strongly Hydrophilic Surfaces\u003cbr\u003e4.2.2 Strongly Hydrophobic Surfaces \u003cbr\u003e4.3 Biomaterials with Micro- and Nano-domain Surfaces\u003cbr\u003e4.4 The Immobilisation of Heparin and Other Bioactive Molecules \u003cbr\u003e4.4.1 Heparinised Surfaces \u003cbr\u003e4.4.2 Immobilisation of Other Bioactive Molecules \u003cbr\u003e4.5 Albumin Coating \u003cbr\u003e4.6 Endothelial Cells Attachment \u003cbr\u003e4.7 Natural Biomembrane Mimetic Surfaces\u003cbr\u003e4.8 Polyelectrolyte Multi-layers \u003cbr\u003e4.9 Micro- and Nanostructured Blood Contacting Surfaces \u003cbr\u003e\u003cbr\u003e5 Surface Engineering of Bio-interactive Biomaterials \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Surface Engineering of Biomaterials Promoting Cell Attachment\/Adhesion \u003cbr\u003e5.2.1 Cell\/Biomaterial Surface Interaction\u003cbr\u003e5.2.2 Surface Engineering of Cell Adhesive Biomaterials\u003cbr\u003evia Physicochemical Modification \u003cbr\u003e5.2.2.1 Control the Surface Energy (Hydrophilic\/Hydrophobic Balance) \u003cbr\u003eBlood Contacting Polymeric Biomaterials \u003cbr\u003e5.2.2.2 Creation of Positively Charged Surfaces\u003cbr\u003e5.2.2.3 Surface Micro-architecture Manipulation\u003cbr\u003e5.2.2.4 Creation of Polyelectrolyte Multi-layers \u003cbr\u003e5.2.2.5 Temperature-responsive Polymer Coatings \u003cbr\u003e5.2.2.6 Other Functional Polymer Coatings \u003cbr\u003e5.2.2.7 Multi-layer Thin Films for Cell\u003cbr\u003eEncapsulation \u003cbr\u003e5.2.3 Surface\u003cbr\u003evia Biomolecule Immobilisation \u003cbr\u003eEngineering of Cell Adhesive Biomaterials\u003cbr\u003e5.2.3.1 Cell Adhesion Ligands \u003cbr\u003e5.2.3.2 Non-covalent Immobilisation of Biomolecules \u003cbr\u003e5.2.3.3 Covalent Bonding of Biomolecules \u003cbr\u003e5.2.3.4 Patterning of Biomolecules on Biomaterial Surfaces \u003cbr\u003e5.3 Surface Engineering of Drug Delivery Systems \u003cbr\u003e5.3.1 Drug Delivery Systems \u003cbr\u003e5.3.1.1 Hydrogel Controlled Release Formulations \u003cbr\u003e5.3.1.2 Functionalised Electrospun Nanofibres Drug Delivery Carriers\u003cbr\u003e5.3.1.3 Drug Loaded Micro- and Nano-particles \u003cbr\u003e5.3.1.4 Drug Loaded Magnetic Nanoparticles\u003cbr\u003e5.3.1.5 Electrostimulated Drug Release Systems \u003cbr\u003e5.3.2 Polymeric Thin Films and Coatings for Drug and Gene Delivery\u003cbr\u003e5.3.3 Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.1 Matrices and Scaffolds for Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.2 Bioactive Proteins and Peptides \u003cbr\u003e5.3.3.3 Strategies for Bioactive Factors Controlled Delivery \u003cbr\u003eSurface Engineering of Polymeric Biomaterials\u003cbr\u003e5.4 Surface Engineering of Biomaterials Reducing Bacterial Adhesion\u003cbr\u003e5.4.1 Biomaterials Resistant to Bacterial Adhesion\u003cbr\u003e5.4.2 Nanocomposite Polymer Coatings Containing Inorganic Biocides\u003cbr\u003e5.4.3 Antibiotic Conjugated Polymer Coatings \u003cbr\u003e5.4.4 Biomimetic Antibacterial Coatings\u003cbr\u003e5.4.5 Antibacterial Coatings Based on Cationic Polymers \u003cbr\u003e\u003cbr\u003e6 Biomaterial Surface Characterisation \u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Surface Morphology Observation\u003cbr\u003e6.3 Contact Angle Measurements \u003cbr\u003e6.3.1 Surface Tension and Determination of its Components \u003cbr\u003e6.3.2 Methods of Contact Angle Measurement\u003cbr\u003e6.3.2.1 Drop and Bubble Methods for Contact Angle Measurement \u003cbr\u003e6.3.2.2 Wilhelmy Plate Method \u003cbr\u003e6.4 Surface Forces Measurement\u003cbr\u003e6.5 Ellipsometry Measurements \u003cbr\u003e6.6 Surface Chemical Composition Characterisation \u003cbr\u003e6.6.1 Spectroscopy Methods (ATR-FTIR, TOF-SIMS, and XPS) \u003cbr\u003e6.6.2 Colorimetric Determination of Surface Functional Groups Density \u003cbr\u003e6.6.3 Radiotracer Method \u003cbr\u003e6.6.4 Estimating the Thickness of Grafted Polymer Layers \u003cbr\u003e6.7 Characterisation of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.1 Estimating the Density and Thickness of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.2 Characterisation of Biomolecules Attachment to\/Detachment from Biomaterial Surfaces \u003cbr\u003e6.7.3 Bioactivity Evaluation of Proteins Immobilised on Biomaterial Surface\u003cbr\u003e6.7.4 Spatial Distribution of Proteins and Adhering Cell Characterisation\u003cbr\u003e6.8 Evaluation of Cell Behaviour on Biomaterial Surfaces. 500 \u003cbr\u003e6.8.1 Cell Proliferation\u003cbr\u003e6.8.2 Cell Imaging\u003cbr\u003e6.8.3 Cell Migration\u003cbr\u003e6.8.4 Cell Function Analysis\u003cbr\u003e6.9 Tests for Biocompatibility\u003cbr\u003e\u003cbr\u003e7 Summary and Outlook \u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:43-04:00","created_at":"2017-06-22T21:14:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","bioactive","biocides","biomaterials","biopolymer","biopolymers","book","coatings","drug delivery","micro- and nano-particles","polymeric biomaterials","polymers","surface","tin films"],"price":20500,"price_min":20500,"price_max":25000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433412,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"9781847356581","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Surface Engineering of Polymeric Biomaterials - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":25000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356581","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50451906692,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"9781847356581","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Surface Engineering of Polymeric Biomaterials - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":20500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356581","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107","options":["Cover"],"media":[{"alt":null,"id":358775554141,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356581_c82c0711-7cc7-47e5-8143-160fca88c08d.jpg?v=1499956107","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Todorka G Vladkova \u003cbr\u003eISBN 9781847356581 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003ctable width=\"100%\" border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd class=\"pmore\"\u003ePublished: 2013\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\nHardcover Pages: 590\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiomaterials work in contact with living matter and this gives a number of specific requirements for their surface properties, such as bioinertness or bioactivity, antibiofouling, and so on. Surface engineering based on physical, chemical, physical-chemical, biochemical or biological principles is important for the preparation of biomaterials with the desired biocontact properties.\u003cbr\u003e\u003cbr\u003eThis book helps the reader gain the knowledge to enable them to work in such a rapidly developing area, with a comprehensive list of references given for each chapter. Strategies for tailoring the biological response through the creation of biomaterial surfaces resistant to fouling are discussed. Methods of eliciting specific biomolecular interactions that can be further combined with patterning techniques to engineer adhesive areas in a noninteractive background are also covered.\u003cbr\u003e\u003cbr\u003eThe theoretical basis of surface engineering for improvement of biocontact properties of polymeric biomaterials as well as the current state-of-the-art of the surface engineering of polymeric biomaterials is presented. The book also includes information on the most used conventional and advanced surface engineering methods.\u003cbr\u003e\u003cbr\u003eThe book is targeted at researchers, post-doctorates, graduate students, and those already working in the field of biomaterials with a special interest in the creation of polymeric materials with improved biocontact properties via surface engineering.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction \u003cbr\u003e1.1 Specific Objectives of Biomaterial Surface Engineering \u003cbr\u003e1.2 Theoretical Basis of Biomaterial Surface Engineering \u003cbr\u003e1.2.1 Protein Adsorption \u003cbr\u003e1.2.1.1 Specific Protein Adsorption \u003cbr\u003e1.2.1.2 Non-specific Protein Adsorption \u003cbr\u003e1.2.2 Initial Cell\/Biomaterial Surface Interactions \u003cbr\u003e1.3 Biomaterial Surface Engineering Approaches \u003cbr\u003e\u003cbr\u003e2 Surface Engineering Methods \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Physicochemical Methods \u003cbr\u003e2.2.1 Blending\u003cbr\u003e2.2.2 Acid Etching \u003cbr\u003e2.2.3 Surface Grafting \u003cbr\u003e2.2.3.1 Graft Polymerisation \u003cbr\u003e2.2.3.2 Polymer Brushes. \u003cbr\u003e2.2.4 Plasma Techniques \u003cbr\u003e2.2.5 Photon Irradiation \u003cbr\u003e2.2.6 Ion-beam Modification \u003cbr\u003e2.2.7 Adsorption from Solution (Thin Film\/Coating Preparation Methods) \u003cbr\u003e2.2.7.1 Dip Coating\u003cbr\u003e2.2.7.2 Spin Coating \u003cbr\u003e2.2.7.3 Langmuir–Blodgett Films \u003cbr\u003e2.2.7.4 Self-assembled Monolayers \u003cbr\u003e2.2.7.5 Self-assembled Monolayers with Molecular Gradients \u003cbr\u003e2.2.7.6 Layer-by-Layer Assembly \u003cbr\u003e2.3 Biological Methods \u003cbr\u003e2.3.1 Biomolecule Immobilisation by Physical Adsorption \u003cbr\u003e2.3.2 Biomolecule Immobilisation by Blending \u003cbr\u003e2.3.3 Electrostatic Attachment of Biomolecules \u003cbr\u003e2.3.3.1 LbL Technique using Polyelectrolytes\u003cbr\u003e2.3.3.2 Electrochemical Polymerisation Using Conducting Polymers \u003cbr\u003e2.3.4 Covalent Bonding of Biomolecules \u003cbr\u003e2.3.4.1 Thiol-mediated Bonding\u003cbr\u003e2.3.4.2 Hydroxyl Group-Mediated Bonding \u003cbr\u003e2.3.4.3 Carboxylate Group-Mediated Bonding\u003cbr\u003e2.3.4.4 Photoinitiated Coupling of Biomolecules \u003cbr\u003e2.3.4.5 Enzymic Coagulation of Biomolecules\u003cbr\u003e2.3.4.6 iomolecules Bonding with ‘Click’ Reactions\u003cbr\u003e2.4 Surface Micro- and Nano-structuring \u003cbr\u003e2.4.1 Photolithography\u003cbr\u003e2.4.2 Ion Lithography and Focused Ion Beam Lithography\u003cbr\u003e2.4.3 Electron Lithography \u003cbr\u003e2.4.4 Soft Lithography\u003cbr\u003e2.4.5 Dip Pen Nanolithography \u003cbr\u003e2.4.6 Near-field Scanning Methods\u003cbr\u003e2.4.7 General Methods of Nano- and Micro-bioarray Patterning \u003cbr\u003e\u003cbr\u003e3 Surface Engineering of Biomaterials Reducing Protein Adsorption\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Surface Engineering of Biomaterials to Reduce Undesirable\/Uncontrolled Responses to Implants and Extracorporeal Devices \u003cbr\u003e3.2.1 Polyethylene Glycol-coated Surfaces \u003cbr\u003e3.2.1.1 Photopolymerised or Photocrosslinked Coatings\u003cbr\u003e3.2.1.2 Chemical Coupling of PEG \u003cbr\u003e3.2.1.2.1 \u003cspan\u003eChemical Coupling based on the Reactivity of the Terminal Hydroxyl Groups \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e3.2.1.2.2 \u003cspan\u003eCovalent Attachment by Employment of Functionalised\u003c\/span\u003e\u003cbr\u003e\u003cspan\u003ePEG (Derivative Terminal OH Groups)\u003c\/span\u003e\u003cbr\u003e3.2.1.3 Non-covalent Immobilisation\u003cbr\u003e3.2.2 Non-PEGylated Hydrophilic Surfaces \u003cbr\u003e3.2.3 Zwitterionic Polymer Thin Layers \u003cbr\u003e3.2.4 Hydrophilic Surfaces of Hyperbranched Polymers \u003cbr\u003e3.2.5 Multi-layer Thin Films \u003cbr\u003e3.2.6 Hydrogels and Hydrogel Coatings \u003cbr\u003e3.2.6.1 PEG-based Hydrogel Coatings \u003cbr\u003e3.2.6.2 Hydrogel Coatings of Other Polymers \u003cbr\u003e3.2.6.3 Hydrogels of Zwitterionic Polymers \u003cbr\u003e3.2.7 Patterned Surfaces\u003cbr\u003e3.2.7.1 Backfill Non-fouling Polymers and Procedures \u003cbr\u003e3.2.7.2 Micro- and Nano-patterning Techniques\u003cbr\u003e3.3 Surface Engineering of Biomaterial Surfaces\u003cbr\u003eReducing\/Eliminating Non-specific Adsorption on\u003cbr\u003eBiosensors and Bioassays \u003cbr\u003e3.4 Surface Engineering of Microfluidic Devices \u003cbr\u003e3.4.1 Dynamic Coating \u003cbr\u003e3.4.2 Permanent Coatings\u003cbr\u003e3.4.2.1 Plasma Treatments\u003cbr\u003e3.4.2.2 Laser Treatments.\u003cbr\u003e3.4.2.3 Surface Graft Polymerisation\u003cbr\u003e3.4.2.4 Patterning of Microfluidics\u003cbr\u003e3.4.2.5 Covalent Modification\u003cbr\u003e3.4.2.6 Self-assembled Monolayers\u003cbr\u003e3.4.2.7 Polyelectrolyte Multi-layer Coatings\u003cbr\u003e\u003cbr\u003e4 Surface Engineering of\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Strongly Hydrophilic and Strongly Hydrophobic Surfaces \u003cbr\u003e4.2.1 Strongly Hydrophilic Surfaces\u003cbr\u003e4.2.2 Strongly Hydrophobic Surfaces \u003cbr\u003e4.3 Biomaterials with Micro- and Nano-domain Surfaces\u003cbr\u003e4.4 The Immobilisation of Heparin and Other Bioactive Molecules \u003cbr\u003e4.4.1 Heparinised Surfaces \u003cbr\u003e4.4.2 Immobilisation of Other Bioactive Molecules \u003cbr\u003e4.5 Albumin Coating \u003cbr\u003e4.6 Endothelial Cells Attachment \u003cbr\u003e4.7 Natural Biomembrane Mimetic Surfaces\u003cbr\u003e4.8 Polyelectrolyte Multi-layers \u003cbr\u003e4.9 Micro- and Nanostructured Blood Contacting Surfaces \u003cbr\u003e\u003cbr\u003e5 Surface Engineering of Bio-interactive Biomaterials \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Surface Engineering of Biomaterials Promoting Cell Attachment\/Adhesion \u003cbr\u003e5.2.1 Cell\/Biomaterial Surface Interaction\u003cbr\u003e5.2.2 Surface Engineering of Cell Adhesive Biomaterials\u003cbr\u003evia Physicochemical Modification \u003cbr\u003e5.2.2.1 Control the Surface Energy (Hydrophilic\/Hydrophobic Balance) \u003cbr\u003eBlood Contacting Polymeric Biomaterials \u003cbr\u003e5.2.2.2 Creation of Positively Charged Surfaces\u003cbr\u003e5.2.2.3 Surface Micro-architecture Manipulation\u003cbr\u003e5.2.2.4 Creation of Polyelectrolyte Multi-layers \u003cbr\u003e5.2.2.5 Temperature-responsive Polymer Coatings \u003cbr\u003e5.2.2.6 Other Functional Polymer Coatings \u003cbr\u003e5.2.2.7 Multi-layer Thin Films for Cell\u003cbr\u003eEncapsulation \u003cbr\u003e5.2.3 Surface\u003cbr\u003evia Biomolecule Immobilisation \u003cbr\u003eEngineering of Cell Adhesive Biomaterials\u003cbr\u003e5.2.3.1 Cell Adhesion Ligands \u003cbr\u003e5.2.3.2 Non-covalent Immobilisation of Biomolecules \u003cbr\u003e5.2.3.3 Covalent Bonding of Biomolecules \u003cbr\u003e5.2.3.4 Patterning of Biomolecules on Biomaterial Surfaces \u003cbr\u003e5.3 Surface Engineering of Drug Delivery Systems \u003cbr\u003e5.3.1 Drug Delivery Systems \u003cbr\u003e5.3.1.1 Hydrogel Controlled Release Formulations \u003cbr\u003e5.3.1.2 Functionalised Electrospun Nanofibres Drug Delivery Carriers\u003cbr\u003e5.3.1.3 Drug Loaded Micro- and Nano-particles \u003cbr\u003e5.3.1.4 Drug Loaded Magnetic Nanoparticles\u003cbr\u003e5.3.1.5 Electrostimulated Drug Release Systems \u003cbr\u003e5.3.2 Polymeric Thin Films and Coatings for Drug and Gene Delivery\u003cbr\u003e5.3.3 Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.1 Matrices and Scaffolds for Protein Delivery in Tissue Engineering \u003cbr\u003e5.3.3.2 Bioactive Proteins and Peptides \u003cbr\u003e5.3.3.3 Strategies for Bioactive Factors Controlled Delivery \u003cbr\u003eSurface Engineering of Polymeric Biomaterials\u003cbr\u003e5.4 Surface Engineering of Biomaterials Reducing Bacterial Adhesion\u003cbr\u003e5.4.1 Biomaterials Resistant to Bacterial Adhesion\u003cbr\u003e5.4.2 Nanocomposite Polymer Coatings Containing Inorganic Biocides\u003cbr\u003e5.4.3 Antibiotic Conjugated Polymer Coatings \u003cbr\u003e5.4.4 Biomimetic Antibacterial Coatings\u003cbr\u003e5.4.5 Antibacterial Coatings Based on Cationic Polymers \u003cbr\u003e\u003cbr\u003e6 Biomaterial Surface Characterisation \u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Surface Morphology Observation\u003cbr\u003e6.3 Contact Angle Measurements \u003cbr\u003e6.3.1 Surface Tension and Determination of its Components \u003cbr\u003e6.3.2 Methods of Contact Angle Measurement\u003cbr\u003e6.3.2.1 Drop and Bubble Methods for Contact Angle Measurement \u003cbr\u003e6.3.2.2 Wilhelmy Plate Method \u003cbr\u003e6.4 Surface Forces Measurement\u003cbr\u003e6.5 Ellipsometry Measurements \u003cbr\u003e6.6 Surface Chemical Composition Characterisation \u003cbr\u003e6.6.1 Spectroscopy Methods (ATR-FTIR, TOF-SIMS, and XPS) \u003cbr\u003e6.6.2 Colorimetric Determination of Surface Functional Groups Density \u003cbr\u003e6.6.3 Radiotracer Method \u003cbr\u003e6.6.4 Estimating the Thickness of Grafted Polymer Layers \u003cbr\u003e6.7 Characterisation of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.1 Estimating the Density and Thickness of Protein Layers on Biomaterial Surfaces \u003cbr\u003e6.7.2 Characterisation of Biomolecules Attachment to\/Detachment from Biomaterial Surfaces \u003cbr\u003e6.7.3 Bioactivity Evaluation of Proteins Immobilised on Biomaterial Surface\u003cbr\u003e6.7.4 Spatial Distribution of Proteins and Adhering Cell Characterisation\u003cbr\u003e6.8 Evaluation of Cell Behaviour on Biomaterial Surfaces. 500 \u003cbr\u003e6.8.1 Cell Proliferation\u003cbr\u003e6.8.2 Cell Imaging\u003cbr\u003e6.8.3 Cell Migration\u003cbr\u003e6.8.4 Cell Function Analysis\u003cbr\u003e6.9 Tests for Biocompatibility\u003cbr\u003e\u003cbr\u003e7 Summary and Outlook \u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}
Update on Polymers for...
$99.00
{"id":11242239748,"title":"Update on Polymers for Oral Drug Delivery","handle":"9781847355379","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Fang Liu \u003cbr\u003eISBN 9781847355379\u003cbr\u003e\u003cbr\u003ePublish: 2011 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThe preferred route for drug delivery remains the oral route, but oral drug delivery has now developed beyond traditional dosage forms such as tablets and capsules. Nowadays it is possible to use polymers to allow drugs to be targeted to specific sites in the gastrointestinal tract, and to extend the drug release profile. In addition, polymers can be engineered to allow oral delivery of such complex molecules as proteins, peptides, and even genes.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis book gives a comprehensive summary of oral drug delivery systems, both conventional and novel, and the ways in which polymers have been adapted for these systems. Particular attention is devoted to gastrointestinal physiology and the physio-chemical properties of polymers in order to understand the factors affecting their performance in practice.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis update will interest everyone involved in the pharmaceutical world, whether in academia or in industry. It will be of particular value to those responsible for designing new oral drug delivery systems involving polymers. It will provide a useful reference text both for researchers and manufacturers, and will also be a helpful introduction for students of all levels to the application of polymers in pharmacy.\u003c\/div\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Gastrointestinal Physiology and its Influence on Oral Drug Delivery Systems\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 How the Stomach can Affect Various Polymer Dosage Forms\u003cbr\u003e1.2.1 Motility and Transit of Polymer Dosage Forms in the Stomach \u003cbr\u003e1.2.2 Fluid and Secretions in the Stomach\u003cbr\u003e1.3 How the Small Intestine can affect Polymeric Dosage Forms \u003cbr\u003e1.3.1 Fluid and Secretions in the Small Intestine \u003cbr\u003e1.3.2 Transit in the Small Intestine\u003cbr\u003e1.4 How the Colon can affect Polymeric Dosage Forms\u003cbr\u003e1.4.1 Fluid in the Colon \u003cbr\u003e1.4.2 Transit through the Colon\u003cbr\u003e1.4.3 Bacteria in the Colon \u003cbr\u003e1.5 The Effect of Polymers on the Gastrointestinal Tract\u003cbr\u003e1.6 The Fate of Polymers in the Gut \u003cbr\u003e1.7 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Polymers for Conventional Oral Dosage Forms\u003cbr\u003e2.1 Polymers for Immediate Release Granules and Tablets\u003cbr\u003e2.2 Polymers for Pellet Cores\u003cbr\u003e2.3 Polymers for Capsule Shells \u003cbr\u003e2.4 Polymers for Immediate-release Film Coatings\u003cbr\u003e2.4.1 Taste Masking\u003cbr\u003e2.4.2 Moisture Barrier Coatings\u003cbr\u003e2.4.3 Oxygen Barrier Coatings\u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Polymers for Extended or Sustained Drug Delivery\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Key Concepts in Controlled Drug Delivery\u003cbr\u003e3.3 Diffusion-controlled Drug Delivery Systems\u003cbr\u003e3.3.1 Reservoir Drug Delivery Systems\u003cbr\u003e3.3.2 Inert Matrix Systems for Controlled Drug Release\u003cbr\u003e3.4 Swelling-controlled Release Systems \u003cbr\u003e3.4.1 Overview \u003cbr\u003e3.4.2 Drug Release from Swelling Systems \u003cbr\u003e3.4.3 Case I Diffusion\u003cbr\u003e3.4.4 Case II Diffusion \u003cbr\u003e3.5 Osmotic Pump Systems\u003cbr\u003e3.5.1 Drug Solubility\u003cbr\u003e3.5.2 Osmotic Pressure\u003cbr\u003e3.5.3 Orifice Size\u003cbr\u003e3.5.4 The Semi-permeable Membrane\u003cbr\u003e3.6 Polysaccharides in Oral Drug Delivery\u003cbr\u003e3.6.1 Starch\u003cbr\u003e3.6.2 Cellulose\u003cbr\u003e3.6.3 Chitosan \u003cbr\u003e3.6.4 Alginates \u003cbr\u003e3.6.5 Xanthan Gum \u003cbr\u003e3.6.6 Guar Gum and Locust Bean Gum \u003cbr\u003e3.7 Hydrogels for Drug Delivery\u003cbr\u003e3.7.1 Stimulus-sensitive Hydrogels\u003cbr\u003e3.7.2 pH- and Temperature-triggered Drug Delivery\u003cbr\u003e3.7.3 Future Directions in Hydrogel Development \u003cbr\u003e3.8 Molecular Recognition as a Concept for Oral Drug Delivery\u003cbr\u003e3.9 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Site-specific Drug Delivery: Polymers for Gastroretention\u003cbr\u003e4.1 Gastroretention: The Challenges and Benefits \u003cbr\u003e4.2 How can Gastroretention be Achieved? \u003cbr\u003e4.2.1 Size-increasing Systems \u003cbr\u003e4.2.2 Floating Systems \u003cbr\u003e4.2.3 Mucoadhesive Systems\u003cbr\u003e4.3 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Enteric Polymers for Small Intestinal Drug Delivery \u003cbr\u003e 5.1 Polymers for Enteric Coatings\u003cbr\u003e5.1.1 Cellulose-based Enteric Polymers\u003cbr\u003e5.1.2 Polyvinyl Derivatives\u003cbr\u003e5.1.3 Polymethacrylates\u003cbr\u003e5.1.4 Aqueous Enteric Coatings \u003cbr\u003e5.2 Factors Influencing Enteric Polymer Dissolution \u003cbr\u003e5.2.1 Polymer Structure \u003cbr\u003e5.2.2 Dissolution Media\u003cbr\u003e5.3 In vivo Performance of Enteric Coatings\u003cbr\u003e5.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Polymers for Modified-release Site-specific Drug Delivery to the Colon\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 pH-triggered Enteric Drug Delivery to the Colon\u003cbr\u003e6.3 Microbially-triggered Colonic Delivery\u003cbr\u003e6.4 Time-dependent Colonic Delivery\u003cbr\u003e6.4.1 Pressure-controlled Colonic Delivery \u003cbr\u003e6.5 Combination Approaches to Colonic Delivery\u003cbr\u003e6.6 Conclusions \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Polymers for Site-specific Drug Delivery: Mucoadhesion\u003cbr\u003e7.1 Mucoadhesion as a Drug Delivery Concept\u003cbr\u003e7.2 The Mucus Layer\u003cbr\u003e7.3 Mucoadhesion \u003cbr\u003e7.4 Polymers Providing Mucoadhesion \u003cbr\u003e7.4.1 Natural Polymers \u003cbr\u003e 7.4.2 Semi-synthetic Polymers\u003cbr\u003e7.4.3 Acrylic Acid Derivatives\u003cbr\u003e7.4.4 Thiolated Polymers or Thiomers\u003cbr\u003e7.4.5 PEGylated polymers\u003cbr\u003e7.4.6 N-(2-Hydroxypropyl) Methacrylamide Copolymers \u003cbr\u003e7.5 Polymer Factors Influencing Mucoadhesive Potential\u003cbr\u003e7.5.1 Molecular Weight\u003cbr\u003e 7.5.2 Polymer Flexibility and Conformation\u003cbr\u003e7.5.3 Polymer Cohesiveness \u003cbr\u003e7.5.4 Polymer Concentration\u003cbr\u003e7.5.5 Chemical Structure of the Polymer\u003cbr\u003e7.5.6 Hydrophilicity of a Polymer\u003cbr\u003e7.6 In Vivo Examples of Mucoadhesion \u003cbr\u003e7.6.1 The Stomach \u003cbr\u003e7.6.2 The Small Intestine\u003cbr\u003e7.6.3 The Colon\u003cbr\u003e7.7 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Micro- and Nanoparticles for Oral Protein and Gene Delivery\u003cbr\u003e8.1 Protein and Gene Therapeutics \u003cbr\u003e8.2 Physiological Barriers in Oral Protein and Gene Delivery \u003cbr\u003e8.2.1 Degradation in the Gastrointestinal Environment \u003cbr\u003e 8.2.2 Permeability Barriers\u003cbr\u003e8.3 Polymers used in Microparticles and Nanoparticles\u003cbr\u003e8.4 Preparation Methods \u003cbr\u003e8.4.1 Emulsion Solvent Evaporation\u003cbr\u003e8.4.2 Emulsion Solvent Diffusion or Displacement \u003cbr\u003e8.4.3 Salting Out\u003cbr\u003e8.4.4 Ionic Gelation \u003cbr\u003e8.4.5 Complex Coacervation\u003cbr\u003e8.5 Factors Affecting the Mucosal Uptake of Particles \u003cbr\u003e8.5.1 Transport of Particles across Intestinal Mucosa\u003cbr\u003e8.5.2 Particle Size\u003cbr\u003e8.5.3 Surface Properties \u003cbr\u003e8.5.4 In Vivo Results\u003cbr\u003e8.6 Conclusions \u003cbr\u003eReferences\u003cbr\u003eAppendix\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:42-04:00","created_at":"2017-06-22T21:14:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","drug delivery","material","polymer"],"price":9900,"price_min":9900,"price_max":9900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433092,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Update on Polymers for Oral Drug Delivery","public_title":null,"options":["Default Title"],"price":9900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847355379","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847355379_2b41a7b8-79ee-4a83-bfc9-42591339d7ed.jpg?v=1499957068"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355379_2b41a7b8-79ee-4a83-bfc9-42591339d7ed.jpg?v=1499957068","options":["Title"],"media":[{"alt":null,"id":358841221213,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355379_2b41a7b8-79ee-4a83-bfc9-42591339d7ed.jpg?v=1499957068"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355379_2b41a7b8-79ee-4a83-bfc9-42591339d7ed.jpg?v=1499957068","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Fang Liu \u003cbr\u003eISBN 9781847355379\u003cbr\u003e\u003cbr\u003ePublish: 2011 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThe preferred route for drug delivery remains the oral route, but oral drug delivery has now developed beyond traditional dosage forms such as tablets and capsules. Nowadays it is possible to use polymers to allow drugs to be targeted to specific sites in the gastrointestinal tract, and to extend the drug release profile. In addition, polymers can be engineered to allow oral delivery of such complex molecules as proteins, peptides, and even genes.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis book gives a comprehensive summary of oral drug delivery systems, both conventional and novel, and the ways in which polymers have been adapted for these systems. Particular attention is devoted to gastrointestinal physiology and the physio-chemical properties of polymers in order to understand the factors affecting their performance in practice.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eThis update will interest everyone involved in the pharmaceutical world, whether in academia or in industry. It will be of particular value to those responsible for designing new oral drug delivery systems involving polymers. It will provide a useful reference text both for researchers and manufacturers, and will also be a helpful introduction for students of all levels to the application of polymers in pharmacy.\u003c\/div\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Gastrointestinal Physiology and its Influence on Oral Drug Delivery Systems\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 How the Stomach can Affect Various Polymer Dosage Forms\u003cbr\u003e1.2.1 Motility and Transit of Polymer Dosage Forms in the Stomach \u003cbr\u003e1.2.2 Fluid and Secretions in the Stomach\u003cbr\u003e1.3 How the Small Intestine can affect Polymeric Dosage Forms \u003cbr\u003e1.3.1 Fluid and Secretions in the Small Intestine \u003cbr\u003e1.3.2 Transit in the Small Intestine\u003cbr\u003e1.4 How the Colon can affect Polymeric Dosage Forms\u003cbr\u003e1.4.1 Fluid in the Colon \u003cbr\u003e1.4.2 Transit through the Colon\u003cbr\u003e1.4.3 Bacteria in the Colon \u003cbr\u003e1.5 The Effect of Polymers on the Gastrointestinal Tract\u003cbr\u003e1.6 The Fate of Polymers in the Gut \u003cbr\u003e1.7 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Polymers for Conventional Oral Dosage Forms\u003cbr\u003e2.1 Polymers for Immediate Release Granules and Tablets\u003cbr\u003e2.2 Polymers for Pellet Cores\u003cbr\u003e2.3 Polymers for Capsule Shells \u003cbr\u003e2.4 Polymers for Immediate-release Film Coatings\u003cbr\u003e2.4.1 Taste Masking\u003cbr\u003e2.4.2 Moisture Barrier Coatings\u003cbr\u003e2.4.3 Oxygen Barrier Coatings\u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Polymers for Extended or Sustained Drug Delivery\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Key Concepts in Controlled Drug Delivery\u003cbr\u003e3.3 Diffusion-controlled Drug Delivery Systems\u003cbr\u003e3.3.1 Reservoir Drug Delivery Systems\u003cbr\u003e3.3.2 Inert Matrix Systems for Controlled Drug Release\u003cbr\u003e3.4 Swelling-controlled Release Systems \u003cbr\u003e3.4.1 Overview \u003cbr\u003e3.4.2 Drug Release from Swelling Systems \u003cbr\u003e3.4.3 Case I Diffusion\u003cbr\u003e3.4.4 Case II Diffusion \u003cbr\u003e3.5 Osmotic Pump Systems\u003cbr\u003e3.5.1 Drug Solubility\u003cbr\u003e3.5.2 Osmotic Pressure\u003cbr\u003e3.5.3 Orifice Size\u003cbr\u003e3.5.4 The Semi-permeable Membrane\u003cbr\u003e3.6 Polysaccharides in Oral Drug Delivery\u003cbr\u003e3.6.1 Starch\u003cbr\u003e3.6.2 Cellulose\u003cbr\u003e3.6.3 Chitosan \u003cbr\u003e3.6.4 Alginates \u003cbr\u003e3.6.5 Xanthan Gum \u003cbr\u003e3.6.6 Guar Gum and Locust Bean Gum \u003cbr\u003e3.7 Hydrogels for Drug Delivery\u003cbr\u003e3.7.1 Stimulus-sensitive Hydrogels\u003cbr\u003e3.7.2 pH- and Temperature-triggered Drug Delivery\u003cbr\u003e3.7.3 Future Directions in Hydrogel Development \u003cbr\u003e3.8 Molecular Recognition as a Concept for Oral Drug Delivery\u003cbr\u003e3.9 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Site-specific Drug Delivery: Polymers for Gastroretention\u003cbr\u003e4.1 Gastroretention: The Challenges and Benefits \u003cbr\u003e4.2 How can Gastroretention be Achieved? \u003cbr\u003e4.2.1 Size-increasing Systems \u003cbr\u003e4.2.2 Floating Systems \u003cbr\u003e4.2.3 Mucoadhesive Systems\u003cbr\u003e4.3 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Enteric Polymers for Small Intestinal Drug Delivery \u003cbr\u003e 5.1 Polymers for Enteric Coatings\u003cbr\u003e5.1.1 Cellulose-based Enteric Polymers\u003cbr\u003e5.1.2 Polyvinyl Derivatives\u003cbr\u003e5.1.3 Polymethacrylates\u003cbr\u003e5.1.4 Aqueous Enteric Coatings \u003cbr\u003e5.2 Factors Influencing Enteric Polymer Dissolution \u003cbr\u003e5.2.1 Polymer Structure \u003cbr\u003e5.2.2 Dissolution Media\u003cbr\u003e5.3 In vivo Performance of Enteric Coatings\u003cbr\u003e5.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Polymers for Modified-release Site-specific Drug Delivery to the Colon\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 pH-triggered Enteric Drug Delivery to the Colon\u003cbr\u003e6.3 Microbially-triggered Colonic Delivery\u003cbr\u003e6.4 Time-dependent Colonic Delivery\u003cbr\u003e6.4.1 Pressure-controlled Colonic Delivery \u003cbr\u003e6.5 Combination Approaches to Colonic Delivery\u003cbr\u003e6.6 Conclusions \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Polymers for Site-specific Drug Delivery: Mucoadhesion\u003cbr\u003e7.1 Mucoadhesion as a Drug Delivery Concept\u003cbr\u003e7.2 The Mucus Layer\u003cbr\u003e7.3 Mucoadhesion \u003cbr\u003e7.4 Polymers Providing Mucoadhesion \u003cbr\u003e7.4.1 Natural Polymers \u003cbr\u003e 7.4.2 Semi-synthetic Polymers\u003cbr\u003e7.4.3 Acrylic Acid Derivatives\u003cbr\u003e7.4.4 Thiolated Polymers or Thiomers\u003cbr\u003e7.4.5 PEGylated polymers\u003cbr\u003e7.4.6 N-(2-Hydroxypropyl) Methacrylamide Copolymers \u003cbr\u003e7.5 Polymer Factors Influencing Mucoadhesive Potential\u003cbr\u003e7.5.1 Molecular Weight\u003cbr\u003e 7.5.2 Polymer Flexibility and Conformation\u003cbr\u003e7.5.3 Polymer Cohesiveness \u003cbr\u003e7.5.4 Polymer Concentration\u003cbr\u003e7.5.5 Chemical Structure of the Polymer\u003cbr\u003e7.5.6 Hydrophilicity of a Polymer\u003cbr\u003e7.6 In Vivo Examples of Mucoadhesion \u003cbr\u003e7.6.1 The Stomach \u003cbr\u003e7.6.2 The Small Intestine\u003cbr\u003e7.6.3 The Colon\u003cbr\u003e7.7 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Micro- and Nanoparticles for Oral Protein and Gene Delivery\u003cbr\u003e8.1 Protein and Gene Therapeutics \u003cbr\u003e8.2 Physiological Barriers in Oral Protein and Gene Delivery \u003cbr\u003e8.2.1 Degradation in the Gastrointestinal Environment \u003cbr\u003e 8.2.2 Permeability Barriers\u003cbr\u003e8.3 Polymers used in Microparticles and Nanoparticles\u003cbr\u003e8.4 Preparation Methods \u003cbr\u003e8.4.1 Emulsion Solvent Evaporation\u003cbr\u003e8.4.2 Emulsion Solvent Diffusion or Displacement \u003cbr\u003e8.4.3 Salting Out\u003cbr\u003e8.4.4 Ionic Gelation \u003cbr\u003e8.4.5 Complex Coacervation\u003cbr\u003e8.5 Factors Affecting the Mucosal Uptake of Particles \u003cbr\u003e8.5.1 Transport of Particles across Intestinal Mucosa\u003cbr\u003e8.5.2 Particle Size\u003cbr\u003e8.5.3 Surface Properties \u003cbr\u003e8.5.4 In Vivo Results\u003cbr\u003e8.6 Conclusions \u003cbr\u003eReferences\u003cbr\u003eAppendix\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Thermal Analysis of Ru...
$205.00
{"id":11242239812,"title":"Thermal Analysis of Rubbers and Rubbery Materials","handle":"978-1-84735-103-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.P. Dee, N. Roy Choudhury, and N.K. Dutta \u003cbr\u003eISBN 978-1-84735-103-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003ePages: 546\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal analysis is a group of techniques in which a physical property of a substance is measured as a function of temperature, while the substance is subjected to a controlled temperature programme. In the differential thermal analysis, the temperature difference that develops between a sample and an inert reference material is measured, when both are subjected to identical heat treatments. The related technique of differential scanning calorimetry relies on differences in energy required to maintain the sample and reference at an identical temperature.\u003cbr\u003e\u003cbr\u003eThermal Analysis of Rubbers and Rubbery Materials, a multi-authored handbook, describes the use of this technique:\u003cbr\u003e\u003cbr\u003e· For determining additives in rubbery materials\u003cbr\u003e· In recycling of rubbers\u003cbr\u003e· In understanding the interactions of rubber - fillers and the rubber matrix\u003cbr\u003e· Characterisation of rubber nano-composites and other modified rubbers and their blends\u003cbr\u003e· Instrumental techniques\u003cbr\u003e· Crystallisation of rubbers\u003cbr\u003e\u003cbr\u003eThermal Analysis of Rubbers and Rubbery Materials is a must for everybody involved in material and product development, testing, processing, quality assurance, or failure analysis in industry and laboratories.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Instrumental Techniques used for the Thermal Analysis of Rubbers and Rubber Materials\u003cbr\u003e3 Applications of DSC and TGA for the Characterisation of Rubbers and Rubbery Materials\u003cbr\u003e4 Dynamic Mechanical Analysis (DMA) for Characterisation of Polymers, Polymer Blends \u0026amp;\u003cbr\u003e Composites\u003cbr\u003e5 Characterisation of Rubbers and Rubber Composites with TMA \u003cbr\u003e6 Micro-thermal Analysis of Rubbery Materials \u003cbr\u003e7 Miscibility, Morphology and Crystallisation Behaviour of Rubber Based Polymer Blends \u003cbr\u003e8 Thermal Characterisation of Polymer Nanocomposites \u003cbr\u003e9 Thermal Analysis in Understanding RubberyMatrix and Rubber-Filler Interactions \u003cbr\u003e10 Study of Crystallisation of Natural Rubber with Differential Scanning Calorimetry \u003cbr\u003e11 Thermal Properties of Chemically Modified Elastomers \u003cbr\u003e12 Thermal Analysis of Rubber Products \u003cbr\u003e13 Thermal Analysis in Recycling of Waste Rubbery Materials \u003cbr\u003e14 Thermal Analysis of Biological Molecules and Biomedical Polymers\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:42-04:00","created_at":"2017-06-22T21:14:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","additives","book","nanocomposites","r-testing","rubber","thermal analysis"],"price":20500,"price_min":20500,"price_max":26500,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433156,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-103-6","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Analysis of Rubbers and Rubbery Materials - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":26500,"weight":0,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-103-6","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50531808900,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-84735-102-9","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Analysis of Rubbers and Rubbery Materials - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":20500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-102-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-103-6_277ca62d-c035-4a91-b2cb-e9aaae4ed94c.jpg?v=1499728259"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-103-6_277ca62d-c035-4a91-b2cb-e9aaae4ed94c.jpg?v=1499728259","options":["Cover"],"media":[{"alt":null,"id":358803079261,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-103-6_277ca62d-c035-4a91-b2cb-e9aaae4ed94c.jpg?v=1499728259"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-103-6_277ca62d-c035-4a91-b2cb-e9aaae4ed94c.jpg?v=1499728259","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.P. Dee, N. Roy Choudhury, and N.K. Dutta \u003cbr\u003eISBN 978-1-84735-103-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003ePages: 546\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal analysis is a group of techniques in which a physical property of a substance is measured as a function of temperature, while the substance is subjected to a controlled temperature programme. In the differential thermal analysis, the temperature difference that develops between a sample and an inert reference material is measured, when both are subjected to identical heat treatments. The related technique of differential scanning calorimetry relies on differences in energy required to maintain the sample and reference at an identical temperature.\u003cbr\u003e\u003cbr\u003eThermal Analysis of Rubbers and Rubbery Materials, a multi-authored handbook, describes the use of this technique:\u003cbr\u003e\u003cbr\u003e· For determining additives in rubbery materials\u003cbr\u003e· In recycling of rubbers\u003cbr\u003e· In understanding the interactions of rubber - fillers and the rubber matrix\u003cbr\u003e· Characterisation of rubber nano-composites and other modified rubbers and their blends\u003cbr\u003e· Instrumental techniques\u003cbr\u003e· Crystallisation of rubbers\u003cbr\u003e\u003cbr\u003eThermal Analysis of Rubbers and Rubbery Materials is a must for everybody involved in material and product development, testing, processing, quality assurance, or failure analysis in industry and laboratories.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Instrumental Techniques used for the Thermal Analysis of Rubbers and Rubber Materials\u003cbr\u003e3 Applications of DSC and TGA for the Characterisation of Rubbers and Rubbery Materials\u003cbr\u003e4 Dynamic Mechanical Analysis (DMA) for Characterisation of Polymers, Polymer Blends \u0026amp;\u003cbr\u003e Composites\u003cbr\u003e5 Characterisation of Rubbers and Rubber Composites with TMA \u003cbr\u003e6 Micro-thermal Analysis of Rubbery Materials \u003cbr\u003e7 Miscibility, Morphology and Crystallisation Behaviour of Rubber Based Polymer Blends \u003cbr\u003e8 Thermal Characterisation of Polymer Nanocomposites \u003cbr\u003e9 Thermal Analysis in Understanding RubberyMatrix and Rubber-Filler Interactions \u003cbr\u003e10 Study of Crystallisation of Natural Rubber with Differential Scanning Calorimetry \u003cbr\u003e11 Thermal Properties of Chemically Modified Elastomers \u003cbr\u003e12 Thermal Analysis of Rubber Products \u003cbr\u003e13 Thermal Analysis in Recycling of Waste Rubbery Materials \u003cbr\u003e14 Thermal Analysis of Biological Molecules and Biomedical Polymers\u003cbr\u003e\u003cbr\u003e"}
Mixing of Vulcanisable...
$125.00
{"id":11242240004,"title":"Mixing of Vulcanisable Rubbers and Thermoplastic Elastomers","handle":"978-1-85957-496-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.R. Wood \u003cbr\u003eISBN 978-1-85957-496-6 \u003cbr\u003e\u003cbr\u003ePages 127\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report describes the current state of the art in mixing from a practical viewpoint. \u003cbr\u003eDevelopments that have taken place in mixing equipment over the last eight or nine years have been significant, with almost all major machinery makers having made innovations of one type or another. Some developments have been as small as re-profiling rotors of relatively conventional design. Others have been the introduction of completely new rotor designs, both intermeshing and tangential. \u003cbr\u003e\u003cbr\u003eThis report begins by offering historical background against which the latest developments are set. It considers both batch and continuous systems, containing details of key developments by equipment manufacturers such as Kobe Steel, Techint Pomini, Farrel and ThyssenKrupp Elastomertechnik, with the different concepts discussed in layman’s terms. The report also summarises the range of mixing techniques applied in the industry. \u003cbr\u003e\u003cbr\u003eThe quality of rubber mixing depends not only on the mixer itself but also on control of the whole mixing process, from raw materials to the moment the compound leaves the mill room for further processing, and this review offers the relevant developments in ancillary equipment such as the drive, hopper arrangement, temperature measurement system and discharge system. Methods for monitoring mixing quality both off- and online are also covered, Recent academic research in rubber mixing is briefly considered, providing an indication of possible future practical advances in this field. \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e\u003cbr\u003e2 HISTORY \u003cbr\u003e\u003cbr\u003e3 BATCH MIXING MACHINERY: DEVELOPMENTS IN RECENT YEARS\u003cbr\u003e3.1 Mills\u003cbr\u003e3.2 Internal Mixers\u003cbr\u003e3.2.1 Definitions of Terms Used in Descriptions of Internal Mixers\u003cbr\u003e3.2.2 Tangential Rotor Internal Mixers\u003cbr\u003e3.2.3 Intermeshing Rotor Internal Mixers\u003cbr\u003e3.2.4 Hybrid Intermeshing Rotor Developments: the Co-flow-4 Rotor\u003cbr\u003e3.2.5 Other Batch Mixer Developments\u003cbr\u003e3.2.6 The Tandem Mixer\u003cbr\u003e3.3 How They Mix: A Comparison of Mixing Behaviour of Intermeshing and Tangential Rotor Mixers\u003cbr\u003e3.3.1 Tangential Rotor Mixing Machines\u003cbr\u003e3.3.2 Intermeshing Rotor Mixing Machines\u003cbr\u003e3.3.3 Hybrid Rotor Mixing Machines\u003cbr\u003e3.3.4 Summary of Observed Differences and Comparative Mixing Data\u003cbr\u003e3.4 Around the Batch Mixer\u003cbr\u003e3.4.1 Mixer Drive Systems\u003cbr\u003e3.4.2 Mixer Hopper and Ram Operation\u003cbr\u003e3.4.3 Mixing Temperature Measurement\u003cbr\u003e3.4.4 Mixer Temperature Control Systems\u003cbr\u003e3.4.5 Mixer Discharge Arrangements\u003cbr\u003e3.4.6 Materials Handling Systems and Feed Systems for Batch Mixers\u003cbr\u003e3.4.7 Mixing Plant Control and Data Acquisition \u003cbr\u003e\u003cbr\u003e4 MIXING TECHNIQUES IN BATCH MIXERS\u003cbr\u003e4.1 Single Stage Mixing\u003cbr\u003e4.2 Two-, or Multi-Stage, Mixing\u003cbr\u003e4.3 Upside Down Mixing\u003cbr\u003e4.4 Variable Rotor Speed\u003cbr\u003e4.5 Use of Ram Movement\u003cbr\u003e4.6 Machine Temperature\u003cbr\u003e4.7 Discharge of the Batch with the Ram Up or Down?\u003cbr\u003e4.8 Thermoplastic Elastomer Mixing \u003cbr\u003e\u003cbr\u003e5 DOWNSTREAM EQUIPMENT\u003cbr\u003e5.1 Curable Rubbers\u003cbr\u003e5.2 Thermoplastic Elastomers \u003cbr\u003e\u003cbr\u003e6 MONITORING MIXING QUALITY\u003cbr\u003e6.1 Off-Line Testing\u003cbr\u003e6.2 On-Line Testing \u003cbr\u003e\u003cbr\u003e7 DEVELOPMENTS IN CONTINUOUS MIXING MACHINERY\u003cbr\u003e7.1 Single-Screw Extruders\u003cbr\u003e7.2 Single Rotor Continuous Mixing Systems\u003cbr\u003e7.3 Twin Rotor, Contrarotating, Non-Intermeshing Continuous Mixers\u003cbr\u003e7.3.1 The Farrel Continuous Mixer (FCM)\u003cbr\u003e7.3.2 The MVX (Mixing, Venting, eXtruding) Machine\u003cbr\u003e7.4 Planetary Extruders\u003cbr\u003e7.5 Twin Rotor Contrarotating Intermeshing Extruders\u003cbr\u003e7.6 Twin Rotor Corotating Intermeshing Extruders\u003cbr\u003e7.7 Ring Extruders\u003cbr\u003e7.8 Other Machines \u003cbr\u003e\u003cbr\u003e8 OPERATION OF CONTINUOUS MIXING MACHINERY\u003cbr\u003e8.1 Material Suitability\u003cbr\u003e8.2 Production Scale\u003cbr\u003e8.3 Material Take-Off\u003cbr\u003e8.4 Quality Monitoring 8.5 Comparison with Batch Mixing\u003cbr\u003e8.6 Thermoplastic Elastomers \u003cbr\u003e\u003cbr\u003e9 RESEARCH AND DEVELOPMENT \u003cbr\u003e\u003cbr\u003e10 THE FUTURE? \u003cbr\u003eAuthor References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:42-04:00","created_at":"2017-06-22T21:14:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","book","contrarotating","curable rubbers","Farrel","Kobe Steel","p-processing","planetary extruders","poly","rotor corotating","rotor mixing","rubbers","single rotor","single-screw extruders","Techint Pomini","testing","thermoplastic elastomers","ThyssenKrupp","twin rotor","vulcanisable rubbers"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433348,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Mixing of Vulcanisable Rubbers and Thermoplastic Elastomers","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-496-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-496-6.jpg?v=1499951343"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-496-6.jpg?v=1499951343","options":["Title"],"media":[{"alt":null,"id":358513639517,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-496-6.jpg?v=1499951343"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-496-6.jpg?v=1499951343","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.R. Wood \u003cbr\u003eISBN 978-1-85957-496-6 \u003cbr\u003e\u003cbr\u003ePages 127\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report describes the current state of the art in mixing from a practical viewpoint. \u003cbr\u003eDevelopments that have taken place in mixing equipment over the last eight or nine years have been significant, with almost all major machinery makers having made innovations of one type or another. Some developments have been as small as re-profiling rotors of relatively conventional design. Others have been the introduction of completely new rotor designs, both intermeshing and tangential. \u003cbr\u003e\u003cbr\u003eThis report begins by offering historical background against which the latest developments are set. It considers both batch and continuous systems, containing details of key developments by equipment manufacturers such as Kobe Steel, Techint Pomini, Farrel and ThyssenKrupp Elastomertechnik, with the different concepts discussed in layman’s terms. The report also summarises the range of mixing techniques applied in the industry. \u003cbr\u003e\u003cbr\u003eThe quality of rubber mixing depends not only on the mixer itself but also on control of the whole mixing process, from raw materials to the moment the compound leaves the mill room for further processing, and this review offers the relevant developments in ancillary equipment such as the drive, hopper arrangement, temperature measurement system and discharge system. Methods for monitoring mixing quality both off- and online are also covered, Recent academic research in rubber mixing is briefly considered, providing an indication of possible future practical advances in this field. \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e\u003cbr\u003e2 HISTORY \u003cbr\u003e\u003cbr\u003e3 BATCH MIXING MACHINERY: DEVELOPMENTS IN RECENT YEARS\u003cbr\u003e3.1 Mills\u003cbr\u003e3.2 Internal Mixers\u003cbr\u003e3.2.1 Definitions of Terms Used in Descriptions of Internal Mixers\u003cbr\u003e3.2.2 Tangential Rotor Internal Mixers\u003cbr\u003e3.2.3 Intermeshing Rotor Internal Mixers\u003cbr\u003e3.2.4 Hybrid Intermeshing Rotor Developments: the Co-flow-4 Rotor\u003cbr\u003e3.2.5 Other Batch Mixer Developments\u003cbr\u003e3.2.6 The Tandem Mixer\u003cbr\u003e3.3 How They Mix: A Comparison of Mixing Behaviour of Intermeshing and Tangential Rotor Mixers\u003cbr\u003e3.3.1 Tangential Rotor Mixing Machines\u003cbr\u003e3.3.2 Intermeshing Rotor Mixing Machines\u003cbr\u003e3.3.3 Hybrid Rotor Mixing Machines\u003cbr\u003e3.3.4 Summary of Observed Differences and Comparative Mixing Data\u003cbr\u003e3.4 Around the Batch Mixer\u003cbr\u003e3.4.1 Mixer Drive Systems\u003cbr\u003e3.4.2 Mixer Hopper and Ram Operation\u003cbr\u003e3.4.3 Mixing Temperature Measurement\u003cbr\u003e3.4.4 Mixer Temperature Control Systems\u003cbr\u003e3.4.5 Mixer Discharge Arrangements\u003cbr\u003e3.4.6 Materials Handling Systems and Feed Systems for Batch Mixers\u003cbr\u003e3.4.7 Mixing Plant Control and Data Acquisition \u003cbr\u003e\u003cbr\u003e4 MIXING TECHNIQUES IN BATCH MIXERS\u003cbr\u003e4.1 Single Stage Mixing\u003cbr\u003e4.2 Two-, or Multi-Stage, Mixing\u003cbr\u003e4.3 Upside Down Mixing\u003cbr\u003e4.4 Variable Rotor Speed\u003cbr\u003e4.5 Use of Ram Movement\u003cbr\u003e4.6 Machine Temperature\u003cbr\u003e4.7 Discharge of the Batch with the Ram Up or Down?\u003cbr\u003e4.8 Thermoplastic Elastomer Mixing \u003cbr\u003e\u003cbr\u003e5 DOWNSTREAM EQUIPMENT\u003cbr\u003e5.1 Curable Rubbers\u003cbr\u003e5.2 Thermoplastic Elastomers \u003cbr\u003e\u003cbr\u003e6 MONITORING MIXING QUALITY\u003cbr\u003e6.1 Off-Line Testing\u003cbr\u003e6.2 On-Line Testing \u003cbr\u003e\u003cbr\u003e7 DEVELOPMENTS IN CONTINUOUS MIXING MACHINERY\u003cbr\u003e7.1 Single-Screw Extruders\u003cbr\u003e7.2 Single Rotor Continuous Mixing Systems\u003cbr\u003e7.3 Twin Rotor, Contrarotating, Non-Intermeshing Continuous Mixers\u003cbr\u003e7.3.1 The Farrel Continuous Mixer (FCM)\u003cbr\u003e7.3.2 The MVX (Mixing, Venting, eXtruding) Machine\u003cbr\u003e7.4 Planetary Extruders\u003cbr\u003e7.5 Twin Rotor Contrarotating Intermeshing Extruders\u003cbr\u003e7.6 Twin Rotor Corotating Intermeshing Extruders\u003cbr\u003e7.7 Ring Extruders\u003cbr\u003e7.8 Other Machines \u003cbr\u003e\u003cbr\u003e8 OPERATION OF CONTINUOUS MIXING MACHINERY\u003cbr\u003e8.1 Material Suitability\u003cbr\u003e8.2 Production Scale\u003cbr\u003e8.3 Material Take-Off\u003cbr\u003e8.4 Quality Monitoring 8.5 Comparison with Batch Mixing\u003cbr\u003e8.6 Thermoplastic Elastomers \u003cbr\u003e\u003cbr\u003e9 RESEARCH AND DEVELOPMENT \u003cbr\u003e\u003cbr\u003e10 THE FUTURE? \u003cbr\u003eAuthor References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e"}
Plastics and the Envir...
$165.00
{"id":11242239364,"title":"Plastics and the Environment","handle":"978-1-84735-491-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eleanor Garmson and Frances Gardiner \u003cbr\u003eISBN 978-1-84735-491-4 \u003cbr\u003e\u003cbr\u003ePages: 142, Hard cover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis multi-authored book - from some of the leading researchers and practitioners on this topic - is a distinctive look at how to maximize profitability through environmental compliance in the plastics supply chain, a topic of great and ever-growing interest in the industry.\u003cbr\u003e\u003cbr\u003eThis distinguished assembly of authors from across the global - and from both industry and academia - provides the reader with a distinctive perspective on this topic. Plastics and the Environment provide readers with a look into the environmental issues of plastics products throughout the complete product lifecycle - from material selection to product design to recycling.\u003cbr\u003e\u003cbr\u003eTopics covered include Plastics Materials and Sustainability, Environmental Design for Plastics Products, Energy Efficiency, Plastics, Recycling and Technology, and Life Cycle Assessment.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Developments in Polymer Technology Driven by the Need for Sustainability\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 What Drives Developments Forward?\u003cbr\u003e1.3 How can we save the World?\u003cbr\u003e1.4 Getting the Science Right\u003cbr\u003e1.5 Legislation and Design\u003cbr\u003e1.6 New Materials\u003cbr\u003e1.7 New Processes\u003cbr\u003e1.8 Conclusions\u003cbr\u003e\u003cbr\u003e2 A Medium Voltage Switchgear Mechanism which is Insensitive to its Environment \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Selection of the Most Appropriate Material\u003cbr\u003e2.3 Design of a New Range of Mechanisms\u003cbr\u003e2.4 Environmental Studies\u003cbr\u003e2.5 Material Balance Analysis\u003cbr\u003e2.6 LCA18\u003cbr\u003e2.7 Conclusion.20\u003cbr\u003e\u003cbr\u003e3 From Industrial Polymerisation Wastes to High Valued Material: Interfacial Agents for Polymer Blends and Composites based on Chemically Modified Atactic\u003cbr\u003ePolypropylenes\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Chemical Modification \u003cbr\u003e3.3 Role in Heterogeneous Materials Based on Polymers \u003cbr\u003e3.4 Conclusions and Perspectives \u003cbr\u003e\u003cbr\u003e4 Energy Efficiency Index for Plastic Processing Machines \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Aim and Benefits of the Energy Efficiency Label\u003cbr\u003e4.3 Definition of Energy Efficiency Labels\u003cbr\u003e4.4 Label Development Process\u003cbr\u003e4.4.1 Define the Kind of Label: Which Type of Label do we Need?\u003cbr\u003e4.4.2 Form a Project Team: Who should be Involved in the Label Development Process? Which Steps have to be Done and When?\u003cbr\u003e4.4.3 Definition of the Product Groups: Which Product Groups\/Segments can be Defined and Considered Together?\u003cbr\u003e4.4.4 Definition of Criteria: Which Efficiency Criterion can be used for the Evaluation of the Energy Efficiency?\u003cbr\u003e4.4.5 Developing Measurement Standards: How to Measure the Energy Consumption of the Product?\u003cbr\u003e4.4.6 Calculate the Energy Efficiency Index (EEI) How to Define an EEI?\u003cbr\u003e4.4.7 Classification of Energy Classes: How Can Products be Classified?\u003cbr\u003e4.4.8 Label Design: How the Label is Designed and which Information is Included?\u003cbr\u003e4.4.9 Energy Measurements: How to Provide Data for the Definition of the Measurement Standard and the Definition of the Energy Classes?\u003cbr\u003e4.4.10 Energy Efficiency Improvement: What are Possible Improvement Strategies for a Higher Energy Class?\u003cbr\u003e4.4.11 Label Introduction\u003cbr\u003e4.4.12 Label Monitoring\u003cbr\u003e4.5 Example: Plastic Extrusion Machines\u003cbr\u003e4.5.1 Label Definition and Project Team\u003cbr\u003e4.5.2 Label Development\u003cbr\u003e4.5.3 Energy Efficiency Criteria \u003cbr\u003e4.5.4 Energy Measurement and Measurement Standard\u003cbr\u003e4.5.5 Energy Efficiency Index\u003cbr\u003e4.5.6 Energy Efficiency Classes\u003cbr\u003e4.5.7 Label Design\u003cbr\u003e4.5.8 Market Introduction and Communication\u003cbr\u003e4.6 Product Improvement and Ecodesign\u003cbr\u003e4.7 Summary\u003cbr\u003e\u003cbr\u003e5 Comparative Analysis of the Carbon Footprint of Wood and Plastic Lumber Railway Sleepers in Brazil and Germany \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Waste Management System\u003cbr\u003e5.2.1 Brazil\u003cbr\u003e5.2.2 Germany\u003cbr\u003e5.3 Railway Sleepers Market\u003cbr\u003e5.3.1 Brazil\u003cbr\u003e5.3.2 Germany\u003cbr\u003e5.4 Scope Definition and Life Cycle Inventory (LCI)\u003cbr\u003e5.4.1 Functional Unit\u003cbr\u003e5.4.2 Intended Audience \u003cbr\u003e5.4.3 Product Systems and System Boundaries \u003cbr\u003e5.4.4 Data Collection\u003cbr\u003e5.5 Results \u003cbr\u003e5.5.1 Brazil\u003cbr\u003e5.5.2 Germany\u003cbr\u003e5.5.3 Scenario Analysis\u003cbr\u003e5.5.4 Brazilian Case\u003cbr\u003e5.5.5 German Case\u003cbr\u003e5.6 Discussions and Conclusions \u003cbr\u003e\u003cbr\u003e6 Perfect Sorting Solutions for Packaging Recycling \u003cbr\u003e6.1 Post-consumer Polyethylene Terephthalate Through the Ages \u003cbr\u003e6.2 Bottle Sorting, the First Step in the Recycling Process \u003cbr\u003e6.3 Quality Improvement and Decontamination during the Flake Washing and Sorting Process \u003cbr\u003e6.4 Bottle to Bottle Recycling - The Ecological Alternative \u003cbr\u003e\u003cbr\u003e7 UK Household Plastic Packaging Collection Survey 2009\u003cbr\u003e7.1 UK Household Plastics Packaging Recycling Survey Background\u003cbr\u003e7.2 UK Plastic Packaging Consumption Statistics\u003cbr\u003e7.3 Household Plastic Packaging Recycling Rates in 2008\u003cbr\u003e7.4 Plastic Bottle Collection Infrastructure Summary\u003cbr\u003e7.5 Bring Scheme Performance\u003cbr\u003e7.6 Kerbside Scheme Performance\u003cbr\u003e7.7 Reported Perceptions of Running Plastic Bottle Collections\u003cbr\u003e7.8 Collection of Non Bottle Plastics Packaging for Recycling\u003cbr\u003e7.9 Sale of Material\u003cbr\u003e7.10 Planned Developments\u003cbr\u003e7.10.1 Bring Schemes \u003cbr\u003e7.10.2 Kerbside Schemes \u003cbr\u003e7.11 Development of Non Bottle Plastics Packaging Collections\u003cbr\u003e\u003cbr\u003e8 Vinyl 2010: Experience and Perspectives in Polyvinyl Chloride (PVC) Sustainable Development\u003cbr\u003e8.1 PVC: Strengths and Concerns\u003cbr\u003e8.2 The Vinyl 2010 Initiative\u003cbr\u003e8.2.1 Vinyl 2010: Foundation, Structure, and Organisation\u003cbr\u003e8.2.2 Commitments \u003cbr\u003e8.2.2.1 Manufacturing\u003cbr\u003e8.2.2.2 Plasticisers \u003cbr\u003e8.2.2.3 Stabilisers\u003cbr\u003e8.2.2.4 Waste Management\u003cbr\u003e8.3 Activities and Achievements of Vinyl 2010 \u003cbr\u003e8.3.1 Manufacturing\u003cbr\u003e8.3.2 Stabilisers \u003cbr\u003e8.3.3 Plasticisers\u003cbr\u003e8.3.4 Waste Management\u003cbr\u003e8.3.4.1 Collection and Recycling for Specific Applications \u003cbr\u003e8.3.4.2 Mixed PVC Recycling \u003cbr\u003e8.3.4.3 Recovinyl\u003cbr\u003e8.3.4.4 Mechanical Recycling \u003cbr\u003e8.3.4.5 Feedstock Recycling\u003cbr\u003e8.3.4.6 Energy Recovery\u003cbr\u003e8.3.4.7 PVC Waste Statistics\u003cbr\u003e8.3.4.8 Partnership with Local Authorities\u003cbr\u003e8.3.4.9 Other Partnerships\u003cbr\u003e8.4 Lessons Learnt\u003cbr\u003e8.4.1 Manufacturing\u003cbr\u003e8.4.2 Additives\u003cbr\u003e8.4.3 Waste Management\u003cbr\u003e8.4.4 Recycling Technologies\u003cbr\u003e8.5 Future Challenges \u003cbr\u003e8.6 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","carbon footprint","composites","environment","life cycle assessment","plastic processing machines","plastics","polymer blends","Polyvinyl Chloride (PVC)","recycling"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics and the Environment","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-491-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851","options":["Title"],"media":[{"alt":null,"id":358534905949,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eleanor Garmson and Frances Gardiner \u003cbr\u003eISBN 978-1-84735-491-4 \u003cbr\u003e\u003cbr\u003ePages: 142, Hard cover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis multi-authored book - from some of the leading researchers and practitioners on this topic - is a distinctive look at how to maximize profitability through environmental compliance in the plastics supply chain, a topic of great and ever-growing interest in the industry.\u003cbr\u003e\u003cbr\u003eThis distinguished assembly of authors from across the global - and from both industry and academia - provides the reader with a distinctive perspective on this topic. Plastics and the Environment provide readers with a look into the environmental issues of plastics products throughout the complete product lifecycle - from material selection to product design to recycling.\u003cbr\u003e\u003cbr\u003eTopics covered include Plastics Materials and Sustainability, Environmental Design for Plastics Products, Energy Efficiency, Plastics, Recycling and Technology, and Life Cycle Assessment.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Developments in Polymer Technology Driven by the Need for Sustainability\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 What Drives Developments Forward?\u003cbr\u003e1.3 How can we save the World?\u003cbr\u003e1.4 Getting the Science Right\u003cbr\u003e1.5 Legislation and Design\u003cbr\u003e1.6 New Materials\u003cbr\u003e1.7 New Processes\u003cbr\u003e1.8 Conclusions\u003cbr\u003e\u003cbr\u003e2 A Medium Voltage Switchgear Mechanism which is Insensitive to its Environment \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Selection of the Most Appropriate Material\u003cbr\u003e2.3 Design of a New Range of Mechanisms\u003cbr\u003e2.4 Environmental Studies\u003cbr\u003e2.5 Material Balance Analysis\u003cbr\u003e2.6 LCA18\u003cbr\u003e2.7 Conclusion.20\u003cbr\u003e\u003cbr\u003e3 From Industrial Polymerisation Wastes to High Valued Material: Interfacial Agents for Polymer Blends and Composites based on Chemically Modified Atactic\u003cbr\u003ePolypropylenes\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Chemical Modification \u003cbr\u003e3.3 Role in Heterogeneous Materials Based on Polymers \u003cbr\u003e3.4 Conclusions and Perspectives \u003cbr\u003e\u003cbr\u003e4 Energy Efficiency Index for Plastic Processing Machines \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Aim and Benefits of the Energy Efficiency Label\u003cbr\u003e4.3 Definition of Energy Efficiency Labels\u003cbr\u003e4.4 Label Development Process\u003cbr\u003e4.4.1 Define the Kind of Label: Which Type of Label do we Need?\u003cbr\u003e4.4.2 Form a Project Team: Who should be Involved in the Label Development Process? Which Steps have to be Done and When?\u003cbr\u003e4.4.3 Definition of the Product Groups: Which Product Groups\/Segments can be Defined and Considered Together?\u003cbr\u003e4.4.4 Definition of Criteria: Which Efficiency Criterion can be used for the Evaluation of the Energy Efficiency?\u003cbr\u003e4.4.5 Developing Measurement Standards: How to Measure the Energy Consumption of the Product?\u003cbr\u003e4.4.6 Calculate the Energy Efficiency Index (EEI) How to Define an EEI?\u003cbr\u003e4.4.7 Classification of Energy Classes: How Can Products be Classified?\u003cbr\u003e4.4.8 Label Design: How the Label is Designed and which Information is Included?\u003cbr\u003e4.4.9 Energy Measurements: How to Provide Data for the Definition of the Measurement Standard and the Definition of the Energy Classes?\u003cbr\u003e4.4.10 Energy Efficiency Improvement: What are Possible Improvement Strategies for a Higher Energy Class?\u003cbr\u003e4.4.11 Label Introduction\u003cbr\u003e4.4.12 Label Monitoring\u003cbr\u003e4.5 Example: Plastic Extrusion Machines\u003cbr\u003e4.5.1 Label Definition and Project Team\u003cbr\u003e4.5.2 Label Development\u003cbr\u003e4.5.3 Energy Efficiency Criteria \u003cbr\u003e4.5.4 Energy Measurement and Measurement Standard\u003cbr\u003e4.5.5 Energy Efficiency Index\u003cbr\u003e4.5.6 Energy Efficiency Classes\u003cbr\u003e4.5.7 Label Design\u003cbr\u003e4.5.8 Market Introduction and Communication\u003cbr\u003e4.6 Product Improvement and Ecodesign\u003cbr\u003e4.7 Summary\u003cbr\u003e\u003cbr\u003e5 Comparative Analysis of the Carbon Footprint of Wood and Plastic Lumber Railway Sleepers in Brazil and Germany \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Waste Management System\u003cbr\u003e5.2.1 Brazil\u003cbr\u003e5.2.2 Germany\u003cbr\u003e5.3 Railway Sleepers Market\u003cbr\u003e5.3.1 Brazil\u003cbr\u003e5.3.2 Germany\u003cbr\u003e5.4 Scope Definition and Life Cycle Inventory (LCI)\u003cbr\u003e5.4.1 Functional Unit\u003cbr\u003e5.4.2 Intended Audience \u003cbr\u003e5.4.3 Product Systems and System Boundaries \u003cbr\u003e5.4.4 Data Collection\u003cbr\u003e5.5 Results \u003cbr\u003e5.5.1 Brazil\u003cbr\u003e5.5.2 Germany\u003cbr\u003e5.5.3 Scenario Analysis\u003cbr\u003e5.5.4 Brazilian Case\u003cbr\u003e5.5.5 German Case\u003cbr\u003e5.6 Discussions and Conclusions \u003cbr\u003e\u003cbr\u003e6 Perfect Sorting Solutions for Packaging Recycling \u003cbr\u003e6.1 Post-consumer Polyethylene Terephthalate Through the Ages \u003cbr\u003e6.2 Bottle Sorting, the First Step in the Recycling Process \u003cbr\u003e6.3 Quality Improvement and Decontamination during the Flake Washing and Sorting Process \u003cbr\u003e6.4 Bottle to Bottle Recycling - The Ecological Alternative \u003cbr\u003e\u003cbr\u003e7 UK Household Plastic Packaging Collection Survey 2009\u003cbr\u003e7.1 UK Household Plastics Packaging Recycling Survey Background\u003cbr\u003e7.2 UK Plastic Packaging Consumption Statistics\u003cbr\u003e7.3 Household Plastic Packaging Recycling Rates in 2008\u003cbr\u003e7.4 Plastic Bottle Collection Infrastructure Summary\u003cbr\u003e7.5 Bring Scheme Performance\u003cbr\u003e7.6 Kerbside Scheme Performance\u003cbr\u003e7.7 Reported Perceptions of Running Plastic Bottle Collections\u003cbr\u003e7.8 Collection of Non Bottle Plastics Packaging for Recycling\u003cbr\u003e7.9 Sale of Material\u003cbr\u003e7.10 Planned Developments\u003cbr\u003e7.10.1 Bring Schemes \u003cbr\u003e7.10.2 Kerbside Schemes \u003cbr\u003e7.11 Development of Non Bottle Plastics Packaging Collections\u003cbr\u003e\u003cbr\u003e8 Vinyl 2010: Experience and Perspectives in Polyvinyl Chloride (PVC) Sustainable Development\u003cbr\u003e8.1 PVC: Strengths and Concerns\u003cbr\u003e8.2 The Vinyl 2010 Initiative\u003cbr\u003e8.2.1 Vinyl 2010: Foundation, Structure, and Organisation\u003cbr\u003e8.2.2 Commitments \u003cbr\u003e8.2.2.1 Manufacturing\u003cbr\u003e8.2.2.2 Plasticisers \u003cbr\u003e8.2.2.3 Stabilisers\u003cbr\u003e8.2.2.4 Waste Management\u003cbr\u003e8.3 Activities and Achievements of Vinyl 2010 \u003cbr\u003e8.3.1 Manufacturing\u003cbr\u003e8.3.2 Stabilisers \u003cbr\u003e8.3.3 Plasticisers\u003cbr\u003e8.3.4 Waste Management\u003cbr\u003e8.3.4.1 Collection and Recycling for Specific Applications \u003cbr\u003e8.3.4.2 Mixed PVC Recycling \u003cbr\u003e8.3.4.3 Recovinyl\u003cbr\u003e8.3.4.4 Mechanical Recycling \u003cbr\u003e8.3.4.5 Feedstock Recycling\u003cbr\u003e8.3.4.6 Energy Recovery\u003cbr\u003e8.3.4.7 PVC Waste Statistics\u003cbr\u003e8.3.4.8 Partnership with Local Authorities\u003cbr\u003e8.3.4.9 Other Partnerships\u003cbr\u003e8.4 Lessons Learnt\u003cbr\u003e8.4.1 Manufacturing\u003cbr\u003e8.4.2 Additives\u003cbr\u003e8.4.3 Waste Management\u003cbr\u003e8.4.4 Recycling Technologies\u003cbr\u003e8.5 Future Challenges \u003cbr\u003e8.6 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e"}
Bonding Elastomers: A ...
$153.00
{"id":11242239556,"title":"Bonding Elastomers: A Review of Adhesives and Processes","handle":"978-1-85957-495-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G. Polaski, J. Means, B. Stull, P. Warren, K. Allen, D. Mowrey and B. Carney, Lord Corporation \u003cbr\u003eISBN 978-1-85957-495-9 \u003cbr\u003e\u003cbr\u003ePages 150\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review has been written as a practical approach to bonding various kinds of elastomers to substrates such as steel and plastics, as used in the manufacture of diverse products such as rubber covered rolls, urethane fork lift wheels, rubber lining for chemical storage or solid rocket motors, engine bushes and mounts, seals for transmissions, electrical power connectors and military tank track pads. \u003cbr\u003e\u003cbr\u003eThere are over 20 kinds of elastomeric polymer each having unique physical and chemical resistance characteristics. Through compounding, a given elastomer’s performance can be enhanced but no single elastomer can be compounded to meet all applications. In the same manner, no single adhesive can provide the needed levels of adhesion and environmental resistance to all polymers. Even when bonding a particular elastomer, the adhesive of choice can vary depending upon the compounding of the rubber including the cure system, the environmental application of the bonded assembly, the substrate to which the rubber is going to be bonded, the moulding method and the geometry of the part. Other factors affecting adhesive selection might include colour, conductivity, and means of application. \u003cbr\u003e\u003cbr\u003eThis review is based on the authors' years of experience working closely with end-use customers and offers a thorough overview of how to successfully bond rubber to a given substrate in the manufacture of quality rubber engineered components: \u003cbr\u003e\u003cbr\u003esubstrate preparation selection of adhesive adhesive preparation adhesive application moulding conditions testing and bond failure analysis future trends \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Forward \u003cbr\u003e2 Introduction\u003cbr\u003e2.1 The Process\u003cbr\u003e2.2 Primers\u003cbr\u003e2.3 Adhesives\u003cbr\u003e2.4 Environmental Concerns \u003cbr\u003e3 Adhesive Application\u003cbr\u003e3.1 Surface Preparation\u003cbr\u003e3.2 Adhesive Selection\u003cbr\u003e3.3 Adhesive Preparation\u003cbr\u003e3.4 Adhesive Application\u003cbr\u003e3.5 Film Thickness\u003cbr\u003e3.6 Drying\u003cbr\u003e3.7 Storage \u003cbr\u003e4 Moulding\u003cbr\u003e4.1 Methods of Mould Bonding\u003cbr\u003e4.2 Sweeping (Flow)\u003cbr\u003e4.3 Pre-bake Resistance\u003cbr\u003e4.4 Mould Release\u003cbr\u003e4.5 Demoulding \u003cbr\u003e5 Environmentally Preferred Adhesives\u003cbr\u003e5.1 Adhesive Description\u003cbr\u003e5.2 Formulations\u003cbr\u003e5.3 Application\u003cbr\u003e5.4 Rubber Formulations\u003cbr\u003e5.5 Testing\u003cbr\u003e5.5.1 Bond Performance\u003cbr\u003e5.5.2 Primary Adhesion\u003cbr\u003e5.5.3 Sweep\u003cbr\u003e5.5.4 Hot Tear\u003cbr\u003e5.5.5 Salt Spray\u003cbr\u003e5.6 Results\u003cbr\u003e5.7 Summary \u003cbr\u003e6 Aqueous Adhesives\u003cbr\u003e6.1 Aqueous versus Solvent Based Adhesives\u003cbr\u003e6.2 Experimental\u003cbr\u003e6.3 Results and Discussion\u003cbr\u003e6.4 Summary \u003cbr\u003e7 Troubleshooting\u003cbr\u003e7.1 Types of Failures\u003cbr\u003e7.1.1 Rubber Failure\u003cbr\u003e7.1.2 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.1.3 Cement-to Metal (CM) Failure\u003cbr\u003e7.1.4 Other Failures\u003cbr\u003e7.2 Failure Analysis\u003cbr\u003e7.2.1 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.2.2 Cement-to-Metal Failure\u003cbr\u003e7.3 Surface Analysis Techniques\u003cbr\u003e7.4 Root Cause\u003cbr\u003e7.5 Summary \u003cbr\u003e8 Testing \u003cbr\u003e9 Markets\u003cbr\u003e9.1 Bonding Rubber Rolls\u003cbr\u003e9.1.1 Core Preparation\u003cbr\u003e9.1.2 The Adhesive System Selection Process\u003cbr\u003e9.1.3 Handling, Mixing, and Application Processes\u003cbr\u003e9.1.4 Rubber Lay-Up and Curing\u003cbr\u003e9.1.5 Troubleshooting\u003cbr\u003e9.2 Bonding Urethane's\u003cbr\u003e9.2.1 Bonding Applications\u003cbr\u003e9.2.2 Adhesive System Selection\u003cbr\u003e9.2.3 Adhesive Application\u003cbr\u003e9.3 Thermoplastic Elastomer Bonding\u003cbr\u003e9.3.1 Bonding Applications\u003cbr\u003e9.3.2 Bonding Methods\u003cbr\u003e9.3.3 Adhesive Selection (for Use in Injection Moulding)\u003cbr\u003e9.3.4 Application\u003cbr\u003e9.3.5 Pre-Baking Adhesive Coated Parts Prior to Moulding\u003cbr\u003e9.3.6 Injection Moulding\u003cbr\u003e9.3.7 Checking Bond Adhesion\u003cbr\u003e9.3.8 Bond Performance\u003cbr\u003e9.4 Rubber Lining\u003cbr\u003e9.4.1 Surface Preparation\u003cbr\u003e9.4.2 Rubber Lining\u003cbr\u003e9.4.3 Rubber and the Cure System\u003cbr\u003e9.4.4 Primers\/Adhesives\/Tack Coats\u003cbr\u003e9.4.5 Adhesive Handling\u003cbr\u003e9.4.6 Application\u003cbr\u003e9.4.7 Quality Control\u003cbr\u003e9.4.8 Summary\u003cbr\u003e9.5 Adhesives for Seals and Gaskets\u003cbr\u003e9.5.1 Adhesive and Coating Selections\u003cbr\u003e9.5.2 Summary\u003cbr\u003e9.6 Adhesives for Automotive Weatherstripping\u003cbr\u003e9.6.1 Metal Profile Carriers\u003cbr\u003e9.6.2 Elastomeric Sealing Surfaces\u003cbr\u003e9.6.3 Extrusion Process\u003cbr\u003e9.6.4 Performance Testing\u003cbr\u003e9.6.5 Summary \u003cbr\u003e10 Future Trends in Rubber-to-Metal Bonding \u003cbr\u003eAbbreviations\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","adhesives","book","chemical","electrical properties","film thickness","gaskets","mechanical","mold release","molding","moulding","p-applications","poly","polyethylene","rheological","rubber","seals","thermal properties"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432900,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Bonding Elastomers: A Review of Adhesives and Processes","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-495-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579","options":["Title"],"media":[{"alt":null,"id":353925038173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-495-9.jpg?v=1499202579","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: G. Polaski, J. Means, B. Stull, P. Warren, K. Allen, D. Mowrey and B. Carney, Lord Corporation \u003cbr\u003eISBN 978-1-85957-495-9 \u003cbr\u003e\u003cbr\u003ePages 150\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review has been written as a practical approach to bonding various kinds of elastomers to substrates such as steel and plastics, as used in the manufacture of diverse products such as rubber covered rolls, urethane fork lift wheels, rubber lining for chemical storage or solid rocket motors, engine bushes and mounts, seals for transmissions, electrical power connectors and military tank track pads. \u003cbr\u003e\u003cbr\u003eThere are over 20 kinds of elastomeric polymer each having unique physical and chemical resistance characteristics. Through compounding, a given elastomer’s performance can be enhanced but no single elastomer can be compounded to meet all applications. In the same manner, no single adhesive can provide the needed levels of adhesion and environmental resistance to all polymers. Even when bonding a particular elastomer, the adhesive of choice can vary depending upon the compounding of the rubber including the cure system, the environmental application of the bonded assembly, the substrate to which the rubber is going to be bonded, the moulding method and the geometry of the part. Other factors affecting adhesive selection might include colour, conductivity, and means of application. \u003cbr\u003e\u003cbr\u003eThis review is based on the authors' years of experience working closely with end-use customers and offers a thorough overview of how to successfully bond rubber to a given substrate in the manufacture of quality rubber engineered components: \u003cbr\u003e\u003cbr\u003esubstrate preparation selection of adhesive adhesive preparation adhesive application moulding conditions testing and bond failure analysis future trends \u003cbr\u003e\u003cbr\u003eThis review of rubber mixing is supported by an indexed section containing several hundred key references and abstracts selected from the Rapra Abstracts database.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Forward \u003cbr\u003e2 Introduction\u003cbr\u003e2.1 The Process\u003cbr\u003e2.2 Primers\u003cbr\u003e2.3 Adhesives\u003cbr\u003e2.4 Environmental Concerns \u003cbr\u003e3 Adhesive Application\u003cbr\u003e3.1 Surface Preparation\u003cbr\u003e3.2 Adhesive Selection\u003cbr\u003e3.3 Adhesive Preparation\u003cbr\u003e3.4 Adhesive Application\u003cbr\u003e3.5 Film Thickness\u003cbr\u003e3.6 Drying\u003cbr\u003e3.7 Storage \u003cbr\u003e4 Moulding\u003cbr\u003e4.1 Methods of Mould Bonding\u003cbr\u003e4.2 Sweeping (Flow)\u003cbr\u003e4.3 Pre-bake Resistance\u003cbr\u003e4.4 Mould Release\u003cbr\u003e4.5 Demoulding \u003cbr\u003e5 Environmentally Preferred Adhesives\u003cbr\u003e5.1 Adhesive Description\u003cbr\u003e5.2 Formulations\u003cbr\u003e5.3 Application\u003cbr\u003e5.4 Rubber Formulations\u003cbr\u003e5.5 Testing\u003cbr\u003e5.5.1 Bond Performance\u003cbr\u003e5.5.2 Primary Adhesion\u003cbr\u003e5.5.3 Sweep\u003cbr\u003e5.5.4 Hot Tear\u003cbr\u003e5.5.5 Salt Spray\u003cbr\u003e5.6 Results\u003cbr\u003e5.7 Summary \u003cbr\u003e6 Aqueous Adhesives\u003cbr\u003e6.1 Aqueous versus Solvent Based Adhesives\u003cbr\u003e6.2 Experimental\u003cbr\u003e6.3 Results and Discussion\u003cbr\u003e6.4 Summary \u003cbr\u003e7 Troubleshooting\u003cbr\u003e7.1 Types of Failures\u003cbr\u003e7.1.1 Rubber Failure\u003cbr\u003e7.1.2 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.1.3 Cement-to Metal (CM) Failure\u003cbr\u003e7.1.4 Other Failures\u003cbr\u003e7.2 Failure Analysis\u003cbr\u003e7.2.1 Rubber-to-Cement (RC) Failure\u003cbr\u003e7.2.2 Cement-to-Metal Failure\u003cbr\u003e7.3 Surface Analysis Techniques\u003cbr\u003e7.4 Root Cause\u003cbr\u003e7.5 Summary \u003cbr\u003e8 Testing \u003cbr\u003e9 Markets\u003cbr\u003e9.1 Bonding Rubber Rolls\u003cbr\u003e9.1.1 Core Preparation\u003cbr\u003e9.1.2 The Adhesive System Selection Process\u003cbr\u003e9.1.3 Handling, Mixing, and Application Processes\u003cbr\u003e9.1.4 Rubber Lay-Up and Curing\u003cbr\u003e9.1.5 Troubleshooting\u003cbr\u003e9.2 Bonding Urethane's\u003cbr\u003e9.2.1 Bonding Applications\u003cbr\u003e9.2.2 Adhesive System Selection\u003cbr\u003e9.2.3 Adhesive Application\u003cbr\u003e9.3 Thermoplastic Elastomer Bonding\u003cbr\u003e9.3.1 Bonding Applications\u003cbr\u003e9.3.2 Bonding Methods\u003cbr\u003e9.3.3 Adhesive Selection (for Use in Injection Moulding)\u003cbr\u003e9.3.4 Application\u003cbr\u003e9.3.5 Pre-Baking Adhesive Coated Parts Prior to Moulding\u003cbr\u003e9.3.6 Injection Moulding\u003cbr\u003e9.3.7 Checking Bond Adhesion\u003cbr\u003e9.3.8 Bond Performance\u003cbr\u003e9.4 Rubber Lining\u003cbr\u003e9.4.1 Surface Preparation\u003cbr\u003e9.4.2 Rubber Lining\u003cbr\u003e9.4.3 Rubber and the Cure System\u003cbr\u003e9.4.4 Primers\/Adhesives\/Tack Coats\u003cbr\u003e9.4.5 Adhesive Handling\u003cbr\u003e9.4.6 Application\u003cbr\u003e9.4.7 Quality Control\u003cbr\u003e9.4.8 Summary\u003cbr\u003e9.5 Adhesives for Seals and Gaskets\u003cbr\u003e9.5.1 Adhesive and Coating Selections\u003cbr\u003e9.5.2 Summary\u003cbr\u003e9.6 Adhesives for Automotive Weatherstripping\u003cbr\u003e9.6.1 Metal Profile Carriers\u003cbr\u003e9.6.2 Elastomeric Sealing Surfaces\u003cbr\u003e9.6.3 Extrusion Process\u003cbr\u003e9.6.4 Performance Testing\u003cbr\u003e9.6.5 Summary \u003cbr\u003e10 Future Trends in Rubber-to-Metal Bonding \u003cbr\u003eAbbreviations\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e"}
Advances in Nanofibre ...
$165.00
{"id":11242239492,"title":"Advances in Nanofibre Research","handle":"978-1-84735-603-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.K. Haghi and G.E. Zaikov \u003cbr\u003eISBN 978-1-84735-603-1 \u003cbr\u003e\u003cbr\u003ePages:204\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNanofibres are defined as fibers with diameters on the order of 100 nanometres. They can be produced by interfacial polymerisation and electrospinning. Nanofibres are included in garments, insulation and in energy storage. They are also used in medical applications, which include drug and gene delivery, artificial blood vessels, artificial organs and medical facemasks. \u003cbr\u003e\u003cbr\u003eThis book presents some fascinating phenomena associated with the remarkable features of nanofibres in electrospinning processes and new progress in applications of electrospun nanofibres. \u003cbr\u003e\u003cbr\u003eIt also provides an overview of structure-property relationships, synthesis and purification, and potential applications of electrospun nanofibres. The collection of topics in this book aims to reflect the diversity of recent advances in electrospun nanofibres with a broad perspective which may be useful for scientists as well as for graduate students and engineers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Electrospinning of Polymeric Nanofibres\u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Processing Condition \u003cbr\u003e1.2.1 Applied Voltage\u003cbr\u003e1.2.2 Feed Rate\u003cbr\u003e1.3 Theory and Modeling \u003cbr\u003e1.4 Concluding Remarks \u003cbr\u003e\u003cbr\u003e2 Polymeric Nanofibre Fabrication via Electrospinning Process\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Experimental \u003cbr\u003e2.2.1 Solution Preparation and Electrospinning \u003cbr\u003e2.2.2 Choice of Parameters and Range \u003cbr\u003e2.2.3 Experimental Design \u003cbr\u003e2.2.4 Response Surface Methodology \u003cbr\u003e2.3 Results and Discussion \u003cbr\u003e2.3.1 Response Surfaces for Mean Fibre Diameter \u003cbr\u003e2.3.1.1 Solution Concentration \u003cbr\u003e2.3.1.2 Spinning Distance \u003cbr\u003e2.3.1.3 Applied Voltage \u003cbr\u003e2.3.1.4 Volume Flow Rate \u003cbr\u003e2.3.2 Response Surfaces for Standard Deviation of Fibre Diameter \u003cbr\u003e2.3.2.1 Solution Concentration \u003cbr\u003e2.3.2.2 Spinning Distance \u003cbr\u003e2.3.2.3 Applied Voltage \u003cbr\u003e2.3.2.4 Volume Flow Rate \u003cbr\u003e2.4 Conclusion \u003cbr\u003e2.4.1 Mean Fibre Diameter \u003cbr\u003e2.4.2 Standard Deviation of Fibre Diameter\u003cbr\u003e\u003cbr\u003e3 Structure Formation of Polymeric Nanofibres in Electrospinning\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Methodology \u003cbr\u003e3.2.1 Simulation of Electrospun Webs \u003cbr\u003e3.2.2 Fibre Diameter Measurement \u003cbr\u003e3.2.2.1 Manual Method \u003cbr\u003e3.2.2.2 Distance Transform \u003cbr\u003e3.2.2.3 Direct Tracking \u003cbr\u003e3.2.3 Real Webs Treatment \u003cbr\u003e3.3 Experimental\u003cbr\u003e3.4 Results and Discussion \u003cbr\u003e3.5 Conclusion \u003cbr\u003e\u003cbr\u003e4 Optimisation of the Electrospinning Process\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Methodology \u003cbr\u003e4.2.1 Measurement of Fibre Diameter \u003cbr\u003e4.2.1.1 Manual Method \u003cbr\u003e4.2.1.2 Distance Transform Method \u003cbr\u003e4.2.1.3 New Distance Transform Method \u003cbr\u003e4.2.2 Validation of the Methods \u003cbr\u003e4.2.3 Thresholding \u003cbr\u003e4.3 Experimental\u003cbr\u003e4.4 Results and Discussion \u003cbr\u003e4.5 Conclusion \u003cbr\u003e\u003cbr\u003e5 Practical Hints on the Processing Parameters and Geometric Properties of Electrospun Nanofibres\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Methodology \u003cbr\u003e5.2.1 Sieving Methods \u003cbr\u003e5.2.2 Mercury Porosimetry \u003cbr\u003e5.2.3 Flow Porosimetry (Bubble Point Method) \u003cbr\u003e5.2.4 Image Analysis\u003cbr\u003e5.2.4.1 Real Webs \u003cbr\u003e5.2.4.2 Simulated Webs \u003cbr\u003e5.3 Experimental\u003cbr\u003e5.4 Results and Discussion \u003cbr\u003e5.5 Conclusion \u003cbr\u003e6 Practical Hints on the Production of Electrospun Nanofibres from Regenerated Silk Fibroin \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Effect of Systematic Parameters on Electrospun Nanofibres \u003cbr\u003e6.2.1 Solution Properties \u003cbr\u003e6.2.2 Viscosity \u003cbr\u003e6.2.3 Solution Concentration \u003cbr\u003e6.2.4 Molecular Weight \u003cbr\u003e6.2.5 Surface Tension \u003cbr\u003e6.2.6 Solution Conductivity \u003cbr\u003e6.2.7 Applied Voltage \u003cbr\u003e6.2.8 Feed Rate \u003cbr\u003e6.3 Experimental \u003cbr\u003e6.3.1 Electrospinning and Preparation of Nanofibrous Media \u003cbr\u003e6.3.2 Image Analysis using Image Processing Algorithms \u003cbr\u003e6.4 Results and Discussion \u003cbr\u003e6.4.1 Diameter Distribution of Nanofibres \u003cbr\u003e6.4.2 Distribution of Nanofibre Orientation\u003cbr\u003e6.4.3 Porosity \u003cbr\u003e6.5 Conclusions \u003cbr\u003e\u003cbr\u003e7 Characterisation of Polymeric Electrospun Nanofibres \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.1.1 Electrospinning Setup \u003cbr\u003e7.2 Effect of Systematic Parameters on Electrospun Nanofibres\u003cbr\u003e7.2.1 Solution Properties \u003cbr\u003e7.2.1.1 Viscosity \u003cbr\u003e7.2.1.2. Solution Concentration \u003cbr\u003e7.2.1.3 Molecular Weight \u003cbr\u003e7.2.1.4 Surface Tension \u003cbr\u003e7.2.1.5 Solution Conductivity \u003cbr\u003e7.2.2 Processing Condition \u003cbr\u003e7.2.2.1 Applied Voltage \u003cbr\u003e7.2.2.2 Feed Rate \u003cbr\u003e7.3 Experimental \u003cbr\u003e7.4 Result and Discussion \u003cbr\u003e7.5 Conclusion \u003cbr\u003e\u003cbr\u003e8 Formation of Polymeric Electrospun Nanofibres \u003cbr\u003e8.1 Overview\u003cbr\u003e8.2 Aim of the Project \u003cbr\u003e8.3 Experimental \u003cbr\u003e8.4 Results and Discussion \u003cbr\u003e8.5 Conclusion \u003cbr\u003e\u003cbr\u003e9 Experimental Study on Electrospinning of Polymeric Nanofibres \u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Experimental\u003cbr\u003e9.2.1 Materials\u003cbr\u003e9.2.2 Sample Preparation\u003cbr\u003e9.2.3 Electrospinning\u003cbr\u003e9.2.4 Characterisation \u003cbr\u003e9.3 Results and Discussion \u003cbr\u003e9.3.1 Effect of Polyaniline Content \u003cbr\u003e9.3.2 Effect of Electrospinning Temperature \u003cbr\u003e9.3.3 Effect of Applied Voltage \u003cbr\u003e9.4 Conclusions \u003cbr\u003eAbbreviations \u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","electrospinning","electrospun","nanofibers","polymeric nanofibers","polymers"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432772,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Advances in Nanofibre Research","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-603-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-603-1.jpg?v=1499720197"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-603-1.jpg?v=1499720197","options":["Title"],"media":[{"alt":null,"id":350147084381,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-603-1.jpg?v=1499720197"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-603-1.jpg?v=1499720197","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.K. Haghi and G.E. Zaikov \u003cbr\u003eISBN 978-1-84735-603-1 \u003cbr\u003e\u003cbr\u003ePages:204\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNanofibres are defined as fibers with diameters on the order of 100 nanometres. They can be produced by interfacial polymerisation and electrospinning. Nanofibres are included in garments, insulation and in energy storage. They are also used in medical applications, which include drug and gene delivery, artificial blood vessels, artificial organs and medical facemasks. \u003cbr\u003e\u003cbr\u003eThis book presents some fascinating phenomena associated with the remarkable features of nanofibres in electrospinning processes and new progress in applications of electrospun nanofibres. \u003cbr\u003e\u003cbr\u003eIt also provides an overview of structure-property relationships, synthesis and purification, and potential applications of electrospun nanofibres. The collection of topics in this book aims to reflect the diversity of recent advances in electrospun nanofibres with a broad perspective which may be useful for scientists as well as for graduate students and engineers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Electrospinning of Polymeric Nanofibres\u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Processing Condition \u003cbr\u003e1.2.1 Applied Voltage\u003cbr\u003e1.2.2 Feed Rate\u003cbr\u003e1.3 Theory and Modeling \u003cbr\u003e1.4 Concluding Remarks \u003cbr\u003e\u003cbr\u003e2 Polymeric Nanofibre Fabrication via Electrospinning Process\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Experimental \u003cbr\u003e2.2.1 Solution Preparation and Electrospinning \u003cbr\u003e2.2.2 Choice of Parameters and Range \u003cbr\u003e2.2.3 Experimental Design \u003cbr\u003e2.2.4 Response Surface Methodology \u003cbr\u003e2.3 Results and Discussion \u003cbr\u003e2.3.1 Response Surfaces for Mean Fibre Diameter \u003cbr\u003e2.3.1.1 Solution Concentration \u003cbr\u003e2.3.1.2 Spinning Distance \u003cbr\u003e2.3.1.3 Applied Voltage \u003cbr\u003e2.3.1.4 Volume Flow Rate \u003cbr\u003e2.3.2 Response Surfaces for Standard Deviation of Fibre Diameter \u003cbr\u003e2.3.2.1 Solution Concentration \u003cbr\u003e2.3.2.2 Spinning Distance \u003cbr\u003e2.3.2.3 Applied Voltage \u003cbr\u003e2.3.2.4 Volume Flow Rate \u003cbr\u003e2.4 Conclusion \u003cbr\u003e2.4.1 Mean Fibre Diameter \u003cbr\u003e2.4.2 Standard Deviation of Fibre Diameter\u003cbr\u003e\u003cbr\u003e3 Structure Formation of Polymeric Nanofibres in Electrospinning\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Methodology \u003cbr\u003e3.2.1 Simulation of Electrospun Webs \u003cbr\u003e3.2.2 Fibre Diameter Measurement \u003cbr\u003e3.2.2.1 Manual Method \u003cbr\u003e3.2.2.2 Distance Transform \u003cbr\u003e3.2.2.3 Direct Tracking \u003cbr\u003e3.2.3 Real Webs Treatment \u003cbr\u003e3.3 Experimental\u003cbr\u003e3.4 Results and Discussion \u003cbr\u003e3.5 Conclusion \u003cbr\u003e\u003cbr\u003e4 Optimisation of the Electrospinning Process\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Methodology \u003cbr\u003e4.2.1 Measurement of Fibre Diameter \u003cbr\u003e4.2.1.1 Manual Method \u003cbr\u003e4.2.1.2 Distance Transform Method \u003cbr\u003e4.2.1.3 New Distance Transform Method \u003cbr\u003e4.2.2 Validation of the Methods \u003cbr\u003e4.2.3 Thresholding \u003cbr\u003e4.3 Experimental\u003cbr\u003e4.4 Results and Discussion \u003cbr\u003e4.5 Conclusion \u003cbr\u003e\u003cbr\u003e5 Practical Hints on the Processing Parameters and Geometric Properties of Electrospun Nanofibres\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Methodology \u003cbr\u003e5.2.1 Sieving Methods \u003cbr\u003e5.2.2 Mercury Porosimetry \u003cbr\u003e5.2.3 Flow Porosimetry (Bubble Point Method) \u003cbr\u003e5.2.4 Image Analysis\u003cbr\u003e5.2.4.1 Real Webs \u003cbr\u003e5.2.4.2 Simulated Webs \u003cbr\u003e5.3 Experimental\u003cbr\u003e5.4 Results and Discussion \u003cbr\u003e5.5 Conclusion \u003cbr\u003e6 Practical Hints on the Production of Electrospun Nanofibres from Regenerated Silk Fibroin \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Effect of Systematic Parameters on Electrospun Nanofibres \u003cbr\u003e6.2.1 Solution Properties \u003cbr\u003e6.2.2 Viscosity \u003cbr\u003e6.2.3 Solution Concentration \u003cbr\u003e6.2.4 Molecular Weight \u003cbr\u003e6.2.5 Surface Tension \u003cbr\u003e6.2.6 Solution Conductivity \u003cbr\u003e6.2.7 Applied Voltage \u003cbr\u003e6.2.8 Feed Rate \u003cbr\u003e6.3 Experimental \u003cbr\u003e6.3.1 Electrospinning and Preparation of Nanofibrous Media \u003cbr\u003e6.3.2 Image Analysis using Image Processing Algorithms \u003cbr\u003e6.4 Results and Discussion \u003cbr\u003e6.4.1 Diameter Distribution of Nanofibres \u003cbr\u003e6.4.2 Distribution of Nanofibre Orientation\u003cbr\u003e6.4.3 Porosity \u003cbr\u003e6.5 Conclusions \u003cbr\u003e\u003cbr\u003e7 Characterisation of Polymeric Electrospun Nanofibres \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.1.1 Electrospinning Setup \u003cbr\u003e7.2 Effect of Systematic Parameters on Electrospun Nanofibres\u003cbr\u003e7.2.1 Solution Properties \u003cbr\u003e7.2.1.1 Viscosity \u003cbr\u003e7.2.1.2. Solution Concentration \u003cbr\u003e7.2.1.3 Molecular Weight \u003cbr\u003e7.2.1.4 Surface Tension \u003cbr\u003e7.2.1.5 Solution Conductivity \u003cbr\u003e7.2.2 Processing Condition \u003cbr\u003e7.2.2.1 Applied Voltage \u003cbr\u003e7.2.2.2 Feed Rate \u003cbr\u003e7.3 Experimental \u003cbr\u003e7.4 Result and Discussion \u003cbr\u003e7.5 Conclusion \u003cbr\u003e\u003cbr\u003e8 Formation of Polymeric Electrospun Nanofibres \u003cbr\u003e8.1 Overview\u003cbr\u003e8.2 Aim of the Project \u003cbr\u003e8.3 Experimental \u003cbr\u003e8.4 Results and Discussion \u003cbr\u003e8.5 Conclusion \u003cbr\u003e\u003cbr\u003e9 Experimental Study on Electrospinning of Polymeric Nanofibres \u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Experimental\u003cbr\u003e9.2.1 Materials\u003cbr\u003e9.2.2 Sample Preparation\u003cbr\u003e9.2.3 Electrospinning\u003cbr\u003e9.2.4 Characterisation \u003cbr\u003e9.3 Results and Discussion \u003cbr\u003e9.3.1 Effect of Polyaniline Content \u003cbr\u003e9.3.2 Effect of Electrospinning Temperature \u003cbr\u003e9.3.3 Effect of Applied Voltage \u003cbr\u003e9.4 Conclusions \u003cbr\u003eAbbreviations \u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e"}
Handbook of Conducting...
$299.00
{"id":11242239172,"title":"Handbook of Conducting Polymers, 3rd Ed. 2 Vol. Set","handle":"9781574446654","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. A. Skotheim, J. Reynolds \u003cbr\u003eISBN 9781574446654 \u003cbr\u003e\u003cbr\u003epages 1680\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAs the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two volumes, this third edition incorporates the latest developments in both the fundamental science and practical applications of polymers while maintaining the clear format of the previous editions and the expertise of the editors and world-renowned contributors.\u003cbr\u003e\u003cbr\u003eThe first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind p-conjugated materials and electron-lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.\u003cbr\u003e\u003cbr\u003ePicking up where the first volume left off, the second book concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators. \u003cbr\u003e\u003cbr\u003eAs the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eRetains the expertise of the world-renowned editors and contributors as well as the clear format from previous editions\u003c\/li\u003e\n\u003cli\u003eDescribes in detail the structure-property relationships of redox, interfacial, electrical, and optical phenomena unique to conducting polymers\u003c\/li\u003e\n\u003cli\u003eHighlights conducting and semiconducting polymers in light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators\u003c\/li\u003e\n\u003cli\u003eFeatures the most active and visible researchers in the field of conjugated and conducting polymers\u003c\/li\u003e\n\u003cli\u003eIncludes numerous equations, tables, and both black and white and color figures\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:40-04:00","created_at":"2017-06-22T21:14:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","actuators","biosensors","book","conducting","electrical","electrochromic panels","field effect","interfacial","optical","p-applications","polymer","polymers","redox","semiconducting polymers in light-emitting displays","solar cells","transistors"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432452,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Conducting Polymers, 3rd Ed. 2 Vol. Set","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781574446654","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880","options":["Title"],"media":[{"alt":null,"id":354810265693,"position":1,"preview_image":{"aspect_ratio":0.659,"height":499,"width":329,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880"},"aspect_ratio":0.659,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880","width":329}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. A. Skotheim, J. Reynolds \u003cbr\u003eISBN 9781574446654 \u003cbr\u003e\u003cbr\u003epages 1680\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAs the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two volumes, this third edition incorporates the latest developments in both the fundamental science and practical applications of polymers while maintaining the clear format of the previous editions and the expertise of the editors and world-renowned contributors.\u003cbr\u003e\u003cbr\u003eThe first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind p-conjugated materials and electron-lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.\u003cbr\u003e\u003cbr\u003ePicking up where the first volume left off, the second book concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators. \u003cbr\u003e\u003cbr\u003eAs the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eRetains the expertise of the world-renowned editors and contributors as well as the clear format from previous editions\u003c\/li\u003e\n\u003cli\u003eDescribes in detail the structure-property relationships of redox, interfacial, electrical, and optical phenomena unique to conducting polymers\u003c\/li\u003e\n\u003cli\u003eHighlights conducting and semiconducting polymers in light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators\u003c\/li\u003e\n\u003cli\u003eFeatures the most active and visible researchers in the field of conjugated and conducting polymers\u003c\/li\u003e\n\u003cli\u003eIncludes numerous equations, tables, and both black and white and color figures\u003c\/li\u003e\n\u003c\/ul\u003e"}
Chromatography Mass Sp...
$215.00
{"id":11242239300,"title":"Chromatography Mass Spectroscopy in Polymer Analysis","handle":"978-1-84735-482-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-482-2 \u003cbr\u003e\u003cbr\u003ePages: 236, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe combination of chromatography with mass spectroscopy is a very useful technique which is being increasingly used by polymer chemists to improve existing polymers and to discover new ones with specific physical properties such as thermal stability and retention of properties over a long service life.\u003cbr\u003e\u003cbr\u003eThis technique is extremely powerful for the analysis and characterisation of polymers and is often based on the use of controlled chromatography - mass spectroscopy to measure a polymer's decomposition with techniques such as pyrolysis, followed by chromatography to separate any breakdown product, and, finally, mass spectroscopy, to achieve an unequivocal identification of the pyrolysis products obtained. The detail that can be obtained by such methods includes structure of the polymer backbone, branching, end groups, isomeric detail and fine detail in the structure of copolymers.\u003cbr\u003e\u003cbr\u003eThe first three chapters of the book discuss the various chromatographic and mass spectroscopic techniques now available.\u003cbr\u003e\u003cbr\u003eChapters 3-8 cover the complementary methods, based on the combination of mass spectroscopy with various chromatographic techniques such as high-performance liquid chromatography, gas chromatography and supercritical fluid chromatography.\u003cbr\u003e\u003cbr\u003ePyrolysis chromatography-mass spectroscopy is a method of studying the structure of polymers which involves subjecting the polymer pyrolysis products to a chromatographic technique to simplify subsequent analysis and, finally mass spectroscopy to identify the pyrolysis products with the possibility of deducing finer details of polymer structure than were previously attainable by classical methods (Chapters 9-11).\u003cbr\u003e\u003cbr\u003eBy providing a thorough up-to-date review of work in this field it is hoped that the book will be of interest to all those engaged in polymer research and development, and polymer users in general.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chromatographic Techniques\u003cbr\u003e1.1 Gas Chromatography\u003cbr\u003e1.2 High Performance Liquid Chromatography\u003cbr\u003e1.2.1 Post-column Derivatisation: Fluorescence Detectors\u003cbr\u003e1.2.2 Diode Array Detectors\u003cbr\u003e1.2.3 Electrochemical Detectors\u003cbr\u003e1.2.3.1 The determination of Monomers\u003cbr\u003e1.2.3.2 Determination of Oligomers\u003cbr\u003e1.2.4 Fractionation\/Microstructure Studies\u003cbr\u003e1.3 Size Exclusion Chromatography\u003cbr\u003e1.3.1 Characterisation Studies\u003cbr\u003e1.3.2 Branching\u003cbr\u003e1.3.3 Compositional Analysis\u003cbr\u003e1.3.4 Molecular Weight\u003cbr\u003e1.3.5 Polymer Blends\u003cbr\u003e1.3.6 Polymer Additives\u003cbr\u003e1.4 Supercritical Fluid Chromatography\u003cbr\u003e1.4.1 Polymer Additives\u003cbr\u003e1.5 Thin Layer Chromatography\u003cbr\u003e1.6 Thermal Field Flow Fractionation\u003cbr\u003evi\u003cbr\u003eChromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e2 Mass Spectroscopic Techniques\u003cbr\u003e2.1 Time-of-Flight – Secondary Ion Mass Spectroscopy\u003cbr\u003e2.1.1 Adhesion Studies\u003cbr\u003e2.1.2 Polymer Interface Studies\u003cbr\u003e2.1.3 Vulcanisation Studies\u003cbr\u003e2.2 Matrix Assisted Laser Desorption Ionisation Mass Spectroscopy\u003cbr\u003e2.2.1 Applications\u003cbr\u003e2.3 Matrix Assisted Laser Desorption Ionisation Post\u003cbr\u003eSource Decay\u003cbr\u003e2.4 Electrospray Ionisation Mass Spectroscopy\u003cbr\u003e2.5 Field Desorption Mass Spectroscopy\u003cbr\u003e2.6 Tandem Mass Spectroscopy\u003cbr\u003e2.7 Fourier-transform Ion Cyclotron Mass Spectroscopy\u003cbr\u003e2.8 Fast Atom Bombardment Mass Spectroscopy\u003cbr\u003e2.9 Radio Frequency and Glow Discharge – Mass Spectroscopy\u003cbr\u003e3 Chemical Reaction Gas Chromatography\u003cbr\u003e3.1 Applications\u003cbr\u003e3.1.1 Saponification Procedures\u003cbr\u003e3.1.2 Zeisel Procedures\u003cbr\u003e3.1.3 Alkali Fusion\u003cbr\u003e3.1.4 Reactive Hydrolysis – Methylation – Pyrolysis –Chromatography\u003cbr\u003e4 Complementary High Performance Liquid Chromatography – Mass Spectroscopy\u003cbr\u003e4.1 Theory\u003cbr\u003e4.1 Applications Contents vii\u003cbr\u003e4.1.1 Polymer Characterisation\u003cbr\u003e4.1.2 Polymer Extractables\u003cbr\u003e4.1.3 Determination of Polymer Additives\u003cbr\u003e4.1.4 High Performance Liquid Chromatography –Infrared Spectroscopy\u003cbr\u003e5 Complementary Size Exclusion Chromatography – Mass Spectroscopy\u003cbr\u003e5.1 Applications\u003cbr\u003e5.1.1 Molecular Weight\u003cbr\u003e5.1.1.1 Polyesters\u003cbr\u003e5.1.1.2 Poly(N-methyl Perfluoro –octylsulfonamido Ethyl Acrylate)\u003cbr\u003e5.1.1.3 Polymethylmethacrylate\u003cbr\u003e5.1.1.4 2-Benzothiozolon-3-yl Acetic Acid-telechelic Polyethylene Oxides (PEG Esters)\u003cbr\u003e5.1.1.5 Polyesters\u003cbr\u003e5.1.1.6 Polyethers\u003cbr\u003e5.1.1.7 Hydrocarbon Types\u003cbr\u003e5.1.1.8 Nitrogen Containing Polymers\u003cbr\u003e5.1.1.9 Silicon Containing Polymers\u003cbr\u003e5.1.1.10 Miscellaneous Polymers\u003cbr\u003e5.2 Polymer Degradation Studies\u003cbr\u003e5.3 End-group Analysis\u003cbr\u003e6 Complementary Gas Chromatography – Mass Spectroscopy\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Polymer Characterisation\u003cbr\u003e6.1.1.1 Sulfur Containing Polymers\u003cbr\u003eviii Chromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e6.1.1.2 3-Glycidoxyproply-tri-methoxysilane sols\u003cbr\u003e6.1.1.3 Fluorine Containing Polymers\u003cbr\u003e6.1.2 Polymer Degradation Studies\u003cbr\u003e6.1.2.1 Low Molecular Weight Compounds or Degradation Products\u003cbr\u003e6.1.2.2 Molar Mass Changes during Degradation Analysed by Size Exclusion Chromatography and\/or Matrix Assisted Laser Desorption Ionisation\u003cbr\u003e6.1.2.3 Polybutylene Adipate and Polybutylene Succinate\u003cbr\u003e6.1.2.4 Rubbers\u003cbr\u003e6.1.2.5 Polystyrene Peroxide\u003cbr\u003e6.1.2.6 Polypropylene Hydroperoxides\u003cbr\u003e6.1.2.7 Polystyrene\u003cbr\u003e6.1.2.8 Polyethylene Oxide – Polypropylene Oxide Copolymers\u003cbr\u003e6.1.3 Food Packaging Applications\u003cbr\u003e6.1.4 Miscellaneous Polymers\u003cbr\u003e7 Complementary Supercritical Fluid Chromatography – Mass Spectroscopy\u003cbr\u003e8 Headspace Analysis – Mass Spectroscopy\u003cbr\u003e9 Pyrolysis Gas Chromatography – Mass Spectroscopy\u003cbr\u003e9.1 Applications\u003cbr\u003e9.1.1 Polyolefins\u003cbr\u003e9.1.1.1 Polyolefin Homopolymers\u003cbr\u003e9.1.1.2 Polypropylene Carbonate\u003cbr\u003eContents ix\u003cbr\u003e9.1.1.3 Polyolefin Copolymers\u003cbr\u003e9.1.1.4 Polystyrenes\u003cbr\u003e9.1.1.5 Polyesters\u003cbr\u003e9.1.1.6 Chlorine Containing Polymers\u003cbr\u003e9.1.1.7 Rubbers\u003cbr\u003e9.1.1.9 Nitrogen Containing Polymers\u003cbr\u003e9.1.1.10 Sulfur Containing Polymers\u003cbr\u003e9.1.1.11 Silicon Containing Polymers\u003cbr\u003e9.2 Polymer Additives\u003cbr\u003e9.3 Miscellaneous\u003cbr\u003e9.3.1 Py-GC-MS Methods\u003cbr\u003e9.3.2 Direct Pyrolysis – Gas Chromatography without Intervening Chromatographic Stage\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:40-04:00","created_at":"2017-06-22T21:14:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","acrylic polymers","additives","blends","book","chromatography","mass spectroscopy","monomers","oligomers","p-chemistry","polymer","polymers"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432580,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Chromatography Mass Spectroscopy in Polymer Analysis","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-482-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231","options":["Title"],"media":[{"alt":null,"id":353927364701,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-482-2.jpg?v=1499720231","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 978-1-84735-482-2 \u003cbr\u003e\u003cbr\u003ePages: 236, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe combination of chromatography with mass spectroscopy is a very useful technique which is being increasingly used by polymer chemists to improve existing polymers and to discover new ones with specific physical properties such as thermal stability and retention of properties over a long service life.\u003cbr\u003e\u003cbr\u003eThis technique is extremely powerful for the analysis and characterisation of polymers and is often based on the use of controlled chromatography - mass spectroscopy to measure a polymer's decomposition with techniques such as pyrolysis, followed by chromatography to separate any breakdown product, and, finally, mass spectroscopy, to achieve an unequivocal identification of the pyrolysis products obtained. The detail that can be obtained by such methods includes structure of the polymer backbone, branching, end groups, isomeric detail and fine detail in the structure of copolymers.\u003cbr\u003e\u003cbr\u003eThe first three chapters of the book discuss the various chromatographic and mass spectroscopic techniques now available.\u003cbr\u003e\u003cbr\u003eChapters 3-8 cover the complementary methods, based on the combination of mass spectroscopy with various chromatographic techniques such as high-performance liquid chromatography, gas chromatography and supercritical fluid chromatography.\u003cbr\u003e\u003cbr\u003ePyrolysis chromatography-mass spectroscopy is a method of studying the structure of polymers which involves subjecting the polymer pyrolysis products to a chromatographic technique to simplify subsequent analysis and, finally mass spectroscopy to identify the pyrolysis products with the possibility of deducing finer details of polymer structure than were previously attainable by classical methods (Chapters 9-11).\u003cbr\u003e\u003cbr\u003eBy providing a thorough up-to-date review of work in this field it is hoped that the book will be of interest to all those engaged in polymer research and development, and polymer users in general.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chromatographic Techniques\u003cbr\u003e1.1 Gas Chromatography\u003cbr\u003e1.2 High Performance Liquid Chromatography\u003cbr\u003e1.2.1 Post-column Derivatisation: Fluorescence Detectors\u003cbr\u003e1.2.2 Diode Array Detectors\u003cbr\u003e1.2.3 Electrochemical Detectors\u003cbr\u003e1.2.3.1 The determination of Monomers\u003cbr\u003e1.2.3.2 Determination of Oligomers\u003cbr\u003e1.2.4 Fractionation\/Microstructure Studies\u003cbr\u003e1.3 Size Exclusion Chromatography\u003cbr\u003e1.3.1 Characterisation Studies\u003cbr\u003e1.3.2 Branching\u003cbr\u003e1.3.3 Compositional Analysis\u003cbr\u003e1.3.4 Molecular Weight\u003cbr\u003e1.3.5 Polymer Blends\u003cbr\u003e1.3.6 Polymer Additives\u003cbr\u003e1.4 Supercritical Fluid Chromatography\u003cbr\u003e1.4.1 Polymer Additives\u003cbr\u003e1.5 Thin Layer Chromatography\u003cbr\u003e1.6 Thermal Field Flow Fractionation\u003cbr\u003evi\u003cbr\u003eChromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e2 Mass Spectroscopic Techniques\u003cbr\u003e2.1 Time-of-Flight – Secondary Ion Mass Spectroscopy\u003cbr\u003e2.1.1 Adhesion Studies\u003cbr\u003e2.1.2 Polymer Interface Studies\u003cbr\u003e2.1.3 Vulcanisation Studies\u003cbr\u003e2.2 Matrix Assisted Laser Desorption Ionisation Mass Spectroscopy\u003cbr\u003e2.2.1 Applications\u003cbr\u003e2.3 Matrix Assisted Laser Desorption Ionisation Post\u003cbr\u003eSource Decay\u003cbr\u003e2.4 Electrospray Ionisation Mass Spectroscopy\u003cbr\u003e2.5 Field Desorption Mass Spectroscopy\u003cbr\u003e2.6 Tandem Mass Spectroscopy\u003cbr\u003e2.7 Fourier-transform Ion Cyclotron Mass Spectroscopy\u003cbr\u003e2.8 Fast Atom Bombardment Mass Spectroscopy\u003cbr\u003e2.9 Radio Frequency and Glow Discharge – Mass Spectroscopy\u003cbr\u003e3 Chemical Reaction Gas Chromatography\u003cbr\u003e3.1 Applications\u003cbr\u003e3.1.1 Saponification Procedures\u003cbr\u003e3.1.2 Zeisel Procedures\u003cbr\u003e3.1.3 Alkali Fusion\u003cbr\u003e3.1.4 Reactive Hydrolysis – Methylation – Pyrolysis –Chromatography\u003cbr\u003e4 Complementary High Performance Liquid Chromatography – Mass Spectroscopy\u003cbr\u003e4.1 Theory\u003cbr\u003e4.1 Applications Contents vii\u003cbr\u003e4.1.1 Polymer Characterisation\u003cbr\u003e4.1.2 Polymer Extractables\u003cbr\u003e4.1.3 Determination of Polymer Additives\u003cbr\u003e4.1.4 High Performance Liquid Chromatography –Infrared Spectroscopy\u003cbr\u003e5 Complementary Size Exclusion Chromatography – Mass Spectroscopy\u003cbr\u003e5.1 Applications\u003cbr\u003e5.1.1 Molecular Weight\u003cbr\u003e5.1.1.1 Polyesters\u003cbr\u003e5.1.1.2 Poly(N-methyl Perfluoro –octylsulfonamido Ethyl Acrylate)\u003cbr\u003e5.1.1.3 Polymethylmethacrylate\u003cbr\u003e5.1.1.4 2-Benzothiozolon-3-yl Acetic Acid-telechelic Polyethylene Oxides (PEG Esters)\u003cbr\u003e5.1.1.5 Polyesters\u003cbr\u003e5.1.1.6 Polyethers\u003cbr\u003e5.1.1.7 Hydrocarbon Types\u003cbr\u003e5.1.1.8 Nitrogen Containing Polymers\u003cbr\u003e5.1.1.9 Silicon Containing Polymers\u003cbr\u003e5.1.1.10 Miscellaneous Polymers\u003cbr\u003e5.2 Polymer Degradation Studies\u003cbr\u003e5.3 End-group Analysis\u003cbr\u003e6 Complementary Gas Chromatography – Mass Spectroscopy\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Polymer Characterisation\u003cbr\u003e6.1.1.1 Sulfur Containing Polymers\u003cbr\u003eviii Chromatography Mass Spectroscopy in Polymer Analysis\u003cbr\u003e6.1.1.2 3-Glycidoxyproply-tri-methoxysilane sols\u003cbr\u003e6.1.1.3 Fluorine Containing Polymers\u003cbr\u003e6.1.2 Polymer Degradation Studies\u003cbr\u003e6.1.2.1 Low Molecular Weight Compounds or Degradation Products\u003cbr\u003e6.1.2.2 Molar Mass Changes during Degradation Analysed by Size Exclusion Chromatography and\/or Matrix Assisted Laser Desorption Ionisation\u003cbr\u003e6.1.2.3 Polybutylene Adipate and Polybutylene Succinate\u003cbr\u003e6.1.2.4 Rubbers\u003cbr\u003e6.1.2.5 Polystyrene Peroxide\u003cbr\u003e6.1.2.6 Polypropylene Hydroperoxides\u003cbr\u003e6.1.2.7 Polystyrene\u003cbr\u003e6.1.2.8 Polyethylene Oxide – Polypropylene Oxide Copolymers\u003cbr\u003e6.1.3 Food Packaging Applications\u003cbr\u003e6.1.4 Miscellaneous Polymers\u003cbr\u003e7 Complementary Supercritical Fluid Chromatography – Mass Spectroscopy\u003cbr\u003e8 Headspace Analysis – Mass Spectroscopy\u003cbr\u003e9 Pyrolysis Gas Chromatography – Mass Spectroscopy\u003cbr\u003e9.1 Applications\u003cbr\u003e9.1.1 Polyolefins\u003cbr\u003e9.1.1.1 Polyolefin Homopolymers\u003cbr\u003e9.1.1.2 Polypropylene Carbonate\u003cbr\u003eContents ix\u003cbr\u003e9.1.1.3 Polyolefin Copolymers\u003cbr\u003e9.1.1.4 Polystyrenes\u003cbr\u003e9.1.1.5 Polyesters\u003cbr\u003e9.1.1.6 Chlorine Containing Polymers\u003cbr\u003e9.1.1.7 Rubbers\u003cbr\u003e9.1.1.9 Nitrogen Containing Polymers\u003cbr\u003e9.1.1.10 Sulfur Containing Polymers\u003cbr\u003e9.1.1.11 Silicon Containing Polymers\u003cbr\u003e9.2 Polymer Additives\u003cbr\u003e9.3 Miscellaneous\u003cbr\u003e9.3.1 Py-GC-MS Methods\u003cbr\u003e9.3.2 Direct Pyrolysis – Gas Chromatography without Intervening Chromatographic Stage\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
TPE 2001
$120.00
{"id":11242238660,"title":"TPE 2001","handle":"978-1-85957-276-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-276-4 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 18th-19th June 2001\u003cbr\u003epages 128\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe’s premier meeting place for the thermoplastic elastomers sector. The last two events brought together more than 200 key players involved in all stages of the TPE supply chain. \u003cbr\u003e\u003cbr\u003eThe TPE 2001 conference programme was even more comprehensive than those of previous years. It features expert presentations on key market trends, new application developments and the very latest material innovations. \u003cbr\u003e\u003cbr\u003eIf you are involved in manufacturing, researching, selling, selecting or processing TPEs, then these conference proceedings will give you a real competitive advantage, providing you with information on all the latest developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOlefinic and Styrenic TPEs: Markets, Economics, Intermaterials Competition, and the Role of Plastomers. Robert Eller, Robert Eller Associates, Inc., USA\u003c\/li\u003e\n\u003cli\u003eMarkets and Applications for TPE: A Changing World. Stephen J. Duckworth, PolyOne Compounds \u0026amp; Colours Group, PolyOne Corporation, Germany\u003c\/li\u003e\n\u003cli\u003eInnovative TPE-S and TPE-V in the Various Market Segments. Andrea Vivarelli and Antonio Citarella, So.F.TeR SpA, Italy\u003c\/li\u003e\n\u003cli\u003eA New Family of Heat and Oil Resistant TPVs. Christer Bergström and Johanna Lampinen, Optatech Corporation, Finland\u003c\/li\u003e\n\u003cli\u003eA Novel Oil-and Heat-Resistant TPE-V. Markus Beitzel and Stuart Cook, Kraiburg TPE, Germany and TARRC, UK\u003c\/li\u003e\n\u003cli\u003eInnovative TPVs Opening New Markets. Julian Barnett, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eProcessing and Properties of Thermoplastic Vulcanizates (TPV). Edward V. Prut, Institute of Chemical Physics of RAS, Russia\u003c\/li\u003e\n\u003cli\u003eNew TPV Grades for Airbag Covers. Cees Ozinga and Edwin Willems, DSM Thermoplastic Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eUltra-High Molecular Weight Siloxane Masterbatches in TPE Compounding. Vivian John, Dow Corning Limited, UK\u003c\/li\u003e\n\u003cli\u003eTool Development for 2K-TPE Components for the Automotive Industry using 3D-Simulation. Lothar H. Kallien and Markus Menchen, SIGMA Engineering GmbH, Germany and Beckunbach GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eSwiftool Keeps Ford Racing on Track. Nick Osborn, Swift Technologies, UK\u003c\/li\u003e\n\u003cli\u003eSoft Blends of Acrylate Elastomer and Thermoplastic Polyurethane: Properties and Applications. Thierry Reichmann and Guy R. Duval, ECTC - Goodyear Chemical Europe, France\u003c\/li\u003e\n\u003cli\u003eThermoplastic Polyurethanes Without Plasticizer Within the Hardness Range Shore 50-70 A. Stephen Horsley, Elastogran UK Limited, UK\u003c\/li\u003e\n\u003cli\u003eTechnological Advantages of Polyether Copolymer Based TPUs. Dennis H.W. Feijen, J.L. Müller, J. Julià, D. Salvatella, Maria Josep Riba, Merquinsa Mercados Quimicos S.L., Spain\u003c\/li\u003e\n\u003cli\u003eSealing Performance of TPVs and its Prediction From Sress Relaxation Testing Methods. Thierry Burton, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eSurface Modification of Sarlink TPV Sealing Systems. Mathias Wilms, DSM Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eA Novel, Fully Vulcanised EPDM\/PP TPV for Automotive and Construction Weather-Seal as Well as General Rubber Mechanical Goods. Jonas Angus, Thermoplastic Rubber Systems, USA. (Paper unavailable at time of print)\u003c\/li\u003e\n\u003cli\u003eDevelopments of TPE in Automotive Interiors. Giorgio Golinelli, So.F.Ter S.p.A., Italy\u003c\/li\u003e\n\u003cli\u003eTPEs Used in CVJ (Constant Velocity Joint) Boot Application - Current Status, Future Challenges. Nader Khoshoei, GKN Automotive GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eRutgers 1 and Ronald F.M. Lange 2, 1 DSM Engineering Plastics, The Netherlands and 2 DSM Research, The NThe Use of Co-poly(ether esters) (1) in Automotive Applications. Gerhard Netherlands\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:39-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","book","elastomers","p-chemistry","polymer","research","surface","thermoplastic"," hardness"," olefinic"," plasticizer"," polyether copolymer"," polyurethanes"," sealing"," sress"," styrenic"," testing methods"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378430788,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2001","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-276-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-276-4 \u003cbr\u003e\u003cbr\u003eBrussels, Belgium, 18th-19th June 2001\u003cbr\u003epages 128\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe’s premier meeting place for the thermoplastic elastomers sector. The last two events brought together more than 200 key players involved in all stages of the TPE supply chain. \u003cbr\u003e\u003cbr\u003eThe TPE 2001 conference programme was even more comprehensive than those of previous years. It features expert presentations on key market trends, new application developments and the very latest material innovations. \u003cbr\u003e\u003cbr\u003eIf you are involved in manufacturing, researching, selling, selecting or processing TPEs, then these conference proceedings will give you a real competitive advantage, providing you with information on all the latest developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOlefinic and Styrenic TPEs: Markets, Economics, Intermaterials Competition, and the Role of Plastomers. Robert Eller, Robert Eller Associates, Inc., USA\u003c\/li\u003e\n\u003cli\u003eMarkets and Applications for TPE: A Changing World. Stephen J. Duckworth, PolyOne Compounds \u0026amp; Colours Group, PolyOne Corporation, Germany\u003c\/li\u003e\n\u003cli\u003eInnovative TPE-S and TPE-V in the Various Market Segments. Andrea Vivarelli and Antonio Citarella, So.F.TeR SpA, Italy\u003c\/li\u003e\n\u003cli\u003eA New Family of Heat and Oil Resistant TPVs. Christer Bergström and Johanna Lampinen, Optatech Corporation, Finland\u003c\/li\u003e\n\u003cli\u003eA Novel Oil-and Heat-Resistant TPE-V. Markus Beitzel and Stuart Cook, Kraiburg TPE, Germany and TARRC, UK\u003c\/li\u003e\n\u003cli\u003eInnovative TPVs Opening New Markets. Julian Barnett, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eProcessing and Properties of Thermoplastic Vulcanizates (TPV). Edward V. Prut, Institute of Chemical Physics of RAS, Russia\u003c\/li\u003e\n\u003cli\u003eNew TPV Grades for Airbag Covers. Cees Ozinga and Edwin Willems, DSM Thermoplastic Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eUltra-High Molecular Weight Siloxane Masterbatches in TPE Compounding. Vivian John, Dow Corning Limited, UK\u003c\/li\u003e\n\u003cli\u003eTool Development for 2K-TPE Components for the Automotive Industry using 3D-Simulation. Lothar H. Kallien and Markus Menchen, SIGMA Engineering GmbH, Germany and Beckunbach GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eSwiftool Keeps Ford Racing on Track. Nick Osborn, Swift Technologies, UK\u003c\/li\u003e\n\u003cli\u003eSoft Blends of Acrylate Elastomer and Thermoplastic Polyurethane: Properties and Applications. Thierry Reichmann and Guy R. Duval, ECTC - Goodyear Chemical Europe, France\u003c\/li\u003e\n\u003cli\u003eThermoplastic Polyurethanes Without Plasticizer Within the Hardness Range Shore 50-70 A. Stephen Horsley, Elastogran UK Limited, UK\u003c\/li\u003e\n\u003cli\u003eTechnological Advantages of Polyether Copolymer Based TPUs. Dennis H.W. Feijen, J.L. Müller, J. Julià, D. Salvatella, Maria Josep Riba, Merquinsa Mercados Quimicos S.L., Spain\u003c\/li\u003e\n\u003cli\u003eSealing Performance of TPVs and its Prediction From Sress Relaxation Testing Methods. Thierry Burton, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/li\u003e\n\u003cli\u003eSurface Modification of Sarlink TPV Sealing Systems. Mathias Wilms, DSM Elastomers, The Netherlands\u003c\/li\u003e\n\u003cli\u003eA Novel, Fully Vulcanised EPDM\/PP TPV for Automotive and Construction Weather-Seal as Well as General Rubber Mechanical Goods. Jonas Angus, Thermoplastic Rubber Systems, USA. (Paper unavailable at time of print)\u003c\/li\u003e\n\u003cli\u003eDevelopments of TPE in Automotive Interiors. Giorgio Golinelli, So.F.Ter S.p.A., Italy\u003c\/li\u003e\n\u003cli\u003eTPEs Used in CVJ (Constant Velocity Joint) Boot Application - Current Status, Future Challenges. Nader Khoshoei, GKN Automotive GmbH, Germany\u003c\/li\u003e\n\u003cli\u003eRutgers 1 and Ronald F.M. Lange 2, 1 DSM Engineering Plastics, The Netherlands and 2 DSM Research, The NThe Use of Co-poly(ether esters) (1) in Automotive Applications. Gerhard Netherlands\u003c\/li\u003e\n\u003c\/ul\u003e"}
Thermoplastic Elastome...
$72.00
{"id":11242238596,"title":"Thermoplastic Elastomers - Properties and Applications","handle":"978-1-85957-044-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J.A. Brydson \u003cbr\u003eISBN 978-1-85957-044-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003cbr\u003e\u003c\/span\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe nature and general properties of TPEs are explained and classes of materials considered. Developments in specific market sectors are outlined. The groups of materials considered include styrenics, polyether-esters, polyamides, polyurethanes, and polyolefins. The review is supported by extensive references and abstracts section containing over 400 abstracts. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e Styrenic block copolymers, polyether-ester block copolymers, thermoplastic polyamide elastomers, thermoplastic polyurethane elastomers, thermoplastic polyolefin elastomers, miscellaneous thermoplastic elastomers (6 groups). \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eGeneral Properties of Thermoplastic Elastomers\u003c\/li\u003e\n\u003cli\u003eClasses of Thermoplastic Elastomers (properties, processing, applications)\u003c\/li\u003e\n\u003cli\u003eApplications (automotive, footwear, hose, tube, wire, cable, medical)\u003c\/li\u003e\n\u003cli\u003eGeneral Prospects for Thermoplastic Elastomers\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","block copolymers","book","elastomers","p-chemistry","polyamide","polyamides","polyether-ester","polymer","polyolefins","polyurethane","polyurethanes","styrenic","thermoplastic"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378430148,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermoplastic Elastomers - Properties and Applications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-044-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778","options":["Title"],"media":[{"alt":null,"id":358823460957,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-044-9_143e1928-835b-43fc-b604-c83a62007b62.jpg?v=1499956778","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J.A. Brydson \u003cbr\u003eISBN 978-1-85957-044-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995 \u003cbr\u003e\u003c\/span\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe nature and general properties of TPEs are explained and classes of materials considered. Developments in specific market sectors are outlined. The groups of materials considered include styrenics, polyether-esters, polyamides, polyurethanes, and polyolefins. The review is supported by extensive references and abstracts section containing over 400 abstracts. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e Styrenic block copolymers, polyether-ester block copolymers, thermoplastic polyamide elastomers, thermoplastic polyurethane elastomers, thermoplastic polyolefin elastomers, miscellaneous thermoplastic elastomers (6 groups). \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eGeneral Properties of Thermoplastic Elastomers\u003c\/li\u003e\n\u003cli\u003eClasses of Thermoplastic Elastomers (properties, processing, applications)\u003c\/li\u003e\n\u003cli\u003eApplications (automotive, footwear, hose, tube, wire, cable, medical)\u003c\/li\u003e\n\u003cli\u003eGeneral Prospects for Thermoplastic Elastomers\u003c\/li\u003e\n\u003c\/ul\u003e"}
Electrical Properties ...
$229.00
{"id":11242238788,"title":"Electrical Properties of Polymers","handle":"978-0-824753467","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: E. Riande and R. Diaz-Calleja \u003cbr\u003eISBN 978-0-824753467 \u003cbr\u003e\u003cbr\u003epages 600\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOutlines the principles of electric birefringence under static fields and clarifies birefringence dynamics\u003c\/li\u003e\n\u003cli\u003eExplains molecular dynamics simulations of dynamic dielectric properties, including arrival at the time-dipole correlation coefficient\u003c\/li\u003e\n\u003cli\u003eDiscusses temperature dependence and long- and short-range relaxation dynamics of relaxation processes above glass transition temperature (Tg) or in the glassy state\u003c\/li\u003e\n\u003cli\u003eConsiders experimental approaches to studying dielectric polymers such as immitance analysis and thermostimulated currents\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:39-04:00","created_at":"2017-06-22T21:14:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","birefringence dynamics","book","Brownian motion","coefficient","currents","Debye theory","dielectric","dielectric properties","electric birefringence","entropy equations","glass transition","glassy state","Langevin","material","Maxwell","molecular dynamics","Onsager model","polymers","quasi-static dipoles","relaxation dynamics","relaxation processes","Smoluchowski equations","static fields","temperature","Tg","time-dipole"],"price":22900,"price_min":22900,"price_max":22900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378431684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Electrical Properties of Polymers","public_title":null,"options":["Default Title"],"price":22900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-824753467","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798","options":["Title"],"media":[{"alt":null,"id":354453815389,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-824753467.jpg?v=1499913798","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: E. Riande and R. Diaz-Calleja \u003cbr\u003eISBN 978-0-824753467 \u003cbr\u003e\u003cbr\u003epages 600\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eOutlines the principles of electric birefringence under static fields and clarifies birefringence dynamics\u003c\/li\u003e\n\u003cli\u003eExplains molecular dynamics simulations of dynamic dielectric properties, including arrival at the time-dipole correlation coefficient\u003c\/li\u003e\n\u003cli\u003eDiscusses temperature dependence and long- and short-range relaxation dynamics of relaxation processes above glass transition temperature (Tg) or in the glassy state\u003c\/li\u003e\n\u003cli\u003eConsiders experimental approaches to studying dielectric polymers such as immitance analysis and thermostimulated currents\u003c\/li\u003e\n\u003c\/ul\u003e"}
Recycling of Plastic M...
$109.00
{"id":11242238468,"title":"Recycling of Plastic Materials","handle":"1-895198-03-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","bottles","car","environment","film","packing","paper","PE","PET","plastic materials","plastics","polyamide-6. blends","polyethylene","polymer","pvc","recycling","rubber","tires","waste"],"price":10900,"price_min":10900,"price_max":10900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Recycling of Plastic Materials","public_title":null,"options":["Default Title"],"price":10900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-03-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}