Chemtec Publishing offers a large collection of books on polymers, plastics, and rubber.
- Grid List
Filter
Handbook of Solvents, ...
$295.00
{"id":11242243268,"title":"Handbook of Solvents, Volume 2, Use, Health, and Environment","handle":"978-1-895198-65-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-895198-65-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of pages: 978\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in a separate chapter. This is followed by the analysis of the concentration of solvents in more than 15 and discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapter was written by professors and scientists from major centers who study the effect of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show possibilities in solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, ionic melts, and agriculture-based products. Solvent recycling, removal from contaminated air, and degradation are discussed by experts in these technologies with regard to research and industry manufacturing equipment for safe methods of processing with solvents.\u003cbr\u003e\u003cbr\u003eThe book is concluded with an evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils, selection of gloves, Handbook of Silicon Based MEMS Materials and Technologies, and respirators, and new trends in solvent technology.\u003cbr\u003e\u003cbr\u003eThis comprehensive two-volume book has no equal in depth and breadth to any other publication available today. It contains the most recent finds and additional source data in a separate printed and digital publications, such as\u003cbr\u003eSolvent databook\u003cbr\u003eSolvent database on CD-ROM\u003cbr\u003eThese two publications contain data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\u003cbr\u003eThere are a few chemical companies, universities, research centers, which can conduct their activities without consulting this book.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Electronic industry - CFC-free alternatives for cleaning in electronic industry\u003cbr\u003eMartin Hanek, Norbert Loew, Dr. O. K. Wack Chemie, Ingolstadt, Germany; Andreas Muehlbauer, Zestron Corporation, Ashburn, VA, USA\u003cbr\u003e13.9 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.10 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.11 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.12 Inorganic chemical industry\u003cbr\u003e13.13 Iron and steel industry\u003cbr\u003e13.14 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.15 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.16 Metal casting\u003cbr\u003e13.17 Motor vehicle assembly\u003cbr\u003e13.18 Organic chemical industry\u003cbr\u003e13.19 Paints and coatings\u003cbr\u003e13.19.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.19.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.20 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.21 Pharmaceutical industry\u003cbr\u003e13.21.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.21.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.22 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.23 Printing industry\u003cbr\u003e13.24 Pulp and paper\u003cbr\u003e13.25 Rubber and Plastics\u003cbr\u003e13.26 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.27 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.28 Textile industry\u003cbr\u003e13.29 Transportation equipment cleaning\u003cbr\u003e13.30 Water transportation\u003cbr\u003e13.31 Wood furniture\u003cbr\u003e13.32 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e14.3 Simple test to determine toxicity of bacteria\u003cbr\u003eJames L. Botsford, New Mexico State University, Las Cruces, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Jaques O. De Beer\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental fate and movement of organic solvents in water, soil, and air\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.2 Fate-based management of organic solvent-containing wastes\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Indoor air pollution by solvents contained in paints and varnishes\u003cbr\u003eTilman Hahn, Konrad Botznhart, Fritz Schweinsberg, Gerhard Volland, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e17.4 Solvent uses with exposure risks\u003cbr\u003ePentti Kalliokoski, Kai Savolainen, Finnish Institute of Occupational Health, Helsinki, Finland\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in the US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Pregnancy outcome following maternal organic solvent exposure\u003cbr\u003eGideon Koren, The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada\u003cbr\u003e19.3 Industrial solvents and kidney disease\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic study of workers exposed to benzene including multiple myeloma, lymphoma, and chronic lymphatic leukemia\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.5 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.6 Hepatotoxicity\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.7 Toxicity of environmental solvent exposure for brain, lung, and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney, K.R. Seddon, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez\u003cbr\u003e20.4 Ethyl lactate: a biorenewable agrochemical solvent for food technology\u003cbr\u003eTiziana Fornari, David Villaneuva Bermejo, Guillermo Reglero, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Solvent recovery\u003cbr\u003eIsao Kimura, Kanken Techno Co., Ltd., Osaka, Japan\u003cbr\u003e21.3 Solvent treatment in a paints and coating plant\u003cbr\u003eDenis Kargol, OFRU Recycling GmbH \u0026amp; Co. KG, Babenhausen, Germany\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson, C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003e23 PROTECTION\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e22.1 Gloves\u003cbr\u003e22.2 Suit materials\u003cbr\u003e22.3 Respiratory protection\u003cbr\u003e\u003cbr\u003e24 NEW TRENDS BASED ON PATENT LITERATURE\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003eAcknowledgments\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:53-04:00","created_at":"2017-06-22T21:14:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","degradation","detection","environment","health","lymphohematopoietic study","pharmaceutical","recycling","regulations","solvents","tesing","toxic effects"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444612,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents, Volume 2, Use, Health, and Environment","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-65-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258","options":["Title"],"media":[{"alt":null,"id":356342988893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-895198-65-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of pages: 978\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in a separate chapter. This is followed by the analysis of the concentration of solvents in more than 15 and discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapter was written by professors and scientists from major centers who study the effect of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show possibilities in solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, ionic melts, and agriculture-based products. Solvent recycling, removal from contaminated air, and degradation are discussed by experts in these technologies with regard to research and industry manufacturing equipment for safe methods of processing with solvents.\u003cbr\u003e\u003cbr\u003eThe book is concluded with an evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils, selection of gloves, Handbook of Silicon Based MEMS Materials and Technologies, and respirators, and new trends in solvent technology.\u003cbr\u003e\u003cbr\u003eThis comprehensive two-volume book has no equal in depth and breadth to any other publication available today. It contains the most recent finds and additional source data in a separate printed and digital publications, such as\u003cbr\u003eSolvent databook\u003cbr\u003eSolvent database on CD-ROM\u003cbr\u003eThese two publications contain data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\u003cbr\u003eThere are a few chemical companies, universities, research centers, which can conduct their activities without consulting this book.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Electronic industry - CFC-free alternatives for cleaning in electronic industry\u003cbr\u003eMartin Hanek, Norbert Loew, Dr. O. K. Wack Chemie, Ingolstadt, Germany; Andreas Muehlbauer, Zestron Corporation, Ashburn, VA, USA\u003cbr\u003e13.9 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.10 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.11 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.12 Inorganic chemical industry\u003cbr\u003e13.13 Iron and steel industry\u003cbr\u003e13.14 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.15 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.16 Metal casting\u003cbr\u003e13.17 Motor vehicle assembly\u003cbr\u003e13.18 Organic chemical industry\u003cbr\u003e13.19 Paints and coatings\u003cbr\u003e13.19.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.19.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.20 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.21 Pharmaceutical industry\u003cbr\u003e13.21.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.21.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.22 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.23 Printing industry\u003cbr\u003e13.24 Pulp and paper\u003cbr\u003e13.25 Rubber and Plastics\u003cbr\u003e13.26 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.27 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.28 Textile industry\u003cbr\u003e13.29 Transportation equipment cleaning\u003cbr\u003e13.30 Water transportation\u003cbr\u003e13.31 Wood furniture\u003cbr\u003e13.32 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e14.3 Simple test to determine toxicity of bacteria\u003cbr\u003eJames L. Botsford, New Mexico State University, Las Cruces, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Jaques O. De Beer\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental fate and movement of organic solvents in water, soil, and air\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.2 Fate-based management of organic solvent-containing wastes\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Indoor air pollution by solvents contained in paints and varnishes\u003cbr\u003eTilman Hahn, Konrad Botznhart, Fritz Schweinsberg, Gerhard Volland, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e17.4 Solvent uses with exposure risks\u003cbr\u003ePentti Kalliokoski, Kai Savolainen, Finnish Institute of Occupational Health, Helsinki, Finland\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in the US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Pregnancy outcome following maternal organic solvent exposure\u003cbr\u003eGideon Koren, The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada\u003cbr\u003e19.3 Industrial solvents and kidney disease\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic study of workers exposed to benzene including multiple myeloma, lymphoma, and chronic lymphatic leukemia\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.5 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.6 Hepatotoxicity\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.7 Toxicity of environmental solvent exposure for brain, lung, and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney, K.R. Seddon, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez\u003cbr\u003e20.4 Ethyl lactate: a biorenewable agrochemical solvent for food technology\u003cbr\u003eTiziana Fornari, David Villaneuva Bermejo, Guillermo Reglero, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Solvent recovery\u003cbr\u003eIsao Kimura, Kanken Techno Co., Ltd., Osaka, Japan\u003cbr\u003e21.3 Solvent treatment in a paints and coating plant\u003cbr\u003eDenis Kargol, OFRU Recycling GmbH \u0026amp; Co. KG, Babenhausen, Germany\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson, C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003e23 PROTECTION\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e22.1 Gloves\u003cbr\u003e22.2 Suit materials\u003cbr\u003e22.3 Respiratory protection\u003cbr\u003e\u003cbr\u003e24 NEW TRENDS BASED ON PATENT LITERATURE\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003eAcknowledgments\u003cbr\u003eIndex"}
Structure and Properti...
$205.00
{"id":11242242948,"title":"Structure and Properties of Crosslinked Polymers","handle":"978-1-84735-559-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","crosslinked polymers","epoxy polymers","nanocomposites","p-additives","p-structural","polymer","supersegmental structure"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Structure and Properties of Crosslinked Polymers","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-559-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","options":["Title"],"media":[{"alt":null,"id":358766608477,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-559-1_15541057-f912-4952-b593-7f75d81f6045.jpg?v=1499955973","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gasan M Magomedov, Georgii V Kozlov and Gennady Zaikov \u003cbr\u003eISBN 978-1-84735-559-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011 \u003cbr\u003e\u003c\/span\u003ePages: 492, Hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book gives a fresh point of view on the curing processes, structure, and properties of crosslinked polymers. The general view is that the structure and properties of crosslinked polymers are defined by their density, this book demonstrates that the parameters are defined by the supermolecular (a more precisely, supersegmental structure) of the crosslinked polymers.\u003cbr\u003e\u003cbr\u003eThe quantitative relationships of the structures\/properties are obtained for these polymers. Using an epoxy polymer as a nanofiller for a nanocomposite is discussed and a new class of polymer is proposed. The introduction of the nanofiller gives variation in the mechanical properties, the degree of crystallinity, gas permeability and so on. The use of these crosslinked polymers as natural nanocomposites is proposed. Practical methods of crosslinked polymer's supersegmental structure regulation are considered, and all the changes that this gives their properties are detailed.\u003cbr\u003e\u003cbr\u003eThis book will be of significance to all material scientists and students of material science.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. The Main Principles of the Cluster Model\u003cbr\u003e1.1 Fundamentals\u003cbr\u003e1.2 Thermodynamics of the Local Order Formation\u003cbr\u003e1.3 Polymer Structure Ordering Degree and Cluster Model\u003cbr\u003e1.4 Thermofluctuational Origin of Clusters\u003cbr\u003e1.5 Functionality of Clusters and Methods of its Estimation\u003cbr\u003e2 The Main Physical Concepts used in Fractals Theory\u003cbr\u003e2.1 The Fractal Analysis of Polymeric Media\u003cbr\u003e2.2 The Fractal Models of Polymer Medium Structure\u003cbr\u003e2.3 Polymer Medium with Scaling Theory Positions\u003cbr\u003e2.4 The Fractal Analysis in Molecular Mobility Description Questions\u003cbr\u003e3 The Fractal Models of Epoxy Polymers Curing Process\u003cbr\u003e3.1 Two Types of Fractal Reactions at Curing of Crosslinked Epoxy Polymers\u003cbr\u003e3.2 Scaling Relationships for Curing Reactions of Epoxy Polymers\u003cbr\u003e3.3 Microgel Formation in the Curing Process of Epoxy Polymers\u003cbr\u003e3.4 Synergetics of the Curing Process of Epoxy Polymers\u003cbr\u003e3.5 The Nanodimensional Effects in the Curing Process of Epoxy Polymers into Fractal Space\u003cbr\u003e4 The Description of Crosslinked Rubbers within the Frameworks of Fractal Analysis and Local Order Models\u003cbr\u003e4.1 Molecular and Structural Characteristics of Crosslinked Polymer Networks\u003cbr\u003e4.2 The Polychloroprene Crystallisation\u003cbr\u003e4.3 The Cluster Model Application for the Description of the Process and Properties of Polychloroprene Crystallisation\u003cbr\u003e4.4 Influence of Polychloroprene Crystalline Morphology on Its Mechanical Behaviour\u003cbr\u003e5 Structure of Epoxy Polymers\u003cbr\u003e5.1 Application of Wide Angle X-ray Diffraction for Study of the Structure of Epoxy Polymers\u003cbr\u003e5.2 The Curing Influence on Molecular and Structural Characteristics of Epoxy Polymers\u003cbr\u003e5.3 The Description of the Structure of Crosslinked Polymers within the Frameworks of Modern Physical Models\u003cbr\u003e5.4 Synergetics of the Formation of Dissipative Structures in Epoxy Polymers\u003cbr\u003e5.5 The Structural Analysis of Fluctuation Free Volume of Crosslinked Polymers\u003cbr\u003e6 The Properties of Crosslinked Epoxy Polymers\u003cbr\u003e6.1 The Glass Transition Temperature\u003cbr\u003e6.2 Elasticity Moduli\u003cbr\u003e6.3 Yield Stress\u003cbr\u003e6.4 Fracture of Epoxy Polymers\u003cbr\u003e6.5 The Other Properties\u003cbr\u003e6.6 The Physical Ageing of Epoxy Polymers\u003cbr\u003e7 Nanocomposites on the Basis of Crosslinked Polymers\u003cbr\u003e7.1 The Formation of the Structure of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.2 The Reinforcement Mechanisms of Polymer\/Organoclay Nanocomposites\u003cbr\u003e7.3 The Simulation of Stress-strain Curves for Polymer\/Organoclay Nanocomposites within the Frameworks of the Fractal Model\u003cbr\u003e7.4 The Multifractal Model of Sorption Processes for Nanocomposites\u003cbr\u003e8 Polymer-polymeric Nanocomposites\u003cbr\u003e8.1 The Fractal Analysis of Crystallisation of Nanocomposites\u003cbr\u003e8.2 The Melt Viscosity of HDPE\/EP Nanocomposites\u003cbr\u003e8.3 The Mechanical Properties of HDPE\/EP Nanocomposites\u003cbr\u003e8.4 The Diffusive Characteristics of HDPE\/EP Nanocomposite\u003cbr\u003e9 Crosslinked Epoxy Polymers as Natural Nanocomposites\u003cbr\u003e9.1 Formation of the Structure of Natural Nanocomposites\u003cbr\u003e9.2 The Properties of Natural Nanocomposites\u003cbr\u003e10 The Solid-phase Extrusion of Rarely Crosslinked\u003cbr\u003eEpoxy Polymers\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Progress in Understand...
$135.00
{"id":11242242756,"title":"Progress in Understanding of Polymer Crystallization","handle":"978-3-540-47305-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds.: Günter Reiter, Gert R. Strobl \u003cbr\u003eISBN 978-3-540-47305-3 \u003cbr\u003e\u003cbr\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003epages 506, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel general views and concepts which help to advance our understanding of polymer crystallisation\u003c\/li\u003e\n\u003cli\u003enucleation phenomena\u003c\/li\u003e\n\u003cli\u003elong living melt structures affecting crystallization\u003c\/li\u003e\n\u003cli\u003econfinement effects on crystallization\u003c\/li\u003e\n\u003cli\u003ecrystallization in flowing melts\u003c\/li\u003e\n\u003cli\u003efluid mobility restrictions caused by crystallites\u003c\/li\u003e\n\u003cli\u003ethe role of mesophases in the crystal formation\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eand presents new ideas in a connected and accessible way.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Shifting Paradigms in Polymer Crystallization.\u003cbr\u003e2. Theoretical aspects of the Equilibrium State of Chain Crystals.\u003cbr\u003e3. Intramolecular Crystal Nucleation.\u003cbr\u003e4. Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation.\u003cbr\u003e5. Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow.\u003cbr\u003e6. Structure Formation and Glass Transition in Oriented Poly(ethylene terephthalate).\u003cbr\u003e7. How Do Orientation Fluctuations Evolve to Crystals?.\u003cbr\u003e8. Role of Chain Entanglement Network on Formation of FlowInduced Crystallization Precursor Structure.\u003cbr\u003e9. Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol.\u003cbr\u003e10. Small Angle Scattering Study of Polyethylene Crystallization from Solutions.\u003cbr\u003e11. Morphologies of Polymer Crystals in Thin Films.\u003cbr\u003e12. Crystallization of Frustrated Alkyl Groups in Polymeric Systems Containing Octadecylmethacrylate.\u003cbr\u003e13. Crystallization in Block Copolymers with More than one Crystallizable Block.\u003cbr\u003e14. Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and CrystalMelt Interface.\u003cbr\u003e15. The Role of the Interphase on the Chain Mobility and Melting of SemiCrystalline Polymers; a Study on Polyethylenes.\u003cbr\u003e16. Polymer Crystallization under High Cooling Rate and Pressure: a Step Towards Polymer Processing Conditions.\u003cbr\u003e17. StressInduced Phase Transitions in MetalloceneMade Isotactic Polypropylene.\u003cbr\u003e18. Insights into Polymer Crystallization from InSitu Atomic Force Microscopy.\u003cbr\u003e19. Temperature and Molecular Weight Dependencies of Polymer Crystallization.\u003cbr\u003e20. StepScan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene.\u003cbr\u003e21.Order and Segmental Mobility in Crystallizing Polymers.\u003cbr\u003e22. Atomistic Simulation of Polymer Melt Crystallization by Molecular Dynamics.\u003cbr\u003e23. A Multiphase Model Describing Polymer","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","acrylic polymers","anti-corrosion polymers","application polymer blends and composite","block copolymers","book","confinement effects","crystallization","eemicrystalline","flowing melts","fluid mobility","melt structures","mesophases","Monte Carlo","morphologies","nucleation phenomena","p-testing","polyamide 4.6","polyamide 6","polyethylene","polymer","polymer crystals","simulations","solutions","thin films"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Progress in Understanding of Polymer Crystallization","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-47305-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953","options":["Title"],"media":[{"alt":null,"id":358724567133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds.: Günter Reiter, Gert R. Strobl \u003cbr\u003eISBN 978-3-540-47305-3 \u003cbr\u003e\u003cbr\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003epages 506, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel general views and concepts which help to advance our understanding of polymer crystallisation\u003c\/li\u003e\n\u003cli\u003enucleation phenomena\u003c\/li\u003e\n\u003cli\u003elong living melt structures affecting crystallization\u003c\/li\u003e\n\u003cli\u003econfinement effects on crystallization\u003c\/li\u003e\n\u003cli\u003ecrystallization in flowing melts\u003c\/li\u003e\n\u003cli\u003efluid mobility restrictions caused by crystallites\u003c\/li\u003e\n\u003cli\u003ethe role of mesophases in the crystal formation\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eand presents new ideas in a connected and accessible way.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Shifting Paradigms in Polymer Crystallization.\u003cbr\u003e2. Theoretical aspects of the Equilibrium State of Chain Crystals.\u003cbr\u003e3. Intramolecular Crystal Nucleation.\u003cbr\u003e4. Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation.\u003cbr\u003e5. Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow.\u003cbr\u003e6. Structure Formation and Glass Transition in Oriented Poly(ethylene terephthalate).\u003cbr\u003e7. How Do Orientation Fluctuations Evolve to Crystals?.\u003cbr\u003e8. Role of Chain Entanglement Network on Formation of FlowInduced Crystallization Precursor Structure.\u003cbr\u003e9. Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol.\u003cbr\u003e10. Small Angle Scattering Study of Polyethylene Crystallization from Solutions.\u003cbr\u003e11. Morphologies of Polymer Crystals in Thin Films.\u003cbr\u003e12. Crystallization of Frustrated Alkyl Groups in Polymeric Systems Containing Octadecylmethacrylate.\u003cbr\u003e13. Crystallization in Block Copolymers with More than one Crystallizable Block.\u003cbr\u003e14. Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and CrystalMelt Interface.\u003cbr\u003e15. The Role of the Interphase on the Chain Mobility and Melting of SemiCrystalline Polymers; a Study on Polyethylenes.\u003cbr\u003e16. Polymer Crystallization under High Cooling Rate and Pressure: a Step Towards Polymer Processing Conditions.\u003cbr\u003e17. StressInduced Phase Transitions in MetalloceneMade Isotactic Polypropylene.\u003cbr\u003e18. Insights into Polymer Crystallization from InSitu Atomic Force Microscopy.\u003cbr\u003e19. Temperature and Molecular Weight Dependencies of Polymer Crystallization.\u003cbr\u003e20. StepScan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene.\u003cbr\u003e21.Order and Segmental Mobility in Crystallizing Polymers.\u003cbr\u003e22. Atomistic Simulation of Polymer Melt Crystallization by Molecular Dynamics.\u003cbr\u003e23. A Multiphase Model Describing Polymer"}
Polymer Electronics - ...
$180.00
{"id":11242242692,"title":"Polymer Electronics - A Flexible Technology","handle":"978-1-84735-422-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Various \u003cbr\u003eISBN 978-1-84735-422-8 \u003cbr\u003e\u003cbr\u003epages 158, hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e'The worldwide market for polymer electronic products has been estimated to be worth up to £15 billion by 2015 and the opportunity for new markets could be as high as £125billion by 2025.'\u003c\/p\u003e\n\u003cp\u003eThe rapid development of polymer electronics has revealed the possibility for transforming the electronics market by offering lighter, flexible and more cost effective alternatives to conventional materials and products. With applications ranging from printed, flexible conductors and novel semiconductor components to intelligent labels and large area displays and solar panels, products that were previously unimaginable are now beginning to be commercialised. \u003cbr\u003e\u003cbr\u003ePolymer Electronics - A Flexible Technology from iSmithers Rapra, is designed to inform researchers, material suppliers, component fabricators and electronics manufacturers of the latest research and developments in this dynamic and rapidly evolving field. \u003cbr\u003e\u003cbr\u003eThis authoritative book is written by a number of authors all of whom work for companies at the cutting edge of these new technologies and will prove to be a valuable reference to all involved in this field.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Roadmap for Organic and Printed Electronics\u003cbr\u003e2. Technical Issues in Printed Electrodes for All-Printed Thin-Film Transistor Applications \u003cbr\u003e3. All-Printed Flexible Organic Light-emitting Diodes\u003cbr\u003e4. Inkjet Printing and Electrospinning for Printed Electronics\u003cbr\u003e5. Highly Conductive Plastics - Custom-formulated Functional Materials for Injection Mouldable Electronic Applications (Sample Chapter - click above to view)\u003cbr\u003e6. Additives in Polymer Electronics\u003cbr\u003e7. A Facile Route to Organic Nanocomposite Dispersions of Polyaniline - single Wall Carbon Nanotubes\u003cbr\u003e8. Preparation and Characterisation of Novel Electrical Conductive Rubber Blends\u003cbr\u003e9. Solar Textiles \u003cbr\u003e10. Flexible Sensor Array for a Robotic Fingertip Using Organic Thin Film Transistors\u003cbr\u003e11. An Organic Thin Film Transistor Pixel Circuit for Active-Matrix Organic\u003cbr\u003e12. Intelligent Packaging for the Food Industry\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","additives","book","carbon nanotubes","conductive plastics","electronics","inkjet printing","organic nanocomposite","p-applications","poly","polymer","solar textiles","thin films"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443716,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Electronics - A Flexible Technology","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-422-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-422-8.jpg?v=1499724823"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-422-8.jpg?v=1499724823","options":["Title"],"media":[{"alt":null,"id":358550569053,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-422-8.jpg?v=1499724823"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-422-8.jpg?v=1499724823","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Various \u003cbr\u003eISBN 978-1-84735-422-8 \u003cbr\u003e\u003cbr\u003epages 158, hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e'The worldwide market for polymer electronic products has been estimated to be worth up to £15 billion by 2015 and the opportunity for new markets could be as high as £125billion by 2025.'\u003c\/p\u003e\n\u003cp\u003eThe rapid development of polymer electronics has revealed the possibility for transforming the electronics market by offering lighter, flexible and more cost effective alternatives to conventional materials and products. With applications ranging from printed, flexible conductors and novel semiconductor components to intelligent labels and large area displays and solar panels, products that were previously unimaginable are now beginning to be commercialised. \u003cbr\u003e\u003cbr\u003ePolymer Electronics - A Flexible Technology from iSmithers Rapra, is designed to inform researchers, material suppliers, component fabricators and electronics manufacturers of the latest research and developments in this dynamic and rapidly evolving field. \u003cbr\u003e\u003cbr\u003eThis authoritative book is written by a number of authors all of whom work for companies at the cutting edge of these new technologies and will prove to be a valuable reference to all involved in this field.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Roadmap for Organic and Printed Electronics\u003cbr\u003e2. Technical Issues in Printed Electrodes for All-Printed Thin-Film Transistor Applications \u003cbr\u003e3. All-Printed Flexible Organic Light-emitting Diodes\u003cbr\u003e4. Inkjet Printing and Electrospinning for Printed Electronics\u003cbr\u003e5. Highly Conductive Plastics - Custom-formulated Functional Materials for Injection Mouldable Electronic Applications (Sample Chapter - click above to view)\u003cbr\u003e6. Additives in Polymer Electronics\u003cbr\u003e7. A Facile Route to Organic Nanocomposite Dispersions of Polyaniline - single Wall Carbon Nanotubes\u003cbr\u003e8. Preparation and Characterisation of Novel Electrical Conductive Rubber Blends\u003cbr\u003e9. Solar Textiles \u003cbr\u003e10. Flexible Sensor Array for a Robotic Fingertip Using Organic Thin Film Transistors\u003cbr\u003e11. An Organic Thin Film Transistor Pixel Circuit for Active-Matrix Organic\u003cbr\u003e12. Intelligent Packaging for the Food Industry\u003cbr\u003e\u003cbr\u003e"}
Stimuli Responsive Dru...
$135.00
{"id":11242242308,"title":"Stimuli Responsive Drug Delivery SystemsFrom Introduction to Application","handle":"978-1-84735-416-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anil Bajpai, Sandeep Shukla, Rajesh Saini and Atul Tiwari \u003cbr\u003eISBN 978-1-84735-416-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003ePages: 370, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nStimuli responsive drug delivery systems have emerged as one of the most innovative classes of polymer materials in modern materials science. The polymer architectures exhibiting a large change in their physicochemical behaviors in response to minor signals from the environments have fabricated potentially useful materials for pharmaceutical and biomedical applications. The most advanced stimuli responsive drug delivery systems have also explored a new strategy to design targeted delivery systems to treat complex diseases like cancers and related tumors.\u003cbr\u003e\u003cbr\u003eStimuli Responsive Drug Delivery Systems offers a convincing approach to understanding the basic principles of drug delivery process, their mathematical modeling, different types of drug delivery systems, various polymer systems responsive to stimuli such as swelling, pH, temperature, electric and magnetic fields, chemical agents, and more. The material covered in this book provides a wide spectrum of information - academic, research, and professional - for the biomedical, pharmaceutical and polymer chemistry communities. \u003cbr\u003e\u003cbr\u003eThe book also presents the commercial scenario of drug delivery systems and highlights upcoming challenges and existing future prospects of this field. An exhaustive bibliography of the book also enables students and researchers of various disciplines to acquire the additional information they may require.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Responsive Stimuli-sensitive Materials\u003cbr\u003e1.2.1 Swelling-controlled Systems\u003cbr\u003e1.2.2 Magnetic-sensitive Release Systems\u003cbr\u003e1.3 Concept of Controlled Drug Delivery\u003cbr\u003e1.3.1 Controlled Drug Delivery\u003cbr\u003e1.3.2 Advantages of Controlled Drug Delivery\u003cbr\u003e1.3.3 Types of Controlled Drug Delivery\u003cbr\u003e1.3.3.1 Diffusion-controlled System\u003cbr\u003e1.3.3.1.1 Reservoir Devices\u003cbr\u003e1.3.3.1.2 Matrix Devices\u003cbr\u003e1.3.3.1.3 Laminated Matrix Devices\u003cbr\u003e1.3.3.2 Swelling-controlled Systems\u003cbr\u003e1.3.3.3 Chemically Controlled Systems\u003cbr\u003e1.3.3.3.1 Matrix with Covalently Attached Drug\u003cbr\u003e1.3.3.3.2 Devices with Entrapped Drug\u003cbr\u003e1.3.3.4 Other Delivery Systems\u003cbr\u003e1.4 Targeted Drug Delivery\u003cbr\u003e1.4.1 Major Schemes of Targeted Drug Delivery\u003cbr\u003e1.4.2 Types of Targeting Methods\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e1.4.2.1 Physical Targeting\u003cbr\u003e1.4.2.2 Passive Targeting\u003cbr\u003e1.4.2.3 Active Targeting\u003cbr\u003e1.5 Mathematical Modelling of Drug Delivery [80]\u003cbr\u003e1.5.1 Factors Operative in Release Mechanisms\u003cbr\u003e1.5.2 Empirical and Semi-empirical Mathematical Models\u003cbr\u003e1.5.2.1 Peppas Equation\u003cbr\u003e1.5.2.2 Hopfenberg Model\u003cbr\u003e1.5.2.3 Cooney Model\u003cbr\u003e1.5.2.4 Artificial Neural Networks\u003cbr\u003e1.5.3 Mechanistic Realistic Models\u003cbr\u003e1.5.3.1 Theories Based on Fick’s Law of Diffusion\u003cbr\u003e1.5.3.2 Theories Considering Polymer Swelling\u003cbr\u003e1.5.3.3 Theories Considering Polymer Swelling and Polymer and Drug Dissolution\u003cbr\u003e1.5.3.4 Theories Considering Polymer Erosion\/ Degradation\u003cbr\u003e1.6 Some Milestones in the Fields of Controlled Drug Delivery\u003cbr\u003e1.7 Future Challenges and Scope\u003cbr\u003e2 pH-Sensitive Release Systems\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Swelling Behaviour of pH-sensitive Hydrogels in Buffer Solution\u003cbr\u003e2.3 Phase Transition Behaviour of pH-responsive Hydrogels\u003cbr\u003e2.4 Types of pH-sensitive Hydrogels\u003cbr\u003e2.4.1 Ionic Hydrogels\u003cbr\u003e2.4.1.1 Anionic Hydrogels\u003cbr\u003e2.4.1.2 Cationic Hydrogels\u003cbr\u003e2.4.1.3 Polyamphoteric Hydrogels\u003cbr\u003e2.4.2 Non-ionic Hydrogels\u003cbr\u003e2.5 Properties of pH-sensitive Hydrogels\u003cbr\u003e2.6 Drug Release Mechanisms from Hydrogel Devices\u003cbr\u003e2.7 Applications of pH-sensitive Hydrogels\u003cbr\u003e2.7.1 Poly(ε-caprolactone) (PCL)\u003cbr\u003e2.7.2 Poly(ethylene glycol) (PEG)\u003cbr\u003e2.7.3 Chitosan\u003cbr\u003e2.7.4 Alginate\u003cbr\u003e2.7.5 Poly(2-acrylamido-2-methylpropane sulfonic acid (AMPS) sodium salt)\u003cbr\u003e2.8 pH-sensitive Hydrogel in Insulin Delivery\u003cbr\u003e2.9 pH-sensitive Copolymers and their Application to Nasal Delivery\u003cbr\u003e2.10 pH-dependent Systems for Glucose-stimulated Drug Delivery\u003cbr\u003e2.11 Application of pH-sensitive Polymers to Colon-specific Drug Delivery\u003cbr\u003e3 Temperature-sensitive Release Systems\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Types of Temperature-sensitive Hydrogels\u003cbr\u003e3.2.1 Negative Temperature-sensitive Hydrogels\u003cbr\u003e3.2.2 Positive Temperature-sensitive Hydrogels\u003cbr\u003e3.2.3 Thermoreversible Gels\u003cbr\u003e3.3 Thermosensitivity\u003cbr\u003e3.4 Phase Transition with LCST and UCST\u003cbr\u003e3.5 Factors Affecting LCST\u003cbr\u003e3.6 Phase Transition Behaviour of Stimuli-responsive Hydrogels\u003cbr\u003e\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e3.7 Important Preparation Methods of Temperature-sensitive Hydrogels\u003cbr\u003e3.7.1 Emulsion Polymerisation\u003cbr\u003e3.7.2 Frontal Polymerisation Synthesis of Temperature-sensitive Hydrogels\u003cbr\u003e3.7.3 A Little Introduction of Atom Transfer Radical Polymerisations (ATRP) Techniques\u003cbr\u003e3.8 Delivery of Biologically Active Agents by LCST Hydrogels\u003cbr\u003e3.9 Applications of Temperature-sensitive Hydrogels in Drug Release\u003cbr\u003e3.10 Uses of Thermoreversible Hydrogels\u003cbr\u003e4 Magnetically Responsive Targeted Drug Delivery\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Concept of Magnetic Drug Targeting\u003cbr\u003e4.3 Nanoparticulates in Magnetic Targeted Drug Delivery\u003cbr\u003e4.4 Theory: Magnetic Basics\u003cbr\u003e4.5 Types of Magnetism\u003cbr\u003e4.5.1 Paramagnetism\u003cbr\u003e4.5.2 Ferromagnetism and Ferrimagnetism\u003cbr\u003e4.5.3 Antiferromagnetism\u003cbr\u003e4.6 Magnetic Field\u003cbr\u003e4.7 Magnetic Material\u003cbr\u003e4.8 Incorporation of Iron Oxide\u003cbr\u003e4.9 Methods of Incorporation of Iron Oxide\u003cbr\u003e4.9.1 Coprecipitation\u003cbr\u003e4.9.2 Thermal Decomposition\u003cbr\u003e4.9.3 Microemulsions\u003cbr\u003e4.9.4 Miscellaneous\u003cbr\u003e4.10 Advantages of Magnetic-controlled and Targeted Drug Delivery\u003cbr\u003e4.11 Applications of Magnetic-controlled and Targeted Drug Delivery\u003cbr\u003e4.11.1 Drug Delivery to Tumours\u003cbr\u003e4.11.2 MRI Contrast Agents\u003cbr\u003e4.11.3 Hyperthermia\u003cbr\u003e4.11.4 Cell Labelling and Magnetic Separation\u003cbr\u003e4.12 Future Challenges and Prospects\u003cbr\u003e5 Electric Sensitive Release Systems\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Theories of Electrosensitive Release System.\u003cbr\u003e5.2.1 Donnan Equilibrium Theory\u003cbr\u003e5.2.2 Mixture Theory\u003cbr\u003e5.2.3 The Generalised Triphasic Theory\u003cbr\u003e5.2.4 Refined Multieffect-coupling Electric-Stimulus (rMECe) Model\u003cbr\u003e5.2.4.1 Theory and Formulation\u003cbr\u003e5.2.4.2 Boundary and Initial Conditions\u003cbr\u003e5.2.4.3 Discretisation of the Transient Governing Equations of the MECe Model\u003cbr\u003e5.3 Measurement of Bending Angle\u003cbr\u003e5.4 Application of Electrosensitive Release System\u003cbr\u003e6 Swelling-controlled Release Systems\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Swelling Studies\u003cbr\u003e6.2.1 Swelling Experiments\u003cbr\u003e6.2.2 Dynamics of Water Sorption\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e6.2.3 Penetration Velocity Measurement\u003cbr\u003e6.2.4 Network Parameters\u003cbr\u003e6.3 Water in Hydrogels\u003cbr\u003e6.4 Measurement of Swelling Pressure\u003cbr\u003e6.4.1 Calculation of the Swelling Pressure in Equilibrium\u003cbr\u003e6.5 Theories of Swelling\u003cbr\u003e6.5.1 Equilibrium Swelling Theory\u003cbr\u003e6.5.2 Rubber Elasticity Theory\u003cbr\u003e6.5.3 Molecular Theory of Polymer Gels\u003cbr\u003e6.5.3.1 Mesh Chains as the Characteristic Gel Units\u003cbr\u003e6.5.3.2 Star Polymers as the Characteristic Gel Units\u003cbr\u003e6.6 Model of Drug Release from Swellable Polymers\u003cbr\u003e6.6.1 Mathematical Definition of the Swelling-controlled Release Problem\u003cbr\u003e6.6.2 Development of a Mathematical Model for Solvent Transport\u003cbr\u003e6.6.3 Development of Mathematical Model for Drug Transport\u003cbr\u003e6.7 Drug Loading on Swellable Polymers\u003cbr\u003e6.8 Drug Loading into Micelles\u003cbr\u003e6.9 Application of Swelling-controlled Systems\u003cbr\u003e7 Chemical Controlled-release Systems\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Types of Chemical Controlled-release Systems\u003cbr\u003e7.2.1 Molecularly Imprinted Gels\u003cbr\u003e7.2.2 Protein-sensitive Hydrogels\u003cbr\u003e7.2.2.1 Antigen-sensitive Hydrogels\u003cbr\u003e7.2.2.2 Enzyme-sensitive Hydrogels\u003cbr\u003e7.2.2.3 Thrombin-sensitive Hydrogels\u003cbr\u003e7.2.2.4 Lectin-loaded Hydrogels\u003cbr\u003e7.2.3 Ionic-strength-responsive Polymers\u003cbr\u003e7.2.4 Glucose Oxidase-loaded Hydrogels\u003cbr\u003e7.2.5 Glucose-sensitive Release Systems\u003cbr\u003e7.2.5.1 Gel-immobilised Systems\u003cbr\u003e7.2.5.2 Solution-gel Phase Reversible Systems\u003cbr\u003e7.2.5.3 pH-sensitive Glucose Systems\u003cbr\u003e7.2.5.4 Multieffect-coupling Glucose-stimulus (MECglu) Model for Glucose-sensitive Hydrogels\u003cbr\u003e7.2.6 Osmotic Pressure-sensitive Hydrogels\u003cbr\u003e8 State-of-the-Art of Commercially Available Polymer-based Drug-delivery Technologies\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Basic Commercial Ingredients for Drug-delivery Systems\u003cbr\u003e8.2.1 Pluronics®: BASF SE Chemical Company\u003cbr\u003e8.2.2 Tetronics®: BASF SE Chemical Company\u003cbr\u003e8.2.3 Starburst®: Dendritic Nanotechnologies, Inc.\u003cbr\u003e8.2.4 SuperFect®\/PolyFect®: QIAGEN Inc.\u003cbr\u003e8.3 Injectable Drug-delivery Systems\u003cbr\u003e8.3.1 Chroniject™: Oakwood Technologies\u003cbr\u003e8.3.2 Zoladex Depot®: AstraZeneca\u003cbr\u003e8.3.3 Lupron Depot®: TAP Pharmaceuticals\u003cbr\u003e8.3.4 Sandostatin LAR®: Novartis\u003cbr\u003e8.3.5 Nutropin Depot®: Genentech, Inc. and Alkermes Inc.\u003cbr\u003e8.3.6 Prolease®: Alkermes Inc.\u003cbr\u003e8.3.7 Medisorb®: Alkermes, Inc.\u003cbr\u003eStimuli-Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e8.3.8 Medusa®: Flamel Technologies, Inc.\u003cbr\u003e8.3.9 OctoDEX®\/SynBiosys®\/PolyActive®: OctoPlus, Inc.\u003cbr\u003e8.3.10 Alzamer® Depot™ , ALZA Corporation\u003cbr\u003e8.3.11 Atrigel®: Atrix Laboratories\u003cbr\u003e8.4 Implantable or Ointment-based Drug-delivery Systems\u003cbr\u003e8.4.1 Gliadel Wafer®: Eisai Corporation of North America\u003cbr\u003e8.4.2 VivaGel™: Starphama, Plc\u003cbr\u003e8.4.3 BST-Gel®: BioSyntech, Inc.\u003cbr\u003e8.4.4 Stratus® CS: Dade Behring, Inc.\u003cbr\u003e8.4.5 Evacet®: The Liposome Company, Inc.\u003cbr\u003e8.5 Oral Drug-delivery Products\u003cbr\u003e8.5.1 Pulsincap™: Scherer, Inc.\u003cbr\u003e8.5.2 Geomatrix®: SkyePharma, Plc\u003cbr\u003e8.5.3 Micropump®: Flamel Technologies, Inc.\u003cbr\u003e8.5.4 Renagel®: Genzyme Corporation\u003cbr\u003e8.5.5 Threeform®: Lek Pharmaceutical and Chemical Company\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:51-04:00","created_at":"2017-06-22T21:14:51-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","Cooney Model","degradation","diffusion","diffusion-controlled","drug delivery","Hopfenberg Model","hydrogels","mathematical model","matrix","modelling","pH","polymer swelling","release mechanisms","release systems","reversible systems","swelling"],"price":13500,"price_min":13500,"price_max":19000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443332,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-84735-416-7","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Stimuli Responsive Drug Delivery SystemsFrom Introduction to Application - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-416-7","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50450782724,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-416-7","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Stimuli Responsive Drug Delivery SystemsFrom Introduction to Application - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-416-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-416-7_a5cb72ce-ab4d-4bd1-9df6-8fbfac632418.jpg?v=1499955947"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-416-7_a5cb72ce-ab4d-4bd1-9df6-8fbfac632418.jpg?v=1499955947","options":["Cover"],"media":[{"alt":null,"id":358766313565,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-416-7_a5cb72ce-ab4d-4bd1-9df6-8fbfac632418.jpg?v=1499955947"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-416-7_a5cb72ce-ab4d-4bd1-9df6-8fbfac632418.jpg?v=1499955947","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anil Bajpai, Sandeep Shukla, Rajesh Saini and Atul Tiwari \u003cbr\u003eISBN 978-1-84735-416-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003ePages: 370, Hardcover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nStimuli responsive drug delivery systems have emerged as one of the most innovative classes of polymer materials in modern materials science. The polymer architectures exhibiting a large change in their physicochemical behaviors in response to minor signals from the environments have fabricated potentially useful materials for pharmaceutical and biomedical applications. The most advanced stimuli responsive drug delivery systems have also explored a new strategy to design targeted delivery systems to treat complex diseases like cancers and related tumors.\u003cbr\u003e\u003cbr\u003eStimuli Responsive Drug Delivery Systems offers a convincing approach to understanding the basic principles of drug delivery process, their mathematical modeling, different types of drug delivery systems, various polymer systems responsive to stimuli such as swelling, pH, temperature, electric and magnetic fields, chemical agents, and more. The material covered in this book provides a wide spectrum of information - academic, research, and professional - for the biomedical, pharmaceutical and polymer chemistry communities. \u003cbr\u003e\u003cbr\u003eThe book also presents the commercial scenario of drug delivery systems and highlights upcoming challenges and existing future prospects of this field. An exhaustive bibliography of the book also enables students and researchers of various disciplines to acquire the additional information they may require.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Responsive Stimuli-sensitive Materials\u003cbr\u003e1.2.1 Swelling-controlled Systems\u003cbr\u003e1.2.2 Magnetic-sensitive Release Systems\u003cbr\u003e1.3 Concept of Controlled Drug Delivery\u003cbr\u003e1.3.1 Controlled Drug Delivery\u003cbr\u003e1.3.2 Advantages of Controlled Drug Delivery\u003cbr\u003e1.3.3 Types of Controlled Drug Delivery\u003cbr\u003e1.3.3.1 Diffusion-controlled System\u003cbr\u003e1.3.3.1.1 Reservoir Devices\u003cbr\u003e1.3.3.1.2 Matrix Devices\u003cbr\u003e1.3.3.1.3 Laminated Matrix Devices\u003cbr\u003e1.3.3.2 Swelling-controlled Systems\u003cbr\u003e1.3.3.3 Chemically Controlled Systems\u003cbr\u003e1.3.3.3.1 Matrix with Covalently Attached Drug\u003cbr\u003e1.3.3.3.2 Devices with Entrapped Drug\u003cbr\u003e1.3.3.4 Other Delivery Systems\u003cbr\u003e1.4 Targeted Drug Delivery\u003cbr\u003e1.4.1 Major Schemes of Targeted Drug Delivery\u003cbr\u003e1.4.2 Types of Targeting Methods\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e1.4.2.1 Physical Targeting\u003cbr\u003e1.4.2.2 Passive Targeting\u003cbr\u003e1.4.2.3 Active Targeting\u003cbr\u003e1.5 Mathematical Modelling of Drug Delivery [80]\u003cbr\u003e1.5.1 Factors Operative in Release Mechanisms\u003cbr\u003e1.5.2 Empirical and Semi-empirical Mathematical Models\u003cbr\u003e1.5.2.1 Peppas Equation\u003cbr\u003e1.5.2.2 Hopfenberg Model\u003cbr\u003e1.5.2.3 Cooney Model\u003cbr\u003e1.5.2.4 Artificial Neural Networks\u003cbr\u003e1.5.3 Mechanistic Realistic Models\u003cbr\u003e1.5.3.1 Theories Based on Fick’s Law of Diffusion\u003cbr\u003e1.5.3.2 Theories Considering Polymer Swelling\u003cbr\u003e1.5.3.3 Theories Considering Polymer Swelling and Polymer and Drug Dissolution\u003cbr\u003e1.5.3.4 Theories Considering Polymer Erosion\/ Degradation\u003cbr\u003e1.6 Some Milestones in the Fields of Controlled Drug Delivery\u003cbr\u003e1.7 Future Challenges and Scope\u003cbr\u003e2 pH-Sensitive Release Systems\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Swelling Behaviour of pH-sensitive Hydrogels in Buffer Solution\u003cbr\u003e2.3 Phase Transition Behaviour of pH-responsive Hydrogels\u003cbr\u003e2.4 Types of pH-sensitive Hydrogels\u003cbr\u003e2.4.1 Ionic Hydrogels\u003cbr\u003e2.4.1.1 Anionic Hydrogels\u003cbr\u003e2.4.1.2 Cationic Hydrogels\u003cbr\u003e2.4.1.3 Polyamphoteric Hydrogels\u003cbr\u003e2.4.2 Non-ionic Hydrogels\u003cbr\u003e2.5 Properties of pH-sensitive Hydrogels\u003cbr\u003e2.6 Drug Release Mechanisms from Hydrogel Devices\u003cbr\u003e2.7 Applications of pH-sensitive Hydrogels\u003cbr\u003e2.7.1 Poly(ε-caprolactone) (PCL)\u003cbr\u003e2.7.2 Poly(ethylene glycol) (PEG)\u003cbr\u003e2.7.3 Chitosan\u003cbr\u003e2.7.4 Alginate\u003cbr\u003e2.7.5 Poly(2-acrylamido-2-methylpropane sulfonic acid (AMPS) sodium salt)\u003cbr\u003e2.8 pH-sensitive Hydrogel in Insulin Delivery\u003cbr\u003e2.9 pH-sensitive Copolymers and their Application to Nasal Delivery\u003cbr\u003e2.10 pH-dependent Systems for Glucose-stimulated Drug Delivery\u003cbr\u003e2.11 Application of pH-sensitive Polymers to Colon-specific Drug Delivery\u003cbr\u003e3 Temperature-sensitive Release Systems\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Types of Temperature-sensitive Hydrogels\u003cbr\u003e3.2.1 Negative Temperature-sensitive Hydrogels\u003cbr\u003e3.2.2 Positive Temperature-sensitive Hydrogels\u003cbr\u003e3.2.3 Thermoreversible Gels\u003cbr\u003e3.3 Thermosensitivity\u003cbr\u003e3.4 Phase Transition with LCST and UCST\u003cbr\u003e3.5 Factors Affecting LCST\u003cbr\u003e3.6 Phase Transition Behaviour of Stimuli-responsive Hydrogels\u003cbr\u003e\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e3.7 Important Preparation Methods of Temperature-sensitive Hydrogels\u003cbr\u003e3.7.1 Emulsion Polymerisation\u003cbr\u003e3.7.2 Frontal Polymerisation Synthesis of Temperature-sensitive Hydrogels\u003cbr\u003e3.7.3 A Little Introduction of Atom Transfer Radical Polymerisations (ATRP) Techniques\u003cbr\u003e3.8 Delivery of Biologically Active Agents by LCST Hydrogels\u003cbr\u003e3.9 Applications of Temperature-sensitive Hydrogels in Drug Release\u003cbr\u003e3.10 Uses of Thermoreversible Hydrogels\u003cbr\u003e4 Magnetically Responsive Targeted Drug Delivery\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Concept of Magnetic Drug Targeting\u003cbr\u003e4.3 Nanoparticulates in Magnetic Targeted Drug Delivery\u003cbr\u003e4.4 Theory: Magnetic Basics\u003cbr\u003e4.5 Types of Magnetism\u003cbr\u003e4.5.1 Paramagnetism\u003cbr\u003e4.5.2 Ferromagnetism and Ferrimagnetism\u003cbr\u003e4.5.3 Antiferromagnetism\u003cbr\u003e4.6 Magnetic Field\u003cbr\u003e4.7 Magnetic Material\u003cbr\u003e4.8 Incorporation of Iron Oxide\u003cbr\u003e4.9 Methods of Incorporation of Iron Oxide\u003cbr\u003e4.9.1 Coprecipitation\u003cbr\u003e4.9.2 Thermal Decomposition\u003cbr\u003e4.9.3 Microemulsions\u003cbr\u003e4.9.4 Miscellaneous\u003cbr\u003e4.10 Advantages of Magnetic-controlled and Targeted Drug Delivery\u003cbr\u003e4.11 Applications of Magnetic-controlled and Targeted Drug Delivery\u003cbr\u003e4.11.1 Drug Delivery to Tumours\u003cbr\u003e4.11.2 MRI Contrast Agents\u003cbr\u003e4.11.3 Hyperthermia\u003cbr\u003e4.11.4 Cell Labelling and Magnetic Separation\u003cbr\u003e4.12 Future Challenges and Prospects\u003cbr\u003e5 Electric Sensitive Release Systems\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Theories of Electrosensitive Release System.\u003cbr\u003e5.2.1 Donnan Equilibrium Theory\u003cbr\u003e5.2.2 Mixture Theory\u003cbr\u003e5.2.3 The Generalised Triphasic Theory\u003cbr\u003e5.2.4 Refined Multieffect-coupling Electric-Stimulus (rMECe) Model\u003cbr\u003e5.2.4.1 Theory and Formulation\u003cbr\u003e5.2.4.2 Boundary and Initial Conditions\u003cbr\u003e5.2.4.3 Discretisation of the Transient Governing Equations of the MECe Model\u003cbr\u003e5.3 Measurement of Bending Angle\u003cbr\u003e5.4 Application of Electrosensitive Release System\u003cbr\u003e6 Swelling-controlled Release Systems\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Swelling Studies\u003cbr\u003e6.2.1 Swelling Experiments\u003cbr\u003e6.2.2 Dynamics of Water Sorption\u003cbr\u003eStimuli Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e6.2.3 Penetration Velocity Measurement\u003cbr\u003e6.2.4 Network Parameters\u003cbr\u003e6.3 Water in Hydrogels\u003cbr\u003e6.4 Measurement of Swelling Pressure\u003cbr\u003e6.4.1 Calculation of the Swelling Pressure in Equilibrium\u003cbr\u003e6.5 Theories of Swelling\u003cbr\u003e6.5.1 Equilibrium Swelling Theory\u003cbr\u003e6.5.2 Rubber Elasticity Theory\u003cbr\u003e6.5.3 Molecular Theory of Polymer Gels\u003cbr\u003e6.5.3.1 Mesh Chains as the Characteristic Gel Units\u003cbr\u003e6.5.3.2 Star Polymers as the Characteristic Gel Units\u003cbr\u003e6.6 Model of Drug Release from Swellable Polymers\u003cbr\u003e6.6.1 Mathematical Definition of the Swelling-controlled Release Problem\u003cbr\u003e6.6.2 Development of a Mathematical Model for Solvent Transport\u003cbr\u003e6.6.3 Development of Mathematical Model for Drug Transport\u003cbr\u003e6.7 Drug Loading on Swellable Polymers\u003cbr\u003e6.8 Drug Loading into Micelles\u003cbr\u003e6.9 Application of Swelling-controlled Systems\u003cbr\u003e7 Chemical Controlled-release Systems\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Types of Chemical Controlled-release Systems\u003cbr\u003e7.2.1 Molecularly Imprinted Gels\u003cbr\u003e7.2.2 Protein-sensitive Hydrogels\u003cbr\u003e7.2.2.1 Antigen-sensitive Hydrogels\u003cbr\u003e7.2.2.2 Enzyme-sensitive Hydrogels\u003cbr\u003e7.2.2.3 Thrombin-sensitive Hydrogels\u003cbr\u003e7.2.2.4 Lectin-loaded Hydrogels\u003cbr\u003e7.2.3 Ionic-strength-responsive Polymers\u003cbr\u003e7.2.4 Glucose Oxidase-loaded Hydrogels\u003cbr\u003e7.2.5 Glucose-sensitive Release Systems\u003cbr\u003e7.2.5.1 Gel-immobilised Systems\u003cbr\u003e7.2.5.2 Solution-gel Phase Reversible Systems\u003cbr\u003e7.2.5.3 pH-sensitive Glucose Systems\u003cbr\u003e7.2.5.4 Multieffect-coupling Glucose-stimulus (MECglu) Model for Glucose-sensitive Hydrogels\u003cbr\u003e7.2.6 Osmotic Pressure-sensitive Hydrogels\u003cbr\u003e8 State-of-the-Art of Commercially Available Polymer-based Drug-delivery Technologies\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Basic Commercial Ingredients for Drug-delivery Systems\u003cbr\u003e8.2.1 Pluronics®: BASF SE Chemical Company\u003cbr\u003e8.2.2 Tetronics®: BASF SE Chemical Company\u003cbr\u003e8.2.3 Starburst®: Dendritic Nanotechnologies, Inc.\u003cbr\u003e8.2.4 SuperFect®\/PolyFect®: QIAGEN Inc.\u003cbr\u003e8.3 Injectable Drug-delivery Systems\u003cbr\u003e8.3.1 Chroniject™: Oakwood Technologies\u003cbr\u003e8.3.2 Zoladex Depot®: AstraZeneca\u003cbr\u003e8.3.3 Lupron Depot®: TAP Pharmaceuticals\u003cbr\u003e8.3.4 Sandostatin LAR®: Novartis\u003cbr\u003e8.3.5 Nutropin Depot®: Genentech, Inc. and Alkermes Inc.\u003cbr\u003e8.3.6 Prolease®: Alkermes Inc.\u003cbr\u003e8.3.7 Medisorb®: Alkermes, Inc.\u003cbr\u003eStimuli-Responsive Drug Delivery Systems: From Introduction to Application\u003cbr\u003e8.3.8 Medusa®: Flamel Technologies, Inc.\u003cbr\u003e8.3.9 OctoDEX®\/SynBiosys®\/PolyActive®: OctoPlus, Inc.\u003cbr\u003e8.3.10 Alzamer® Depot™ , ALZA Corporation\u003cbr\u003e8.3.11 Atrigel®: Atrix Laboratories\u003cbr\u003e8.4 Implantable or Ointment-based Drug-delivery Systems\u003cbr\u003e8.4.1 Gliadel Wafer®: Eisai Corporation of North America\u003cbr\u003e8.4.2 VivaGel™: Starphama, Plc\u003cbr\u003e8.4.3 BST-Gel®: BioSyntech, Inc.\u003cbr\u003e8.4.4 Stratus® CS: Dade Behring, Inc.\u003cbr\u003e8.4.5 Evacet®: The Liposome Company, Inc.\u003cbr\u003e8.5 Oral Drug-delivery Products\u003cbr\u003e8.5.1 Pulsincap™: Scherer, Inc.\u003cbr\u003e8.5.2 Geomatrix®: SkyePharma, Plc\u003cbr\u003e8.5.3 Micropump®: Flamel Technologies, Inc.\u003cbr\u003e8.5.4 Renagel®: Genzyme Corporation\u003cbr\u003e8.5.5 Threeform®: Lek Pharmaceutical and Chemical Company\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Mixing of Rubber, Clas...
$90.00
{"id":11242242628,"title":"Mixing of Rubber, Classic Rapra Reprints","handle":"978-1-84735-150-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: John M. Funt \u003cbr\u003eISBN 978-1-84735-150-0 \u003cbr\u003e\u003cbr\u003ehard-backed\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIntroducing the new 'Classic Rapra Reprint' Series. Mixing of Rubber is the first book in a series of Classic Rapra Reprints. We have searched our previously published and successful reference books, and found some real gems! The content is sure to be of interest to those in the Rubber Mixing Industry, both new to the industry and those more experience, all will benefit...\u003cbr\u003e\u003cbr\u003eSince the discovery of vulcanisation in the nineteenth century, rubber has been a major industrial product. From its inception, the use of vulcanising agents, reinforcing fillers and other additives has been a major feature of the rubber industry. Innumerable articles and texts attest to the chemist's skill in balancing the chemical and physical properties of the manufactured products.\u003cbr\u003e\u003cbr\u003eMixing as a general operation may be considered as three basic processes occurring simultaneously. Simple mixing ensures that the mixture has a uniform composition throughout its bulk, at least when viewed on a scale large compared to the size of the individual particles. In the case of solids blending (Chapter 11), the particle size need not change, but the distribution of particles throughout the mixture approaches a random distribution. If the shear forces are sufficiently large, particles may fracture, as in dispersive mixing, and the polymer may flow, as in laminar mixing (Chapter 111). In both of these processes, the size of the original particles or fluid elements changes because of the mixing process. Then the properties of the mixture depending upon the size of the basic structures reached during mixing.\u003cbr\u003e\u003cbr\u003eIn the case of laminar mixing, the size may be the striation thickness of a hypothetical fluid element, which is inversely related to the total shear strain. If relatively strong particles, or aggregates of particles, are present, these must be reduced in size by the action of forces generated by flow in the mixer. Then the size is the actual additive particle size.\u003cbr\u003e\u003cbr\u003eThe relative balance between the importance of these three processes in determining the efficiency of mixing and the product quality depends upon the attraction between additive particles, the rubber flow properties, the geometry of the mixer and the operating conditions such as temperature, mixing time and rotor speed.\u003cbr\u003eThe interaction of operating conditions, raw material properties and the quality of mixing can be a formidable phenomenon to analyse. However, in many cases, a number of simplifying assumptions about the operation can be made.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Blending of Particles\u003cbr\u003e3. Laminar and Dispersive Mixing (Sample Chapter - click on link above)\u003cbr\u003e4. The Milling of Rubbers\u003cbr\u003e5. Internal Mixers\u003cbr\u003e6. Continuous Mixers\u003cbr\u003e7. Powdered Rubbers","published_at":"2017-06-22T21:14:51-04:00","created_at":"2017-06-22T21:14:51-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","blending","book","dispersive mixing","laminar mixing","mixers","mixing rubber","r-compounding","rubber"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443652,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Mixing of Rubber, Classic Rapra Reprints","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-150-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-150-0.jpg?v=1499727686"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-150-0.jpg?v=1499727686","options":["Title"],"media":[{"alt":null,"id":358513475677,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-150-0.jpg?v=1499727686"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-150-0.jpg?v=1499727686","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: John M. Funt \u003cbr\u003eISBN 978-1-84735-150-0 \u003cbr\u003e\u003cbr\u003ehard-backed\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIntroducing the new 'Classic Rapra Reprint' Series. Mixing of Rubber is the first book in a series of Classic Rapra Reprints. We have searched our previously published and successful reference books, and found some real gems! The content is sure to be of interest to those in the Rubber Mixing Industry, both new to the industry and those more experience, all will benefit...\u003cbr\u003e\u003cbr\u003eSince the discovery of vulcanisation in the nineteenth century, rubber has been a major industrial product. From its inception, the use of vulcanising agents, reinforcing fillers and other additives has been a major feature of the rubber industry. Innumerable articles and texts attest to the chemist's skill in balancing the chemical and physical properties of the manufactured products.\u003cbr\u003e\u003cbr\u003eMixing as a general operation may be considered as three basic processes occurring simultaneously. Simple mixing ensures that the mixture has a uniform composition throughout its bulk, at least when viewed on a scale large compared to the size of the individual particles. In the case of solids blending (Chapter 11), the particle size need not change, but the distribution of particles throughout the mixture approaches a random distribution. If the shear forces are sufficiently large, particles may fracture, as in dispersive mixing, and the polymer may flow, as in laminar mixing (Chapter 111). In both of these processes, the size of the original particles or fluid elements changes because of the mixing process. Then the properties of the mixture depending upon the size of the basic structures reached during mixing.\u003cbr\u003e\u003cbr\u003eIn the case of laminar mixing, the size may be the striation thickness of a hypothetical fluid element, which is inversely related to the total shear strain. If relatively strong particles, or aggregates of particles, are present, these must be reduced in size by the action of forces generated by flow in the mixer. Then the size is the actual additive particle size.\u003cbr\u003e\u003cbr\u003eThe relative balance between the importance of these three processes in determining the efficiency of mixing and the product quality depends upon the attraction between additive particles, the rubber flow properties, the geometry of the mixer and the operating conditions such as temperature, mixing time and rotor speed.\u003cbr\u003eThe interaction of operating conditions, raw material properties and the quality of mixing can be a formidable phenomenon to analyse. However, in many cases, a number of simplifying assumptions about the operation can be made.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Blending of Particles\u003cbr\u003e3. Laminar and Dispersive Mixing (Sample Chapter - click on link above)\u003cbr\u003e4. The Milling of Rubbers\u003cbr\u003e5. Internal Mixers\u003cbr\u003e6. Continuous Mixers\u003cbr\u003e7. Powdered Rubbers"}
Engineering Plastics
$205.00
{"id":11242242372,"title":"Engineering Plastics","handle":"9781847355683","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R Crampton \u003cbr\u003eISBN 9781847355683 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003e264 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nGenerally speaking, engineering plastics are those which are replacing conventional materials such as metals and alloys in general engineering. In addition, the term 'engineering plastic' covers materials that have superior properties which were not particularly available in conventional polymeric materials such as the exceptionally high heat resistance of polyimides and polysulfides. In addition to conventional materials engineering polymers include materials as diverse as polyether ether ketone, polyimide, polyether-imide and polysulfides.\u003cbr\u003e\u003cbr\u003eThe mechanical, electrical and thermal properties of polymers are discussed as are other diverse applications such as solvent and detergent resistance, frictional and hardness properties, food packaging applications and gas barrier properties. I addition a very important application is discussed of the resistance of plastics to gamma and others form of radiation namely their use nuclear industry, medical applications and food sterilisation\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Mechanical Applications \u003cbr\u003e1.2 Electrical Applications \u003cbr\u003e1.3 Thermal Applications\u003cbr\u003e1.4 Miscellaneous Applications \u003cbr\u003e1.5 Significant Polymer Properties \u003cbr\u003e2. Mechanical Properties\u003cbr\u003e2.1 Review of Mechanical Properties\u003cbr\u003e2.2 Mechanical Properties of Unreinforced Polymers\u003cbr\u003e2.3 Reinforced Plastics\u003cbr\u003e2.4 Comparison of Mechanical Properties of Virgin and Reinforced Plastics\u003cbr\u003e2.5 Mechanical Properties of Particular Polymers\u003cbr\u003e2.6 Use of Lubricating Agents in Engineering Polymer Formulations \u003cbr\u003e3. Thermal Properties of Polymers\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Thermal Expansion Coefficient\u003cbr\u003e3.3 Mould Shrinkage\u003cbr\u003e3.4 Melting Temperature or Softening Point\u003cbr\u003e3.5 Maximum Operating Temperature\u003cbr\u003e3.6 Brittleness Temperature (Low Temperature Embrittlement Temperature)\u003cbr\u003e3.7 Heat Distortion Temperature \u003cbr\u003e3.8 Thermal Conductivity\u003cbr\u003e3.9 Specific Heat\u003cbr\u003e3.10 Thermal Diffusivity\u003cbr\u003e3.11 Thermal Insulation Indexder RWTH Aachen, Germany\u003cbr\u003e3.12 Glass Transition Temperature\u003cbr\u003e3.13 Alpha, Beta, Gamma Transitions\u003cbr\u003e3.14 Developments in High Temperature Plastics\u003cbr\u003e4. Electrical Properties of Plastics\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Typical Electrical Properties of a Range of Engineering Polymers\u003cbr\u003e4.3 Effect of Reinforcing Agents on Electrical Properties\u003cbr\u003e4.4 Applications of High Dielectric Strength Polymers \u003cbr\u003e4.5 Effect of Reinforcing Agents on Electrical and Mechanical Properties\u003cbr\u003e4.6 Electrical Properties\u003cbr\u003e4.7 Electrically conductive\u003cbr\u003e4.8 Fire Retardant Plastics for the Electrical Industry\u003cbr\u003e5. Miscellaneous Polymer Properties\u003cbr\u003e5.1 Abrasion Resistance and Wear\u003cbr\u003e5.2 Fatigue Index\u003cbr\u003e5.3 Coefficient of Friction\u003cbr\u003e5.4 Surface Hardness\u003cbr\u003e5.5 Haze, Glass and Surface Roughness\u003cbr\u003e5.6 Weathering Properties of Engineering Plastics\u003cbr\u003e5.7 Chemical Resistance\u003cbr\u003e5.8 Detergent Resistance \u003cbr\u003e5.9 Solvent Resistance\u003cbr\u003e5.10 Hydrolytic Stability and Water Absorption\u003cbr\u003e5.11 Gas Barrier Properties of Plastics \u003cbr\u003e5.12 Prediction of Polymer Service Lifetimes\u003cbr\u003e6 Plastics in Automotive Engineering\u003cbr\u003e6.1 Applications\u003cbr\u003e6.2 Acoustic Properties of Polymers\u003cbr\u003e6.3 End of Life of Vehicles\u003cbr\u003e6.4 Miscellaneous\u003cbr\u003e7 Plastics in Aerospace\u003cbr\u003e7.1 Applications\u003cbr\u003e7.2 Glass Fiber Reinforced Plastics\u003cbr\u003e7.3 Carbon Fiber Reinforced Nanocomposite Plastics\u003cbr\u003e7.4 Pitched Fiber Cyanate Ester Composite \u003cbr\u003e7.5 Recent Developments \u003cbr\u003e8 Other Engineering Applications\u003cbr\u003e8.1 General Engineering Applications\u003cbr\u003e8.2 Building Materials\u003cbr\u003e8.3 Plastics in Electrochemical Cells\u003cbr\u003e8.4 Polymers in Medical Devices\u003cbr\u003e8.5 Gas Barrier Properties \u003cbr\u003e8.6 Foam Insulation\u003cbr\u003e8.7 Radiation Resistance of Engineering Plastics","published_at":"2017-06-22T21:14:51-04:00","created_at":"2017-06-22T21:14:51-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","aerospace","book","building automotive","electronics","engineering plastics","material","mechanical properties","medical application","nuclear industry","plastics","polymers","thermal properties"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Engineering Plastics","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847355683","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847355683.jpg?v=1500216488"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355683.jpg?v=1500216488","options":["Title"],"media":[{"alt":null,"id":354794733661,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355683.jpg?v=1500216488"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355683.jpg?v=1500216488","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R Crampton \u003cbr\u003eISBN 9781847355683 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003e264 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nGenerally speaking, engineering plastics are those which are replacing conventional materials such as metals and alloys in general engineering. In addition, the term 'engineering plastic' covers materials that have superior properties which were not particularly available in conventional polymeric materials such as the exceptionally high heat resistance of polyimides and polysulfides. In addition to conventional materials engineering polymers include materials as diverse as polyether ether ketone, polyimide, polyether-imide and polysulfides.\u003cbr\u003e\u003cbr\u003eThe mechanical, electrical and thermal properties of polymers are discussed as are other diverse applications such as solvent and detergent resistance, frictional and hardness properties, food packaging applications and gas barrier properties. I addition a very important application is discussed of the resistance of plastics to gamma and others form of radiation namely their use nuclear industry, medical applications and food sterilisation\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Mechanical Applications \u003cbr\u003e1.2 Electrical Applications \u003cbr\u003e1.3 Thermal Applications\u003cbr\u003e1.4 Miscellaneous Applications \u003cbr\u003e1.5 Significant Polymer Properties \u003cbr\u003e2. Mechanical Properties\u003cbr\u003e2.1 Review of Mechanical Properties\u003cbr\u003e2.2 Mechanical Properties of Unreinforced Polymers\u003cbr\u003e2.3 Reinforced Plastics\u003cbr\u003e2.4 Comparison of Mechanical Properties of Virgin and Reinforced Plastics\u003cbr\u003e2.5 Mechanical Properties of Particular Polymers\u003cbr\u003e2.6 Use of Lubricating Agents in Engineering Polymer Formulations \u003cbr\u003e3. Thermal Properties of Polymers\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Thermal Expansion Coefficient\u003cbr\u003e3.3 Mould Shrinkage\u003cbr\u003e3.4 Melting Temperature or Softening Point\u003cbr\u003e3.5 Maximum Operating Temperature\u003cbr\u003e3.6 Brittleness Temperature (Low Temperature Embrittlement Temperature)\u003cbr\u003e3.7 Heat Distortion Temperature \u003cbr\u003e3.8 Thermal Conductivity\u003cbr\u003e3.9 Specific Heat\u003cbr\u003e3.10 Thermal Diffusivity\u003cbr\u003e3.11 Thermal Insulation Indexder RWTH Aachen, Germany\u003cbr\u003e3.12 Glass Transition Temperature\u003cbr\u003e3.13 Alpha, Beta, Gamma Transitions\u003cbr\u003e3.14 Developments in High Temperature Plastics\u003cbr\u003e4. Electrical Properties of Plastics\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Typical Electrical Properties of a Range of Engineering Polymers\u003cbr\u003e4.3 Effect of Reinforcing Agents on Electrical Properties\u003cbr\u003e4.4 Applications of High Dielectric Strength Polymers \u003cbr\u003e4.5 Effect of Reinforcing Agents on Electrical and Mechanical Properties\u003cbr\u003e4.6 Electrical Properties\u003cbr\u003e4.7 Electrically conductive\u003cbr\u003e4.8 Fire Retardant Plastics for the Electrical Industry\u003cbr\u003e5. Miscellaneous Polymer Properties\u003cbr\u003e5.1 Abrasion Resistance and Wear\u003cbr\u003e5.2 Fatigue Index\u003cbr\u003e5.3 Coefficient of Friction\u003cbr\u003e5.4 Surface Hardness\u003cbr\u003e5.5 Haze, Glass and Surface Roughness\u003cbr\u003e5.6 Weathering Properties of Engineering Plastics\u003cbr\u003e5.7 Chemical Resistance\u003cbr\u003e5.8 Detergent Resistance \u003cbr\u003e5.9 Solvent Resistance\u003cbr\u003e5.10 Hydrolytic Stability and Water Absorption\u003cbr\u003e5.11 Gas Barrier Properties of Plastics \u003cbr\u003e5.12 Prediction of Polymer Service Lifetimes\u003cbr\u003e6 Plastics in Automotive Engineering\u003cbr\u003e6.1 Applications\u003cbr\u003e6.2 Acoustic Properties of Polymers\u003cbr\u003e6.3 End of Life of Vehicles\u003cbr\u003e6.4 Miscellaneous\u003cbr\u003e7 Plastics in Aerospace\u003cbr\u003e7.1 Applications\u003cbr\u003e7.2 Glass Fiber Reinforced Plastics\u003cbr\u003e7.3 Carbon Fiber Reinforced Nanocomposite Plastics\u003cbr\u003e7.4 Pitched Fiber Cyanate Ester Composite \u003cbr\u003e7.5 Recent Developments \u003cbr\u003e8 Other Engineering Applications\u003cbr\u003e8.1 General Engineering Applications\u003cbr\u003e8.2 Building Materials\u003cbr\u003e8.3 Plastics in Electrochemical Cells\u003cbr\u003e8.4 Polymers in Medical Devices\u003cbr\u003e8.5 Gas Barrier Properties \u003cbr\u003e8.6 Foam Insulation\u003cbr\u003e8.7 Radiation Resistance of Engineering Plastics"}
Polymers in Aerospace ...
$120.00
{"id":11242242116,"title":"Polymers in Aerospace Applications","handle":"978-1-84735-093-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Joel Fried \u003cbr\u003eISBN 978-1-84735-093-0 \u003c\/p\u003e\n\u003cp\u003ePublished: 2010\u003cbr\u003ePages: 136, Soft-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report gives an overview of how polymers are used in aerospace applications. Topics covered include: Composites, including thermosets, thermoplastics, and nanocomposites. Fibre reinforcement of the composites and the specialised applications are also covered. \u003cbr\u003e\u003cbr\u003eFor each type of composite, the chemistry, cure methods, fabrication methods, mechanical properties, thermal properties and environmental degradation are considered. \u003cbr\u003e\u003cbr\u003eApplications include: sealants, structural adhesives, foams, primer paint, shape memory alloys, electroactive devices, MEMS, vibration damping, NLO properties and ablative polymers.\u003cbr\u003e\u003cbr\u003eThis review report is accompanied by around 400 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e\u003cbr\u003e2. Adhesives\u003cbr\u003e\u003cbr\u003e3. Coatings\u003cbr\u003e\u003cbr\u003e4. Fibres\u003cbr\u003e\u003cbr\u003e5. Composites\u003cbr\u003e\u003cbr\u003e6. Nanocomposites\u003cbr\u003e\u003cbr\u003e7. Foams\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:50-04:00","created_at":"2017-06-22T21:14:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","aerospace","book","coatings","composties","nanocomposites","p-applications","polymer","polymers"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443076,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Aerospace Applications","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-093-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-093-0.jpg?v=1499953211"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-093-0.jpg?v=1499953211","options":["Title"],"media":[{"alt":null,"id":358698647645,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-093-0.jpg?v=1499953211"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-093-0.jpg?v=1499953211","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Joel Fried \u003cbr\u003eISBN 978-1-84735-093-0 \u003c\/p\u003e\n\u003cp\u003ePublished: 2010\u003cbr\u003ePages: 136, Soft-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report gives an overview of how polymers are used in aerospace applications. Topics covered include: Composites, including thermosets, thermoplastics, and nanocomposites. Fibre reinforcement of the composites and the specialised applications are also covered. \u003cbr\u003e\u003cbr\u003eFor each type of composite, the chemistry, cure methods, fabrication methods, mechanical properties, thermal properties and environmental degradation are considered. \u003cbr\u003e\u003cbr\u003eApplications include: sealants, structural adhesives, foams, primer paint, shape memory alloys, electroactive devices, MEMS, vibration damping, NLO properties and ablative polymers.\u003cbr\u003e\u003cbr\u003eThis review report is accompanied by around 400 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e\u003cbr\u003e2. Adhesives\u003cbr\u003e\u003cbr\u003e3. Coatings\u003cbr\u003e\u003cbr\u003e4. Fibres\u003cbr\u003e\u003cbr\u003e5. Composites\u003cbr\u003e\u003cbr\u003e6. Nanocomposites\u003cbr\u003e\u003cbr\u003e7. Foams\u003cbr\u003e\u003cbr\u003e"}
Industrial Biofouling
$260.00
{"id":11242241988,"title":"Industrial Biofouling","handle":"978-0-444-53224-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. Reg Bott, School of Chemical Engineering, the University of Birmingham, Edgbaston, UK \u003cbr\u003eISBN 978-0-444-53224-4 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eHardbound, 220 pages\u003c\/p\u003e\n\u003cp\u003epublication date: 2011\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIndustrial Biofouling discusses the challenges--and to a lesser extent, the benefits--of biofilms on industrial processing surfaces. It addresses the operating problems caused by establishment and growth of microorganisms, thereby enabling effective equipment design and operation that minimizes biofouling.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eDiscusses the chemical and physical control of biofilm growth, with coverage of dosing techniques, equipment cleaning, and cost management\u003c\/p\u003e\n\u003cp\u003ePresents methods for monitoring and evaluating the effectiveness of control techniques\u003c\/p\u003e\n\u003cp\u003eIncorporates explicit figures and diagrams to aid in understanding\u003c\/p\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cp style=\"text-align: justify; line-height: 18px; margin: 0px 0px 18px; outline-width: 0px; font-family: inherit; color: #3e3d3d; font-size: 11px; vertical-align: baseline; border-width: 0px; padding: 0px;\"\u003e \u003c\/p\u003e\n\u003cspan class=\"Apple-style-span\" style=\"line-height: 18px; font-family: Verdana, 'Bitstream Vera Sans', sans-serif; color: #3e3d3d; font-size: 11px;\"\u003e\u003ca name=\"2\"\u003e\u003c\/a\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Fluid flow, mass and heat transfer \u003cbr\u003e3. Biofilms \u003cbr\u003e4. Biofouling control \u003cbr\u003e5. Biofouling monitoring \u003cbr\u003e6. Industrial review \u003cbr\u003e7. Conclusions\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:50-04:00","created_at":"2017-06-22T21:14:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biofilms","Biofouling","biofouling control","book","p-applications","polymer"],"price":26000,"price_min":26000,"price_max":26000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378442948,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Industrial Biofouling","public_title":null,"options":["Default Title"],"price":26000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-444-53224-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53224-4.jpg?v=1499478677"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53224-4.jpg?v=1499478677","options":["Title"],"media":[{"alt":null,"id":356452696157,"position":1,"preview_image":{"aspect_ratio":0.627,"height":499,"width":313,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53224-4.jpg?v=1499478677"},"aspect_ratio":0.627,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53224-4.jpg?v=1499478677","width":313}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. Reg Bott, School of Chemical Engineering, the University of Birmingham, Edgbaston, UK \u003cbr\u003eISBN 978-0-444-53224-4 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eHardbound, 220 pages\u003c\/p\u003e\n\u003cp\u003epublication date: 2011\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIndustrial Biofouling discusses the challenges--and to a lesser extent, the benefits--of biofilms on industrial processing surfaces. It addresses the operating problems caused by establishment and growth of microorganisms, thereby enabling effective equipment design and operation that minimizes biofouling.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eDiscusses the chemical and physical control of biofilm growth, with coverage of dosing techniques, equipment cleaning, and cost management\u003c\/p\u003e\n\u003cp\u003ePresents methods for monitoring and evaluating the effectiveness of control techniques\u003c\/p\u003e\n\u003cp\u003eIncorporates explicit figures and diagrams to aid in understanding\u003c\/p\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cp style=\"text-align: justify; line-height: 18px; margin: 0px 0px 18px; outline-width: 0px; font-family: inherit; color: #3e3d3d; font-size: 11px; vertical-align: baseline; border-width: 0px; padding: 0px;\"\u003e \u003c\/p\u003e\n\u003cspan class=\"Apple-style-span\" style=\"line-height: 18px; font-family: Verdana, 'Bitstream Vera Sans', sans-serif; color: #3e3d3d; font-size: 11px;\"\u003e\u003ca name=\"2\"\u003e\u003c\/a\u003e\u003c\/span\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Fluid flow, mass and heat transfer \u003cbr\u003e3. Biofilms \u003cbr\u003e4. Biofouling control \u003cbr\u003e5. Biofouling monitoring \u003cbr\u003e6. Industrial review \u003cbr\u003e7. Conclusions\u003cbr\u003e\u003cbr\u003e"}
Polymers and the REACH...
$126.00
{"id":11242241796,"title":"Polymers and the REACH Legislation","handle":"978-1-84735-086-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Smithers Rapra by Suzanne Wilkinson \u003cbr\u003eISBN 978-1-84735-086-2 \u003cbr\u003e\u003cbr\u003ePublished: 2008\u003cbr\u003eSoft-backed, 297 x 210 mm, 40 pages.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nREACH, the EU regulation for the Registration, Evaluation, Authorisation, and Restriction of Chemicals, entered into force in June 2007. Its central aim is to protect human health and the environment from the risks arising from the use of chemicals. REACH has become one of the most complex and far-reaching pieces of regulation ever to originate from the European Commission. \u003cbr\u003e\u003cbr\u003eWithin the polymer industry, it will affect producers of chemicals or preparations, importers of chemicals or finished products to the EU, producers of finished products and downstream users. Its effects will truly give it global reach, within and beyond the boundaries of Europe! \u003cbr\u003e\u003cbr\u003eRapra Limited, on behalf of its Members, commissioned Smithers Rapra to produce this guide to illustrate to organisations in these industries and sectors how REACH will affect them.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction to REACH \u003cbr\u003e2. REACH Basics \u003cbr\u003e3. The Legal Text \u003cbr\u003e4. Key Milestones \u003cbr\u003e5. Monomers and Polymers \u003cbr\u003e6. Pre-registration, Registration, and Compliance \u003cbr\u003e7. Information Sharing and Confidentiality \u003cbr\u003e8. Financial Implications \u003cbr\u003e9. Glossary, Abbreviations, and Acronyms \u003cbr\u003e10. Other Resources\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:49-04:00","created_at":"2017-06-22T21:14:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","authorisation","book","environment","EU regulations","Europe","health","p-properties","polymer","REACH","restriction of chemicals","risks"],"price":12600,"price_min":12600,"price_max":12600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378442692,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers and the REACH Legislation","public_title":null,"options":["Default Title"],"price":12600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-086-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Smithers Rapra by Suzanne Wilkinson \u003cbr\u003eISBN 978-1-84735-086-2 \u003cbr\u003e\u003cbr\u003ePublished: 2008\u003cbr\u003eSoft-backed, 297 x 210 mm, 40 pages.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nREACH, the EU regulation for the Registration, Evaluation, Authorisation, and Restriction of Chemicals, entered into force in June 2007. Its central aim is to protect human health and the environment from the risks arising from the use of chemicals. REACH has become one of the most complex and far-reaching pieces of regulation ever to originate from the European Commission. \u003cbr\u003e\u003cbr\u003eWithin the polymer industry, it will affect producers of chemicals or preparations, importers of chemicals or finished products to the EU, producers of finished products and downstream users. Its effects will truly give it global reach, within and beyond the boundaries of Europe! \u003cbr\u003e\u003cbr\u003eRapra Limited, on behalf of its Members, commissioned Smithers Rapra to produce this guide to illustrate to organisations in these industries and sectors how REACH will affect them.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction to REACH \u003cbr\u003e2. REACH Basics \u003cbr\u003e3. The Legal Text \u003cbr\u003e4. Key Milestones \u003cbr\u003e5. Monomers and Polymers \u003cbr\u003e6. Pre-registration, Registration, and Compliance \u003cbr\u003e7. Information Sharing and Confidentiality \u003cbr\u003e8. Financial Implications \u003cbr\u003e9. Glossary, Abbreviations, and Acronyms \u003cbr\u003e10. Other Resources\u003cbr\u003e\u003cbr\u003e"}
Adhesives Technology H...
$160.00
{"id":11242241732,"title":"Adhesives Technology Handbook","handle":"978-0-8155-1533-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Arthur H. Landrock, PLASTEC (retired) \u003cbr\u003eSina Ebnesajjad, Fluoroconsultants Group; (former DuPont), Chadds Ford, Pennsylvania, U.S.A. \u003cbr\u003eISBN 978-0-8155-1533-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eSecond Edition\u003c\/p\u003e\n\u003cp\u003eHardbound, 475 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book presents information that will allow practitioners of adhesion technology to select the right adhesive for bonding different materials. Early chapters cover basic principles of adhesion, such as adhesion theories, surface characterization and measurement, and types of adhesive bonds, and describe common adhesive materials and application techniques. Subsequent chapters focus on the design of joints, methods of handling and application of adhesives to substrates, solvent cementing, and methods for testing strength and durability of adhesive bonds. A final chapter deals with economics, environmental, and safety issues. The book serves as a practical resource for engineers, chemists, students, and others involved in selecting adhesives and bonding materials. The book is based on an updated from Arthur Landrock's Adhesives Technology Handbook, published in 1985 by Noyes Publishing. Ebnesajjad is a fluoropolymer technology consultant.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience: \u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eMaterials scientists, mechanical engineers, plastics engineers, scientists, researchers and students involved or interested in adhesives and sealants.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Provides the end user practitioners of adhesion technology with a complete guide to bonding materials successfully\u003cbr\u003e• Covers most substrates, including plastics, metals, elastomers, and ceramics, explaining basic principles and describing common materials and application techniques\u003cbr\u003e• Arranges information so that each chapter can be studied selectively or in conjunction with others\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction and Adhesion Theories \u003cbr\u003e2. Basic Concepts of Surfaces and Interfaces \u003cbr\u003e3. Material Surface Preparation Techniques \u003cbr\u003e4. Classification of Adhesives and Compounds \u003cbr\u003e5. Characteristics of Adhesive Materials \u003cbr\u003e6. Adhesives for Special Adherends \u003cbr\u003e7. Joint Design \u003cbr\u003e8. Adhesive Applications and Bonding Processes \u003cbr\u003e9. Solvent Cementing of Plastics \u003cbr\u003e10. Durability of Adhesive Bonds \u003cbr\u003e11. Testing of Adhesive Bonds \u003cbr\u003e12. Quality Control \u003cbr\u003e13. Economic, Environmental, Safety Aspects and Future Trends\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:49-04:00","created_at":"2017-06-22T21:14:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","bonding materials","book","ceramics","elastomers","metals","p-applications","plastic","plastics","polymer"],"price":16000,"price_min":16000,"price_max":16000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378442500,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Adhesives Technology Handbook","public_title":null,"options":["Default Title"],"price":16000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1533-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1533-3_f5ac154b-465a-4e41-a8bf-e1fde9e15b82.jpg?v=1499138095"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1533-3_f5ac154b-465a-4e41-a8bf-e1fde9e15b82.jpg?v=1499138095","options":["Title"],"media":[{"alt":null,"id":353514094685,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1533-3_f5ac154b-465a-4e41-a8bf-e1fde9e15b82.jpg?v=1499138095"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1533-3_f5ac154b-465a-4e41-a8bf-e1fde9e15b82.jpg?v=1499138095","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Arthur H. Landrock, PLASTEC (retired) \u003cbr\u003eSina Ebnesajjad, Fluoroconsultants Group; (former DuPont), Chadds Ford, Pennsylvania, U.S.A. \u003cbr\u003eISBN 978-0-8155-1533-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eSecond Edition\u003c\/p\u003e\n\u003cp\u003eHardbound, 475 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book presents information that will allow practitioners of adhesion technology to select the right adhesive for bonding different materials. Early chapters cover basic principles of adhesion, such as adhesion theories, surface characterization and measurement, and types of adhesive bonds, and describe common adhesive materials and application techniques. Subsequent chapters focus on the design of joints, methods of handling and application of adhesives to substrates, solvent cementing, and methods for testing strength and durability of adhesive bonds. A final chapter deals with economics, environmental, and safety issues. The book serves as a practical resource for engineers, chemists, students, and others involved in selecting adhesives and bonding materials. The book is based on an updated from Arthur Landrock's Adhesives Technology Handbook, published in 1985 by Noyes Publishing. Ebnesajjad is a fluoropolymer technology consultant.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience: \u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eMaterials scientists, mechanical engineers, plastics engineers, scientists, researchers and students involved or interested in adhesives and sealants.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Provides the end user practitioners of adhesion technology with a complete guide to bonding materials successfully\u003cbr\u003e• Covers most substrates, including plastics, metals, elastomers, and ceramics, explaining basic principles and describing common materials and application techniques\u003cbr\u003e• Arranges information so that each chapter can be studied selectively or in conjunction with others\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction and Adhesion Theories \u003cbr\u003e2. Basic Concepts of Surfaces and Interfaces \u003cbr\u003e3. Material Surface Preparation Techniques \u003cbr\u003e4. Classification of Adhesives and Compounds \u003cbr\u003e5. Characteristics of Adhesive Materials \u003cbr\u003e6. Adhesives for Special Adherends \u003cbr\u003e7. Joint Design \u003cbr\u003e8. Adhesive Applications and Bonding Processes \u003cbr\u003e9. Solvent Cementing of Plastics \u003cbr\u003e10. Durability of Adhesive Bonds \u003cbr\u003e11. Testing of Adhesive Bonds \u003cbr\u003e12. Quality Control \u003cbr\u003e13. Economic, Environmental, Safety Aspects and Future Trends\u003cbr\u003e\u003cbr\u003e"}
Thermal Stability of P...
$205.00
{"id":11242241412,"title":"Thermal Stability of Polymers","handle":"9781847355133","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847355133 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2012\u003cbr\u003e\u003c\/span\u003eNumber of pages 216, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years numerous research papers have been published on the changes in chemical structure and in physical properties of polymers when they are exposed to heat over a range of temperatures. For example, these changes can occur at any time during the injection moulding of the plastic, in the subsequent processing and in its end-use application when exposed to elevated temperatures.\u003cbr\u003e\u003cbr\u003eThermal stability is a very important parameter which must be taken into account when selecting polymers whether for their use as constructional or engineering applications or in the packaging of food at high temperatures.\u003cbr\u003e\u003cbr\u003eThe mechanisms by which such changes occur are many and it is important to know what these are and to be able to measure the rate of change of polymer structure and its dependence on temperature and time. Development of an understanding of the mechanisms of thermal degradation will help the chemist to develop materials with better thermal stability. This is particularly important in newer developments in engineering and aerospace.\u003cbr\u003e\u003cbr\u003eThis book reviews in nine chapters the measurement of these properties in the main types of polymers in use today. Numerous techniques are discussed ranging from thermogravimetric analysis, differential scanning calorimetry, infrared and nuclear magnetic resonance-based methods to pyrolytic techniques such as those based on pyrolysis, gas chromatography, and mass spectrometry.\u003cbr\u003e\u003cbr\u003eThe book is aimed at those engaged in the manufacture of polymers and the development of end-user applications. It is essential that students of polymer science should have a thorough understanding of polymer stability and an additional aim of the book is to help in the development of such an interest.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Carbon Hydrogen Polymers \u003cbr\u003e1.1 Polyethylene\u003cbr\u003e1.1.1 Random Scission \u003cbr\u003e1.1.2 Depolymerisation \u003cbr\u003e1.1.3 Side Group Elimination \u003cbr\u003e1.1.3.1 Differential Thermal Analysis \u003cbr\u003e1.1.3.2 Differential Scanning Calorimetry \u003cbr\u003e1.1.3.3 Other Techniques \u003cbr\u003e1.2 Polypropylene and Polyisobutylene\u003cbr\u003e1.3 Polystyrene and Copolymers\u003cbr\u003e1.3.1 Polystyrenes \u003cbr\u003e1.3.2 Polystyrene Copolymers \u003cbr\u003e1.3.2.1 Styrene Acrylonitrile \u003cbr\u003e1.3.2.2 Styrene-divinylbenzene \u003cbr\u003e1.3.2.3 Styrene-Isoprene (Kraton 1107)\u003cbr\u003e1.3.2.4 Miscellaneous Copolymers\u003cbr\u003e1.4 Carbocyclic Polymers \u003cbr\u003eRubbers\u003cbr\u003e2.1 Polyisoprene \u003cbr\u003e2.2 Styrene-Butadiene \u003cbr\u003e2.3 Polyisobutylene \u003cbr\u003e2.Thermal Stability of Polymers\u003cbr\u003e2.4 Polybutadiene \u003cbr\u003e2.5 Ethylene–propylene–diene rubbers\u003cbr\u003e2.6 Chlorinated Rubber \u003cbr\u003e2.7 Miscellaneous Rubbers \u003cbr\u003e3. Oxygen-Containing Polymers \u003cbr\u003e3.1 Phenol-Formaldehyde Resins \u003cbr\u003e3.2 Polyethers \u003cbr\u003e3.3 Epoxy Resins \u003cbr\u003e3.4 Polymethyl Methacrylates \u003cbr\u003e3.4.1 Homopolymers\u003cbr\u003e3.4.2 Copolymers \u003cbr\u003e3.5 Polyacrylates.\u003cbr\u003e3.6 Polyarylates \u003cbr\u003e3.7 Polyalkylene Oxides \u003cbr\u003e3.8 Polycarbonates \u003cbr\u003e3.9 Polyvinyl Alcohol and Polyvinyl Acetate\u003cbr\u003e3.10 Polyethylene Terephthalate\u003cbr\u003e3.11 Polyethylene Oxalate \u003cbr\u003e3.12 Polyoxymethylene \u003cbr\u003e3.13 Other Oxygen Containing Polymers \u003cbr\u003e4. Halogen-Containing Polymers \u003cbr\u003e4.1 Chloro Polymers \u003cbr\u003e4.1.1 Polyvinyl Chloride and Polyvinylidene Chloride \u003cbr\u003e4.1.1.1 Negative ions \u003cbr\u003e4.1.1.2 Positive ions\u003cbr\u003e4.1.2 Chloromethyl Substituted Polystyrene \u003cbr\u003e4.1.3 Chlorinated Polyethylene \u003cbr\u003e4.2 Fluorine-Containing Polymers \u003cbr\u003e4.2.1 Polytetrafluoroethylene\u003cbr\u003e4.2.2 Polychlorotrifluoroethylene \u003cbr\u003e4.2.3 Polyvinylidene Fluoride \u003cbr\u003e4.2.4 Fluorinated Polyimides \u003cbr\u003e4.2.5 Other Fluoropolymers \u003cbr\u003e5. Nitrogen-Containing Polymers \u003cbr\u003e5.1 Polyamides\u003cbr\u003e5.2 Polyimides \u003cbr\u003e5.3 Polyacrylamides \u003cbr\u003e5.4 Polyacrylonitrile \u003cbr\u003e5.5 Polyureas\u003cbr\u003e5.6 Polyurethanes \u003cbr\u003e5.7 Polyazides \u003cbr\u003e5.8 Polybutyl Cyanoacrylate \u003cbr\u003e5.9 Polyhydrazides \u003cbr\u003e5.10 Miscellaneous Polymers \u003cbr\u003e6. Sulfur-Containing Polymers \u003cbr\u003e6.1 Polyolefin Sulfides \u003cbr\u003e6.2 Polystyrene Sulfide – Polyethylene Sulfide Copolymers \u003cbr\u003e6.3 Polyphenylene Sulfides \u003cbr\u003e6.4 Polyxylylene Sulfide \u003cbr\u003e6.5 Polydisulfides \u003cbr\u003e6.6 Polysulfones. \u003cbr\u003e6.7 Miscellaneous Sulfur Compounds \u003cbr\u003e7. Silicon-Containing Polymers\u003cbr\u003e7.1 Silsesquioxanes \u003cbr\u003e7.2 Polyborosilazanes\u003cbr\u003e7.3 Polyoxadisilacyclopentene \u003cbr\u003e7.4 Miscellaneous Silicon Polymers\u003cbr\u003e8. Phosphorus-Containing Polymers \u003cbr\u003e8.1 Triacryloyloxyethyl Phosphate and Diacryloyl Oxyethyl Ethyl Phosphate \u003cbr\u003e8.2 Other phosphorus-containing compounds \u003cbr\u003e9. Effect of Metal Contamination on the Heat Stability of Polymers.","published_at":"2017-06-22T21:14:48-04:00","created_at":"2017-06-22T21:14:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","analysis","book","degradation","depolymerisation","material","mechanism of degradation","p-properties","poly","polymers","resins","rubbers","stabilty","thermal analysis","weathering"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378439108,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Stability of Polymers","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847355133","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847355133_aedc2f5d-25e3-4838-849e-b713e11a84ee.jpg?v=1499956664"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355133_aedc2f5d-25e3-4838-849e-b713e11a84ee.jpg?v=1499956664","options":["Title"],"media":[{"alt":null,"id":358807371869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355133_aedc2f5d-25e3-4838-849e-b713e11a84ee.jpg?v=1499956664"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847355133_aedc2f5d-25e3-4838-849e-b713e11a84ee.jpg?v=1499956664","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847355133 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2012\u003cbr\u003e\u003c\/span\u003eNumber of pages 216, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nIn recent years numerous research papers have been published on the changes in chemical structure and in physical properties of polymers when they are exposed to heat over a range of temperatures. For example, these changes can occur at any time during the injection moulding of the plastic, in the subsequent processing and in its end-use application when exposed to elevated temperatures.\u003cbr\u003e\u003cbr\u003eThermal stability is a very important parameter which must be taken into account when selecting polymers whether for their use as constructional or engineering applications or in the packaging of food at high temperatures.\u003cbr\u003e\u003cbr\u003eThe mechanisms by which such changes occur are many and it is important to know what these are and to be able to measure the rate of change of polymer structure and its dependence on temperature and time. Development of an understanding of the mechanisms of thermal degradation will help the chemist to develop materials with better thermal stability. This is particularly important in newer developments in engineering and aerospace.\u003cbr\u003e\u003cbr\u003eThis book reviews in nine chapters the measurement of these properties in the main types of polymers in use today. Numerous techniques are discussed ranging from thermogravimetric analysis, differential scanning calorimetry, infrared and nuclear magnetic resonance-based methods to pyrolytic techniques such as those based on pyrolysis, gas chromatography, and mass spectrometry.\u003cbr\u003e\u003cbr\u003eThe book is aimed at those engaged in the manufacture of polymers and the development of end-user applications. It is essential that students of polymer science should have a thorough understanding of polymer stability and an additional aim of the book is to help in the development of such an interest.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Carbon Hydrogen Polymers \u003cbr\u003e1.1 Polyethylene\u003cbr\u003e1.1.1 Random Scission \u003cbr\u003e1.1.2 Depolymerisation \u003cbr\u003e1.1.3 Side Group Elimination \u003cbr\u003e1.1.3.1 Differential Thermal Analysis \u003cbr\u003e1.1.3.2 Differential Scanning Calorimetry \u003cbr\u003e1.1.3.3 Other Techniques \u003cbr\u003e1.2 Polypropylene and Polyisobutylene\u003cbr\u003e1.3 Polystyrene and Copolymers\u003cbr\u003e1.3.1 Polystyrenes \u003cbr\u003e1.3.2 Polystyrene Copolymers \u003cbr\u003e1.3.2.1 Styrene Acrylonitrile \u003cbr\u003e1.3.2.2 Styrene-divinylbenzene \u003cbr\u003e1.3.2.3 Styrene-Isoprene (Kraton 1107)\u003cbr\u003e1.3.2.4 Miscellaneous Copolymers\u003cbr\u003e1.4 Carbocyclic Polymers \u003cbr\u003eRubbers\u003cbr\u003e2.1 Polyisoprene \u003cbr\u003e2.2 Styrene-Butadiene \u003cbr\u003e2.3 Polyisobutylene \u003cbr\u003e2.Thermal Stability of Polymers\u003cbr\u003e2.4 Polybutadiene \u003cbr\u003e2.5 Ethylene–propylene–diene rubbers\u003cbr\u003e2.6 Chlorinated Rubber \u003cbr\u003e2.7 Miscellaneous Rubbers \u003cbr\u003e3. Oxygen-Containing Polymers \u003cbr\u003e3.1 Phenol-Formaldehyde Resins \u003cbr\u003e3.2 Polyethers \u003cbr\u003e3.3 Epoxy Resins \u003cbr\u003e3.4 Polymethyl Methacrylates \u003cbr\u003e3.4.1 Homopolymers\u003cbr\u003e3.4.2 Copolymers \u003cbr\u003e3.5 Polyacrylates.\u003cbr\u003e3.6 Polyarylates \u003cbr\u003e3.7 Polyalkylene Oxides \u003cbr\u003e3.8 Polycarbonates \u003cbr\u003e3.9 Polyvinyl Alcohol and Polyvinyl Acetate\u003cbr\u003e3.10 Polyethylene Terephthalate\u003cbr\u003e3.11 Polyethylene Oxalate \u003cbr\u003e3.12 Polyoxymethylene \u003cbr\u003e3.13 Other Oxygen Containing Polymers \u003cbr\u003e4. Halogen-Containing Polymers \u003cbr\u003e4.1 Chloro Polymers \u003cbr\u003e4.1.1 Polyvinyl Chloride and Polyvinylidene Chloride \u003cbr\u003e4.1.1.1 Negative ions \u003cbr\u003e4.1.1.2 Positive ions\u003cbr\u003e4.1.2 Chloromethyl Substituted Polystyrene \u003cbr\u003e4.1.3 Chlorinated Polyethylene \u003cbr\u003e4.2 Fluorine-Containing Polymers \u003cbr\u003e4.2.1 Polytetrafluoroethylene\u003cbr\u003e4.2.2 Polychlorotrifluoroethylene \u003cbr\u003e4.2.3 Polyvinylidene Fluoride \u003cbr\u003e4.2.4 Fluorinated Polyimides \u003cbr\u003e4.2.5 Other Fluoropolymers \u003cbr\u003e5. Nitrogen-Containing Polymers \u003cbr\u003e5.1 Polyamides\u003cbr\u003e5.2 Polyimides \u003cbr\u003e5.3 Polyacrylamides \u003cbr\u003e5.4 Polyacrylonitrile \u003cbr\u003e5.5 Polyureas\u003cbr\u003e5.6 Polyurethanes \u003cbr\u003e5.7 Polyazides \u003cbr\u003e5.8 Polybutyl Cyanoacrylate \u003cbr\u003e5.9 Polyhydrazides \u003cbr\u003e5.10 Miscellaneous Polymers \u003cbr\u003e6. Sulfur-Containing Polymers \u003cbr\u003e6.1 Polyolefin Sulfides \u003cbr\u003e6.2 Polystyrene Sulfide – Polyethylene Sulfide Copolymers \u003cbr\u003e6.3 Polyphenylene Sulfides \u003cbr\u003e6.4 Polyxylylene Sulfide \u003cbr\u003e6.5 Polydisulfides \u003cbr\u003e6.6 Polysulfones. \u003cbr\u003e6.7 Miscellaneous Sulfur Compounds \u003cbr\u003e7. Silicon-Containing Polymers\u003cbr\u003e7.1 Silsesquioxanes \u003cbr\u003e7.2 Polyborosilazanes\u003cbr\u003e7.3 Polyoxadisilacyclopentene \u003cbr\u003e7.4 Miscellaneous Silicon Polymers\u003cbr\u003e8. Phosphorus-Containing Polymers \u003cbr\u003e8.1 Triacryloyloxyethyl Phosphate and Diacryloyl Oxyethyl Ethyl Phosphate \u003cbr\u003e8.2 Other phosphorus-containing compounds \u003cbr\u003e9. Effect of Metal Contamination on the Heat Stability of Polymers."}
Hermeticity of Electro...
$199.00
{"id":11242241476,"title":"Hermeticity of Electronic Packages, 2nd Edition","handle":"978-1-4377-7877-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Hal Greenhouse \u003cbr\u003eISBN 978-1-4377-7877-9 \u003cbr\u003e\u003cbr\u003e360 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is a book about the integrity of sealed packages to resist foreign gases and liquids penetrating the seal or an opening (crack) in the package especially critical to the reliability and longevity of electronics. The author explains how to predict the reliability and the longevity of the packages based on leak rate measurements and the assumptions of impurities. Non-specialists, in particular, will benefit from the author's long involvement in the technology. Hermeticity is a subject that demands practical experience, and solving one problem does not necessarily give one the background to solve another. Thus, the book provides a ready reference to help deal with day to day issues as they arise.\u003cbr\u003e\u003cbr\u003eThe book gathers in a single volume a great many issues previously available only in journalsùor only in the experience of working engineers. How to define the \";\";goodness\";\"; of a seal? How is that seal measured? How does the integrity of the seal affect circuit reliability? What is the significance of the measured integrity of the seal? What are the relationship of Residual Gas Analysis and the seal integrity? The handbook answers these questions and more, providing an analysis of nearly 100 problems representative of the wide variety of challenges that actually occur in the industry today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Gas Kinetics\u003cbr\u003e1.0 GENERAL CONSIDERATIONS \u003cbr\u003e1.1 Boyle's Law\u003cbr\u003e1.2 Charles's Law (1787) or Gay-Lussac's Law (1802) \u003cbr\u003e1.3 Dalton's Law (1801) \u003cbr\u003e1.4 Avogadro's Law (1811)\u003cbr\u003e1.5 Avogadro's Number\u003cbr\u003e1.6 Loschmidt's Number\u003cbr\u003e2.0 MATHEMATICAL RELATIONSHIPS\u003cbr\u003e3.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e2. Viscous and Molecular Conductance of Gases\u003cbr\u003e1.0 CONDUCTION OF GASES\u003cbr\u003e2.0 VISCOUS CONDUCTION\u003cbr\u003e3.0 MOLECULAR CONDUCTION\u003cbr\u003e4.0 CONDUCTION IN THE TRANSITIONAL RANGE\u003cbr\u003e5.0 COMPOSITE CONDUCTANCE EQUATIONS\u003cbr\u003e6.0 SMALLEST THEORETICAL LEAK \u003cbr\u003e7.0 DISCUSSION\u003cbr\u003e8.0 PROBLEMS AND THEIR SOLUTIONS \u003cbr\u003e3. The Flow of Gases\u003cbr\u003e1.0 GENERAL FLOW CHARACTERISTICS\u003cbr\u003e2.0 MEASURED, STANDARD AND TRUE LEAK RATES\u003cbr\u003e3.0 LEAK RATES FOR DIFFERENT GASES\u003cbr\u003e4.0 CHANGE OF PARTIAL PRESSURE WITH TIME\u003cbr\u003e5.0 VISCOUS FLOW FROM SEALED PACKAGES\u003cbr\u003e6.0 VISCOUS FLOW RATES OF DIFFERENT GASES\u003cbr\u003e7.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e4. The Flow of Gases into Sealed Packages\u003cbr\u003e1.0 MOLECULAR FLOW\u003cbr\u003e2.0 VISCOUS FLOW INTO AND OUT OF SEALED PACKAGES\u003cbr\u003e3.0 THE SIMULTANEOUS FLOW OF GASES IN BOTH DIRECTIONS\u003cbr\u003e4.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e5. Water in Sealed Packages\u003cbr\u003e1.0 WATER RELATED CORROSION AND CIRCUIT FAILURES\u003cbr\u003e2.0 WATER LEAKING INTO A SEALED PACKAGE FROM THE OUTSIDE ENVIRONMENT\u003cbr\u003e3.0 WATER OUTGASSING INSIDE THE PACKAGE\u003cbr\u003e4.0 WATER AS A RESULT OF A CHEMICAL REACTION WITHIN THE PACKAGE\u003cbr\u003e5.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e6. Understanding Helium Fine Leak Testing in Accordance with Method 1014, MIL-STD-883\u003cbr\u003e1.0 PURPOSE OF THE TEST \u003cbr\u003e2.0 BASIS OF THE TEST\u003cbr\u003e3.0 FIXED METHOD OF TESTING\u003cbr\u003e4.0 FLEXIBLE METHOD OF TESTING\u003cbr\u003e5.0 COMPARISON OF THE FIXED AND FLEXIBLE METHODS\u003cbr\u003e6.0 THE EFFECT OF VISCOUS FLOW\u003cbr\u003e7.0 LEAK RATE LIMITS ARE TOO LENIENT\u003cbr\u003e8.0 BACKFILLING THE PACKAGE WITH HELIUM\u003cbr\u003e9.0 BOMBING AFTER BACKFILLING\u003cbr\u003e10.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e7. Fine Leak Measurements Using a Helium Leak Detector\u003cbr\u003e1.0 PRINCIPLE OF OPERATION\u003cbr\u003e2.0 DEFINITIONS\u003cbr\u003e3.0 CALIBRATION USING A STANDARD LEAK\u003cbr\u003e4.0 MEASUREMENT ERRORS, NOT INCLUDING BACKGROUND ERRORS\u003cbr\u003e5.0 BACKGROUND ERRORS\u003cbr\u003e6.0 ERRORS DUE TO HELIUM ON THE EXTERNAL SURFACE OF THE PACKAGE\u003cbr\u003e7.0 MINIMUM DETECTABLE LEAK (MDL)\u003cbr\u003e8.0 CORRELATION OF STANDARD LEAKS\u003cbr\u003e9.0 LOCATING LEAKS IN PACKAGES\u003cbr\u003e10.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e8. Gross Leaks\u003cbr\u003e1.0 INTRODUCTION\u003cbr\u003e2.0 FORCING A LIQUID INTO A PACKAGE\u003cbr\u003e3.0 FLUOROCARBON VAPOR EXITING A PACKAGE\u003cbr\u003e4.0 THE BUBBLE TEST\u003cbr\u003e5.0 THE VAPOR DETECTION TEST\u003cbr\u003e6.0 THE WEIGHT GAIN TEST\u003cbr\u003e7.0 OPTICAL LEAK TEST\u003cbr\u003e8.0 PENETRANT DYE TEST\u003cbr\u003e9.0 FLUOROCARBONS FROM A RESIDUAL GAS ANALYSIS\u003cbr\u003e10.0 QUANTITATIVE COMPARISON OF GROSS LEAK TEST METHODS\u003cbr\u003e11.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e9. The Permeation of Gases Through Solids\u003cbr\u003e1.0 DESCRIPTION OF THE PERMEATION PROCESS\u003cbr\u003e2.0 EFFECT OF TEMPERATURE ON PERMEATION\u003cbr\u003e3.0 TREATING PERMEATION AS A LEAK RATE\u003cbr\u003e4.0 WATER VAPOR PASSING THROUGH PLASTICS \u003cbr\u003e5.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e10 Residual Gas Analysis (RGA)\u003cbr\u003e1.0 DESCRIPTION OF THE TEST\u003cbr\u003e2.0 WHAT THE TEST MEASURES\u003cbr\u003e3.0 CALCULATION OF LEAK RATES FROM RGA DATA\u003cbr\u003e4.0 INTERPRETATION OF RGA DATA\u003cbr\u003e5.0 THE QUALIFICATION OF SMALL PACKAGES USING RGA \u003cbr\u003e6.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003eAppendix\u003cbr\u003e1.0 LIST OF SYMBOLS AND DIMENSIONS\u003cbr\u003e2.0 DIMENSIONS\u003cbr\u003e3.0 CONVERSION FACTORS FOR PRESSURE\/VACUUM\u003cbr\u003eAcknowledgment\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:48-04:00","created_at":"2017-06-22T21:14:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","cavity of micropackaging","effectiveness of the seal in microelectronic packages","hermeticity of electronic packages","hermeticity testing","material","package for electronics","permeation"],"price":19900,"price_min":19900,"price_max":19900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378439812,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Hermeticity of Electronic Packages, 2nd Edition","public_title":null,"options":["Default Title"],"price":19900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-7877-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7877-9.jpg?v=1499477716"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7877-9.jpg?v=1499477716","options":["Title"],"media":[{"alt":null,"id":356400398429,"position":1,"preview_image":{"aspect_ratio":0.667,"height":499,"width":333,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7877-9.jpg?v=1499477716"},"aspect_ratio":0.667,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7877-9.jpg?v=1499477716","width":333}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Hal Greenhouse \u003cbr\u003eISBN 978-1-4377-7877-9 \u003cbr\u003e\u003cbr\u003e360 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is a book about the integrity of sealed packages to resist foreign gases and liquids penetrating the seal or an opening (crack) in the package especially critical to the reliability and longevity of electronics. The author explains how to predict the reliability and the longevity of the packages based on leak rate measurements and the assumptions of impurities. Non-specialists, in particular, will benefit from the author's long involvement in the technology. Hermeticity is a subject that demands practical experience, and solving one problem does not necessarily give one the background to solve another. Thus, the book provides a ready reference to help deal with day to day issues as they arise.\u003cbr\u003e\u003cbr\u003eThe book gathers in a single volume a great many issues previously available only in journalsùor only in the experience of working engineers. How to define the \";\";goodness\";\"; of a seal? How is that seal measured? How does the integrity of the seal affect circuit reliability? What is the significance of the measured integrity of the seal? What are the relationship of Residual Gas Analysis and the seal integrity? The handbook answers these questions and more, providing an analysis of nearly 100 problems representative of the wide variety of challenges that actually occur in the industry today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Gas Kinetics\u003cbr\u003e1.0 GENERAL CONSIDERATIONS \u003cbr\u003e1.1 Boyle's Law\u003cbr\u003e1.2 Charles's Law (1787) or Gay-Lussac's Law (1802) \u003cbr\u003e1.3 Dalton's Law (1801) \u003cbr\u003e1.4 Avogadro's Law (1811)\u003cbr\u003e1.5 Avogadro's Number\u003cbr\u003e1.6 Loschmidt's Number\u003cbr\u003e2.0 MATHEMATICAL RELATIONSHIPS\u003cbr\u003e3.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e2. Viscous and Molecular Conductance of Gases\u003cbr\u003e1.0 CONDUCTION OF GASES\u003cbr\u003e2.0 VISCOUS CONDUCTION\u003cbr\u003e3.0 MOLECULAR CONDUCTION\u003cbr\u003e4.0 CONDUCTION IN THE TRANSITIONAL RANGE\u003cbr\u003e5.0 COMPOSITE CONDUCTANCE EQUATIONS\u003cbr\u003e6.0 SMALLEST THEORETICAL LEAK \u003cbr\u003e7.0 DISCUSSION\u003cbr\u003e8.0 PROBLEMS AND THEIR SOLUTIONS \u003cbr\u003e3. The Flow of Gases\u003cbr\u003e1.0 GENERAL FLOW CHARACTERISTICS\u003cbr\u003e2.0 MEASURED, STANDARD AND TRUE LEAK RATES\u003cbr\u003e3.0 LEAK RATES FOR DIFFERENT GASES\u003cbr\u003e4.0 CHANGE OF PARTIAL PRESSURE WITH TIME\u003cbr\u003e5.0 VISCOUS FLOW FROM SEALED PACKAGES\u003cbr\u003e6.0 VISCOUS FLOW RATES OF DIFFERENT GASES\u003cbr\u003e7.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e4. The Flow of Gases into Sealed Packages\u003cbr\u003e1.0 MOLECULAR FLOW\u003cbr\u003e2.0 VISCOUS FLOW INTO AND OUT OF SEALED PACKAGES\u003cbr\u003e3.0 THE SIMULTANEOUS FLOW OF GASES IN BOTH DIRECTIONS\u003cbr\u003e4.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e5. Water in Sealed Packages\u003cbr\u003e1.0 WATER RELATED CORROSION AND CIRCUIT FAILURES\u003cbr\u003e2.0 WATER LEAKING INTO A SEALED PACKAGE FROM THE OUTSIDE ENVIRONMENT\u003cbr\u003e3.0 WATER OUTGASSING INSIDE THE PACKAGE\u003cbr\u003e4.0 WATER AS A RESULT OF A CHEMICAL REACTION WITHIN THE PACKAGE\u003cbr\u003e5.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e6. Understanding Helium Fine Leak Testing in Accordance with Method 1014, MIL-STD-883\u003cbr\u003e1.0 PURPOSE OF THE TEST \u003cbr\u003e2.0 BASIS OF THE TEST\u003cbr\u003e3.0 FIXED METHOD OF TESTING\u003cbr\u003e4.0 FLEXIBLE METHOD OF TESTING\u003cbr\u003e5.0 COMPARISON OF THE FIXED AND FLEXIBLE METHODS\u003cbr\u003e6.0 THE EFFECT OF VISCOUS FLOW\u003cbr\u003e7.0 LEAK RATE LIMITS ARE TOO LENIENT\u003cbr\u003e8.0 BACKFILLING THE PACKAGE WITH HELIUM\u003cbr\u003e9.0 BOMBING AFTER BACKFILLING\u003cbr\u003e10.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e7. Fine Leak Measurements Using a Helium Leak Detector\u003cbr\u003e1.0 PRINCIPLE OF OPERATION\u003cbr\u003e2.0 DEFINITIONS\u003cbr\u003e3.0 CALIBRATION USING A STANDARD LEAK\u003cbr\u003e4.0 MEASUREMENT ERRORS, NOT INCLUDING BACKGROUND ERRORS\u003cbr\u003e5.0 BACKGROUND ERRORS\u003cbr\u003e6.0 ERRORS DUE TO HELIUM ON THE EXTERNAL SURFACE OF THE PACKAGE\u003cbr\u003e7.0 MINIMUM DETECTABLE LEAK (MDL)\u003cbr\u003e8.0 CORRELATION OF STANDARD LEAKS\u003cbr\u003e9.0 LOCATING LEAKS IN PACKAGES\u003cbr\u003e10.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e8. Gross Leaks\u003cbr\u003e1.0 INTRODUCTION\u003cbr\u003e2.0 FORCING A LIQUID INTO A PACKAGE\u003cbr\u003e3.0 FLUOROCARBON VAPOR EXITING A PACKAGE\u003cbr\u003e4.0 THE BUBBLE TEST\u003cbr\u003e5.0 THE VAPOR DETECTION TEST\u003cbr\u003e6.0 THE WEIGHT GAIN TEST\u003cbr\u003e7.0 OPTICAL LEAK TEST\u003cbr\u003e8.0 PENETRANT DYE TEST\u003cbr\u003e9.0 FLUOROCARBONS FROM A RESIDUAL GAS ANALYSIS\u003cbr\u003e10.0 QUANTITATIVE COMPARISON OF GROSS LEAK TEST METHODS\u003cbr\u003e11.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e9. The Permeation of Gases Through Solids\u003cbr\u003e1.0 DESCRIPTION OF THE PERMEATION PROCESS\u003cbr\u003e2.0 EFFECT OF TEMPERATURE ON PERMEATION\u003cbr\u003e3.0 TREATING PERMEATION AS A LEAK RATE\u003cbr\u003e4.0 WATER VAPOR PASSING THROUGH PLASTICS \u003cbr\u003e5.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003e10 Residual Gas Analysis (RGA)\u003cbr\u003e1.0 DESCRIPTION OF THE TEST\u003cbr\u003e2.0 WHAT THE TEST MEASURES\u003cbr\u003e3.0 CALCULATION OF LEAK RATES FROM RGA DATA\u003cbr\u003e4.0 INTERPRETATION OF RGA DATA\u003cbr\u003e5.0 THE QUALIFICATION OF SMALL PACKAGES USING RGA \u003cbr\u003e6.0 PROBLEMS AND THEIR SOLUTIONS\u003cbr\u003eAppendix\u003cbr\u003e1.0 LIST OF SYMBOLS AND DIMENSIONS\u003cbr\u003e2.0 DIMENSIONS\u003cbr\u003e3.0 CONVERSION FACTORS FOR PRESSURE\/VACUUM\u003cbr\u003eAcknowledgment\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Handbook of Thermoset ...
$225.00
{"id":11242241604,"title":"Handbook of Thermoset Resins","handle":"9781847354105","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Debdatta Ratna \u003cbr\u003eISBN 9781847354105 \u003cbr\u003e\u003cbr\u003ePages: 422\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Thermoset Resins is intended to be a self-sufficient guide dedicated to \"thermoset resins\", an important class of polymer materials. The book begins with a general introduction to thermoset and is ended with thermoset nanocomposites, a subject of current interest. Use this to make a knowledge-base on the subject OR to plan future research works.\u003cbr\u003e\u003cbr\u003eMany objectives of this book have been achieved, and include; providing detailed information on synthesis, characterizations, applications and toughening of thermoset resins. The review of the recent advances on thermoset-based composites and nanocomposite is presented. It also highlights highlight the future directions of research in various areas of thermoset resins.\u003cbr\u003e\u003cbr\u003eWith these objectives in mind, Handbook of Thermoset Resins will be extremely useful for the scientists and researchers in the field of polymer science in general and thermoset resins in particular.\u003cbr\u003e\u003cbr\u003eWith such broad technical contents covering the basic concepts and recent advances, this handbook is intended to serve as a useful textbook for students, researchers, engineers, R \u0026amp; D scientists from academia, research laboratories and industries (related to resins, fibre composites, adhesive, paints, rubbers, printing ink etc).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. General Introduction to Thermoset Networks\u003cbr\u003e2. Chemistry, Properties, and Applications of Thermoset Resins\u003cbr\u003e3. Epoxy Resins \u003cbr\u003e4. Toughened Thermoset Resins\u003cbr\u003e5. Toughened Epoxy Resins\u003cbr\u003e6. Thermoset Composites\u003cbr\u003e7. Thermoset Nanocomposites\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:48-04:00","created_at":"2017-06-22T21:14:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","book","composites","epoxy resins","nanocomposites","p-chemistry","poly","properties"],"price":22500,"price_min":22500,"price_max":22500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378440836,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thermoset Resins","public_title":null,"options":["Default Title"],"price":22500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847354105","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847354105.jpg?v=1499472778"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354105.jpg?v=1499472778","options":["Title"],"media":[{"alt":null,"id":356343349341,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354105.jpg?v=1499472778"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354105.jpg?v=1499472778","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Debdatta Ratna \u003cbr\u003eISBN 9781847354105 \u003cbr\u003e\u003cbr\u003ePages: 422\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Thermoset Resins is intended to be a self-sufficient guide dedicated to \"thermoset resins\", an important class of polymer materials. The book begins with a general introduction to thermoset and is ended with thermoset nanocomposites, a subject of current interest. Use this to make a knowledge-base on the subject OR to plan future research works.\u003cbr\u003e\u003cbr\u003eMany objectives of this book have been achieved, and include; providing detailed information on synthesis, characterizations, applications and toughening of thermoset resins. The review of the recent advances on thermoset-based composites and nanocomposite is presented. It also highlights highlight the future directions of research in various areas of thermoset resins.\u003cbr\u003e\u003cbr\u003eWith these objectives in mind, Handbook of Thermoset Resins will be extremely useful for the scientists and researchers in the field of polymer science in general and thermoset resins in particular.\u003cbr\u003e\u003cbr\u003eWith such broad technical contents covering the basic concepts and recent advances, this handbook is intended to serve as a useful textbook for students, researchers, engineers, R \u0026amp; D scientists from academia, research laboratories and industries (related to resins, fibre composites, adhesive, paints, rubbers, printing ink etc).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. General Introduction to Thermoset Networks\u003cbr\u003e2. Chemistry, Properties, and Applications of Thermoset Resins\u003cbr\u003e3. Epoxy Resins \u003cbr\u003e4. Toughened Thermoset Resins\u003cbr\u003e5. Toughened Epoxy Resins\u003cbr\u003e6. Thermoset Composites\u003cbr\u003e7. Thermoset Nanocomposites\u003cbr\u003e\u003cbr\u003e"}
Shape Memory Polymers:...
$205.00
{"id":11242241156,"title":"Shape Memory Polymers: Fundamentals, Advances and Applications","handle":"9781909030329","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","blends","book","mechanical properties","medical applications","modelling","morphology","p-applications","p-structural","polymer","polymer composite","polymers","shape-memory","structure","textile applications"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Shape Memory Polymers: Fundamentals, Advances and Applications","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781909030329","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","options":["Title"],"media":[{"alt":null,"id":358743539805,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}
Food Industry and Pack...
$205.00
{"id":11242241284,"title":"Food Industry and Packaging Materials - Performance-oriented Guidelines for Users","handle":"9781847356093","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9781847356093 \u003cbr\u003e\u003cbr\u003epage 398\n\u003ch5\u003eSummary\u003c\/h5\u003e\nQuality inspection of packaging materials is a difficult task for food producers because the technical tests for packaging are mainly designed to measure the 'performance' of materials in relation to their chemical formulation, processing data, and intended uses. This may be difficult for food producers because their knowledge is essentially orientated to the performance of the final products (the packaged food).\u003cbr\u003e\u003cbr\u003eHowever, the assessment of the suitability of food packaging materials has to be legally demonstrated by food producers in the European Union.\u003cbr\u003e\u003cbr\u003eThis book provides detailed and comprehensible information about Quality Control (QC) in the industry. Different viewpoints are explained in relation to food companies, packaging producers, and technical experts, including regulatory aspects. One of the most important steps is the comprehension of QC failures in relation to the ‘food product’ (food\/packaging).\u003cbr\u003e\u003cbr\u003eThe book also presents a detailed selection of proposals about new testing methods. On the basis of regulatory obligations in the EU about the technological suitability of food packaging materials, a list of ‘performance-oriented’ guidelines is proposed. Food sectors are mentioned in relation to products, related packaging materials, known failures and existing quality control procedures.\u003cbr\u003e\u003cbr\u003eThis volume serves as a practical guide on food packaging and QC methods and a quick reference to food operators, official safety inspectors, public health institutions, Certification bodies, students and researchers from the academia and the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 The Essential Role of Quality Control Procedures: General Principles.\u003cbr\u003e1.1 Basic Concepts for Quality Control \u003cbr\u003e1.1.1 Quality in the Food and Beverage Field \u003cbr\u003e1.1.2 Quality: Management Systems and Control-based Procedures \u003cbr\u003e1.2 Statistical Consideration: Sampling Plans \u003cbr\u003e1.2.1 Influence of Numbers \u003cbr\u003e1.2.2 Influence of Analytical Results \u003cbr\u003e1.3 Quality Control and Economic Sustainability \u003cbr\u003e1.4 The Quality Control Team: Organisation, Duties, and Responsibilities \u003cbr\u003e\u003cbr\u003e2 Differences between Food Companies and Other Industries: Safety Concepts \u003cbr\u003e2.1 Quality in the Food Industry: Hazard Analysis and Critical \u003cbr\u003eControl Points and Different Risk Levels \u003cbr\u003e2.2 Quality in Chemical Industries: The Analytical Approach \u003cbr\u003e2.3 Quality in Manufacturing Industries: The Packaging \u003cbr\u003e2.4 Theory of Food Packaging and Practical Considerations\u003cbr\u003e2.5 Quality in Packaging Industries: Hybrid Testing Methods \u003cbr\u003e\u003cbr\u003e3 Food Industries: Chemistry, Microbiology, and Safety of Related Products \u003cbr\u003e3.1 Chemistry of Food Products - General Considerations \u003cbr\u003e3.1.1 Food Technology of Commerce - Standardisation of Production, Packing and Storage Processes\u003cbr\u003e3.1.2 Relation between Sensory Features and Chemical Composition \u003cbr\u003e3.1.3 Preventive Definition of Chemical and Microbiological Modifications \u003cbr\u003e3.1.4 Evaluation of Food Products - Chemical Contamination \u003cbr\u003e3.2 Microbiology of Food Products - Technological Implications \u003cbr\u003e3.3 Microbiology and Safety \u003cbr\u003e3.3.1 Microbiological Quality: Microbial Markers \u003cbr\u003e3.3.2 Pathogenic Bacteria \u003cbr\u003e3.4 Other Hazard Analysis and Critical Control Points Risks \u003cbr\u003e3.5 Food Alterations: The Problem of Shelf Life Assessment \u003cbr\u003e\u003cbr\u003e4 Packaging Industries: Chemistry and Technology of Packaging Materials \u003cbr\u003e4.1 Plastic Packaging \u003cbr\u003e4.2 Metal Packaging \u003cbr\u003e4.2.1 Metal Packages: General Features \u003cbr\u003e4.2.2 Metal Packaging: Production and Technology \u003cbr\u003e4.2.3 Metal Packages: The Metallic Support \u003cbr\u003e4.2.4 Plastic Coatings \u003cbr\u003e4.3 Paper and Paper-based Packaging \u003cbr\u003e4.4 Glass-based Packages \u003cbr\u003e4.5 Coupled Packages \u003cbr\u003e4.6 Smart and Intelligent Packages \u003cbr\u003e4.6.1 Active Packages \u003cbr\u003e4.6.2 Intelligent Packages \u003cbr\u003e\u003cbr\u003e5 Packaging and Processing Methods in the Food Industry: Most Common Failures \u003cbr\u003e5.1 Vegetables and Canned Foods \u003cbr\u003e5.1.1 Plastic Packages \u003cbr\u003e5.1.2 Metal Packages \u003cbr\u003e5.1.3 Paper and Paper-based Packages \u003cbr\u003e5.1.4 Glass Packages \u003cbr\u003e5.1.5 Polycoupled Packages \u003cbr\u003e5.1.6 Smart Packages \u003cbr\u003e5.2 Meat Foods \u003cbr\u003e5.2.1 Plastic Packages \u003cbr\u003e5.2.2 Metal Packages \u003cbr\u003e5.2.3 Paper and Paper-based Packages \u003cbr\u003e5.2.4 Glass Packages \u003cbr\u003e5.2.5 Coupled Packages \u003cbr\u003e5.2.6 Smart and Intelligent Packages \u003cbr\u003e5.3 Dairy Products \u003cbr\u003e5.3.1 Plastic Packages \u003cbr\u003e5.3.2 Metal Packages \u003cbr\u003e5.3.3 Paper and Paper-based Packages \u003cbr\u003e5.3.4 Glass Packages \u003cbr\u003e5.3.5 Coupled Packages \u003cbr\u003e5.4 Fish Products \u003cbr\u003e5.4.1 Plastic Packages \u003cbr\u003e5.4.2 Metal Packages \u003cbr\u003e5.4.3 Paper and Paper-based Packages \u003cbr\u003e5.4.4 Glass Packages \u003cbr\u003e5.4.5 Coupled Packages \u003cbr\u003e5.5 Other Food Products \u003cbr\u003e\u003cbr\u003e6 Analytical Methods for Food Products \u003cbr\u003e6.1 Chemical Analyses \u003cbr\u003e6.1.1 The Evaluation of Chemical Risks \u003cbr\u003e6.2 Microbiological Analyses \u003cbr\u003e6.2.1 Total Viable Count \u003cbr\u003e6.2.2 Food Alterations: Microbial Markers \u003cbr\u003e6.2.3 Pathogenic Microorganisms \u003cbr\u003e6.3 Detection of Foreign Substances \u003cbr\u003e6.4 Evaluation of Shelf Life Values \u003cbr\u003e\u003cbr\u003e7 Analytical and Testing Methods for Food Packaging \u003cbr\u003e7.1 Chemical Analyses \u003cbr\u003e7.2 Mechanical Tests \u003cbr\u003e7.3 Thermal Testing - Sterilisation and Other Treatments \u003cbr\u003e7.4 Other Simple Testing Methods \u003cbr\u003e\u003cbr\u003e8 Legal Requirements for Food Products and Packaging Materials in the European Union \u003cbr\u003e8.1 Food Products - Hygiene and Safety Requirements in the European Union \u003cbr\u003e8.2 Food Packaging - Legal Requirements in the European Union \u003cbr\u003e\u003cbr\u003e9 Conceptual Barriers between Packaging Producers and Food Industries: \u003cbr\u003eProposals for a ‘Second Level’ Quality Control \u003cbr\u003e9.1 Food Operators and their Competence in Packaging\u003cbr\u003e9.2 Collaborative Design of Packaging Materials \u003cbr\u003e9.3 Food Industries Needs New Approaches about Quality Control for Accessory Materials \u003cbr\u003e\u003cbr\u003e10 Food Packaging for Dairy Products \u003cbr\u003e10.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e10.1.1 Food Packaging Failures and Food Products: A Short Discussion about the Assessment of Technological Suitability \u003cbr\u003e10.1.2 Food Packaging Failures and Food Products: Sampling Plans and Simplified Advice \u003cbr\u003e10.1.3 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e10.1.3.1 Defective Closure and Sealing (Different Causes and Damages) . \u003cbr\u003e10.1.3.2 Migration of Macroscopic and Microscopic Bodies and Particles from Food Packaging Materials to Foods (Different Causes and Damages) \u003cbr\u003e10.1.3.3 Migration of Printing Inks (Ghosting Effect and Similar Situations) \u003cbr\u003e10.1.3.4 Superficial Damage and Ageing Correlation \u003cbr\u003e10.1.4 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e10.1.4.1 Superficial Damage, Microscopic Fractures, Scratches, Micro-bubbles and Dewetting. \u003cbr\u003e10.1.4.2 Presence of Foreign Bodies (Different Causes) \u003cbr\u003e10.1.4.3 Ghosting Effect \u003cbr\u003e10.1.4.4 Different Colorimetric Variations \u003cbr\u003e10.1.4.5 Workability Failures \u003cbr\u003e10.1.5 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e10.1.5.1 Excessive Rigidity of Cellulosic Materials \u003cbr\u003e10.1.5.2 Colorimetric Variations \u003cbr\u003e10.1.5.3 Paper Wrinkling \u003cbr\u003e10.1.5.4 Ghosting Effect \u003cbr\u003e10.1.5.5 Bleeding Effect \u003cbr\u003e10.1.5.6 Adhesion Defects (or Excessive Dripping) \u003cbr\u003e10.1.5.7 Paper Pulverisation \u003cbr\u003e10.1.5.8 Final Thoughts about Paper Food Packaging Materials \u003cbr\u003e10.1.6 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e10.1.6.1 Micro-bubbling \u003cbr\u003e10.1.6.2 Scratches \u003cbr\u003e10.1.6.3 Micro Fractures \u003cbr\u003e10.1.6.4 Macro Fractures \u003cbr\u003e10.1.6.5 Final Considerations: Other Failures \u003cbr\u003e10.2 Microbiological Contamination \u003cbr\u003e10.3 Hybrid Tests \u003cbr\u003e10.3.1 A Necessary Premise \u003cbr\u003e10.3.2 Workability Testing Methods \u003cbr\u003e10.3.2.1 Abrasion Test according to Parisi - Method for the Evaluation of the Laceration of Rigid Boxes for MAP Packed Cheeses \u003cbr\u003e10.3.2.1.1 Objective \u003cbr\u003e10.3.2.1.2 Preliminary Note \u003cbr\u003e10.3.2.1.3 Materials \u003cbr\u003e10.3.2.1.4 Method \u003cbr\u003e10.3.2.1.5 Evaluation of Results \u003cbr\u003e10.3.2.1.6 Final Observations \u003cbr\u003e10.3.3 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e10.3.3.1 Evaluation of Hydric Apparent Absorption and Related Modifications in Packed Cheeses with Different Food Packaging Materials (Comparison Test) \u003cbr\u003e10.3.3.1.1 Objective \u003cbr\u003e10.3.3.1.2 Preliminary Note \u003cbr\u003e10.3.3.1.3 Materials \u003cbr\u003e10.3.3.1.4 Method \u003cbr\u003e10.3.3.1.5 Evaluation of Results \u003cbr\u003e10.3.3.1.6 Final Observations \u003cbr\u003e10.3.4 Estimation of Shelf Life for Integrated Food Products (Comparison Test) \u003cbr\u003e10.3.4.1 Variation of Shelf Life Values in Packed, Semi-hard Cheeses in Relation to the Use of Different Food Packaging Materials \u003cbr\u003e10.3.4.1.1 Objective \u003cbr\u003e10.3.4.1.2 Preliminary Note \u003cbr\u003e10.3.4.1.3 Materials \u003cbr\u003e10.3.4.1.4 Method \u003cbr\u003e10.3.4.1.5 Evaluation of Results \u003cbr\u003e10.3.4.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e10.3.4.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e10.3.4.1.6 Final Observations\u003cbr\u003e10.4 Digital Image Analysis and Processing \u003cbr\u003e10.4.1 Colorimetry \u003cbr\u003e10.4.2 Digital Acquisition and Interpretation of Pictures \u003cbr\u003e10.4.3 Image Analysis and Processing - Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.4 Image Analysis and Processing - Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e10.4.5 Image Analysis and Processing: Practical Examples\u003cbr\u003e10.4.5.1 Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.5.2 Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e\u003cbr\u003e11 Food Packaging for Meat and Meat-based Foods \u003cbr\u003e11.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e11.1.1 Food Packaging Failures and Meat Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e11.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e11.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e11.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect\u003cbr\u003e11.1.1.4 Possible Fractures of Edible and Plastic Casings \u003cbr\u003e11.1.2 Food Packaging Failures and Meat Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e11.1.2.1 Superficial Damages, Microscopic Fractures, Scratches, Micro-bubbles, Dewetting\u003cbr\u003e11.1.2.2 External Lithography and Related Defects \u003cbr\u003e11.1.3 Food Packaging Failures and Meat Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e11.1.3.1 Colorimetric Variations \u003cbr\u003e11.1.3.2 Paper Pulverisation \u003cbr\u003e11.1.4 Food Packaging Failures and Meat Products - Visually Detectable Failures: Glass-Based Packages \u003cbr\u003e11.1.4.1 Micro-bubbling \u003cbr\u003e11.2 Microbiological Contamination \u003cbr\u003e11.3 Hybrid Tests \u003cbr\u003e11.3.1 Workability Testing Methods \u003cbr\u003e11.3.1.1 Method for the Evaluation of Impact Resistance of Infrangible Glass Containers (Final Use: Pasteurised Meat Preparations) \u003cbr\u003e11.3.1.1.1 Objective \u003cbr\u003e11.3.1.1.2 Preliminary Note \u003cbr\u003e11.3.1.1.3 Materials \u003cbr\u003e11.3.1.1.4 Method \u003cbr\u003e11.3.1.1.5 Evaluation of Results \u003cbr\u003e11.3.1.1.6 Final Observations \u003cbr\u003e11.3.2 ‘Performance’ Estimation for Integrated Food Products\u003cbr\u003e11.3.3 Estimation of the Shelf Life for Integrated Meat Products (Comparison Test) \u003cbr\u003e11.3.3.1 Variation of Shelf Life Values in Modified Atmosphere Packaging Fresh Meats with the Use of Different Food Packaging Materials \u003cbr\u003e11.3.3.1.1 Objective \u003cbr\u003e11.3.3.1.2 Preliminary Note \u003cbr\u003e11.3.3.1.3 Materials \u003cbr\u003e11.3.3.1.4 Method \u003cbr\u003e11.3.3.1.5 Evaluation of Results \u003cbr\u003e11.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e11.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e11.3.3.1.6 Final Observations\u003cbr\u003e\u003cbr\u003e12 Food Packaging for Fish Products \u003cbr\u003e12.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e12.1.1 Food Packaging Failures and Fish Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e12.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e12.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e12.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect \u003cbr\u003e12.1.1.4 Micro-bubbling and Bursting \u003cbr\u003e12.1.2 Food Packaging Failures and Fish Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e12.1.2.1 Canned Fish and Vegetable Products - Specific Colorimetric Variations\u003cbr\u003e12.1.3 Food Packaging Failures and Fish Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e12.1.4 Food Packaging Failures and Fish Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e12.2 Microbiological Contamination \u003cbr\u003e12.3 Hybrid Tests \u003cbr\u003e12.3.1 Workability Testing Methods \u003cbr\u003e12.3.1.1 Delamination Test on Sealable Polycoupled Packages (Easy Peel Pouches) for Tuna Fish \u003cbr\u003ein Water \u003cbr\u003e12.3.1.1.1 Objective \u003cbr\u003e12.3.1.1.2 Preliminary Note \u003cbr\u003e12.3.1.1.3 Materials \u003cbr\u003e12.3.1.1.4 Method \u003cbr\u003e12.3.1.1.5 Evaluation of Results \u003cbr\u003e12.3.1.1.6 Final Observations \u003cbr\u003e12.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e12.3.3 Estimation of Shelf Life for Integrated Fish Products (Comparison Test) \u003cbr\u003e12.3.3.1 Variation of Shelf Life Values in Vacuum Packed and Frozen Fish in Relation to the \u003cbr\u003eUse of Different Food Packaging Materials \u003cbr\u003e12.3.3.1.1 Objective \u003cbr\u003e12.3.3.1.2 Preliminary Note \u003cbr\u003e12.3.3.1.3 Materials \u003cbr\u003e12.3.3.1.4 Method \u003cbr\u003e12.3.3.1.5 Evaluation of Results \u003cbr\u003e12.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value \u003cbr\u003e12.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e12.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e13 Food Packaging for Fruits, Vegetables and Canned Foods \u003cbr\u003e13.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e13.1.1 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e13.1.2 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e13.1.2.1 Specific Colorimetric Variations \u003cbr\u003e13.1.3 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e13.1.4 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e13.2 Microbiological Contamination \u003cbr\u003e13.3 Hybrid Tests \u003cbr\u003e13.3.1 Workability Testing Methods \u003cbr\u003e13.3.1.1 Sterilisation Test on Metal Cans for Double Concentrated Tomato Sauce \u003cbr\u003e13.3.1.1.1 Objective \u003cbr\u003e13.3.1.1.2 Preliminary Note \u003cbr\u003e13.3.1.1.3 Materials \u003cbr\u003e13.3.1.1.4 Method \u003cbr\u003e13.3.1.1.5 Evaluation of Results \u003cbr\u003e13.3.1.1.6 Final Observations \u003cbr\u003e13.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e13.3.3 Estimation of Shelf Life for Integrated Products (Comparison Test) \u003cbr\u003e13.3.3.1 Variation of Shelf Life Values in Canned Peas with Reference to the Use of Different Food Packaging Materials\u003cbr\u003e13.3.3.1.1 Objective\u003cbr\u003e13.3.3.1.2 Preliminary Note \u003cbr\u003e13.3.3.1.3 Materials \u003cbr\u003e13.3.3.1.4 Method \u003cbr\u003e13.3.3.1.5 Evaluation of Results \u003cbr\u003e13.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e14 Food Packaging for Other Food Products \u003cbr\u003e14.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e14.1.1 Smart Packages \u003cbr\u003e14.1.1.1 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (High Sensibility)\u003cbr\u003e14.1.1.1.1 Objective \u003cbr\u003e14.1.1.1.2 Materials \u003cbr\u003e14.1.1.1.3 Method \u003cbr\u003e14.1.1.1.4 Evaluation of Results \u003cbr\u003e14.1.1.2 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (Low Sensibility) \u003cbr\u003e14.1.1.2.1 Objective \u003cbr\u003e14.1.1.2.2 Materials \u003cbr\u003e14.1.1.2.3 Method \u003cbr\u003e14.1.1.2.4 Evaluation of Results \u003cbr\u003e14.2 Microbiological Contamination \u003cbr\u003e14.3 Hybrid Tests \u003cbr\u003e\u003cbr\u003e15 Conclusions \u003cbr\u003e15.1 Food Producers Will Need More Training \u003cbr\u003e15.2 Will Official Regulations Follow Voluntary Testing Methods? \u003cbr\u003e15.3 Performance-Oriented Guidelines - Perspectives for Advanced Training in Academia \u003cbr\u003e15.4 The Viewpoint of Certification Bodies \u003cbr\u003eAppendix 1 List of Accredited Organisations with Recognised Authority \u003cbr\u003e(Analytical Testing Methods)\u003cbr\u003eAbbreviations \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","environment","food","formulation","health","management system","microbiology","p-applications","packaging","polymer","quality","quality control"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378438084,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Food Industry and Packaging Materials - Performance-oriented Guidelines for Users","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356093","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787","options":["Title"],"media":[{"alt":null,"id":354808594525,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356093.jpg?v=1499386787","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Salvatore Parisi \u003cbr\u003eISBN 9781847356093 \u003cbr\u003e\u003cbr\u003epage 398\n\u003ch5\u003eSummary\u003c\/h5\u003e\nQuality inspection of packaging materials is a difficult task for food producers because the technical tests for packaging are mainly designed to measure the 'performance' of materials in relation to their chemical formulation, processing data, and intended uses. This may be difficult for food producers because their knowledge is essentially orientated to the performance of the final products (the packaged food).\u003cbr\u003e\u003cbr\u003eHowever, the assessment of the suitability of food packaging materials has to be legally demonstrated by food producers in the European Union.\u003cbr\u003e\u003cbr\u003eThis book provides detailed and comprehensible information about Quality Control (QC) in the industry. Different viewpoints are explained in relation to food companies, packaging producers, and technical experts, including regulatory aspects. One of the most important steps is the comprehension of QC failures in relation to the ‘food product’ (food\/packaging).\u003cbr\u003e\u003cbr\u003eThe book also presents a detailed selection of proposals about new testing methods. On the basis of regulatory obligations in the EU about the technological suitability of food packaging materials, a list of ‘performance-oriented’ guidelines is proposed. Food sectors are mentioned in relation to products, related packaging materials, known failures and existing quality control procedures.\u003cbr\u003e\u003cbr\u003eThis volume serves as a practical guide on food packaging and QC methods and a quick reference to food operators, official safety inspectors, public health institutions, Certification bodies, students and researchers from the academia and the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 The Essential Role of Quality Control Procedures: General Principles.\u003cbr\u003e1.1 Basic Concepts for Quality Control \u003cbr\u003e1.1.1 Quality in the Food and Beverage Field \u003cbr\u003e1.1.2 Quality: Management Systems and Control-based Procedures \u003cbr\u003e1.2 Statistical Consideration: Sampling Plans \u003cbr\u003e1.2.1 Influence of Numbers \u003cbr\u003e1.2.2 Influence of Analytical Results \u003cbr\u003e1.3 Quality Control and Economic Sustainability \u003cbr\u003e1.4 The Quality Control Team: Organisation, Duties, and Responsibilities \u003cbr\u003e\u003cbr\u003e2 Differences between Food Companies and Other Industries: Safety Concepts \u003cbr\u003e2.1 Quality in the Food Industry: Hazard Analysis and Critical \u003cbr\u003eControl Points and Different Risk Levels \u003cbr\u003e2.2 Quality in Chemical Industries: The Analytical Approach \u003cbr\u003e2.3 Quality in Manufacturing Industries: The Packaging \u003cbr\u003e2.4 Theory of Food Packaging and Practical Considerations\u003cbr\u003e2.5 Quality in Packaging Industries: Hybrid Testing Methods \u003cbr\u003e\u003cbr\u003e3 Food Industries: Chemistry, Microbiology, and Safety of Related Products \u003cbr\u003e3.1 Chemistry of Food Products - General Considerations \u003cbr\u003e3.1.1 Food Technology of Commerce - Standardisation of Production, Packing and Storage Processes\u003cbr\u003e3.1.2 Relation between Sensory Features and Chemical Composition \u003cbr\u003e3.1.3 Preventive Definition of Chemical and Microbiological Modifications \u003cbr\u003e3.1.4 Evaluation of Food Products - Chemical Contamination \u003cbr\u003e3.2 Microbiology of Food Products - Technological Implications \u003cbr\u003e3.3 Microbiology and Safety \u003cbr\u003e3.3.1 Microbiological Quality: Microbial Markers \u003cbr\u003e3.3.2 Pathogenic Bacteria \u003cbr\u003e3.4 Other Hazard Analysis and Critical Control Points Risks \u003cbr\u003e3.5 Food Alterations: The Problem of Shelf Life Assessment \u003cbr\u003e\u003cbr\u003e4 Packaging Industries: Chemistry and Technology of Packaging Materials \u003cbr\u003e4.1 Plastic Packaging \u003cbr\u003e4.2 Metal Packaging \u003cbr\u003e4.2.1 Metal Packages: General Features \u003cbr\u003e4.2.2 Metal Packaging: Production and Technology \u003cbr\u003e4.2.3 Metal Packages: The Metallic Support \u003cbr\u003e4.2.4 Plastic Coatings \u003cbr\u003e4.3 Paper and Paper-based Packaging \u003cbr\u003e4.4 Glass-based Packages \u003cbr\u003e4.5 Coupled Packages \u003cbr\u003e4.6 Smart and Intelligent Packages \u003cbr\u003e4.6.1 Active Packages \u003cbr\u003e4.6.2 Intelligent Packages \u003cbr\u003e\u003cbr\u003e5 Packaging and Processing Methods in the Food Industry: Most Common Failures \u003cbr\u003e5.1 Vegetables and Canned Foods \u003cbr\u003e5.1.1 Plastic Packages \u003cbr\u003e5.1.2 Metal Packages \u003cbr\u003e5.1.3 Paper and Paper-based Packages \u003cbr\u003e5.1.4 Glass Packages \u003cbr\u003e5.1.5 Polycoupled Packages \u003cbr\u003e5.1.6 Smart Packages \u003cbr\u003e5.2 Meat Foods \u003cbr\u003e5.2.1 Plastic Packages \u003cbr\u003e5.2.2 Metal Packages \u003cbr\u003e5.2.3 Paper and Paper-based Packages \u003cbr\u003e5.2.4 Glass Packages \u003cbr\u003e5.2.5 Coupled Packages \u003cbr\u003e5.2.6 Smart and Intelligent Packages \u003cbr\u003e5.3 Dairy Products \u003cbr\u003e5.3.1 Plastic Packages \u003cbr\u003e5.3.2 Metal Packages \u003cbr\u003e5.3.3 Paper and Paper-based Packages \u003cbr\u003e5.3.4 Glass Packages \u003cbr\u003e5.3.5 Coupled Packages \u003cbr\u003e5.4 Fish Products \u003cbr\u003e5.4.1 Plastic Packages \u003cbr\u003e5.4.2 Metal Packages \u003cbr\u003e5.4.3 Paper and Paper-based Packages \u003cbr\u003e5.4.4 Glass Packages \u003cbr\u003e5.4.5 Coupled Packages \u003cbr\u003e5.5 Other Food Products \u003cbr\u003e\u003cbr\u003e6 Analytical Methods for Food Products \u003cbr\u003e6.1 Chemical Analyses \u003cbr\u003e6.1.1 The Evaluation of Chemical Risks \u003cbr\u003e6.2 Microbiological Analyses \u003cbr\u003e6.2.1 Total Viable Count \u003cbr\u003e6.2.2 Food Alterations: Microbial Markers \u003cbr\u003e6.2.3 Pathogenic Microorganisms \u003cbr\u003e6.3 Detection of Foreign Substances \u003cbr\u003e6.4 Evaluation of Shelf Life Values \u003cbr\u003e\u003cbr\u003e7 Analytical and Testing Methods for Food Packaging \u003cbr\u003e7.1 Chemical Analyses \u003cbr\u003e7.2 Mechanical Tests \u003cbr\u003e7.3 Thermal Testing - Sterilisation and Other Treatments \u003cbr\u003e7.4 Other Simple Testing Methods \u003cbr\u003e\u003cbr\u003e8 Legal Requirements for Food Products and Packaging Materials in the European Union \u003cbr\u003e8.1 Food Products - Hygiene and Safety Requirements in the European Union \u003cbr\u003e8.2 Food Packaging - Legal Requirements in the European Union \u003cbr\u003e\u003cbr\u003e9 Conceptual Barriers between Packaging Producers and Food Industries: \u003cbr\u003eProposals for a ‘Second Level’ Quality Control \u003cbr\u003e9.1 Food Operators and their Competence in Packaging\u003cbr\u003e9.2 Collaborative Design of Packaging Materials \u003cbr\u003e9.3 Food Industries Needs New Approaches about Quality Control for Accessory Materials \u003cbr\u003e\u003cbr\u003e10 Food Packaging for Dairy Products \u003cbr\u003e10.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e10.1.1 Food Packaging Failures and Food Products: A Short Discussion about the Assessment of Technological Suitability \u003cbr\u003e10.1.2 Food Packaging Failures and Food Products: Sampling Plans and Simplified Advice \u003cbr\u003e10.1.3 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e10.1.3.1 Defective Closure and Sealing (Different Causes and Damages) . \u003cbr\u003e10.1.3.2 Migration of Macroscopic and Microscopic Bodies and Particles from Food Packaging Materials to Foods (Different Causes and Damages) \u003cbr\u003e10.1.3.3 Migration of Printing Inks (Ghosting Effect and Similar Situations) \u003cbr\u003e10.1.3.4 Superficial Damage and Ageing Correlation \u003cbr\u003e10.1.4 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e10.1.4.1 Superficial Damage, Microscopic Fractures, Scratches, Micro-bubbles and Dewetting. \u003cbr\u003e10.1.4.2 Presence of Foreign Bodies (Different Causes) \u003cbr\u003e10.1.4.3 Ghosting Effect \u003cbr\u003e10.1.4.4 Different Colorimetric Variations \u003cbr\u003e10.1.4.5 Workability Failures \u003cbr\u003e10.1.5 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e10.1.5.1 Excessive Rigidity of Cellulosic Materials \u003cbr\u003e10.1.5.2 Colorimetric Variations \u003cbr\u003e10.1.5.3 Paper Wrinkling \u003cbr\u003e10.1.5.4 Ghosting Effect \u003cbr\u003e10.1.5.5 Bleeding Effect \u003cbr\u003e10.1.5.6 Adhesion Defects (or Excessive Dripping) \u003cbr\u003e10.1.5.7 Paper Pulverisation \u003cbr\u003e10.1.5.8 Final Thoughts about Paper Food Packaging Materials \u003cbr\u003e10.1.6 Food Packaging Failures and Dairy Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e10.1.6.1 Micro-bubbling \u003cbr\u003e10.1.6.2 Scratches \u003cbr\u003e10.1.6.3 Micro Fractures \u003cbr\u003e10.1.6.4 Macro Fractures \u003cbr\u003e10.1.6.5 Final Considerations: Other Failures \u003cbr\u003e10.2 Microbiological Contamination \u003cbr\u003e10.3 Hybrid Tests \u003cbr\u003e10.3.1 A Necessary Premise \u003cbr\u003e10.3.2 Workability Testing Methods \u003cbr\u003e10.3.2.1 Abrasion Test according to Parisi - Method for the Evaluation of the Laceration of Rigid Boxes for MAP Packed Cheeses \u003cbr\u003e10.3.2.1.1 Objective \u003cbr\u003e10.3.2.1.2 Preliminary Note \u003cbr\u003e10.3.2.1.3 Materials \u003cbr\u003e10.3.2.1.4 Method \u003cbr\u003e10.3.2.1.5 Evaluation of Results \u003cbr\u003e10.3.2.1.6 Final Observations \u003cbr\u003e10.3.3 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e10.3.3.1 Evaluation of Hydric Apparent Absorption and Related Modifications in Packed Cheeses with Different Food Packaging Materials (Comparison Test) \u003cbr\u003e10.3.3.1.1 Objective \u003cbr\u003e10.3.3.1.2 Preliminary Note \u003cbr\u003e10.3.3.1.3 Materials \u003cbr\u003e10.3.3.1.4 Method \u003cbr\u003e10.3.3.1.5 Evaluation of Results \u003cbr\u003e10.3.3.1.6 Final Observations \u003cbr\u003e10.3.4 Estimation of Shelf Life for Integrated Food Products (Comparison Test) \u003cbr\u003e10.3.4.1 Variation of Shelf Life Values in Packed, Semi-hard Cheeses in Relation to the Use of Different Food Packaging Materials \u003cbr\u003e10.3.4.1.1 Objective \u003cbr\u003e10.3.4.1.2 Preliminary Note \u003cbr\u003e10.3.4.1.3 Materials \u003cbr\u003e10.3.4.1.4 Method \u003cbr\u003e10.3.4.1.5 Evaluation of Results \u003cbr\u003e10.3.4.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e10.3.4.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e10.3.4.1.6 Final Observations\u003cbr\u003e10.4 Digital Image Analysis and Processing \u003cbr\u003e10.4.1 Colorimetry \u003cbr\u003e10.4.2 Digital Acquisition and Interpretation of Pictures \u003cbr\u003e10.4.3 Image Analysis and Processing - Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.4 Image Analysis and Processing - Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e10.4.5 Image Analysis and Processing: Practical Examples\u003cbr\u003e10.4.5.1 Decomposition of the Real Image in R, G and B Colour Components and Analysis of Light Intensity \u003cbr\u003e10.4.5.2 Analysis of B, L or V Data by Means of Pixel Frequency Histograms \u003cbr\u003e\u003cbr\u003e11 Food Packaging for Meat and Meat-based Foods \u003cbr\u003e11.1 Visually Detectable Failures: Chemical and Physical Causes \u003cbr\u003e11.1.1 Food Packaging Failures and Meat Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e11.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e11.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e11.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect\u003cbr\u003e11.1.1.4 Possible Fractures of Edible and Plastic Casings \u003cbr\u003e11.1.2 Food Packaging Failures and Meat Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e11.1.2.1 Superficial Damages, Microscopic Fractures, Scratches, Micro-bubbles, Dewetting\u003cbr\u003e11.1.2.2 External Lithography and Related Defects \u003cbr\u003e11.1.3 Food Packaging Failures and Meat Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e11.1.3.1 Colorimetric Variations \u003cbr\u003e11.1.3.2 Paper Pulverisation \u003cbr\u003e11.1.4 Food Packaging Failures and Meat Products - Visually Detectable Failures: Glass-Based Packages \u003cbr\u003e11.1.4.1 Micro-bubbling \u003cbr\u003e11.2 Microbiological Contamination \u003cbr\u003e11.3 Hybrid Tests \u003cbr\u003e11.3.1 Workability Testing Methods \u003cbr\u003e11.3.1.1 Method for the Evaluation of Impact Resistance of Infrangible Glass Containers (Final Use: Pasteurised Meat Preparations) \u003cbr\u003e11.3.1.1.1 Objective \u003cbr\u003e11.3.1.1.2 Preliminary Note \u003cbr\u003e11.3.1.1.3 Materials \u003cbr\u003e11.3.1.1.4 Method \u003cbr\u003e11.3.1.1.5 Evaluation of Results \u003cbr\u003e11.3.1.1.6 Final Observations \u003cbr\u003e11.3.2 ‘Performance’ Estimation for Integrated Food Products\u003cbr\u003e11.3.3 Estimation of the Shelf Life for Integrated Meat Products (Comparison Test) \u003cbr\u003e11.3.3.1 Variation of Shelf Life Values in Modified Atmosphere Packaging Fresh Meats with the Use of Different Food Packaging Materials \u003cbr\u003e11.3.3.1.1 Objective \u003cbr\u003e11.3.3.1.2 Preliminary Note \u003cbr\u003e11.3.3.1.3 Materials \u003cbr\u003e11.3.3.1.4 Method \u003cbr\u003e11.3.3.1.5 Evaluation of Results \u003cbr\u003e11.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value\u003cbr\u003e11.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e11.3.3.1.6 Final Observations\u003cbr\u003e\u003cbr\u003e12 Food Packaging for Fish Products \u003cbr\u003e12.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e12.1.1 Food Packaging Failures and Fish Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e12.1.1.1 Superficial Damage and Correlation with Ageing \u003cbr\u003e12.1.1.2 Foreign Bodies and Incrustations on Food Packaging Material Surfaces \u003cbr\u003e12.1.1.3 Superposition of One or More Printing Inks on Other Printed Images and the Ghosting Effect \u003cbr\u003e12.1.1.4 Micro-bubbling and Bursting \u003cbr\u003e12.1.2 Food Packaging Failures and Fish Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e12.1.2.1 Canned Fish and Vegetable Products - Specific Colorimetric Variations\u003cbr\u003e12.1.3 Food Packaging Failures and Fish Products - Visually Detectable Failures: Paper and Paper-based Packages \u003cbr\u003e12.1.4 Food Packaging Failures and Fish Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e12.2 Microbiological Contamination \u003cbr\u003e12.3 Hybrid Tests \u003cbr\u003e12.3.1 Workability Testing Methods \u003cbr\u003e12.3.1.1 Delamination Test on Sealable Polycoupled Packages (Easy Peel Pouches) for Tuna Fish \u003cbr\u003ein Water \u003cbr\u003e12.3.1.1.1 Objective \u003cbr\u003e12.3.1.1.2 Preliminary Note \u003cbr\u003e12.3.1.1.3 Materials \u003cbr\u003e12.3.1.1.4 Method \u003cbr\u003e12.3.1.1.5 Evaluation of Results \u003cbr\u003e12.3.1.1.6 Final Observations \u003cbr\u003e12.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e12.3.3 Estimation of Shelf Life for Integrated Fish Products (Comparison Test) \u003cbr\u003e12.3.3.1 Variation of Shelf Life Values in Vacuum Packed and Frozen Fish in Relation to the \u003cbr\u003eUse of Different Food Packaging Materials \u003cbr\u003e12.3.3.1.1 Objective \u003cbr\u003e12.3.3.1.2 Preliminary Note \u003cbr\u003e12.3.3.1.3 Materials \u003cbr\u003e12.3.3.1.4 Method \u003cbr\u003e12.3.3.1.5 Evaluation of Results \u003cbr\u003e12.3.3.1.5.1 Variation of Shelf Life in Comparison with the Theoretical and Calculated Value \u003cbr\u003e12.3.3.1.5.2 Variation of Shelf Life: Differences between R- and N-Products without Theoretical Durability \u003cbr\u003e12.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e13 Food Packaging for Fruits, Vegetables and Canned Foods \u003cbr\u003e13.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e13.1.1 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Plastic Packages \u003cbr\u003e13.1.2 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Metal Packages \u003cbr\u003e13.1.2.1 Specific Colorimetric Variations \u003cbr\u003e13.1.3 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Paper and Paper-Based Packages \u003cbr\u003e13.1.4 Food Packaging Failures and Vegetable Products - Visually Detectable Failures: Glass-based Packages \u003cbr\u003e13.2 Microbiological Contamination \u003cbr\u003e13.3 Hybrid Tests \u003cbr\u003e13.3.1 Workability Testing Methods \u003cbr\u003e13.3.1.1 Sterilisation Test on Metal Cans for Double Concentrated Tomato Sauce \u003cbr\u003e13.3.1.1.1 Objective \u003cbr\u003e13.3.1.1.2 Preliminary Note \u003cbr\u003e13.3.1.1.3 Materials \u003cbr\u003e13.3.1.1.4 Method \u003cbr\u003e13.3.1.1.5 Evaluation of Results \u003cbr\u003e13.3.1.1.6 Final Observations \u003cbr\u003e13.3.2 ‘Performance’ Estimation for Integrated Food Products \u003cbr\u003e13.3.3 Estimation of Shelf Life for Integrated Products (Comparison Test) \u003cbr\u003e13.3.3.1 Variation of Shelf Life Values in Canned Peas with Reference to the Use of Different Food Packaging Materials\u003cbr\u003e13.3.3.1.1 Objective\u003cbr\u003e13.3.3.1.2 Preliminary Note \u003cbr\u003e13.3.3.1.3 Materials \u003cbr\u003e13.3.3.1.4 Method \u003cbr\u003e13.3.3.1.5 Evaluation of Results \u003cbr\u003e13.3.3.1.6 Final Observations \u003cbr\u003e\u003cbr\u003e14 Food Packaging for Other Food Products \u003cbr\u003e14.1 Visually Detectable Failures - Chemical and Physical Causes \u003cbr\u003e14.1.1 Smart Packages \u003cbr\u003e14.1.1.1 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (High Sensibility)\u003cbr\u003e14.1.1.1.1 Objective \u003cbr\u003e14.1.1.1.2 Materials \u003cbr\u003e14.1.1.1.3 Method \u003cbr\u003e14.1.1.1.4 Evaluation of Results \u003cbr\u003e14.1.1.2 ‘Performance’ Estimation for Integrated Food Products: Active Packaging Materials, Moisture Scavengers (Low Sensibility) \u003cbr\u003e14.1.1.2.1 Objective \u003cbr\u003e14.1.1.2.2 Materials \u003cbr\u003e14.1.1.2.3 Method \u003cbr\u003e14.1.1.2.4 Evaluation of Results \u003cbr\u003e14.2 Microbiological Contamination \u003cbr\u003e14.3 Hybrid Tests \u003cbr\u003e\u003cbr\u003e15 Conclusions \u003cbr\u003e15.1 Food Producers Will Need More Training \u003cbr\u003e15.2 Will Official Regulations Follow Voluntary Testing Methods? \u003cbr\u003e15.3 Performance-Oriented Guidelines - Perspectives for Advanced Training in Academia \u003cbr\u003e15.4 The Viewpoint of Certification Bodies \u003cbr\u003eAppendix 1 List of Accredited Organisations with Recognised Authority \u003cbr\u003e(Analytical Testing Methods)\u003cbr\u003eAbbreviations \u003cbr\u003eIndex"}
Thermal Methods of Pol...
$205.00
{"id":11242241028,"title":"Thermal Methods of Polymer Analysis","handle":"9781847356611","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847356611 \u003cbr\u003e\u003cbr\u003epages 242, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book reviews the various thermal methods used for the characterisation of polymer properties and composition. All these methods study the properties of polymers as they change with temperature.\u003cbr\u003e\u003cbr\u003eThe methods discussed in this book are: differential photocalorimetry, differential scanning calorimetry, dielectric thermal analysis, differential thermal analysis, dynamic mechanical analysis, evolved gas analysis, gas chromatography, gas chromatography combined with mass spectrometry, mass spectrometry, microthermal analysis, thermal volatilisation, thermogravimetric analysis and thermomechanical analysis.\u003cbr\u003e\u003cbr\u003eEach technique is discussed in detail and examples of the use of each technique are also given. Each chapter has an extensive list of references so that the reader can follow up topics of interest.\u003cbr\u003e\u003cbr\u003eThis book will be a useful reference for those who already use any of these thermal methods but will also be of interest to undergraduates and those who are just starting to use these techniques.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Pyrolysis–Gas Chromatography Techniques \u003cbr\u003e1.1 Theoretical Considerations \u003cbr\u003e1.2 Instrumentation \u003cbr\u003e1.2.1 Combustion Furnace Pyrolyser \u003cbr\u003e1.2.2 Filament Pyrolyser \u003cbr\u003e1.2.3 Curie Point Pyrolyser \u003cbr\u003e1.2.4 Laser Pyrolysis \u003cbr\u003e1.3 Polymer Degradation Mechanisms \u003cbr\u003e1.3.1 Depolymerisation \u003cbr\u003e1.3.2 Side Group Elimination \u003cbr\u003e1.4 Polypropylene \u003cbr\u003e1.5 Determination of the Degree of Cure of Rubber\u003cbr\u003e1.6 Polybutadiene \u003cbr\u003e1.7 Polyacrylates and Polymethacrylates \u003cbr\u003e1.8 Polyethylene Oxide \u003cbr\u003e1.9 Polysulfides \u003cbr\u003e1.10 Silicon Polymers\u003cbr\u003e1.11 Determination of Unsaturation in Ethylene–Propylene–Diene Terpolymers \u003cbr\u003e1.12 Polyethylene Acrylate and Ethylene-vinyl Acetate Copolymers \u003cbr\u003e1.13 Styrene-based Copolymers \u003cbr\u003e1.13.1 Styrene-n-butyl Acrylate Copolymers\u003cbr\u003e1.14 Styrene–Methylymethacrylate Copolymers \u003cbr\u003e1.15 Styrene–isoprene Copolymers \u003cbr\u003e1.16 Styrene Divinylbenzene \u003cbr\u003e1.17 Chloromethylated Polystyrene–Divinylbenzene Copolymers \u003cbr\u003e1.18 Vinyl Chloride–Vinylidene Chloride Copolymers \u003cbr\u003e1.19 Comonomer Units in Polyhexafluoropropylene–Vinylidene Chloride Copolymers\u003cbr\u003e1.20 Nitrile–butadiene \u003cbr\u003e1.21 Miscellaneous Copolymers \u003cbr\u003e2 Thermogravimetric Analysis \u003cbr\u003e2.1 Theoretical Considerations \u003cbr\u003e2.2 Applications\u003cbr\u003e2.2.1 Thermal Stability Studies \u003cbr\u003e2.2.2 Degradation Studies \u003cbr\u003e2.2.3 Complementary Pyrolysis Studies \u003cbr\u003e2.2.4 Activation Energy \u003cbr\u003e2.2.5 Polymer Transitions \u003cbr\u003e2.2.6 Effect of Antioxidants on Polymer Ageing \u003cbr\u003e2.2.7 Polymer Lifetime Measurements \u003cbr\u003e2.2.8 Combustion Inhibition \u003cbr\u003e3 Complementary Thermogravimetry, Gas chromatography-Mass Spectroscopy and Fourier-Transform-Infrared Spectroscopy \u003cbr\u003e3.1 Thermogravimetry – Gas chromatography-Mass Spectroscopy Techniques \u003cbr\u003e3.1.1 Instrumentation \u003cbr\u003e3.1.2 Applications \u003cbr\u003e3.1.2.1 Ethylene–polystyrene Copolymer \u003cbr\u003e3.1.2.2 Ethylene-vinyl Acetate \u003cbr\u003e3.1.2.3 Epoxy Resins \u003cbr\u003e3.1.2.4 Phosphorus-Containing Polymers \u003cbr\u003e3.1.2.5 Polyimides. \u003cbr\u003e3.1.2.6 Miscellaneous Polymers \u003cbr\u003e3.2 Thermogravimetric Analysis–FT-IR \u003cbr\u003e3.2.1 Instrumentation \u003cbr\u003e3.2.2 Applications \u003cbr\u003e3.2.2.1 Polypropylene Carbonate \u003cbr\u003e3.2.2.2 Miscellaneous Polymers \u003cbr\u003e4 Evolved Gas Analysis \u003cbr\u003e4.1 Theoretical Considerations \u003cbr\u003e4.2 Applications. \u003cbr\u003e4.2.1 Polypropylene \u003cbr\u003e4.2.2 Polyethylene Oxide\u003cbr\u003e4.2.3 Cellulosic Flame Retardants \u003cbr\u003e4.3 TGA – GC based Evolved Gas Analysis \u003cbr\u003e4.3.1 Thermoresist Rubbers\u003cbr\u003e4.4 Pyrolysis-evolved Gas–infrared Spectroscopy \u003cbr\u003e4.5 Antioxidant Degradation \u003cbr\u003e5 Thermal Volatilisation Analysis\u003cbr\u003e5.1 Applications\u003cbr\u003e6 Thermal Volatilisation Analysis\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Measurement of Polymer Transitions\u003cbr\u003e6.1.2 Phase Change\u003cbr\u003e6.1.3 Curing Kinetics\u003cbr\u003e6.1.4 Polymer Degradation Studies\u003cbr\u003e6.1.5 Thermal and Oxidative Stability \u003cbr\u003e6.1.6 Polymer Characterisation\u003cbr\u003e6.1.7 Crystallinity \u003cbr\u003e6.1.8 Miscellaneous Applications\u003cbr\u003e6.2 Complimentary Differential Thermal Analysis–Mass Spectrometry \u003cbr\u003e7 Differential Scanning Calorimetry \u003cbr\u003e7.1 Instrumentation\u003cbr\u003e7.2 Applications\u003cbr\u003e7.2.1 Determination of Crystallinity \u003cbr\u003e7.2.2 Effect of Solvents on Crystallinity \u003cbr\u003e7.2.3 Crystallisation Kinetics\u003cbr\u003e7.2.4 Effects of Fillers on Crystallinity \u003cbr\u003e7.2.5 Crystallisation Temperature \u003cbr\u003e7.2.6 Curing Kinetics \u003cbr\u003e7.2.7 Measurement of Transition Temperatures, Glass Transition, other Transitions \u003cbr\u003e7.2.8 Preparation of Phase Diagrams\u003cbr\u003e7.2.9 Melting Temperature \u003cbr\u003e7.2.10 Miscellaneous Applications of DSC \u003cbr\u003e8 Dynamic Mechanical Thermal Analysis \u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Measurement of Glass Transition Temperature and other Transitions =\u003cbr\u003e8.1.2 Resin Cure Studies \u003cbr\u003e8.1.3 Modulus Measurements\u003cbr\u003e8.1.4 Stress–strain Measurements \u003cbr\u003e8.1.5 Rheological Properties and Viscosity \u003cbr\u003e8.1.6 Relaxation Phenomena \u003cbr\u003e8.1.7 Morphology\u003cbr\u003e8.1.8 Thermal Properties \u003cbr\u003e8.1.9 Other Applications \u003cbr\u003e9 Thermomechanical Analysis\u003cbr\u003e9.1 Theoretical Considerations \u003cbr\u003e9.2 Instrumentation \u003cbr\u003e9.3 Applications \u003cbr\u003e9.3.1 Mechanical and Thermal Properties\u003cbr\u003e9.3.2 Transitions \u003cbr\u003e9.3.3 Fibre Stress–strain Measurements \u003cbr\u003e9.2.4 Polymer Characterisation Studies\u003cbr\u003e9.3.5 Viscoelastic and Rheological Properties \u003cbr\u003e9.3.6 Gel Time Measurement \u003cbr\u003e10 Microthermal Analysis \u003cbr\u003e10.1 Theoretical Considerations \u003cbr\u003e10.2 Atomic Force Microscopy \u003cbr\u003e10.3 Instrumentation \u003cbr\u003e10.4 Applications \u003cbr\u003e10.4.1 Morphology\u003cbr\u003e10.4.2 Topography Studies\u003cbr\u003e10.4.3 Depth Profiling \u003cbr\u003e10.4.4 Glass Transition\u003cbr\u003e11 Differential Photocalorimetry \u003cbr\u003e11.1 Theoretical Considerations \u003cbr\u003e11.2 Instrumentation \u003cbr\u003e11.3 Applications \u003cbr\u003e11.3.1 Photocure Rates\u003cbr\u003e11.3.2 Degree of Cure \u003cbr\u003e11.3.3 Dependence of Reactivity upon Functionalisation\u003cbr\u003e11.3.3.1 Influence of Wavelength \u003cbr\u003e11.3.3.2 Influence of Photoinitiator Concentration \u003cbr\u003e11.3.3.3 Influence of Humidity \u003cbr\u003e11.3.4 Miscellaneous Applications \u003cbr\u003e12 Dielectric Thermal Analysis \u003cbr\u003e12.1 Theoretical Considerations \u003cbr\u003e12.2 Applications \u003cbr\u003e12.2.1 Resin Cure Studies \u003cbr\u003e12.2.2 Viscoelastic and Rheological Properties \u003cbr\u003e12.2.2.1 Flow and Cure of an Aerospace Adhesive \u003cbr\u003e12.2.2.2 Influence of Thermal History on Nylon \u003cbr\u003e12.2.3 Thermal Transitions\u003cbr\u003e12.2.4 Polymer Characterisation \u003cbr\u003e13 Resin Cure Studies \u003cbr\u003e13.1 Techniques \u003cbr\u003e13.1.1 Differential Photocalorimetry\u003cbr\u003e13.1.2 Dielectric Thermal Analysis\u003cbr\u003e13.1.3 Differential Scanning Calorimetry\u003cbr\u003e13.1.4 Dynamic Mechanical Analysis \u003cbr\u003e14 Thermal Degradation Mechanisms \u003cbr\u003e14.1 Theoretical Considerations \u003cbr\u003e14.2 Pyrolysis-Gas Chromatography-Mass Spectrometry \u003cbr\u003e14.2.1 Polypropylene Carbonate Decomposition \u003cbr\u003e14.2.2 Polyisobutylene Decomposition \u003cbr\u003e14.2.3 Polystyrene Decompositions \u003cbr\u003e14.2.4 Nitrogen-Containing Polymers \u003cbr\u003e14.2.5 Sulfur Containing Polymers \u003cbr\u003e14.2.6 Miscellaneous Polymers \u003cbr\u003e14.3 Pyrolysis–FT-IR Spectroscopy \u003cbr\u003e14.4 Derivitisation–Pyrolysis–Mass Spectrometry\u003cbr\u003e14.5 Differential Scanning Calorimetry and Thermogravimetry\u003cbr\u003e14.6 Pyrolysis – Mass Spectrometry (Without an Intervening Chromatographic Stage)\u003cbr\u003e14.7 Examination of Thermal Stability \u003cbr\u003eAppendix 1\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","analysis","book","p-properties","polymer"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436228,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Methods of Polymer Analysis","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356611","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231","options":["Title"],"media":[{"alt":null,"id":358806388829,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356611_10d16737-e5c6-4e5f-8c62-d29d12198005.jpg?v=1499725231","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847356611 \u003cbr\u003e\u003cbr\u003epages 242, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book reviews the various thermal methods used for the characterisation of polymer properties and composition. All these methods study the properties of polymers as they change with temperature.\u003cbr\u003e\u003cbr\u003eThe methods discussed in this book are: differential photocalorimetry, differential scanning calorimetry, dielectric thermal analysis, differential thermal analysis, dynamic mechanical analysis, evolved gas analysis, gas chromatography, gas chromatography combined with mass spectrometry, mass spectrometry, microthermal analysis, thermal volatilisation, thermogravimetric analysis and thermomechanical analysis.\u003cbr\u003e\u003cbr\u003eEach technique is discussed in detail and examples of the use of each technique are also given. Each chapter has an extensive list of references so that the reader can follow up topics of interest.\u003cbr\u003e\u003cbr\u003eThis book will be a useful reference for those who already use any of these thermal methods but will also be of interest to undergraduates and those who are just starting to use these techniques.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Pyrolysis–Gas Chromatography Techniques \u003cbr\u003e1.1 Theoretical Considerations \u003cbr\u003e1.2 Instrumentation \u003cbr\u003e1.2.1 Combustion Furnace Pyrolyser \u003cbr\u003e1.2.2 Filament Pyrolyser \u003cbr\u003e1.2.3 Curie Point Pyrolyser \u003cbr\u003e1.2.4 Laser Pyrolysis \u003cbr\u003e1.3 Polymer Degradation Mechanisms \u003cbr\u003e1.3.1 Depolymerisation \u003cbr\u003e1.3.2 Side Group Elimination \u003cbr\u003e1.4 Polypropylene \u003cbr\u003e1.5 Determination of the Degree of Cure of Rubber\u003cbr\u003e1.6 Polybutadiene \u003cbr\u003e1.7 Polyacrylates and Polymethacrylates \u003cbr\u003e1.8 Polyethylene Oxide \u003cbr\u003e1.9 Polysulfides \u003cbr\u003e1.10 Silicon Polymers\u003cbr\u003e1.11 Determination of Unsaturation in Ethylene–Propylene–Diene Terpolymers \u003cbr\u003e1.12 Polyethylene Acrylate and Ethylene-vinyl Acetate Copolymers \u003cbr\u003e1.13 Styrene-based Copolymers \u003cbr\u003e1.13.1 Styrene-n-butyl Acrylate Copolymers\u003cbr\u003e1.14 Styrene–Methylymethacrylate Copolymers \u003cbr\u003e1.15 Styrene–isoprene Copolymers \u003cbr\u003e1.16 Styrene Divinylbenzene \u003cbr\u003e1.17 Chloromethylated Polystyrene–Divinylbenzene Copolymers \u003cbr\u003e1.18 Vinyl Chloride–Vinylidene Chloride Copolymers \u003cbr\u003e1.19 Comonomer Units in Polyhexafluoropropylene–Vinylidene Chloride Copolymers\u003cbr\u003e1.20 Nitrile–butadiene \u003cbr\u003e1.21 Miscellaneous Copolymers \u003cbr\u003e2 Thermogravimetric Analysis \u003cbr\u003e2.1 Theoretical Considerations \u003cbr\u003e2.2 Applications\u003cbr\u003e2.2.1 Thermal Stability Studies \u003cbr\u003e2.2.2 Degradation Studies \u003cbr\u003e2.2.3 Complementary Pyrolysis Studies \u003cbr\u003e2.2.4 Activation Energy \u003cbr\u003e2.2.5 Polymer Transitions \u003cbr\u003e2.2.6 Effect of Antioxidants on Polymer Ageing \u003cbr\u003e2.2.7 Polymer Lifetime Measurements \u003cbr\u003e2.2.8 Combustion Inhibition \u003cbr\u003e3 Complementary Thermogravimetry, Gas chromatography-Mass Spectroscopy and Fourier-Transform-Infrared Spectroscopy \u003cbr\u003e3.1 Thermogravimetry – Gas chromatography-Mass Spectroscopy Techniques \u003cbr\u003e3.1.1 Instrumentation \u003cbr\u003e3.1.2 Applications \u003cbr\u003e3.1.2.1 Ethylene–polystyrene Copolymer \u003cbr\u003e3.1.2.2 Ethylene-vinyl Acetate \u003cbr\u003e3.1.2.3 Epoxy Resins \u003cbr\u003e3.1.2.4 Phosphorus-Containing Polymers \u003cbr\u003e3.1.2.5 Polyimides. \u003cbr\u003e3.1.2.6 Miscellaneous Polymers \u003cbr\u003e3.2 Thermogravimetric Analysis–FT-IR \u003cbr\u003e3.2.1 Instrumentation \u003cbr\u003e3.2.2 Applications \u003cbr\u003e3.2.2.1 Polypropylene Carbonate \u003cbr\u003e3.2.2.2 Miscellaneous Polymers \u003cbr\u003e4 Evolved Gas Analysis \u003cbr\u003e4.1 Theoretical Considerations \u003cbr\u003e4.2 Applications. \u003cbr\u003e4.2.1 Polypropylene \u003cbr\u003e4.2.2 Polyethylene Oxide\u003cbr\u003e4.2.3 Cellulosic Flame Retardants \u003cbr\u003e4.3 TGA – GC based Evolved Gas Analysis \u003cbr\u003e4.3.1 Thermoresist Rubbers\u003cbr\u003e4.4 Pyrolysis-evolved Gas–infrared Spectroscopy \u003cbr\u003e4.5 Antioxidant Degradation \u003cbr\u003e5 Thermal Volatilisation Analysis\u003cbr\u003e5.1 Applications\u003cbr\u003e6 Thermal Volatilisation Analysis\u003cbr\u003e6.1 Applications\u003cbr\u003e6.1.1 Measurement of Polymer Transitions\u003cbr\u003e6.1.2 Phase Change\u003cbr\u003e6.1.3 Curing Kinetics\u003cbr\u003e6.1.4 Polymer Degradation Studies\u003cbr\u003e6.1.5 Thermal and Oxidative Stability \u003cbr\u003e6.1.6 Polymer Characterisation\u003cbr\u003e6.1.7 Crystallinity \u003cbr\u003e6.1.8 Miscellaneous Applications\u003cbr\u003e6.2 Complimentary Differential Thermal Analysis–Mass Spectrometry \u003cbr\u003e7 Differential Scanning Calorimetry \u003cbr\u003e7.1 Instrumentation\u003cbr\u003e7.2 Applications\u003cbr\u003e7.2.1 Determination of Crystallinity \u003cbr\u003e7.2.2 Effect of Solvents on Crystallinity \u003cbr\u003e7.2.3 Crystallisation Kinetics\u003cbr\u003e7.2.4 Effects of Fillers on Crystallinity \u003cbr\u003e7.2.5 Crystallisation Temperature \u003cbr\u003e7.2.6 Curing Kinetics \u003cbr\u003e7.2.7 Measurement of Transition Temperatures, Glass Transition, other Transitions \u003cbr\u003e7.2.8 Preparation of Phase Diagrams\u003cbr\u003e7.2.9 Melting Temperature \u003cbr\u003e7.2.10 Miscellaneous Applications of DSC \u003cbr\u003e8 Dynamic Mechanical Thermal Analysis \u003cbr\u003e8.1 Applications \u003cbr\u003e8.1.1 Measurement of Glass Transition Temperature and other Transitions =\u003cbr\u003e8.1.2 Resin Cure Studies \u003cbr\u003e8.1.3 Modulus Measurements\u003cbr\u003e8.1.4 Stress–strain Measurements \u003cbr\u003e8.1.5 Rheological Properties and Viscosity \u003cbr\u003e8.1.6 Relaxation Phenomena \u003cbr\u003e8.1.7 Morphology\u003cbr\u003e8.1.8 Thermal Properties \u003cbr\u003e8.1.9 Other Applications \u003cbr\u003e9 Thermomechanical Analysis\u003cbr\u003e9.1 Theoretical Considerations \u003cbr\u003e9.2 Instrumentation \u003cbr\u003e9.3 Applications \u003cbr\u003e9.3.1 Mechanical and Thermal Properties\u003cbr\u003e9.3.2 Transitions \u003cbr\u003e9.3.3 Fibre Stress–strain Measurements \u003cbr\u003e9.2.4 Polymer Characterisation Studies\u003cbr\u003e9.3.5 Viscoelastic and Rheological Properties \u003cbr\u003e9.3.6 Gel Time Measurement \u003cbr\u003e10 Microthermal Analysis \u003cbr\u003e10.1 Theoretical Considerations \u003cbr\u003e10.2 Atomic Force Microscopy \u003cbr\u003e10.3 Instrumentation \u003cbr\u003e10.4 Applications \u003cbr\u003e10.4.1 Morphology\u003cbr\u003e10.4.2 Topography Studies\u003cbr\u003e10.4.3 Depth Profiling \u003cbr\u003e10.4.4 Glass Transition\u003cbr\u003e11 Differential Photocalorimetry \u003cbr\u003e11.1 Theoretical Considerations \u003cbr\u003e11.2 Instrumentation \u003cbr\u003e11.3 Applications \u003cbr\u003e11.3.1 Photocure Rates\u003cbr\u003e11.3.2 Degree of Cure \u003cbr\u003e11.3.3 Dependence of Reactivity upon Functionalisation\u003cbr\u003e11.3.3.1 Influence of Wavelength \u003cbr\u003e11.3.3.2 Influence of Photoinitiator Concentration \u003cbr\u003e11.3.3.3 Influence of Humidity \u003cbr\u003e11.3.4 Miscellaneous Applications \u003cbr\u003e12 Dielectric Thermal Analysis \u003cbr\u003e12.1 Theoretical Considerations \u003cbr\u003e12.2 Applications \u003cbr\u003e12.2.1 Resin Cure Studies \u003cbr\u003e12.2.2 Viscoelastic and Rheological Properties \u003cbr\u003e12.2.2.1 Flow and Cure of an Aerospace Adhesive \u003cbr\u003e12.2.2.2 Influence of Thermal History on Nylon \u003cbr\u003e12.2.3 Thermal Transitions\u003cbr\u003e12.2.4 Polymer Characterisation \u003cbr\u003e13 Resin Cure Studies \u003cbr\u003e13.1 Techniques \u003cbr\u003e13.1.1 Differential Photocalorimetry\u003cbr\u003e13.1.2 Dielectric Thermal Analysis\u003cbr\u003e13.1.3 Differential Scanning Calorimetry\u003cbr\u003e13.1.4 Dynamic Mechanical Analysis \u003cbr\u003e14 Thermal Degradation Mechanisms \u003cbr\u003e14.1 Theoretical Considerations \u003cbr\u003e14.2 Pyrolysis-Gas Chromatography-Mass Spectrometry \u003cbr\u003e14.2.1 Polypropylene Carbonate Decomposition \u003cbr\u003e14.2.2 Polyisobutylene Decomposition \u003cbr\u003e14.2.3 Polystyrene Decompositions \u003cbr\u003e14.2.4 Nitrogen-Containing Polymers \u003cbr\u003e14.2.5 Sulfur Containing Polymers \u003cbr\u003e14.2.6 Miscellaneous Polymers \u003cbr\u003e14.3 Pyrolysis–FT-IR Spectroscopy \u003cbr\u003e14.4 Derivitisation–Pyrolysis–Mass Spectrometry\u003cbr\u003e14.5 Differential Scanning Calorimetry and Thermogravimetry\u003cbr\u003e14.6 Pyrolysis – Mass Spectrometry (Without an Intervening Chromatographic Stage)\u003cbr\u003e14.7 Examination of Thermal Stability \u003cbr\u003eAppendix 1\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Applications of Polyme...
$250.00
{"id":11242240964,"title":"Applications of Polymers in Drug Delivery","handle":"9781847358516","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex","published_at":"2017-06-22T21:14:46-04:00","created_at":"2017-06-22T21:14:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","delivery system","drug absorption","drug delivery","gastric drug delivery","mucaodhesive drug delivery","ocular drug delivery","oral drug delivery","p-applications","patch delivery system","polymer","polymeric system","r-formulation","transdermal drug delivery"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436164,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Applications of Polymers in Drug Delivery","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847358516","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","options":["Title"],"media":[{"alt":null,"id":350156095581,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847358516.jpg?v=1498190693","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Ambikanandan Misra and Aliasgar Shahiwala \u003cbr\u003eISBN 9781847358516 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003epage 546\n\u003ch5\u003eSummary\u003c\/h5\u003e\nUse of polymers has become indispensable in the field of drug delivery. Polymers play a crucial role in modulating drug delivery to exploit maximum therapeutic benefits and have been fundamental in the successful development of several novel drug delivery systems that are now available. \u003cbr\u003e\u003cbr\u003eThis book provides details of the applications of polymeric drug delivery systems that will be of interest to researchers in industries and academia. It describes the development of polymeric systems ranging from the conventional dosage forms up to the most recent smart systems. The regulatory and intellectual property aspects, as well as the clinical applicability of polymeric drug delivery systems, are also discussed.\u003cbr\u003e\u003cbr\u003eEach different drug delivery route is discussed in a separate chapter of the book. All major routes of drug delivery have been covered to provide the reader with a panoramic as well as an in-depth view of the developments in polymer-based drug delivery systems. Appendices are included which incorporate useful pharmaceutical properties of the polymers and important polymeric applications for various drug delivery routes.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Polymers in Drug Delivery Systems \u003cbr\u003e1.1 Introduction \u003cbr\u003e1.2 Fundamentals of a Polymeric Drug Delivery System \u003cbr\u003e1.2.1 Factors That Affect Drug Release from Polymers \u003cbr\u003e1.2.2 Mechanism of Controlled Release \u003cbr\u003e1.2.2.1 Temporal Controlled Systems \u003cbr\u003e1.2.2.1.1 Delayed Dissolution \u003cbr\u003e1.2.2.1.2 Diffusion Controlled \u003cbr\u003e1.2.2.1.2.1 Release from Monolithic\/Matrix Systems \u003cbr\u003e1.2.2.1.2.2 Reservoir Type Systems \u003cbr\u003e1.2.2.1.3 Osmotic\/Solvent Controlled Systems \u003cbr\u003e1.2.2.1.4 Swelling Controlled \u003cbr\u003e1.2.2.1.5 Environmental\/Stimuli Responsive Systems \u003cbr\u003e1.2.2.1.5.1 Thermo-responsive Polymers \u003cbr\u003e1.2.2.1.5.2 pH-Responsive Polymers \u003cbr\u003e1.2.2.1.5.3 Dual Stimuli-Responsive Polymers \u003cbr\u003e1.2.2.2 Distribution Controlled Systems \u003cbr\u003e1.2.2.3 Biodegradable\/Degradation and Erosion Controlled Systems \u003cbr\u003e1.3 Polymer Delivery Systems \u003cbr\u003e1.3.1 Oral Drug Delivery System \u003cbr\u003e1.3.1.1 Gastro Retentive Drug Delivery System \u003cbr\u003e1.3.1.1.1 Floating System \u003cbr\u003e1.3.1.1.2 Hydrodynamically Balanced Systems \u003cbr\u003e1.3.1.1.3 Bio\/Mucoadhesive Systems \u003cbr\u003e1.3.1.1.4 Hydration-mediated Adhesion \u003cbr\u003e1.3.1.1.5 Swelling Systems \u003cbr\u003e1.3.1.2 Colon Specific Drug Delivery System \u003cbr\u003e1.3.1.2.1 pH Sensitive Systems \u003cbr\u003e1.3.1.2.1.1 Coating with pH Dependent Polymers\u003cbr\u003e1.3.1.2.1.2 Coating with pH Independent Biodegradable Polymers \u003cbr\u003e1.3.1.2.2 Time Controlled\/Dependent System \u003cbr\u003e1.3.1.2.3 Pressure Controlled System\u003cbr\u003e1.3.1.2.4 Osmotically Controlled System \u003cbr\u003e1.3.1.2.5 Pulsatile Drug Delivery System \u003cbr\u003e1.3.1.3 Ion-exchange Based Drug Delivery System \u003cbr\u003e1.3.2 Transdermal Drug Delivery System \u003cbr\u003e1.3.2.1 Classification of Transdermal Drug Delivery \u003cbr\u003e1.3.2.1.1 Reservoir Systems \u003cbr\u003e1.3.2.1.2 Drug-in-adhesive Systems \u003cbr\u003e1.3.2.1.3 Matrix-dispersion Systems \u003cbr\u003e1.3.2.1.4 Micro-reservoir Systems \u003cbr\u003e1.3.2.2 Polymers for Transdermal Drug Delivery System \u003cbr\u003e1.3.2.2.1 Natural Polymers \u003cbr\u003e1.3.2.2.2 Synthetic Polymers \u003cbr\u003e1.3.2.2.2.1 Pressure Sensitive Adhesives \u003cbr\u003e1.3.2.2.2.2 Backing Membrane \u003cbr\u003e1.3.2.2.2.3 Release Liner \u003cbr\u003e1.3.3 Mucoadhesive Drug Delivery System \u003cbr\u003e1.3.3.1 Hydrophilic Polymers \u003cbr\u003e1.3.3.2 Hydrogels \u003cbr\u003e1.3.3.3 Thiolated Polymers \u003cbr\u003e1.3.3.4 Lectin-based Polymers \u003cbr\u003e1.3.4 Ocular Drug Delivery System \u003cbr\u003e1.3.4.1 Polymers used in Conventional Ocular Delivery \u003cbr\u003e1.3.4.1.1 Liquid Dosage Forms \u003cbr\u003e1.3.4.1.2 Semi-solid Dosage Forms \u003cbr\u003e1.3.4.2 Polymers used in Ophthalmic Inserts\/Films \u003cbr\u003e1.3.5 Implant and Parenteral Drug Delivery System\u003cbr\u003e1.3.5.1 Surgical Implants \u003cbr\u003e1.3.5.2 Microspheres\u003cbr\u003e1.3.5.2.1 Bioadhesive Microspheres \u003cbr\u003e1.3.5.2.2 Floating Microspheres \u003cbr\u003e1.3.5.2.3 Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.1 Biodegradable Polymeric Microspheres \u003cbr\u003e1.3.5.2.3.2 Synthetic Polymeric Microspheres\u003cbr\u003e1.3.5.3 Injectable In Situ Gel \u003cbr\u003e1.3.5.3.1 Thermoplastic Paste \u003cbr\u003e1.3.5.3.2 In Situ Crosslinking System \u003cbr\u003e1.3.5.3.3 In Situ Polymer Precipitation\u003cbr\u003e1.3.5.3.4 Thermally-induced Gelling \u003cbr\u003e1.4 Recent Advancements in Polymer Architecture and Drug Delivery\u003cbr\u003e1.4.1 Block Copolymers \u003cbr\u003e1.4.2 Polymersomes\u003cbr\u003e1.4.3 Hyperbranched Polymers \u003cbr\u003e1.4.4 Graft Polymers \u003cbr\u003e1.4.5 Star Polymers \u003cbr\u003e1.4.6 Dendrimers \u003cbr\u003e1.5 Recent Patent Trends in Polymeric Drug Delivery\u003cbr\u003e1.6 Future Developments \u003cbr\u003e\u003cbr\u003e2 Applications of Polymers in Buccal Drug Delivery \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.1.1 Advantages of Buccal Drug Delivery \u003cbr\u003e2.1.2 Disadvantages of Buccal Drug Delivery \u003cbr\u003e2.2 Factors Affecting Bioadhesion in the Oral Cavity \u003cbr\u003e2.2.1 Functional Groups2\u003cbr\u003e2.2.2 Molecular Weight \u003cbr\u003e2.2.3 Flexibility \u003cbr\u003e2.2.4 Crosslinking Density \u003cbr\u003e2.2.5 Charge\u003cbr\u003e2.2.6 Concentration \u003cbr\u003e2.2.7 Hydration (Swelling) \u003cbr\u003e2.2.8 Environmental Factors\u003cbr\u003e2.3 Buccal Polymeric Dosage Forms \u003cbr\u003e2.3.1 Semi-solids \u003cbr\u003e2.3.2 Solids\u003cbr\u003e2.3.2.1 Powder Dosage Forms\u003cbr\u003e2.3.2.2 Tablets \u003cbr\u003e2.3.2.3 Polymeric Films and Patches \u003cbr\u003e2.4 Novel Carriers \u003cbr\u003e2.5 Conclusions \u003cbr\u003e\u003cbr\u003e3 Applications of Polymers in Gastric Drug Delivery \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Need for Gastric Retention \u003cbr\u003e3.3 Benefits and Pitfalls\u003cbr\u003e3.4 Gastrointestinal Tract \u003cbr\u003e3.4.1 Anatomy of the Gastrointestinal Tract \u003cbr\u003e3.4.1.1 Mucus Layer\u003cbr\u003e3.4.2 Basic Gastrointestinal Tract Physiology \u003cbr\u003e3.5 Factors Affecting Gastric Retention \u003cbr\u003e3.6 Polymers in Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.6.1 Cellulosic Hydrocolloids\u003cbr\u003e3.6.2 Carbomers or Carbopol® \u003cbr\u003e3.6.3 Xanthan Gum\u003cbr\u003e3.6.4 Guar Gum \u003cbr\u003e3.6.5 Chitosan\u003cbr\u003e3.6.6 Eudragit® Polymers\u003cbr\u003e3.6.7 Alginate Polymers \u003cbr\u003e3.6.8 Lectin-based Polymers\u003cbr\u003e3.6.9 Thiolated Polymers \u003cbr\u003e3.6.10 Miscellaneous Polymers\u003cbr\u003e3.7 Evaluation of Gastro Retentive Drug Delivery Systems \u003cbr\u003e3.7.1 In Vitro Evaluation\u003cbr\u003e3.7.1.1 Floating Systems\u003cbr\u003e3.7.1.2 Swelling Systems \u003cbr\u003e3.7.2 In Vitro Release \u003cbr\u003e3.7.3 In Vivo Evaluation \u003cbr\u003e3.8 Application of Polymers in Gastric Delivery Systems \u003cbr\u003e3.8.1 Floating Drug Delivery System\u003cbr\u003e3.8.1.1 Effervescent Floating Dosage Forms \u003cbr\u003e3.8.1.2 Non-effervescent Floating Dosage Forms \u003cbr\u003e3.8.2 Bioadhesive Drug Delivery System \u003cbr\u003e3.8.3 Swelling and Expanding Delivery System \u003cbr\u003e3.8.4 Combinational\/Amalgamative Delivery System\u003cbr\u003e3.8.4.1 Bioadhesive and Floating Approach\u003cbr\u003e3.8.4.2 Swellable and Floating Approach\u003cbr\u003e3.8.4.3 Bioadhesion and Swelling Approach \u003cbr\u003e3.8.4.4 Bioadhesion and High-density Approach\u003cbr\u003e3.8.5 Microparticulate Delivery System\u003cbr\u003e3.8.5.1 Microballoons\/Hollow Microspheres\u003cbr\u003e3.8.5.2 Alginate Beads\u003cbr\u003e3.8.5.3 Floating Granules \u003cbr\u003e3.8.5.4 Super Porous Hydrogel Systems \u003cbr\u003e3.8.5.5 Raft Forming Systems \u003cbr\u003e3.9 Conclusion \u003cbr\u003e4 Applications of Polymers in Small Intestinal Drug Deliver\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.1.1 Advantages of Polymer Coating \u003cbr\u003e4.1.2 Benefit from Polymer Coatings with Sustained Release \u003cbr\u003e4.2 Physiology of the Small Intestine\u003cbr\u003e4.2.1 Mucosa of Small Intestine\u003cbr\u003e4.2.2 Secretion into the Small Intestine\u003cbr\u003e4.2.2.1 Glands\u003cbr\u003e4.2.2.2 Pancreatic Secretion \u003cbr\u003e4.2.2.3 Biliary Secretions\u003cbr\u003e4.2.2.4 Digestion of the Food Nutrients \u003cbr\u003e4.2.3 pH of the Small Intestine\u003cbr\u003e4.2.4 Gastrointestinal Motility \u003cbr\u003e4.2.5 Transit of the Dosage Form through the Small Intestine \u003cbr\u003e4.2.6 Drug Absorption through Small Intestine \u003cbr\u003e4.2.7 Peyer’s Patch \u003cbr\u003e4.3 Scope of Small Intestinal Drug Delivery \u003cbr\u003e4.4 Polymers used in Small Intestinal Drug Delivery\u003cbr\u003e4.4.1 Natural Polymers \u003cbr\u003e4.4.1.1 Chitosan \u003cbr\u003e4.4.1.2 Shellac\u003cbr\u003e4.4.1.3 Sodium Alginate \u003cbr\u003e4.4.2 Synthetic Polymers \u003cbr\u003e4.4.2.1 Polyacrylic acid Derivatives (Carbomer) \u003cbr\u003e4.4.2.2 Cellulose Derivatives \u003cbr\u003e4.4.2.2.1 Cellulose Acetate Phthalate \u003cbr\u003e4.4.2.2.2 Hydroxypropyl Methyl Cellulose Phthalate \u003cbr\u003e4.4.2.2.3 Polyvinyl Acetate Phthalate\u003cbr\u003e4.4.2.2.4 Hydroxypropyl Methyl Cellulose Acetate Succinate\u003cbr\u003e4.4.2.2.5 Cellulose Acetate Trimelliate\u003cbr\u003e4.4.2.3 Polymethacrylates \u003cbr\u003e4.4.2.3.1 Polymethacrylic Acid-co-ethyl Acrylate as Aqueous Dispersion. \u003cbr\u003e4.4.2.3.2 Polymethacrylic Acid-co-ethyl Acrylate as Powder\u003cbr\u003e4.4.2.3.3 Polyethyl Acrylate-co-methyl Methacrylate-co-trimethylammonioethyl Methacrylate Chloride\u003cbr\u003e4.4.2.3.4 Polymethacrylic Acid-co-methyl Methacrylate\u003cbr\u003e4.4.2.3.5 Polymethacrylic Acid-co-methylmethacrylate \u003cbr\u003e4.4.2.3.5.1 Methacrylic Acid - Methyl Methacrylate Copolymer (1:2)\u003cbr\u003e4.4.2.3.5.2 Polymethacrylic Acid-co-methyl Methacrylate (1:2) \u003cbr\u003e4.5 Benefits of Polymers in Small Intestinal Drug Delivery \u003cbr\u003e4.5.1 Hydroxypropyl Methyl Cellulose Phthalate\u003cbr\u003e4.5.2 Hydroxypropyl Methyl Cellulose Acetate Succinate. \u003cbr\u003e4.5.3 Hydroxypropyl Methyl Cellulose Acetate Maleate. \u003cbr\u003e4.5.4 Methacrylic Acid Polymers and Copolymers \u003cbr\u003e4.5.5 Chitosan \u003cbr\u003e4.5.6 Chitosan and Methacrylic Acid Polymer and Copolymers\u003cbr\u003e4.5.7 Sodium Alginate \u003cbr\u003e4.5.8 Thiolated Tamarind Seed Polysaccharide\u003cbr\u003e4.6 Conclusion \u003cbr\u003e\u003cbr\u003e5 Application of Polymers in Transdermal Drug Delivery\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Advantages of Drug Delivery via the Transdermal Route \u003cbr\u003e5.3 Mechanism of Drug Absorption in Transdermal Drug Delivery \u003cbr\u003eSystems\u003cbr\u003e5.4 Factors Affecting Transdermal Permeation\u003cbr\u003e5.4.1 Physicochemical Properties of Penetrant Molecules \u003cbr\u003e5.4.2 Physicochemical Properties of the Drug Delivery \u003cbr\u003eSystem\u003cbr\u003e5.4.2.1 Release Characteristics\u003cbr\u003e5.4.2.2 Composition of the Drug Delivery Systems\u003cbr\u003e5.4.2.3 Drug Permeation Enhancer \u003cbr\u003e5.4.3 Physiological and Pathological Conditions of the Skin\u003cbr\u003e5.5 Types of Transdermal Drug Delivery Systems\u003cbr\u003e5.5.1 Formulation Aspects\u003cbr\u003e5.5.1.1 Matrix Systems \u003cbr\u003e5.5.1.2 Reservoir Systems \u003cbr\u003e5.5.1.3 Micro-reservoir Systems\u003cbr\u003e5.5.2 Based on Release Mechanism\u003cbr\u003e5.5.2.1 Passive Transdermal Drug Delivery Systems. \u003cbr\u003e5.5.2.2 Active Transdermal Drug Delivery Systems \u003cbr\u003e5.6 Role of Polymers in Transdermal Drug Delivery Systems \u003cbr\u003e5.6.1 Matrix Formers\u003cbr\u003e5.6.1.1 Crosslinked Polyethylene Glycol \u003cbr\u003e5.6.1.2 Acrylic-acid Matrices\u003cbr\u003e5.6.1.3 Ethyl Cellulose and Polyvinyl Pyrrolidone \u003cbr\u003e5.6.1.4 Hydroxypropyl Methylcellulose \u003cbr\u003e5.6.1.5 Chitosan \u003cbr\u003e5.6.1.6 Ethyl Vinyl Acetate Copolymer \u003cbr\u003e5.6.1.7 Gum Copal\u003cbr\u003e5.6.1.8 Damar Batu \u003cbr\u003e5.6.1.9 Organogels \u003cbr\u003e5.6.2 Rate-controlling Membrane\u003cbr\u003e5.6.2.1 Ethylene Vinyl Acetate Copolymer \u003cbr\u003e5.6.2.2 Polyethylene \u003cbr\u003e5.6.2.3 Polyurethane\u003cbr\u003e5.6.2.4 Crosslinked Sodium Alginate\u003cbr\u003e5.6.2.5 Copolymer of 2-Hydroxy-3- Phenoxypropylacrylate, 4-Hydroxybutyl Acrylate and Sec-Butyl Tiglate\u003cbr\u003e5.6.2.6 Polysulfone, Polyvinylidene Fluoride (Hydrophilic Membrane)\u003cbr\u003e5.6.2.7 Polytetrafluoroethylene (Hydrophobic Membrane) \u003cbr\u003e5.6.2.8 Crosslinked Polyvinyl Alcohol \u003cbr\u003e5.6.2.9 Cellulose Acetate \u003cbr\u003e5.6.2.10 Eudragit® \u003cbr\u003e5.6.2.11 Chitosan \u003cbr\u003e5.6.3 Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.1 Polyisobutylenes \u003cbr\u003e5.6.3.2 Silicones\u003cbr\u003e5.6.3.3 Acrylics \u003cbr\u003e5.6.3.4 Hot-melt Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.5 Hydrogel Pressure Sensitive Adhesives\u003cbr\u003e5.6.3.6 Hydrophilic Pressure Sensitive Adhesives \u003cbr\u003e5.6.3.7 Polyurethanes \u003cbr\u003e5.6.4 Backing Layer\/Membranes\u003cbr\u003e5.6.5 Release Liner \u003cbr\u003e5.6.6 Polymers to Enhance Skin Permeation\u003cbr\u003e5.6.6.1 Penetration Enhancers\u003cbr\u003e5.6.6.2 Pulsed Delivery \u003cbr\u003e5.7 Future Perspectives\u003cbr\u003e5.8 Conclusion \u003cbr\u003e\u003cbr\u003e6 Application of Polymers in Peyer’s Patch Targeting \u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Peyer’s Patch Physiology, Structure, and Function \u003cbr\u003e6.2.1 General Properties and Peyer’s Patch Distribution in Different Species \u003cbr\u003e6.2.2 M Cell Structure and Function\u003cbr\u003e6.3 Strategies for Achieving Effective Delivery to the Peyer’s Patch \u003cbr\u003e6.3.1 General Principles of Peyer’s Patch Delivery\u003cbr\u003e6.3.2 Effect of Particle Size on Peyer’s Patch \u003cbr\u003e6.4 Peyer’s Patch Drug Delivery using Polymeric Carriers\u003cbr\u003e6.4.1 Polylactide-co-glycolic Acid \u003cbr\u003e6.4.2 Polylactic Acid \u003cbr\u003e6.4.3 Poly-D,L-lactide-co-glycolide \u003cbr\u003e6.4.4 Polystyrene \u003cbr\u003e6.4.5 Chitosan \u003cbr\u003e6.4.6 Other Polymer Carrier\u003cbr\u003e6.5 Uptake of Particles by Peyer’s Patches\u003cbr\u003e6.6 Targets for Peyer’s Patch Delivery \u003cbr\u003e6.6.1 Lectin-mediated Targeting \u003cbr\u003e6.6.2 Microbial Protein-mediated Targeting \u003cbr\u003e6.6.2.1 Yersinia \u003cbr\u003e6.6.2.2 Salmonella \u003cbr\u003e6.6.2.3 Cholera Toxin \u003cbr\u003e6.6.2.4 Virus Protein \u003cbr\u003e6.6.3 Vitamin B12 Mediated Targeting\u003cbr\u003e6.6.4 Non-Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.5 Peptide Ligand Mediated Targeting \u003cbr\u003e6.6.6 Claudin-4 Mediated Targeting \u003cbr\u003e6.6.7 Monoclonal Antibody Mediated Targeting \u003cbr\u003e6.6.8 M Cell Homing Peptide Targeting \u003cbr\u003e6.6.9 Immunoglobulin A Conjugates Targeting\u003cbr\u003e6.7 Summary and Conclusions \u003cbr\u003e7 Applications of Polymers in Colon Drug Delivery \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Anatomy of the Colon \u003cbr\u003e7.3 Correlation between Physiological Factors and use of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.3.1 The pH of the Gastrointestinal Tract \u003cbr\u003e7.3.2 Gastrointestinal Transit Time \u003cbr\u003e7.3.3 Colonic Motility \u003cbr\u003e7.3.4 Colonic Microflora\u003cbr\u003e7.3.5 Colonic Absorption\u003cbr\u003e7.4 Advantages of Colon Drug Delivery Systems\u003cbr\u003e7.5 Disadvantages of Colon Drug Delivery Systems \u003cbr\u003e7.6 Polymers for Colon Drug Delivery Systems \u003cbr\u003e7.6.1 Pectin\u003cbr\u003e7.6.2 Guar Gum \u003cbr\u003e7.6.3 Chitosan \u003cbr\u003e7.6.4 Amylose \u003cbr\u003e7.6.5 Inulin \u003cbr\u003e7.6.6 Locust Bean Gum \u003cbr\u003e7.6.7 Chondroitin Sulfate \u003cbr\u003e7.6.8 Dextran \u003cbr\u003e7.6.9 Alginates \u003cbr\u003e7.6.10 Cyclodextrin \u003cbr\u003e7.6.11 Eudragit® \u003cbr\u003e7.6.12 Cellulose Ethers \u003cbr\u003e7.6.13 Ethyl Cellulose\u003cbr\u003e7.6.14 Polymers for Enteric Coating\u003cbr\u003e7.6.15 Polyvinyl Alcohol \u003cbr\u003e7.7 Application of Polymers in Colon Drug Delivery Systems\u003cbr\u003e7.7.1 System Dependent on pH \u003cbr\u003e7.7.2 System Dependent on Time\u003cbr\u003e7.7.2.1 Reservoir Systems with Rupturable Polymeric Coats \u003cbr\u003e7.7.2.2 Reservoir Systems with Erodible Polymeric Coats \u003cbr\u003e7.7.2.3 Reservoir Systems with Diffusive Polymeric Coats \u003cbr\u003e7.7.2.4 Capsular Systems with Release-controlling Polymeric Plugs \u003cbr\u003e7.7.2.5 Osmotic System \u003cbr\u003e7.7.3 Bacterially Triggered System \u003cbr\u003e7.7.3.1 Prodrug \u003cbr\u003e7.7.3.2 Polysaccharide-based Matrix, Reservoirs and Hydrogels\u003cbr\u003e7.7.4 Time- and pH-Dependent Systems \u003cbr\u003e7.7.5 Pressure Controlled Delivery Systems \u003cbr\u003e7.8 Conclusion\u003cbr\u003e\u003cbr\u003e8 Applications of Polymers in Parenteral Drug Delivery \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Parenteral Route for Drug Delivery\u003cbr\u003e8.2.1 Advantages of Parenteral Administration \u003cbr\u003e8.2.2 Disadvantages of Parenteral Administration\u003cbr\u003e8.3 In Vivo Distribution of Polymer \u003cbr\u003e8.4 Biodegradation\u003cbr\u003e8.4.1 Erosion \u003cbr\u003e8.4.2 Degradation Processes\u003cbr\u003e8.4.2.1 Chemical and Enzymic Oxidation \u003cbr\u003e8.4.2.2 Chemical and Enzymic Hydrolysis \u003cbr\u003e8.5 Polymers for Parenteral Delivery \u003cbr\u003e8.5.1 Non-degradable Polymers\u003cbr\u003e8.5.2 Biodegradable Polymers \u003cbr\u003e8.5.2.1 Synthetic Polymers \u003cbr\u003e8.5.2.1.1 Polyesters \u003cbr\u003e8.5.2.1.2 Polylactones \u003cbr\u003e8.5.2.1.3 Polyamino acids \u003cbr\u003e8.5.2.1.4 Polyphosphazenes \u003cbr\u003e8.5.2.1.5 Polyorthoesters \u003cbr\u003e8.5.2.1.6 Polyanhydrides \u003cbr\u003e8.5.2.2 Natural Polymers \u003cbr\u003e8.5.2.2.1 Collagen \u003cbr\u003e8.5.2.2.2 Gelatin \u003cbr\u003e8.5.2.2.3 Albumin \u003cbr\u003e8.5.2.2.4 Polysaccharides \u003cbr\u003e8.6 Polymeric Drug Delivery Carriers\u003cbr\u003e8.6.1 Polymeric Implants \u003cbr\u003e8.6.2 Microparticles \u003cbr\u003e8.6.3 Nanoparticles \u003cbr\u003e8.6.4 Polymeric Micelles \u003cbr\u003e8.6.5 Hydrogels \u003cbr\u003e8.6.6 Polymer-drug Conjugates \u003cbr\u003e8.7 Factors Influencing Polymeric Parenteral Delivery\u003cbr\u003e8.7.1 Particle Size \u003cbr\u003e8.7.2 Drug Loading \u003cbr\u003e8.7.3 Porosity \u003cbr\u003e8.7.4 Molecular Weight of the Polymer \u003cbr\u003e8.7.5 Crystallinity\u003cbr\u003e8.7.6 Hydrophobicity\u003cbr\u003e8.7.7 Drug-polymer Interactions \u003cbr\u003e8.7.8 Surface Properties: Charge and Modifications \u003cbr\u003e8.8 Summary \u003cbr\u003e\u003cbr\u003e9 Applications of Polymers in Rectal Drug Delivery\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Rectal Drug Delivery\u003cbr\u003e9.2.1 Anatomy and Physiology of the Rectum \u003cbr\u003e9.2.2 Absorption through the Rectum\u003cbr\u003e9.2.2.1 Mechanism of Absorption\u003cbr\u003e9.2.2.2 Factors Affecting Absorption\u003cbr\u003e9.3 Polymers used in Rectal Dosage Forms\u003cbr\u003e9.3.1 Solutions \u003cbr\u003e9.3.2 Semi-solids\/Hydrogels \u003cbr\u003e9.3.3 Suppositories \u003cbr\u003e9.3.4 In Situ Gels \u003cbr\u003e9.4 Conclusion \u003cbr\u003e\u003cbr\u003e10 Applications of Polymers in Vaginal Drug Delivery \u003cbr\u003e10.1 Anatomy and Physiology of the Vagina \u003cbr\u003e10.1.1 Vaginal pH \u003cbr\u003e10.1.2 Vaginal Microflora \u003cbr\u003e10.1.3 Cyclic Changes \u003cbr\u003e10.1.4 Vaginal Blood Supply\u003cbr\u003e10.2 The Vagina as a Site for Drug Delivery \u003cbr\u003e10.3 Vaginal Dosage Forms \u003cbr\u003e10.4 Polymers for Vaginal Drug Delivery \u003cbr\u003e10.4.1 Polyacrylates \u003cbr\u003e10.4.2 Chitosan \u003cbr\u003e10.4.3 Cellulose Derivatives \u003cbr\u003e10.4.4 Hyaluronic Acid Derivatives \u003cbr\u003e10.4.5 Carrageenan \u003cbr\u003e10.4.6 Polyethylene Glycols \u003cbr\u003e10.4.7 Gelatin \u003cbr\u003e10.4.8 Thiomers \u003cbr\u003e10.4.9 Poloxamers \u003cbr\u003e10.4.10 Pectin and Tragacanth \u003cbr\u003e10.4.11 Sodium Alginate \u003cbr\u003e10.4.12 Silicone Elastomers for Vaginal Rings \u003cbr\u003e10.4.13 Thermoplastic Polymers for Vaginal Rings \u003cbr\u003e10.4.14 Miscellaneous \u003cbr\u003e10.5 Toxicological Evaluation\u003cbr\u003e10.6 Conclusion \u003cbr\u003e\u003cbr\u003e11 Application of Polymers in Nasal Drug Delivery\u003cbr\u003e11.1 Introduction 379\u003cbr\u003e11.2 Nasal Anatomy and Physiology \u003cbr\u003e11.2.1 Nasal Vestibule \u003cbr\u003e11.2.2 Atrium \u003cbr\u003e11.2.3 Olfactory Region \u003cbr\u003e11.2.4 Respiratory Region \u003cbr\u003e11.2.5 Nasopharynx\u003cbr\u003e11.3 Biological Barriers in Nasal Absorption \u003cbr\u003e11.3.1 Mucus \u003cbr\u003e11.3.2 Nasal Mucociliary Clearance \u003cbr\u003e11.3.3 Enzymic Barrier\u003cbr\u003e11.3.4 P-Glycoprotein Efflux Transporters\u003cbr\u003e11.3.5 Physicochemical Characteristics of the Drug \u003cbr\u003e11.4 Toxicity \u003cbr\u003e11.5 General Considerations about Polymers used in Nasal Drug Delivery \u003cbr\u003e11.5.1 Thermoresponsive Polymers \u003cbr\u003e11.5.2 Polymers Sensitive to pH \u003cbr\u003e11.5.3 Mucoadhesive Polymer \u003cbr\u003e11.6 Polymers used in Nasal Drug Delivery \u003cbr\u003e11.6.1 Cellulose Derivatives \u003cbr\u003e11.6.2 Polyacrylates \u003cbr\u003e11.6.3 Starch \u003cbr\u003e11.6.4 Chitosan \u003cbr\u003e11.6.5 Gelatin\u003cbr\u003e11.6.6 Phospholipids \u003cbr\u003e11.6.7 Poly(N-alkyl acrylamide)\/Poly(N-isopropylacrylamide) \u003cbr\u003e11.6.8 Poloxamer\u003cbr\u003e11.6.9 Methylcellulose\u003cbr\u003e11.6.10 Cyclodextrin \u003cbr\u003e11.7 Applications of Polymers in Nasal Delivery\u003cbr\u003e11.7.1 Local Therapeutic Agents \u003cbr\u003e11.7.2 Genomics \u003cbr\u003e11.7.3 Proteins and Peptides \u003cbr\u003e11.7.4 Vaccines \u003cbr\u003e11.7.4.1 Features of the Nasal Mucosa for Immunisation \u003cbr\u003e11.8 Conclusion \u003cbr\u003e12 Application of Polymers in Lung Drug Delivery\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Anatomy and Physiology of Human Respiratory Tract\u003cbr\u003e12.3 Barriers in Pulmonary Delivery\u003cbr\u003e12.4 Polymers for Pulmonary Drug Delivery\u003cbr\u003e12.4.1 Natural Polymers \u003cbr\u003e12.4.1.1 Chitosan\u003cbr\u003e12.4.1.2 Gelatin \u003cbr\u003e12.4.1.3 Hyaluronic Acid \u003cbr\u003e12.4.1.4 Dextran\u003cbr\u003e12.4.1.5 Albumin\u003cbr\u003e12.4.2 Synthetic Polymers\u003cbr\u003e12.4.2.1 Poly(D,L-lactide-co-glycolide) \u003cbr\u003e12.4.2.2 Polylactic Acid \u003cbr\u003e12.4.2.3 Poly(?-caprolactone) \u003cbr\u003e12.4.2.4 Acrylic Acid Derivatives\u003cbr\u003e12.4.2.5 Diketopiperazine Derivatives \u003cbr\u003e12.4.2.6 Polyethylene Glycol Conjugates \u003cbr\u003e12.4.3 Miscellaneous Polymers \u003cbr\u003e12.5 Conclusion \u003cbr\u003e12.6 Future Directions \u003cbr\u003e\u003cbr\u003e13 Applications of Polymers in Ocular Drug Delivery\u003cbr\u003e13. 1 Introduction \u003cbr\u003e13.2 Barriers to Restrict Intraocular Drug Transport \u003cbr\u003e13.3 Drug Delivery Systems to the Anterior Segment of the Eye \u003cbr\u003e13.3.1 Viscous Systems\u003cbr\u003e13.3.2 In Situ Gelling Systems \u003cbr\u003e13.3.2.1 Temperature Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.1.1 Poloxamers\u003cbr\u003e13.3.2.1.2 Xyloglucan \u003cbr\u003e13.3.2.1.3 Methyl Cellulose \u003cbr\u003e13.3.2.2 Ionic Strength Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.2.1 Gellan Gum \u003cbr\u003e13.3.2.2.2 Alginates \u003cbr\u003e13.3.2.2.3 Carrageenan \u003cbr\u003e13.3.2.3 pH Induced In Situ Gelling Systems \u003cbr\u003e13.3.2.3.1 Carbomers (Polyacrylic Acid) \u003cbr\u003e13.3.2.3.2 Pseudolatexes \u003cbr\u003e13.3.3 Mucoadhesive Gels \u003cbr\u003e13.3.4 Polymeric Inserts\/Discs \u003cbr\u003e13.3.5 Contact Lenses\u003cbr\u003e13.3.5.1 Conventional Contact Lens Absorbed with Drugs \u003cbr\u003e13.3.5.2 Molecularly Imprinted Polymeric Hydrogels\u003cbr\u003e13.3.5.3 Drug-polymer Films Integrated with Contact Lenses \u003cbr\u003e13.3.5.4 Drugs in Colloidal Structure Dispersed in the Lens \u003cbr\u003e13.3.6 Scleral Lens Delivery Systems \u003cbr\u003e13.3.7 Punctal Plug Delivery Systems \u003cbr\u003e13.4 Polymeric Drug Delivery Systems for the Posterior Segment of the Eye \u003cbr\u003e13.4.1 Intravitreal Implants \u003cbr\u003e13.4.2 Particulate Systems (Nanocarriers) \u003cbr\u003e13.5 Conclusion \u003cbr\u003eAbbreviations \u003cbr\u003eAppendix 1 \u003cbr\u003eAppendix 2 \u003cbr\u003eIndex"}
REACH for the Polymer ...
$125.00
{"id":11242240836,"title":"REACH for the Polymer Industry - A Practical Guide","handle":"9781847356208","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Polymer REACH Consortium \u003cbr\u003eISBN 9781847356208 \u003cbr\u003e\u003cbr\u003ePublished: 2012\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book has been produced by the EU Leonardo Project called Polymer REACH. The overall objective of Polymer REACH was to develop an e-learning platform and training materials for the European polymer industry to learn and understand how to manage their obligations under the European legislation - Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). \u003cbr\u003e\u003cbr\u003eThis book forms part of the training materials which will complement the industry-specific e-learning platform to enable the polymer industry to learn how to manage their obligations under REACH. The overall impact will be an increase in the knowledge base of the polymer industry on REACH, which will in turn help to increase competitiveness and sustainability of the sector.\u003cbr\u003e\u003cbr\u003eThis book will be useful to anyone who works with polymers or the chemicals that are used to make polymers, whether they are end-users or suppliers. REACH is affecting everyone concerned with the polymer industry and this book will help them to prepare for the impact and consequences of the REACH legislation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Mechanical Properties of Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Tensile Strength\u003cbr\u003e1.2.1 Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3 Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1 Torsion Test\u003cbr\u003e1.3.2 Hand Test\u003cbr\u003e1.4 Elongation at Break\u003cbr\u003e1.4.1 Basic Creep Data\u003cbr\u003e1.5 Strain at Yield\u003cbr\u003e1.5.1 Isochronous Stress-strain Curves\u003cbr\u003e1.5.2 Stress-time Curves\u003cbr\u003e1.5.3 Stress-temperature Curves\u003cbr\u003e1.5.4 Extrapolation Techniques\u003cbr\u003e1.5.5 Basic Parameters\u003cbr\u003e1.5.6 Recovery in Stress Phenomena\u003cbr\u003e1.5.7 Stress Relaxation\u003cbr\u003e1.5.8 Rupture Data\u003cbr\u003e1.5.9 Long-term Strain-time Data\u003cbr\u003e1.6 Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1 Notched Izod Impact Strength\u003cbr\u003e1.6.2 Falling Weight Impact Test\u003cbr\u003e1.6.3 Notch Sensitivity\u003cbr\u003e1.6.4 Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5 Effect of Molecular Parameters\u003cbr\u003e1.7 Shear Strength\u003cbr\u003e1.8 Elongation in Tension\u003cbr\u003e1.9 Deformation Under Load\u003cbr\u003e1.10 Compressive Set (Permanent Deformation)\u003cbr\u003e1.11 Mould Shrinkage\u003cbr\u003e1.12 Coefficient of Friction\u003cbr\u003e1.13 Fatigue Index\u003cbr\u003e1.14 Toughness\u003cbr\u003e1.15 Abrasion Resistance or Wear\u003cbr\u003e1.16 Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1 Glass Fibres\u003cbr\u003e1.16.1.1 Poly Tetrafluoroethylene\u003cbr\u003e1.16.2 Polyethylene Terephthalate\u003cbr\u003e1.16.2.1 Polyether Ether Ketone\u003cbr\u003e1.16.2.2 Polyimide\u003cbr\u003e1.16.2.3 Polyamide Imide\u003cbr\u003e1.16.3 Calcium Carbonate\u003cbr\u003e1.16.4 Modified Clays\u003cbr\u003e1.16.5 Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6 Carbon Fibres\u003cbr\u003e1.16.7 Carbon Nanotubes\u003cbr\u003e1.16.8 Miscellaneous Fillers\/Reinforcing Agents.\u003cbr\u003e1.16.9 Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17 Application of Dynamic Mechanical Analysis.\u003cbr\u003e1.17.1 Theory\u003cbr\u003e1.17.2 Instrumentation (Appendix 1)\u003cbr\u003e1.17.3 Fixed Frequency Mode\u003cbr\u003e1.17.3.1 Resonant Frequency Mode\u003cbr\u003e1.17.3.2 Stress Relaxation Mode\u003cbr\u003e1.17.3.3 Creep Mode\u003cbr\u003e1.17.3.4 Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5 Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6 Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7 Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8 Storage Modulus\u003cbr\u003e1.17.3.9 Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10 Elastomer Low-Temperature Properties\u003cbr\u003e1.17.3.11 Tensile Modulus\u003cbr\u003e1.17.3.12 Stress-strain Relationships\u003cbr\u003e1.17.3.13 Viscosity\u003cbr\u003e1.17.3.14 Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18 Rheology and Viscoelasticity\u003cbr\u003e1.19 Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1 Measurement of Rheological Properties\u003cbr\u003e1.19.2 Viscosity and Elasticity\u003cbr\u003e1.19.3 Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4 Flexing Test\u003cbr\u003e1.19.5 Deformation\u003cbr\u003e1.19.6 Tensile Properties\u003cbr\u003e1.19.7 Mechanical Stability of Natural and Synthetic Lattices\u003cbr\u003e1.19.8 Abrasion Test\u003cbr\u003e1.19.9 Peel Adhesion Test\u003cbr\u003e1.19.10 Ozone Resistance Test\u003cbr\u003e1.20 Physical Testing of Polymer Powders\u003cbr\u003e1.20.1 Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2 Artificial Weathering\u003cbr\u003e1.20.3 Natural Weathering\u003cbr\u003e1.20.4 Reactivity\u003cbr\u003e1.20.5 Melt Viscosity\u003cbr\u003e1.20.6 Loss on Stoving\u003cbr\u003e1.20.7 True Density\u003cbr\u003e1.20.8 Bulk Density\u003cbr\u003e1.20.9 Powder Flow\u003cbr\u003e1.20.10 Test for Cure\u003cbr\u003e1.20.11 Electrical Properties\u003cbr\u003e1.20.12 Thermal Analysis\u003cbr\u003e1.20.13 Particle-size Distribution\u003cbr\u003e1.20.13.1 Methods Based on Electrical Sensing Zone (Coulter Principle)\u003cbr\u003e1.20.13.2 Laser Particle Size Analysers\u003cbr\u003e1.20.13.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4 Sedimentation.\u003cbr\u003e1.20.13.5 Acoustic Spectroscopy\u003cbr\u003e1.20.13.6 Capillary Hydrodynamic Fractionation\u003cbr\u003e1.20.13.7 Small-angle Light Scattering\u003cbr\u003e1.21 Plastic Pipe Materials\u003cbr\u003e1.22 Plastic Film\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Thermal Properties of Polymers\u003cbr\u003e2.1 Linear Co-efficient of Expansion\u003cbr\u003e2.2 Mould Shrinkage\u003cbr\u003e2.3 Distortion Temperature\u003cbr\u003e2.3.1 Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2 Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4 Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5 Melting Temperature\u003cbr\u003e2.6 Maximum Operating Temperature\u003cbr\u003e2.7 Melt Flow Index\u003cbr\u003e2.8 VICAT Softening Point\u003cbr\u003e2.9 Thermal Conductivity\u003cbr\u003e2.10 Specific Heat\u003cbr\u003e2.10.1 Hot-wire Techniques\u003cbr\u003e2.10.2 Transient Plane Source Technique\u003cbr\u003e2.10.3 Laser Flash Technique\u003cbr\u003e2.10.4 Thermal Diffusivity\u003cbr\u003e2.11 Maximum Filming Temperature\u003cbr\u003e2.12 Heat at Volatilisation\u003cbr\u003e2.13 Glass Transition Temperature\u003cbr\u003e2.13.1 Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1 Theory\u003cbr\u003e2.14 Thermomechanical Analysis\u003cbr\u003e2.14.1 Theory\u003cbr\u003e2.15 Dynamic Mechanical Analysis\u003cbr\u003e2.16 Differential Thermal Analysis and \u003cbr\u003eThermogravimetric Analysis\u003cbr\u003e2.17 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18 Dielectric Thermal Analysis\u003cbr\u003e2.19 Inverse Gas Chromatography\u003cbr\u003e2.20 Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1 Differential Thermal Analysis\u003cbr\u003e2.20.2 Dynamic Mechanical Analysis\u003cbr\u003e2.20.3 Dielectric Thermal Analysis\u003cbr\u003e2.20.4 Thermomechanical Analysis\u003cbr\u003e2.20.5 Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Electrical Properties\u003cbr\u003e3.1 Volume Resistivity\u003cbr\u003e3.2 Dielectric Strength\u003cbr\u003e3.3 Dielectric Constant\u003cbr\u003e3.4 Dissipation Factor\u003cbr\u003e3.5 Surface Arc Resistance\u003cbr\u003e3.6 Tracking Resistance\u003cbr\u003e3.7 Electrical Resistance and Resistivity\u003cbr\u003e3.8 Electrical Conductivity\u003cbr\u003e3.9 Electronically Conducting Polymers\u003cbr\u003e3.10 Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Other Physical Properties\u003cbr\u003e4.1 Surface Hardness\u003cbr\u003e4.2 Specific Gravity and Bulk Density\u003cbr\u003e4.3 Gas Barrier Properties\u003cbr\u003e4.4 Optical Properties\u003cbr\u003e4.4.1 Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2 Light Scattering\u003cbr\u003e4.4.3 Optical Properties\u003cbr\u003e4.4.4 Electro-optical Effect\u003cbr\u003e4.4.5 Infrared Optical Properties\u003cbr\u003e4.5 Monitoring of Resin Cure\u003cbr\u003e4.5.1 Thermally Cured Resins\u003cbr\u003e4.5.1.1 Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2 Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3 Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4 Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5 Thermal Conductivity\u003cbr\u003e4.5.2 Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1 Differential Photo-calorimetry\u003cbr\u003e4.5.2.2 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3 Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4 Gas Chromatography-based Methods\u003cbr\u003e4.6 Adhesion Studies\u003cbr\u003e4.7 Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1 Dynamic Mechanical Analysis\u003cbr\u003e4.7.2 Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Thermal Stability\u003cbr\u003e5.1 Thermogravimetric Analysis\u003cbr\u003e5.2 Differential Thermal Analysis\u003cbr\u003e5.3 Differential Scanning Calorimetry\u003cbr\u003e5.4 Thermal Volatilisation Analysis\u003cbr\u003e5.5 Evolved Gas Analysis\u003cbr\u003e5.6 Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7 Mass Spectroscopy\u003cbr\u003e5.8 Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9 Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Thermo-oxidative Stability\u003cbr\u003e6.1 Thermogravimetric Analysis\u003cbr\u003e6.2 Differential Scanning Calorimetry\u003cbr\u003e6.3 Evolved Gas Analysis\u003cbr\u003e6.4 Infrared Spectroscopy\u003cbr\u003e6.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6 Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7 Imaging Chemiluminescence\u003cbr\u003e6.8 Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Assessment of Polymer Stability\u003cbr\u003e7.1 Light Stability\u003cbr\u003e7.1.1 Ultraviolet Light Weathering\u003cbr\u003e7.1.2 Natural Weathering Tests\u003cbr\u003e7.2 Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1 Effect of Pigments\u003cbr\u003e7.2.2 Effect of Carbon Black\u003cbr\u003e7.2.3 Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4 Effect of Thickness\u003cbr\u003e7.2.5 Effect of Stress during Exposure\u003cbr\u003e7.3 Gamma Radiation\u003cbr\u003e7.4 Electron Irradiation\u003cbr\u003e7.5 Irradiation by Carbon Ion Beam\u003cbr\u003e7.6 Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7 Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8 Water Absorption\u003cbr\u003e7.9 Chemical Resistance\u003cbr\u003e7.9.1 Detergent Resistance\u003cbr\u003e7.10 Hydrolytic Stability\u003cbr\u003e7.11 Resistance to Gases\u003cbr\u003e7.12 Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Selecting a Suitable Polymer\u003cbr\u003e8.1 Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2 Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3 Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers\u003cbr\u003eAppendix 2 – Mechanical properties of polymers\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:45-04:00","created_at":"2017-06-22T21:14:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","adhesion","book","electrical properties","elongation","mechanical propertis","p-properties","polymer REACH","polymer stability","properties of polymer","REACH legislation","thermal properties","thermal stability","thermo-oxidative stability"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378435140,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"REACH for the Polymer Industry - A Practical Guide","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356208","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947","options":["Title"],"media":[{"alt":null,"id":358729023581,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Polymer REACH Consortium \u003cbr\u003eISBN 9781847356208 \u003cbr\u003e\u003cbr\u003ePublished: 2012\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book has been produced by the EU Leonardo Project called Polymer REACH. The overall objective of Polymer REACH was to develop an e-learning platform and training materials for the European polymer industry to learn and understand how to manage their obligations under the European legislation - Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). \u003cbr\u003e\u003cbr\u003eThis book forms part of the training materials which will complement the industry-specific e-learning platform to enable the polymer industry to learn how to manage their obligations under REACH. The overall impact will be an increase in the knowledge base of the polymer industry on REACH, which will in turn help to increase competitiveness and sustainability of the sector.\u003cbr\u003e\u003cbr\u003eThis book will be useful to anyone who works with polymers or the chemicals that are used to make polymers, whether they are end-users or suppliers. REACH is affecting everyone concerned with the polymer industry and this book will help them to prepare for the impact and consequences of the REACH legislation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Mechanical Properties of Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Tensile Strength\u003cbr\u003e1.2.1 Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3 Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1 Torsion Test\u003cbr\u003e1.3.2 Hand Test\u003cbr\u003e1.4 Elongation at Break\u003cbr\u003e1.4.1 Basic Creep Data\u003cbr\u003e1.5 Strain at Yield\u003cbr\u003e1.5.1 Isochronous Stress-strain Curves\u003cbr\u003e1.5.2 Stress-time Curves\u003cbr\u003e1.5.3 Stress-temperature Curves\u003cbr\u003e1.5.4 Extrapolation Techniques\u003cbr\u003e1.5.5 Basic Parameters\u003cbr\u003e1.5.6 Recovery in Stress Phenomena\u003cbr\u003e1.5.7 Stress Relaxation\u003cbr\u003e1.5.8 Rupture Data\u003cbr\u003e1.5.9 Long-term Strain-time Data\u003cbr\u003e1.6 Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1 Notched Izod Impact Strength\u003cbr\u003e1.6.2 Falling Weight Impact Test\u003cbr\u003e1.6.3 Notch Sensitivity\u003cbr\u003e1.6.4 Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5 Effect of Molecular Parameters\u003cbr\u003e1.7 Shear Strength\u003cbr\u003e1.8 Elongation in Tension\u003cbr\u003e1.9 Deformation Under Load\u003cbr\u003e1.10 Compressive Set (Permanent Deformation)\u003cbr\u003e1.11 Mould Shrinkage\u003cbr\u003e1.12 Coefficient of Friction\u003cbr\u003e1.13 Fatigue Index\u003cbr\u003e1.14 Toughness\u003cbr\u003e1.15 Abrasion Resistance or Wear\u003cbr\u003e1.16 Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1 Glass Fibres\u003cbr\u003e1.16.1.1 Poly Tetrafluoroethylene\u003cbr\u003e1.16.2 Polyethylene Terephthalate\u003cbr\u003e1.16.2.1 Polyether Ether Ketone\u003cbr\u003e1.16.2.2 Polyimide\u003cbr\u003e1.16.2.3 Polyamide Imide\u003cbr\u003e1.16.3 Calcium Carbonate\u003cbr\u003e1.16.4 Modified Clays\u003cbr\u003e1.16.5 Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6 Carbon Fibres\u003cbr\u003e1.16.7 Carbon Nanotubes\u003cbr\u003e1.16.8 Miscellaneous Fillers\/Reinforcing Agents.\u003cbr\u003e1.16.9 Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17 Application of Dynamic Mechanical Analysis.\u003cbr\u003e1.17.1 Theory\u003cbr\u003e1.17.2 Instrumentation (Appendix 1)\u003cbr\u003e1.17.3 Fixed Frequency Mode\u003cbr\u003e1.17.3.1 Resonant Frequency Mode\u003cbr\u003e1.17.3.2 Stress Relaxation Mode\u003cbr\u003e1.17.3.3 Creep Mode\u003cbr\u003e1.17.3.4 Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5 Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6 Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7 Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8 Storage Modulus\u003cbr\u003e1.17.3.9 Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10 Elastomer Low-Temperature Properties\u003cbr\u003e1.17.3.11 Tensile Modulus\u003cbr\u003e1.17.3.12 Stress-strain Relationships\u003cbr\u003e1.17.3.13 Viscosity\u003cbr\u003e1.17.3.14 Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18 Rheology and Viscoelasticity\u003cbr\u003e1.19 Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1 Measurement of Rheological Properties\u003cbr\u003e1.19.2 Viscosity and Elasticity\u003cbr\u003e1.19.3 Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4 Flexing Test\u003cbr\u003e1.19.5 Deformation\u003cbr\u003e1.19.6 Tensile Properties\u003cbr\u003e1.19.7 Mechanical Stability of Natural and Synthetic Lattices\u003cbr\u003e1.19.8 Abrasion Test\u003cbr\u003e1.19.9 Peel Adhesion Test\u003cbr\u003e1.19.10 Ozone Resistance Test\u003cbr\u003e1.20 Physical Testing of Polymer Powders\u003cbr\u003e1.20.1 Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2 Artificial Weathering\u003cbr\u003e1.20.3 Natural Weathering\u003cbr\u003e1.20.4 Reactivity\u003cbr\u003e1.20.5 Melt Viscosity\u003cbr\u003e1.20.6 Loss on Stoving\u003cbr\u003e1.20.7 True Density\u003cbr\u003e1.20.8 Bulk Density\u003cbr\u003e1.20.9 Powder Flow\u003cbr\u003e1.20.10 Test for Cure\u003cbr\u003e1.20.11 Electrical Properties\u003cbr\u003e1.20.12 Thermal Analysis\u003cbr\u003e1.20.13 Particle-size Distribution\u003cbr\u003e1.20.13.1 Methods Based on Electrical Sensing Zone (Coulter Principle)\u003cbr\u003e1.20.13.2 Laser Particle Size Analysers\u003cbr\u003e1.20.13.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4 Sedimentation.\u003cbr\u003e1.20.13.5 Acoustic Spectroscopy\u003cbr\u003e1.20.13.6 Capillary Hydrodynamic Fractionation\u003cbr\u003e1.20.13.7 Small-angle Light Scattering\u003cbr\u003e1.21 Plastic Pipe Materials\u003cbr\u003e1.22 Plastic Film\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Thermal Properties of Polymers\u003cbr\u003e2.1 Linear Co-efficient of Expansion\u003cbr\u003e2.2 Mould Shrinkage\u003cbr\u003e2.3 Distortion Temperature\u003cbr\u003e2.3.1 Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2 Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4 Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5 Melting Temperature\u003cbr\u003e2.6 Maximum Operating Temperature\u003cbr\u003e2.7 Melt Flow Index\u003cbr\u003e2.8 VICAT Softening Point\u003cbr\u003e2.9 Thermal Conductivity\u003cbr\u003e2.10 Specific Heat\u003cbr\u003e2.10.1 Hot-wire Techniques\u003cbr\u003e2.10.2 Transient Plane Source Technique\u003cbr\u003e2.10.3 Laser Flash Technique\u003cbr\u003e2.10.4 Thermal Diffusivity\u003cbr\u003e2.11 Maximum Filming Temperature\u003cbr\u003e2.12 Heat at Volatilisation\u003cbr\u003e2.13 Glass Transition Temperature\u003cbr\u003e2.13.1 Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1 Theory\u003cbr\u003e2.14 Thermomechanical Analysis\u003cbr\u003e2.14.1 Theory\u003cbr\u003e2.15 Dynamic Mechanical Analysis\u003cbr\u003e2.16 Differential Thermal Analysis and \u003cbr\u003eThermogravimetric Analysis\u003cbr\u003e2.17 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18 Dielectric Thermal Analysis\u003cbr\u003e2.19 Inverse Gas Chromatography\u003cbr\u003e2.20 Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1 Differential Thermal Analysis\u003cbr\u003e2.20.2 Dynamic Mechanical Analysis\u003cbr\u003e2.20.3 Dielectric Thermal Analysis\u003cbr\u003e2.20.4 Thermomechanical Analysis\u003cbr\u003e2.20.5 Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Electrical Properties\u003cbr\u003e3.1 Volume Resistivity\u003cbr\u003e3.2 Dielectric Strength\u003cbr\u003e3.3 Dielectric Constant\u003cbr\u003e3.4 Dissipation Factor\u003cbr\u003e3.5 Surface Arc Resistance\u003cbr\u003e3.6 Tracking Resistance\u003cbr\u003e3.7 Electrical Resistance and Resistivity\u003cbr\u003e3.8 Electrical Conductivity\u003cbr\u003e3.9 Electronically Conducting Polymers\u003cbr\u003e3.10 Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Other Physical Properties\u003cbr\u003e4.1 Surface Hardness\u003cbr\u003e4.2 Specific Gravity and Bulk Density\u003cbr\u003e4.3 Gas Barrier Properties\u003cbr\u003e4.4 Optical Properties\u003cbr\u003e4.4.1 Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2 Light Scattering\u003cbr\u003e4.4.3 Optical Properties\u003cbr\u003e4.4.4 Electro-optical Effect\u003cbr\u003e4.4.5 Infrared Optical Properties\u003cbr\u003e4.5 Monitoring of Resin Cure\u003cbr\u003e4.5.1 Thermally Cured Resins\u003cbr\u003e4.5.1.1 Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2 Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3 Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4 Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5 Thermal Conductivity\u003cbr\u003e4.5.2 Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1 Differential Photo-calorimetry\u003cbr\u003e4.5.2.2 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3 Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4 Gas Chromatography-based Methods\u003cbr\u003e4.6 Adhesion Studies\u003cbr\u003e4.7 Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1 Dynamic Mechanical Analysis\u003cbr\u003e4.7.2 Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Thermal Stability\u003cbr\u003e5.1 Thermogravimetric Analysis\u003cbr\u003e5.2 Differential Thermal Analysis\u003cbr\u003e5.3 Differential Scanning Calorimetry\u003cbr\u003e5.4 Thermal Volatilisation Analysis\u003cbr\u003e5.5 Evolved Gas Analysis\u003cbr\u003e5.6 Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7 Mass Spectroscopy\u003cbr\u003e5.8 Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9 Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Thermo-oxidative Stability\u003cbr\u003e6.1 Thermogravimetric Analysis\u003cbr\u003e6.2 Differential Scanning Calorimetry\u003cbr\u003e6.3 Evolved Gas Analysis\u003cbr\u003e6.4 Infrared Spectroscopy\u003cbr\u003e6.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6 Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7 Imaging Chemiluminescence\u003cbr\u003e6.8 Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Assessment of Polymer Stability\u003cbr\u003e7.1 Light Stability\u003cbr\u003e7.1.1 Ultraviolet Light Weathering\u003cbr\u003e7.1.2 Natural Weathering Tests\u003cbr\u003e7.2 Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1 Effect of Pigments\u003cbr\u003e7.2.2 Effect of Carbon Black\u003cbr\u003e7.2.3 Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4 Effect of Thickness\u003cbr\u003e7.2.5 Effect of Stress during Exposure\u003cbr\u003e7.3 Gamma Radiation\u003cbr\u003e7.4 Electron Irradiation\u003cbr\u003e7.5 Irradiation by Carbon Ion Beam\u003cbr\u003e7.6 Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7 Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8 Water Absorption\u003cbr\u003e7.9 Chemical Resistance\u003cbr\u003e7.9.1 Detergent Resistance\u003cbr\u003e7.10 Hydrolytic Stability\u003cbr\u003e7.11 Resistance to Gases\u003cbr\u003e7.12 Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Selecting a Suitable Polymer\u003cbr\u003e8.1 Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2 Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3 Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers\u003cbr\u003eAppendix 2 – Mechanical properties of polymers\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Fluorinated Ionomers, ...
$180.00
{"id":11242240580,"title":"Fluorinated Ionomers, 2nd Edition","handle":"978-1-4377-4457-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Walther Grot, Ion Power, Inc. (former DuPont), Delaware, U.S.A. \u003cbr\u003eISBN 978-1-4377-4457-6 \u003cbr\u003e\u003cbr\u003eHardbound, 312 Pages \n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFluorinated ionomer polymers form impermeable membranes that conduct electricity, properties that have been put to use in large-scale electrochemical applications, revolutionizing the chlor-alkali industry and transforming production methods of some of the world’s highest-production commodity chemicals: chlorine, sodium hydroxide, and potassium hydroxide. The use of fluorinated ionomers such as Nafion® has removed the need for mercury and asbestos in these processes and led to a massive reduction in electricity usage in these highly energy-intensive processes. Polymers in this group have also found uses in fuel-cells, metal-ion recovery, water electrolysis, plating, surface treatment of metals, batteries, sensors, drug release technologies, gas drying and humidification, and super-acid catalysis used in the production of specialty chemicals. Walther Grot, who invented Nafion® while working for DuPont, has written this book as a practical guide to engineers and scientists working in electrochemistry, the fuel cell industry and other areas of application. His book is a unique guide to this important polymer group and its applications, in membranes and other forms. The 2e expands this handbook by over a third, with new sections covering developments in electrolysis and membranes, additional information about the synthesis and science of the polymer group, and an enhanced provision of reference data. \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience:\u003c\/b\u003e \u003c\/p\u003e\n\u003cp\u003eIndustrial Chemists, Chemical Engineers and Electrical Engineers involved in product development and technical service in the Chlor-alkali and fuel cell industries. Engineers involved in applications using fluorinated ionomers, e.g. chemical industry, energy\/cleantech, automotive industry. Fluoropolymer manufacturers \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e1.1 Polymers\u003cbr\u003e\u003cbr\u003e1.2 Physical Shapes\u003cbr\u003e\u003cbr\u003e1.3 References\u003cbr\u003e\u003cbr\u003e2 History\u003cbr\u003e\u003cbr\u003e2.1 References\u003cbr\u003e\u003cbr\u003e3 Manufacture\u003cbr\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e\u003cbr\u003e3.2 Perfluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.3 Polymerization\u003cbr\u003e\u003cbr\u003e3.4 Fabrication\u003cbr\u003e\u003cbr\u003e3.5 Hydrolysis and Acid Exchange\u003cbr\u003e\u003cbr\u003e3.6 Finishing and Testing\u003cbr\u003e\u003cbr\u003e3.7 Liquid Compositions\u003cbr\u003e\u003cbr\u003e3.8 Fluorinated Ionomers with Phosphonic or Sulfonyl Imide Functional Groups\u003cbr\u003e\u003cbr\u003e3.9 Partially Fluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.10 Composite Materials of Ionomers and Inorganic Oxides\u003cbr\u003e\u003cbr\u003e3.11 Composite Materials of Ionomers and a Porous Matrix\u003cbr\u003e\u003cbr\u003e3.12 Remanufactured Membranes\u003cbr\u003e\u003cbr\u003e3.13 References\u003cbr\u003e\u003cbr\u003e4 Properties\u003cbr\u003e\u003cbr\u003e4.1 Properties of the Precursor Polymers\u003cbr\u003e\u003cbr\u003e4.2 Properties of the Ionic Forms\u003cbr\u003e\u003cbr\u003e4.3 Morphology\u003cbr\u003e\u003cbr\u003e4.4 Transport Properties\u003cbr\u003e\u003cbr\u003e4.5 Optical Properties\u003cbr\u003e\u003cbr\u003e4.6 Thermal Properties\u003cbr\u003e\u003cbr\u003e4.7 Stability\u003cbr\u003e\u003cbr\u003e4.8 References\u003cbr\u003e\u003cbr\u003e5 Applications\u003cbr\u003e\u003cbr\u003e5.1 Electrolysis\u003cbr\u003e\u003cbr\u003e5.2 Sensors and Actuators\u003cbr\u003e\u003cbr\u003e5.3 Dialysis\u003cbr\u003e\u003cbr\u003e5.4 Gas and Vapor Diffusion\u003cbr\u003e\u003cbr\u003e5.5 Protective Clothing\u003cbr\u003e\u003cbr\u003e5.6 Catalysis\u003cbr\u003e\u003cbr\u003e5.7 References\u003cbr\u003e\u003cbr\u003e6 Fuel Cells and Batteries\u003cbr\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e\u003cbr\u003e6.2 Operating Parameters\u003cbr\u003e\u003cbr\u003e6.3 Ionomer Stability\u003cbr\u003e\u003cbr\u003e6.4 Direct Methanol Fuel Cells (DMFCs)\u003cbr\u003e\u003cbr\u003e6.5 Manufacture of MEAs\u003cbr\u003e\u003cbr\u003e6.6 Rechargeable Flow Through Batteries\u003cbr\u003e\u003cbr\u003e6.7 References\u003cbr\u003e\u003cbr\u003e6.8 Further Reading\u003cbr\u003e\u003cbr\u003e7 Commercial Membrane Types\u003cbr\u003e\u003cbr\u003e7.1 Unreinforced Perfluorinated Sulfonic Acid Films\u003cbr\u003e\u003cbr\u003e7.2 Reinforced Perfluorinated Membranes\u003cbr\u003e\u003cbr\u003e8 Economic Aspects\u003cbr\u003e\u003cbr\u003e8.1 Chlor-Alkali Cells\u003cbr\u003e\u003cbr\u003e8.2 Fuel Cells\u003cbr\u003e\u003cbr\u003e8.3 References\u003cbr\u003e\u003cbr\u003e9 Experimental Methods\u003cbr\u003e\u003cbr\u003e9.1 Infrared Spectra\u003cbr\u003e\u003cbr\u003e9.2 Hydrolysis, Surface Hydrolysis, and Staining\u003cbr\u003e\u003cbr\u003e9.3 Other Reactions of the Precursor Polymer\u003cbr\u003e\u003cbr\u003e9.4 Ion Exchange Equilibrium\u003cbr\u003e\u003cbr\u003e9.5 Determination of EW by Titration or Infrared Analysis\u003cbr\u003e\u003cbr\u003e9.6 Determining Melt Flow\u003cbr\u003e\u003cbr\u003e9.7 Distinguishing the Precursor Polymer from Various Ionic Forms\u003cbr\u003e\u003cbr\u003e9.8 Fenton’s Test for Oxidative Stability\u003cbr\u003e\u003cbr\u003e9.9 Examination of a Membrane\u003cbr\u003e\u003cbr\u003e9.10 Determining the Permselectivity\u003cbr\u003e\u003cbr\u003e9.11 Measuring Pervaporation Rates\u003cbr\u003e\u003cbr\u003e9.12 Simple Electrolytic Cells\u003cbr\u003e\u003cbr\u003e9.13 References\u003cbr\u003e\u003cbr\u003e10 Heat Sealing and Repair\u003cbr\u003e\u003cbr\u003e10.1 Reference\u003cbr\u003e\u003cbr\u003e11 Handling and Storage\u003cbr\u003e\u003cbr\u003e11.1 Handling the Film\u003cbr\u003e\u003cbr\u003e11.2 Pretreatment\u003cbr\u003e\u003cbr\u003e11.3 Installation\u003cbr\u003e\u003cbr\u003e11.4 Sealing and Gasketing\u003cbr\u003e\u003cbr\u003e12 Toxicology, Safety and Disposal\u003cbr\u003e\u003cbr\u003e12.1 Toxicology\u003cbr\u003e\u003cbr\u003e12.2 Safety\u003cbr\u003e\u003cbr\u003e12.3 Disposal\u003cbr\u003e\u003cbr\u003e12.4 References\u003cbr\u003e\u003cbr\u003eAppendix A A Chromic Acid Regeneration System\u003cbr\u003e\u003cbr\u003eAppendix B Laboratory Chlor-alkali Cell\u003cbr\u003e\u003cbr\u003eAppendix C Solution Cast Nafion Film\u003cbr\u003e\u003cbr\u003eAppendix D Plastic-Based Bipolar Plates\u003cbr\u003e\u003cbr\u003eSuppliers and Resources\u003cbr\u003e\u003cbr\u003eGlossary and Web Sites\u003cbr\u003e\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:45-04:00","created_at":"2017-06-22T21:14:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","composite","fluorinated ionomers","fluoropolymers","ionic forms","ionomers","Nafion","p-chemistry","polymer"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433988,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fluorinated Ionomers, 2nd Edition","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-4457-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526","options":["Title"],"media":[{"alt":null,"id":354807447645,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4457-6.jpg?v=1500216526","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Walther Grot, Ion Power, Inc. (former DuPont), Delaware, U.S.A. \u003cbr\u003eISBN 978-1-4377-4457-6 \u003cbr\u003e\u003cbr\u003eHardbound, 312 Pages \n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFluorinated ionomer polymers form impermeable membranes that conduct electricity, properties that have been put to use in large-scale electrochemical applications, revolutionizing the chlor-alkali industry and transforming production methods of some of the world’s highest-production commodity chemicals: chlorine, sodium hydroxide, and potassium hydroxide. The use of fluorinated ionomers such as Nafion® has removed the need for mercury and asbestos in these processes and led to a massive reduction in electricity usage in these highly energy-intensive processes. Polymers in this group have also found uses in fuel-cells, metal-ion recovery, water electrolysis, plating, surface treatment of metals, batteries, sensors, drug release technologies, gas drying and humidification, and super-acid catalysis used in the production of specialty chemicals. Walther Grot, who invented Nafion® while working for DuPont, has written this book as a practical guide to engineers and scientists working in electrochemistry, the fuel cell industry and other areas of application. His book is a unique guide to this important polymer group and its applications, in membranes and other forms. The 2e expands this handbook by over a third, with new sections covering developments in electrolysis and membranes, additional information about the synthesis and science of the polymer group, and an enhanced provision of reference data. \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eAudience:\u003c\/b\u003e \u003c\/p\u003e\n\u003cp\u003eIndustrial Chemists, Chemical Engineers and Electrical Engineers involved in product development and technical service in the Chlor-alkali and fuel cell industries. Engineers involved in applications using fluorinated ionomers, e.g. chemical industry, energy\/cleantech, automotive industry. Fluoropolymer manufacturers \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e\u003cbr\u003e1.1 Polymers\u003cbr\u003e\u003cbr\u003e1.2 Physical Shapes\u003cbr\u003e\u003cbr\u003e1.3 References\u003cbr\u003e\u003cbr\u003e2 History\u003cbr\u003e\u003cbr\u003e2.1 References\u003cbr\u003e\u003cbr\u003e3 Manufacture\u003cbr\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e\u003cbr\u003e3.2 Perfluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.3 Polymerization\u003cbr\u003e\u003cbr\u003e3.4 Fabrication\u003cbr\u003e\u003cbr\u003e3.5 Hydrolysis and Acid Exchange\u003cbr\u003e\u003cbr\u003e3.6 Finishing and Testing\u003cbr\u003e\u003cbr\u003e3.7 Liquid Compositions\u003cbr\u003e\u003cbr\u003e3.8 Fluorinated Ionomers with Phosphonic or Sulfonyl Imide Functional Groups\u003cbr\u003e\u003cbr\u003e3.9 Partially Fluorinated Ionomers\u003cbr\u003e\u003cbr\u003e3.10 Composite Materials of Ionomers and Inorganic Oxides\u003cbr\u003e\u003cbr\u003e3.11 Composite Materials of Ionomers and a Porous Matrix\u003cbr\u003e\u003cbr\u003e3.12 Remanufactured Membranes\u003cbr\u003e\u003cbr\u003e3.13 References\u003cbr\u003e\u003cbr\u003e4 Properties\u003cbr\u003e\u003cbr\u003e4.1 Properties of the Precursor Polymers\u003cbr\u003e\u003cbr\u003e4.2 Properties of the Ionic Forms\u003cbr\u003e\u003cbr\u003e4.3 Morphology\u003cbr\u003e\u003cbr\u003e4.4 Transport Properties\u003cbr\u003e\u003cbr\u003e4.5 Optical Properties\u003cbr\u003e\u003cbr\u003e4.6 Thermal Properties\u003cbr\u003e\u003cbr\u003e4.7 Stability\u003cbr\u003e\u003cbr\u003e4.8 References\u003cbr\u003e\u003cbr\u003e5 Applications\u003cbr\u003e\u003cbr\u003e5.1 Electrolysis\u003cbr\u003e\u003cbr\u003e5.2 Sensors and Actuators\u003cbr\u003e\u003cbr\u003e5.3 Dialysis\u003cbr\u003e\u003cbr\u003e5.4 Gas and Vapor Diffusion\u003cbr\u003e\u003cbr\u003e5.5 Protective Clothing\u003cbr\u003e\u003cbr\u003e5.6 Catalysis\u003cbr\u003e\u003cbr\u003e5.7 References\u003cbr\u003e\u003cbr\u003e6 Fuel Cells and Batteries\u003cbr\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e\u003cbr\u003e6.2 Operating Parameters\u003cbr\u003e\u003cbr\u003e6.3 Ionomer Stability\u003cbr\u003e\u003cbr\u003e6.4 Direct Methanol Fuel Cells (DMFCs)\u003cbr\u003e\u003cbr\u003e6.5 Manufacture of MEAs\u003cbr\u003e\u003cbr\u003e6.6 Rechargeable Flow Through Batteries\u003cbr\u003e\u003cbr\u003e6.7 References\u003cbr\u003e\u003cbr\u003e6.8 Further Reading\u003cbr\u003e\u003cbr\u003e7 Commercial Membrane Types\u003cbr\u003e\u003cbr\u003e7.1 Unreinforced Perfluorinated Sulfonic Acid Films\u003cbr\u003e\u003cbr\u003e7.2 Reinforced Perfluorinated Membranes\u003cbr\u003e\u003cbr\u003e8 Economic Aspects\u003cbr\u003e\u003cbr\u003e8.1 Chlor-Alkali Cells\u003cbr\u003e\u003cbr\u003e8.2 Fuel Cells\u003cbr\u003e\u003cbr\u003e8.3 References\u003cbr\u003e\u003cbr\u003e9 Experimental Methods\u003cbr\u003e\u003cbr\u003e9.1 Infrared Spectra\u003cbr\u003e\u003cbr\u003e9.2 Hydrolysis, Surface Hydrolysis, and Staining\u003cbr\u003e\u003cbr\u003e9.3 Other Reactions of the Precursor Polymer\u003cbr\u003e\u003cbr\u003e9.4 Ion Exchange Equilibrium\u003cbr\u003e\u003cbr\u003e9.5 Determination of EW by Titration or Infrared Analysis\u003cbr\u003e\u003cbr\u003e9.6 Determining Melt Flow\u003cbr\u003e\u003cbr\u003e9.7 Distinguishing the Precursor Polymer from Various Ionic Forms\u003cbr\u003e\u003cbr\u003e9.8 Fenton’s Test for Oxidative Stability\u003cbr\u003e\u003cbr\u003e9.9 Examination of a Membrane\u003cbr\u003e\u003cbr\u003e9.10 Determining the Permselectivity\u003cbr\u003e\u003cbr\u003e9.11 Measuring Pervaporation Rates\u003cbr\u003e\u003cbr\u003e9.12 Simple Electrolytic Cells\u003cbr\u003e\u003cbr\u003e9.13 References\u003cbr\u003e\u003cbr\u003e10 Heat Sealing and Repair\u003cbr\u003e\u003cbr\u003e10.1 Reference\u003cbr\u003e\u003cbr\u003e11 Handling and Storage\u003cbr\u003e\u003cbr\u003e11.1 Handling the Film\u003cbr\u003e\u003cbr\u003e11.2 Pretreatment\u003cbr\u003e\u003cbr\u003e11.3 Installation\u003cbr\u003e\u003cbr\u003e11.4 Sealing and Gasketing\u003cbr\u003e\u003cbr\u003e12 Toxicology, Safety and Disposal\u003cbr\u003e\u003cbr\u003e12.1 Toxicology\u003cbr\u003e\u003cbr\u003e12.2 Safety\u003cbr\u003e\u003cbr\u003e12.3 Disposal\u003cbr\u003e\u003cbr\u003e12.4 References\u003cbr\u003e\u003cbr\u003eAppendix A A Chromic Acid Regeneration System\u003cbr\u003e\u003cbr\u003eAppendix B Laboratory Chlor-alkali Cell\u003cbr\u003e\u003cbr\u003eAppendix C Solution Cast Nafion Film\u003cbr\u003e\u003cbr\u003eAppendix D Plastic-Based Bipolar Plates\u003cbr\u003e\u003cbr\u003eSuppliers and Resources\u003cbr\u003e\u003cbr\u003eGlossary and Web Sites\u003cbr\u003e\u003cbr\u003eIndex"}