Chemtec Publishing offers a large collection of books on polymers, plastics, and rubber.
- Grid List
Filter
Film Properties of Pla...
$275.00
{"id":11242202244,"title":"Film Properties of Plastics and Elastomers, 3rd Edition","handle":"978-1-4557-2551-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2551-9 \u003cbr\u003e\u003cbr\u003e320 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively revised second edition is the only data handbook available on the engineering properties of commercial polymeric films details many physical, mechanical, optical, electrical, and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in the same family as well as materials in different families. Data are presented on the characteristics of 47 major plastic and elastomer packaging materials. New to this edition, the resin chapters each contain textual summary information including category, general description, processing methods, applications, and other facts as appropriate, such as reliability, weatherability, and regulatory approval considerations for use in food and medical packaging. Extensive references are provided.\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers, chemists, manufacturers, suppliers, designers and other technical professionals who want a comprehensive reference guide to film properties of plastics and elastomers.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1. Introduction to Plastics and Polymers \u003cbr\u003e1.1. Polymerization\u003cbr\u003e1.1.1. Addition Polymerization\u003cbr\u003e1.1.2. Condensation Polymerization\u003cbr\u003e1.2. Copolymers\u003cbr\u003e1.3. Linear, Branched, and Crosslinked Polymers\u003cbr\u003e1.4. Polarity\u003cbr\u003e1.5. Unsaturation\u003cbr\u003e1.6. Steric Hindrance\u003cbr\u003e1.7. Isomers\u003cbr\u003e1.7.1. Structural isomers\u003cbr\u003e1.7.2. Geometric Isomers\u003cbr\u003e1.7.3. Stereosiomers - Syndiotactic, Isotactic, Atactic\u003cbr\u003e1.8. Inter and Intramolecular attractions in polymers\u003cbr\u003e1.8.1. Hydrogen Bonding\u003cbr\u003e1.8.2. Van der waals Forces\u003cbr\u003e1.8.3. Chain Entanglement\u003cbr\u003e1.9. General Classifications\u003cbr\u003e1.9.1. Molecular Weight\u003cbr\u003e1.9.2. Thermosets vs. Thermoplastics\u003cbr\u003e1.9.3. Crystalline vs. Amorphous\u003cbr\u003e1.9.4. Orientation\u003cbr\u003e1.10. Plastic Compositions\u003cbr\u003e1.10.1. Polymer Blends\u003cbr\u003e1.10.2. Elastomers\u003cbr\u003e1.10.3. Additives\u003cbr\u003e1.10.3.1. Fillers, Reinforcement, Composites \u003cbr\u003e1.10.3.2. Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants\u003cbr\u003e1.10.3.3. Release Agents\u003cbr\u003e1.10.3.4. Slip additives\/Internal Lubricants \u003cbr\u003e1.10.3.5. Antiblock Additives\u003cbr\u003e1.10.3.6. Catalysts\u003cbr\u003e1.10.3.7. Impact Modifiers and Tougheners\u003cbr\u003e1.10.3.8. UV Stabilizers\u003cbr\u003e1.10.3.9. Optical Brighteners\u003cbr\u003e1.10.3.10. Plasticizers\u003cbr\u003e1.10.3.11. Pigments, Extenders, Dyes, Mica\u003cbr\u003e1.10.3.12. Coupling Agents\u003cbr\u003e1.10.3.13. Thermal Stabilizers\u003cbr\u003e1.10.3.14. Antistats\u003cbr\u003e1.11. Summary\u003cbr\u003e2. Chapter 2 - Introduction to the Mechanical, Thermal and Permeation Properties of Plastics and Elastomers\u003cbr\u003e2.1. Physical property testing of plastic films\u003cbr\u003e2.1.1. Specific gravity, density\u003cbr\u003e2.1.2. Dimensional stability\u003cbr\u003e2.1.3. Hygroscopic expansion\u003cbr\u003e2.1.4. Residual shrinkage\u003cbr\u003e2.1.5. Coefficient of Thermal Expansion\u003cbr\u003e2.1.6. Appearance: Color, Haze, and Gloss\u003cbr\u003e2.1.6.1. Color\u003cbr\u003e2.1.6.2. Gloss measurement\u003cbr\u003e2.1.6.3. Haze measurement\u003cbr\u003e2.1.7. Coefficient of friction\u003cbr\u003e2.2. Mechanical Property Testing of Plastic films\u003cbr\u003e2.2.1. Tensile Properties\u003cbr\u003e2.2.2. Flexural Properties\u003cbr\u003e2.2.3. Folding endurance (MIT)\u003cbr\u003e2.2.4. Puncture properties\u003cbr\u003e2.2.4.1. High speed puncture test\u003cbr\u003e2.2.4.2. Drop Dart Impact Test for Plastics Film\u003cbr\u003e2.2.5. Tear Properties\u003cbr\u003e2.2.5.1. Elmendorf Tear Strength\u003cbr\u003e2.2.5.2. Trouser Tear Resistance\u003cbr\u003e2.3. Thermal Property Testing of Plastic films\u003cbr\u003e2.3.1. Melt Flow Index\u003cbr\u003e2.3.2. melting point\u003cbr\u003e2.3.3. Glass Transition Temperature, Tg\u003cbr\u003e2.3.4. Other Thermal Tests\u003cbr\u003e2.4. Electrical Properties of Films\u003cbr\u003e2.4.1. Dielectric constant (or Relative Permittivity)\u003cbr\u003e2.4.2. Dissipation factor\u003cbr\u003e2.4.3. Dielectric Strength\u003cbr\u003e2.4.4. Surface Resistivity\u003cbr\u003e2.4.5. Volume Resistivity\u003cbr\u003e2.5. Permeation of films\u003cbr\u003e2.5.1. History\u003cbr\u003e2.5.2. Transport of Gases and Vapors through solid materials- \u003cbr\u003e2.5.3. Effusion\u003cbr\u003e2.5.4. Solution-Diffusion and Pore-flow Models\u003cbr\u003e2.5.4.1. Dependence of Permeability, Diffusion and Solubility Pressure\u003cbr\u003e2.5.4.2. Dependence of Permeability, Diffusion and Solubility on Temperature - The Arrhenius Equation \u003cbr\u003e2.5.5. Multiple layered films \u003cbr\u003e2.5.6. Permeation and Vapor Transmission Testing \u003cbr\u003e2.5.6.1. Units of Measurement\u003cbr\u003e2.5.6.2. Gas Permeation test cells\u003cbr\u003e2.5.6.3. Vapor Permeation Cup testing\u003cbr\u003e2.5.6.4. Standard Tests for permeation and vapor transmission\u003cbr\u003e3. Production of films\u003cbr\u003e3.1. Extrusion\u003cbr\u003e3.2. Blown Film\u003cbr\u003e3.3. Calendaring\u003cbr\u003e3.4. Casting film lines\u003cbr\u003e3.5. Post film formation processing \u003cbr\u003e3.6. Web coating\u003cbr\u003e3.6.1. Gravure Coating\u003cbr\u003e3.6.2. Reverse Roll Coating\u003cbr\u003e3.6.3. Knife On Roll Coating\u003cbr\u003e3.6.4. Metering Rod (Meyer Rod) Coating\u003cbr\u003e3.6.5. Slot Die (Slot, Extrusion) Coating\u003cbr\u003e3.6.6. Immersion (Dip) Coating\u003cbr\u003e3.6.7. Vacuum deposition\u003cbr\u003e3.6.8. Web Coating process summary\u003cbr\u003e3.7. Lamination\u003cbr\u003e3.7.1. Hot Roll\/Belt Lamination\u003cbr\u003e3.7.2. Flame Lamination\u003cbr\u003e3.8. Orientation\u003cbr\u003e3.8.1. Machine Direction Orientation\u003cbr\u003e3.8.2. Biaxial orientation\u003cbr\u003e3.8.3. Blown Film Orientation\u003cbr\u003e3.9. Skiving\u003cbr\u003e3.10. Coatings\u003cbr\u003e3.11. Summary\u003cbr\u003e4. Markets and Applications for films\u003cbr\u003e4.1. Barrier Films in packaging \u003cbr\u003e4.1.1. Water Vapor\u003cbr\u003e4.1.2. Atmospheric Gases\u003cbr\u003e4.1.3. Odors and Flavors\u003cbr\u003e4.1.4. Markets and Applications of barrier films\u003cbr\u003e4.1.5. Some illustrated applications of multiple layered films\u003cbr\u003e5. Styrenic Plastics\u003cbr\u003e5.1. Acrylonitrile-Butadiene-Styrene Copolymer (ABS) \u003cbr\u003e5.2. Acrylonitrile-Styrene-Acrylate Copolymer (ASA)\u003cbr\u003e5.3. Polystyrene (PS) \u003cbr\u003e5.4. Styrene-Acrylonitrile Copolymer (SAN)\u003cbr\u003e6. Polyesters\u003cbr\u003e6.1. Liquid Crystal Polymer (LCP) \u003cbr\u003e6.2. Polybutylene Terephthalate (PBT)\u003cbr\u003e6.3. Polycarbonate (PC)\u003cbr\u003e6.4. Polycyclohexylene-dimethylene Terephthalate (PCT)\u003cbr\u003e6.5. Polyethylene Napthalate (PEN)\u003cbr\u003e6.6. Polyethylene Terephthalate (PET)\u003cbr\u003e7. Polyimides \u003cbr\u003e7.1. Polyamide-imide\u003cbr\u003e7.2. Polyetherimide\u003cbr\u003e7.3. Polyimide \u003cbr\u003e8. Polyamides (Nylons)\u003cbr\u003e8.1. Polyamide 6 (Nylon 6)\u003cbr\u003e8.2. Polyamide 12 (Nylon 12)\u003cbr\u003e8.3. Polyamide 66 (Nylon 66) \u003cbr\u003e8.4. Polyamide 66\/610 (Nylon 66\/610)\u003cbr\u003e8.5. Polyamide 6\/12 (Nylon 6\/12)\u003cbr\u003e8.6. Polyamide 666 (Nylon 666 or 6\/66)\u003cbr\u003e8.7. Polyamide 6\/69 (Nylon 6\/6.9)\u003cbr\u003e8.8. Nylon 1010\u003cbr\u003e8.9. Specialty Polyamides\u003cbr\u003e8.9.1. Amorphous Polyamides\u003cbr\u003e8.9.2. Nylon PACM-12\u003cbr\u003e8.9.3. PAA - Polyarylamide\u003cbr\u003e9. Polyolefins \u003cbr\u003e9.1. Polyethylene (PE)\u003cbr\u003e9.1.1. Unclassified polyethylene\u003cbr\u003e9.1.2. Ultralow Density polyethylene (ULDPE)\u003cbr\u003e9.1.3. Linear low density polyethylene (LLDPE)\u003cbr\u003e9.1.4. Low density polyethylene (LDPE)\u003cbr\u003e9.1.5. Medium density polyethylene (MDPE)\u003cbr\u003e9.1.6. High density polyethylene (HDPE)\u003cbr\u003e9.2. Polypropylene (PP)\u003cbr\u003e9.3. Polybutene-1 - PB-1\u003cbr\u003e9.4. Polymethyl Pentene (PMP) \u003cbr\u003e9.5. Cyclic Olefin Copolymer (COC)\u003cbr\u003e9.6. Plastomers\u003cbr\u003e10. Polyvinyls \u0026amp; Acrylics\u003cbr\u003e10.1. Ethylene-Vinyl Acetate Copolymer (EVA)\u003cbr\u003e10.2. Ethylene - Vinyl Alcohol Copolymer (EVOH)\u003cbr\u003e10.3. Polyvinyl Alcohol (PVOH)\u003cbr\u003e10.4. Polyvinyl Chloride (PVC)\u003cbr\u003e10.5. Polyvinylidene Chloride (PVDC)\u003cbr\u003e10.6. Polyacrylics\u003cbr\u003e10.7. Acrylonitrile-Methyl Acrylate Copolymer (AMA)\u003cbr\u003e10.8. Ionomers\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e11.1. Polytetrafluoroethylene (PTFE)\u003cbr\u003e11.2. Fluorinated Ethylene Propylene (FEP)\u003cbr\u003e11.3. Perfluoro Alkoxy (PFA)\u003cbr\u003e11.3.1. PFA\u003cbr\u003e11.3.2. MFA\u003cbr\u003e11.4. Amorphous fluoropolymer - Teflon AF®\u003cbr\u003e11.5. Polyvinyl Fluoride (PVF)\u003cbr\u003e11.6. Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e11.7. Polyvinylidene Fluoride (PVDF)\u003cbr\u003e11.8. Ethylene-Tetrafluoroethylene Copolymer (ETFE)\u003cbr\u003e11.9. Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE)\u003cbr\u003e12. High Temperature\/High Performance Polymers\u003cbr\u003e12.1. Polyether ether ketone (PEEK\u003cbr\u003e12.2. Polysiloxane\u003cbr\u003e12.3. Polyphenylene Sulfide (PPS)\u003cbr\u003e12.4. Polysulfone (PSU)\u003cbr\u003e12.5. Polyethersulfone (PES)\u003cbr\u003e12.6. Polybenzimidazole (PBI)\u003cbr\u003e12.7. Parylene (poly(p-xylylene))\u003cbr\u003e12.8. Polyphenylene sulfone (PPSU)\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e13.1. Thermoplastic Polyurethane Elastomers (TPU)\u003cbr\u003e13.2. Olefinic Thermoplastic Elastomers (TPO)\u003cbr\u003e13.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE)\u003cbr\u003e13.4. Thermoplastic Polyether Block Amide Elastomers (PEBA)\u003cbr\u003e13.5. Styrenic Block Copolymer (SBS) Thermoplastic Elastomers\u003cbr\u003e13.6. Syndiotactic 1,2 polybutadiene \u003cbr\u003e14. Renewable Resource or biodegradable polymers \u003cbr\u003e14.1. Cellophane™\u003cbr\u003e14.2. Nitrocellulose\u003cbr\u003e14.3. Cellulose acetate\u003cbr\u003e14.4. Cellulose acetate butyrate\u003cbr\u003e14.5. Ethylcellulose\u003cbr\u003e14.6. Polycaprolactone (PCL)\u003cbr\u003e14.7. Poly (Lactic Acid) (PLA)\u003cbr\u003e14.8. Poly-3-hydroxybutyrate (PHB or PH3B)\u003cbr\u003eAppendices\u003cbr\u003ePermeation Unit Conversion Factors\u003cbr\u003eVapor Transmission rate Conversion factors\u003cbr\u003eIndices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eLaurence W McKeen\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eSenior Research Associate, DuPont, Wilmington, DE, USA\u003c\/div\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","additives","book","electrical","film","Films","lamination","material","mechanical","optical","p-applications","plastics","polymer","properties"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378310468,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Film Properties of Plastics and Elastomers, 3rd Edition","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2551-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111","options":["Title"],"media":[{"alt":null,"id":354806726749,"position":1,"preview_image":{"aspect_ratio":0.771,"height":450,"width":347,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111"},"aspect_ratio":0.771,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2551-9.jpg?v=1499386111","width":347}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Laurence W McKeen \u003cbr\u003eISBN 978-1-4557-2551-9 \u003cbr\u003e\u003cbr\u003e320 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis extensively revised second edition is the only data handbook available on the engineering properties of commercial polymeric films details many physical, mechanical, optical, electrical, and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in the same family as well as materials in different families. Data are presented on the characteristics of 47 major plastic and elastomer packaging materials. New to this edition, the resin chapters each contain textual summary information including category, general description, processing methods, applications, and other facts as appropriate, such as reliability, weatherability, and regulatory approval considerations for use in food and medical packaging. Extensive references are provided.\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers, chemists, manufacturers, suppliers, designers and other technical professionals who want a comprehensive reference guide to film properties of plastics and elastomers.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e1. Introduction to Plastics and Polymers \u003cbr\u003e1.1. Polymerization\u003cbr\u003e1.1.1. Addition Polymerization\u003cbr\u003e1.1.2. Condensation Polymerization\u003cbr\u003e1.2. Copolymers\u003cbr\u003e1.3. Linear, Branched, and Crosslinked Polymers\u003cbr\u003e1.4. Polarity\u003cbr\u003e1.5. Unsaturation\u003cbr\u003e1.6. Steric Hindrance\u003cbr\u003e1.7. Isomers\u003cbr\u003e1.7.1. Structural isomers\u003cbr\u003e1.7.2. Geometric Isomers\u003cbr\u003e1.7.3. Stereosiomers - Syndiotactic, Isotactic, Atactic\u003cbr\u003e1.8. Inter and Intramolecular attractions in polymers\u003cbr\u003e1.8.1. Hydrogen Bonding\u003cbr\u003e1.8.2. Van der waals Forces\u003cbr\u003e1.8.3. Chain Entanglement\u003cbr\u003e1.9. General Classifications\u003cbr\u003e1.9.1. Molecular Weight\u003cbr\u003e1.9.2. Thermosets vs. Thermoplastics\u003cbr\u003e1.9.3. Crystalline vs. Amorphous\u003cbr\u003e1.9.4. Orientation\u003cbr\u003e1.10. Plastic Compositions\u003cbr\u003e1.10.1. Polymer Blends\u003cbr\u003e1.10.2. Elastomers\u003cbr\u003e1.10.3. Additives\u003cbr\u003e1.10.3.1. Fillers, Reinforcement, Composites \u003cbr\u003e1.10.3.2. Combustion Modifiers, Fire and Flame Retardants, and Smoke Suppressants\u003cbr\u003e1.10.3.3. Release Agents\u003cbr\u003e1.10.3.4. Slip additives\/Internal Lubricants \u003cbr\u003e1.10.3.5. Antiblock Additives\u003cbr\u003e1.10.3.6. Catalysts\u003cbr\u003e1.10.3.7. Impact Modifiers and Tougheners\u003cbr\u003e1.10.3.8. UV Stabilizers\u003cbr\u003e1.10.3.9. Optical Brighteners\u003cbr\u003e1.10.3.10. Plasticizers\u003cbr\u003e1.10.3.11. Pigments, Extenders, Dyes, Mica\u003cbr\u003e1.10.3.12. Coupling Agents\u003cbr\u003e1.10.3.13. Thermal Stabilizers\u003cbr\u003e1.10.3.14. Antistats\u003cbr\u003e1.11. Summary\u003cbr\u003e2. Chapter 2 - Introduction to the Mechanical, Thermal and Permeation Properties of Plastics and Elastomers\u003cbr\u003e2.1. Physical property testing of plastic films\u003cbr\u003e2.1.1. Specific gravity, density\u003cbr\u003e2.1.2. Dimensional stability\u003cbr\u003e2.1.3. Hygroscopic expansion\u003cbr\u003e2.1.4. Residual shrinkage\u003cbr\u003e2.1.5. Coefficient of Thermal Expansion\u003cbr\u003e2.1.6. Appearance: Color, Haze, and Gloss\u003cbr\u003e2.1.6.1. Color\u003cbr\u003e2.1.6.2. Gloss measurement\u003cbr\u003e2.1.6.3. Haze measurement\u003cbr\u003e2.1.7. Coefficient of friction\u003cbr\u003e2.2. Mechanical Property Testing of Plastic films\u003cbr\u003e2.2.1. Tensile Properties\u003cbr\u003e2.2.2. Flexural Properties\u003cbr\u003e2.2.3. Folding endurance (MIT)\u003cbr\u003e2.2.4. Puncture properties\u003cbr\u003e2.2.4.1. High speed puncture test\u003cbr\u003e2.2.4.2. Drop Dart Impact Test for Plastics Film\u003cbr\u003e2.2.5. Tear Properties\u003cbr\u003e2.2.5.1. Elmendorf Tear Strength\u003cbr\u003e2.2.5.2. Trouser Tear Resistance\u003cbr\u003e2.3. Thermal Property Testing of Plastic films\u003cbr\u003e2.3.1. Melt Flow Index\u003cbr\u003e2.3.2. melting point\u003cbr\u003e2.3.3. Glass Transition Temperature, Tg\u003cbr\u003e2.3.4. Other Thermal Tests\u003cbr\u003e2.4. Electrical Properties of Films\u003cbr\u003e2.4.1. Dielectric constant (or Relative Permittivity)\u003cbr\u003e2.4.2. Dissipation factor\u003cbr\u003e2.4.3. Dielectric Strength\u003cbr\u003e2.4.4. Surface Resistivity\u003cbr\u003e2.4.5. Volume Resistivity\u003cbr\u003e2.5. Permeation of films\u003cbr\u003e2.5.1. History\u003cbr\u003e2.5.2. Transport of Gases and Vapors through solid materials- \u003cbr\u003e2.5.3. Effusion\u003cbr\u003e2.5.4. Solution-Diffusion and Pore-flow Models\u003cbr\u003e2.5.4.1. Dependence of Permeability, Diffusion and Solubility Pressure\u003cbr\u003e2.5.4.2. Dependence of Permeability, Diffusion and Solubility on Temperature - The Arrhenius Equation \u003cbr\u003e2.5.5. Multiple layered films \u003cbr\u003e2.5.6. Permeation and Vapor Transmission Testing \u003cbr\u003e2.5.6.1. Units of Measurement\u003cbr\u003e2.5.6.2. Gas Permeation test cells\u003cbr\u003e2.5.6.3. Vapor Permeation Cup testing\u003cbr\u003e2.5.6.4. Standard Tests for permeation and vapor transmission\u003cbr\u003e3. Production of films\u003cbr\u003e3.1. Extrusion\u003cbr\u003e3.2. Blown Film\u003cbr\u003e3.3. Calendaring\u003cbr\u003e3.4. Casting film lines\u003cbr\u003e3.5. Post film formation processing \u003cbr\u003e3.6. Web coating\u003cbr\u003e3.6.1. Gravure Coating\u003cbr\u003e3.6.2. Reverse Roll Coating\u003cbr\u003e3.6.3. Knife On Roll Coating\u003cbr\u003e3.6.4. Metering Rod (Meyer Rod) Coating\u003cbr\u003e3.6.5. Slot Die (Slot, Extrusion) Coating\u003cbr\u003e3.6.6. Immersion (Dip) Coating\u003cbr\u003e3.6.7. Vacuum deposition\u003cbr\u003e3.6.8. Web Coating process summary\u003cbr\u003e3.7. Lamination\u003cbr\u003e3.7.1. Hot Roll\/Belt Lamination\u003cbr\u003e3.7.2. Flame Lamination\u003cbr\u003e3.8. Orientation\u003cbr\u003e3.8.1. Machine Direction Orientation\u003cbr\u003e3.8.2. Biaxial orientation\u003cbr\u003e3.8.3. Blown Film Orientation\u003cbr\u003e3.9. Skiving\u003cbr\u003e3.10. Coatings\u003cbr\u003e3.11. Summary\u003cbr\u003e4. Markets and Applications for films\u003cbr\u003e4.1. Barrier Films in packaging \u003cbr\u003e4.1.1. Water Vapor\u003cbr\u003e4.1.2. Atmospheric Gases\u003cbr\u003e4.1.3. Odors and Flavors\u003cbr\u003e4.1.4. Markets and Applications of barrier films\u003cbr\u003e4.1.5. Some illustrated applications of multiple layered films\u003cbr\u003e5. Styrenic Plastics\u003cbr\u003e5.1. Acrylonitrile-Butadiene-Styrene Copolymer (ABS) \u003cbr\u003e5.2. Acrylonitrile-Styrene-Acrylate Copolymer (ASA)\u003cbr\u003e5.3. Polystyrene (PS) \u003cbr\u003e5.4. Styrene-Acrylonitrile Copolymer (SAN)\u003cbr\u003e6. Polyesters\u003cbr\u003e6.1. Liquid Crystal Polymer (LCP) \u003cbr\u003e6.2. Polybutylene Terephthalate (PBT)\u003cbr\u003e6.3. Polycarbonate (PC)\u003cbr\u003e6.4. Polycyclohexylene-dimethylene Terephthalate (PCT)\u003cbr\u003e6.5. Polyethylene Napthalate (PEN)\u003cbr\u003e6.6. Polyethylene Terephthalate (PET)\u003cbr\u003e7. Polyimides \u003cbr\u003e7.1. Polyamide-imide\u003cbr\u003e7.2. Polyetherimide\u003cbr\u003e7.3. Polyimide \u003cbr\u003e8. Polyamides (Nylons)\u003cbr\u003e8.1. Polyamide 6 (Nylon 6)\u003cbr\u003e8.2. Polyamide 12 (Nylon 12)\u003cbr\u003e8.3. Polyamide 66 (Nylon 66) \u003cbr\u003e8.4. Polyamide 66\/610 (Nylon 66\/610)\u003cbr\u003e8.5. Polyamide 6\/12 (Nylon 6\/12)\u003cbr\u003e8.6. Polyamide 666 (Nylon 666 or 6\/66)\u003cbr\u003e8.7. Polyamide 6\/69 (Nylon 6\/6.9)\u003cbr\u003e8.8. Nylon 1010\u003cbr\u003e8.9. Specialty Polyamides\u003cbr\u003e8.9.1. Amorphous Polyamides\u003cbr\u003e8.9.2. Nylon PACM-12\u003cbr\u003e8.9.3. PAA - Polyarylamide\u003cbr\u003e9. Polyolefins \u003cbr\u003e9.1. Polyethylene (PE)\u003cbr\u003e9.1.1. Unclassified polyethylene\u003cbr\u003e9.1.2. Ultralow Density polyethylene (ULDPE)\u003cbr\u003e9.1.3. Linear low density polyethylene (LLDPE)\u003cbr\u003e9.1.4. Low density polyethylene (LDPE)\u003cbr\u003e9.1.5. Medium density polyethylene (MDPE)\u003cbr\u003e9.1.6. High density polyethylene (HDPE)\u003cbr\u003e9.2. Polypropylene (PP)\u003cbr\u003e9.3. Polybutene-1 - PB-1\u003cbr\u003e9.4. Polymethyl Pentene (PMP) \u003cbr\u003e9.5. Cyclic Olefin Copolymer (COC)\u003cbr\u003e9.6. Plastomers\u003cbr\u003e10. Polyvinyls \u0026amp; Acrylics\u003cbr\u003e10.1. Ethylene-Vinyl Acetate Copolymer (EVA)\u003cbr\u003e10.2. Ethylene - Vinyl Alcohol Copolymer (EVOH)\u003cbr\u003e10.3. Polyvinyl Alcohol (PVOH)\u003cbr\u003e10.4. Polyvinyl Chloride (PVC)\u003cbr\u003e10.5. Polyvinylidene Chloride (PVDC)\u003cbr\u003e10.6. Polyacrylics\u003cbr\u003e10.7. Acrylonitrile-Methyl Acrylate Copolymer (AMA)\u003cbr\u003e10.8. Ionomers\u003cbr\u003e11. Fluoropolymers\u003cbr\u003e11.1. Polytetrafluoroethylene (PTFE)\u003cbr\u003e11.2. Fluorinated Ethylene Propylene (FEP)\u003cbr\u003e11.3. Perfluoro Alkoxy (PFA)\u003cbr\u003e11.3.1. PFA\u003cbr\u003e11.3.2. MFA\u003cbr\u003e11.4. Amorphous fluoropolymer - Teflon AF®\u003cbr\u003e11.5. Polyvinyl Fluoride (PVF)\u003cbr\u003e11.6. Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e11.7. Polyvinylidene Fluoride (PVDF)\u003cbr\u003e11.8. Ethylene-Tetrafluoroethylene Copolymer (ETFE)\u003cbr\u003e11.9. Ethylene-Chlorotrifluoroethylene Copolymer (ECTFE)\u003cbr\u003e12. High Temperature\/High Performance Polymers\u003cbr\u003e12.1. Polyether ether ketone (PEEK\u003cbr\u003e12.2. Polysiloxane\u003cbr\u003e12.3. Polyphenylene Sulfide (PPS)\u003cbr\u003e12.4. Polysulfone (PSU)\u003cbr\u003e12.5. Polyethersulfone (PES)\u003cbr\u003e12.6. Polybenzimidazole (PBI)\u003cbr\u003e12.7. Parylene (poly(p-xylylene))\u003cbr\u003e12.8. Polyphenylene sulfone (PPSU)\u003cbr\u003e13. Elastomers and rubbers\u003cbr\u003e13.1. Thermoplastic Polyurethane Elastomers (TPU)\u003cbr\u003e13.2. Olefinic Thermoplastic Elastomers (TPO)\u003cbr\u003e13.3. Thermoplastic Copolyester Elastomers (TPE-E or COPE)\u003cbr\u003e13.4. Thermoplastic Polyether Block Amide Elastomers (PEBA)\u003cbr\u003e13.5. Styrenic Block Copolymer (SBS) Thermoplastic Elastomers\u003cbr\u003e13.6. Syndiotactic 1,2 polybutadiene \u003cbr\u003e14. Renewable Resource or biodegradable polymers \u003cbr\u003e14.1. Cellophane™\u003cbr\u003e14.2. Nitrocellulose\u003cbr\u003e14.3. Cellulose acetate\u003cbr\u003e14.4. Cellulose acetate butyrate\u003cbr\u003e14.5. Ethylcellulose\u003cbr\u003e14.6. Polycaprolactone (PCL)\u003cbr\u003e14.7. Poly (Lactic Acid) (PLA)\u003cbr\u003e14.8. Poly-3-hydroxybutyrate (PHB or PH3B)\u003cbr\u003eAppendices\u003cbr\u003ePermeation Unit Conversion Factors\u003cbr\u003eVapor Transmission rate Conversion factors\u003cbr\u003eIndices\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eLaurence W McKeen\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eSenior Research Associate, DuPont, Wilmington, DE, USA\u003c\/div\u003e"}
Biological and Biomedi...
$139.95
{"id":11242202436,"title":"Biological and Biomedical Coatings Handbook, Processing and Characterization, Volume 1","handle":"978-1-43-984995-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-984995-8 \u003cbr\u003e\u003cbr\u003e456 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003e\u003cbr\u003eConsisting of two volumes—Processing and Characterization and Applications—this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine.\u003cbr\u003e\u003cbr\u003eAn exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses:\u003cbr\u003e\n\u003cli\u003eSynthesis, fabrication, and characterization of nanocoatings\u003c\/li\u003e\n\u003cli\u003eThe sol-gel method and electrophoretic deposition\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite and organically modified coatings\u003c\/li\u003e\n\u003cli\u003eBioceramics and bioactive glass-based coatings\u003c\/li\u003e\n\u003cli\u003eHydrothermal crystallization and self-healing effects\u003c\/li\u003e\n\u003cli\u003ePhysical and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eLayered assembled polyelectrolyte filmsWith chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","bioceramic coating","biomedical coatings","biopolymers","book","coatings","nanocoatings","thin films"],"price":13995,"price_min":13995,"price_max":13995,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378311172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biological and Biomedical Coatings Handbook, Processing and Characterization, Volume 1","public_title":null,"options":["Default Title"],"price":13995,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-43-984995-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242","options":["Title"],"media":[{"alt":null,"id":350157242461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-43-984995-8.jpg?v=1498191242","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Sam Zhang \u003cbr\u003eISBN 978-1-43-984995-8 \u003cbr\u003e\u003cbr\u003e456 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWritten in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field.\u003cbr\u003e\u003cbr\u003eConsisting of two volumes—Processing and Characterization and Applications—this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contributors delve into a wide range of novel techniques used in the manufacture and testing of clinical applications for coatings in the medical field, particularly in the emerging area of regenerative medicine.\u003cbr\u003e\u003cbr\u003eAn exploration of the fundamentals elements of biological and biomedical coatings, the first volume, Processing and Characterization, addresses:\u003cbr\u003e\n\u003cli\u003eSynthesis, fabrication, and characterization of nanocoatings\u003c\/li\u003e\n\u003cli\u003eThe sol-gel method and electrophoretic deposition\u003c\/li\u003e\n\u003cli\u003eThermal and plasma spraying\u003c\/li\u003e\n\u003cli\u003eHydroxyapatite and organically modified coatings\u003c\/li\u003e\n\u003cli\u003eBioceramics and bioactive glass-based coatings\u003c\/li\u003e\n\u003cli\u003eHydrothermal crystallization and self-healing effects\u003c\/li\u003e\n\u003cli\u003ePhysical and chemical vapor deposition\u003c\/li\u003e\n\u003cli\u003eLayered assembled polyelectrolyte filmsWith chapters authored by world experts at the forefront of research in their respective areas, this timely set provides searing insights and practical information to explore a subject that is fundamental to the success of biotechnological pursuits.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVOLUME 1: Processing and Characterization (K12269)\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBonelike Mineral and Organically Modified Bonelike Mineral Coatings, J. Ramaswamy, H. Ramaraju, and D.H. Kohn\u003cbr\u003e\u003cbr\u003eSynthesis and Characterization of Hydroxyapatite Nanocoatings by Sol–Gel Method for Clinical Applications, B. Ben-Nissan, A.H. Choi, D.W. Green, B.A. Latella, J. Chou, and A. Bendavid\u003cbr\u003e\u003cbr\u003eHydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition, C.C. Sorrell, H. Taib, T.C. Palmer, F. Peng, Z. Xia, and M. Wei\u003cbr\u003e\u003cbr\u003eThermal Sprayed Bioceramic Coatings: Nanostructured Hydroxyapatite (HA) and HA-Based Composites, H. Li\u003cbr\u003e\u003cbr\u003eNanostructured Titania Coatings for Biological Applications: Fabrication an Characterization, Y. Xin and P.K. Chu\u003cbr\u003e\u003cbr\u003eHydrothermal Crystallization with Microstructural Self-Healing Effect on Mechanical and Failure Behaviors of Plasma-Sprayed Hydroxyapatite Coatings, C.-W. Yang and T.-S. Lui\u003cbr\u003e\u003cbr\u003eBioceramic Coating on Titanium by Physical and Chemical Vapor Deposition, T. Goto, T. Narushima, and K. Ueda\u003cbr\u003e\u003cbr\u003eCoating of Material Surfaces with Layer-by- Layer Assembled Polyelectrolyte Films, T. Crouzier, T. Boudou, K. Ren, and C. Picart\u003cbr\u003e\u003cbr\u003eBioactive Glass-Based Coatings and Modified Surfaces: Strategies for the Manufacture, Testing, and Clinical Applications for Regenerative Medicine, J. Maroothynaden\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eSam Zhang\u003c\/b\u003e is editor-in-chief of the CRC Press Advances in Materials Science and Engineering series, which includes this handbook. A full professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Professor Zhang is active in international journals, also serving as editor-in-chief for Nanoscience and Nanotechnology Letters (United States) and principal editor for Journal of Materials Research (United States).\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAmong his other accomplishments:\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003ePresident of the Thin Films Society\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eA Fellow of the Institute of Materials, Minerals and Mining (UK)\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eAn honorary professor of the Institute of Solid State Physics, Chinese Academy of Sciences\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eGuest professor at Zhejiang University and Harbin Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e\u003c\/span\u003e•\u003cspan style=\"white-space: pre;\" class=\"Apple-tab-span\"\u003e \u003c\/span\u003eDistinguished professor at the Central Iron and Steel Research Institute\u003c\/div\u003e\n\u003c\/li\u003e"}
Adhesives Technology f...
$169.00
{"id":11242202180,"title":"Adhesives Technology for Electronic Applications, 2nd Edition - Materials, Processing, Reliability","handle":"978-1-4377-7889-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: James J. Licari \u0026amp; Dale W. Swanson \u003cbr\u003eISBN 978-1-4377-7889-2 \u003cbr\u003e\u003cbr\u003e512 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\n\u003cli\u003eA complete guide for the electronics industry to adhesive types, their properties, and applications - this book is an essential reference for a wide range of specialists including electrical engineers, adhesion chemists, and other engineering professionals.\u003c\/li\u003e\n\u003cli\u003eProvides specifications of adhesives for particular uses and outlines the processes for application and curing - coverage that is of particular benefit to design engineers, who are charged with creating the interface between the adhesive material and the microelectronic device.\u003c\/li\u003e\n\u003cli\u003eDiscusses the respective advantages and limitations of different adhesives for varying applications, thereby addressing reliability issues before they occur and offering useful information to both design engineers and Quality Assurance personnel.\u003c\/li\u003e\n\u003cp\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAdhesives are widely used in the manufacture and assembly of electronic circuits and products. Generally, electronics design engineers and manufacturing engineers are not well versed in adhesives, while adhesion chemists have a limited knowledge of electronics. This book bridges these knowledge gaps and is useful to both groups.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThe book includes chapters covering types of adhesive, the chemistry on which they are based, and their properties, applications, processes, specifications, and reliability. Coverage of toxicity, environmental impacts, and the regulatory framework make this book particularly important for engineers and managers alike.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThe third edition has been updated throughout and includes new sections on nanomaterials, environmental impacts and new environmentally friendly ‘green’ adhesives. Information about regulations and compliance has been brought fully up-to-date.\u003cbr\u003e\u003cbr\u003eAs well as providing full coverage of standard adhesive types, Licari explores the most recent developments in fields such as:\u003cbr\u003e\u003cbr\u003e• Tamper-proof adhesives for electronic security devices.\u003cbr\u003e\u003cbr\u003e• Bio-compatible adhesives for implantable medical devices.\u003cbr\u003e\u003cbr\u003e• Electrically conductive adhesives to replace toxic tin-lead solders in printed circuit assembly - as required by regulatory regimes, e.g. the EU’s Restriction of Hazardous Substances Directive or RoHS (compliance is required for all products placed on the European market).\u003cbr\u003e\u003cbr\u003e• Nano-fillers in adhesives used to increase the thermal conductivity of current adhesives for cooling electronic devices.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eElectronics and materials engineers in the automotive, medical, semiconductors, space, plastics, and military industries.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eQuotes\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\"I recommend this book without reservation to everyone in electronics who must understand adhesives, or make decisions about adhesives, or both.\" - George Riley\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Adhesives Types and Definitions\u003cbr\u003e1.2 Summary of Packaging Technologies\u003cbr\u003e1.3 History of Adhesives in Electronic Applications\u003cbr\u003e1.4 Comparison of Polymer Adhesives with Metallurgical and Vitreous Attachment Materials\u003cbr\u003e1.5 Specifications\u003cbr\u003e1.6 The Market \u003cbr\u003e2. Functions and Theory of Adhesives\u003cbr\u003e2.1 Mechanical Attachment\u003cbr\u003e2.2 Electrical Connections\u003cbr\u003e2.3 Thermal Dissipation\u003cbr\u003e2.4 Stress Dissipation \u003cbr\u003e3. Chemistry, Formulation, and Properties of Adhesives\u003cbr\u003e3.1 Chemistry\u003cbr\u003e3.2 Formulation of Adhesives\u003cbr\u003e3.3 Properties \u003cbr\u003e4. Adhesive Bonding Properties\u003cbr\u003e4.1 Cleaning\u003cbr\u003e4.2 Surface Treatments\u003cbr\u003e4.3 Adhesive Dispensing\u003cbr\u003e4.4 Placement of Devices and Components\u003cbr\u003e4.5 Curing\u003cbr\u003e4.6 Rework \u003cbr\u003e5. Applications\u003cbr\u003e5.1 General Applications\u003cbr\u003e5.2 Specific Applications \u003cbr\u003e6. Reliability\u003cbr\u003e6.1 Failure Modes and Mechanisms\u003cbr\u003e6.2 Specifications \u003cbr\u003e7. Test and Inspection Methods\u003cbr\u003e7.1 Physical Tests\u003cbr\u003e7.2 Electrical Tests\u003cbr\u003e7.3 Environmental Tests\u003cbr\u003e7.4 Thermal Tests\u003cbr\u003e7.5 Mechanical and Thermomechanical Tests\u003cbr\u003e7.6 Chemical Analysis\u003cbr\u003eAppendix\u003cbr\u003eConversion Factors\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eJames J. Licari\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAvanTeco, Whittier, CA, USA\u003c\/div\u003e\n\u003cdiv\u003ehas his own consulting firm, AvanTeco, specializing in materials and processes for electronics. He holds a BS in Chemistry from Fordham University and a Ph.D. in Chemistry from Princeton University, where he was a DuPont Senior Fellow. His areas of expertise include materials and processes for electronic applications, primarily for high-reliability systems, hybrid microcircuits, printed wiring circuits, and other interconnect packaging technologies. He is an expert on polymeric materials including adhesives, coatings, encapsulants, insulation, reliability based on failure modes and mechanisms. Dr. Licari has had a forty-year career dedicated to the study and advancement of microelectronic materials and processes. Notable achievements throughout this career include conducting the first studies on the reliability and use of die-attach adhesives for microcircuits, which he did in the mid-1970s through the early 1980s, making industry and the government aware of the degrading effects of trace amounts of ionic contaminants in epoxy resins. He conducted early exploratory development on the use of non-noble metal (Cu) thick-film conductor pastes for thick-film ceramic circuits. He carried out the first studies on the use of Parylene as a dielectric and passivation coating for MOS devices and as a particle immobilizer for hybrid microcircuits. He developed the first photo-definable thick-film conductor and resistor pastes that were the forerunners of DuPont’s Fodel process, for which he received a patent was granted in England. And he developed the first photocurable epoxy coating using cationic photoinitiation by employing a diazonium salt as the catalytic agent (U.S. 3205157). The work was referenced as pioneering work in a review article by J.V. Crivello “The Discovery and Development of Onium Salt Cationic Photoinitiators,” J. Polymer Chemistry (1999)\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eDale W. Swanson \u003c\/b\u003ehas over 29 years experience in Materials and process engineering\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:44-04:00","created_at":"2017-06-22T21:12:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","adhesives","book","electronic","mechanical testing","p-applications","physical testing","plastic","polymer","surface","thermal testing"],"price":16900,"price_min":16900,"price_max":16900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378310404,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Adhesives Technology for Electronic Applications, 2nd Edition - Materials, Processing, Reliability","public_title":null,"options":["Default Title"],"price":16900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-7889-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7889-2_cc1a9f07-b661-41cc-bfb1-5ab1ffa1d865.jpg?v=1498185491"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7889-2_cc1a9f07-b661-41cc-bfb1-5ab1ffa1d865.jpg?v=1498185491","options":["Title"],"media":[{"alt":null,"id":350140825693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7889-2_cc1a9f07-b661-41cc-bfb1-5ab1ffa1d865.jpg?v=1498185491"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7889-2_cc1a9f07-b661-41cc-bfb1-5ab1ffa1d865.jpg?v=1498185491","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: James J. Licari \u0026amp; Dale W. Swanson \u003cbr\u003eISBN 978-1-4377-7889-2 \u003cbr\u003e\u003cbr\u003e512 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\n\u003cli\u003eA complete guide for the electronics industry to adhesive types, their properties, and applications - this book is an essential reference for a wide range of specialists including electrical engineers, adhesion chemists, and other engineering professionals.\u003c\/li\u003e\n\u003cli\u003eProvides specifications of adhesives for particular uses and outlines the processes for application and curing - coverage that is of particular benefit to design engineers, who are charged with creating the interface between the adhesive material and the microelectronic device.\u003c\/li\u003e\n\u003cli\u003eDiscusses the respective advantages and limitations of different adhesives for varying applications, thereby addressing reliability issues before they occur and offering useful information to both design engineers and Quality Assurance personnel.\u003c\/li\u003e\n\u003cp\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAdhesives are widely used in the manufacture and assembly of electronic circuits and products. Generally, electronics design engineers and manufacturing engineers are not well versed in adhesives, while adhesion chemists have a limited knowledge of electronics. This book bridges these knowledge gaps and is useful to both groups.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThe book includes chapters covering types of adhesive, the chemistry on which they are based, and their properties, applications, processes, specifications, and reliability. Coverage of toxicity, environmental impacts, and the regulatory framework make this book particularly important for engineers and managers alike.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eThe third edition has been updated throughout and includes new sections on nanomaterials, environmental impacts and new environmentally friendly ‘green’ adhesives. Information about regulations and compliance has been brought fully up-to-date.\u003cbr\u003e\u003cbr\u003eAs well as providing full coverage of standard adhesive types, Licari explores the most recent developments in fields such as:\u003cbr\u003e\u003cbr\u003e• Tamper-proof adhesives for electronic security devices.\u003cbr\u003e\u003cbr\u003e• Bio-compatible adhesives for implantable medical devices.\u003cbr\u003e\u003cbr\u003e• Electrically conductive adhesives to replace toxic tin-lead solders in printed circuit assembly - as required by regulatory regimes, e.g. the EU’s Restriction of Hazardous Substances Directive or RoHS (compliance is required for all products placed on the European market).\u003cbr\u003e\u003cbr\u003e• Nano-fillers in adhesives used to increase the thermal conductivity of current adhesives for cooling electronic devices.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eElectronics and materials engineers in the automotive, medical, semiconductors, space, plastics, and military industries.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eQuotes\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\"I recommend this book without reservation to everyone in electronics who must understand adhesives, or make decisions about adhesives, or both.\" - George Riley\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Adhesives Types and Definitions\u003cbr\u003e1.2 Summary of Packaging Technologies\u003cbr\u003e1.3 History of Adhesives in Electronic Applications\u003cbr\u003e1.4 Comparison of Polymer Adhesives with Metallurgical and Vitreous Attachment Materials\u003cbr\u003e1.5 Specifications\u003cbr\u003e1.6 The Market \u003cbr\u003e2. Functions and Theory of Adhesives\u003cbr\u003e2.1 Mechanical Attachment\u003cbr\u003e2.2 Electrical Connections\u003cbr\u003e2.3 Thermal Dissipation\u003cbr\u003e2.4 Stress Dissipation \u003cbr\u003e3. Chemistry, Formulation, and Properties of Adhesives\u003cbr\u003e3.1 Chemistry\u003cbr\u003e3.2 Formulation of Adhesives\u003cbr\u003e3.3 Properties \u003cbr\u003e4. Adhesive Bonding Properties\u003cbr\u003e4.1 Cleaning\u003cbr\u003e4.2 Surface Treatments\u003cbr\u003e4.3 Adhesive Dispensing\u003cbr\u003e4.4 Placement of Devices and Components\u003cbr\u003e4.5 Curing\u003cbr\u003e4.6 Rework \u003cbr\u003e5. Applications\u003cbr\u003e5.1 General Applications\u003cbr\u003e5.2 Specific Applications \u003cbr\u003e6. Reliability\u003cbr\u003e6.1 Failure Modes and Mechanisms\u003cbr\u003e6.2 Specifications \u003cbr\u003e7. Test and Inspection Methods\u003cbr\u003e7.1 Physical Tests\u003cbr\u003e7.2 Electrical Tests\u003cbr\u003e7.3 Environmental Tests\u003cbr\u003e7.4 Thermal Tests\u003cbr\u003e7.5 Mechanical and Thermomechanical Tests\u003cbr\u003e7.6 Chemical Analysis\u003cbr\u003eAppendix\u003cbr\u003eConversion Factors\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eJames J. Licari\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAvanTeco, Whittier, CA, USA\u003c\/div\u003e\n\u003cdiv\u003ehas his own consulting firm, AvanTeco, specializing in materials and processes for electronics. He holds a BS in Chemistry from Fordham University and a Ph.D. in Chemistry from Princeton University, where he was a DuPont Senior Fellow. His areas of expertise include materials and processes for electronic applications, primarily for high-reliability systems, hybrid microcircuits, printed wiring circuits, and other interconnect packaging technologies. He is an expert on polymeric materials including adhesives, coatings, encapsulants, insulation, reliability based on failure modes and mechanisms. Dr. Licari has had a forty-year career dedicated to the study and advancement of microelectronic materials and processes. Notable achievements throughout this career include conducting the first studies on the reliability and use of die-attach adhesives for microcircuits, which he did in the mid-1970s through the early 1980s, making industry and the government aware of the degrading effects of trace amounts of ionic contaminants in epoxy resins. He conducted early exploratory development on the use of non-noble metal (Cu) thick-film conductor pastes for thick-film ceramic circuits. He carried out the first studies on the use of Parylene as a dielectric and passivation coating for MOS devices and as a particle immobilizer for hybrid microcircuits. He developed the first photo-definable thick-film conductor and resistor pastes that were the forerunners of DuPont’s Fodel process, for which he received a patent was granted in England. And he developed the first photocurable epoxy coating using cationic photoinitiation by employing a diazonium salt as the catalytic agent (U.S. 3205157). The work was referenced as pioneering work in a review article by J.V. Crivello “The Discovery and Development of Onium Salt Cationic Photoinitiators,” J. Polymer Chemistry (1999)\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eDale W. Swanson \u003c\/b\u003ehas over 29 years experience in Materials and process engineering\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Multilayer Thin Films:...
$494.00
{"id":11242201988,"title":"Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd Edition","handle":"978-3-527-31648-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gero Decher (Editor), Joe Schlenoff (Editor) \u003cbr\u003eISBN 978-3-527-31648-9 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eHardcover\u003c\/div\u003e\n\u003cdiv\u003e1122 pages\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis second, comprehensive edition of the pioneering book in this field has been completely revised and extended, now stretching to two volumes.\u003cbr\u003e\u003cbr\u003eThe result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin films, covering organic, inorganic, colloidal, macromolecular and biological components, plus the assembly of nanoscale films derived from them on surfaces.\u003cbr\u003e\u003cbr\u003e\u003cb\u003ePraise for the first edition:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\"... highly recommended to anyone interested in the field... and to scientists and researchers active in materials development...\" –Polymer News \u003cbr\u003e\u003cbr\u003eWith contributions by:\u003cbr\u003e\u003cbr\u003eRigoberto Advincula\u003cbr\u003e\u003cbr\u003eMitsuru Akashi\u003cbr\u003e\u003cbr\u003eJun-ichi Anzai\u003cbr\u003e\u003cbr\u003eKatsuhiko Ariga\u003cbr\u003e\u003cbr\u003eMerlin Bruening\u003cbr\u003e\u003cbr\u003eErnesto J. Calvo\u003cbr\u003e\u003cbr\u003eFrank Caruso\u003cbr\u003e\u003cbr\u003eRobert Cohen\u003cbr\u003e\u003cbr\u003eCornelia Cramer-Kellers\u003cbr\u003e\u003cbr\u003eLars Dähne\u003cbr\u003e\u003cbr\u003eGero Decher\u003cbr\u003e\u003cbr\u003eBruno De Geest\u003cbr\u003e\u003cbr\u003eStefaan de Smedt\u003cbr\u003e\u003cbr\u003eAndreas Fery\u003cbr\u003e\u003cbr\u003eKarine Glinel\u003cbr\u003e\u003cbr\u003eJaime Grunlan\u003cbr\u003e\u003cbr\u003eLara Halaoui\u003cbr\u003e\u003cbr\u003ePaula Hammond\u003cbr\u003e\u003cbr\u003eChristiane A. Helm\u003cbr\u003e\u003cbr\u003eRandy Heflin\u003cbr\u003e\u003cbr\u003eJurriaan Huskens\u003cbr\u003e\u003cbr\u003eChaoyang Jiang\u003cbr\u003e\u003cbr\u003eAlain M. Jonas\u003cbr\u003e\u003cbr\u003eRegine von Klitzing\u003cbr\u003e\u003cbr\u003eNicholas Kotov\u003cbr\u003e\u003cbr\u003eIllsoon Lee\u003cbr\u003e\u003cbr\u003eJunbai Li\u003cbr\u003e\u003cbr\u003eYuri Lvov\u003cbr\u003e\u003cbr\u003eDavid M. Lynn\u003cbr\u003e\u003cbr\u003eMarc Michel\u003cbr\u003e\u003cbr\u003eHelmuth Möhwald\u003cbr\u003e\u003cbr\u003eOsvaldo Novais de Oliveira Junior\u003cbr\u003e\u003cbr\u003eCatherine Picart\u003cbr\u003e\u003cbr\u003eDavid Reinhoudt\u003cbr\u003e\u003cbr\u003eMichael Rubner\u003cbr\u003e\u003cbr\u003eMikko Salomaki\u003cbr\u003e\u003cbr\u003eJouko Kankare\u003cbr\u003e\u003cbr\u003eJoseph B. Schlenoff\u003cbr\u003e\u003cbr\u003eMonika Schönhoff\u003cbr\u003e\u003cbr\u003eDmitry Shchukin\u003cbr\u003e\u003cbr\u003eJiacong Shen\u003cbr\u003e\u003cbr\u003eAndré G. Skirtach\u003cbr\u003e\u003cbr\u003eSvetlana Sukhishvili\u003cbr\u003e\u003cbr\u003eGleb Sukhorukov\u003cbr\u003e\u003cbr\u003eJunqi Sun\u003cbr\u003e\u003cbr\u003eBernd Tieke\u003cbr\u003e\u003cbr\u003eDieter Trau\u003cbr\u003e\u003cbr\u003eVladimir Tsukruk\u003cbr\u003e\u003cbr\u003eDmitry V. Volodkin\u003cbr\u003e\u003cbr\u003eLars Wagberg\u003cbr\u003e\u003cbr\u003eFrançoise Winnik\u003cbr\u003e\u003cbr\u003eXi Zhang \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSurface-Initiated Polymerization and Layer-by-Layer Films\n\u003cdiv\u003eStimuli-sensitive Layer-by-Layer Films for Controlled Delivery of Proteins and Drugs\u003cbr\u003eHierarchic Multilayer Thin Films\u003cbr\u003eEngineered Thin Films and Capsules for Biomedical Applications\u003cbr\u003eBiological Active Surfaces on Colloids by Means of the Layer-by-Layer Technology\u003cbr\u003eDegradable Polyelectrolyte Capsules\u003cbr\u003eControlling Mechanics of Freestanding\u003cbr\u003eMultilayers - Towards Programmed Deformation Properties\u003cbr\u003eDomain-Containing Polyelectrolyte Films for the Entrapment of Active Compounds\u003cbr\u003eCarbon Nanotube Based Assemblies\u003cbr\u003eNanostructured Electrodes Assembled from Metal Nanoparticles\u003cbr\u003eMolecular Conformation in and Structural Properties of Polyelectrolyte Multilayers Optoelectronic Materials and Devices\u003cbr\u003eIncorporating Polyelectrolyte Multilayers\u003cbr\u003eNanoconfined Polyelectrolyte Multilayers\u003cbr\u003eAdvanced Nanoscale Composite Materials with Record Properties\u003cbr\u003ePatterned Multilayer Systems and Directed\u003cbr\u003eSelf-assembly of Functional Nano-Bio Materials\u003cbr\u003eAssembly of Multilayer Capsules for Drug Encapsulation and Controlled Release\u003cbr\u003eConverting Poorly Soluble Materials into Stable Aqueous Nanocolloids\u003cbr\u003eSelfrepairing Coatings\u003cbr\u003eRemote Release from Multilayer Capsules and Films\u003cbr\u003eControlled Architectures in Layer-by-Layser Films for Sensing and Biosensing\u003cbr\u003eQuartz Crystal Resonator as a Tool for Following the Buildup of Polyelectrolyte Multilayers\u003cbr\u003eClick Layer-by-Layer \u0026amp; Exponential Growth Mechanism\u003cbr\u003eIons and Small Guest Molecules in Polyelectrolyte Multilayers: Conductivity Spectra, Swelling Properties, and Nanoporosity\u003cbr\u003eLayer-by-layer Assemblies of pH- and Temperature-Responsive Polymers: Molecular Interactions, Exchange with Solution, Film Structure, and Response\u003cbr\u003eStimuli-Responsive Layer-by-Layer Capsules\u003cbr\u003eLayer-by-Layer Assembly of Polymeric Complexes\u003cbr\u003eElectrostatic and Coordinative Supramolecular Assembly of Functional Films for Electronic Applications and Materials Separation\u003cbr\u003eAssembly of Polymer Multilayers from Organic Solvents for Biomolecule Encapsulation\u003cbr\u003eLayer-by-Layer Engineering of Cellulose Surfaces\u003cbr\u003eFrom Conventional to Unconventional Layer-by-Layer Assembly Methods\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eGero Decher\u003c\/b\u003e is Distinguished Professor of Chemistry at the University of Strasbourg, France, a senior member of the Institut Universitaire de France (IUF) and member of the International Center for Frontier Research in Chemistry. His research team is located at CNRS Institut Charles Sadron in Strasbourg where he continues to develop the layer-by-layer assembly method in collaboration with his colleagues Pierre Schaaf and Jean-Claude Voegel. This method is applied in many laboratories world-wide in various scientific disciplines including chemistry, materials science and biotechnology. Gero Decher received numerous awards, including the ECIS-Rhodia prize in 2010 and the Grand Prix of the French \"Académie des Sciences\" for Nanobiotechnology in 2009. \u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eJoseph B. Schlenoff\u003c\/b\u003e is Mandelkern Professor of Polymer Science and Chair of the Department of Chemistry and Biochemistry at the Florida State University, USA. His laboratory is engaged in multidisciplinary research centered on the use of novel structures made from polyelectrolytes that are deposited using the layer-by-layer technique. In 2010 he won an award within the Florida State University Grant Assistance Program aimed at research close to commercialization and is currently working on a large NIH-financed research project to make medical implants safer for in-vivo use by coating with biocompatible polymer layers. In 2011 Joseph Schlenoff received a Gutenberg Chair at the University of Strasbourg.\u003c\/div\u003e\n\u003c\/div\u003e","published_at":"2017-06-22T21:12:43-04:00","created_at":"2017-06-22T21:12:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","biological active surfaces","biomedical application","book","Controlled Release","multilayer thin films","multilayers","nano","nanomaterials","Nanoscale Composite Materials","nanotube","polyelectolite","thin films"],"price":49400,"price_min":49400,"price_max":49400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, 2nd Edition","public_title":null,"options":["Default Title"],"price":49400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-31648-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31648-9.jpg?v=1499951539"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31648-9.jpg?v=1499951539","options":["Title"],"media":[{"alt":null,"id":358516654173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31648-9.jpg?v=1499951539"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31648-9.jpg?v=1499951539","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gero Decher (Editor), Joe Schlenoff (Editor) \u003cbr\u003eISBN 978-3-527-31648-9 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eHardcover\u003c\/div\u003e\n\u003cdiv\u003e1122 pages\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis second, comprehensive edition of the pioneering book in this field has been completely revised and extended, now stretching to two volumes.\u003cbr\u003e\u003cbr\u003eThe result is a comprehensive summary of layer-by-layer assembled, truly hybrid nanomaterials and thin films, covering organic, inorganic, colloidal, macromolecular and biological components, plus the assembly of nanoscale films derived from them on surfaces.\u003cbr\u003e\u003cbr\u003e\u003cb\u003ePraise for the first edition:\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\"... highly recommended to anyone interested in the field... and to scientists and researchers active in materials development...\" –Polymer News \u003cbr\u003e\u003cbr\u003eWith contributions by:\u003cbr\u003e\u003cbr\u003eRigoberto Advincula\u003cbr\u003e\u003cbr\u003eMitsuru Akashi\u003cbr\u003e\u003cbr\u003eJun-ichi Anzai\u003cbr\u003e\u003cbr\u003eKatsuhiko Ariga\u003cbr\u003e\u003cbr\u003eMerlin Bruening\u003cbr\u003e\u003cbr\u003eErnesto J. Calvo\u003cbr\u003e\u003cbr\u003eFrank Caruso\u003cbr\u003e\u003cbr\u003eRobert Cohen\u003cbr\u003e\u003cbr\u003eCornelia Cramer-Kellers\u003cbr\u003e\u003cbr\u003eLars Dähne\u003cbr\u003e\u003cbr\u003eGero Decher\u003cbr\u003e\u003cbr\u003eBruno De Geest\u003cbr\u003e\u003cbr\u003eStefaan de Smedt\u003cbr\u003e\u003cbr\u003eAndreas Fery\u003cbr\u003e\u003cbr\u003eKarine Glinel\u003cbr\u003e\u003cbr\u003eJaime Grunlan\u003cbr\u003e\u003cbr\u003eLara Halaoui\u003cbr\u003e\u003cbr\u003ePaula Hammond\u003cbr\u003e\u003cbr\u003eChristiane A. Helm\u003cbr\u003e\u003cbr\u003eRandy Heflin\u003cbr\u003e\u003cbr\u003eJurriaan Huskens\u003cbr\u003e\u003cbr\u003eChaoyang Jiang\u003cbr\u003e\u003cbr\u003eAlain M. Jonas\u003cbr\u003e\u003cbr\u003eRegine von Klitzing\u003cbr\u003e\u003cbr\u003eNicholas Kotov\u003cbr\u003e\u003cbr\u003eIllsoon Lee\u003cbr\u003e\u003cbr\u003eJunbai Li\u003cbr\u003e\u003cbr\u003eYuri Lvov\u003cbr\u003e\u003cbr\u003eDavid M. Lynn\u003cbr\u003e\u003cbr\u003eMarc Michel\u003cbr\u003e\u003cbr\u003eHelmuth Möhwald\u003cbr\u003e\u003cbr\u003eOsvaldo Novais de Oliveira Junior\u003cbr\u003e\u003cbr\u003eCatherine Picart\u003cbr\u003e\u003cbr\u003eDavid Reinhoudt\u003cbr\u003e\u003cbr\u003eMichael Rubner\u003cbr\u003e\u003cbr\u003eMikko Salomaki\u003cbr\u003e\u003cbr\u003eJouko Kankare\u003cbr\u003e\u003cbr\u003eJoseph B. Schlenoff\u003cbr\u003e\u003cbr\u003eMonika Schönhoff\u003cbr\u003e\u003cbr\u003eDmitry Shchukin\u003cbr\u003e\u003cbr\u003eJiacong Shen\u003cbr\u003e\u003cbr\u003eAndré G. Skirtach\u003cbr\u003e\u003cbr\u003eSvetlana Sukhishvili\u003cbr\u003e\u003cbr\u003eGleb Sukhorukov\u003cbr\u003e\u003cbr\u003eJunqi Sun\u003cbr\u003e\u003cbr\u003eBernd Tieke\u003cbr\u003e\u003cbr\u003eDieter Trau\u003cbr\u003e\u003cbr\u003eVladimir Tsukruk\u003cbr\u003e\u003cbr\u003eDmitry V. Volodkin\u003cbr\u003e\u003cbr\u003eLars Wagberg\u003cbr\u003e\u003cbr\u003eFrançoise Winnik\u003cbr\u003e\u003cbr\u003eXi Zhang \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSurface-Initiated Polymerization and Layer-by-Layer Films\n\u003cdiv\u003eStimuli-sensitive Layer-by-Layer Films for Controlled Delivery of Proteins and Drugs\u003cbr\u003eHierarchic Multilayer Thin Films\u003cbr\u003eEngineered Thin Films and Capsules for Biomedical Applications\u003cbr\u003eBiological Active Surfaces on Colloids by Means of the Layer-by-Layer Technology\u003cbr\u003eDegradable Polyelectrolyte Capsules\u003cbr\u003eControlling Mechanics of Freestanding\u003cbr\u003eMultilayers - Towards Programmed Deformation Properties\u003cbr\u003eDomain-Containing Polyelectrolyte Films for the Entrapment of Active Compounds\u003cbr\u003eCarbon Nanotube Based Assemblies\u003cbr\u003eNanostructured Electrodes Assembled from Metal Nanoparticles\u003cbr\u003eMolecular Conformation in and Structural Properties of Polyelectrolyte Multilayers Optoelectronic Materials and Devices\u003cbr\u003eIncorporating Polyelectrolyte Multilayers\u003cbr\u003eNanoconfined Polyelectrolyte Multilayers\u003cbr\u003eAdvanced Nanoscale Composite Materials with Record Properties\u003cbr\u003ePatterned Multilayer Systems and Directed\u003cbr\u003eSelf-assembly of Functional Nano-Bio Materials\u003cbr\u003eAssembly of Multilayer Capsules for Drug Encapsulation and Controlled Release\u003cbr\u003eConverting Poorly Soluble Materials into Stable Aqueous Nanocolloids\u003cbr\u003eSelfrepairing Coatings\u003cbr\u003eRemote Release from Multilayer Capsules and Films\u003cbr\u003eControlled Architectures in Layer-by-Layser Films for Sensing and Biosensing\u003cbr\u003eQuartz Crystal Resonator as a Tool for Following the Buildup of Polyelectrolyte Multilayers\u003cbr\u003eClick Layer-by-Layer \u0026amp; Exponential Growth Mechanism\u003cbr\u003eIons and Small Guest Molecules in Polyelectrolyte Multilayers: Conductivity Spectra, Swelling Properties, and Nanoporosity\u003cbr\u003eLayer-by-layer Assemblies of pH- and Temperature-Responsive Polymers: Molecular Interactions, Exchange with Solution, Film Structure, and Response\u003cbr\u003eStimuli-Responsive Layer-by-Layer Capsules\u003cbr\u003eLayer-by-Layer Assembly of Polymeric Complexes\u003cbr\u003eElectrostatic and Coordinative Supramolecular Assembly of Functional Films for Electronic Applications and Materials Separation\u003cbr\u003eAssembly of Polymer Multilayers from Organic Solvents for Biomolecule Encapsulation\u003cbr\u003eLayer-by-Layer Engineering of Cellulose Surfaces\u003cbr\u003eFrom Conventional to Unconventional Layer-by-Layer Assembly Methods\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eGero Decher\u003c\/b\u003e is Distinguished Professor of Chemistry at the University of Strasbourg, France, a senior member of the Institut Universitaire de France (IUF) and member of the International Center for Frontier Research in Chemistry. His research team is located at CNRS Institut Charles Sadron in Strasbourg where he continues to develop the layer-by-layer assembly method in collaboration with his colleagues Pierre Schaaf and Jean-Claude Voegel. This method is applied in many laboratories world-wide in various scientific disciplines including chemistry, materials science and biotechnology. Gero Decher received numerous awards, including the ECIS-Rhodia prize in 2010 and the Grand Prix of the French \"Académie des Sciences\" for Nanobiotechnology in 2009. \u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eJoseph B. Schlenoff\u003c\/b\u003e is Mandelkern Professor of Polymer Science and Chair of the Department of Chemistry and Biochemistry at the Florida State University, USA. His laboratory is engaged in multidisciplinary research centered on the use of novel structures made from polyelectrolytes that are deposited using the layer-by-layer technique. In 2010 he won an award within the Florida State University Grant Assistance Program aimed at research close to commercialization and is currently working on a large NIH-financed research project to make medical implants safer for in-vivo use by coating with biocompatible polymer layers. In 2011 Joseph Schlenoff received a Gutenberg Chair at the University of Strasbourg.\u003c\/div\u003e\n\u003c\/div\u003e"}
Edible Coatings and Fi...
$210.00
{"id":11242201924,"title":"Edible Coatings and Films to Improve Food Quality, 2nd Edition","handle":"978-1-42-005962-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Elizabeth A. Baldwin, Robert Hagenmaier, Jinhe Bai \u003cbr\u003eISBN \u003cspan\u003e9781138198937 \u003c\/span\u003e\u003cbr\u003eHard cover\u003cbr\u003eNumber of pages 460\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the publication of the first edition of this text, ever-increasing coatings research has led to many developments in the field. Updated and completely revised with the latest discoveries, Edible Coatings and Films to Improve Food Quality, Second Edition is a critical resource for all those involved in buying, selling, regulating, developing, or using coatings to improve the quality and safety of foods. Topics discussed in this volume include:\u003cbr\u003e\u003cbr\u003e• The materials used in edible coatings and films\u003cbr\u003e• The chemical and physical properties of coatings and how the coating or film ingredients affect these properties\u003cbr\u003e• How coatings and films present barriers to gases and water vapors\u003cbr\u003e• How coatings and films can improve appearance, or conversely, result in discoloration and cause other visual defects, as well as how to avoid these problems\u003cbr\u003e• The use of coatings and films on fresh fruit and vegetables, fresh-cut produce, and processed foods\u003cbr\u003e• How to apply coatings to various commodities\u003cbr\u003e• How coatings can function as carriers of useful additives, including color, antioxidants, and flavorings\u003cbr\u003e• Regulation of coatings and coating ingredients by various governing bodies\u003cbr\u003eThe information contained in this volume is destined to encourage further advances in this field for food and pharmaceutical products. Aggressive research into these products can help to reduce plastic waste, improve applications, lead to greater efficacy, and make regulatory decisions easier in a global climate—ultimately resulting in economical, heightened quality of food and pharmaceutical products.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction; Elizabeth Baldwin and Robert Hagenmaier\u003cbr\u003e\u003cbr\u003eProtein-based films and coatings; Maria B. Pérez-Gago\u003cbr\u003e\u003cbr\u003eEdible coatings from lipids, waxes, and resins; David J. Hall\u003cbr\u003e\u003cbr\u003ePolysaccharide coatings; Robert Soliva-Fortuny, María Alejandra Rojas-Graü, and Olga Martín-Belloso\u003cbr\u003e\u003cbr\u003eGas-exchange properties of edible films and coatings; Robert D. Hagenmaier\u003cbr\u003e\u003cbr\u003eRole of edible film and coating additives; Roberto de Jesús Avena-Bustillos and Tara H. McHugh\u003cbr\u003e\u003cbr\u003eCoatings for fresh fruits and vegetables; Jinhe Bai and Anne Plotto\u003cbr\u003e\u003cbr\u003eCoatings for minimally processed fruits and vegetables; Sharon Dea, Christian Ghidelli, Maria B. Pérez-Gago, and Anne Plotto\u003cbr\u003e\u003cbr\u003eApplications of edible films and coatings to processed foods; Tara H. McHugh and Roberto de Jesús Avena-Bustillos\u003cbr\u003e\u003cbr\u003eApplication of commercial coatings; Yanyun Zhao\u003cbr\u003e\u003cbr\u003eEncapsulation of flavors, nutraceuticals, and antibacterials; Stéphane Desobry and Frédéric Debeaufort\u003cbr\u003e\u003cbr\u003eOverview of pharmaceutical coatings; Anthony Palmieri\u003cbr\u003e\u003cbr\u003eRegulatory aspects of coatings; Guiwen A. Cheng and Elizabeth A. Baldwin\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eElizabeth E. Baldwin\u003c\/b\u003e is currently research leader and research horticulturist of the U.S. Department of Agriculture, Agricultural Research Service (USDA\/ARS), Citrus and Subtropical Products Laboratory in Winter Haven, Florida. Her research interests include postharvest physiology and overall quality of fresh, fresh-cut, and processed fruits and vegetables, with an emphasis on the use of edible coatings and flavor quality of citrus, tomatoes, and tropical\/subtropical products. She received a BA in anthropology from Hunter College, City University of New York; a BS in plant and soil science from Middle Tennessee State University, and a MS and PhD in horticulture from the University of Florida.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eRobert D. Hagenmaier\u003c\/b\u003e worked until retirement as a research chemist for USDA\/ARS, Citrus and Subtropical Products Laboratory at Winter Haven, Florida. He holds a PhD in physical chemistry from Purdue University. His research interests focused first on coconut food products and later on how the quality of fresh fruit depends on permeability properties of coatings.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eJinhe Bai\u003c\/b\u003e is a food technologist at USDA\/ARS, Citrus and Subtropical Products Laboratory at Winter Haven, Florida. He received a BS from Shanxi Agriculture University, China; MS from Northwest Agriculture University, China; and a PhD from Osaka Prefecture University, Japan, on the effects of modified atmosphere (MA) packaging on volatile production of fruits. His current research interests are focused on development of controlled atmosphere (CA) storage, MA packaging and edible coating technologies, and discovery of how internal and environmental factors influence metabolism and further impact flavor and nutritional quality of fruits and vegetables.\u003c\/div\u003e","published_at":"2017-06-22T21:12:43-04:00","created_at":"2017-06-22T21:12:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","applications of coatings","book","edible coatings","edible films","fresh fruits and vegetables","p-applications","pharmaceutical coatings","Polysaccharide coatings","protein-based films and coatings"],"price":21000,"price_min":21000,"price_max":21000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309892,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Edible Coatings and Films to Improve Food Quality, 2nd Edition","public_title":null,"options":["Default Title"],"price":21000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-42-005962-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-42-005962-5.jpg?v=1499281104"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-42-005962-5.jpg?v=1499281104","options":["Title"],"media":[{"alt":null,"id":354453717085,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-42-005962-5.jpg?v=1499281104"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-42-005962-5.jpg?v=1499281104","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Elizabeth A. Baldwin, Robert Hagenmaier, Jinhe Bai \u003cbr\u003eISBN \u003cspan\u003e9781138198937 \u003c\/span\u003e\u003cbr\u003eHard cover\u003cbr\u003eNumber of pages 460\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince the publication of the first edition of this text, ever-increasing coatings research has led to many developments in the field. Updated and completely revised with the latest discoveries, Edible Coatings and Films to Improve Food Quality, Second Edition is a critical resource for all those involved in buying, selling, regulating, developing, or using coatings to improve the quality and safety of foods. Topics discussed in this volume include:\u003cbr\u003e\u003cbr\u003e• The materials used in edible coatings and films\u003cbr\u003e• The chemical and physical properties of coatings and how the coating or film ingredients affect these properties\u003cbr\u003e• How coatings and films present barriers to gases and water vapors\u003cbr\u003e• How coatings and films can improve appearance, or conversely, result in discoloration and cause other visual defects, as well as how to avoid these problems\u003cbr\u003e• The use of coatings and films on fresh fruit and vegetables, fresh-cut produce, and processed foods\u003cbr\u003e• How to apply coatings to various commodities\u003cbr\u003e• How coatings can function as carriers of useful additives, including color, antioxidants, and flavorings\u003cbr\u003e• Regulation of coatings and coating ingredients by various governing bodies\u003cbr\u003eThe information contained in this volume is destined to encourage further advances in this field for food and pharmaceutical products. Aggressive research into these products can help to reduce plastic waste, improve applications, lead to greater efficacy, and make regulatory decisions easier in a global climate—ultimately resulting in economical, heightened quality of food and pharmaceutical products.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction; Elizabeth Baldwin and Robert Hagenmaier\u003cbr\u003e\u003cbr\u003eProtein-based films and coatings; Maria B. Pérez-Gago\u003cbr\u003e\u003cbr\u003eEdible coatings from lipids, waxes, and resins; David J. Hall\u003cbr\u003e\u003cbr\u003ePolysaccharide coatings; Robert Soliva-Fortuny, María Alejandra Rojas-Graü, and Olga Martín-Belloso\u003cbr\u003e\u003cbr\u003eGas-exchange properties of edible films and coatings; Robert D. Hagenmaier\u003cbr\u003e\u003cbr\u003eRole of edible film and coating additives; Roberto de Jesús Avena-Bustillos and Tara H. McHugh\u003cbr\u003e\u003cbr\u003eCoatings for fresh fruits and vegetables; Jinhe Bai and Anne Plotto\u003cbr\u003e\u003cbr\u003eCoatings for minimally processed fruits and vegetables; Sharon Dea, Christian Ghidelli, Maria B. Pérez-Gago, and Anne Plotto\u003cbr\u003e\u003cbr\u003eApplications of edible films and coatings to processed foods; Tara H. McHugh and Roberto de Jesús Avena-Bustillos\u003cbr\u003e\u003cbr\u003eApplication of commercial coatings; Yanyun Zhao\u003cbr\u003e\u003cbr\u003eEncapsulation of flavors, nutraceuticals, and antibacterials; Stéphane Desobry and Frédéric Debeaufort\u003cbr\u003e\u003cbr\u003eOverview of pharmaceutical coatings; Anthony Palmieri\u003cbr\u003e\u003cbr\u003eRegulatory aspects of coatings; Guiwen A. Cheng and Elizabeth A. Baldwin\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eElizabeth E. Baldwin\u003c\/b\u003e is currently research leader and research horticulturist of the U.S. Department of Agriculture, Agricultural Research Service (USDA\/ARS), Citrus and Subtropical Products Laboratory in Winter Haven, Florida. Her research interests include postharvest physiology and overall quality of fresh, fresh-cut, and processed fruits and vegetables, with an emphasis on the use of edible coatings and flavor quality of citrus, tomatoes, and tropical\/subtropical products. She received a BA in anthropology from Hunter College, City University of New York; a BS in plant and soil science from Middle Tennessee State University, and a MS and PhD in horticulture from the University of Florida.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eRobert D. Hagenmaier\u003c\/b\u003e worked until retirement as a research chemist for USDA\/ARS, Citrus and Subtropical Products Laboratory at Winter Haven, Florida. He holds a PhD in physical chemistry from Purdue University. His research interests focused first on coconut food products and later on how the quality of fresh fruit depends on permeability properties of coatings.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eJinhe Bai\u003c\/b\u003e is a food technologist at USDA\/ARS, Citrus and Subtropical Products Laboratory at Winter Haven, Florida. He received a BS from Shanxi Agriculture University, China; MS from Northwest Agriculture University, China; and a PhD from Osaka Prefecture University, Japan, on the effects of modified atmosphere (MA) packaging on volatile production of fruits. His current research interests are focused on development of controlled atmosphere (CA) storage, MA packaging and edible coating technologies, and discovery of how internal and environmental factors influence metabolism and further impact flavor and nutritional quality of fruits and vegetables.\u003c\/div\u003e"}
Coatings Technology Ha...
$297.00
{"id":11242201860,"title":"Coatings Technology Handbook, Third Edition","handle":"978-1-57444-649-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Arthur A . Tracton \u003cbr\u003eISBN 978-1-57444-649-4 \u003cbr\u003e\u003cbr\u003e936 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCompletely revised and updated, the Coatings Technology Handbook, Third Edition supplies a broad cross-index of the different aspects involved in the discipline.\u003cbr\u003e\u003cbr\u003eContaining 14 new chapters, the book covers the composition of both organic and inorganic resins, pigments or fillers, and additives, from polymeric fluorocarbons to water borne, solvent-borne, and one hundred percent non-volatile compounds. It examines the testing of raw materials and products and shows dyes used in inks with formulation data. This edition includes a new chapter on specialty pigments for high temperature unique to this book, a chapter on statistical experimentation, a chapter on regulations, and a chapter on formulations with a spreadsheet of formulation calculations. This resource expands your awareness and knowledge of coatings, inks, and adhesives, aids you in problem-solving, and increases your level of familiarity with the technology.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nFUNDAMENTALS AND TESTING\u003cbr\u003e\u003cbr\u003eRheology and Surface Chemistry, K.B. Gilleo\u003cbr\u003e\u003cbr\u003eCoating Rheology, C.-M. Chan and S. Venkatraman\u003cbr\u003e\u003cbr\u003eStructure-Property Relationships in Polymers, S. Venkatraman\u003cbr\u003e\u003cbr\u003eThe Theory of Adhesion, C.A. Dahlquist\u003cbr\u003e\u003cbr\u003eAdhesion Testing, U. Zorll\u003cbr\u003e\u003cbr\u003eCoating Calculations, A.A. Tracton\u003cbr\u003e\u003cbr\u003eInfrared Spectroscopy of Coatings, D.S. Kendall\u003cbr\u003e\u003cbr\u003eThermal Analysis for Coatings Characterizations, W.S. Gilman\u003cbr\u003e\u003cbr\u003eColor Measurement for the Coatings Industry, H. Van Aken\u003cbr\u003e\u003cbr\u003eThe Use of X-ray Fluorescence for Coat Weight Determinations, W.E. Mozer\u003cbr\u003e\u003cbr\u003eSunlight, Ultraviolet, and Accelerated Weathering, P. Brennan and C. Fedor\u003cbr\u003e\u003cbr\u003eCure Monitoring: Microdielectric Techniques, D.R. Day\u003cbr\u003e\u003cbr\u003eTest Panels, D. Grossman and P. Patton\u003cbr\u003e\u003cbr\u003eNew! Design of Experiments for Coatings, M.J. Anderson and P.J. Whitcomb\u003cbr\u003e\u003cbr\u003eNew! Top 10 Reasons Not to Base Service Life Predictions upon Accelerated Lab Light Stability Tests, E.T. Everett\u003cbr\u003e\u003cbr\u003eNew! Under What Regulation? A.A. Tracton\u003cbr\u003e\u003cbr\u003eCOATING AND PROCESSING TECHNIQUES\u003cbr\u003e\u003cbr\u003eWire-Wound Rod Coating, D.M. MacLeod\u003cbr\u003e\u003cbr\u003eSlot Die Coating for Low Viscosity Fluids, H.G. Lippert\u003cbr\u003e\u003cbr\u003ePorous Roll Coater, F.S. McIntyre\u003cbr\u003e\u003cbr\u003eRotary Screen Coating, F.A. Goossens\u003cbr\u003e\u003cbr\u003eScreen Printing, T.B. McSweeney\u003cbr\u003e\u003cbr\u003eFlexography, R. Neumann\u003cbr\u003e\u003cbr\u003eInk-Jet Printing, N.L. Cameron\u003cbr\u003e\u003cbr\u003eElectrodeposition of Polymers, G.E.F. Brewer\u003cbr\u003e\u003cbr\u003eElectroless Plating, A. Vakelis\u003cbr\u003e\u003cbr\u003eThe Electrolizing Thin, Dense, Chromium Process, M. O'Mary\u003cbr\u003e\u003cbr\u003eThe Armoloy Chromium Process, M. O'Mary\u003cbr\u003e\u003cbr\u003eSputtered Thin Film Coatings, B.E. Aufderheide\u003cbr\u003e\u003cbr\u003eNew! Vapor Deposition Coating Technologies, L. Pranevicius\u003cbr\u003e\u003cbr\u003eCathodic Arc Plasma Deposition, H. Randhawa\u003cbr\u003e\u003cbr\u003eIndustrial Diamond and Diamondlike Films, A.H. Deutchman and R.J. Partyka\u003cbr\u003e\u003cbr\u003eTribological Synergistic Coatings, W. Alina\u003cbr\u003e\u003cbr\u003eChemical Vapor Deposition, D. G. Bhat\u003cbr\u003e\u003cbr\u003eSolvent Vapor Emission Control, R. Rathmell\u003cbr\u003e\u003cbr\u003eSurface Treatment of Plastics, W.F. Harrington, Jr.\u003cbr\u003e\u003cbr\u003eFlame Surface Treatment, H.T. Lindland\u003cbr\u003e\u003cbr\u003ePlasma Surface Treatment, S.L. Kaplan and P.W. Rose\u003cbr\u003e\u003cbr\u003eSurface Pretreatment of Polymer Webs by Fluorine, R. Milker and A. Koch\u003cbr\u003e\u003cbr\u003e\u003cspan\u003eCalendering \u003c\/span\u003e of Magnetic Media, J.A. McClenathan\u003cbr\u003e\u003cbr\u003eEmbossing, J.A. Pasquale III\u003cbr\u003e\u003cbr\u003eIn-Mold Finishing, R.W. Carpenter\u003cbr\u003e\u003cbr\u003eHVLP: The Science of High-Volume, Low-Pressure Finishing, S. Stalker\u003cbr\u003e\u003cbr\u003eNew! A Practical Guide to High-Speed Dispersion, H. Hockmeyer\u003cbr\u003e\u003cbr\u003eMATERIALS\u003cbr\u003e\u003cbr\u003eAcrylic Polymers, R.A. Lombardi and J.D. Gasper\u003cbr\u003e\u003cbr\u003eVinyl Ether Polymers, H.W. J. Müller\u003cbr\u003e\u003cbr\u003ePoly(Styrene-Butadiene), R.W. Zempel\u003cbr\u003e\u003cbr\u003eLiquid Polymers for Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003ePolyesters, H.F. Huber and D. Stoye\u003cbr\u003e\u003cbr\u003eAlkyd Resins, K. Holmberg\u003cbr\u003e\u003cbr\u003eThe Polyurea Revolution: Protective Coatings for the 21st Century, B.R. Baxter\u003cbr\u003e\u003cbr\u003ePhenolic Resins, K. Bourlier\u003cbr\u003e\u003cbr\u003eCoal Tar and Asphalt Coatings, H.R. Stoner\u003cbr\u003e\u003cbr\u003eVulcanizate Thermoplastic Elastomers, C.P. Rader\u003cbr\u003e\u003cbr\u003eOlefinic Thermoplastic Elastomers, J. Edenbaum\u003cbr\u003e\u003cbr\u003eEthylene Vinyl Alcohol Copolymer (EVOH) Resins, R.H. Foster\u003cbr\u003e\u003cbr\u003eElastomeric Alloy Thermoplastic Elastomers, C.P. Rader\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride and Its Copolymers in Plastisol Coatings, J. Edenbaum\u003cbr\u003e\u003cbr\u003ePolyvinyl Acetal Resins, T.P. Blomstrom\u003cbr\u003e\u003cbr\u003ePolyimides, B.H. Lee\u003cbr\u003e\u003cbr\u003eParylene Coating, W.F. Beach\u003cbr\u003e\u003cbr\u003eNitrocellulose, D.M. Zavisza\u003cbr\u003e\u003cbr\u003eSoybean, Blood, and Casein Glues, A. Lambuth\u003cbr\u003e\u003cbr\u003eFish Gelatin and Fish Glue, R.E. Norland\u003cbr\u003e\u003cbr\u003eWaxes, J.D. Bower\u003cbr\u003e\u003cbr\u003eCarboxymethylcellulose, R.M. Davis\u003cbr\u003e\u003cbr\u003eHydroxyethylcellulose, L.A. Burmeister\u003cbr\u003e\u003cbr\u003eAntistatic and Conductive Additives, B. Davis\u003cbr\u003e\u003cbr\u003eSilane Adhesion Promoters, E.P. Plueddemann\u003cbr\u003e\u003cbr\u003eChromium Complexes, J.R. Harrison\u003cbr\u003e\u003cbr\u003eNonmetallic Fatty Chemicals as Internal Mold Release Agents in Polymers, K.S. Percell, H.H. Tomlinson, and L.E. Walp\u003cbr\u003e\u003cbr\u003eOrganic Peroxides, P.A. Callais\u003cbr\u003e\u003cbr\u003eSurfactants for Waterborne Coatings Applications, S.P. Morell\u003cbr\u003e\u003cbr\u003eSurfactants, Dispersants, and Defoamers for the Coatings, Inks, and Adhesives Industries, J.W. Du\u003cbr\u003e\u003cbr\u003ePigment Dispersion, T.G. Vernardakis\u003cbr\u003e\u003cbr\u003eColored Inorganic Pigments, P.A. Lewis\u003cbr\u003e\u003cbr\u003eOrganic Pigments, P.A. Lewis\u003cbr\u003e\u003cbr\u003eAmino Resins, G.D. Vaughn\u003cbr\u003e\u003cbr\u003eNew! Driers, M. Nowak\u003cbr\u003e\u003cbr\u003eNew! Biocides for the Coatings Industry, K. Winkowski\u003cbr\u003e\u003cbr\u003eNew! Clays, A. Khokhani\u003cbr\u003e\u003cbr\u003eNew! Fluorocarbon Resins for Coatings and Inks, K.A. Wood\u003cbr\u003e\u003cbr\u003eNew! High Temperature Pigments, H. Hatcher\u003cbr\u003e\u003cbr\u003eNew! Polyurethane Associative Thickeners for Waterborne Coatings, D.N. Smith and D. van Peij\u003cbr\u003e\u003cbr\u003eSURFACE COATINGS\u003cbr\u003e\u003cbr\u003eFlexographic Inks, S. Gilbert\u003cbr\u003e\u003cbr\u003eMulticolor Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003ePaintings Conservation Varnish, C.W. McGlinchey\u003cbr\u003e\u003cbr\u003eThermoset Powder Coatings, L.R. Waelde\u003cbr\u003e\u003cbr\u003ePeelable Medical Coatings, D.A. Reinke\u003cbr\u003e\u003cbr\u003eConductive Coatings, R. Liepins\u003cbr\u003e\u003cbr\u003eSilicone Release Coatings, R.P. Eckberg\u003cbr\u003e\u003cbr\u003eSilicone Hard Coatings, E.A. Bernheim\u003cbr\u003e\u003cbr\u003ePressure-Sensitive Adhesives and Adhesive Products, D. Satas\u003cbr\u003e\u003cbr\u003eSelf-Seal Adhesives, L.S. Timm\u003cbr\u003e\u003cbr\u003eSolgel Coatings, L.C. Klein\u003cbr\u003e\u003cbr\u003eRadiation-Cured Coatings, J.V. Koleske\u003cbr\u003e\u003cbr\u003eNonwoven Fabric Binders, A.G. Hoyle\u003cbr\u003e\u003cbr\u003eFire-Retardant\/Fire-Resistive Coatings, J. Green\u003cbr\u003e\u003cbr\u003eLeather Coatings, V. Rajeckas\u003cbr\u003e\u003cbr\u003eMetal Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003eCorrosion and Its Control by Coatings, C.H. Hare\u003cbr\u003e\u003cbr\u003eMarine Coatings Industry, J. Hickey\u003cbr\u003e\u003cbr\u003eDecorative Surface Protection Products, J.J. Shah\u003cbr\u003e\u003cbr\u003eCoated Fabrics for Protective Clothing, N.J. Abbott\u003cbr\u003e\u003cbr\u003eCoated Fabrics for Apparel Use: The Problem of Comfort, N.J. Abbott\u003cbr\u003e\u003cbr\u003eArchitectural Fabrics, M. Dery\u003cbr\u003e\u003cbr\u003eGummed Tape, M.C. Schmit\u003cbr\u003e\u003cbr\u003eTransdermal Drug Delivery Systems, G.W. Cleary\u003cbr\u003e\u003cbr\u003eOptical Fiber Coatings, K. Lawson\u003cbr\u003e\u003cbr\u003eExterior Wood Finishes, W.C. Feist\u003cbr\u003e\u003cbr\u003ePharmaceutical Tablet Coating, J.L. Johnson\u003cbr\u003e\u003cbr\u003eTextiles for Coating, A. Matukonis\u003cbr\u003e\u003cbr\u003eNonwovens as Coating and Laminating Substrates, A.G. Hoyle\u003cbr\u003e\u003cbr\u003eNew! General Use of Inks and the Dyes Used to Make Them, C.D. Klein\u003cbr\u003e\u003cbr\u003eNew! Gravure Inks, S. Gilbert\u003cbr\u003e\u003cbr\u003eNew! Artist's Paints: Their Composition and History, M. Iskowitz\u003cbr\u003e\u003cbr\u003eNew! Fade Resistance of Lithographic Inks - A New Path Forward: Real World Exposures in Florida and Arizona Compared to Accelerated Xenon Arc Exposures, E.T. Everett, J. Lind, and J. Stack.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eEdited by\u003c\/b\u003e Arthur A. Tracton\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eContributors:\u003c\/b\u003e Subbu Venkatraman, Krister Holmberg, Mark J. Anderson, Eric T. Everett, Sam Gilbert, Helen Hatcher, Herman Hockmeyer, Douglas Kendall, Ashok Khokhani, Lisa Klein, Milton Nowak, Liudvikas Pranevicius, Donald Reinke, Douglas Smith, Geroge Vaughn, Theodore Vernarakis, Lawrence Wealde, Karen Winkowski, Kurt Wood, Carol D. Klein, Paul Brennan, John W. Du, Michael Iskowitz, Patrick J. Whitcomb, Detlef van Peij, Carol Fedor\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:42-04:00","created_at":"2017-06-22T21:12:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","coating formulation","coating rheology","coating technology","compounding","drug delivery systems","p-applications","poly"],"price":29700,"price_min":29700,"price_max":29700,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309828,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Coatings Technology Handbook, Third Edition","public_title":null,"options":["Default Title"],"price":29700,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-57444-649-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-57444-649-4.jpg?v=1499724290"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-57444-649-4.jpg?v=1499724290","options":["Title"],"media":[{"alt":null,"id":353961050205,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-57444-649-4.jpg?v=1499724290"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-57444-649-4.jpg?v=1499724290","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Arthur A . Tracton \u003cbr\u003eISBN 978-1-57444-649-4 \u003cbr\u003e\u003cbr\u003e936 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCompletely revised and updated, the Coatings Technology Handbook, Third Edition supplies a broad cross-index of the different aspects involved in the discipline.\u003cbr\u003e\u003cbr\u003eContaining 14 new chapters, the book covers the composition of both organic and inorganic resins, pigments or fillers, and additives, from polymeric fluorocarbons to water borne, solvent-borne, and one hundred percent non-volatile compounds. It examines the testing of raw materials and products and shows dyes used in inks with formulation data. This edition includes a new chapter on specialty pigments for high temperature unique to this book, a chapter on statistical experimentation, a chapter on regulations, and a chapter on formulations with a spreadsheet of formulation calculations. This resource expands your awareness and knowledge of coatings, inks, and adhesives, aids you in problem-solving, and increases your level of familiarity with the technology.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nFUNDAMENTALS AND TESTING\u003cbr\u003e\u003cbr\u003eRheology and Surface Chemistry, K.B. Gilleo\u003cbr\u003e\u003cbr\u003eCoating Rheology, C.-M. Chan and S. Venkatraman\u003cbr\u003e\u003cbr\u003eStructure-Property Relationships in Polymers, S. Venkatraman\u003cbr\u003e\u003cbr\u003eThe Theory of Adhesion, C.A. Dahlquist\u003cbr\u003e\u003cbr\u003eAdhesion Testing, U. Zorll\u003cbr\u003e\u003cbr\u003eCoating Calculations, A.A. Tracton\u003cbr\u003e\u003cbr\u003eInfrared Spectroscopy of Coatings, D.S. Kendall\u003cbr\u003e\u003cbr\u003eThermal Analysis for Coatings Characterizations, W.S. Gilman\u003cbr\u003e\u003cbr\u003eColor Measurement for the Coatings Industry, H. Van Aken\u003cbr\u003e\u003cbr\u003eThe Use of X-ray Fluorescence for Coat Weight Determinations, W.E. Mozer\u003cbr\u003e\u003cbr\u003eSunlight, Ultraviolet, and Accelerated Weathering, P. Brennan and C. Fedor\u003cbr\u003e\u003cbr\u003eCure Monitoring: Microdielectric Techniques, D.R. Day\u003cbr\u003e\u003cbr\u003eTest Panels, D. Grossman and P. Patton\u003cbr\u003e\u003cbr\u003eNew! Design of Experiments for Coatings, M.J. Anderson and P.J. Whitcomb\u003cbr\u003e\u003cbr\u003eNew! Top 10 Reasons Not to Base Service Life Predictions upon Accelerated Lab Light Stability Tests, E.T. Everett\u003cbr\u003e\u003cbr\u003eNew! Under What Regulation? A.A. Tracton\u003cbr\u003e\u003cbr\u003eCOATING AND PROCESSING TECHNIQUES\u003cbr\u003e\u003cbr\u003eWire-Wound Rod Coating, D.M. MacLeod\u003cbr\u003e\u003cbr\u003eSlot Die Coating for Low Viscosity Fluids, H.G. Lippert\u003cbr\u003e\u003cbr\u003ePorous Roll Coater, F.S. McIntyre\u003cbr\u003e\u003cbr\u003eRotary Screen Coating, F.A. Goossens\u003cbr\u003e\u003cbr\u003eScreen Printing, T.B. McSweeney\u003cbr\u003e\u003cbr\u003eFlexography, R. Neumann\u003cbr\u003e\u003cbr\u003eInk-Jet Printing, N.L. Cameron\u003cbr\u003e\u003cbr\u003eElectrodeposition of Polymers, G.E.F. Brewer\u003cbr\u003e\u003cbr\u003eElectroless Plating, A. Vakelis\u003cbr\u003e\u003cbr\u003eThe Electrolizing Thin, Dense, Chromium Process, M. O'Mary\u003cbr\u003e\u003cbr\u003eThe Armoloy Chromium Process, M. O'Mary\u003cbr\u003e\u003cbr\u003eSputtered Thin Film Coatings, B.E. Aufderheide\u003cbr\u003e\u003cbr\u003eNew! Vapor Deposition Coating Technologies, L. Pranevicius\u003cbr\u003e\u003cbr\u003eCathodic Arc Plasma Deposition, H. Randhawa\u003cbr\u003e\u003cbr\u003eIndustrial Diamond and Diamondlike Films, A.H. Deutchman and R.J. Partyka\u003cbr\u003e\u003cbr\u003eTribological Synergistic Coatings, W. Alina\u003cbr\u003e\u003cbr\u003eChemical Vapor Deposition, D. G. Bhat\u003cbr\u003e\u003cbr\u003eSolvent Vapor Emission Control, R. Rathmell\u003cbr\u003e\u003cbr\u003eSurface Treatment of Plastics, W.F. Harrington, Jr.\u003cbr\u003e\u003cbr\u003eFlame Surface Treatment, H.T. Lindland\u003cbr\u003e\u003cbr\u003ePlasma Surface Treatment, S.L. Kaplan and P.W. Rose\u003cbr\u003e\u003cbr\u003eSurface Pretreatment of Polymer Webs by Fluorine, R. Milker and A. Koch\u003cbr\u003e\u003cbr\u003e\u003cspan\u003eCalendering \u003c\/span\u003e of Magnetic Media, J.A. McClenathan\u003cbr\u003e\u003cbr\u003eEmbossing, J.A. Pasquale III\u003cbr\u003e\u003cbr\u003eIn-Mold Finishing, R.W. Carpenter\u003cbr\u003e\u003cbr\u003eHVLP: The Science of High-Volume, Low-Pressure Finishing, S. Stalker\u003cbr\u003e\u003cbr\u003eNew! A Practical Guide to High-Speed Dispersion, H. Hockmeyer\u003cbr\u003e\u003cbr\u003eMATERIALS\u003cbr\u003e\u003cbr\u003eAcrylic Polymers, R.A. Lombardi and J.D. Gasper\u003cbr\u003e\u003cbr\u003eVinyl Ether Polymers, H.W. J. Müller\u003cbr\u003e\u003cbr\u003ePoly(Styrene-Butadiene), R.W. Zempel\u003cbr\u003e\u003cbr\u003eLiquid Polymers for Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003ePolyesters, H.F. Huber and D. Stoye\u003cbr\u003e\u003cbr\u003eAlkyd Resins, K. Holmberg\u003cbr\u003e\u003cbr\u003eThe Polyurea Revolution: Protective Coatings for the 21st Century, B.R. Baxter\u003cbr\u003e\u003cbr\u003ePhenolic Resins, K. Bourlier\u003cbr\u003e\u003cbr\u003eCoal Tar and Asphalt Coatings, H.R. Stoner\u003cbr\u003e\u003cbr\u003eVulcanizate Thermoplastic Elastomers, C.P. Rader\u003cbr\u003e\u003cbr\u003eOlefinic Thermoplastic Elastomers, J. Edenbaum\u003cbr\u003e\u003cbr\u003eEthylene Vinyl Alcohol Copolymer (EVOH) Resins, R.H. Foster\u003cbr\u003e\u003cbr\u003eElastomeric Alloy Thermoplastic Elastomers, C.P. Rader\u003cbr\u003e\u003cbr\u003ePolyvinyl Chloride and Its Copolymers in Plastisol Coatings, J. Edenbaum\u003cbr\u003e\u003cbr\u003ePolyvinyl Acetal Resins, T.P. Blomstrom\u003cbr\u003e\u003cbr\u003ePolyimides, B.H. Lee\u003cbr\u003e\u003cbr\u003eParylene Coating, W.F. Beach\u003cbr\u003e\u003cbr\u003eNitrocellulose, D.M. Zavisza\u003cbr\u003e\u003cbr\u003eSoybean, Blood, and Casein Glues, A. Lambuth\u003cbr\u003e\u003cbr\u003eFish Gelatin and Fish Glue, R.E. Norland\u003cbr\u003e\u003cbr\u003eWaxes, J.D. Bower\u003cbr\u003e\u003cbr\u003eCarboxymethylcellulose, R.M. Davis\u003cbr\u003e\u003cbr\u003eHydroxyethylcellulose, L.A. Burmeister\u003cbr\u003e\u003cbr\u003eAntistatic and Conductive Additives, B. Davis\u003cbr\u003e\u003cbr\u003eSilane Adhesion Promoters, E.P. Plueddemann\u003cbr\u003e\u003cbr\u003eChromium Complexes, J.R. Harrison\u003cbr\u003e\u003cbr\u003eNonmetallic Fatty Chemicals as Internal Mold Release Agents in Polymers, K.S. Percell, H.H. Tomlinson, and L.E. Walp\u003cbr\u003e\u003cbr\u003eOrganic Peroxides, P.A. Callais\u003cbr\u003e\u003cbr\u003eSurfactants for Waterborne Coatings Applications, S.P. Morell\u003cbr\u003e\u003cbr\u003eSurfactants, Dispersants, and Defoamers for the Coatings, Inks, and Adhesives Industries, J.W. Du\u003cbr\u003e\u003cbr\u003ePigment Dispersion, T.G. Vernardakis\u003cbr\u003e\u003cbr\u003eColored Inorganic Pigments, P.A. Lewis\u003cbr\u003e\u003cbr\u003eOrganic Pigments, P.A. Lewis\u003cbr\u003e\u003cbr\u003eAmino Resins, G.D. Vaughn\u003cbr\u003e\u003cbr\u003eNew! Driers, M. Nowak\u003cbr\u003e\u003cbr\u003eNew! Biocides for the Coatings Industry, K. Winkowski\u003cbr\u003e\u003cbr\u003eNew! Clays, A. Khokhani\u003cbr\u003e\u003cbr\u003eNew! Fluorocarbon Resins for Coatings and Inks, K.A. Wood\u003cbr\u003e\u003cbr\u003eNew! High Temperature Pigments, H. Hatcher\u003cbr\u003e\u003cbr\u003eNew! Polyurethane Associative Thickeners for Waterborne Coatings, D.N. Smith and D. van Peij\u003cbr\u003e\u003cbr\u003eSURFACE COATINGS\u003cbr\u003e\u003cbr\u003eFlexographic Inks, S. Gilbert\u003cbr\u003e\u003cbr\u003eMulticolor Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003ePaintings Conservation Varnish, C.W. McGlinchey\u003cbr\u003e\u003cbr\u003eThermoset Powder Coatings, L.R. Waelde\u003cbr\u003e\u003cbr\u003ePeelable Medical Coatings, D.A. Reinke\u003cbr\u003e\u003cbr\u003eConductive Coatings, R. Liepins\u003cbr\u003e\u003cbr\u003eSilicone Release Coatings, R.P. Eckberg\u003cbr\u003e\u003cbr\u003eSilicone Hard Coatings, E.A. Bernheim\u003cbr\u003e\u003cbr\u003ePressure-Sensitive Adhesives and Adhesive Products, D. Satas\u003cbr\u003e\u003cbr\u003eSelf-Seal Adhesives, L.S. Timm\u003cbr\u003e\u003cbr\u003eSolgel Coatings, L.C. Klein\u003cbr\u003e\u003cbr\u003eRadiation-Cured Coatings, J.V. Koleske\u003cbr\u003e\u003cbr\u003eNonwoven Fabric Binders, A.G. Hoyle\u003cbr\u003e\u003cbr\u003eFire-Retardant\/Fire-Resistive Coatings, J. Green\u003cbr\u003e\u003cbr\u003eLeather Coatings, V. Rajeckas\u003cbr\u003e\u003cbr\u003eMetal Coatings, R.D. Athey, Jr.\u003cbr\u003e\u003cbr\u003eCorrosion and Its Control by Coatings, C.H. Hare\u003cbr\u003e\u003cbr\u003eMarine Coatings Industry, J. Hickey\u003cbr\u003e\u003cbr\u003eDecorative Surface Protection Products, J.J. Shah\u003cbr\u003e\u003cbr\u003eCoated Fabrics for Protective Clothing, N.J. Abbott\u003cbr\u003e\u003cbr\u003eCoated Fabrics for Apparel Use: The Problem of Comfort, N.J. Abbott\u003cbr\u003e\u003cbr\u003eArchitectural Fabrics, M. Dery\u003cbr\u003e\u003cbr\u003eGummed Tape, M.C. Schmit\u003cbr\u003e\u003cbr\u003eTransdermal Drug Delivery Systems, G.W. Cleary\u003cbr\u003e\u003cbr\u003eOptical Fiber Coatings, K. Lawson\u003cbr\u003e\u003cbr\u003eExterior Wood Finishes, W.C. Feist\u003cbr\u003e\u003cbr\u003ePharmaceutical Tablet Coating, J.L. Johnson\u003cbr\u003e\u003cbr\u003eTextiles for Coating, A. Matukonis\u003cbr\u003e\u003cbr\u003eNonwovens as Coating and Laminating Substrates, A.G. Hoyle\u003cbr\u003e\u003cbr\u003eNew! General Use of Inks and the Dyes Used to Make Them, C.D. Klein\u003cbr\u003e\u003cbr\u003eNew! Gravure Inks, S. Gilbert\u003cbr\u003e\u003cbr\u003eNew! Artist's Paints: Their Composition and History, M. Iskowitz\u003cbr\u003e\u003cbr\u003eNew! Fade Resistance of Lithographic Inks - A New Path Forward: Real World Exposures in Florida and Arizona Compared to Accelerated Xenon Arc Exposures, E.T. Everett, J. Lind, and J. Stack.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eEdited by\u003c\/b\u003e Arthur A. Tracton\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eContributors:\u003c\/b\u003e Subbu Venkatraman, Krister Holmberg, Mark J. Anderson, Eric T. Everett, Sam Gilbert, Helen Hatcher, Herman Hockmeyer, Douglas Kendall, Ashok Khokhani, Lisa Klein, Milton Nowak, Liudvikas Pranevicius, Donald Reinke, Douglas Smith, Geroge Vaughn, Theodore Vernarakis, Lawrence Wealde, Karen Winkowski, Kurt Wood, Carol D. Klein, Paul Brennan, John W. Du, Michael Iskowitz, Patrick J. Whitcomb, Detlef van Peij, Carol Fedor\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Handbook of Biodegrada...
$215.00
{"id":11242201604,"title":"Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications","handle":"978-3-527-32441-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Andreas Lendlein (Editor), Adam Sisson (Editor) \u003cbr\u003eISBN 978-3-527-32441-5 \u003cbr\u003e\u003cbr\u003e426 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA comprehensive overview of biodegradable polymers, covering everything from synthesis, characterization, and degradation mechanisms while also introducing useful applications, such as drug delivery systems and biomaterial-based regenerative therapies. An introductory section deals with such fundamentals as basic chemical reactions during degradation, the complexity of biological environments and experimental methods for monitoring degradation processes.\u003cbr\u003e\u003cbr\u003eThe result is a reliable reference source for those wanting to learn more about this important class of polymer materials, as well as scientists in the field seeking a deeper insight.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface.\u003cbr\u003eList of Contributors.\u003cbr\u003e\u003cb\u003e1 Polyesters (Adam L. Sisson, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e1.1 Historical Background.\u003cbr\u003e1.2 Preparative Methods.\u003cbr\u003e1.3 Physical Properties.\u003cbr\u003e1.4 Degradation Mechanisms.\u003cbr\u003e1.5 Beyond Classical Poly(Hydroxycarboxylic Acids).\u003cbr\u003e\u003cb\u003e2 Biotechnologically Produced Biodegradable Polyesters (Jaciane Lutz Ienczak and Gláucia Maria Falcão de Aragão).\u003c\/b\u003e\u003cbr\u003e2.1 Introduction.\u003cbr\u003e2.2 History.\u003cbr\u003e2.3 Polyhydroxyalkanoates – Granules Morphology.\u003cbr\u003e2.4 Biosynthesis and Biodegradability of Poly(3-Hydroxybutyrate) and Other Polyhydroxyalkanoates.\u003cbr\u003e2.5 Extraction and Recovery.\u003cbr\u003e2.6 Physical, Mechanical, and Thermal Properties of Polyhydroxyalkanoates.\u003cbr\u003e2.7 Future Directions.\u003cbr\u003e\u003cb\u003e3 Polyanhydrides (Avi Domb, Jay Prakash Jain, and Neeraj Kumar).\u003c\/b\u003e\u003cbr\u003e3.1 Introduction.\u003cbr\u003e3.2 Types of Polyanhydride.\u003cbr\u003e3.3 Synthesis.\u003cbr\u003e3.4 Properties.\u003cbr\u003e3.5 In Vitro Degradation and Erosion of Polyanhydrides.\u003cbr\u003e3.6 In Vivo Degradation and Elimination of Polyanhydrides.\u003cbr\u003e3.7 Toxicological Aspects of Polyanhydrides.\u003cbr\u003e3.8 Fabrication of Delivery Systems.\u003cbr\u003e3.9 Production and World Market.\u003cbr\u003e3.10 Biomedical Applications.\u003cbr\u003e\u003cb\u003e4 Poly(Ortho Esters) (Jorge Heller).\u003c\/b\u003e\u003cbr\u003e4.1 Introduction.\u003cbr\u003e4.2 POE II.\u003cbr\u003e4.3 POE IV.\u003cbr\u003e4.4 Solid Polymers.\u003cbr\u003e4.5 Gel-Like Materials.\u003cbr\u003e4.6 Polymers Based on an Alternate Diketene Acetal.\u003cbr\u003e4.7 Conclusions.\u003cbr\u003e\u003cb\u003e5 Biodegradable Polymers Composed of Naturally Occurring α-Amino Acids (Ramaz Katsarava and Zaza Gomurashvili).\u003c\/b\u003e\u003cbr\u003e5.1 Introduction.\u003cbr\u003e5.2 Amino Acid-Based Biodegradable Polymers (AABBPs).\u003cbr\u003e5.3 Conclusion and Perspectives.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e6 Biodegradable Polyurethanes and Poly(ester amide)s (Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e6.1 Chemistry and Properties of Biodegradable Polyurethanes.\u003cbr\u003e6.2 Biodegradation Mechanisms of Polyurethanes.\u003cbr\u003e6.3 Applications of Biodegradable Polyurethanes.\u003cbr\u003e6.4 New Polymerization Trends to Obtain Degradable Polyurethanes.\u003cbr\u003e6.5 Aliphatic Poly(ester amide)s: A Family of Biodegradable Thermoplastics with Interest as New Biomaterials.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e7 Carbohydrates (Gerald Dräger, Andreas Krause, Lena Möller, and Severian Dumitriu).\u003c\/b\u003e\u003cbr\u003e7.1 Introduction.\u003cbr\u003e7.2 Alginate.\u003cbr\u003e7.3 Carrageenan.\u003cbr\u003e7.4 Cellulose and Its Derivatives.\u003cbr\u003e7.5 Microbial Cellulose.\u003cbr\u003e7.6 Chitin and Chitosan.\u003cbr\u003e7.7 Dextran.\u003cbr\u003e7.8 Gellan.\u003cbr\u003e7.9 Guar Gum.\u003cbr\u003e7.10 Hyaluronic Acid (Hyaluronan).\u003cbr\u003e7.11 Pullulan.\u003cbr\u003e7.12 Scleroglucan.\u003cbr\u003e7.13 Xanthan.\u003cbr\u003e7.14 Summary.\u003cbr\u003eAcknowledgments.\u003cbr\u003eIn Memoriam.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e8 Biodegradable Shape-Memory Polymers (Marc Behl, Jörg Zotzmann, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e8.1 Introduction.\u003cbr\u003e8.2 General Concept of SMPs.\u003cbr\u003e8.3 Classes of Degradable SMPs.\u003cbr\u003e8.4 Applications of Biodegradable SMPs.\u003cbr\u003e\u003cb\u003e9 Biodegradable Elastic Hydrogels for Tissue Expander Application (Thanh Huyen Tran, John Garner, Yourong Fu, Kinam Park, and Kang Moo Huh).\u003c\/b\u003e\u003cbr\u003e9.1 Introduction.\u003cbr\u003e9.2 Synthesis of Elastic Hydrogels.\u003cbr\u003e9.3 Physical Properties of Elastic Hydrogels.\u003cbr\u003e9.4 Applications of Elastic Hydrogels.\u003cbr\u003e9.5 Elastic Hydrogels for Tissue Expander Applications.\u003cbr\u003e9.6 Conclusion.\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003e10 Biodegradable Dendrimers and Dendritic Polymers (Jayant Khandare and Sanjay Kumar).\u003c\/b\u003e\u003cbr\u003e10.1 Introduction.\u003cbr\u003e10.2 Challenges for Designing Biodegradable Dendrimers.\u003cbr\u003e10.3 Design of Self-Immolative Biodegradable Dendrimers.\u003cbr\u003e10.4 Biological Implications of Biodegradable Dendrimers.\u003cbr\u003e10.5 Future Perspectives of Biodegradable Dendrimers.\u003cbr\u003e10.6 Concluding Remarks.\u003cbr\u003e\u003cb\u003e11 Analytical Methods for Monitoring Biodegradation Processes of Environmentally Degradable Polymers (Maarten van der Zee).\u003c\/b\u003e\u003cbr\u003e11.1 Introduction.\u003cbr\u003e11.2 Some Background.\u003cbr\u003e11.3 Defining Biodegradability.\u003cbr\u003e11.4 Mechanisms of Polymer Degradation.\u003cbr\u003e11.5 Measuring Biodegradation of Polymers.\u003cbr\u003e11.6 Conclusions.\u003cbr\u003e\u003cb\u003e12 Modeling and Simulation of Microbial Depolymerization Processes of Xenobiotic Polymers (Masaji Watanabe and Fusako Kawai).\u003c\/b\u003e\u003cbr\u003e12.1 Introduction.\u003cbr\u003e12.2 Analysis of Exogenous Depolymerization.\u003cbr\u003e12.3 Materials and Methods.\u003cbr\u003e12.4 Analysis of Endogenous Depolymerization.\u003cbr\u003e12.5 Discussion.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e13 Regenerative Medicine: Reconstruction of Tracheal and Pharyngeal Mucosal Defects in Head and Neck Surgery (Dorothee Rickert, Bernhard Hiebl, Rosemarie Fuhrmann, Friedrich Jung, Andreas Lendlein, and Ralf-Peter Franke).\u003c\/b\u003e\u003cbr\u003e13.1 Introduction.\u003cbr\u003e13.2 Regenerative Medicine for the Reconstruction of the Upper Aerodigestive Tract.\u003cbr\u003e13.3 Methods and Novel Therapeutical Options in Head and Neck Surgery.\u003cbr\u003e13.4 Vascularization of Tissue-Engineered Constructs.\u003cbr\u003e13.5 Application of Stem Cells in Regenerative Medicine.\u003cbr\u003e13.6 Conclusion.\u003cbr\u003e\u003cb\u003e14 Biodegradable Polymers as Scaffolds for Tissue Engineering (Yoshito Ikada).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e14.1 Introduction.\u003cbr\u003e14.2 Short Overview of Regenerative Biology.\u003cbr\u003e14.3 Minimum Requirements for Tissue Engineering.\u003cbr\u003e14.4 Structure of Scaffolds.\u003cbr\u003e14.5 Biodegradable Polymers for Tissue Engineering.\u003cbr\u003e14.6 Some Examples of Clinical Application of Scaffold.\u003cbr\u003e\u003cb\u003e15 Drug Delivery Systems (Kevin M. Shakesheff).\u003c\/b\u003e\u003cbr\u003e15.1 Introduction.\u003cbr\u003e15.2 The Clinical Need for Drug Delivery Systems.\u003cbr\u003e15.3 Poly(α-Hydroxyl Acids).\u003cbr\u003e15.4 Polyanhydrides.\u003cbr\u003e15.5 Manufacturing Routes.\u003cbr\u003e15.6 Examples of Biodegradable Polymer Drug Delivery Systems Under Development.\u003cbr\u003e15.7 Concluding Remarks.\u003cbr\u003e\u003cb\u003e16 Oxo-biodegradable Polymers: Present Status and Future Perspectives (Emo Chiellini, Andrea Corti, Salvatore D’Antone, and David Mckeen Wiles).\u003c\/b\u003e\u003cbr\u003e16.1 Introduction.\u003cbr\u003e16.2 Controlled – Lifetime Plastics.\u003cbr\u003e16.3 The Abiotic Oxidation of Polyolefins.\u003cbr\u003e16.4 Enhanced Oxo-biodegradation of Polyolefins.\u003cbr\u003e16.5 Processability and Recovery of Oxo-biodegradable Polyolefins.\u003cbr\u003e16.6 Concluding Remarks.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003eIndex.\u003c\/b\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eAndreas Lendlein\u003c\/b\u003e is Director of the Institute of Polymer Research at Helmholtz-Zentrum\u003c\/div\u003e\n\u003cdiv\u003eGeesthacht in Teltow, Germany, and serves on the Board of Directors of the Berlin-Brandenburg\u003c\/div\u003e\n\u003cdiv\u003eCenter for Regenerative Therapies, Berlin. He is Professor of Materials in Life Sciences\u003c\/div\u003e\n\u003cdiv\u003eat University of Potsdam and Professor in Chemistry at the Freie Universitat Berlin as well as\u003c\/div\u003e\n\u003cdiv\u003ethe member of the medical faculty of Charite University Medicine Berlin. His research interests in\u003c\/div\u003e\n\u003cdiv\u003emacromolecular chemistry and material science are polymer-based biomaterials with special\u003c\/div\u003e\n\u003cdiv\u003eemphasis given to multifunctional materials, stimuli-sensitive polymers, especially shape-memory\u003c\/div\u003e\n\u003cdiv\u003epolymers, and biomimetic polymers. Furthermore, he explores potential applications of\u003c\/div\u003e\n\u003cdiv\u003esuch biomaterials in biofunctional implants, controlled drug delivery systems, and regenerative\u003c\/div\u003e\n\u003cdiv\u003etherapies. He completed his habilitation in Macromolecular Chemistry in 2002 at the RWTH\u003c\/div\u003e\n\u003cdiv\u003eAachen University worked as a visiting scientist at the Massachusetts Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003eand received his doctoral degree in Materials Science from Swiss Federal Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e(ETH) in Zurich in 1996. Andreas Lendlein received more than 20 awards for his scientific\u003c\/div\u003e\n\u003cdiv\u003ework, and his achievements as an entrepreneur including the BioFUTURE Award in 1998, the\u003c\/div\u003e\n\u003cdiv\u003e2000 Hermann-Schnell Award and the World Technology Network Award in the category\u003c\/div\u003e\n\u003cdiv\u003eHealth \u0026amp; Medicine in 2005. He has published more than 220 papers in journals and books,\u003c\/div\u003e\n\u003cdiv\u003eand is an inventor of more than 250 published patents and patent applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eAdam Sisson\u003c\/b\u003e received his PhD in Supramolecular Chemistry in 2005 under the guidance of\u003c\/div\u003e\n\u003cdiv\u003eProfessor Anthony Davis at the University of Bristol, UK. Following this, he moved into the\u003c\/div\u003e\n\u003cdiv\u003egroup of Professor Stefan Matile at the University of Geneva, Switzerland, to conduct postdoctoral\u003c\/div\u003e\n\u003cdiv\u003eresearch in self-assembling nanomaterials. In 2007 he embarked upon research into\u003c\/div\u003e\n\u003cdiv\u003epolymeric nanogels as an Alexander von Humboldt Stiftung sponsored research fellow with\u003c\/div\u003e\n\u003cdiv\u003eProfessor Rainer Haag at the Free University of Berlin, Germany. Since 2010 he is leading a\u003c\/div\u003e\n\u003cdiv\u003eJunior research group ?Cell and Tissue Specifi c Materials? at the Berlin-Brandenburg Center\u003c\/div\u003e\n\u003cdiv\u003efor Regenerative Therapies, Helmholtz-Zentrum Geesthacht in Teltow, Germany. His research\u003c\/div\u003e\n\u003cdiv\u003einterests focus on studying and manipulating the interactions of synthetic materials with various\u003c\/div\u003e\n\u003cdiv\u003ebiological moieties in a range of applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:41-04:00","created_at":"2017-06-22T21:12:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biodegradable polymers","biodegradation processes","biomaterials","biopolymers","biopolymers in drug delivery system","book","degradation","drug delivery systems","polymers"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309124,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-32441-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604","options":["Title"],"media":[{"alt":null,"id":354809774173,"position":1,"preview_image":{"aspect_ratio":0.711,"height":499,"width":355,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604"},"aspect_ratio":0.711,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604","width":355}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Andreas Lendlein (Editor), Adam Sisson (Editor) \u003cbr\u003eISBN 978-3-527-32441-5 \u003cbr\u003e\u003cbr\u003e426 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA comprehensive overview of biodegradable polymers, covering everything from synthesis, characterization, and degradation mechanisms while also introducing useful applications, such as drug delivery systems and biomaterial-based regenerative therapies. An introductory section deals with such fundamentals as basic chemical reactions during degradation, the complexity of biological environments and experimental methods for monitoring degradation processes.\u003cbr\u003e\u003cbr\u003eThe result is a reliable reference source for those wanting to learn more about this important class of polymer materials, as well as scientists in the field seeking a deeper insight.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface.\u003cbr\u003eList of Contributors.\u003cbr\u003e\u003cb\u003e1 Polyesters (Adam L. Sisson, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e1.1 Historical Background.\u003cbr\u003e1.2 Preparative Methods.\u003cbr\u003e1.3 Physical Properties.\u003cbr\u003e1.4 Degradation Mechanisms.\u003cbr\u003e1.5 Beyond Classical Poly(Hydroxycarboxylic Acids).\u003cbr\u003e\u003cb\u003e2 Biotechnologically Produced Biodegradable Polyesters (Jaciane Lutz Ienczak and Gláucia Maria Falcão de Aragão).\u003c\/b\u003e\u003cbr\u003e2.1 Introduction.\u003cbr\u003e2.2 History.\u003cbr\u003e2.3 Polyhydroxyalkanoates – Granules Morphology.\u003cbr\u003e2.4 Biosynthesis and Biodegradability of Poly(3-Hydroxybutyrate) and Other Polyhydroxyalkanoates.\u003cbr\u003e2.5 Extraction and Recovery.\u003cbr\u003e2.6 Physical, Mechanical, and Thermal Properties of Polyhydroxyalkanoates.\u003cbr\u003e2.7 Future Directions.\u003cbr\u003e\u003cb\u003e3 Polyanhydrides (Avi Domb, Jay Prakash Jain, and Neeraj Kumar).\u003c\/b\u003e\u003cbr\u003e3.1 Introduction.\u003cbr\u003e3.2 Types of Polyanhydride.\u003cbr\u003e3.3 Synthesis.\u003cbr\u003e3.4 Properties.\u003cbr\u003e3.5 In Vitro Degradation and Erosion of Polyanhydrides.\u003cbr\u003e3.6 In Vivo Degradation and Elimination of Polyanhydrides.\u003cbr\u003e3.7 Toxicological Aspects of Polyanhydrides.\u003cbr\u003e3.8 Fabrication of Delivery Systems.\u003cbr\u003e3.9 Production and World Market.\u003cbr\u003e3.10 Biomedical Applications.\u003cbr\u003e\u003cb\u003e4 Poly(Ortho Esters) (Jorge Heller).\u003c\/b\u003e\u003cbr\u003e4.1 Introduction.\u003cbr\u003e4.2 POE II.\u003cbr\u003e4.3 POE IV.\u003cbr\u003e4.4 Solid Polymers.\u003cbr\u003e4.5 Gel-Like Materials.\u003cbr\u003e4.6 Polymers Based on an Alternate Diketene Acetal.\u003cbr\u003e4.7 Conclusions.\u003cbr\u003e\u003cb\u003e5 Biodegradable Polymers Composed of Naturally Occurring α-Amino Acids (Ramaz Katsarava and Zaza Gomurashvili).\u003c\/b\u003e\u003cbr\u003e5.1 Introduction.\u003cbr\u003e5.2 Amino Acid-Based Biodegradable Polymers (AABBPs).\u003cbr\u003e5.3 Conclusion and Perspectives.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e6 Biodegradable Polyurethanes and Poly(ester amide)s (Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e6.1 Chemistry and Properties of Biodegradable Polyurethanes.\u003cbr\u003e6.2 Biodegradation Mechanisms of Polyurethanes.\u003cbr\u003e6.3 Applications of Biodegradable Polyurethanes.\u003cbr\u003e6.4 New Polymerization Trends to Obtain Degradable Polyurethanes.\u003cbr\u003e6.5 Aliphatic Poly(ester amide)s: A Family of Biodegradable Thermoplastics with Interest as New Biomaterials.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e7 Carbohydrates (Gerald Dräger, Andreas Krause, Lena Möller, and Severian Dumitriu).\u003c\/b\u003e\u003cbr\u003e7.1 Introduction.\u003cbr\u003e7.2 Alginate.\u003cbr\u003e7.3 Carrageenan.\u003cbr\u003e7.4 Cellulose and Its Derivatives.\u003cbr\u003e7.5 Microbial Cellulose.\u003cbr\u003e7.6 Chitin and Chitosan.\u003cbr\u003e7.7 Dextran.\u003cbr\u003e7.8 Gellan.\u003cbr\u003e7.9 Guar Gum.\u003cbr\u003e7.10 Hyaluronic Acid (Hyaluronan).\u003cbr\u003e7.11 Pullulan.\u003cbr\u003e7.12 Scleroglucan.\u003cbr\u003e7.13 Xanthan.\u003cbr\u003e7.14 Summary.\u003cbr\u003eAcknowledgments.\u003cbr\u003eIn Memoriam.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e8 Biodegradable Shape-Memory Polymers (Marc Behl, Jörg Zotzmann, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e8.1 Introduction.\u003cbr\u003e8.2 General Concept of SMPs.\u003cbr\u003e8.3 Classes of Degradable SMPs.\u003cbr\u003e8.4 Applications of Biodegradable SMPs.\u003cbr\u003e\u003cb\u003e9 Biodegradable Elastic Hydrogels for Tissue Expander Application (Thanh Huyen Tran, John Garner, Yourong Fu, Kinam Park, and Kang Moo Huh).\u003c\/b\u003e\u003cbr\u003e9.1 Introduction.\u003cbr\u003e9.2 Synthesis of Elastic Hydrogels.\u003cbr\u003e9.3 Physical Properties of Elastic Hydrogels.\u003cbr\u003e9.4 Applications of Elastic Hydrogels.\u003cbr\u003e9.5 Elastic Hydrogels for Tissue Expander Applications.\u003cbr\u003e9.6 Conclusion.\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003e10 Biodegradable Dendrimers and Dendritic Polymers (Jayant Khandare and Sanjay Kumar).\u003c\/b\u003e\u003cbr\u003e10.1 Introduction.\u003cbr\u003e10.2 Challenges for Designing Biodegradable Dendrimers.\u003cbr\u003e10.3 Design of Self-Immolative Biodegradable Dendrimers.\u003cbr\u003e10.4 Biological Implications of Biodegradable Dendrimers.\u003cbr\u003e10.5 Future Perspectives of Biodegradable Dendrimers.\u003cbr\u003e10.6 Concluding Remarks.\u003cbr\u003e\u003cb\u003e11 Analytical Methods for Monitoring Biodegradation Processes of Environmentally Degradable Polymers (Maarten van der Zee).\u003c\/b\u003e\u003cbr\u003e11.1 Introduction.\u003cbr\u003e11.2 Some Background.\u003cbr\u003e11.3 Defining Biodegradability.\u003cbr\u003e11.4 Mechanisms of Polymer Degradation.\u003cbr\u003e11.5 Measuring Biodegradation of Polymers.\u003cbr\u003e11.6 Conclusions.\u003cbr\u003e\u003cb\u003e12 Modeling and Simulation of Microbial Depolymerization Processes of Xenobiotic Polymers (Masaji Watanabe and Fusako Kawai).\u003c\/b\u003e\u003cbr\u003e12.1 Introduction.\u003cbr\u003e12.2 Analysis of Exogenous Depolymerization.\u003cbr\u003e12.3 Materials and Methods.\u003cbr\u003e12.4 Analysis of Endogenous Depolymerization.\u003cbr\u003e12.5 Discussion.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e13 Regenerative Medicine: Reconstruction of Tracheal and Pharyngeal Mucosal Defects in Head and Neck Surgery (Dorothee Rickert, Bernhard Hiebl, Rosemarie Fuhrmann, Friedrich Jung, Andreas Lendlein, and Ralf-Peter Franke).\u003c\/b\u003e\u003cbr\u003e13.1 Introduction.\u003cbr\u003e13.2 Regenerative Medicine for the Reconstruction of the Upper Aerodigestive Tract.\u003cbr\u003e13.3 Methods and Novel Therapeutical Options in Head and Neck Surgery.\u003cbr\u003e13.4 Vascularization of Tissue-Engineered Constructs.\u003cbr\u003e13.5 Application of Stem Cells in Regenerative Medicine.\u003cbr\u003e13.6 Conclusion.\u003cbr\u003e\u003cb\u003e14 Biodegradable Polymers as Scaffolds for Tissue Engineering (Yoshito Ikada).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e14.1 Introduction.\u003cbr\u003e14.2 Short Overview of Regenerative Biology.\u003cbr\u003e14.3 Minimum Requirements for Tissue Engineering.\u003cbr\u003e14.4 Structure of Scaffolds.\u003cbr\u003e14.5 Biodegradable Polymers for Tissue Engineering.\u003cbr\u003e14.6 Some Examples of Clinical Application of Scaffold.\u003cbr\u003e\u003cb\u003e15 Drug Delivery Systems (Kevin M. Shakesheff).\u003c\/b\u003e\u003cbr\u003e15.1 Introduction.\u003cbr\u003e15.2 The Clinical Need for Drug Delivery Systems.\u003cbr\u003e15.3 Poly(α-Hydroxyl Acids).\u003cbr\u003e15.4 Polyanhydrides.\u003cbr\u003e15.5 Manufacturing Routes.\u003cbr\u003e15.6 Examples of Biodegradable Polymer Drug Delivery Systems Under Development.\u003cbr\u003e15.7 Concluding Remarks.\u003cbr\u003e\u003cb\u003e16 Oxo-biodegradable Polymers: Present Status and Future Perspectives (Emo Chiellini, Andrea Corti, Salvatore D’Antone, and David Mckeen Wiles).\u003c\/b\u003e\u003cbr\u003e16.1 Introduction.\u003cbr\u003e16.2 Controlled – Lifetime Plastics.\u003cbr\u003e16.3 The Abiotic Oxidation of Polyolefins.\u003cbr\u003e16.4 Enhanced Oxo-biodegradation of Polyolefins.\u003cbr\u003e16.5 Processability and Recovery of Oxo-biodegradable Polyolefins.\u003cbr\u003e16.6 Concluding Remarks.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003eIndex.\u003c\/b\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eAndreas Lendlein\u003c\/b\u003e is Director of the Institute of Polymer Research at Helmholtz-Zentrum\u003c\/div\u003e\n\u003cdiv\u003eGeesthacht in Teltow, Germany, and serves on the Board of Directors of the Berlin-Brandenburg\u003c\/div\u003e\n\u003cdiv\u003eCenter for Regenerative Therapies, Berlin. He is Professor of Materials in Life Sciences\u003c\/div\u003e\n\u003cdiv\u003eat University of Potsdam and Professor in Chemistry at the Freie Universitat Berlin as well as\u003c\/div\u003e\n\u003cdiv\u003ethe member of the medical faculty of Charite University Medicine Berlin. His research interests in\u003c\/div\u003e\n\u003cdiv\u003emacromolecular chemistry and material science are polymer-based biomaterials with special\u003c\/div\u003e\n\u003cdiv\u003eemphasis given to multifunctional materials, stimuli-sensitive polymers, especially shape-memory\u003c\/div\u003e\n\u003cdiv\u003epolymers, and biomimetic polymers. Furthermore, he explores potential applications of\u003c\/div\u003e\n\u003cdiv\u003esuch biomaterials in biofunctional implants, controlled drug delivery systems, and regenerative\u003c\/div\u003e\n\u003cdiv\u003etherapies. He completed his habilitation in Macromolecular Chemistry in 2002 at the RWTH\u003c\/div\u003e\n\u003cdiv\u003eAachen University worked as a visiting scientist at the Massachusetts Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003eand received his doctoral degree in Materials Science from Swiss Federal Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e(ETH) in Zurich in 1996. Andreas Lendlein received more than 20 awards for his scientific\u003c\/div\u003e\n\u003cdiv\u003ework, and his achievements as an entrepreneur including the BioFUTURE Award in 1998, the\u003c\/div\u003e\n\u003cdiv\u003e2000 Hermann-Schnell Award and the World Technology Network Award in the category\u003c\/div\u003e\n\u003cdiv\u003eHealth \u0026amp; Medicine in 2005. He has published more than 220 papers in journals and books,\u003c\/div\u003e\n\u003cdiv\u003eand is an inventor of more than 250 published patents and patent applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eAdam Sisson\u003c\/b\u003e received his PhD in Supramolecular Chemistry in 2005 under the guidance of\u003c\/div\u003e\n\u003cdiv\u003eProfessor Anthony Davis at the University of Bristol, UK. Following this, he moved into the\u003c\/div\u003e\n\u003cdiv\u003egroup of Professor Stefan Matile at the University of Geneva, Switzerland, to conduct postdoctoral\u003c\/div\u003e\n\u003cdiv\u003eresearch in self-assembling nanomaterials. In 2007 he embarked upon research into\u003c\/div\u003e\n\u003cdiv\u003epolymeric nanogels as an Alexander von Humboldt Stiftung sponsored research fellow with\u003c\/div\u003e\n\u003cdiv\u003eProfessor Rainer Haag at the Free University of Berlin, Germany. Since 2010 he is leading a\u003c\/div\u003e\n\u003cdiv\u003eJunior research group ?Cell and Tissue Specifi c Materials? at the Berlin-Brandenburg Center\u003c\/div\u003e\n\u003cdiv\u003efor Regenerative Therapies, Helmholtz-Zentrum Geesthacht in Teltow, Germany. His research\u003c\/div\u003e\n\u003cdiv\u003einterests focus on studying and manipulating the interactions of synthetic materials with various\u003c\/div\u003e\n\u003cdiv\u003ebiological moieties in a range of applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Handbook of Adhesives ...
$265.00
{"id":11242201412,"title":"Handbook of Adhesives and Surface Preparation, Technology, Applications and Manufacturing","handle":"978-1-4377-4461-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sina Ebnesajjad \u003cbr\u003eISBN 978-1-4377-4461-3 \u003cbr\u003e\u003cbr\u003e448 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe Applied Handbook of Adhesives provides a thoroughly practical survey of all aspects of adhesives technology from selection and surface preparation to industrial applications and health and environmental factors. The resulting handbook is a hard-working reference for a wide range of engineers and technicians working in the adhesives industry and a variety of industry sectors that make considerable use of adhesives. Particular attention is given to adhesives applications in the automotive, aerospace, medical, dental and electronics sectors.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eA handbook that truly focuses on the applied aspects of adhesives selection and applications: this is a book that won't gather dust on the shelf\u003c\/li\u003e\n\u003cli\u003eProvides practical techniques for rendering materials surfaces adhearable\u003c\/li\u003e\n\u003cli\u003eSector-based studies explore the specific issues for automotive \u0026amp; aerospace, medical, dental and electronics\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e\u003cbr\u003ePART I INTRODUCTION\u003cbr\u003e\u003cbr\u003ePART II SURFACE PREPARATION\u003cbr\u003e\u003cbr\u003ePART III ADHESIVE CHARACTERISTICS\u003cbr\u003e\u003cbr\u003ePART IV ADHESIVES FOR APPLICATIONS\u003cbr\u003e\u003cbr\u003eGlossary (From Adhesives Technology, 25 pages)\u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e, Fluoroconsultants Group; (former DuPont), Chadds Ford, Pennsylvania, U.S.A.","published_at":"2017-06-22T21:12:41-04:00","created_at":"2017-06-22T21:12:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","adhesives","aerospace applications","automotive applications","book","electronics","material","medical and dental applications","surface preparation"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308740,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Adhesives and Surface Preparation, Technology, Applications and Manufacturing","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-4461-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4461-3.jpg?v=1499387243"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4461-3.jpg?v=1499387243","options":["Title"],"media":[{"alt":null,"id":354809053277,"position":1,"preview_image":{"aspect_ratio":0.78,"height":450,"width":351,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4461-3.jpg?v=1499387243"},"aspect_ratio":0.78,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-4461-3.jpg?v=1499387243","width":351}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sina Ebnesajjad \u003cbr\u003eISBN 978-1-4377-4461-3 \u003cbr\u003e\u003cbr\u003e448 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe Applied Handbook of Adhesives provides a thoroughly practical survey of all aspects of adhesives technology from selection and surface preparation to industrial applications and health and environmental factors. The resulting handbook is a hard-working reference for a wide range of engineers and technicians working in the adhesives industry and a variety of industry sectors that make considerable use of adhesives. Particular attention is given to adhesives applications in the automotive, aerospace, medical, dental and electronics sectors.\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eA handbook that truly focuses on the applied aspects of adhesives selection and applications: this is a book that won't gather dust on the shelf\u003c\/li\u003e\n\u003cli\u003eProvides practical techniques for rendering materials surfaces adhearable\u003c\/li\u003e\n\u003cli\u003eSector-based studies explore the specific issues for automotive \u0026amp; aerospace, medical, dental and electronics\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e\u003cbr\u003ePART I INTRODUCTION\u003cbr\u003e\u003cbr\u003ePART II SURFACE PREPARATION\u003cbr\u003e\u003cbr\u003ePART III ADHESIVE CHARACTERISTICS\u003cbr\u003e\u003cbr\u003ePART IV ADHESIVES FOR APPLICATIONS\u003cbr\u003e\u003cbr\u003eGlossary (From Adhesives Technology, 25 pages)\u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e, Fluoroconsultants Group; (former DuPont), Chadds Ford, Pennsylvania, U.S.A."}
Developments in Surfac...
$220.00
{"id":11242201220,"title":"Developments in Surface Contamination and Cleaning, Vol. 3 Methods for Removal of Particle Contaminants","handle":"978-1-4377-7885-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rajiv Kohli and Kashmiri L. Mittal \u003cbr\u003eISBN 978-1-4377-7885-4 \u003cbr\u003eVolume 3\u003cbr\u003e264 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe contributions in this volume cover methods for removal of particle contaminants on surfaces. Several of these methods are well established and have been employed in industrial applications for a long time. However, the ever- higher demand for removal of smaller particles on newer substrate materials is driving continuous development of the established cleaning methods and alternative innovative methods for particle removal. This book provides information on the latest developments in this topic area. Feature: Comprehensive coverage of innovations in surface contamination and cleaning Benefit: One-stop series where a wide range of readers will be sure to find a solution to their cleaning problem, saving the time involved in consulting a range of disparate sources. Feature: Written by established experts in the contamination and cleaning field Benefit: Provides an authoritative resource Feature: Each chapter is a comprehensive review of the state of the art. Benefit: Can be relied on to provide insight, clarity and real expertise on up-to-the-minute innovations. Feature: Case studies included Benefit: Case studies help the reader see theory applied to the solution of real-world practical cleaning and contamination problems.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAqueous Methods;\u003cbr\u003eMegasonic Cleaning; Hydrodynamic Removal of Particles; \u003cbr\u003eBrush Cleaning; Laser Methods for Cleaning; \u003cbr\u003eCO2 Pellet Cleaning; Cleaning Using Acoustic Fields; \u003cbr\u003ePrecision Cleaning Using Cluster Beams; Electrostatic Methods for Cleaning; Wipers for Cleaning; \u003cbr\u003eProjectile Cleaning\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eRajiv Kohli\u003c\/b\u003e is a leading expert with The Aerospace Corporation in contaminant particle behavior, surface cleaning, and contamination control. At the NASA Johnson Space Center in Houston, Texas, he provides technical support for contamination control related to ground-based and manned spaceflight hardware for the Space Shuttle, the International Space Station, and the new Constellation Program that is designed to meet the United States Vision for Space Exploration.\u003cbr\u003e\u003cb\u003eKashmiri Lal \";Kash\"\u003c\/b\u003e; Mittal was associated with IBM from 1972 to 1994. Currently, he is teaching and consulting in the areas of surface contamination and cleaning, and in adhesion science and technology. He is the Editor-in-Chief of the Journal of Adhesion Science and Technology and is the editor of 98 published books, many of them dealing with surface contamination and cleaning.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:12:41-04:00","created_at":"2017-06-22T21:12:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","cleaning methods","general","laser methods for cleaning","removal of particle contaminants"],"price":22000,"price_min":22000,"price_max":22000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Developments in Surface Contamination and Cleaning, Vol. 3 Methods for Removal of Particle Contaminants","public_title":null,"options":["Default Title"],"price":22000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-7885-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7885-4.jpg?v=1499913627"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7885-4.jpg?v=1499913627","options":["Title"],"media":[{"alt":null,"id":353973600349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7885-4.jpg?v=1499913627"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-7885-4.jpg?v=1499913627","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rajiv Kohli and Kashmiri L. Mittal \u003cbr\u003eISBN 978-1-4377-7885-4 \u003cbr\u003eVolume 3\u003cbr\u003e264 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe contributions in this volume cover methods for removal of particle contaminants on surfaces. Several of these methods are well established and have been employed in industrial applications for a long time. However, the ever- higher demand for removal of smaller particles on newer substrate materials is driving continuous development of the established cleaning methods and alternative innovative methods for particle removal. This book provides information on the latest developments in this topic area. Feature: Comprehensive coverage of innovations in surface contamination and cleaning Benefit: One-stop series where a wide range of readers will be sure to find a solution to their cleaning problem, saving the time involved in consulting a range of disparate sources. Feature: Written by established experts in the contamination and cleaning field Benefit: Provides an authoritative resource Feature: Each chapter is a comprehensive review of the state of the art. Benefit: Can be relied on to provide insight, clarity and real expertise on up-to-the-minute innovations. Feature: Case studies included Benefit: Case studies help the reader see theory applied to the solution of real-world practical cleaning and contamination problems.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAqueous Methods;\u003cbr\u003eMegasonic Cleaning; Hydrodynamic Removal of Particles; \u003cbr\u003eBrush Cleaning; Laser Methods for Cleaning; \u003cbr\u003eCO2 Pellet Cleaning; Cleaning Using Acoustic Fields; \u003cbr\u003ePrecision Cleaning Using Cluster Beams; Electrostatic Methods for Cleaning; Wipers for Cleaning; \u003cbr\u003eProjectile Cleaning\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eRajiv Kohli\u003c\/b\u003e is a leading expert with The Aerospace Corporation in contaminant particle behavior, surface cleaning, and contamination control. At the NASA Johnson Space Center in Houston, Texas, he provides technical support for contamination control related to ground-based and manned spaceflight hardware for the Space Shuttle, the International Space Station, and the new Constellation Program that is designed to meet the United States Vision for Space Exploration.\u003cbr\u003e\u003cb\u003eKashmiri Lal \";Kash\"\u003c\/b\u003e; Mittal was associated with IBM from 1972 to 1994. Currently, he is teaching and consulting in the areas of surface contamination and cleaning, and in adhesion science and technology. He is the Editor-in-Chief of the Journal of Adhesion Science and Technology and is the editor of 98 published books, many of them dealing with surface contamination and cleaning.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Comprehensive Semicond...
$2,430.00
{"id":11242201028,"title":"Comprehensive Semiconductor Science and Technology, Six-Volume Set","handle":"978-0-444-53143-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Pallab Bhattacharya, Roberto Fornari and Hiroshi Kamimura \u003cbr\u003eISBN 978-0-444-53143-8 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eApprox. 3608 pages\u003c\/p\u003e\n\u003cp\u003eHardcover, Reference\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSemiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world.\u003cbr\u003e\u003cbr\u003eThe work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us.\u003cbr\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eProvides a comprehensive global picture of the semiconductor world \u003c\/li\u003e\n\u003cli\u003eEach of the work's three sections presents a complete description of one aspect of the whole\u003c\/li\u003e\n\u003cli\u003eWritten and Edited by a truly international team of experts\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nElectrons in semiconductors: Empirical and ab initio theories\u003cbr\u003e\u003cbr\u003eAb initio theories of the structural, electronic and optical properties of semiconductors: bulk crystals to nanostructures\u003cbr\u003e\u003cbr\u003eImpurity Bands in Group-IV Semiconductors\u003cbr\u003e\u003cbr\u003eInteger Quantum Hall Effect\u003cbr\u003e\u003cbr\u003eComposite fermion theory of the fractional quantum Hall effect\u003cbr\u003e\u003cbr\u003eBallistic Transport in GaAs\/AlGaAs Heterostructures\u003cbr\u003e\u003cbr\u003eSpin-Hall effect: Theoretical\u003cbr\u003e\u003cbr\u003eThermal conduction \/ thermoelectric power\u003cbr\u003e\u003cbr\u003eElectronic structures of Quantum Dots\u003cbr\u003e\u003cbr\u003eControl over single electron spins in quantum dots\u003cbr\u003e\u003cbr\u003eAtomic structures and electronic properties of semiconductor interfaces\u003cbr\u003e\u003cbr\u003eContact hyperfine interactions in semiconductor heterostructures\u003cbr\u003e\u003cbr\u003eOptical properties of semiconductors\u003cbr\u003e\u003cbr\u003eBloch oscillation and ultrafast coherent optical phenomena\u003cbr\u003e\u003cbr\u003eOptical properties of Si semiconductor nanocrystals\u003cbr\u003e\u003cbr\u003eExcitons and polaritons in semiconductors\u003cbr\u003e\u003cbr\u003eMagneto-spectroscopy of semiconductors\u003cbr\u003e\u003cbr\u003eMicrocavities of semiconductor quantum structures\u003cbr\u003e\u003cbr\u003eSemimagnetic semiconductors\u003cbr\u003e\u003cbr\u003eElectronic states and properties of carbon crystalline from graphene to carbon nanotubes\u003cbr\u003e\u003cbr\u003eAngle-Resolved Photoemission Spectroscopy of Graphen, Graphite, and Related Compounds\u003cbr\u003e\u003cbr\u003eTheory of Superconductivity in Graphite Intercalation Compounds\u003cbr\u003e\u003cbr\u003eCrystal Growth: an Overview\u003cbr\u003e\u003cbr\u003eMolecular Beam Epitaxy: An Overview\u003cbr\u003e\u003cbr\u003eBulk Growth of Crystals of III-V Compound Semiconductors\u003cbr\u003e\u003cbr\u003eNew Developments in Czochralski Silicon\u003cbr\u003e\u003cbr\u003eGrowth of CdZnTe Bulk Crystal\u003cbr\u003e\u003cbr\u003eGrowth of bulk SiC with Low Defect Densities and SiC epitaxy\u003cbr\u003e\u003cbr\u003eGrowth of Bulk GaN Crystals\u003cbr\u003e\u003cbr\u003eGrowth of bulk A1N Crystals\u003cbr\u003e\u003cbr\u003eGrowth of Bulk ZnO\u003cbr\u003e\u003cbr\u003eOrganometallic Vapor Phase Growth of Group III Nitrides\u003cbr\u003e\u003cbr\u003eZnO epitaxial growth\u003cbr\u003e\u003cbr\u003eNanostructures of metal oxides\u003cbr\u003e\u003cbr\u003eGrowth of Low Dimensional Semiconductors Structures\u003cbr\u003e\u003cbr\u003eIntegration of Dissimilar Materials\u003cbr\u003e\u003cbr\u003eIon Implantation in Group III Nitrides\u003cbr\u003e\u003cbr\u003eContacts to Wide Band Gap Semiconductors\u003cbr\u003e\u003cbr\u003eFormation of Ultra-shallow Junctions\u003cbr\u003e\u003cbr\u003eNew High-K Materials for C-MOS Applications\u003cbr\u003e\u003cbr\u003eFerroelectric thin layers\u003cbr\u003e\u003cbr\u003eAmorphous chalcogenides\u003cbr\u003e\u003cbr\u003eScanning tunneling microscopy and spectroscopy of semiconductor materials\u003cbr\u003e\u003cbr\u003eStudy of Semiconductors by High Resolution Microscopy and Aberration Corrected Microscopy\u003cbr\u003e\u003cbr\u003eAssessment of semiconductors by Scanning Electron Microscopy Techniques\u003cbr\u003e\u003cbr\u003eCharacterization of Semiconductors by X-Ray Diffraction and Topography\u003cbr\u003e\u003cbr\u003eElectronic Energy Levels in Group III Nitrides\u003cbr\u003e\u003cbr\u003eOrganic Semiconductors\u003cbr\u003e\u003cbr\u003eSiGe\/Si Heterojunction Bipolar Transistors and Circuits\u003cbr\u003e\u003cbr\u003eSi MOSFETs for VLSI: Scaling Issues and Limits\u003cbr\u003e\u003cbr\u003eHigh Electron Mobility Transistors and Their Applications\u003cbr\u003e\u003cbr\u003eHigh-Frequency and High-Speed InP-Based Heterojunction Bipolar Transistors\u003cbr\u003e\u003cbr\u003eNegative Differential Resistance Devices and Circuits\u003cbr\u003e\u003cbr\u003eHigh-Frequency Nitride-Based Field Effect Transistors\u003cbr\u003e\u003cbr\u003eWide band Gap Semiconductor Power Devices\u003cbr\u003e\u003cbr\u003eSingle Electron Transistors and Their Applications\u003cbr\u003e\u003cbr\u003eMolecular Electronics\u003cbr\u003e\u003cbr\u003eElectronic and Optoelectronic Properties and Applications of Carbon Nanotubes\u003cbr\u003e\u003cbr\u003eFlexible Electronics\u003cbr\u003e\u003cbr\u003eMEMS Based Sensors\u003cbr\u003e\u003cbr\u003eAvalanche Photodiodes\u003cbr\u003e\u003cbr\u003eOptoelectronic Devices and Their Integration By Disordering\u003cbr\u003e\u003cbr\u003eQuantum Well Lasers and Their Applications\u003cbr\u003e\u003cbr\u003eQuantum Cascade Lasers\u003cbr\u003e\u003cbr\u003eSlow Light Devices and Applications\u003cbr\u003e\u003cbr\u003eShort Wavelength Light Sources\u003cbr\u003e\u003cbr\u003eNitride-Based LEDs and Superluminescent LEDs\u003cbr\u003e\u003cbr\u003eZnO Based Materials and Devices\u003cbr\u003e\u003cbr\u003eMCT Materials and Detectors\u003cbr\u003e\u003cbr\u003eQuantum Well Infrared Detectors\u003cbr\u003e\u003cbr\u003eType II Superlattice Detectors\u003cbr\u003e\u003cbr\u003eTerahertz Detection Devices\u003cbr\u003e\u003cbr\u003eAmorphous and Nanocrystal Silicon Solar Cells\u003cbr\u003e\u003cbr\u003eQuantum Dot Lasers: Physics and Applications\u003cbr\u003e\u003cbr\u003eHigh-Performance Quantum Dot Lasers\u003cbr\u003e\u003cbr\u003eQuantum Dot Infrared Photodetectors\u003cbr\u003e\u003cbr\u003ePhotonic Crystal Microcavity Light Sources\u003cbr\u003e\u003cbr\u003ePhotonic Crystal Waveguides and Filters\u003cbr\u003e\u003cbr\u003eSpintronic Devices\u003cbr\u003e\u003cbr\u003eSpin-Based Semiconductor Heterostructure Devices\u003cbr\u003e\u003cbr\u003eSpin-Polarized Transport and Spintronic Devices\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003ePallab Bhattacharya\u003c\/b\u003e, College of Engineering, University of Michigan, USA.; \u003cb\u003eRoberto Fornari\u003c\/b\u003e, Institute of Physics, humboldt University, Berlin, Germany. and \u003cb\u003eHiroshi Kamimura\u003c\/b\u003e, Department of Applied Physics, Tokyo University of Science, Japan.","published_at":"2017-06-22T21:12:40-04:00","created_at":"2017-06-22T21:12:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","electronic and optical properties","nanocrystals","p-applications","polymer","polymers","semiconductor","technology"],"price":243000,"price_min":243000,"price_max":243000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308356,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Comprehensive Semiconductor Science and Technology, Six-Volume Set","public_title":null,"options":["Default Title"],"price":243000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-444-53143-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53143-8.jpg?v=1499211518"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53143-8.jpg?v=1499211518","options":["Title"],"media":[{"alt":null,"id":353965113437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53143-8.jpg?v=1499211518"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53143-8.jpg?v=1499211518","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Pallab Bhattacharya, Roberto Fornari and Hiroshi Kamimura \u003cbr\u003eISBN 978-0-444-53143-8 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003eApprox. 3608 pages\u003c\/p\u003e\n\u003cp\u003eHardcover, Reference\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSemiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world.\u003cbr\u003e\u003cbr\u003eThe work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us.\u003cbr\u003e\n\u003cp\u003e\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eProvides a comprehensive global picture of the semiconductor world \u003c\/li\u003e\n\u003cli\u003eEach of the work's three sections presents a complete description of one aspect of the whole\u003c\/li\u003e\n\u003cli\u003eWritten and Edited by a truly international team of experts\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nElectrons in semiconductors: Empirical and ab initio theories\u003cbr\u003e\u003cbr\u003eAb initio theories of the structural, electronic and optical properties of semiconductors: bulk crystals to nanostructures\u003cbr\u003e\u003cbr\u003eImpurity Bands in Group-IV Semiconductors\u003cbr\u003e\u003cbr\u003eInteger Quantum Hall Effect\u003cbr\u003e\u003cbr\u003eComposite fermion theory of the fractional quantum Hall effect\u003cbr\u003e\u003cbr\u003eBallistic Transport in GaAs\/AlGaAs Heterostructures\u003cbr\u003e\u003cbr\u003eSpin-Hall effect: Theoretical\u003cbr\u003e\u003cbr\u003eThermal conduction \/ thermoelectric power\u003cbr\u003e\u003cbr\u003eElectronic structures of Quantum Dots\u003cbr\u003e\u003cbr\u003eControl over single electron spins in quantum dots\u003cbr\u003e\u003cbr\u003eAtomic structures and electronic properties of semiconductor interfaces\u003cbr\u003e\u003cbr\u003eContact hyperfine interactions in semiconductor heterostructures\u003cbr\u003e\u003cbr\u003eOptical properties of semiconductors\u003cbr\u003e\u003cbr\u003eBloch oscillation and ultrafast coherent optical phenomena\u003cbr\u003e\u003cbr\u003eOptical properties of Si semiconductor nanocrystals\u003cbr\u003e\u003cbr\u003eExcitons and polaritons in semiconductors\u003cbr\u003e\u003cbr\u003eMagneto-spectroscopy of semiconductors\u003cbr\u003e\u003cbr\u003eMicrocavities of semiconductor quantum structures\u003cbr\u003e\u003cbr\u003eSemimagnetic semiconductors\u003cbr\u003e\u003cbr\u003eElectronic states and properties of carbon crystalline from graphene to carbon nanotubes\u003cbr\u003e\u003cbr\u003eAngle-Resolved Photoemission Spectroscopy of Graphen, Graphite, and Related Compounds\u003cbr\u003e\u003cbr\u003eTheory of Superconductivity in Graphite Intercalation Compounds\u003cbr\u003e\u003cbr\u003eCrystal Growth: an Overview\u003cbr\u003e\u003cbr\u003eMolecular Beam Epitaxy: An Overview\u003cbr\u003e\u003cbr\u003eBulk Growth of Crystals of III-V Compound Semiconductors\u003cbr\u003e\u003cbr\u003eNew Developments in Czochralski Silicon\u003cbr\u003e\u003cbr\u003eGrowth of CdZnTe Bulk Crystal\u003cbr\u003e\u003cbr\u003eGrowth of bulk SiC with Low Defect Densities and SiC epitaxy\u003cbr\u003e\u003cbr\u003eGrowth of Bulk GaN Crystals\u003cbr\u003e\u003cbr\u003eGrowth of bulk A1N Crystals\u003cbr\u003e\u003cbr\u003eGrowth of Bulk ZnO\u003cbr\u003e\u003cbr\u003eOrganometallic Vapor Phase Growth of Group III Nitrides\u003cbr\u003e\u003cbr\u003eZnO epitaxial growth\u003cbr\u003e\u003cbr\u003eNanostructures of metal oxides\u003cbr\u003e\u003cbr\u003eGrowth of Low Dimensional Semiconductors Structures\u003cbr\u003e\u003cbr\u003eIntegration of Dissimilar Materials\u003cbr\u003e\u003cbr\u003eIon Implantation in Group III Nitrides\u003cbr\u003e\u003cbr\u003eContacts to Wide Band Gap Semiconductors\u003cbr\u003e\u003cbr\u003eFormation of Ultra-shallow Junctions\u003cbr\u003e\u003cbr\u003eNew High-K Materials for C-MOS Applications\u003cbr\u003e\u003cbr\u003eFerroelectric thin layers\u003cbr\u003e\u003cbr\u003eAmorphous chalcogenides\u003cbr\u003e\u003cbr\u003eScanning tunneling microscopy and spectroscopy of semiconductor materials\u003cbr\u003e\u003cbr\u003eStudy of Semiconductors by High Resolution Microscopy and Aberration Corrected Microscopy\u003cbr\u003e\u003cbr\u003eAssessment of semiconductors by Scanning Electron Microscopy Techniques\u003cbr\u003e\u003cbr\u003eCharacterization of Semiconductors by X-Ray Diffraction and Topography\u003cbr\u003e\u003cbr\u003eElectronic Energy Levels in Group III Nitrides\u003cbr\u003e\u003cbr\u003eOrganic Semiconductors\u003cbr\u003e\u003cbr\u003eSiGe\/Si Heterojunction Bipolar Transistors and Circuits\u003cbr\u003e\u003cbr\u003eSi MOSFETs for VLSI: Scaling Issues and Limits\u003cbr\u003e\u003cbr\u003eHigh Electron Mobility Transistors and Their Applications\u003cbr\u003e\u003cbr\u003eHigh-Frequency and High-Speed InP-Based Heterojunction Bipolar Transistors\u003cbr\u003e\u003cbr\u003eNegative Differential Resistance Devices and Circuits\u003cbr\u003e\u003cbr\u003eHigh-Frequency Nitride-Based Field Effect Transistors\u003cbr\u003e\u003cbr\u003eWide band Gap Semiconductor Power Devices\u003cbr\u003e\u003cbr\u003eSingle Electron Transistors and Their Applications\u003cbr\u003e\u003cbr\u003eMolecular Electronics\u003cbr\u003e\u003cbr\u003eElectronic and Optoelectronic Properties and Applications of Carbon Nanotubes\u003cbr\u003e\u003cbr\u003eFlexible Electronics\u003cbr\u003e\u003cbr\u003eMEMS Based Sensors\u003cbr\u003e\u003cbr\u003eAvalanche Photodiodes\u003cbr\u003e\u003cbr\u003eOptoelectronic Devices and Their Integration By Disordering\u003cbr\u003e\u003cbr\u003eQuantum Well Lasers and Their Applications\u003cbr\u003e\u003cbr\u003eQuantum Cascade Lasers\u003cbr\u003e\u003cbr\u003eSlow Light Devices and Applications\u003cbr\u003e\u003cbr\u003eShort Wavelength Light Sources\u003cbr\u003e\u003cbr\u003eNitride-Based LEDs and Superluminescent LEDs\u003cbr\u003e\u003cbr\u003eZnO Based Materials and Devices\u003cbr\u003e\u003cbr\u003eMCT Materials and Detectors\u003cbr\u003e\u003cbr\u003eQuantum Well Infrared Detectors\u003cbr\u003e\u003cbr\u003eType II Superlattice Detectors\u003cbr\u003e\u003cbr\u003eTerahertz Detection Devices\u003cbr\u003e\u003cbr\u003eAmorphous and Nanocrystal Silicon Solar Cells\u003cbr\u003e\u003cbr\u003eQuantum Dot Lasers: Physics and Applications\u003cbr\u003e\u003cbr\u003eHigh-Performance Quantum Dot Lasers\u003cbr\u003e\u003cbr\u003eQuantum Dot Infrared Photodetectors\u003cbr\u003e\u003cbr\u003ePhotonic Crystal Microcavity Light Sources\u003cbr\u003e\u003cbr\u003ePhotonic Crystal Waveguides and Filters\u003cbr\u003e\u003cbr\u003eSpintronic Devices\u003cbr\u003e\u003cbr\u003eSpin-Based Semiconductor Heterostructure Devices\u003cbr\u003e\u003cbr\u003eSpin-Polarized Transport and Spintronic Devices\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003ePallab Bhattacharya\u003c\/b\u003e, College of Engineering, University of Michigan, USA.; \u003cb\u003eRoberto Fornari\u003c\/b\u003e, Institute of Physics, humboldt University, Berlin, Germany. and \u003cb\u003eHiroshi Kamimura\u003c\/b\u003e, Department of Applied Physics, Tokyo University of Science, Japan."}
Block Copolymers in Na...
$261.00
{"id":11242200964,"title":"Block Copolymers in Nanoscience","handle":"978-3-527-31309-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Lazzari, Guojun Liu, S. Lecommandoux \u003cbr\u003eISBN \u003cspan\u003e978-3-527-61056-3\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003epages 447, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAn Introduction to Block Copolymer Applications: State-of-the-art and Future Developments. \u003cbr\u003e\u003cbr\u003e2. Guidelines for Synthesizing Block Copolymers. \u003cbr\u003e\u003cbr\u003e3. Block Copolymer Vesicles. \u003cbr\u003e\u003cbr\u003e4. Block Copolymer Micelles for Drug Delivery in Nanoscience. \u003cbr\u003e\u003cbr\u003e5. Stimuli-responsive Block Copolymer Assemblies. \u003cbr\u003e\u003cbr\u003e6. Self-assembly of Linear Polypeptide-based Block Copolymers. \u003cbr\u003e\u003cbr\u003e7. Synthesis, Self-assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers. \u003cbr\u003e\u003cbr\u003e8. Supramolecular Block Polymers Containing Metal-Ligand Binding Sites: From Synthesis to Properties. \u003cbr\u003e\u003cbr\u003e9. Methods for the Alignment and the Large-scale Ordering of Block Copolymer Morphologies. \u003cbr\u003e\u003cbr\u003e10. Block Copolymer Nanofibers and Nanotubes. \u003cbr\u003e\u003cbr\u003e11. Nanostructured Carbons from Block Coplymers. \u003cbr\u003e\u003cbr\u003e12. Block Copolymers at Interfaces. \u003cbr\u003e\u003cbr\u003e13. Block Copolymers as Templates for the Generation of Mesostructured Inorganic Materials. \u003cbr\u003e\u003cbr\u003e14. Mesostructured Polymers-Inorganic Hybrid Materials from Blocked Macromolecular Architectures and Nanoparticles. \u003cbr\u003e\u003cbr\u003e15. Block Ionomers for Fuel Cell Application. \u003cbr\u003e\u003cbr\u003e16. Structure, Properties and Applications of Crystallizable ABA and ABC Triblock Copolymers with Hydrogenated Polybutadiene Blocks. \u003cbr\u003e\u003cbr\u003e17. Basic Understanding of Phase Behavior and Structure of Silicone Block Copolymers and Surfactant-Block Copolymer Mixtures. \u003cbr\u003e\u003cbr\u003eSubject Index.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMassimo Lazzari\u003c\/b\u003e received his PhD in Macromolecular Chemistry at the University of Torino (Italy) under the supervision of Prof. O. Chiantore. After a two years postdoctoral work with Prof. K. Hatada at the Osaka University (Japan), where he learned the secrets of anionic polymerisation, in 1998 he became the assistant professor at the University of Torino, working on the characterisation and degradation of complex polymer systems. After several stays at the University of Santiago de Compostela (Spain), he is actually in the Institute of Technological Investigations. His current research interests are focused on the synthesis of self-assembling block copolymers, with a special attention on their use as templates and for the hierarchical self-assembly of metal nanoparticles. Guojun Liu received his PhD. degree from the University of Toronto in 1989. After 8 months as a post-doctoral fellow in the University of Toronto, he joined McGill University for another post-doctoral year. He was appointed assistant professor at the University of Calgary in 1990, promoted to associate professor in 1995 and full professor in 1999. Since 2004 he has been serving the Department of Chemistry at Queen's University as Tier I (senior) Canada Research Chair in Materials Science. He has published more than 100 papers mostly on block copolymer nanomaterials. Physico-chemist of formation, Sebasstien Lecommandoux has integrated the Centre de Recherche Paul Pascal (group of Professor Franz Hardouin, Bordeaux, France) in 1992 to prepare his Master and his Diploma Thesis in Chemistry and Physics (1996) on Liquid Crystal Polymers. Then, he went to the Material Research Laboratory and the Beckman Institute (University of Illinois at Urbana-Champaign, USA), as a Post-Doc in the group of Professor Samuel I. Stupp, and learned the Art of Supramolecular Chemistry from January to December 1998. He joined the Laboratoire de Chimie des Polymeres Organiques (CNRS, University of Bordeaux, France) as Associate Professor in 1998 and became Professor in 2005. He received the Bronze Medal Award from the CNRS in 2004 for the work he did on the self-assembly of polypeptide-based block copolymers. His current research interests mainly focus on macromolecular engineering via block copolymer self-assembly in solution and in bulk, with a special attention on the relationship between nanostructures and biological functions.","published_at":"2017-06-22T21:12:40-04:00","created_at":"2017-06-22T21:12:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","ABA","ABC","block copolymer","book","membranes","mesostructured","nano","nanofibers","nanolithography","nanotubes. nanostructured carbons interfaces","polybutadiene","polymers","silicone","templates","triblock"],"price":26100,"price_min":26100,"price_max":26100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Block Copolymers in Nanoscience","public_title":null,"options":["Default Title"],"price":26100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-61056-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503","options":["Title"],"media":[{"alt":null,"id":353915371613,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31309-9.jpg?v=1499189503","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds., M. Lazzari, Guojun Liu, S. Lecommandoux \u003cbr\u003eISBN \u003cspan\u003e978-3-527-61056-3\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003epages 447, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book investigates all types of application for block copolymers: as tools for fabricating other nanomaterials, as structural components in hybrid materials and nanocomposites, and as functional materials. The multidisciplinary approach covers all stages from chemical synthesis and characterization, presenting applications from physics and chemistry to biology and medicine, such as micro- and nanolithography, membranes, optical labeling, drug delivery, as well as sensory and analytical uses.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAn Introduction to Block Copolymer Applications: State-of-the-art and Future Developments. \u003cbr\u003e\u003cbr\u003e2. Guidelines for Synthesizing Block Copolymers. \u003cbr\u003e\u003cbr\u003e3. Block Copolymer Vesicles. \u003cbr\u003e\u003cbr\u003e4. Block Copolymer Micelles for Drug Delivery in Nanoscience. \u003cbr\u003e\u003cbr\u003e5. Stimuli-responsive Block Copolymer Assemblies. \u003cbr\u003e\u003cbr\u003e6. Self-assembly of Linear Polypeptide-based Block Copolymers. \u003cbr\u003e\u003cbr\u003e7. Synthesis, Self-assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers. \u003cbr\u003e\u003cbr\u003e8. Supramolecular Block Polymers Containing Metal-Ligand Binding Sites: From Synthesis to Properties. \u003cbr\u003e\u003cbr\u003e9. Methods for the Alignment and the Large-scale Ordering of Block Copolymer Morphologies. \u003cbr\u003e\u003cbr\u003e10. Block Copolymer Nanofibers and Nanotubes. \u003cbr\u003e\u003cbr\u003e11. Nanostructured Carbons from Block Coplymers. \u003cbr\u003e\u003cbr\u003e12. Block Copolymers at Interfaces. \u003cbr\u003e\u003cbr\u003e13. Block Copolymers as Templates for the Generation of Mesostructured Inorganic Materials. \u003cbr\u003e\u003cbr\u003e14. Mesostructured Polymers-Inorganic Hybrid Materials from Blocked Macromolecular Architectures and Nanoparticles. \u003cbr\u003e\u003cbr\u003e15. Block Ionomers for Fuel Cell Application. \u003cbr\u003e\u003cbr\u003e16. Structure, Properties and Applications of Crystallizable ABA and ABC Triblock Copolymers with Hydrogenated Polybutadiene Blocks. \u003cbr\u003e\u003cbr\u003e17. Basic Understanding of Phase Behavior and Structure of Silicone Block Copolymers and Surfactant-Block Copolymer Mixtures. \u003cbr\u003e\u003cbr\u003eSubject Index.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMassimo Lazzari\u003c\/b\u003e received his PhD in Macromolecular Chemistry at the University of Torino (Italy) under the supervision of Prof. O. Chiantore. After a two years postdoctoral work with Prof. K. Hatada at the Osaka University (Japan), where he learned the secrets of anionic polymerisation, in 1998 he became the assistant professor at the University of Torino, working on the characterisation and degradation of complex polymer systems. After several stays at the University of Santiago de Compostela (Spain), he is actually in the Institute of Technological Investigations. His current research interests are focused on the synthesis of self-assembling block copolymers, with a special attention on their use as templates and for the hierarchical self-assembly of metal nanoparticles. Guojun Liu received his PhD. degree from the University of Toronto in 1989. After 8 months as a post-doctoral fellow in the University of Toronto, he joined McGill University for another post-doctoral year. He was appointed assistant professor at the University of Calgary in 1990, promoted to associate professor in 1995 and full professor in 1999. Since 2004 he has been serving the Department of Chemistry at Queen's University as Tier I (senior) Canada Research Chair in Materials Science. He has published more than 100 papers mostly on block copolymer nanomaterials. Physico-chemist of formation, Sebasstien Lecommandoux has integrated the Centre de Recherche Paul Pascal (group of Professor Franz Hardouin, Bordeaux, France) in 1992 to prepare his Master and his Diploma Thesis in Chemistry and Physics (1996) on Liquid Crystal Polymers. Then, he went to the Material Research Laboratory and the Beckman Institute (University of Illinois at Urbana-Champaign, USA), as a Post-Doc in the group of Professor Samuel I. Stupp, and learned the Art of Supramolecular Chemistry from January to December 1998. He joined the Laboratoire de Chimie des Polymeres Organiques (CNRS, University of Bordeaux, France) as Associate Professor in 1998 and became Professor in 2005. He received the Bronze Medal Award from the CNRS in 2004 for the work he did on the self-assembly of polypeptide-based block copolymers. His current research interests mainly focus on macromolecular engineering via block copolymer self-assembly in solution and in bulk, with a special attention on the relationship between nanostructures and biological functions."}
Adhesion: Current Rese...
$325.00
{"id":11242201156,"title":"Adhesion: Current Research and Applications","handle":"978-3-527-60710-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed., Wulff Possart \u003cbr\u003eISBN 978-3-527-60710-5 \u003cbr\u003e\u003cbr\u003epages 608, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEmphasizing the most recent developments this book addresses both the basic and applied aspects of adhesion. The authors present the latest results on fundamental aspects, adhesion in biology, chemistry for the adhesive formulation, surface chemistry and the pretreatment of adherends, mechanical issues, non-destructive testing and the durability of adhesive joints, as well as advanced technical applications of adhesive joints. Prominent scientists review the current level of knowledge concerning the role of chemical bonds in adhesion, new resins and nanocomposites for adhesives, and about the role played by macromolecular architecture in the properties of hot melt and pressure sensitive adhesives.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003e\u003cbr\u003eList of Contributors. \u003cbr\u003e\u003cbr\u003e1. The Interfacial Chemistry of Adhesion: Novel Routes to the Holy Grail (J. Watts). \u003cbr\u003e\u003cbr\u003e2. Modeling Fundamental Aspects of the Surface Chemistry of Oxides and their Interactions with Coupling Agents (P. Schiffels, et al.). \u003cbr\u003e\u003cbr\u003e3. Adhesion at the Nanoscale: An Approach by AFM (M. Brogly, et al.). \u003cbr\u003e\u003cbr\u003e4. Organization of PCL-b-PMMA Diblock Thin Films: Relationship to the Adsorption Substrate Chemistry (T. Elzein, et al.). \u003cbr\u003e\u003cbr\u003e5. Adhesion and Friction Properties of Elastomers at Macroscopic and Nanoscopic Scales (S. Bistac \u0026amp; A. Galliano). \u003cbr\u003e\u003cbr\u003e6. Chemical Structure Formation and Morphology in Ultrathin Polyurethane Films on Metals (C. Wehlack \u0026amp; W. Possart). \u003cbr\u003e\u003cbr\u003e7. Properties of the Interphase Epoxy–Amine\/Metal: Influences from the Nature of the Amine and the Metal (M. Aufray \u0026amp; A. Roche). \u003cbr\u003e\u003cbr\u003e8. Mapping Epoxy Interphases (M. Munz, et al.). \u003cbr\u003e\u003cbr\u003e9. Mechanical Interphases in Epoxies as seen by Nondestructive High-Performance Brillouin Microscopy (J. Krüger, et al.). \u003cbr\u003e\u003cbr\u003e10. Structure Formation in Barnacle Adhesive (M. Wiegemann). \u003cbr\u003e\u003cbr\u003e11. Adhesion Molecule-Modified Cardiovascular Prostheses: Characterization of Cellular Adhesion in a Cell Culture Model and by Cellular Force Spectroscopy (U. Bakowsky, et al.). \u003cbr\u003e\u003cbr\u003e12. Surface Engineering by Coating of Hydrophilic Layers: Bioadhesion and Biocontamination (G. Legeay \u0026amp; F. Poncin-Epaillard). \u003cbr\u003e\u003cbr\u003e13. New Resins and Nanosystems for High-Performance Adhesives (R. Mülhaupt). \u003cbr\u003e\u003cbr\u003e14. Influence of Proton Donors on the Cationic Polymerization of Epoxides (A. Hartwig, et al.). \u003cbr\u003e\u003cbr\u003e15. Novel Adhesion Promoters Based on Hyperbranched Polymers ( A. Buchman, et al.). \u003cbr\u003e\u003cbr\u003e16. Rheology of Hot-Melt PSAs: Influence of Polymer Structure (C. Derail \u0026amp; G. Marin). \u003cbr\u003e\u003cbr\u003e17. Preparation and Characterization of UV-Crosslinkable Pressure-Sensitive Adhesives (H. Do, et al.). \u003cbr\u003e\u003cbr\u003e18. The contribution of Chemical Interactions to the Adhesion Between Evaporated Metals and Functional Groups of Different Types at Polymer Surfaces (J. Friedrich, et al.). \u003cbr\u003e\u003cbr\u003e19. Alkene Pulsed Plasma Functionalized Surfaces: An Interfacial Diels-Alder Reaction Study (F. Siffer, et al.). \u003cbr\u003e\u003cbr\u003e20. Laser Surface Treatment of Composite Materials to Enhance Adhesion Properties (Q. Bénard, et al.). \u003cbr\u003e\u003cbr\u003e21. Effects of the Interphase on the Mechanical Behavior of Thin Adhesive Films—A Modeling Approach (S. Diebels, et al.). \u003cbr\u003e\u003cbr\u003e22. Effect of the Diblock Content on the Adhesive and Deformation Properties of PSAs Based on Styrenic Block Copolymers (C. Creton, et al.). \u003cbr\u003e\u003cbr\u003e23. Contact Mechanics and Interfacial Fatigue Studies between Thin Semicrystalline and Glassy Polymer Films (R. McSwain, et al.). \u003cbr\u003e\u003cbr\u003e24. Local and Global Aspects of Adhesion Phenomena in Soft Polymers (M. Vallat). \u003cbr\u003e\u003cbr\u003e25. Calibration and Evaluation of Nonlinear Ultrasonic Transmission Measurements of Thin-Bonded Interfaces (S. Hirsekorn, et al.). \u003cbr\u003e\u003cbr\u003e26. Debonding of Pressure-Sensitive Adhesives: A Combined Tack and Ultra-Small Angle X-Ray Scattering Study (E. Maurer, et al.). \u003cbr\u003e\u003cbr\u003e27. Nondestructive Testing of Adhesive Curing in Glass-Metal Compounds by Unilateral NMR (K. Kremer, et al.). \u003cbr\u003e\u003cbr\u003e28. Chemical Processes During Aging in Ultra-thin Epoxy Films on Metals (A. Meiser, et al.). \u003cbr\u003e\u003cbr\u003e29. Depth-Resolved Analysis of the Aging Behavior of Epoxy Thin Films by Positron Spectroscopy (J. Kanzow, et al.). \u003cbr\u003e\u003cbr\u003e30. Epoxies on Stainless Steel—Curing and Aging (D. Fata, et al.). \u003cbr\u003e\u003cbr\u003e31. Scanning Kelvin Probe Studies of Ion Transport and De-adhesion Processes at Polymer\/Metal Interfaces (K. Wapner \u0026amp; G. Grundmeier). \u003cbr\u003e\u003cbr\u003e32. Advanced Mass Transport Applications with Elastic Bonding of Sandwich Components (S. Koch, et al.). \u003cbr\u003e\u003cbr\u003e33. Adhesive Joints for Modular Components in Railway Applications (C. Nagel, et al.). \u003cbr\u003e\u003cbr\u003e34. The behavior of Dismantlable Adhesives Including Thermally Expansive Microcapsules (Y. Nishiyama \u0026amp; C. Sato). \u003cbr\u003e\u003cbr\u003eSubject Index.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eProf. Wulff Possart\u003c\/b\u003e holds the chair for Adhesion and Interphases in Polymers at the University of the Saarland in Saarbrücken Germany. He gained his doctorate in interfacial science and adhesion from the Academy of Sciences of the GDR in 1984 and received his lecturing qualification in solid state physics from Potsdam University, Germany, in 1993. He is the author of more than 88 scientific papers, book chapters, and books, and serves on the editorial boards of several scientific journals. Professor Possart's work focuses on mechanisms of fundamental adhesion, structure formation and properties of thin organic and polymer films, interphase chemistry in reactive systems, polymer dynamics at the phase boundary, and on the aging and durability of thin films and interphases.","published_at":"2017-06-22T21:12:40-04:00","created_at":"2017-06-22T21:12:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","acrylic polymers","adherends","adhesion","aging","biology","book","chemistry","durability","epoxies","fatigue","films","glassy","interfacial","joints","non-destructive testing","p-chemical","plastic","polymer","resins","semicrystalline","stainless steel Curing","surface","thin","ultra-thin","X-Ray"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378308484,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Adhesion: Current Research and Applications","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-60710-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-60710-5.jpg?v=1498185245"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-60710-5.jpg?v=1498185245","options":["Title"],"media":[{"alt":null,"id":350140334173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-60710-5.jpg?v=1498185245"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-60710-5.jpg?v=1498185245","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed., Wulff Possart \u003cbr\u003eISBN 978-3-527-60710-5 \u003cbr\u003e\u003cbr\u003epages 608, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEmphasizing the most recent developments this book addresses both the basic and applied aspects of adhesion. The authors present the latest results on fundamental aspects, adhesion in biology, chemistry for the adhesive formulation, surface chemistry and the pretreatment of adherends, mechanical issues, non-destructive testing and the durability of adhesive joints, as well as advanced technical applications of adhesive joints. Prominent scientists review the current level of knowledge concerning the role of chemical bonds in adhesion, new resins and nanocomposites for adhesives, and about the role played by macromolecular architecture in the properties of hot melt and pressure sensitive adhesives.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003e\u003cbr\u003eList of Contributors. \u003cbr\u003e\u003cbr\u003e1. The Interfacial Chemistry of Adhesion: Novel Routes to the Holy Grail (J. Watts). \u003cbr\u003e\u003cbr\u003e2. Modeling Fundamental Aspects of the Surface Chemistry of Oxides and their Interactions with Coupling Agents (P. Schiffels, et al.). \u003cbr\u003e\u003cbr\u003e3. Adhesion at the Nanoscale: An Approach by AFM (M. Brogly, et al.). \u003cbr\u003e\u003cbr\u003e4. Organization of PCL-b-PMMA Diblock Thin Films: Relationship to the Adsorption Substrate Chemistry (T. Elzein, et al.). \u003cbr\u003e\u003cbr\u003e5. Adhesion and Friction Properties of Elastomers at Macroscopic and Nanoscopic Scales (S. Bistac \u0026amp; A. Galliano). \u003cbr\u003e\u003cbr\u003e6. Chemical Structure Formation and Morphology in Ultrathin Polyurethane Films on Metals (C. Wehlack \u0026amp; W. Possart). \u003cbr\u003e\u003cbr\u003e7. Properties of the Interphase Epoxy–Amine\/Metal: Influences from the Nature of the Amine and the Metal (M. Aufray \u0026amp; A. Roche). \u003cbr\u003e\u003cbr\u003e8. Mapping Epoxy Interphases (M. Munz, et al.). \u003cbr\u003e\u003cbr\u003e9. Mechanical Interphases in Epoxies as seen by Nondestructive High-Performance Brillouin Microscopy (J. Krüger, et al.). \u003cbr\u003e\u003cbr\u003e10. Structure Formation in Barnacle Adhesive (M. Wiegemann). \u003cbr\u003e\u003cbr\u003e11. Adhesion Molecule-Modified Cardiovascular Prostheses: Characterization of Cellular Adhesion in a Cell Culture Model and by Cellular Force Spectroscopy (U. Bakowsky, et al.). \u003cbr\u003e\u003cbr\u003e12. Surface Engineering by Coating of Hydrophilic Layers: Bioadhesion and Biocontamination (G. Legeay \u0026amp; F. Poncin-Epaillard). \u003cbr\u003e\u003cbr\u003e13. New Resins and Nanosystems for High-Performance Adhesives (R. Mülhaupt). \u003cbr\u003e\u003cbr\u003e14. Influence of Proton Donors on the Cationic Polymerization of Epoxides (A. Hartwig, et al.). \u003cbr\u003e\u003cbr\u003e15. Novel Adhesion Promoters Based on Hyperbranched Polymers ( A. Buchman, et al.). \u003cbr\u003e\u003cbr\u003e16. Rheology of Hot-Melt PSAs: Influence of Polymer Structure (C. Derail \u0026amp; G. Marin). \u003cbr\u003e\u003cbr\u003e17. Preparation and Characterization of UV-Crosslinkable Pressure-Sensitive Adhesives (H. Do, et al.). \u003cbr\u003e\u003cbr\u003e18. The contribution of Chemical Interactions to the Adhesion Between Evaporated Metals and Functional Groups of Different Types at Polymer Surfaces (J. Friedrich, et al.). \u003cbr\u003e\u003cbr\u003e19. Alkene Pulsed Plasma Functionalized Surfaces: An Interfacial Diels-Alder Reaction Study (F. Siffer, et al.). \u003cbr\u003e\u003cbr\u003e20. Laser Surface Treatment of Composite Materials to Enhance Adhesion Properties (Q. Bénard, et al.). \u003cbr\u003e\u003cbr\u003e21. Effects of the Interphase on the Mechanical Behavior of Thin Adhesive Films—A Modeling Approach (S. Diebels, et al.). \u003cbr\u003e\u003cbr\u003e22. Effect of the Diblock Content on the Adhesive and Deformation Properties of PSAs Based on Styrenic Block Copolymers (C. Creton, et al.). \u003cbr\u003e\u003cbr\u003e23. Contact Mechanics and Interfacial Fatigue Studies between Thin Semicrystalline and Glassy Polymer Films (R. McSwain, et al.). \u003cbr\u003e\u003cbr\u003e24. Local and Global Aspects of Adhesion Phenomena in Soft Polymers (M. Vallat). \u003cbr\u003e\u003cbr\u003e25. Calibration and Evaluation of Nonlinear Ultrasonic Transmission Measurements of Thin-Bonded Interfaces (S. Hirsekorn, et al.). \u003cbr\u003e\u003cbr\u003e26. Debonding of Pressure-Sensitive Adhesives: A Combined Tack and Ultra-Small Angle X-Ray Scattering Study (E. Maurer, et al.). \u003cbr\u003e\u003cbr\u003e27. Nondestructive Testing of Adhesive Curing in Glass-Metal Compounds by Unilateral NMR (K. Kremer, et al.). \u003cbr\u003e\u003cbr\u003e28. Chemical Processes During Aging in Ultra-thin Epoxy Films on Metals (A. Meiser, et al.). \u003cbr\u003e\u003cbr\u003e29. Depth-Resolved Analysis of the Aging Behavior of Epoxy Thin Films by Positron Spectroscopy (J. Kanzow, et al.). \u003cbr\u003e\u003cbr\u003e30. Epoxies on Stainless Steel—Curing and Aging (D. Fata, et al.). \u003cbr\u003e\u003cbr\u003e31. Scanning Kelvin Probe Studies of Ion Transport and De-adhesion Processes at Polymer\/Metal Interfaces (K. Wapner \u0026amp; G. Grundmeier). \u003cbr\u003e\u003cbr\u003e32. Advanced Mass Transport Applications with Elastic Bonding of Sandwich Components (S. Koch, et al.). \u003cbr\u003e\u003cbr\u003e33. Adhesive Joints for Modular Components in Railway Applications (C. Nagel, et al.). \u003cbr\u003e\u003cbr\u003e34. The behavior of Dismantlable Adhesives Including Thermally Expansive Microcapsules (Y. Nishiyama \u0026amp; C. Sato). \u003cbr\u003e\u003cbr\u003eSubject Index.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eProf. Wulff Possart\u003c\/b\u003e holds the chair for Adhesion and Interphases in Polymers at the University of the Saarland in Saarbrücken Germany. He gained his doctorate in interfacial science and adhesion from the Academy of Sciences of the GDR in 1984 and received his lecturing qualification in solid state physics from Potsdam University, Germany, in 1993. He is the author of more than 88 scientific papers, book chapters, and books, and serves on the editorial boards of several scientific journals. Professor Possart's work focuses on mechanisms of fundamental adhesion, structure formation and properties of thin organic and polymer films, interphase chemistry in reactive systems, polymer dynamics at the phase boundary, and on the aging and durability of thin films and interphases."}
Structure, Deformation...
$239.00
{"id":11242200644,"title":"Structure, Deformation, and Integrity of Materials: Volume I: Fundamentals and Elasticity \/ Volume II: Plasticity, Visco-elasticity, and Fracture, 2 Volumes","handle":"978-3-527-31426-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gijsbertus de With \u003cbr\u003eISBN 978-3-527-31426-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006 \u003cbr\u003e\u003c\/span\u003eHardcover\u003cbr\u003e894 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis first integrated approach to thermomechanics deals equally with the atomic scale, the mesoscale of microstructures and morphology, as well as the macroscopic level of actual components and workpieces for applications. With some 85 examples and 150 problems, it covers the three important material classes of ceramics, polymers, and metals in a didactic manner. The renowned author surveys mechanical material behavior at both the introductory and advanced level, providing a reading incentive to both students as well as specialists in such disciplines as materials science, chemistry, physics, and mechanical engineering. Backed by five appendices on symbols, abbreviations, data sheets, materials properties, statistics, and a summary of contact mechanics.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nVolume I: Fundamentals and Elasticity. \u003cbr\u003e\u003cbr\u003eA. Overview. \u003cbr\u003e\u003cbr\u003eIntroduction. \u003cbr\u003e\u003cbr\u003eConstitutive Behaviour. \u003cbr\u003e\u003cbr\u003eB. Basics. \u003cbr\u003e\u003cbr\u003eMathematical Preliminaries. \u003cbr\u003e\u003cbr\u003eKinematics. \u003cbr\u003e\u003cbr\u003eKinetics. \u003cbr\u003e\u003cbr\u003eThermodynamics. \u003cbr\u003e\u003cbr\u003eC, Q and S Mechanics. \u003cbr\u003e\u003cbr\u003eStructure and Bonding. \u003cbr\u003e\u003cbr\u003eC. Elasticity. \u003cbr\u003e\u003cbr\u003eContinuum Elasticity. \u003cbr\u003e\u003cbr\u003eElasticity of Structures. \u003cbr\u003e\u003cbr\u003eMolecular Basis of Elasticity. \u003cbr\u003e\u003cbr\u003eMicrostructural Aspects of Elasticity. \u003cbr\u003e\u003cbr\u003eAppendix A: Units, Physical Constants, and Conversion Factors. \u003cbr\u003e\u003cbr\u003eAppendix B: Properties of Structural Materials. \u003cbr\u003e\u003cbr\u003eAppendix C: Properties of Plane Areas. \u003cbr\u003e\u003cbr\u003eVolume II: Plasticity and Fracture. \u003cbr\u003e\u003cbr\u003eD. Plasticity. \u003cbr\u003e\u003cbr\u003eContinuum Plasticity. \u003cbr\u003e\u003cbr\u003eApplications of Plasticity Theory. \u003cbr\u003e\u003cbr\u003eDislocations. \u003cbr\u003e\u003cbr\u003eDislocations and Plasticity. \u003cbr\u003e\u003cbr\u003eMechanisms in Polymers \u003cbr\u003e\u003cbr\u003eContinuum Visco-elasticity \u003cbr\u003e\u003cbr\u003eApplications of Visco-elasticity Theory \u003cbr\u003e\u003cbr\u003eStructural Aspects of Visco-elasticity \u003cbr\u003e\u003cbr\u003eE. Fracture. \u003cbr\u003e\u003cbr\u003eContinuum Fracture. \u003cbr\u003e\u003cbr\u003eApplications of Fracture Theory. \u003cbr\u003e\u003cbr\u003eStructural Aspects of Fracture. \u003cbr\u003e\u003cbr\u003eFatigue. \u003cbr\u003e\u003cbr\u003ePerspective and Outlook. \u003cbr\u003e\u003cbr\u003eAppendix D: Statistics. \u003cbr\u003e\u003cbr\u003eAppendix E: Contact Mechanics.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eGijsbertus de With\u003c\/b\u003e is full professor in materials science. He graduated from Utrecht State University and received his Ph.D. in 1977 from the University of Twente on the 'Structure and charge distribution of molecular crystals'. In the same year, he joined Philips Research Laboratories, Eindhoven. In 1985 he was appointed part-time professor and in 1996 he became full professor at the Eindhoven University of Technology. His research interests include the chemical and mechanical processing as well as the chemo-mechanical behaviour of multi-phase materials and he holds about 10 patents.","published_at":"2017-06-22T21:12:39-04:00","created_at":"2017-06-22T21:12:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","bonding","book","elasticity","fracture","general","kinematics","macroscopic","microstructures","morphology","plasticity","statisctics","structure","thermodynamics","units","visco-elasticity","wiley"," kinetics"],"price":23900,"price_min":23900,"price_max":23900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378305796,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Structure, Deformation, and Integrity of Materials: Volume I: Fundamentals and Elasticity \/ Volume II: Plasticity, Visco-elasticity, and Fracture, 2 Volumes","public_title":null,"options":["Default Title"],"price":23900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-31426-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31426-3_690d2417-25c2-40bf-b586-2b6c9747d6b6.jpg?v=1499955997"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31426-3_690d2417-25c2-40bf-b586-2b6c9747d6b6.jpg?v=1499955997","options":["Title"],"media":[{"alt":null,"id":358768935005,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31426-3_690d2417-25c2-40bf-b586-2b6c9747d6b6.jpg?v=1499955997"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-31426-3_690d2417-25c2-40bf-b586-2b6c9747d6b6.jpg?v=1499955997","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Gijsbertus de With \u003cbr\u003eISBN 978-3-527-31426-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006 \u003cbr\u003e\u003c\/span\u003eHardcover\u003cbr\u003e894 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis first integrated approach to thermomechanics deals equally with the atomic scale, the mesoscale of microstructures and morphology, as well as the macroscopic level of actual components and workpieces for applications. With some 85 examples and 150 problems, it covers the three important material classes of ceramics, polymers, and metals in a didactic manner. The renowned author surveys mechanical material behavior at both the introductory and advanced level, providing a reading incentive to both students as well as specialists in such disciplines as materials science, chemistry, physics, and mechanical engineering. Backed by five appendices on symbols, abbreviations, data sheets, materials properties, statistics, and a summary of contact mechanics.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nVolume I: Fundamentals and Elasticity. \u003cbr\u003e\u003cbr\u003eA. Overview. \u003cbr\u003e\u003cbr\u003eIntroduction. \u003cbr\u003e\u003cbr\u003eConstitutive Behaviour. \u003cbr\u003e\u003cbr\u003eB. Basics. \u003cbr\u003e\u003cbr\u003eMathematical Preliminaries. \u003cbr\u003e\u003cbr\u003eKinematics. \u003cbr\u003e\u003cbr\u003eKinetics. \u003cbr\u003e\u003cbr\u003eThermodynamics. \u003cbr\u003e\u003cbr\u003eC, Q and S Mechanics. \u003cbr\u003e\u003cbr\u003eStructure and Bonding. \u003cbr\u003e\u003cbr\u003eC. Elasticity. \u003cbr\u003e\u003cbr\u003eContinuum Elasticity. \u003cbr\u003e\u003cbr\u003eElasticity of Structures. \u003cbr\u003e\u003cbr\u003eMolecular Basis of Elasticity. \u003cbr\u003e\u003cbr\u003eMicrostructural Aspects of Elasticity. \u003cbr\u003e\u003cbr\u003eAppendix A: Units, Physical Constants, and Conversion Factors. \u003cbr\u003e\u003cbr\u003eAppendix B: Properties of Structural Materials. \u003cbr\u003e\u003cbr\u003eAppendix C: Properties of Plane Areas. \u003cbr\u003e\u003cbr\u003eVolume II: Plasticity and Fracture. \u003cbr\u003e\u003cbr\u003eD. Plasticity. \u003cbr\u003e\u003cbr\u003eContinuum Plasticity. \u003cbr\u003e\u003cbr\u003eApplications of Plasticity Theory. \u003cbr\u003e\u003cbr\u003eDislocations. \u003cbr\u003e\u003cbr\u003eDislocations and Plasticity. \u003cbr\u003e\u003cbr\u003eMechanisms in Polymers \u003cbr\u003e\u003cbr\u003eContinuum Visco-elasticity \u003cbr\u003e\u003cbr\u003eApplications of Visco-elasticity Theory \u003cbr\u003e\u003cbr\u003eStructural Aspects of Visco-elasticity \u003cbr\u003e\u003cbr\u003eE. Fracture. \u003cbr\u003e\u003cbr\u003eContinuum Fracture. \u003cbr\u003e\u003cbr\u003eApplications of Fracture Theory. \u003cbr\u003e\u003cbr\u003eStructural Aspects of Fracture. \u003cbr\u003e\u003cbr\u003eFatigue. \u003cbr\u003e\u003cbr\u003ePerspective and Outlook. \u003cbr\u003e\u003cbr\u003eAppendix D: Statistics. \u003cbr\u003e\u003cbr\u003eAppendix E: Contact Mechanics.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eGijsbertus de With\u003c\/b\u003e is full professor in materials science. He graduated from Utrecht State University and received his Ph.D. in 1977 from the University of Twente on the 'Structure and charge distribution of molecular crystals'. In the same year, he joined Philips Research Laboratories, Eindhoven. In 1985 he was appointed part-time professor and in 1996 he became full professor at the Eindhoven University of Technology. His research interests include the chemical and mechanical processing as well as the chemo-mechanical behaviour of multi-phase materials and he holds about 10 patents."}
Biopolymers
$153.00
{"id":11242200836,"title":"Biopolymers","handle":"978-1-85957-379-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.M. Johnson, L.Y. Mwaikambo and N. Tucker \u003cbr\u003eISBN 978-1-85957-379-2 \u003cbr\u003e\u003cbr\u003epages 158\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe earth has finite resources in terms of fossil origin fuel and a finite capacity for disposal of waste. Biopolymers may offer a solution to both these issues in the long-term. The ideal biopolymer is both of renewable biological origin and biodegradable at the end of its life. In some cases material may be of a biological origin and not readily biodegradable, such as thermosets made from cashew nut shell liquid. On the other hand, polyvinyl alcohol is an example of a polymer of a synthetic origin and biodegradable. \u003cbr\u003e\u003cbr\u003eEnvironmental degradation can involve enzymatic pathways and microorganisms such as bacteria and fungi, or chemical pathways such as hydrolysis. It is important that biopolymers have an adequate life span for applications - their biodegradability makes them ideal for use in resorbable medical products such as sutures, in short-term packaging applications for fast foods and fresh groceries, and for sanitary uses. \u003cbr\u003e\u003cbr\u003eThis review sets out to examine the current trends in biopolymer science. The different types of biological polymers are discussed. The chemistry and synthesis of some key biopolymers is described, including cellulose, hemicellulose, starch, polyhydroxyalkanoates (of bacterial origin), tannins (polyphenolic plant products), cashew nut shell liquid, rosins (from tree sap), lignin (from wood), and man made polylactides. Many other biopolymers are also being investigated, for example, alginates from seaweed and algae, and proteins such as casein and soybean. The abstracts at the end of this report cover an extensive range of materials and are fully indexed. \u003cbr\u003e\u003cbr\u003eCommercially, bioplastics have proven to be relatively expensive and available only in small quantities. This has lead to limitations on applications to date. However, there are signs that this is changing, with increasing environmental awareness and more stringent legislation regarding recyclability and restrictions on waste disposal. Cargill Dow has a polylactic acid polymer in production (Natureworks). Metabolix has been working on polyhydroxyalkanoates (Biopol). Several companies have been developing starch products such as Avebe, Biop, Earthshell and Midwest Grain Products Inc. Polyols for polyurethane have been obtained from vegetable oils, etc. \u003cbr\u003e\u003cbr\u003eCertification of compostability is now available from DIN CERTCO. The requirements for this standard are discussed in the report. Additives can compromise the environmentally-friendly status of a polymer and must be chosen with care. Thus natural fibre reinforcements are also discussed briefly here. Biocomposites have been developed comprising natural origin polymer matrices and natural fibres, such as sugar cane bagasse and jute. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by over 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Biopolymers\u003cbr\u003e1.2 Biodisintegratables or Biodeteriorating Polymers\u003cbr\u003e1.3 Biodegradability\u003cbr\u003e1.4 Environmental Impact\u003cbr\u003e1.5 Market Size \u003cbr\u003e2. Synthesis of Biopolymers\u003cbr\u003e2.1 Cellulose\u003cbr\u003e2.2 Starch\u003cbr\u003e2.3 Hemicellulose\u003cbr\u003e2.4 Polyhydroxyalkanoates (PHA)\u003cbr\u003e2.5 Tannins\u003cbr\u003e2.6 Cashew Nut Shell Liquid (CNSL)\u003cbr\u003e2.6.1 The Structure of CNSL\u003cbr\u003e2.6.2 Polymer Synthesis of CNSL\u003cbr\u003e2.7 Rosins\u003cbr\u003e2.8 Lignin\u003cbr\u003e2.9 Polylactic Acids and Polylactides\u003cbr\u003e2.10 Other \u003cbr\u003e3. Commercially Available Biopolymers \u003cbr\u003e4. Uses of Biopolymers\u003cbr\u003e4.1 General Uses\u003cbr\u003e4.2 Uses of Specific Polymer Types \u003cbr\u003e5. Manufacturing Technologies for Biopolymers\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Manufacturing Methods\u003cbr\u003e5.3 Additives\u003cbr\u003e5.3.1 Plasticizers\u003cbr\u003e5.3.2 Lubricants\u003cbr\u003e5.3.3 Colorants\u003cbr\u003e5.3.4 Flame Retardants\u003cbr\u003e5.3.5 Blowing (Foaming) Agents\u003cbr\u003e5.3.6 Crosslinkers\u003cbr\u003e5.3.7 Fillers \u003cbr\u003e6. Fillers and Reinforcement for Biopolymers \u003cbr\u003e7.The Markets and Economics for Biopolymers \u003cbr\u003e8.Compostability Certification \u003cbr\u003e9.The Chemistry and Biology of Polymer Degradation \u003cbr\u003e10.Conclusions\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMark Johnson\u003c\/b\u003e is currently reading for a doctorate in Engineering Business Management (EngD) at the University of Warwick. Prior to this he worked as a production engineer in composite fabrication. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry. \u003cbr\u003e\u003cb\u003e\u003cbr\u003eDr. Leonard Mwaikambo\u003c\/b\u003e\u003cbr\u003eholds the post of Lecturer at the Sokoine University of Agriculture, Tanzania, and is currently a Research Fellow in the Department of Chemistry, University of Warwick. His research concerns the development of sustainably produced, recyclable natural fibre composites. He has keen interest in developing matrices based on polymerised natural oils and fats for composite manufacture. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eNick Tucker\u003c\/b\u003e's interest in biopolymers was started by a request from the Rover Group to examine the potential effect of biodegradable polymers on end-of-life vehicle disposal. His current research portfolio now covers the economic manufacture and application of low environmental impact biodegradable composites from sustainable resources. In parallel with these activities, he runs the Sustainable Composites Network with the Biocomposites Centre at the University of Wales, Bangor.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e","published_at":"2017-06-22T21:12:39-04:00","created_at":"2017-06-22T21:12:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","applications","bacterial origin","biodegradability","biodeteriorating polymers","biodisintegratables","biological origin polymers","biopolymers","book","cashew nut shell liquid","cellulose","environmental impact","hemicellulose","lignin","polyhydroxyalkanoates","polylactides","polyphenolic plant products","product properties environmental\/safety issues each technology area. These papers are not contained main conference book. RAPRA Business Machines Appliances","rosins","starch","synthesis","tannins","tree sap"],"price":15300,"price_min":15300,"price_max":15300,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378307268,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Biopolymers","public_title":null,"options":["Default Title"],"price":15300,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-379-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953","options":["Title"],"media":[{"alt":null,"id":353911668829,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-379-2.jpg?v=1499185953","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.M. Johnson, L.Y. Mwaikambo and N. Tucker \u003cbr\u003eISBN 978-1-85957-379-2 \u003cbr\u003e\u003cbr\u003epages 158\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe earth has finite resources in terms of fossil origin fuel and a finite capacity for disposal of waste. Biopolymers may offer a solution to both these issues in the long-term. The ideal biopolymer is both of renewable biological origin and biodegradable at the end of its life. In some cases material may be of a biological origin and not readily biodegradable, such as thermosets made from cashew nut shell liquid. On the other hand, polyvinyl alcohol is an example of a polymer of a synthetic origin and biodegradable. \u003cbr\u003e\u003cbr\u003eEnvironmental degradation can involve enzymatic pathways and microorganisms such as bacteria and fungi, or chemical pathways such as hydrolysis. It is important that biopolymers have an adequate life span for applications - their biodegradability makes them ideal for use in resorbable medical products such as sutures, in short-term packaging applications for fast foods and fresh groceries, and for sanitary uses. \u003cbr\u003e\u003cbr\u003eThis review sets out to examine the current trends in biopolymer science. The different types of biological polymers are discussed. The chemistry and synthesis of some key biopolymers is described, including cellulose, hemicellulose, starch, polyhydroxyalkanoates (of bacterial origin), tannins (polyphenolic plant products), cashew nut shell liquid, rosins (from tree sap), lignin (from wood), and man made polylactides. Many other biopolymers are also being investigated, for example, alginates from seaweed and algae, and proteins such as casein and soybean. The abstracts at the end of this report cover an extensive range of materials and are fully indexed. \u003cbr\u003e\u003cbr\u003eCommercially, bioplastics have proven to be relatively expensive and available only in small quantities. This has lead to limitations on applications to date. However, there are signs that this is changing, with increasing environmental awareness and more stringent legislation regarding recyclability and restrictions on waste disposal. Cargill Dow has a polylactic acid polymer in production (Natureworks). Metabolix has been working on polyhydroxyalkanoates (Biopol). Several companies have been developing starch products such as Avebe, Biop, Earthshell and Midwest Grain Products Inc. Polyols for polyurethane have been obtained from vegetable oils, etc. \u003cbr\u003e\u003cbr\u003eCertification of compostability is now available from DIN CERTCO. The requirements for this standard are discussed in the report. Additives can compromise the environmentally-friendly status of a polymer and must be chosen with care. Thus natural fibre reinforcements are also discussed briefly here. Biocomposites have been developed comprising natural origin polymer matrices and natural fibres, such as sugar cane bagasse and jute. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by over 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e1.1 Biopolymers\u003cbr\u003e1.2 Biodisintegratables or Biodeteriorating Polymers\u003cbr\u003e1.3 Biodegradability\u003cbr\u003e1.4 Environmental Impact\u003cbr\u003e1.5 Market Size \u003cbr\u003e2. Synthesis of Biopolymers\u003cbr\u003e2.1 Cellulose\u003cbr\u003e2.2 Starch\u003cbr\u003e2.3 Hemicellulose\u003cbr\u003e2.4 Polyhydroxyalkanoates (PHA)\u003cbr\u003e2.5 Tannins\u003cbr\u003e2.6 Cashew Nut Shell Liquid (CNSL)\u003cbr\u003e2.6.1 The Structure of CNSL\u003cbr\u003e2.6.2 Polymer Synthesis of CNSL\u003cbr\u003e2.7 Rosins\u003cbr\u003e2.8 Lignin\u003cbr\u003e2.9 Polylactic Acids and Polylactides\u003cbr\u003e2.10 Other \u003cbr\u003e3. Commercially Available Biopolymers \u003cbr\u003e4. Uses of Biopolymers\u003cbr\u003e4.1 General Uses\u003cbr\u003e4.2 Uses of Specific Polymer Types \u003cbr\u003e5. Manufacturing Technologies for Biopolymers\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Manufacturing Methods\u003cbr\u003e5.3 Additives\u003cbr\u003e5.3.1 Plasticizers\u003cbr\u003e5.3.2 Lubricants\u003cbr\u003e5.3.3 Colorants\u003cbr\u003e5.3.4 Flame Retardants\u003cbr\u003e5.3.5 Blowing (Foaming) Agents\u003cbr\u003e5.3.6 Crosslinkers\u003cbr\u003e5.3.7 Fillers \u003cbr\u003e6. Fillers and Reinforcement for Biopolymers \u003cbr\u003e7.The Markets and Economics for Biopolymers \u003cbr\u003e8.Compostability Certification \u003cbr\u003e9.The Chemistry and Biology of Polymer Degradation \u003cbr\u003e10.Conclusions\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eMark Johnson\u003c\/b\u003e is currently reading for a doctorate in Engineering Business Management (EngD) at the University of Warwick. Prior to this he worked as a production engineer in composite fabrication. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry. \u003cbr\u003e\u003cb\u003e\u003cbr\u003eDr. Leonard Mwaikambo\u003c\/b\u003e\u003cbr\u003eholds the post of Lecturer at the Sokoine University of Agriculture, Tanzania, and is currently a Research Fellow in the Department of Chemistry, University of Warwick. His research concerns the development of sustainably produced, recyclable natural fibre composites. He has keen interest in developing matrices based on polymerised natural oils and fats for composite manufacture. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eNick Tucker\u003c\/b\u003e's interest in biopolymers was started by a request from the Rover Group to examine the potential effect of biodegradable polymers on end-of-life vehicle disposal. His current research portfolio now covers the economic manufacture and application of low environmental impact biodegradable composites from sustainable resources. In parallel with these activities, he runs the Sustainable Composites Network with the Biocomposites Centre at the University of Wales, Bangor.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e"}
Additives in Polymers:...
$550.00
{"id":11242200772,"title":"Additives in Polymers: Industrial Analysis and Applications","handle":"978-0-470-85062-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jan C. J. Bart \u003cbr\u003eISBN 978-0-470-85062-6 \u003cbr\u003e\u003cbr\u003epages 836 Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis industrially relevant resource covers all established and emerging analytical methods for the deformulation of polymeric materials, with emphasis on the non-polymeric components. \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eEach technique is evaluated on its technical and industrial merits.\u003c\/li\u003e\n\u003cli\u003eEmphasis is on understanding (principles and characteristics) and industrial applicability.\u003c\/li\u003e\n\u003cli\u003eExtensively illustrated throughout with over 200 figures, 400 tables, and 3,000 references.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003eForeword. \u003cbr\u003ePreface. \u003cbr\u003eAbout the Author. \u003cbr\u003eAcknowledgements. \u003cbr\u003eChapter 1: Introduction. \u003cbr\u003e1.1 Additives. \u003cbr\u003e1.2 Plastics formulations . \u003cbr\u003e1.3 Economic impact of polymer additives. \u003cbr\u003e1.4 Analysis of plastics. \u003cbr\u003e1.5 Bibliography. \u003cbr\u003e1.6 References. \u003cbr\u003eChapter 2: Deformulation Principles. \u003cbr\u003e2.1 Polymer identification. \u003cbr\u003e2.2 Additive analysis of rubbers: ‘Best Practice’. \u003cbr\u003e2.3 Polymer extract analysis. \u003cbr\u003e2.4 In situ polymer\/additive analysis. \u003cbr\u003e2.5 Class-specific polymer\/additive analysis. \u003cbr\u003e2.6 Bibliography. \u003cbr\u003e2.7 References. \u003cbr\u003eChapter 3: Sample Preparation Perspectives. \u003cbr\u003e3.1 Solvents. \u003cbr\u003e3.2 Extraction strategy. \u003cbr\u003e3.3 Conventional extraction technologies. \u003cbr\u003e3.4 High-pressure solvent extraction methods. \u003cbr\u003e3.5 Sorbent extraction. \u003cbr\u003e3.6 Methodological comparison of extraction methods. \u003cbr\u003e3.7 Polymer\/additive dissolution methods. \u003cbr\u003e3.8 Hydrolysis. \u003cbr\u003e3.9 Bibliography. \u003cbr\u003e3.10 References. \u003cbr\u003eChapter 4: Separation Techniques. \u003cbr\u003e4.1 Analytical detectors. \u003cbr\u003e4.2 Gas chromatography. \u003cbr\u003e4.3 Supercritical fluid chromatography. \u003cbr\u003e4.4 Liquid chromatography techniques. \u003cbr\u003e4.5 Capillary electrophoretic techniques. \u003cbr\u003e4.6 Bibliography. \u003cbr\u003e4.7 References. \u003cbr\u003eChapter 5: Polymer\/Additive Analysis: The Spectroscopic Alternative. \u003cbr\u003e5.1 Ultraviolet\/visible spectrophotometry. \u003cbr\u003e5.2 Infrared spectroscopy. \u003cbr\u003e5.3 Luminescence spectroscopy. \u003cbr\u003e5.4 High-resolution nuclear magnetic resonance spectroscopy. \u003cbr\u003e5.5 Bibliography. \u003cbr\u003e5.6 References. \u003cbr\u003eChapter 6: Organic Mass-Spectrometric Methods. \u003cbr\u003e6.1 Basic instrumentation. \u003cbr\u003e6.2 Ion sources. \u003cbr\u003e6.3 Mass analysers. \u003cbr\u003e6.4 Direct mass-spectrometric polymer compound analysis. \u003cbr\u003e6.5 Ion mobility spectrometry. \u003cbr\u003e6.6 Bibliography. \u003cbr\u003e6.7 References. \u003cbr\u003eChapter 7: Multihyphenation and Multidimensionality in Polymer\/Additive Analysis. \u003cbr\u003e7.1 Precolumn hyphenation. \u003cbr\u003e7.2 Coupled sample preparation – spectroscopy\/spectrometry. \u003cbr\u003e7.3 Postcolumn hyphenation. \u003cbr\u003e7.4 Multidimensional chromatography. \u003cbr\u003e7.5 Multidimensional spectroscopy. \u003cbr\u003e7.6 Bibliography. \u003cbr\u003e7.7 References. \u003cbr\u003eChapter 8: Inorganic and Element Analytical Methods. \u003cbr\u003e8.1 Element analytical protocols. \u003cbr\u003e8.2 Sample destruction for classical elemental analysis. \u003cbr\u003e8.3 Analytical atomic spectrometry. \u003cbr\u003e8.4 X-ray spectrometry. \u003cbr\u003e8.5 Inorganic mass spectrometry. \u003cbr\u003e8.6 Radioanalytical and nuclear analytical methods. \u003cbr\u003e8.7 Electroanalytical techniques. \u003cbr\u003e8.8 Solid-state speciation analysis. \u003cbr\u003e8.9 Bibliography. \u003cbr\u003e8.10 References. \u003cbr\u003eChapter 9: Direct Methods of Deformulation of Polymer\/Additive Dissolutions. \u003cbr\u003e9.1 Chromatographic methods. \u003cbr\u003e9.2 Spectroscopic techniques. \u003cbr\u003e9.3 Mass-spectrometric methods. \u003cbr\u003e9.4 References. \u003cbr\u003eChapter 10: A Vision for the Future. \u003cbr\u003e10.1 Trends in polymer technology. \u003cbr\u003e10.2 Trends in additive technology. \u003cbr\u003e10.3 Environmental, legislative and regulatory constraints. \u003cbr\u003e10.4 Analytical consequences. \u003cbr\u003e10.5 Epilogue. \u003cbr\u003e10.6 Bibliography. \u003cbr\u003e10.7 References. \u003cbr\u003eAppendix I: List of Symbols. \u003cbr\u003eAppendix II: Functionality of Common Additives Used in Commercial Thermoplastics, Rubbers, and Thermosetting Resins. \u003cbr\u003eAppendix III: Specimen Polymer Additives Product Sheets. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eJan C.J. Bart\u003c\/b\u003e (Ph.D. Structural Chemistry, University of Amsterdam) is a senior scientist with a broad interest in materials characterisation, heterogeneous catalysis and product development who spent an industrial career in R\u0026amp;D with Monsanto, Montedison and DSM Research in various countries. The author has held several teaching assignments and researched extensively in both academic and industrial areas; he authored over 250 scientific papers, including chapters in books. Dr. Bart has acted as a Ramsay Memorial Fellow at the Universities of Leeds (Colour Chemistry) and Oxford (Material Science), a visiting scientist at Institut de Recherches sur la Catalyse (CNRS, Villeurbanne), and a Meyerhoff Visiting Professor at WIS (Rehovoth), and held an Invited Professorship at USTC (Hefei). He is currently a Full Professor of Industrial Chemistry at the University of Messina. He is also a member of the Royal Society of Chemistry, Royal Dutch Chemical Society, Society of Plastic Engineers and The Institute of Materials.","published_at":"2017-06-22T21:12:39-04:00","created_at":"2017-06-22T21:12:39-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","additives","book","extraction","fillers","Gas chromatography. supercritical fluid chromatography","hydrolisis","liquid chromatography","p-chemical","plastic","plastics","polymer","rubber","solvents","spectroscopy. radioanalytical"],"price":55000,"price_min":55000,"price_max":55000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378306308,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Additives in Polymers: Industrial Analysis and Applications","public_title":null,"options":["Default Title"],"price":55000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-85062-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85062-6.jpg?v=1499914044"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85062-6.jpg?v=1499914044","options":["Title"],"media":[{"alt":null,"id":350139580509,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85062-6.jpg?v=1499914044"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-85062-6.jpg?v=1499914044","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jan C. J. Bart \u003cbr\u003eISBN 978-0-470-85062-6 \u003cbr\u003e\u003cbr\u003epages 836 Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis industrially relevant resource covers all established and emerging analytical methods for the deformulation of polymeric materials, with emphasis on the non-polymeric components. \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eEach technique is evaluated on its technical and industrial merits.\u003c\/li\u003e\n\u003cli\u003eEmphasis is on understanding (principles and characteristics) and industrial applicability.\u003c\/li\u003e\n\u003cli\u003eExtensively illustrated throughout with over 200 figures, 400 tables, and 3,000 references.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003eForeword. \u003cbr\u003ePreface. \u003cbr\u003eAbout the Author. \u003cbr\u003eAcknowledgements. \u003cbr\u003eChapter 1: Introduction. \u003cbr\u003e1.1 Additives. \u003cbr\u003e1.2 Plastics formulations . \u003cbr\u003e1.3 Economic impact of polymer additives. \u003cbr\u003e1.4 Analysis of plastics. \u003cbr\u003e1.5 Bibliography. \u003cbr\u003e1.6 References. \u003cbr\u003eChapter 2: Deformulation Principles. \u003cbr\u003e2.1 Polymer identification. \u003cbr\u003e2.2 Additive analysis of rubbers: ‘Best Practice’. \u003cbr\u003e2.3 Polymer extract analysis. \u003cbr\u003e2.4 In situ polymer\/additive analysis. \u003cbr\u003e2.5 Class-specific polymer\/additive analysis. \u003cbr\u003e2.6 Bibliography. \u003cbr\u003e2.7 References. \u003cbr\u003eChapter 3: Sample Preparation Perspectives. \u003cbr\u003e3.1 Solvents. \u003cbr\u003e3.2 Extraction strategy. \u003cbr\u003e3.3 Conventional extraction technologies. \u003cbr\u003e3.4 High-pressure solvent extraction methods. \u003cbr\u003e3.5 Sorbent extraction. \u003cbr\u003e3.6 Methodological comparison of extraction methods. \u003cbr\u003e3.7 Polymer\/additive dissolution methods. \u003cbr\u003e3.8 Hydrolysis. \u003cbr\u003e3.9 Bibliography. \u003cbr\u003e3.10 References. \u003cbr\u003eChapter 4: Separation Techniques. \u003cbr\u003e4.1 Analytical detectors. \u003cbr\u003e4.2 Gas chromatography. \u003cbr\u003e4.3 Supercritical fluid chromatography. \u003cbr\u003e4.4 Liquid chromatography techniques. \u003cbr\u003e4.5 Capillary electrophoretic techniques. \u003cbr\u003e4.6 Bibliography. \u003cbr\u003e4.7 References. \u003cbr\u003eChapter 5: Polymer\/Additive Analysis: The Spectroscopic Alternative. \u003cbr\u003e5.1 Ultraviolet\/visible spectrophotometry. \u003cbr\u003e5.2 Infrared spectroscopy. \u003cbr\u003e5.3 Luminescence spectroscopy. \u003cbr\u003e5.4 High-resolution nuclear magnetic resonance spectroscopy. \u003cbr\u003e5.5 Bibliography. \u003cbr\u003e5.6 References. \u003cbr\u003eChapter 6: Organic Mass-Spectrometric Methods. \u003cbr\u003e6.1 Basic instrumentation. \u003cbr\u003e6.2 Ion sources. \u003cbr\u003e6.3 Mass analysers. \u003cbr\u003e6.4 Direct mass-spectrometric polymer compound analysis. \u003cbr\u003e6.5 Ion mobility spectrometry. \u003cbr\u003e6.6 Bibliography. \u003cbr\u003e6.7 References. \u003cbr\u003eChapter 7: Multihyphenation and Multidimensionality in Polymer\/Additive Analysis. \u003cbr\u003e7.1 Precolumn hyphenation. \u003cbr\u003e7.2 Coupled sample preparation – spectroscopy\/spectrometry. \u003cbr\u003e7.3 Postcolumn hyphenation. \u003cbr\u003e7.4 Multidimensional chromatography. \u003cbr\u003e7.5 Multidimensional spectroscopy. \u003cbr\u003e7.6 Bibliography. \u003cbr\u003e7.7 References. \u003cbr\u003eChapter 8: Inorganic and Element Analytical Methods. \u003cbr\u003e8.1 Element analytical protocols. \u003cbr\u003e8.2 Sample destruction for classical elemental analysis. \u003cbr\u003e8.3 Analytical atomic spectrometry. \u003cbr\u003e8.4 X-ray spectrometry. \u003cbr\u003e8.5 Inorganic mass spectrometry. \u003cbr\u003e8.6 Radioanalytical and nuclear analytical methods. \u003cbr\u003e8.7 Electroanalytical techniques. \u003cbr\u003e8.8 Solid-state speciation analysis. \u003cbr\u003e8.9 Bibliography. \u003cbr\u003e8.10 References. \u003cbr\u003eChapter 9: Direct Methods of Deformulation of Polymer\/Additive Dissolutions. \u003cbr\u003e9.1 Chromatographic methods. \u003cbr\u003e9.2 Spectroscopic techniques. \u003cbr\u003e9.3 Mass-spectrometric methods. \u003cbr\u003e9.4 References. \u003cbr\u003eChapter 10: A Vision for the Future. \u003cbr\u003e10.1 Trends in polymer technology. \u003cbr\u003e10.2 Trends in additive technology. \u003cbr\u003e10.3 Environmental, legislative and regulatory constraints. \u003cbr\u003e10.4 Analytical consequences. \u003cbr\u003e10.5 Epilogue. \u003cbr\u003e10.6 Bibliography. \u003cbr\u003e10.7 References. \u003cbr\u003eAppendix I: List of Symbols. \u003cbr\u003eAppendix II: Functionality of Common Additives Used in Commercial Thermoplastics, Rubbers, and Thermosetting Resins. \u003cbr\u003eAppendix III: Specimen Polymer Additives Product Sheets. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cb\u003eJan C.J. Bart\u003c\/b\u003e (Ph.D. Structural Chemistry, University of Amsterdam) is a senior scientist with a broad interest in materials characterisation, heterogeneous catalysis and product development who spent an industrial career in R\u0026amp;D with Monsanto, Montedison and DSM Research in various countries. The author has held several teaching assignments and researched extensively in both academic and industrial areas; he authored over 250 scientific papers, including chapters in books. Dr. Bart has acted as a Ramsay Memorial Fellow at the Universities of Leeds (Colour Chemistry) and Oxford (Material Science), a visiting scientist at Institut de Recherches sur la Catalyse (CNRS, Villeurbanne), and a Meyerhoff Visiting Professor at WIS (Rehovoth), and held an Invited Professorship at USTC (Hefei). He is currently a Full Professor of Industrial Chemistry at the University of Messina. He is also a member of the Royal Society of Chemistry, Royal Dutch Chemical Society, Society of Plastic Engineers and The Institute of Materials."}
Handbook of Plasticize...
$285.00
{"id":11242200196,"title":"Handbook of Plasticizers, 2nd Edition","handle":"978-1-895198-50-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych Editor \u003cbr\u003eISBN 978-1-895198-50-8 \u003cbr\u003e\u003cbr\u003ePages 748, Tables 114, Figures 416, References 3876\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains the comprehensive review of information available in open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous edition. \u003cbr\u003e\u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing the variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e\u003cbr\u003eAll numerical data are in the form of database (see information on Plasticizer Database which is a separate publication), whereas the theoretical component of information is given in the traditional form of a printed book.\u003cbr\u003e\u003cbr\u003eTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the groups and also to give ranges of expected properties for a given group.\u003cbr\u003e\u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty five Sections of Chapter 10 discuss plasticizers effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation. \u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 34 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003e\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with Plasticizer Database which gives information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 PLASTICIZER TYPES \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003eMax Kron \u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 TRANSPORTATION AND STORAGE\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003cbr\u003eA. Marcilla and M. Beltrán \u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 THEORIES OF COMPATIBILITY\u003cbr\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e\u003cbr\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution of materials in contact \u003cbr\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e9 PLASTICIZATION STEPS \u003cbr\u003eA. Marcilla, J. C. García, and M. Beltrán \u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova \u003cbr\u003e10.21 Self-healing \u003cbr\u003e10.22 Shrinkage\u003cbr\u003e10.23 Soiling \u003cbr\u003e10.24 Free volume \u003cbr\u003e10.25 Effect of plasticizers on other properties \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 es \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003eA. Marcilla\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJ.C. García","published_at":"2017-06-22T21:12:37-04:00","created_at":"2017-06-22T21:12:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","abiotic","adipates","adsorption","alkyl sulfonates","azelates","benzoates","biodegradation","book","chlorinated paraffins","citrates","coated fabrics","cosmetics","database","degradation","dental materials","electrical","electronics","energetic plasticizers","environment","epoxides","eye protection","fibers","film","flooring","foams","food","footwear","gaskets","gloves","inks","medical applications","membranes","p-additives","paints","pharmaceutical products","plasticisers","plasticizers additives","polymer","releases","solubility","varnishes","volatilization","water"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378305028,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plasticizers, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-50-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-50-8.jpg?v=1499470955"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-50-8.jpg?v=1499470955","options":["Title"],"media":[{"alt":null,"id":356335190109,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-50-8.jpg?v=1499470955"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-50-8.jpg?v=1499470955","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych Editor \u003cbr\u003eISBN 978-1-895198-50-8 \u003cbr\u003e\u003cbr\u003ePages 748, Tables 114, Figures 416, References 3876\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains the comprehensive review of information available in open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous edition. \u003cbr\u003e\u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing the variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e\u003cbr\u003eAll numerical data are in the form of database (see information on Plasticizer Database which is a separate publication), whereas the theoretical component of information is given in the traditional form of a printed book.\u003cbr\u003e\u003cbr\u003eTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the groups and also to give ranges of expected properties for a given group.\u003cbr\u003e\u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty five Sections of Chapter 10 discuss plasticizers effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation. \u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 34 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003e\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with Plasticizer Database which gives information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 PLASTICIZER TYPES \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003eMax Kron \u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 TRANSPORTATION AND STORAGE\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003cbr\u003eA. Marcilla and M. Beltrán \u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 THEORIES OF COMPATIBILITY\u003cbr\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e\u003cbr\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution of materials in contact \u003cbr\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e9 PLASTICIZATION STEPS \u003cbr\u003eA. Marcilla, J. C. García, and M. Beltrán \u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova \u003cbr\u003e10.21 Self-healing \u003cbr\u003e10.22 Shrinkage\u003cbr\u003e10.23 Soiling \u003cbr\u003e10.24 Free volume \u003cbr\u003e10.25 Effect of plasticizers on other properties \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 es \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003eA. Marcilla\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJ.C. García"}