Biopolymers
The earth has finite resources in terms of fossil origin fuel and a finite capacity for disposal of waste. Biopolymers may offer a solution to both these issues in the long-term. The ideal biopolymer is both of renewable biological origin and biodegradable at the end of its life. In some cases material may be of a biological origin and not readily biodegradable, such as thermosets made from cashew nut shell liquid. On the other hand, polyvinyl alcohol is an example of a polymer of a synthetic origin and biodegradable.
Environmental degradation can involve enzymatic pathways and microorganisms such as bacteria and fungi, or chemical pathways such as hydrolysis. It is important that biopolymers have an adequate life span for applications - their biodegradability makes them ideal for use in resorbable medical products such as sutures, in short-term packaging applications for fast foods and fresh groceries, and for sanitary uses.
This review sets out to examine the current trends in biopolymer science. The different types of biological polymers are discussed. The chemistry and synthesis of some key biopolymers is described, including cellulose, hemicellulose, starch, polyhydroxyalkanoates (of bacterial origin), tannins (polyphenolic plant products), cashew nut shell liquid, rosins (from tree sap), lignin (from wood), and man made polylactides. Many other biopolymers are also being investigated, for example, alginates from seaweed and algae, and proteins such as casein and soybean. The abstracts at the end of this report cover an extensive range of materials and are fully indexed.
Commercially, bioplastics have proven to be relatively expensive and available only in small quantities. This has lead to limitations on applications to date. However, there are signs that this is changing, with increasing environmental awareness and more stringent legislation regarding recyclability and restrictions on waste disposal. Cargill Dow has a polylactic acid polymer in production (Natureworks). Metabolix has been working on polyhydroxyalkanoates (Biopol). Several companies have been developing starch products such as Avebe, Biop, Earthshell and Midwest Grain Products Inc. Polyols for polyurethane have been obtained from vegetable oils, etc.
Certification of compostability is now available from DIN CERTCO. The requirements for this standard are discussed in the report. Additives can compromise the environmentally-friendly status of a polymer and must be chosen with care. Thus natural fibre reinforcements are also discussed briefly here. Biocomposites have been developed comprising natural origin polymer matrices and natural fibres, such as sugar cane bagasse and jute.
This review is accompanied by over 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.
Environmental degradation can involve enzymatic pathways and microorganisms such as bacteria and fungi, or chemical pathways such as hydrolysis. It is important that biopolymers have an adequate life span for applications - their biodegradability makes them ideal for use in resorbable medical products such as sutures, in short-term packaging applications for fast foods and fresh groceries, and for sanitary uses.
This review sets out to examine the current trends in biopolymer science. The different types of biological polymers are discussed. The chemistry and synthesis of some key biopolymers is described, including cellulose, hemicellulose, starch, polyhydroxyalkanoates (of bacterial origin), tannins (polyphenolic plant products), cashew nut shell liquid, rosins (from tree sap), lignin (from wood), and man made polylactides. Many other biopolymers are also being investigated, for example, alginates from seaweed and algae, and proteins such as casein and soybean. The abstracts at the end of this report cover an extensive range of materials and are fully indexed.
Commercially, bioplastics have proven to be relatively expensive and available only in small quantities. This has lead to limitations on applications to date. However, there are signs that this is changing, with increasing environmental awareness and more stringent legislation regarding recyclability and restrictions on waste disposal. Cargill Dow has a polylactic acid polymer in production (Natureworks). Metabolix has been working on polyhydroxyalkanoates (Biopol). Several companies have been developing starch products such as Avebe, Biop, Earthshell and Midwest Grain Products Inc. Polyols for polyurethane have been obtained from vegetable oils, etc.
Certification of compostability is now available from DIN CERTCO. The requirements for this standard are discussed in the report. Additives can compromise the environmentally-friendly status of a polymer and must be chosen with care. Thus natural fibre reinforcements are also discussed briefly here. Biocomposites have been developed comprising natural origin polymer matrices and natural fibres, such as sugar cane bagasse and jute.
This review is accompanied by over 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.
1. Introduction
1.1 Biopolymers
1.2 Biodisintegratables or Biodeteriorating Polymers
1.3 Biodegradability
1.4 Environmental Impact
1.5 Market Size
2. Synthesis of Biopolymers
2.1 Cellulose
2.2 Starch
2.3 Hemicellulose
2.4 Polyhydroxyalkanoates (PHA)
2.5 Tannins
2.6 Cashew Nut Shell Liquid (CNSL)
2.6.1 The Structure of CNSL
2.6.2 Polymer Synthesis of CNSL
2.7 Rosins
2.8 Lignin
2.9 Polylactic Acids and Polylactides
2.10 Other
3. Commercially Available Biopolymers
4. Uses of Biopolymers
4.1 General Uses
4.2 Uses of Specific Polymer Types
5. Manufacturing Technologies for Biopolymers
5.1 Introduction
5.2 Manufacturing Methods
5.3 Additives
5.3.1 Plasticizers
5.3.2 Lubricants
5.3.3 Colorants
5.3.4 Flame Retardants
5.3.5 Blowing (Foaming) Agents
5.3.6 Crosslinkers
5.3.7 Fillers
6. Fillers and Reinforcement for Biopolymers
7.The Markets and Economics for Biopolymers
8.Compostability Certification
9.The Chemistry and Biology of Polymer Degradation
10.Conclusions
Additional References
Abbreviations and Acronyms
1.1 Biopolymers
1.2 Biodisintegratables or Biodeteriorating Polymers
1.3 Biodegradability
1.4 Environmental Impact
1.5 Market Size
2. Synthesis of Biopolymers
2.1 Cellulose
2.2 Starch
2.3 Hemicellulose
2.4 Polyhydroxyalkanoates (PHA)
2.5 Tannins
2.6 Cashew Nut Shell Liquid (CNSL)
2.6.1 The Structure of CNSL
2.6.2 Polymer Synthesis of CNSL
2.7 Rosins
2.8 Lignin
2.9 Polylactic Acids and Polylactides
2.10 Other
3. Commercially Available Biopolymers
4. Uses of Biopolymers
4.1 General Uses
4.2 Uses of Specific Polymer Types
5. Manufacturing Technologies for Biopolymers
5.1 Introduction
5.2 Manufacturing Methods
5.3 Additives
5.3.1 Plasticizers
5.3.2 Lubricants
5.3.3 Colorants
5.3.4 Flame Retardants
5.3.5 Blowing (Foaming) Agents
5.3.6 Crosslinkers
5.3.7 Fillers
6. Fillers and Reinforcement for Biopolymers
7.The Markets and Economics for Biopolymers
8.Compostability Certification
9.The Chemistry and Biology of Polymer Degradation
10.Conclusions
Additional References
Abbreviations and Acronyms
Mark Johnson is currently reading for a doctorate in Engineering Business Management (EngD) at the University of Warwick. Prior to this he worked as a production engineer in composite fabrication. The areas of study of his doctorate are biodegradable composites, their fabrication, performance, biodegradability and the factors affecting their uptake and usage by industry.
Dr. Leonard Mwaikambo
holds the post of Lecturer at the Sokoine University of Agriculture, Tanzania, and is currently a Research Fellow in the Department of Chemistry, University of Warwick. His research concerns the development of sustainably produced, recyclable natural fibre composites. He has keen interest in developing matrices based on polymerised natural oils and fats for composite manufacture.
Nick Tucker's interest in biopolymers was started by a request from the Rover Group to examine the potential effect of biodegradable polymers on end-of-life vehicle disposal. His current research portfolio now covers the economic manufacture and application of low environmental impact biodegradable composites from sustainable resources. In parallel with these activities, he runs the Sustainable Composites Network with the Biocomposites Centre at the University of Wales, Bangor.
Dr. Leonard Mwaikambo
holds the post of Lecturer at the Sokoine University of Agriculture, Tanzania, and is currently a Research Fellow in the Department of Chemistry, University of Warwick. His research concerns the development of sustainably produced, recyclable natural fibre composites. He has keen interest in developing matrices based on polymerised natural oils and fats for composite manufacture.
Nick Tucker's interest in biopolymers was started by a request from the Rover Group to examine the potential effect of biodegradable polymers on end-of-life vehicle disposal. His current research portfolio now covers the economic manufacture and application of low environmental impact biodegradable composites from sustainable resources. In parallel with these activities, he runs the Sustainable Composites Network with the Biocomposites Centre at the University of Wales, Bangor.
Related Products
Self-healing Materials...
$325.00
{"id":7336424079517,"title":"Self-healing Materials. Principles \u0026 Technology, 2nd Edition","handle":"self-healing-materials-principles-technology-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1-77467-002-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 336\u003cbr data-mce-fragment=\"1\"\u003eFigures: 230\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe self-healing phenomenon, adapted from living things, was for a long time an exciting topic of discussion on the potential improvements of human-made products, but for quite a while, it became applicable reality useful in many manufactured products. Ironically, the expectations from the healing of commercial products are higher than in the case of living things (for example, skin healing leaves scars that would not be acceptable for self-healed phone, watch, radio receiver, etc.) The most up-to-date information presented in this book gives a full account of means, ways, and practical results to prevent discarding products because they were once damaged. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has three major sections organized into fifteen chapters. The first section contains a chapter that discusses the well-established mechanisms of self-healing, which can be potentially applied in the development of new materials that have the ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes, which occur during self-healing, is also part of this section. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe second part of this book compares the parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of applying the most important analytical techniques to the evaluation of the self-healing processes.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe final section of the book includes:\u003cbr data-mce-fragment=\"1\"\u003e• Practical advice on the selection of additives for self-healing formulation.\u003cbr data-mce-fragment=\"1\"\u003e• Methods of self-healing of different polymers.\u003cbr data-mce-fragment=\"1\"\u003e• Application of self-healing technology in different groups of products.\u003cbr data-mce-fragment=\"1\"\u003eThis part is based on practical knowledge, the existing patents, the published paper, and useful application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of applying the technology of self-healing.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe expected audience for this book includes people working in the industries listed in the table of contents (chapter 15) and on the polymers (chapter 14), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies, services, and research. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1 Introduction. Lessons from Living Things\u003cbr data-mce-fragment=\"1\"\u003e2 Mechanisms of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e2.1 Autonomic\u003cbr data-mce-fragment=\"1\"\u003e2.2 Click chemistry \u003cbr data-mce-fragment=\"1\"\u003e2.3 Crosslinking \u003cbr data-mce-fragment=\"1\"\u003e2.4 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.5 Luminescence \u003cbr data-mce-fragment=\"1\"\u003e2.6 Morphological features and organization \u003cbr data-mce-fragment=\"1\"\u003e2.7 Shape memory \u003cbr data-mce-fragment=\"1\"\u003e2.8 Thermal healing \u003cbr data-mce-fragment=\"1\"\u003e2.9 UV\u003cbr data-mce-fragment=\"1\"\u003e2.10 Water \u003cbr data-mce-fragment=\"1\"\u003e2.11 Other mechanisms \u003cbr data-mce-fragment=\"1\"\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr data-mce-fragment=\"1\"\u003e3.1 Chemical reactions\u003cbr data-mce-fragment=\"1\"\u003e3.2 Compositional changes \u003cbr data-mce-fragment=\"1\"\u003e3.3 Physical processes \u003cbr data-mce-fragment=\"1\"\u003e3.4 Self-assembly5\u003cbr data-mce-fragment=\"1\"\u003e4 Fault Detection Mechanisms \u003cbr data-mce-fragment=\"1\"\u003e5 Triggering and Tuning the Healing Processes \u003cbr data-mce-fragment=\"1\"\u003e6 Activation Energy of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr data-mce-fragment=\"1\"\u003e7.1 Autonomous \u003cbr data-mce-fragment=\"1\"\u003e7.2 Capsule and vascular carriers \u003cbr data-mce-fragment=\"1\"\u003e7.3 Environmental conditions \u003cbr data-mce-fragment=\"1\"\u003e7.4 Liquid flow \u003cbr data-mce-fragment=\"1\"\u003e7.5 Magnetic force \u003cbr data-mce-fragment=\"1\"\u003e7.6 Manual injection \u003cbr data-mce-fragment=\"1\"\u003e8 Self-healing Timescale \u003cbr data-mce-fragment=\"1\"\u003e9 Self-healing Extent\u003cbr data-mce-fragment=\"1\"\u003e10 Molecular Dynamics Simulation\u003cbr data-mce-fragment=\"1\"\u003e11 Morphology of Healing\u003cbr data-mce-fragment=\"1\"\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr data-mce-fragment=\"1\"\u003e12.1 X-ray computed tomography \u003cbr data-mce-fragment=\"1\"\u003e12.2 Raman correlation spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.3 Raman spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.4 Impedance spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.5 Water permeability \u003cbr data-mce-fragment=\"1\"\u003e12.6 Surface energy \u003cbr data-mce-fragment=\"1\"\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr data-mce-fragment=\"1\"\u003e13.1 Polymers \u003cbr data-mce-fragment=\"1\"\u003e13.1.1 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e13.1.2 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr data-mce-fragment=\"1\"\u003e13.1.4 Epoxy resins \u003cbr data-mce-fragment=\"1\"\u003e13.1.5 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e13.1.6 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e13.2 Capsule-based materials \u003cbr data-mce-fragment=\"1\"\u003e13.3 Catalysts \u003cbr data-mce-fragment=\"1\"\u003e13.4 Chemical structures \u003cbr data-mce-fragment=\"1\"\u003e13.5 Coupling agents \u003cbr data-mce-fragment=\"1\"\u003e13.6 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e13.7 Fibers \u003cbr data-mce-fragment=\"1\"\u003e13.8 Magneto-responsive components \u003cbr data-mce-fragment=\"1\"\u003e13.9 Metal complexes \u003cbr data-mce-fragment=\"1\"\u003e13.10 Nanoparticles \u003cbr data-mce-fragment=\"1\"\u003e13.11 Plasticizers \u003cbr data-mce-fragment=\"1\"\u003e13.12 Solvents \u003cbr data-mce-fragment=\"1\"\u003e13.13 Vascular self-healing materials \u003cbr data-mce-fragment=\"1\"\u003e14 Self-healing of Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr data-mce-fragment=\"1\"\u003e14.2 Acrylic resin \u003cbr data-mce-fragment=\"1\"\u003e14.3 Alkyd resin \u003cbr data-mce-fragment=\"1\"\u003e14.4 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e14.5 Chitosan \u003cbr data-mce-fragment=\"1\"\u003e14.6 Cyclodextrin \u003cbr data-mce-fragment=\"1\"\u003e14.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e14.8 Ethylene-vinyl acetate \u003cbr data-mce-fragment=\"1\"\u003e14.9 Natural rubber \u003cbr data-mce-fragment=\"1\"\u003e14.10 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e14.11 Poly(butyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.12 Polycyclooctene \u003cbr data-mce-fragment=\"1\"\u003e14.13 Poly(ε-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e14.14 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.16 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.18 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e14.19 Polyisobutylene \u003cbr data-mce-fragment=\"1\"\u003e14.20 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.21 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e14.22 Poly(phenylene oxide) \u003cbr data-mce-fragment=\"1\"\u003e14.23 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e14.24 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e14.25 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e14.26 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e14.27 Polyurethanes \u003cbr data-mce-fragment=\"1\"\u003e14.28 Poly(vinyl alcohol) \u003cbr data-mce-fragment=\"1\"\u003e14.29 Poly(vinyl butyral) \u003cbr data-mce-fragment=\"1\"\u003e14.30 Poly(vinylidene difluoride) \u003cbr data-mce-fragment=\"1\"\u003e15 Self-healing in Different Products \u003cbr data-mce-fragment=\"1\"\u003e15.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e15.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e15.3 Asphalt pavement \u003cbr data-mce-fragment=\"1\"\u003e15.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e15.5 Cementitious materials \u003cbr data-mce-fragment=\"1\"\u003e15.6 Ceramic materials \u003cbr data-mce-fragment=\"1\"\u003e15.7 Coatings \u003cbr data-mce-fragment=\"1\"\u003e15.8 Composites \u003cbr data-mce-fragment=\"1\"\u003e15.9 Corrosion prevention \u003cbr data-mce-fragment=\"1\"\u003e15.10 Dental \u003cbr data-mce-fragment=\"1\"\u003e15.11 Electrical insulation \u003cbr data-mce-fragment=\"1\"\u003e15.12 Electronics \u003cbr data-mce-fragment=\"1\"\u003e15.13 Fabrics \u003cbr data-mce-fragment=\"1\"\u003e15.14 Fibers \u003cbr data-mce-fragment=\"1\"\u003e15.15 Film \u003cbr data-mce-fragment=\"1\"\u003e15.16 Foam \u003cbr data-mce-fragment=\"1\"\u003e15.17 Hydrogels \u003cbr data-mce-fragment=\"1\"\u003e15.18 Laminates \u003cbr data-mce-fragment=\"1\"\u003e15.19 Lubricating oils \u003cbr data-mce-fragment=\"1\"\u003e15.20 Medical devices \u003cbr data-mce-fragment=\"1\"\u003e15.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e15.22 Mortars\u003cbr data-mce-fragment=\"1\"\u003e15.23 Pipes \u003cbr data-mce-fragment=\"1\"\u003e15.24 Sealants \u003cbr data-mce-fragment=\"1\"\u003e15.25 Solar cells \u003cbr data-mce-fragment=\"1\"\u003e15.26 Thermal barrier coatings \u003cbr data-mce-fragment=\"1\"\u003e15.27 Tires \u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T21:13:55-04:00","created_at":"2022-03-31T21:08:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","Materials","new"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165824716957,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Self-healing Materials. Principles \u0026 Technology, 2nd Edition","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-002-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670026-Case.png?v=1648775611"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670026-Case.png?v=1648775611","options":["Title"],"media":[{"alt":null,"id":24734753849501,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670026-Case.png?v=1648775611"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781774670026-Case.png?v=1648775611","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1-77467-002-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 336\u003cbr data-mce-fragment=\"1\"\u003eFigures: 230\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe self-healing phenomenon, adapted from living things, was for a long time an exciting topic of discussion on the potential improvements of human-made products, but for quite a while, it became applicable reality useful in many manufactured products. Ironically, the expectations from the healing of commercial products are higher than in the case of living things (for example, skin healing leaves scars that would not be acceptable for self-healed phone, watch, radio receiver, etc.) The most up-to-date information presented in this book gives a full account of means, ways, and practical results to prevent discarding products because they were once damaged. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has three major sections organized into fifteen chapters. The first section contains a chapter that discusses the well-established mechanisms of self-healing, which can be potentially applied in the development of new materials that have the ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes, which occur during self-healing, is also part of this section. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe second part of this book compares the parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of applying the most important analytical techniques to the evaluation of the self-healing processes.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe final section of the book includes:\u003cbr data-mce-fragment=\"1\"\u003e• Practical advice on the selection of additives for self-healing formulation.\u003cbr data-mce-fragment=\"1\"\u003e• Methods of self-healing of different polymers.\u003cbr data-mce-fragment=\"1\"\u003e• Application of self-healing technology in different groups of products.\u003cbr data-mce-fragment=\"1\"\u003eThis part is based on practical knowledge, the existing patents, the published paper, and useful application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of applying the technology of self-healing.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe expected audience for this book includes people working in the industries listed in the table of contents (chapter 15) and on the polymers (chapter 14), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies, services, and research. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1 Introduction. Lessons from Living Things\u003cbr data-mce-fragment=\"1\"\u003e2 Mechanisms of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e2.1 Autonomic\u003cbr data-mce-fragment=\"1\"\u003e2.2 Click chemistry \u003cbr data-mce-fragment=\"1\"\u003e2.3 Crosslinking \u003cbr data-mce-fragment=\"1\"\u003e2.4 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.5 Luminescence \u003cbr data-mce-fragment=\"1\"\u003e2.6 Morphological features and organization \u003cbr data-mce-fragment=\"1\"\u003e2.7 Shape memory \u003cbr data-mce-fragment=\"1\"\u003e2.8 Thermal healing \u003cbr data-mce-fragment=\"1\"\u003e2.9 UV\u003cbr data-mce-fragment=\"1\"\u003e2.10 Water \u003cbr data-mce-fragment=\"1\"\u003e2.11 Other mechanisms \u003cbr data-mce-fragment=\"1\"\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr data-mce-fragment=\"1\"\u003e3.1 Chemical reactions\u003cbr data-mce-fragment=\"1\"\u003e3.2 Compositional changes \u003cbr data-mce-fragment=\"1\"\u003e3.3 Physical processes \u003cbr data-mce-fragment=\"1\"\u003e3.4 Self-assembly5\u003cbr data-mce-fragment=\"1\"\u003e4 Fault Detection Mechanisms \u003cbr data-mce-fragment=\"1\"\u003e5 Triggering and Tuning the Healing Processes \u003cbr data-mce-fragment=\"1\"\u003e6 Activation Energy of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr data-mce-fragment=\"1\"\u003e7.1 Autonomous \u003cbr data-mce-fragment=\"1\"\u003e7.2 Capsule and vascular carriers \u003cbr data-mce-fragment=\"1\"\u003e7.3 Environmental conditions \u003cbr data-mce-fragment=\"1\"\u003e7.4 Liquid flow \u003cbr data-mce-fragment=\"1\"\u003e7.5 Magnetic force \u003cbr data-mce-fragment=\"1\"\u003e7.6 Manual injection \u003cbr data-mce-fragment=\"1\"\u003e8 Self-healing Timescale \u003cbr data-mce-fragment=\"1\"\u003e9 Self-healing Extent\u003cbr data-mce-fragment=\"1\"\u003e10 Molecular Dynamics Simulation\u003cbr data-mce-fragment=\"1\"\u003e11 Morphology of Healing\u003cbr data-mce-fragment=\"1\"\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr data-mce-fragment=\"1\"\u003e12.1 X-ray computed tomography \u003cbr data-mce-fragment=\"1\"\u003e12.2 Raman correlation spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.3 Raman spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.4 Impedance spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.5 Water permeability \u003cbr data-mce-fragment=\"1\"\u003e12.6 Surface energy \u003cbr data-mce-fragment=\"1\"\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr data-mce-fragment=\"1\"\u003e13.1 Polymers \u003cbr data-mce-fragment=\"1\"\u003e13.1.1 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e13.1.2 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr data-mce-fragment=\"1\"\u003e13.1.4 Epoxy resins \u003cbr data-mce-fragment=\"1\"\u003e13.1.5 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e13.1.6 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e13.2 Capsule-based materials \u003cbr data-mce-fragment=\"1\"\u003e13.3 Catalysts \u003cbr data-mce-fragment=\"1\"\u003e13.4 Chemical structures \u003cbr data-mce-fragment=\"1\"\u003e13.5 Coupling agents \u003cbr data-mce-fragment=\"1\"\u003e13.6 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e13.7 Fibers \u003cbr data-mce-fragment=\"1\"\u003e13.8 Magneto-responsive components \u003cbr data-mce-fragment=\"1\"\u003e13.9 Metal complexes \u003cbr data-mce-fragment=\"1\"\u003e13.10 Nanoparticles \u003cbr data-mce-fragment=\"1\"\u003e13.11 Plasticizers \u003cbr data-mce-fragment=\"1\"\u003e13.12 Solvents \u003cbr data-mce-fragment=\"1\"\u003e13.13 Vascular self-healing materials \u003cbr data-mce-fragment=\"1\"\u003e14 Self-healing of Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr data-mce-fragment=\"1\"\u003e14.2 Acrylic resin \u003cbr data-mce-fragment=\"1\"\u003e14.3 Alkyd resin \u003cbr data-mce-fragment=\"1\"\u003e14.4 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e14.5 Chitosan \u003cbr data-mce-fragment=\"1\"\u003e14.6 Cyclodextrin \u003cbr data-mce-fragment=\"1\"\u003e14.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e14.8 Ethylene-vinyl acetate \u003cbr data-mce-fragment=\"1\"\u003e14.9 Natural rubber \u003cbr data-mce-fragment=\"1\"\u003e14.10 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e14.11 Poly(butyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.12 Polycyclooctene \u003cbr data-mce-fragment=\"1\"\u003e14.13 Poly(ε-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e14.14 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.16 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.18 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e14.19 Polyisobutylene \u003cbr data-mce-fragment=\"1\"\u003e14.20 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.21 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e14.22 Poly(phenylene oxide) \u003cbr data-mce-fragment=\"1\"\u003e14.23 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e14.24 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e14.25 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e14.26 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e14.27 Polyurethanes \u003cbr data-mce-fragment=\"1\"\u003e14.28 Poly(vinyl alcohol) \u003cbr data-mce-fragment=\"1\"\u003e14.29 Poly(vinyl butyral) \u003cbr data-mce-fragment=\"1\"\u003e14.30 Poly(vinylidene difluoride) \u003cbr data-mce-fragment=\"1\"\u003e15 Self-healing in Different Products \u003cbr data-mce-fragment=\"1\"\u003e15.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e15.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e15.3 Asphalt pavement \u003cbr data-mce-fragment=\"1\"\u003e15.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e15.5 Cementitious materials \u003cbr data-mce-fragment=\"1\"\u003e15.6 Ceramic materials \u003cbr data-mce-fragment=\"1\"\u003e15.7 Coatings \u003cbr data-mce-fragment=\"1\"\u003e15.8 Composites \u003cbr data-mce-fragment=\"1\"\u003e15.9 Corrosion prevention \u003cbr data-mce-fragment=\"1\"\u003e15.10 Dental \u003cbr data-mce-fragment=\"1\"\u003e15.11 Electrical insulation \u003cbr data-mce-fragment=\"1\"\u003e15.12 Electronics \u003cbr data-mce-fragment=\"1\"\u003e15.13 Fabrics \u003cbr data-mce-fragment=\"1\"\u003e15.14 Fibers \u003cbr data-mce-fragment=\"1\"\u003e15.15 Film \u003cbr data-mce-fragment=\"1\"\u003e15.16 Foam \u003cbr data-mce-fragment=\"1\"\u003e15.17 Hydrogels \u003cbr data-mce-fragment=\"1\"\u003e15.18 Laminates \u003cbr data-mce-fragment=\"1\"\u003e15.19 Lubricating oils \u003cbr data-mce-fragment=\"1\"\u003e15.20 Medical devices \u003cbr data-mce-fragment=\"1\"\u003e15.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e15.22 Mortars\u003cbr data-mce-fragment=\"1\"\u003e15.23 Pipes \u003cbr data-mce-fragment=\"1\"\u003e15.24 Sealants \u003cbr data-mce-fragment=\"1\"\u003e15.25 Solar cells \u003cbr data-mce-fragment=\"1\"\u003e15.26 Thermal barrier coatings \u003cbr data-mce-fragment=\"1\"\u003e15.27 Tires \u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Rheologica...
$285.00
{"id":7336415821981,"title":"Handbook of Rheological Additives","handle":"handbook-of-rheological-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-97-0 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 240 + vi\u003cbr data-mce-fragment=\"1\"\u003eFigures: 38\u003cbr data-mce-fragment=\"1\"\u003eTables: 30\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eOnly a few books were ever published on rheological modifiers, with the last one published 20 years ago. This book contains all relevant research data on the subject available to date, and it is published together with the Databook of Rheological Additives, including data on commercial and generic additives used in the end-products available in the market.\u003cbr\u003eMore than 30 inorganic and organic groups of chemical compounds are in everyday use as rheological additives. These are characterized in tabular form in a special chapter designed for easy comparison of their main properties. \u003cbr\u003eThe following chapters of the Handbook discuss the essential theoretical knowledge required for proper selection and use of rheological additives. These include fundamental principles of rheology in relation to the application of rheological additives, the mechanisms of action of rheological additives, their effective methods of incorporation, and measuring techniques used in their assessment.\u003cbr\u003e\u003cbr\u003eApplication aspects and selection of additives are discussed in separate sub-chapters devoted to 45 different polymers and 36 different groups of products. Here extensive use is being made of patent literature and research papers available for various applications. Discussed are also polymer processing methods that require rheological agents. \u003cbr\u003e\u003cbr\u003eThe book was designed with the following industries in mind, including coatings \u0026amp; paints, adhesives \u0026amp; sealants, cosmetics (personal care), household products, pharmaceutical, mortars, agriculture, cementitious products, various polymer processing methods (e.g., knife coating, dip coating, injection molding extrusion, rotational molding, etc.), printing inks, greases, lubricants, drilling fluids, oil spills, foam stabilization of surfactant systems, explosives, paper coatings, wood finishes, leather coatings, textile sizing, rubber industry, food products.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n \u003c\/p\u003e\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\nIntroduction \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e2 Properties of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e2.1 Cellulose derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.2 Fat and oil derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.3 Inorganic \u003cbr data-mce-fragment=\"1\"\u003e2.4 Polymers \u003cbr data-mce-fragment=\"1\"\u003e2.5 Polysaccharides \u003cbr data-mce-fragment=\"1\"\u003e2.6 Protein \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e3 Some Rheology Principles \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e4 Mechanisms of Action of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e4.1 Gelling \u003cbr data-mce-fragment=\"1\"\u003e4.2 Egg-box model \u003cbr data-mce-fragment=\"1\"\u003e4.3 Domain model \u003cbr data-mce-fragment=\"1\"\u003e4.4 Fibril formation \u003cbr data-mce-fragment=\"1\"\u003e4.5 Adsorption mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.6 Network formation \u003cbr data-mce-fragment=\"1\"\u003e4.7 Thermogelation \u003cbr data-mce-fragment=\"1\"\u003e4.8 Hydration mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.9 Interaction \u003cbr data-mce-fragment=\"1\"\u003e4.10 Order-disorder and hydrocluster formation \u003cbr data-mce-fragment=\"1\"\u003e4.11 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e4.12 Effect of low temperature on the mechanism of action of rheological additives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e5 Effective Methods of Incorporation \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e6 Analytical Methods in Application to Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e6.1 Shear \u0026amp; oscillatory rheometry \u003cbr data-mce-fragment=\"1\"\u003e6.2 Extensional rheology \u003cbr data-mce-fragment=\"1\"\u003e6.3 Zeta potential \u003cbr data-mce-fragment=\"1\"\u003e6.4 Particle size analysis \u003cbr data-mce-fragment=\"1\"\u003e6.5 General methods \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e7 Rheological Additives in Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e7.1 Alkyd resins \u003cbr data-mce-fragment=\"1\"\u003e7.2 Cellulose acetate \u003cbr data-mce-fragment=\"1\"\u003e7.3 Chlorobutyl rubber \u003cbr data-mce-fragment=\"1\"\u003e7.4 Cyclic olefin copolymer \u003cbr data-mce-fragment=\"1\"\u003e7.5 Cyanoacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.6 Poly(ethylene-co-methyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e7.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e7.8 Ethylene-propylene-diene monomer \u003cbr data-mce-fragment=\"1\"\u003e7.9 Liquid crystalline polymers \u003cbr data-mce-fragment=\"1\"\u003e7.10 Polyamide \u003cbr data-mce-fragment=\"1\"\u003e7.11 Poly(acrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.12 Polyacrylamide \u003cbr data-mce-fragment=\"1\"\u003e7.13 Polyacrylonitrile \u003cbr data-mce-fragment=\"1\"\u003e7.14 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e7.15 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e7.16 Poly(butylene terephthalate) \u003cbr data-mce-fragment=\"1\"\u003e7.17 Polycarbonate \u003cbr data-mce-fragment=\"1\"\u003e7.18 Poly(-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e7.19 Polydicyclopentadiene \u003cbr data-mce-fragment=\"1\"\u003e7.20 Polylysine \u003cbr data-mce-fragment=\"1\"\u003e7.21 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e7.22 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e7.23 Poly(3,4-ethylenedioxythiophene) \u003cbr data-mce-fragment=\"1\"\u003e7.24 Polyetheretherketone \u003cbr data-mce-fragment=\"1\"\u003e7.25 Perfluoropolyether \u003cbr data-mce-fragment=\"1\"\u003e7.26 Polyhydroxybutyrate \u003cbr data-mce-fragment=\"1\"\u003e7.27 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.28 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.29 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e7.30 Polypropylene glycol \u003cbr data-mce-fragment=\"1\"\u003e7.31 Polyphenylsilsesquioxane \u003cbr data-mce-fragment=\"1\"\u003e7.32 Polyphenylenesulfone \u003cbr data-mce-fragment=\"1\"\u003e7.33 Poly(p-phenylene terephthalamide) \u003cbr data-mce-fragment=\"1\"\u003e7.34 Polypyrrole \u003cbr data-mce-fragment=\"1\"\u003e7.35 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e7.36 Polytetrafluoroethylene \u003cbr data-mce-fragment=\"1\"\u003e7.37 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e7.38 Polyvinylacetate \u003cbr data-mce-fragment=\"1\"\u003e7.39 Polyvinylalcohol \u003cbr data-mce-fragment=\"1\"\u003e7.40 Polyvinylchloride \u003cbr data-mce-fragment=\"1\"\u003e7.41 Poly(vinylidene fluoride) \u003cbr data-mce-fragment=\"1\"\u003e7.42 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e7.43 Poly(styrene-co-acrylonitrile) \u003cbr data-mce-fragment=\"1\"\u003e7.44 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e7.45 Unsaturated polyester \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e8 Use in Products \u003cbr data-mce-fragment=\"1\"\u003e8.1 Abrasives \u003cbr data-mce-fragment=\"1\"\u003e8.2 Adhesives \u0026amp; sealants \u003cbr data-mce-fragment=\"1\"\u003e8.3 Agricultural products \u003cbr data-mce-fragment=\"1\"\u003e8.4 Animal feed\u003cbr data-mce-fragment=\"1\"\u003e8.5 Automotive \u003cbr data-mce-fragment=\"1\"\u003e8.6 Binders \u003cbr data-mce-fragment=\"1\"\u003e8.7 Cables \u003cbr data-mce-fragment=\"1\"\u003e8.8 Casting \u003cbr data-mce-fragment=\"1\"\u003e8.9 Cementitious products \u003cbr data-mce-fragment=\"1\"\u003e8.10 Ceramics \u003cbr data-mce-fragment=\"1\"\u003e8.11 Coatings \u0026amp; paints \u003cbr data-mce-fragment=\"1\"\u003e8.12 Coil coating \u003cbr data-mce-fragment=\"1\"\u003e8.13 Composites \u003cbr data-mce-fragment=\"1\"\u003e8.14 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e8.15 Explosives \u003cbr data-mce-fragment=\"1\"\u003e8.16 Foams \u003cbr data-mce-fragment=\"1\"\u003e8.17 Food products \u003cbr data-mce-fragment=\"1\"\u003e8.18 Gels \u003cbr data-mce-fragment=\"1\"\u003e8.19 Grease \u003cbr data-mce-fragment=\"1\"\u003e8.20 Hand sanitizers \u003cbr data-mce-fragment=\"1\"\u003e8.21 Inks \u003cbr data-mce-fragment=\"1\"\u003e8.22 Leather coating \u003cbr data-mce-fragment=\"1\"\u003e8.23 Lubricants \u003cbr data-mce-fragment=\"1\"\u003e8.24 Medical \u003cbr data-mce-fragment=\"1\"\u003e8.25 Oil well drilling \u003cbr data-mce-fragment=\"1\"\u003e8.26 Papermaking \u003cbr data-mce-fragment=\"1\"\u003e8.27 Personal care products \u003cbr data-mce-fragment=\"1\"\u003e8.28 Pharmacological preparations \u003cbr data-mce-fragment=\"1\"\u003e8.29 Primers \u003cbr data-mce-fragment=\"1\"\u003e8.30 Roofing products \u003cbr data-mce-fragment=\"1\"\u003e8.31 Rubber industry \u003cbr data-mce-fragment=\"1\"\u003e8.32 Space \u003cbr data-mce-fragment=\"1\"\u003e8.33 Stucco \u003cbr data-mce-fragment=\"1\"\u003e8.34 Toners \u003cbr data-mce-fragment=\"1\"\u003e8.35 Water treatment \u003cbr data-mce-fragment=\"1\"\u003e8.36 Wood finishes and adhesives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e Index\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T21:05:56-04:00","created_at":"2022-03-31T21:01:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","additives","book","new","rheology"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165801222301,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Rheological Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-97-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885970-Case.png?v=1648775267"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885970-Case.png?v=1648775267","options":["Title"],"media":[{"alt":null,"id":24734691197085,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885970-Case.png?v=1648775267"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885970-Case.png?v=1648775267","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-97-0 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 240 + vi\u003cbr data-mce-fragment=\"1\"\u003eFigures: 38\u003cbr data-mce-fragment=\"1\"\u003eTables: 30\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eOnly a few books were ever published on rheological modifiers, with the last one published 20 years ago. This book contains all relevant research data on the subject available to date, and it is published together with the Databook of Rheological Additives, including data on commercial and generic additives used in the end-products available in the market.\u003cbr\u003eMore than 30 inorganic and organic groups of chemical compounds are in everyday use as rheological additives. These are characterized in tabular form in a special chapter designed for easy comparison of their main properties. \u003cbr\u003eThe following chapters of the Handbook discuss the essential theoretical knowledge required for proper selection and use of rheological additives. These include fundamental principles of rheology in relation to the application of rheological additives, the mechanisms of action of rheological additives, their effective methods of incorporation, and measuring techniques used in their assessment.\u003cbr\u003e\u003cbr\u003eApplication aspects and selection of additives are discussed in separate sub-chapters devoted to 45 different polymers and 36 different groups of products. Here extensive use is being made of patent literature and research papers available for various applications. Discussed are also polymer processing methods that require rheological agents. \u003cbr\u003e\u003cbr\u003eThe book was designed with the following industries in mind, including coatings \u0026amp; paints, adhesives \u0026amp; sealants, cosmetics (personal care), household products, pharmaceutical, mortars, agriculture, cementitious products, various polymer processing methods (e.g., knife coating, dip coating, injection molding extrusion, rotational molding, etc.), printing inks, greases, lubricants, drilling fluids, oil spills, foam stabilization of surfactant systems, explosives, paper coatings, wood finishes, leather coatings, textile sizing, rubber industry, food products.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n \u003c\/p\u003e\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\nIntroduction \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e2 Properties of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e2.1 Cellulose derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.2 Fat and oil derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.3 Inorganic \u003cbr data-mce-fragment=\"1\"\u003e2.4 Polymers \u003cbr data-mce-fragment=\"1\"\u003e2.5 Polysaccharides \u003cbr data-mce-fragment=\"1\"\u003e2.6 Protein \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e3 Some Rheology Principles \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e4 Mechanisms of Action of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e4.1 Gelling \u003cbr data-mce-fragment=\"1\"\u003e4.2 Egg-box model \u003cbr data-mce-fragment=\"1\"\u003e4.3 Domain model \u003cbr data-mce-fragment=\"1\"\u003e4.4 Fibril formation \u003cbr data-mce-fragment=\"1\"\u003e4.5 Adsorption mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.6 Network formation \u003cbr data-mce-fragment=\"1\"\u003e4.7 Thermogelation \u003cbr data-mce-fragment=\"1\"\u003e4.8 Hydration mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.9 Interaction \u003cbr data-mce-fragment=\"1\"\u003e4.10 Order-disorder and hydrocluster formation \u003cbr data-mce-fragment=\"1\"\u003e4.11 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e4.12 Effect of low temperature on the mechanism of action of rheological additives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e5 Effective Methods of Incorporation \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e6 Analytical Methods in Application to Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e6.1 Shear \u0026amp; oscillatory rheometry \u003cbr data-mce-fragment=\"1\"\u003e6.2 Extensional rheology \u003cbr data-mce-fragment=\"1\"\u003e6.3 Zeta potential \u003cbr data-mce-fragment=\"1\"\u003e6.4 Particle size analysis \u003cbr data-mce-fragment=\"1\"\u003e6.5 General methods \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e7 Rheological Additives in Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e7.1 Alkyd resins \u003cbr data-mce-fragment=\"1\"\u003e7.2 Cellulose acetate \u003cbr data-mce-fragment=\"1\"\u003e7.3 Chlorobutyl rubber \u003cbr data-mce-fragment=\"1\"\u003e7.4 Cyclic olefin copolymer \u003cbr data-mce-fragment=\"1\"\u003e7.5 Cyanoacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.6 Poly(ethylene-co-methyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e7.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e7.8 Ethylene-propylene-diene monomer \u003cbr data-mce-fragment=\"1\"\u003e7.9 Liquid crystalline polymers \u003cbr data-mce-fragment=\"1\"\u003e7.10 Polyamide \u003cbr data-mce-fragment=\"1\"\u003e7.11 Poly(acrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.12 Polyacrylamide \u003cbr data-mce-fragment=\"1\"\u003e7.13 Polyacrylonitrile \u003cbr data-mce-fragment=\"1\"\u003e7.14 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e7.15 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e7.16 Poly(butylene terephthalate) \u003cbr data-mce-fragment=\"1\"\u003e7.17 Polycarbonate \u003cbr data-mce-fragment=\"1\"\u003e7.18 Poly(-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e7.19 Polydicyclopentadiene \u003cbr data-mce-fragment=\"1\"\u003e7.20 Polylysine \u003cbr data-mce-fragment=\"1\"\u003e7.21 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e7.22 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e7.23 Poly(3,4-ethylenedioxythiophene) \u003cbr data-mce-fragment=\"1\"\u003e7.24 Polyetheretherketone \u003cbr data-mce-fragment=\"1\"\u003e7.25 Perfluoropolyether \u003cbr data-mce-fragment=\"1\"\u003e7.26 Polyhydroxybutyrate \u003cbr data-mce-fragment=\"1\"\u003e7.27 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.28 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.29 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e7.30 Polypropylene glycol \u003cbr data-mce-fragment=\"1\"\u003e7.31 Polyphenylsilsesquioxane \u003cbr data-mce-fragment=\"1\"\u003e7.32 Polyphenylenesulfone \u003cbr data-mce-fragment=\"1\"\u003e7.33 Poly(p-phenylene terephthalamide) \u003cbr data-mce-fragment=\"1\"\u003e7.34 Polypyrrole \u003cbr data-mce-fragment=\"1\"\u003e7.35 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e7.36 Polytetrafluoroethylene \u003cbr data-mce-fragment=\"1\"\u003e7.37 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e7.38 Polyvinylacetate \u003cbr data-mce-fragment=\"1\"\u003e7.39 Polyvinylalcohol \u003cbr data-mce-fragment=\"1\"\u003e7.40 Polyvinylchloride \u003cbr data-mce-fragment=\"1\"\u003e7.41 Poly(vinylidene fluoride) \u003cbr data-mce-fragment=\"1\"\u003e7.42 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e7.43 Poly(styrene-co-acrylonitrile) \u003cbr data-mce-fragment=\"1\"\u003e7.44 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e7.45 Unsaturated polyester \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e8 Use in Products \u003cbr data-mce-fragment=\"1\"\u003e8.1 Abrasives \u003cbr data-mce-fragment=\"1\"\u003e8.2 Adhesives \u0026amp; sealants \u003cbr data-mce-fragment=\"1\"\u003e8.3 Agricultural products \u003cbr data-mce-fragment=\"1\"\u003e8.4 Animal feed\u003cbr data-mce-fragment=\"1\"\u003e8.5 Automotive \u003cbr data-mce-fragment=\"1\"\u003e8.6 Binders \u003cbr data-mce-fragment=\"1\"\u003e8.7 Cables \u003cbr data-mce-fragment=\"1\"\u003e8.8 Casting \u003cbr data-mce-fragment=\"1\"\u003e8.9 Cementitious products \u003cbr data-mce-fragment=\"1\"\u003e8.10 Ceramics \u003cbr data-mce-fragment=\"1\"\u003e8.11 Coatings \u0026amp; paints \u003cbr data-mce-fragment=\"1\"\u003e8.12 Coil coating \u003cbr data-mce-fragment=\"1\"\u003e8.13 Composites \u003cbr data-mce-fragment=\"1\"\u003e8.14 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e8.15 Explosives \u003cbr data-mce-fragment=\"1\"\u003e8.16 Foams \u003cbr data-mce-fragment=\"1\"\u003e8.17 Food products \u003cbr data-mce-fragment=\"1\"\u003e8.18 Gels \u003cbr data-mce-fragment=\"1\"\u003e8.19 Grease \u003cbr data-mce-fragment=\"1\"\u003e8.20 Hand sanitizers \u003cbr data-mce-fragment=\"1\"\u003e8.21 Inks \u003cbr data-mce-fragment=\"1\"\u003e8.22 Leather coating \u003cbr data-mce-fragment=\"1\"\u003e8.23 Lubricants \u003cbr data-mce-fragment=\"1\"\u003e8.24 Medical \u003cbr data-mce-fragment=\"1\"\u003e8.25 Oil well drilling \u003cbr data-mce-fragment=\"1\"\u003e8.26 Papermaking \u003cbr data-mce-fragment=\"1\"\u003e8.27 Personal care products \u003cbr data-mce-fragment=\"1\"\u003e8.28 Pharmacological preparations \u003cbr data-mce-fragment=\"1\"\u003e8.29 Primers \u003cbr data-mce-fragment=\"1\"\u003e8.30 Roofing products \u003cbr data-mce-fragment=\"1\"\u003e8.31 Rubber industry \u003cbr data-mce-fragment=\"1\"\u003e8.32 Space \u003cbr data-mce-fragment=\"1\"\u003e8.33 Stucco \u003cbr data-mce-fragment=\"1\"\u003e8.34 Toners \u003cbr data-mce-fragment=\"1\"\u003e8.35 Water treatment \u003cbr data-mce-fragment=\"1\"\u003e8.36 Wood finishes and adhesives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e Index\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Polymers, ...
$455.00
{"id":7336409235613,"title":"Handbook of Polymers, 3rd Edition","handle":"handbook-of-polymers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T21:01:23-04:00","created_at":"2022-03-31T20:57:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","material","Materials","new","polymer","polymers"],"price":45500,"price_min":45500,"price_max":45500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165789098141,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Polymers, 3rd Edition","public_title":null,"options":["Default Title"],"price":45500,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-95-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885956-Case.png?v=1648774870"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885956-Case.png?v=1648774870","options":["Title"],"media":[{"alt":null,"id":24734620844189,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885956-Case.png?v=1648774870"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/1555\/1853\/products\/9781927885956-Case.png?v=1648774870","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e"}