Chemtec Publishing offers a large collection of books on polymers, plastics, and rubber.
- Grid List
Filter
Rubber Technologist's ...
$245.00
{"id":11242234500,"title":"Rubber Technologist's Handbook, Volume 2","handle":"978-1-84735-099-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by J. White, S.S. De, and K. Naskar \u003cbr\u003eISBN 978-1-84735-099-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is a companion volume to Rubber Technologists Handbook published in 2001. Written by experts in their respective fields, this handbook discusses the most recent developments in the subject.\u003cbr\u003e\u003cbr\u003eThe ten chapters cover Microscopic Imaging of Rubber Compounds, Intelligent Tyres, Silica-Filled Rubber Compounds, Fibres In The Rubber Industry, Naval and Space Applications of Rubber, Advances in Fillers for the Rubber Industry, Thermoplastic Elastomers by Dynamic Vulcanisation, Polymers In Cable Applications, Durability of Rubber Compounds, and Radiochemical Ageing of Ethylene-Propylene-Diene Monomer\u003cbr\u003e\u003cbr\u003eThis book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Microscopic Imaging of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Fillers and Elastomer Reinforcement\u003cbr\u003e1.3 Characterisation of the Filler Dispersion\u003cbr\u003e1.3.1 Techniques\u003cbr\u003e1.3.2 Microscopy\u003cbr\u003e1.3.3 Automated Image Analysis\u003cbr\u003e1.4 Analytical Procedure by TEM\/AIA\u003cbr\u003e1.4.1 Preparation of the Samples and TEM Images\u003cbr\u003e1.4.2 Image Digitalisation\u003cbr\u003e1.4.3 Image Analysis\u003cbr\u003e1.4.4 Statistical Analysis\u003cbr\u003e1.5 Morphology of Carbon Black Dispersions\u003cbr\u003e1.5.1 Dry state\u003cbr\u003e1.5.2 Compounds\u003cbr\u003e1.6 Morphometric Analysis on Silica Filled Compounds\u003cbr\u003e1.6.1 Atomic Force Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.2 Transmission Electron Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.3 Microdensitometry and 3D-TEM\/Electron Tomography\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Intelligent Tyres\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Features of the Intelligent Tyre\u003cbr\u003e2.2.1 Identification and Memory\u003cbr\u003e2.2.2 Temperature\u003cbr\u003e2.2.3 Inflation Pressure\u003cbr\u003e2.2.4 Cornering Forces\u003cbr\u003e2.2.5 Tyre Mileage\u003cbr\u003e2.2.6 Treadwear\u003cbr\u003e2.3 Historical Perspective\u003cbr\u003e2.3.1 Tyres\u003cbr\u003e2.3.2 Competing Products - Wheel-based Systems\u003cbr\u003e2.3.3 The TREAD Act of 2000\u003cbr\u003e2.3.4 Outlook for Intelligent Tyres\u003cbr\u003e2.4 Design of the Intelligent Tyre System\u003cbr\u003e2.4.1 Tyre\u003cbr\u003e2.4.2 Electronics\u003cbr\u003e2.4.3 Signal from Tyre\u003cbr\u003e2.4.4 Readers\u003cbr\u003e2.5 Standards\u003cbr\u003e2.6 Summary\u003cbr\u003eAcknowledgement\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Silica-Filled Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Characteristics of High-Dispersion Silicas\u003cbr\u003e3.2.1 Various Classes of Silicas: Pyrogenic versus Precipitated, and their Production\u003cbr\u003e3.2.2 Properties of Highly Dispersible Silicas\u003cbr\u003e3.2.3 Compatibility Aspects\u003cbr\u003e3.3 Coupling Agents\u003cbr\u003e3.3.1 Types of Commonly used Coupling Agents\u003cbr\u003e3.3.2 Reactions Between Silica, Silane Coupling Agent and Rubber Polymer\u003cbr\u003e3.3.3 Kinetics\u003cbr\u003e3.3.4 Alternative Coupling Agents\u003cbr\u003e3.4 Characterisation Methods for Silica-Rubber Coupling\u003cbr\u003e3.4.1 Rubber Reinforcement by Silica versus Carbon Black\u003cbr\u003e3.4.2 The Payne Effect\u003cbr\u003e3.4.3 Hysteresis Properties: tan d at 60 °C\u003cbr\u003e3.4.4 Alternative Means to Quantify Filler-Filler and Filler-Polymer Interaction\u003cbr\u003e3.5 Mixing of Silica-Rubber Compounds\u003cbr\u003e3.5.1 Effect of TESPT on the Properties of Uncured and Cured Compounds\u003cbr\u003e3.5.2 Properties of Uncured Compounds in Relation to the Dump Temperature in the Presence of TESPT \u003cbr\u003eSilane Coupling Agent\u003cbr\u003e3.5.3 Effect of the Dump Temperature on the Tensile Properties of Cured Samples\u003cbr\u003e3.5.4 Interactions Between Time and Temperature as an Indication of Reaction Kinetics of the \u003cbr\u003eCoupling Reaction\u003cbr\u003e3.5.5 Effect of Mixer Size and Rotor Type\u003cbr\u003e3.5.6 considerations on Mixer Operation\u003cbr\u003e3.6 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Fibres in the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fibre Types and General Properties\u003cbr\u003e4.2.1 Cotton\u003cbr\u003e4.2.2 Rayon\u003cbr\u003e4.2.3 Polyamides\u003cbr\u003e4.2.4 Polyester, Poly(ethylene terephthalate) (PET)\u003cbr\u003e4.2.5 Aramid\u003cbr\u003e4.2.6 Others\u003cbr\u003e4.3 Yarn and Cord Processes\u003cbr\u003e4.3.1 Twisting\u003cbr\u003e4.3.2 Texturing\u003cbr\u003e4.4 Fibre Units\u003cbr\u003e4.4.1 Titer: Tex and Denier\u003cbr\u003e4.4.2 Tenacity and Modulus: g\/denier, N\/tex or GPa\u003cbr\u003e4.5 Adhesion\u003cbr\u003e4.5.1 Types of Adhesive Interactions\u003cbr\u003e4.6 Dipping Process\u003cbr\u003e4.6.1 Factors Influencing Adhesion in Standard Resorcinol Formaldehyde Latex (RFL) Treatment\u003cbr\u003e4.7 Alternative Dip Treatments for Polyester or Aramid\u003cbr\u003e4.8 Chemically Altering the Surface\u003cbr\u003e4.8.1 Polyester\u003cbr\u003e4.9 Plasma Treatment\u003cbr\u003e4.10 Rubber Treatment\u003cbr\u003e4.10.1 Mixing Ingredients\u003cbr\u003e4.10.2 Chemical Modification of Rubber\u003cbr\u003e4.11 Methods for Analysis\u003cbr\u003e4.11.1 Pullout Tests\u003cbr\u003e4.11.2 Peel Tests\u003cbr\u003e4.11.3 Surface Analysis\u003cbr\u003e4.12 Fibres in Tyres\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Naval and Space Applications of Rubber\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Acoustic Applications\u003cbr\u003e5.2.1 Sonar Rubber Domes\u003cbr\u003e5.2.2 Active Sonar\u003cbr\u003e5.2.3 Insulation\u003cbr\u003e5.3 Solid Rocket Propellants\u003cbr\u003e5.4 Blast Mitigative Coatings\u003cbr\u003e5.5 Aircraft Tyres\u003cbr\u003e5.6 Airships\u003cbr\u003e5.7 Inflatable Seacraft\u003cbr\u003e5.7.1 Combat Rubber Raiding Craft\u003cbr\u003e5.7.2 Hovercraft\u003cbr\u003e5.8 Rubber Sealants\u003cbr\u003e5.9 Miscellaneous Applications\u003cbr\u003e5.9.1 Rubber Bullets\u003cbr\u003e5.9.2 Intrusion Barriers\u003cbr\u003e5.9.3 Elastomeric Torpedo Launcher\u003cbr\u003e5.9.4 Mobile Offshore Base\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Advances in Fillers for the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Requirements for Fillers in Tyre Applications\u003cbr\u003e6.3 Advances in Carbon Black\u003cbr\u003e6.3.1 Chemically-Modified Carbon Blacks\u003cbr\u003e6.3.2 Inversion Carbon Blacks\u003cbr\u003e6.4 Filler Particles Containing Both Carbon Black and Silica\u003cbr\u003e6.4.1 Carbon-Silica Dual Phase Filler\u003cbr\u003e6.4.2 Silica-Coated Carbon Blacks\u003cbr\u003e6.5 Advances in Silica and Other Filler Materials\u003cbr\u003e6.5.1 New Precipitated Silica for Silicone Rubber\u003cbr\u003e6.5.2 Starch\u003cbr\u003e6.5.3 Organo-Clays\u003cbr\u003e6.6 Advanced Rubber-Filler Masterbatches\u003cbr\u003e6.6.1 Cabot Elastomer Composites\u003cbr\u003e6.6.2 Powdered Rubber\u003cbr\u003e6.7 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Thermoplastic Elastomers by Dynamic Vulcanisation\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Polymer Blends\u003cbr\u003e7.3 Classification of TPE\u003cbr\u003e7.4 Dynamic Vulcanisation\u003cbr\u003e7.5 Production of TPV\u003cbr\u003e7.6 PP\/EPDM TPV\u003cbr\u003e7.6.1 Crosslinking Agents For PP\/EPDM TPV\u003cbr\u003e7.6.2 Morphology of PP\/EPDM TPV\u003cbr\u003e7.7 Rheology and Processing of TPV\u003cbr\u003e7.8 Compounding in TPV\u003cbr\u003e7.9 End Use Applications of TPV\u003cbr\u003e7.10 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Polymers in Cable Application\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Broad Classification of Cables\u003cbr\u003e8.2.1 Rigid Power Cables\u003cbr\u003e8.2.2 Flexible Power and Control Cables\u003cbr\u003e8.2.3 Special Purpose Cables\u003cbr\u003e8.3 Components of Cable\u003cbr\u003e8.3.1 Conductor\u003cbr\u003e8.3.2 Insulation\u003cbr\u003e8.3.3 Significance of Different Properties on Cable Insulation Quality and Performance\u003cbr\u003e8.3.4 Chemical Resistance\u003cbr\u003e8.3.5 Selection Criteria for Insulation\u003cbr\u003e8.4 Cable Jacket (Sheath)\u003cbr\u003e8.4.1 Property Requirements of Cable Jacketing Materials\u003cbr\u003e8.4.2 Criteria for Selection of Sheaths (Cable Jacket)\u003cbr\u003e8.5 Semi Conductive Components for High Voltage Cable\u003cbr\u003e8.5.1 Property Requirements of Semi-conductive Compounds\u003cbr\u003e8.6 Different Cable Materials\u003cbr\u003e8.6.1 Polymers used in Cables as Insulation, Sheathing and Semi-conducting Materials\u003cbr\u003e8.6.2 Common Elastomers for Cables\u003cbr\u003e8.6.3 Specialty Elastomers for Cables\u003cbr\u003e8.6.4 Thermoplastic Elastomers for Cables\u003cbr\u003e8.6.5 High-Temperature Thermoplastics and Thermosets\u003cbr\u003e8.7 Different Methods of PE to XLPE Conversion\u003cbr\u003e8.7.1 Crosslinking by High-Energy Irradiation (Electron Beam)\u003cbr\u003e8.7.2 Crosslinking by the Sioplas Technique\u003cbr\u003e8.8 Different Compounding Ingredients\u003cbr\u003e8.8.1 Crosslinking Agents\u003cbr\u003e8.8.2 Metal Oxides\u003cbr\u003e8.8.3 Organic Peroxides and Other Curing Agents\u003cbr\u003e8.8.4 Accelerators\u003cbr\u003e8.8.5 Antioxidants\u003cbr\u003e8.8.6 Antiozonants\u003cbr\u003e8.8.7 Fillers\u003cbr\u003e8.8.8 Auxiliary Additives\u003cbr\u003e8.8.9 Plasticiser, Softeners, Processing Aids\u003cbr\u003e8.8.10 Coupling-agents\u003cbr\u003e8.9 Cable Manufacturing Process\u003cbr\u003e8.9.1 Basic Principles of Compounding\u003cbr\u003e8.9.2 Internal Mixing\u003cbr\u003e8.9.3 Open Mixing\u003cbr\u003e8.9.4 Application of Cable Insulation Covering\u003cbr\u003e8.9.5 Curing of Cable\u003cbr\u003e8.9.6 Dual Extrusion System\u003cbr\u003e8.9.7 Triple Extrusion System\u003cbr\u003e8.9.8 Improvement in CV Curing Techniques\u003cbr\u003e8.10 Quality Checks and Tests\u003cbr\u003e8.11 Polymers in some Specialty Cables\u003cbr\u003e8.11.1 Mining Cable\u003cbr\u003e8.11.2 Aircraft and Spacecraft Cable\u003cbr\u003e8.11.3 Nuclear Power Cables\u003cbr\u003e8.11.4 Ship Board and Marine Cables\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Durability of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Oxidation and Antioxidant Chemistry\u003cbr\u003e9.2.1 Introduction\u003cbr\u003e9.2.2 Mechanism of Rubber Oxidation\u003cbr\u003e9.2.3 Stabilisation Mechanism of Antioxidants\u003cbr\u003e9.2.4 Methods of Studying the Oxidation Resistance of Rubber\u003cbr\u003e9.3 Ozone and Antiozonant Chemistry\u003cbr\u003e9.3.1 Introduction\u003cbr\u003e9.3.2 Mechanism of Ozone Attack on Elastomers\u003cbr\u003e9.3.3 Mechanism of Antiozonants\u003cbr\u003e9.4 Mechanism of Protection Against Flex Cracking\u003cbr\u003e9.5 Trends Towards Long-Lasting Antidegradants\u003cbr\u003e9.5.1 Introduction\u003cbr\u003e9.5.2 Long-Lasting Antioxidants\u003cbr\u003e9.5.3 Long-Lasting Antiozonants\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Radiochemical Ageing of Ethylene-Propylene-Diene \u003cbr\u003eMonomer Elastomers\u003c\/strong\u003e\u003cbr\u003eIntroduction\u003cbr\u003eRadiochemical Degradation\u003cbr\u003eUnits\u003cbr\u003eRadiation Sources\u003cbr\u003eCommercial Processes and Applications\u003cbr\u003eExperimental\u003cbr\u003eMaterials\u003cbr\u003eIrradiation\u003cbr\u003e10.1 Degradation Under Inert Atmosphere\u003cbr\u003e10.1.1 Infra Red (IR) Analysis\u003cbr\u003e10.1.2 UV-vis Analysis\u003cbr\u003e10.1.3 Evaluation of Crosslinking\u003cbr\u003e10.1.4 Mass Spectrometry Analysis\u003cbr\u003e10.1.5 Mechanism of Degradation Under an Inert Atmosphere\u003cbr\u003e10.2 Identification and Quantification of Chemical Changes in EPDM and EPR Films g-Irradiated Under Oxygen Atmosphere\u003cbr\u003e10.2.1 IR Analysis\u003cbr\u003e10.2.2 UV-vis Analysis\u003cbr\u003e10.2.3 Analysis of the Oxidation Products\u003cbr\u003e10.2.4 Gamma Irradiation in vacuo of Hydroperoxides \u003cbr\u003eFormed in EPDM Films\u003cbr\u003e10.2.5 Mass Spectrometry Analysis\u003cbr\u003e10.2.6 Evaluation of Crosslinking\u003cbr\u003e10.2.7 Post-Irradiation Analysis\u003cbr\u003e10.2.8 Conclusion\u003cbr\u003e10.3 Mechanism of Radiooxidation\u003cbr\u003e10.3.1 Formation of Hydroperoxides\u003cbr\u003e10.3.2 Recombination of Peroxy Radicals\u003cbr\u003e10.3.3 Conclusion\u003cbr\u003e10.4 Evaluation of Some Anti-Oxidants\u003cbr\u003e10.4.1 Experimental\u003cbr\u003e10.4.2 Experimental Results\u003cbr\u003e10.4.3 Conclusion\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Silicone Rubber\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Chemistry\u003cbr\u003e11.3 Manufacturing\u003cbr\u003e11.4 Three Major Classifications of Silicone Rubber\u003cbr\u003e11.5 Properties\u003cbr\u003e11.5.1 Heat Resistance Property\u003cbr\u003e11.5.2 Low-Temperature Flexibility\u003cbr\u003e11.5.3 Mechanical Properties\u003cbr\u003e11.5.4 Compression Set\u003cbr\u003e11.5.5 Oil and Solvent Resistance\u003cbr\u003e11.5.6 Steam Resistance\u003cbr\u003e11.5.7 Water Resistance\u003cbr\u003e11.5.8 Electrical Properties\u003cbr\u003e11.5.9 Bio-compatibility\u003cbr\u003e11.5.10 Permeability\u003cbr\u003e11.5.11 Damping Characteristics\u003cbr\u003e11.5.12 Surface Energy or Release Property\u003cbr\u003e11.5.13 Weathering Resistance\u003cbr\u003e11.5.14 Radiation Resistance\u003cbr\u003e11.5.15 Thermal Ablative\u003cbr\u003e11.6 Compounding\u003cbr\u003e11.6.1 Silicone Gums\u003cbr\u003e11.6.2 Reinforced Gums (Bases)\u003cbr\u003e11.6.3 Filler\u003cbr\u003e11.6.4 Softener\u003cbr\u003e11.6.5 Vulcanisation\u003cbr\u003e11.7 Processing\u003cbr\u003e11.7.1 Mixing\u003cbr\u003e11.7.2 Moulding\u003cbr\u003e11.7.3 Extrusion\u003cbr\u003e11.7.4 Oven Curing\u003cbr\u003e11.7.5 Sponge\u003cbr\u003e11.7.6 Calendering\u003cbr\u003e11.7.7 Co-moulding and Over-moulding\u003cbr\u003e11.8 Troubleshooting\u003cbr\u003e11.9 Applications\u003cbr\u003e11.9.1 Automotive Applications\u003cbr\u003e11.9.2 Aerospace Applications\u003cbr\u003e11.9.3 Electrical and Electronics\u003cbr\u003e11.9.4 Coatings\u003cbr\u003e11.9.5 Appliances\u003cbr\u003e11.9.6 Foams\u003cbr\u003e11.9.7 Medical Products\u003cbr\u003e11.9.8 Baby Care\u003cbr\u003e11.9.9 Consumer Products\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:26-04:00","created_at":"2017-06-22T21:14:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","ageing","book","cable","compounds","durability","fibers","fillers","imaging","polymers","r-compounding","rubber","rubber formulary","silica-filled rubber","silicone","tyres","vulcanisation"],"price":24500,"price_min":24500,"price_max":29900,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378416772,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-84735-099-2","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 2 - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":24500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-099-2","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50445044612,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-100-5","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 2 - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":29900,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-099-978-1-84735-100-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376","options":["Cover"],"media":[{"alt":null,"id":358741868637,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by J. White, S.S. De, and K. Naskar \u003cbr\u003eISBN 978-1-84735-099-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is a companion volume to Rubber Technologists Handbook published in 2001. Written by experts in their respective fields, this handbook discusses the most recent developments in the subject.\u003cbr\u003e\u003cbr\u003eThe ten chapters cover Microscopic Imaging of Rubber Compounds, Intelligent Tyres, Silica-Filled Rubber Compounds, Fibres In The Rubber Industry, Naval and Space Applications of Rubber, Advances in Fillers for the Rubber Industry, Thermoplastic Elastomers by Dynamic Vulcanisation, Polymers In Cable Applications, Durability of Rubber Compounds, and Radiochemical Ageing of Ethylene-Propylene-Diene Monomer\u003cbr\u003e\u003cbr\u003eThis book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Microscopic Imaging of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Fillers and Elastomer Reinforcement\u003cbr\u003e1.3 Characterisation of the Filler Dispersion\u003cbr\u003e1.3.1 Techniques\u003cbr\u003e1.3.2 Microscopy\u003cbr\u003e1.3.3 Automated Image Analysis\u003cbr\u003e1.4 Analytical Procedure by TEM\/AIA\u003cbr\u003e1.4.1 Preparation of the Samples and TEM Images\u003cbr\u003e1.4.2 Image Digitalisation\u003cbr\u003e1.4.3 Image Analysis\u003cbr\u003e1.4.4 Statistical Analysis\u003cbr\u003e1.5 Morphology of Carbon Black Dispersions\u003cbr\u003e1.5.1 Dry state\u003cbr\u003e1.5.2 Compounds\u003cbr\u003e1.6 Morphometric Analysis on Silica Filled Compounds\u003cbr\u003e1.6.1 Atomic Force Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.2 Transmission Electron Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.3 Microdensitometry and 3D-TEM\/Electron Tomography\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Intelligent Tyres\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Features of the Intelligent Tyre\u003cbr\u003e2.2.1 Identification and Memory\u003cbr\u003e2.2.2 Temperature\u003cbr\u003e2.2.3 Inflation Pressure\u003cbr\u003e2.2.4 Cornering Forces\u003cbr\u003e2.2.5 Tyre Mileage\u003cbr\u003e2.2.6 Treadwear\u003cbr\u003e2.3 Historical Perspective\u003cbr\u003e2.3.1 Tyres\u003cbr\u003e2.3.2 Competing Products - Wheel-based Systems\u003cbr\u003e2.3.3 The TREAD Act of 2000\u003cbr\u003e2.3.4 Outlook for Intelligent Tyres\u003cbr\u003e2.4 Design of the Intelligent Tyre System\u003cbr\u003e2.4.1 Tyre\u003cbr\u003e2.4.2 Electronics\u003cbr\u003e2.4.3 Signal from Tyre\u003cbr\u003e2.4.4 Readers\u003cbr\u003e2.5 Standards\u003cbr\u003e2.6 Summary\u003cbr\u003eAcknowledgement\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Silica-Filled Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Characteristics of High-Dispersion Silicas\u003cbr\u003e3.2.1 Various Classes of Silicas: Pyrogenic versus Precipitated, and their Production\u003cbr\u003e3.2.2 Properties of Highly Dispersible Silicas\u003cbr\u003e3.2.3 Compatibility Aspects\u003cbr\u003e3.3 Coupling Agents\u003cbr\u003e3.3.1 Types of Commonly used Coupling Agents\u003cbr\u003e3.3.2 Reactions Between Silica, Silane Coupling Agent and Rubber Polymer\u003cbr\u003e3.3.3 Kinetics\u003cbr\u003e3.3.4 Alternative Coupling Agents\u003cbr\u003e3.4 Characterisation Methods for Silica-Rubber Coupling\u003cbr\u003e3.4.1 Rubber Reinforcement by Silica versus Carbon Black\u003cbr\u003e3.4.2 The Payne Effect\u003cbr\u003e3.4.3 Hysteresis Properties: tan d at 60 °C\u003cbr\u003e3.4.4 Alternative Means to Quantify Filler-Filler and Filler-Polymer Interaction\u003cbr\u003e3.5 Mixing of Silica-Rubber Compounds\u003cbr\u003e3.5.1 Effect of TESPT on the Properties of Uncured and Cured Compounds\u003cbr\u003e3.5.2 Properties of Uncured Compounds in Relation to the Dump Temperature in the Presence of TESPT \u003cbr\u003eSilane Coupling Agent\u003cbr\u003e3.5.3 Effect of the Dump Temperature on the Tensile Properties of Cured Samples\u003cbr\u003e3.5.4 Interactions Between Time and Temperature as an Indication of Reaction Kinetics of the \u003cbr\u003eCoupling Reaction\u003cbr\u003e3.5.5 Effect of Mixer Size and Rotor Type\u003cbr\u003e3.5.6 considerations on Mixer Operation\u003cbr\u003e3.6 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Fibres in the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fibre Types and General Properties\u003cbr\u003e4.2.1 Cotton\u003cbr\u003e4.2.2 Rayon\u003cbr\u003e4.2.3 Polyamides\u003cbr\u003e4.2.4 Polyester, Poly(ethylene terephthalate) (PET)\u003cbr\u003e4.2.5 Aramid\u003cbr\u003e4.2.6 Others\u003cbr\u003e4.3 Yarn and Cord Processes\u003cbr\u003e4.3.1 Twisting\u003cbr\u003e4.3.2 Texturing\u003cbr\u003e4.4 Fibre Units\u003cbr\u003e4.4.1 Titer: Tex and Denier\u003cbr\u003e4.4.2 Tenacity and Modulus: g\/denier, N\/tex or GPa\u003cbr\u003e4.5 Adhesion\u003cbr\u003e4.5.1 Types of Adhesive Interactions\u003cbr\u003e4.6 Dipping Process\u003cbr\u003e4.6.1 Factors Influencing Adhesion in Standard Resorcinol Formaldehyde Latex (RFL) Treatment\u003cbr\u003e4.7 Alternative Dip Treatments for Polyester or Aramid\u003cbr\u003e4.8 Chemically Altering the Surface\u003cbr\u003e4.8.1 Polyester\u003cbr\u003e4.9 Plasma Treatment\u003cbr\u003e4.10 Rubber Treatment\u003cbr\u003e4.10.1 Mixing Ingredients\u003cbr\u003e4.10.2 Chemical Modification of Rubber\u003cbr\u003e4.11 Methods for Analysis\u003cbr\u003e4.11.1 Pullout Tests\u003cbr\u003e4.11.2 Peel Tests\u003cbr\u003e4.11.3 Surface Analysis\u003cbr\u003e4.12 Fibres in Tyres\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Naval and Space Applications of Rubber\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Acoustic Applications\u003cbr\u003e5.2.1 Sonar Rubber Domes\u003cbr\u003e5.2.2 Active Sonar\u003cbr\u003e5.2.3 Insulation\u003cbr\u003e5.3 Solid Rocket Propellants\u003cbr\u003e5.4 Blast Mitigative Coatings\u003cbr\u003e5.5 Aircraft Tyres\u003cbr\u003e5.6 Airships\u003cbr\u003e5.7 Inflatable Seacraft\u003cbr\u003e5.7.1 Combat Rubber Raiding Craft\u003cbr\u003e5.7.2 Hovercraft\u003cbr\u003e5.8 Rubber Sealants\u003cbr\u003e5.9 Miscellaneous Applications\u003cbr\u003e5.9.1 Rubber Bullets\u003cbr\u003e5.9.2 Intrusion Barriers\u003cbr\u003e5.9.3 Elastomeric Torpedo Launcher\u003cbr\u003e5.9.4 Mobile Offshore Base\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Advances in Fillers for the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Requirements for Fillers in Tyre Applications\u003cbr\u003e6.3 Advances in Carbon Black\u003cbr\u003e6.3.1 Chemically-Modified Carbon Blacks\u003cbr\u003e6.3.2 Inversion Carbon Blacks\u003cbr\u003e6.4 Filler Particles Containing Both Carbon Black and Silica\u003cbr\u003e6.4.1 Carbon-Silica Dual Phase Filler\u003cbr\u003e6.4.2 Silica-Coated Carbon Blacks\u003cbr\u003e6.5 Advances in Silica and Other Filler Materials\u003cbr\u003e6.5.1 New Precipitated Silica for Silicone Rubber\u003cbr\u003e6.5.2 Starch\u003cbr\u003e6.5.3 Organo-Clays\u003cbr\u003e6.6 Advanced Rubber-Filler Masterbatches\u003cbr\u003e6.6.1 Cabot Elastomer Composites\u003cbr\u003e6.6.2 Powdered Rubber\u003cbr\u003e6.7 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Thermoplastic Elastomers by Dynamic Vulcanisation\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Polymer Blends\u003cbr\u003e7.3 Classification of TPE\u003cbr\u003e7.4 Dynamic Vulcanisation\u003cbr\u003e7.5 Production of TPV\u003cbr\u003e7.6 PP\/EPDM TPV\u003cbr\u003e7.6.1 Crosslinking Agents For PP\/EPDM TPV\u003cbr\u003e7.6.2 Morphology of PP\/EPDM TPV\u003cbr\u003e7.7 Rheology and Processing of TPV\u003cbr\u003e7.8 Compounding in TPV\u003cbr\u003e7.9 End Use Applications of TPV\u003cbr\u003e7.10 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Polymers in Cable Application\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Broad Classification of Cables\u003cbr\u003e8.2.1 Rigid Power Cables\u003cbr\u003e8.2.2 Flexible Power and Control Cables\u003cbr\u003e8.2.3 Special Purpose Cables\u003cbr\u003e8.3 Components of Cable\u003cbr\u003e8.3.1 Conductor\u003cbr\u003e8.3.2 Insulation\u003cbr\u003e8.3.3 Significance of Different Properties on Cable Insulation Quality and Performance\u003cbr\u003e8.3.4 Chemical Resistance\u003cbr\u003e8.3.5 Selection Criteria for Insulation\u003cbr\u003e8.4 Cable Jacket (Sheath)\u003cbr\u003e8.4.1 Property Requirements of Cable Jacketing Materials\u003cbr\u003e8.4.2 Criteria for Selection of Sheaths (Cable Jacket)\u003cbr\u003e8.5 Semi Conductive Components for High Voltage Cable\u003cbr\u003e8.5.1 Property Requirements of Semi-conductive Compounds\u003cbr\u003e8.6 Different Cable Materials\u003cbr\u003e8.6.1 Polymers used in Cables as Insulation, Sheathing and Semi-conducting Materials\u003cbr\u003e8.6.2 Common Elastomers for Cables\u003cbr\u003e8.6.3 Specialty Elastomers for Cables\u003cbr\u003e8.6.4 Thermoplastic Elastomers for Cables\u003cbr\u003e8.6.5 High-Temperature Thermoplastics and Thermosets\u003cbr\u003e8.7 Different Methods of PE to XLPE Conversion\u003cbr\u003e8.7.1 Crosslinking by High-Energy Irradiation (Electron Beam)\u003cbr\u003e8.7.2 Crosslinking by the Sioplas Technique\u003cbr\u003e8.8 Different Compounding Ingredients\u003cbr\u003e8.8.1 Crosslinking Agents\u003cbr\u003e8.8.2 Metal Oxides\u003cbr\u003e8.8.3 Organic Peroxides and Other Curing Agents\u003cbr\u003e8.8.4 Accelerators\u003cbr\u003e8.8.5 Antioxidants\u003cbr\u003e8.8.6 Antiozonants\u003cbr\u003e8.8.7 Fillers\u003cbr\u003e8.8.8 Auxiliary Additives\u003cbr\u003e8.8.9 Plasticiser, Softeners, Processing Aids\u003cbr\u003e8.8.10 Coupling-agents\u003cbr\u003e8.9 Cable Manufacturing Process\u003cbr\u003e8.9.1 Basic Principles of Compounding\u003cbr\u003e8.9.2 Internal Mixing\u003cbr\u003e8.9.3 Open Mixing\u003cbr\u003e8.9.4 Application of Cable Insulation Covering\u003cbr\u003e8.9.5 Curing of Cable\u003cbr\u003e8.9.6 Dual Extrusion System\u003cbr\u003e8.9.7 Triple Extrusion System\u003cbr\u003e8.9.8 Improvement in CV Curing Techniques\u003cbr\u003e8.10 Quality Checks and Tests\u003cbr\u003e8.11 Polymers in some Specialty Cables\u003cbr\u003e8.11.1 Mining Cable\u003cbr\u003e8.11.2 Aircraft and Spacecraft Cable\u003cbr\u003e8.11.3 Nuclear Power Cables\u003cbr\u003e8.11.4 Ship Board and Marine Cables\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Durability of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Oxidation and Antioxidant Chemistry\u003cbr\u003e9.2.1 Introduction\u003cbr\u003e9.2.2 Mechanism of Rubber Oxidation\u003cbr\u003e9.2.3 Stabilisation Mechanism of Antioxidants\u003cbr\u003e9.2.4 Methods of Studying the Oxidation Resistance of Rubber\u003cbr\u003e9.3 Ozone and Antiozonant Chemistry\u003cbr\u003e9.3.1 Introduction\u003cbr\u003e9.3.2 Mechanism of Ozone Attack on Elastomers\u003cbr\u003e9.3.3 Mechanism of Antiozonants\u003cbr\u003e9.4 Mechanism of Protection Against Flex Cracking\u003cbr\u003e9.5 Trends Towards Long-Lasting Antidegradants\u003cbr\u003e9.5.1 Introduction\u003cbr\u003e9.5.2 Long-Lasting Antioxidants\u003cbr\u003e9.5.3 Long-Lasting Antiozonants\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Radiochemical Ageing of Ethylene-Propylene-Diene \u003cbr\u003eMonomer Elastomers\u003c\/strong\u003e\u003cbr\u003eIntroduction\u003cbr\u003eRadiochemical Degradation\u003cbr\u003eUnits\u003cbr\u003eRadiation Sources\u003cbr\u003eCommercial Processes and Applications\u003cbr\u003eExperimental\u003cbr\u003eMaterials\u003cbr\u003eIrradiation\u003cbr\u003e10.1 Degradation Under Inert Atmosphere\u003cbr\u003e10.1.1 Infra Red (IR) Analysis\u003cbr\u003e10.1.2 UV-vis Analysis\u003cbr\u003e10.1.3 Evaluation of Crosslinking\u003cbr\u003e10.1.4 Mass Spectrometry Analysis\u003cbr\u003e10.1.5 Mechanism of Degradation Under an Inert Atmosphere\u003cbr\u003e10.2 Identification and Quantification of Chemical Changes in EPDM and EPR Films g-Irradiated Under Oxygen Atmosphere\u003cbr\u003e10.2.1 IR Analysis\u003cbr\u003e10.2.2 UV-vis Analysis\u003cbr\u003e10.2.3 Analysis of the Oxidation Products\u003cbr\u003e10.2.4 Gamma Irradiation in vacuo of Hydroperoxides \u003cbr\u003eFormed in EPDM Films\u003cbr\u003e10.2.5 Mass Spectrometry Analysis\u003cbr\u003e10.2.6 Evaluation of Crosslinking\u003cbr\u003e10.2.7 Post-Irradiation Analysis\u003cbr\u003e10.2.8 Conclusion\u003cbr\u003e10.3 Mechanism of Radiooxidation\u003cbr\u003e10.3.1 Formation of Hydroperoxides\u003cbr\u003e10.3.2 Recombination of Peroxy Radicals\u003cbr\u003e10.3.3 Conclusion\u003cbr\u003e10.4 Evaluation of Some Anti-Oxidants\u003cbr\u003e10.4.1 Experimental\u003cbr\u003e10.4.2 Experimental Results\u003cbr\u003e10.4.3 Conclusion\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Silicone Rubber\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Chemistry\u003cbr\u003e11.3 Manufacturing\u003cbr\u003e11.4 Three Major Classifications of Silicone Rubber\u003cbr\u003e11.5 Properties\u003cbr\u003e11.5.1 Heat Resistance Property\u003cbr\u003e11.5.2 Low-Temperature Flexibility\u003cbr\u003e11.5.3 Mechanical Properties\u003cbr\u003e11.5.4 Compression Set\u003cbr\u003e11.5.5 Oil and Solvent Resistance\u003cbr\u003e11.5.6 Steam Resistance\u003cbr\u003e11.5.7 Water Resistance\u003cbr\u003e11.5.8 Electrical Properties\u003cbr\u003e11.5.9 Bio-compatibility\u003cbr\u003e11.5.10 Permeability\u003cbr\u003e11.5.11 Damping Characteristics\u003cbr\u003e11.5.12 Surface Energy or Release Property\u003cbr\u003e11.5.13 Weathering Resistance\u003cbr\u003e11.5.14 Radiation Resistance\u003cbr\u003e11.5.15 Thermal Ablative\u003cbr\u003e11.6 Compounding\u003cbr\u003e11.6.1 Silicone Gums\u003cbr\u003e11.6.2 Reinforced Gums (Bases)\u003cbr\u003e11.6.3 Filler\u003cbr\u003e11.6.4 Softener\u003cbr\u003e11.6.5 Vulcanisation\u003cbr\u003e11.7 Processing\u003cbr\u003e11.7.1 Mixing\u003cbr\u003e11.7.2 Moulding\u003cbr\u003e11.7.3 Extrusion\u003cbr\u003e11.7.4 Oven Curing\u003cbr\u003e11.7.5 Sponge\u003cbr\u003e11.7.6 Calendering\u003cbr\u003e11.7.7 Co-moulding and Over-moulding\u003cbr\u003e11.8 Troubleshooting\u003cbr\u003e11.9 Applications\u003cbr\u003e11.9.1 Automotive Applications\u003cbr\u003e11.9.2 Aerospace Applications\u003cbr\u003e11.9.3 Electrical and Electronics\u003cbr\u003e11.9.4 Coatings\u003cbr\u003e11.9.5 Appliances\u003cbr\u003e11.9.6 Foams\u003cbr\u003e11.9.7 Medical Products\u003cbr\u003e11.9.8 Baby Care\u003cbr\u003e11.9.9 Consumer Products\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e"}
The Plastics Compendiu...
$145.00
{"id":11242234180,"title":"The Plastics Compendium vol. 2","handle":"978-1-85957-092-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.C. Hough and R. Dolbey \u003cbr\u003eISBN 978-1-85957-092-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages 500\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach material has been assigned a comparative ranking value for each of the properties. These range from Excellent to Very Poor and Not Applicable. 62 properties are covered, in 4 categories:\n\u003cli\u003eGeneral and electrical; including shrinkage, warpage, hydrolytic stability, UV weathering and material cost.\u003c\/li\u003e\n\u003cli\u003eMechanical; e.g. tensile strength, fatigue index, toughness, and wear.\u003c\/li\u003e\n\u003cli\u003eProcessing; i.e. ability to be processed by moulding, extrusion, pultrusion, casting, resin injection, etc.\u003c\/li\u003e\n\u003cli\u003ePost-processing; e.g. machining, plating, and welding.\u003c\/li\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eThe information is presented in the following main sections:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eProperty-based listings.\u003c\/li\u003e\n\u003cli\u003eComparative materials data sheets.\u003c\/li\u003e\n\u003cli\u003eAlphabetical indexes of properties and materials.\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:25-04:00","created_at":"2017-06-22T21:14:25-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","book","casting","chracterization","electrical","extrusion","fatigue","hydrolytic stability","mechanical","moulding","plastics","polymer","processing","properties","pultrusion","reference","resin injection","shrinkage","tensile strength","testing","thermoplastics","toughness","UV weathering","warpage","wear"],"price":14500,"price_min":14500,"price_max":14500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378415236,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Plastics Compendium vol. 2","public_title":null,"options":["Default Title"],"price":14500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-092-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M.C. Hough and R. Dolbey \u003cbr\u003eISBN 978-1-85957-092-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages 500\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach material has been assigned a comparative ranking value for each of the properties. These range from Excellent to Very Poor and Not Applicable. 62 properties are covered, in 4 categories:\n\u003cli\u003eGeneral and electrical; including shrinkage, warpage, hydrolytic stability, UV weathering and material cost.\u003c\/li\u003e\n\u003cli\u003eMechanical; e.g. tensile strength, fatigue index, toughness, and wear.\u003c\/li\u003e\n\u003cli\u003eProcessing; i.e. ability to be processed by moulding, extrusion, pultrusion, casting, resin injection, etc.\u003c\/li\u003e\n\u003cli\u003ePost-processing; e.g. machining, plating, and welding.\u003c\/li\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eThe information is presented in the following main sections:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eProperty-based listings.\u003c\/li\u003e\n\u003cli\u003eComparative materials data sheets.\u003c\/li\u003e\n\u003cli\u003eAlphabetical indexes of properties and materials.\u003c\/li\u003e\n\u003c\/ul\u003e"}
The Rubber Formulary
$365.00
{"id":11242233796,"title":"The Rubber Formulary","handle":"0-8155-1434-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peter A Ciullo and Norman Hewitt \u003cbr\u003e10-ISBN 0-8155-1434-4 \u003cbr\u003e13-ISBN 978-0-8155-1434-3\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999 \u003cbr\u003e\u003c\/span\u003e764 pages, 500 formulations\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains two parts: the introduction to the raw materials used in the rubber industry and the formulary part where formulations for final products are given.\u003cbr\u003eEleven rubber elastomers for which formulations are given in the second part are discussed in the beginning of the first section. This is followed by information on several groups of additives such as activators, accelerators, retarders, peroxides, fillers, antioxidants, antiozonants, and several other groups.\u003cbr\u003eThe first section is completed by information on rubber processing and physical testing for in-process analysis and final product property determination. The first section is designed to give background to better understand formations. The second part is divided into chapters based on the type of rubber used in the formulations. There are eleven chapters each for natural rubber and polyisoprene, styrene-butadiene \u0026amp; butadiene, butyl and halobutyl, neoprene, EPDM, nitrile, chlorinated and chlorosulfonated polyethylene, urethane, silicone and fluoroelastomers, acrylate and epichlorohydrin, and specialty rubbers.\u003cbr\u003eThe formulations included in this volume were developed by research centers of leading manufacturers in the USA including Ausimont, DSM Copolymer, DuPont Dow Elastomers, Engelhard Corporation, Enichem Elastomers Americas, Exxon Chemical Company, Goodyear Chemical Division, PPG Industries, TSE Industries, Union Carbide Corporation, Uniroyal Chemical Company, R. T. Vanderbilt Company and Zeon Chemicals. The formulations were subjected to testing for intended products from the point of view of their performance, long-term stability, and processing methods \u0026amp; conditions.\u003cbr\u003eAbout 500 formulations are given for a large number of products which belong to the following groups: tires, automotive parts (motor mount, wiper blade, pipe gasket, handle grip, bushings, exhaust hanger, V-belt, coolant hose, radiator hose, brake hose, window gasket, weatherstrip, diaphragms, fuel hose, gasoline resistant lining, power steering, shock absorber, shaft seal), seals, footwear, conveyor belts, bottle stoppers, bands, balls, golf ball cores, dampening materials, springs, exercise equipment, cellular materials, sponge, air duct, hose, tubing, air conditioner parts, wet suits, gaskets, roof sheating, curtain wall seal and other building seals, cable and wire, water sports equipment, outdoor matting, building profiles, home equipment, and many more. \u003cbr\u003e\u003cbr\u003eThe formulations presented in this book were optimized for different processing methods such as vulcanization, extrusion, injection molding, press molding, lamination, calendering, transfer molding, and coating. There is a clear distinction in the presentation which allows for an easy choice of formulation for processing method and processing conditions. The process data given provide starting conditions very useful for process optimization. The other important feature of this collection of formulations is related to the large variety of special performance characteristics under which products are expected to perform. Examples of these special characteristics are improved tear strength, electric conductivity, electric and thermal insulating properties, an ozone resistance, low heat build-up, adhesion to specific substrates, thick or thin articles, resistance to chemicals, reversion, weather, easy processing, abrasion resistance, translucence, color stability, food and pharmaceutical applications, microwave curing, antistatic properties, flame resistance, high and low temperature service, and more. This large number of formulations ready for comparison allows understanding principles of their formulation and optimization.\u003cbr\u003eFrom the above information, it becomes apparent that manufacturers of rubber products will find this collection of formulations very useful for many purposes such as the formulation of new products, reformulation of existing products, finding more economical methods of production of existing and new products, formulation costing, and estimation of the cost of competing manufacturers. But the usefulness of this book goes beyond rubber product manufacturers. Users of rubber products can find the book useful for understanding compatibility issues with rubber products, the available performance characteristics of various products, make a judgment regarding the level of technology of their suppliers, define state-of-art performance, etc. In summary, this book, similar to all bases dealing with the extensive amount of data, is suggested reference volume which helps both manufacturer and a rubber product user to obtain answers to many questions coming from everyday practice. This book is timely published because of increasing interest in rubber technology and application due to new characteristics of optimized and engineered rubber compositions.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eNatural rubber and polyisoprene\u003cbr\u003eStyrene-butadiene and butadiene\u003cbr\u003eButyl and halobutyl\u003cbr\u003eNeoprene\u003cbr\u003eEPDM\u003cbr\u003eNitrile\u003cbr\u003eChlorinated polyethylene and chlorosulfonated polyethylene\u003cbr\u003eUrethane\u003cbr\u003eSilicone and fluoroelastomers\u003cbr\u003eAcrylate and epichlorohydrin\u003cbr\u003eSpecialty rubbers\u003c\/p\u003e","published_at":"2017-06-22T21:14:24-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","accelerators","activators","additives","antioxidants","antiozonants","book","butadiene","butyl","EPDM","fillers","fluoroelastomers","halobutyl","natural rubber","neoprene","nitrile","peroxides","polyethylene","polyisoprene","r-formulation","retarders","rubber","rubber compounding","rubbers","silicone","styrene-butadiene","urethane"],"price":36500,"price_min":36500,"price_max":36500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378414340,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"The Rubber Formulary","public_title":null,"options":["Default Title"],"price":36500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"0-8155-1434-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1434-4_8b235c80-12b5-4b06-9241-84cd7b07a255.jpg?v=1499956561"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1434-4_8b235c80-12b5-4b06-9241-84cd7b07a255.jpg?v=1499956561","options":["Title"],"media":[{"alt":null,"id":358800719965,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1434-4_8b235c80-12b5-4b06-9241-84cd7b07a255.jpg?v=1499956561"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1434-4_8b235c80-12b5-4b06-9241-84cd7b07a255.jpg?v=1499956561","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peter A Ciullo and Norman Hewitt \u003cbr\u003e10-ISBN 0-8155-1434-4 \u003cbr\u003e13-ISBN 978-0-8155-1434-3\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999 \u003cbr\u003e\u003c\/span\u003e764 pages, 500 formulations\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains two parts: the introduction to the raw materials used in the rubber industry and the formulary part where formulations for final products are given.\u003cbr\u003eEleven rubber elastomers for which formulations are given in the second part are discussed in the beginning of the first section. This is followed by information on several groups of additives such as activators, accelerators, retarders, peroxides, fillers, antioxidants, antiozonants, and several other groups.\u003cbr\u003eThe first section is completed by information on rubber processing and physical testing for in-process analysis and final product property determination. The first section is designed to give background to better understand formations. The second part is divided into chapters based on the type of rubber used in the formulations. There are eleven chapters each for natural rubber and polyisoprene, styrene-butadiene \u0026amp; butadiene, butyl and halobutyl, neoprene, EPDM, nitrile, chlorinated and chlorosulfonated polyethylene, urethane, silicone and fluoroelastomers, acrylate and epichlorohydrin, and specialty rubbers.\u003cbr\u003eThe formulations included in this volume were developed by research centers of leading manufacturers in the USA including Ausimont, DSM Copolymer, DuPont Dow Elastomers, Engelhard Corporation, Enichem Elastomers Americas, Exxon Chemical Company, Goodyear Chemical Division, PPG Industries, TSE Industries, Union Carbide Corporation, Uniroyal Chemical Company, R. T. Vanderbilt Company and Zeon Chemicals. The formulations were subjected to testing for intended products from the point of view of their performance, long-term stability, and processing methods \u0026amp; conditions.\u003cbr\u003eAbout 500 formulations are given for a large number of products which belong to the following groups: tires, automotive parts (motor mount, wiper blade, pipe gasket, handle grip, bushings, exhaust hanger, V-belt, coolant hose, radiator hose, brake hose, window gasket, weatherstrip, diaphragms, fuel hose, gasoline resistant lining, power steering, shock absorber, shaft seal), seals, footwear, conveyor belts, bottle stoppers, bands, balls, golf ball cores, dampening materials, springs, exercise equipment, cellular materials, sponge, air duct, hose, tubing, air conditioner parts, wet suits, gaskets, roof sheating, curtain wall seal and other building seals, cable and wire, water sports equipment, outdoor matting, building profiles, home equipment, and many more. \u003cbr\u003e\u003cbr\u003eThe formulations presented in this book were optimized for different processing methods such as vulcanization, extrusion, injection molding, press molding, lamination, calendering, transfer molding, and coating. There is a clear distinction in the presentation which allows for an easy choice of formulation for processing method and processing conditions. The process data given provide starting conditions very useful for process optimization. The other important feature of this collection of formulations is related to the large variety of special performance characteristics under which products are expected to perform. Examples of these special characteristics are improved tear strength, electric conductivity, electric and thermal insulating properties, an ozone resistance, low heat build-up, adhesion to specific substrates, thick or thin articles, resistance to chemicals, reversion, weather, easy processing, abrasion resistance, translucence, color stability, food and pharmaceutical applications, microwave curing, antistatic properties, flame resistance, high and low temperature service, and more. This large number of formulations ready for comparison allows understanding principles of their formulation and optimization.\u003cbr\u003eFrom the above information, it becomes apparent that manufacturers of rubber products will find this collection of formulations very useful for many purposes such as the formulation of new products, reformulation of existing products, finding more economical methods of production of existing and new products, formulation costing, and estimation of the cost of competing manufacturers. But the usefulness of this book goes beyond rubber product manufacturers. Users of rubber products can find the book useful for understanding compatibility issues with rubber products, the available performance characteristics of various products, make a judgment regarding the level of technology of their suppliers, define state-of-art performance, etc. In summary, this book, similar to all bases dealing with the extensive amount of data, is suggested reference volume which helps both manufacturer and a rubber product user to obtain answers to many questions coming from everyday practice. This book is timely published because of increasing interest in rubber technology and application due to new characteristics of optimized and engineered rubber compositions.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eNatural rubber and polyisoprene\u003cbr\u003eStyrene-butadiene and butadiene\u003cbr\u003eButyl and halobutyl\u003cbr\u003eNeoprene\u003cbr\u003eEPDM\u003cbr\u003eNitrile\u003cbr\u003eChlorinated polyethylene and chlorosulfonated polyethylene\u003cbr\u003eUrethane\u003cbr\u003eSilicone and fluoroelastomers\u003cbr\u003eAcrylate and epichlorohydrin\u003cbr\u003eSpecialty rubbers\u003c\/p\u003e"}
Functional Nanostructu...
$149.00
{"id":11242233604,"title":"Functional Nanostructures, Processing, Characterization, and Applications","handle":"978-0-387-35463-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Sudipta Seal \u003cbr\u003eISBN 978-0-387-35463-7 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003epages approx., 350\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eNanocrystalline materials exhibit outstanding structural and mechanical properties. However, future progress in this emerging field is critically dependent upon the development of new methods of understanding and analyzing the underlying nanoscale and interface effects causing their unique mechanical properties. This exceptionally well- researched volume in Nanostructure Science and Technology serves both as an introduction to structural nanocrystalline materials as well as a monograph providing a systematic overview of the current state-of-the-art of fundamental and applied research in the area. The book provides a unique interdisciplinary approach by incorporating chapters from contributors from various academic disciplines including Engineering, Physics, Chemistry, and Polymer Science. Sudipta Seal integrates the most current and relevant technologies in the field to address the subject. This volume will prove to be indispensable to professionals in the in the field of nanomaterials science and nanotechnologies, from researchers and graduate students to engineers who are involved in production and processing of nanomaterials with enhanced physico-chemical properties.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction\u003c\/p\u003e\n\u003cp\u003e- Nanoceramic and Cermets.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures films.\u003c\/p\u003e\n\u003cp\u003e- NEMS, MEMS, Bio-MEMS.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures Biomaterials.\u003c\/p\u003e\n\u003cp\u003e- Self Assembly in Nanophase separated Polymer and Thin Film.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures, sensor and catalytic properties.\u003c\/p\u003e\n\u003cp\u003e- High-Resolution TEM for nanocharacterization.\u003c\/p\u003e\n\u003cp\u003e- AFM in nanotechnology.\u003c\/p\u003e\n\u003cp\u003e- Concluding Remarks and future trends\u003c\/p\u003e","published_at":"2017-06-22T21:14:23-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","AFM","biomaterials","book","nano","nanostructures","nanotechnolgy","polymer","structure nanophase","TEM"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Nanostructures, Processing, Characterization, and Applications","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-387-35463-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278","options":["Title"],"media":[{"alt":null,"id":354808889437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-35463-7.jpg?v=1499988278","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Sudipta Seal \u003cbr\u003eISBN 978-0-387-35463-7 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003epages approx., 350\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eNanocrystalline materials exhibit outstanding structural and mechanical properties. However, future progress in this emerging field is critically dependent upon the development of new methods of understanding and analyzing the underlying nanoscale and interface effects causing their unique mechanical properties. This exceptionally well- researched volume in Nanostructure Science and Technology serves both as an introduction to structural nanocrystalline materials as well as a monograph providing a systematic overview of the current state-of-the-art of fundamental and applied research in the area. The book provides a unique interdisciplinary approach by incorporating chapters from contributors from various academic disciplines including Engineering, Physics, Chemistry, and Polymer Science. Sudipta Seal integrates the most current and relevant technologies in the field to address the subject. This volume will prove to be indispensable to professionals in the in the field of nanomaterials science and nanotechnologies, from researchers and graduate students to engineers who are involved in production and processing of nanomaterials with enhanced physico-chemical properties.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction\u003c\/p\u003e\n\u003cp\u003e- Nanoceramic and Cermets.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures films.\u003c\/p\u003e\n\u003cp\u003e- NEMS, MEMS, Bio-MEMS.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures Biomaterials.\u003c\/p\u003e\n\u003cp\u003e- Self Assembly in Nanophase separated Polymer and Thin Film.\u003c\/p\u003e\n\u003cp\u003e- Nanostructures, sensor and catalytic properties.\u003c\/p\u003e\n\u003cp\u003e- High-Resolution TEM for nanocharacterization.\u003c\/p\u003e\n\u003cp\u003e- AFM in nanotechnology.\u003c\/p\u003e\n\u003cp\u003e- Concluding Remarks and future trends\u003c\/p\u003e"}
Fire - Additives and M...
$180.00
{"id":11242233668,"title":"Fire - Additives and Materials","handle":"978-1-85957-034-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.W. Dufton \u003cbr\u003eISBN 978-1-85957-034-0 \u003cbr\u003e\u003cbr\u003e151 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cstrong\u003eFlame retardants:\u003c\/strong\u003e Organic halogen containing materials, phosphorus containing compounds, inorganic minerals and salts, and many other materials \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers:\u003c\/strong\u003e PE, EVA, PP, PVC, styrenics, polyamides, PPO, polyurethanes, thermosets, polyesters, polycarbonates, PMMA, elastomers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMarkets:\u003c\/strong\u003e automotive, other land transportation, aircraft, electrical appliances, electronic products, electrical cables, building and construction\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction\u003c\/p\u003e\n\u003cp\u003eSummary and Conclusions \u003cbr\u003eFlame Retardant Technologies \u003cbr\u003eAdditive Products and Markets \u003cbr\u003eSuppliers and the Market, Compounders and Converters \u003cbr\u003ePolymer Families and Their Flame Retardancy \u003cbr\u003eEnd-user Industry Markets \u003cbr\u003eLegislation and Regulations\u003c\/p\u003e","published_at":"2017-06-22T21:14:24-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","aircraft","automotive","book","building","elastomers","electrical appliances","electrical cables","electronic products","EVA","market","Market Report","other land transportation","PE","PMMA","polyamides","polycarbonates","polyesters","polyurethanes","PP","PPO","PVC","styrenics","thermosets"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378414020,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Fire - Additives and Materials","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-034-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-034-0.jpg?v=1500048594"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-034-0.jpg?v=1500048594","options":["Title"],"media":[{"alt":null,"id":363545919581,"position":1,"preview_image":{"aspect_ratio":0.706,"height":500,"width":353,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-034-0.jpg?v=1500048594"},"aspect_ratio":0.706,"height":500,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-034-0.jpg?v=1500048594","width":353}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.W. Dufton \u003cbr\u003eISBN 978-1-85957-034-0 \u003cbr\u003e\u003cbr\u003e151 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cstrong\u003eFlame retardants:\u003c\/strong\u003e Organic halogen containing materials, phosphorus containing compounds, inorganic minerals and salts, and many other materials \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePolymers:\u003c\/strong\u003e PE, EVA, PP, PVC, styrenics, polyamides, PPO, polyurethanes, thermosets, polyesters, polycarbonates, PMMA, elastomers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eMarkets:\u003c\/strong\u003e automotive, other land transportation, aircraft, electrical appliances, electronic products, electrical cables, building and construction\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction\u003c\/p\u003e\n\u003cp\u003eSummary and Conclusions \u003cbr\u003eFlame Retardant Technologies \u003cbr\u003eAdditive Products and Markets \u003cbr\u003eSuppliers and the Market, Compounders and Converters \u003cbr\u003ePolymer Families and Their Flame Retardancy \u003cbr\u003eEnd-user Industry Markets \u003cbr\u003eLegislation and Regulations\u003c\/p\u003e"}
Carbon Nanotubes for B...
$159.00
{"id":11242233924,"title":"Carbon Nanotubes for Biomedical Applications","handle":"978-3-642-14801-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Klingeler, Rüdiger; Sim, Robert B. (Eds.) \u003cbr\u003eISBN 978-3-642-14801-9 \u003cbr\u003e\u003cbr\u003e1st Edition., 2011, XX, 280 p. 38 illus. in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003ePart I Fundamental: Synthesis of Multifunctional Nanomaterials and their Potential for Medical Application\u003c\/p\u003e\n\u003cp\u003e1. Physical Properties of Carbon Nanotubes for Therapeutic Application\u003c\/p\u003e\n\u003cp\u003e2. Carbon Nanotubes in Regenerative Medicine\u003c\/p\u003e\n\u003cp\u003e3. Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase\u003c\/p\u003e\n\u003cp\u003e4. Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery\u003c\/p\u003e\n\u003cp\u003ePart II Magnetically Functionalised Carbon Nanotubes for Medical Diagnosis and Therapy\u003c\/p\u003e\n\u003cp\u003e5. Magnetic Nanoparticles for Diagnosis and Medical Therapy\u003c\/p\u003e\n\u003cp\u003e6. Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors\u003c\/p\u003e\n\u003cp\u003e6. Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003ePart III Interaction with Biological Systems\u003c\/p\u003e\n\u003cp\u003e7. Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy\u003c\/p\u003e\n\u003cp\u003e8. Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003e9. Recognition of Carbon Nanotubes by Human Innate Immune System\u003c\/p\u003e\n\u003cp\u003e10. Toxicity and Environmental Impact of Carbon Nanotubes \u003c\/p\u003e\n\u003cp\u003ePart IV Towards Targeted Chemotherapy and Gene Delivery\u003c\/p\u003e\n\u003cp\u003e11. Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment\u003c\/p\u003e\n\u003cp\u003e12. Carbon Nanotubes Filled with Carboplatin: Towards Supported Delivery of Chemotherapeutic Agents\u003c\/p\u003e\n\u003cp\u003e13. Functionalized Carbon Nanotubes for Gene Biodeloivery \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:24-04:00","created_at":"2017-06-22T21:14:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biocompatibility","biomedical application","book","cellular uptake","intracellular distribution","nano","nantubes","NMR-active substances","toxicity"],"price":15900,"price_min":15900,"price_max":15900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378414596,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Carbon Nanotubes for Biomedical Applications","public_title":null,"options":["Default Title"],"price":15900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-642-14801-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975","options":["Title"],"media":[{"alt":null,"id":353925562461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-14801-9.jpg?v=1499723975","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Klingeler, Rüdiger; Sim, Robert B. (Eds.) \u003cbr\u003eISBN 978-3-642-14801-9 \u003cbr\u003e\u003cbr\u003e1st Edition., 2011, XX, 280 p. 38 illus. in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003ePart I Fundamental: Synthesis of Multifunctional Nanomaterials and their Potential for Medical Application\u003c\/p\u003e\n\u003cp\u003e1. Physical Properties of Carbon Nanotubes for Therapeutic Application\u003c\/p\u003e\n\u003cp\u003e2. Carbon Nanotubes in Regenerative Medicine\u003c\/p\u003e\n\u003cp\u003e3. Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase\u003c\/p\u003e\n\u003cp\u003e4. Filling of Carbon Nanotubes: Containers for Magnetic Probes and Drug Delivery\u003c\/p\u003e\n\u003cp\u003ePart II Magnetically Functionalised Carbon Nanotubes for Medical Diagnosis and Therapy\u003c\/p\u003e\n\u003cp\u003e5. Magnetic Nanoparticles for Diagnosis and Medical Therapy\u003c\/p\u003e\n\u003cp\u003e6. Feasibility of Magnetically Functionalised Carbon Nanotubes for Biological Applications: From Fundamental Properties of Individual Nanomagnets to Nanoscaled Heaters and Temperature Sensors\u003c\/p\u003e\n\u003cp\u003e6. Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003ePart III Interaction with Biological Systems\u003c\/p\u003e\n\u003cp\u003e7. Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy\u003c\/p\u003e\n\u003cp\u003e8. Uptake, Intracellular Localization and Biodistribution of Carbon Nanotubes\u003c\/p\u003e\n\u003cp\u003e9. Recognition of Carbon Nanotubes by Human Innate Immune System\u003c\/p\u003e\n\u003cp\u003e10. Toxicity and Environmental Impact of Carbon Nanotubes \u003c\/p\u003e\n\u003cp\u003ePart IV Towards Targeted Chemotherapy and Gene Delivery\u003c\/p\u003e\n\u003cp\u003e11. Carbon Nanotubes Loaded with Anticancer Drugs: A Platform for Multimodal Cancer Treatment\u003c\/p\u003e\n\u003cp\u003e12. Carbon Nanotubes Filled with Carboplatin: Towards Supported Delivery of Chemotherapeutic Agents\u003c\/p\u003e\n\u003cp\u003e13. Functionalized Carbon Nanotubes for Gene Biodeloivery \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Protection of Material...
$329.00
{"id":11242233412,"title":"Protection of Materials and Structures from the Space Environment","handle":"978-1-4020-4281-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Jacob I. Kleiman \u003cbr\u003eISBN 978-1-4020-4281-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 462, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition, the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on the development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour are continued from the past meetings.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction. Acknowledgements. Organization. \u003cbr\u003e\u003cstrong\u003eSection A. \u003c\/strong\u003eRadiation effects of protons and electrons on Back-field silicon solar cells; \u003cem\u003eZ. Hu, S. He, D. Yang\u003c\/em\u003e. Solar array arcing in LEO: how much charge is discharged? \u003cem\u003eD.C. Ferguson, B.V. Vayner, J.T. Galofaro. \u003c\/em\u003eSelf-restoration as SEU protection mechanism for re-configurable on-board computing platform; \u003cem\u003eL. Kirischian, et al\u003c\/em\u003e. Synergistic effects of protons and electrons on radiation damage of methyl silicone rubber; \u003cem\u003eL. Zhang et al\u003c\/em\u003e. Influence of electron radiation on outgassing of spacecraft materials; \u003cem\u003eR. H. Khassanchineet al\u003c\/em\u003e. Effect of surface charging on the erosion rate of polyimide under 5 eV atomic oxygen beam exposure; \u003cem\u003eM. Tagawa et al\u003c\/em\u003e. Influence of space environment on spectral optical properties of thermal control coatings; \u003cem\u003eV.M. Prosvirikov, et al.\u003c\/em\u003e Mitigation of thruster plume-induced erosion of ISS sensitive hardware; \u003cem\u003eC. Pankop, J. Alred, P. Boeder\u003c\/em\u003e. Degradation of thermal control coatings under influence of proton irradiation; \u003cem\u003eL.S. Noviko et al\u003c\/em\u003e. Mitigation of damage to the international space station (ISS) from water dumps; \u003cem\u003eW. Schmidl, J. Visentine, R. Mikatarian\u003c\/em\u003e. Investigation of synergistic effects of proton and electron radiation on the dyeing of optical quartz glass; \u003cem\u003eH. Liu et al\u003c\/em\u003e. The role of \"abnormal\" electron fluxes with energy \u0026lt; 1 MeV in the surface charging dose of spacecraft; \u003cem\u003eO.R. Grigoryan et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection B. \u003c\/strong\u003eVacuum ultraviolet radiation effects on DC93-500 silicone film; \u003cem\u003eJ.A. Dever, B.A. Banks, L. Yan\u003c\/em\u003e. Enhancement of atomic oxygen-induced erosion of spacecraft polymeric materials by simultaneous ultraviolet exposure; \u003cem\u003eK. Yokota, N. Ohmae, M. Tagawa.\u003c\/em\u003e Ground simulation of hypervelocity space debris impacts on polymers; \u003cem\u003eR. Verker et al. \u003c\/em\u003eTesting of spacecraft materials for long duration flights in low earth orbit; \u003cem\u003eL.S. Novikov et al. \u003c\/em\u003eM\/OD impacts on the multi-purpose logistics module: post-flight inspection results; \u003cem\u003eJ.L. Hyde, R.P. Bernhard, E.L. Christiansen. \u003c\/em\u003eFuel oxidizer reaction products (FORP) contamination of service module and release of N-nitrosodimethylamine in a humid environment from crew EVA suits contaminated with FORP; \u003cem\u003eW. Schmidt et al. \u003c\/em\u003eEffect of vacuum thermocycling on properties of unidirectional M40J\/AG-80 Composites; \u003cem\u003eY. Gao et al. \u003c\/em\u003eDamage characteristics of Zr\u003csub\u003e41\u003c\/sub\u003eTi\u003csub\u003e14\u003c\/sub\u003eCu\u003csub\u003e12.5\u003c\/sub\u003eNi\u003csub\u003e10\u003c\/sub\u003eBe\u003csub\u003e22.5 \u003c\/sub\u003ebulk metallic glass impacted by hypervelocity projectiles; \u003cem\u003eC. Yang et al\u003c\/em\u003e. Effect of VUV radiation on properties and chemical structure of polyethylene terephthalate film; \u003cem\u003eG. Peng, D. Yang, S. Y. He. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection C. \u003c\/strong\u003eStatus of solar sail material characterization at NASA’s Marshall Space Flight Center; \u003cem\u003eD. Edwards et al. \u003c\/em\u003eAtomic oxygen durability evaluation of a UV curable ceramer protective coating ; \u003cem\u003eB.A. Banks et al\u003c\/em\u003e. Cermet thermal conversion coatings for space applications; \u003cem\u003eB. W. Woods et al. \u003c\/em\u003eMulti-function smart coatings for space applications; \u003cem\u003eR.V. Kruzelecky et al. \u003c\/em\u003eEffects of space environment exposure on the blocking force of silicone adhesive; \u003cem\u003eP. Boeder et al. \u003c\/em\u003eDry sliding wear of Ti-6Al-4V Alloy at low temperature in vacuum; \u003cem\u003eY. Liu et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection D. \u003c\/strong\u003eErosion of Kapton H by hyperthermal atomic oxygen: Dependence on O-atom fluence and surface temperature; \u003cem\u003eD.M. Buczala, T. K. Minton. \u003c\/em\u003eTransparent arc-proof protective coatings - performance and manufacturability issues; \u003cem\u003eJ. Griffin et al. \u003c\/em\u003eThe study of the effects of atomic oxygen erosion on the microstructure and property of VO\u003csub\u003e2\u003c\/sub\u003e thermochromic coating using CSA’s space simulation apparatus; \u003cem\u003eX.X. Jiang et al.\u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection E. \u003c\/strong\u003eDamage kinetics of quartz glass by proton radiation; \u003cem\u003eQ. Wei, S.Y. He, D. Yang.\u003c\/em\u003e Microscopic mechanisms and dynamics simulations of O\u003csup\u003e+\u003c\/sup\u003e(\u003csup\u003e4\u003c\/sup\u003eS\u003csub\u003e3\/2\u003c\/sub\u003e) reacting with methane; \u003cem\u003eL. Sun, G. Schatz. \u003c\/em\u003eTheoretical study of reactions of hyperthermal O(\u003csup\u003e3\u003c\/sup\u003eP) with perfluorinated hydrocarbons; \u003cem\u003eD. Troya, G.C. Schatz.\u003c\/em\u003e Simulation of UV influence on outgassing of polymer composites; \u003cem\u003eR.H. Khassanchine et al. \u003c\/em\u003eThe impact of high-velocity particles on thermal pipelines in spacecraft; \u003cem\u003eN.D. Semkin, K.E. Voronov, L.S. Novikov. \u003c\/em\u003ePhysical mechanism of solar cell shunting under the high-velocity impact of solid particles; \u003cem\u003eV.A. Letin, A.B. Nadiradze, L.S. Novikov. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection F. \u003c\/strong\u003eDetermination of round-laboratory to in-space effective atomic oxygen fluence for DC 93-500 silicone; \u003cem\u003eK.K. DeGroh, B.A. Banks, D. Ma.\u003c\/em\u003e Atomic oxygen concentration using reflecting mirrors; \u003cem\u003eM. Tagawa et al. \u003c\/em\u003eAtomic oxygen source calibration issues: A universal approach; \u003cem\u003eC. White et al. \u003c\/em\u003eLow-cost space missions for scientific and technological investigations; \u003cem\u003eD. Rankin et al. \u003cbr\u003e\u003c\/em\u003eSubject index. Author index.\u003c\/p\u003e","published_at":"2017-06-22T21:14:23-04:00","created_at":"2017-06-22T21:14:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","atomic oxygen","back-field","book","ceramer","charging","curable","durability","effects","environment","erosion of spacecraft","meteoroid showers","micrometeoroids","p-properties","polyethylene terephthalate","polymer","polymer composites","polymeric materials","protective coatings","radiation","silicon","silicone film","solar cells","space","ultraviolet","UV","vacuum ultraviolet radiation","weathering"],"price":32900,"price_min":32900,"price_max":32900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Protection of Materials and Structures from the Space Environment","public_title":null,"options":["Default Title"],"price":32900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4020-4281-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142","options":["Title"],"media":[{"alt":null,"id":358725419101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Jacob I. Kleiman \u003cbr\u003eISBN 978-1-4020-4281-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 462, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition, the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on the development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour are continued from the past meetings.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction. Acknowledgements. Organization. \u003cbr\u003e\u003cstrong\u003eSection A. \u003c\/strong\u003eRadiation effects of protons and electrons on Back-field silicon solar cells; \u003cem\u003eZ. Hu, S. He, D. Yang\u003c\/em\u003e. Solar array arcing in LEO: how much charge is discharged? \u003cem\u003eD.C. Ferguson, B.V. Vayner, J.T. Galofaro. \u003c\/em\u003eSelf-restoration as SEU protection mechanism for re-configurable on-board computing platform; \u003cem\u003eL. Kirischian, et al\u003c\/em\u003e. Synergistic effects of protons and electrons on radiation damage of methyl silicone rubber; \u003cem\u003eL. Zhang et al\u003c\/em\u003e. Influence of electron radiation on outgassing of spacecraft materials; \u003cem\u003eR. H. Khassanchineet al\u003c\/em\u003e. Effect of surface charging on the erosion rate of polyimide under 5 eV atomic oxygen beam exposure; \u003cem\u003eM. Tagawa et al\u003c\/em\u003e. Influence of space environment on spectral optical properties of thermal control coatings; \u003cem\u003eV.M. Prosvirikov, et al.\u003c\/em\u003e Mitigation of thruster plume-induced erosion of ISS sensitive hardware; \u003cem\u003eC. Pankop, J. Alred, P. Boeder\u003c\/em\u003e. Degradation of thermal control coatings under influence of proton irradiation; \u003cem\u003eL.S. Noviko et al\u003c\/em\u003e. Mitigation of damage to the international space station (ISS) from water dumps; \u003cem\u003eW. Schmidl, J. Visentine, R. Mikatarian\u003c\/em\u003e. Investigation of synergistic effects of proton and electron radiation on the dyeing of optical quartz glass; \u003cem\u003eH. Liu et al\u003c\/em\u003e. The role of \"abnormal\" electron fluxes with energy \u0026lt; 1 MeV in the surface charging dose of spacecraft; \u003cem\u003eO.R. Grigoryan et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection B. \u003c\/strong\u003eVacuum ultraviolet radiation effects on DC93-500 silicone film; \u003cem\u003eJ.A. Dever, B.A. Banks, L. Yan\u003c\/em\u003e. Enhancement of atomic oxygen-induced erosion of spacecraft polymeric materials by simultaneous ultraviolet exposure; \u003cem\u003eK. Yokota, N. Ohmae, M. Tagawa.\u003c\/em\u003e Ground simulation of hypervelocity space debris impacts on polymers; \u003cem\u003eR. Verker et al. \u003c\/em\u003eTesting of spacecraft materials for long duration flights in low earth orbit; \u003cem\u003eL.S. Novikov et al. \u003c\/em\u003eM\/OD impacts on the multi-purpose logistics module: post-flight inspection results; \u003cem\u003eJ.L. Hyde, R.P. Bernhard, E.L. Christiansen. \u003c\/em\u003eFuel oxidizer reaction products (FORP) contamination of service module and release of N-nitrosodimethylamine in a humid environment from crew EVA suits contaminated with FORP; \u003cem\u003eW. Schmidt et al. \u003c\/em\u003eEffect of vacuum thermocycling on properties of unidirectional M40J\/AG-80 Composites; \u003cem\u003eY. Gao et al. \u003c\/em\u003eDamage characteristics of Zr\u003csub\u003e41\u003c\/sub\u003eTi\u003csub\u003e14\u003c\/sub\u003eCu\u003csub\u003e12.5\u003c\/sub\u003eNi\u003csub\u003e10\u003c\/sub\u003eBe\u003csub\u003e22.5 \u003c\/sub\u003ebulk metallic glass impacted by hypervelocity projectiles; \u003cem\u003eC. Yang et al\u003c\/em\u003e. Effect of VUV radiation on properties and chemical structure of polyethylene terephthalate film; \u003cem\u003eG. Peng, D. Yang, S. Y. He. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection C. \u003c\/strong\u003eStatus of solar sail material characterization at NASA’s Marshall Space Flight Center; \u003cem\u003eD. Edwards et al. \u003c\/em\u003eAtomic oxygen durability evaluation of a UV curable ceramer protective coating ; \u003cem\u003eB.A. Banks et al\u003c\/em\u003e. Cermet thermal conversion coatings for space applications; \u003cem\u003eB. W. Woods et al. \u003c\/em\u003eMulti-function smart coatings for space applications; \u003cem\u003eR.V. Kruzelecky et al. \u003c\/em\u003eEffects of space environment exposure on the blocking force of silicone adhesive; \u003cem\u003eP. Boeder et al. \u003c\/em\u003eDry sliding wear of Ti-6Al-4V Alloy at low temperature in vacuum; \u003cem\u003eY. Liu et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection D. \u003c\/strong\u003eErosion of Kapton H by hyperthermal atomic oxygen: Dependence on O-atom fluence and surface temperature; \u003cem\u003eD.M. Buczala, T. K. Minton. \u003c\/em\u003eTransparent arc-proof protective coatings - performance and manufacturability issues; \u003cem\u003eJ. Griffin et al. \u003c\/em\u003eThe study of the effects of atomic oxygen erosion on the microstructure and property of VO\u003csub\u003e2\u003c\/sub\u003e thermochromic coating using CSA’s space simulation apparatus; \u003cem\u003eX.X. Jiang et al.\u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection E. \u003c\/strong\u003eDamage kinetics of quartz glass by proton radiation; \u003cem\u003eQ. Wei, S.Y. He, D. Yang.\u003c\/em\u003e Microscopic mechanisms and dynamics simulations of O\u003csup\u003e+\u003c\/sup\u003e(\u003csup\u003e4\u003c\/sup\u003eS\u003csub\u003e3\/2\u003c\/sub\u003e) reacting with methane; \u003cem\u003eL. Sun, G. Schatz. \u003c\/em\u003eTheoretical study of reactions of hyperthermal O(\u003csup\u003e3\u003c\/sup\u003eP) with perfluorinated hydrocarbons; \u003cem\u003eD. Troya, G.C. Schatz.\u003c\/em\u003e Simulation of UV influence on outgassing of polymer composites; \u003cem\u003eR.H. Khassanchine et al. \u003c\/em\u003eThe impact of high-velocity particles on thermal pipelines in spacecraft; \u003cem\u003eN.D. Semkin, K.E. Voronov, L.S. Novikov. \u003c\/em\u003ePhysical mechanism of solar cell shunting under the high-velocity impact of solid particles; \u003cem\u003eV.A. Letin, A.B. Nadiradze, L.S. Novikov. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection F. \u003c\/strong\u003eDetermination of round-laboratory to in-space effective atomic oxygen fluence for DC 93-500 silicone; \u003cem\u003eK.K. DeGroh, B.A. Banks, D. Ma.\u003c\/em\u003e Atomic oxygen concentration using reflecting mirrors; \u003cem\u003eM. Tagawa et al. \u003c\/em\u003eAtomic oxygen source calibration issues: A universal approach; \u003cem\u003eC. White et al. \u003c\/em\u003eLow-cost space missions for scientific and technological investigations; \u003cem\u003eD. Rankin et al. \u003cbr\u003e\u003c\/em\u003eSubject index. Author index.\u003c\/p\u003e"}
Light-Associated React...
$149.00
{"id":11242233476,"title":"Light-Associated Reactions of Synthetic Polymers","handle":"978-0-387-31803-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A. Ravve \u003cbr\u003eISBN 978-0-387-31803-5 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003epages 369, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPhoto associated reactions and light responsive materials have great potential to improve existing industrial processes, including liquid crystal alignment and capturing solar energy. This book presents a range of reactions and materials with some of the most exciting current and future applications. It includes a brief introduction to photochemistry; in-depth discussion of photosensitizers, photoinititiators, and the processes of light curing and crosslinking; listing of light responsive polymers and their uses; and a discussion of polymeric materials for use in non-linear optics.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction.\u003c\/p\u003e\n\u003cp\u003e- Photosensitizers and Photoinitiators.\u003c\/p\u003e\n\u003cp\u003e- Chemistry of Photo-Curable Compositions.\u003c\/p\u003e\n\u003cp\u003e- Photo-Crosslinkable Polymers.\u003c\/p\u003e\n\u003cp\u003e- Photo-Responsive Polymers.\u003c\/p\u003e\n\u003cp\u003e- Photo-Refractive Polymers for Nonlinear Optics.\u003c\/p\u003e","published_at":"2017-06-22T21:14:23-04:00","created_at":"2017-06-22T21:14:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","book","compositions","crosslinking","curing","nonlinear optics","p-properties","photo-crosslinkable","photo-refractive","photoinitiators","photosensitizers","poly","polymers","solar energy"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413828,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Light-Associated Reactions of Synthetic Polymers","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-387-31803-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-31803-5.jpg?v=1499624044"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-31803-5.jpg?v=1499624044","options":["Title"],"media":[{"alt":null,"id":358506692701,"position":1,"preview_image":{"aspect_ratio":0.653,"height":499,"width":326,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-31803-5.jpg?v=1499624044"},"aspect_ratio":0.653,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-31803-5.jpg?v=1499624044","width":326}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A. Ravve \u003cbr\u003eISBN 978-0-387-31803-5 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003epages 369, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPhoto associated reactions and light responsive materials have great potential to improve existing industrial processes, including liquid crystal alignment and capturing solar energy. This book presents a range of reactions and materials with some of the most exciting current and future applications. It includes a brief introduction to photochemistry; in-depth discussion of photosensitizers, photoinititiators, and the processes of light curing and crosslinking; listing of light responsive polymers and their uses; and a discussion of polymeric materials for use in non-linear optics.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction.\u003c\/p\u003e\n\u003cp\u003e- Photosensitizers and Photoinitiators.\u003c\/p\u003e\n\u003cp\u003e- Chemistry of Photo-Curable Compositions.\u003c\/p\u003e\n\u003cp\u003e- Photo-Crosslinkable Polymers.\u003c\/p\u003e\n\u003cp\u003e- Photo-Responsive Polymers.\u003c\/p\u003e\n\u003cp\u003e- Photo-Refractive Polymers for Nonlinear Optics.\u003c\/p\u003e"}
Rubber Injection Moldi...
$99.00
{"id":11242232964,"title":"Rubber Injection Molding 2000 Today's Technology, Theory and Practice","handle":"978-1-85957-245-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-245-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2000 \u003cbr\u003e\u003c\/span\u003eLondon\u003cbr\u003e8 papers, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eInjection moulding of elastomers for mass-produced products, such as those for the automotive industries, is a critical process for rubber product manufacturers. Processing equipment and materials are continuously under development for the application. This conference addressed the advances that have been made.\u003c\/p\u003e\n\u003cp\u003eThe conference proceedings will be of importance to rubber processors, materials suppliers, compounders and end-users alike. The papers discuss developments that are currently available to optimise production from the injection moulding process along with new techniques, materials, and equipment.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eContents\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cli\u003eOverview of Injection Moulding of Rubbers \u003cbr\u003e\u003ci\u003eMark Smithson, Avon Rubber plc, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eLiquid Silicone Rubbers for Injection Moulding \u003cbr\u003e\u003ci\u003ePeter Jerschow, Wacker-Chemie GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eVarious Solutions for Dual Injection in Different Application Fields \u003cbr\u003e\u003ci\u003eJean Louise Picard, REP Machinery Limited, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e2 Shot Injection Moulding - High Performance and Conventional Rubbers \u003cbr\u003e\u003ci\u003eManfred Arning, Engel Vertriebsgesellschaft mbH, Austria \u003cbr\u003ePaper unavailable at time of print\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eNew Developments for the Optimisation of Injection Moulded Elastomers Using 3D Simulation \u003cbr\u003e\u003ci\u003eLothar H. Kallien, SIGMA Engineering GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eOptimisation of NBR Compounds for the Injection Moulding Process – Influencing Rheological Properties with Fatty Acids and Fatty Acid Derivatives \u003cbr\u003e\u003ci\u003eHans Magg, Bayer AG, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eInjection Moulding of Rubber - Problems, Causes, Solutions \u003cbr\u003e\u003ci\u003eC. Clarke, K.-H. Menting and T. Mergenhagen, Schill \u0026amp; Seilacher GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eDevelopment of New FKM Technology for High Processing Performances in Injection Molding \u003cbr\u003e\u003ci\u003ePatrick Paglia, DuPont Dow Elastomers, Switzerland\u003c\/i\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:14:22-04:00","created_at":"2017-06-22T21:14:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","book","elastomers","filling","injection","molding","mould","moulding","p-processing","rheological properties","rubber","rubbers","silicone","stability"],"price":9900,"price_min":9900,"price_max":9900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413252,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Injection Molding 2000 Today's Technology, Theory and Practice","public_title":null,"options":["Default Title"],"price":9900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-245-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577","options":["Title"],"media":[{"alt":null,"id":412849963101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-245-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2000 \u003cbr\u003e\u003c\/span\u003eLondon\u003cbr\u003e8 papers, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eInjection moulding of elastomers for mass-produced products, such as those for the automotive industries, is a critical process for rubber product manufacturers. Processing equipment and materials are continuously under development for the application. This conference addressed the advances that have been made.\u003c\/p\u003e\n\u003cp\u003eThe conference proceedings will be of importance to rubber processors, materials suppliers, compounders and end-users alike. The papers discuss developments that are currently available to optimise production from the injection moulding process along with new techniques, materials, and equipment.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eContents\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cli\u003eOverview of Injection Moulding of Rubbers \u003cbr\u003e\u003ci\u003eMark Smithson, Avon Rubber plc, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eLiquid Silicone Rubbers for Injection Moulding \u003cbr\u003e\u003ci\u003ePeter Jerschow, Wacker-Chemie GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eVarious Solutions for Dual Injection in Different Application Fields \u003cbr\u003e\u003ci\u003eJean Louise Picard, REP Machinery Limited, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e2 Shot Injection Moulding - High Performance and Conventional Rubbers \u003cbr\u003e\u003ci\u003eManfred Arning, Engel Vertriebsgesellschaft mbH, Austria \u003cbr\u003ePaper unavailable at time of print\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eNew Developments for the Optimisation of Injection Moulded Elastomers Using 3D Simulation \u003cbr\u003e\u003ci\u003eLothar H. Kallien, SIGMA Engineering GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eOptimisation of NBR Compounds for the Injection Moulding Process – Influencing Rheological Properties with Fatty Acids and Fatty Acid Derivatives \u003cbr\u003e\u003ci\u003eHans Magg, Bayer AG, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eInjection Moulding of Rubber - Problems, Causes, Solutions \u003cbr\u003e\u003ci\u003eC. Clarke, K.-H. Menting and T. Mergenhagen, Schill \u0026amp; Seilacher GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eDevelopment of New FKM Technology for High Processing Performances in Injection Molding \u003cbr\u003e\u003ci\u003ePatrick Paglia, DuPont Dow Elastomers, Switzerland\u003c\/i\u003e\n\u003c\/li\u003e"}
Rheology Essentials of...
$150.00
{"id":11242232900,"title":"Rheology Essentials of Cosmetic and Food Emulsions","handle":"978-3-540-25553-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rüdiger Brummer \u003cbr\u003eISBN 978-3-540-25553-6 \u003cbr\u003e\u003cbr\u003eSpringer Laboratory \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 180, 184 illus., 139 in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks, and lotions, as well as sun-block products. Keeping track of them and their properties are not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by expert inflows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests.\u003c\/p\u003e\n\u003cp\u003eBeginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedures: how to characterize cosmetic and food emulsions with different rheological tests such as temperature, time, stress and strain, both static and dynamic. Also the critical topic of how the results correlate with other important product characteristics, for instance, skin sensation, pumping performance, stability etc. is carefully explored. Many pictures, illustrations, graphs, and tables help readers new to the measurement of cosmetic emulsions in their daily work as well as to the more experienced who seek additional special tips and tricks.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 INTRODUCTION (pg. 1) \u003cbr\u003e2 A TRIP BACK IN TIME (pg. 5)\u003cbr\u003e3 SKIN AND ITS CARE (pg. 15)\u003cbr\u003e\u003cb\u003e4 EMULSIONS – SOME THEORETICAL ASPECTS (pg. 17)\u003cbr\u003e\u003c\/b\u003e4.1 Physicochemical Structure of Cosmetic Products (pg.17)\u003cbr\u003e4.2 Modern Emulsifiers (pg. 19)\u003cbr\u003e4.3 Skin Care and Cleansing (pg. 19)\u003cbr\u003e4.4 Microemulsions (pg. 19)\u003cbr\u003e4.5 Emulsifier-Free Products (pg. 20)\u003cbr\u003e4.6 Production of Emulsions (pg.21)\u003cbr\u003e4.7 Processes occurring during Emulsification (pg. 21)\u003cbr\u003e4.8 Serrated Disc Disperser (pg. 22)\u003cbr\u003e\u003cb\u003e5 BASIC PHYSICAL AND MATHEMATICAL PRINCIPLES (pg. 25)\u003cbr\u003e\u003c\/b\u003e5.1 Important Definitions (pg. 25)\u003cbr\u003e5.2 One-Dimensional Parallel PlatesModel (pg. 28)\u003cbr\u003e5.3 Parallel PlateMeasuring System (pg. 30)\u003cbr\u003e5.4 Cone-PlateMeasuring System (pg. 31)\u003cbr\u003e5.5 Coaxial Cylinder Systems (pg. 32)\u003cbr\u003e5.6 Double GapMeasuring System (pg. 35)\u003cbr\u003e5.7 Flow Through Circular Capillary (pg. 36)\u003cbr\u003e5.8 CorrectionMethods (pg. 38)\u003cbr\u003e5.8.1 PPMeasurement System (pg. 39)\u003cbr\u003e5.8.2 Cylinder Measurement Systems (pg. 39)\u003cbr\u003e5.8.3 Circular Capillaries (pg. 39)\u003cbr\u003e5.9 Deformation and Relaxation 40)\u003cbr\u003e5.10 Thixotropy and Rheopexy (pg. 43)\u003cbr\u003e5.11 Vibration orOscillationMeasurements (pg. 44)\u003cbr\u003e5.11.1 Steady andDynamic Stress (pg. 45)\u003cbr\u003e5.11.2 Ideal Elastic Solids (pg. 46)\u003cbr\u003e5.11.3 IdealViscous Fluids (pg. 46)\u003cbr\u003e5.11.4 Real Solids (pg. 47)\u003cbr\u003e5.11.5 Complex Representation (pg. 48)\u003cbr\u003eXVI)\u003cbr\u003e\u003cb\u003e6 MEASURING INSTRUMENTS (pg. 51)\u003cbr\u003e\u003c\/b\u003e6.1 Modern Rheometer (pg. 52)\u003cbr\u003e6.2 High Shear Rheometer (pg. 54)\u003cbr\u003e6.3 StandardViscometer (pg. 55)\u003cbr\u003e6.4 OftenUsedViscometer (pg. 56)\u003cbr\u003e6.5 Automatic Sampler (pg. 57)\u003cbr\u003e6.6 In-process In-\/On-line Viscosity Measurements (pg. 58)\u003cbr\u003e6.7 Future Prospects (pg. 61)\u003cbr\u003e\u003cb\u003e7 MOST IMPORTANT TEST METHODS (pg. 63)\u003cbr\u003e\u003c\/b\u003e7.1 Stress Ramp Test (pg. 65)\u003cbr\u003e7.2 Newtonian Flow Behavior (pg. 67)\u003cbr\u003e7.3 Creep Test and Creep Recovery (pg. 67)\u003cbr\u003e7.4 The Ideal Elastic Behavior (pg. 68)\u003cbr\u003e7.5 The IdealViscous Behavior (pg. 68)\u003cbr\u003e7.6 RealViscoelastic Behavior (pg. 69)\u003cbr\u003e7.7 Steady Flow Curve (pg. 69)\u003cbr\u003e7.8 AmplitudeDependence (pg. 71)\u003cbr\u003e7.9 Structure Breakdown and BuildUp (pg. 73)\u003cbr\u003e7.10 TimeDependence (pg. 74)\u003cbr\u003e7.11 Frequency Test (pg. 75)\u003cbr\u003e7.12 Temperature Dependence (pg. 76)\u003cbr\u003e7.13 Combined Temperature-Time Test (pg. 77)\u003cbr\u003e\u003cb\u003e8 ANALYSIS OF MEASURING RESULTS AND CORRELATIONS)\u003cbr\u003eWITH OTHER TESTS (pg. 81)\u003cbr\u003e\u003c\/b\u003e8.1 Yield Stress (pg. 81)\u003cbr\u003e8.1.1 Correlations of the Yield Stress with the Primary Skin Feel (pg. 82)\u003cbr\u003e8.1.2 Optimization of the Stress Ramp Test (pg. 83)\u003cbr\u003e8.1.3 Residue Emptying (pg. 85)\u003cbr\u003e8.1.4 Energy Input (pg. 87)\u003cbr\u003e8.1.4.1 Measurement of the Energy Input (pg. 88)\u003cbr\u003e8.1.5 Droplet Sizes and their Distribution (pg. 90)\u003cbr\u003e8.1.6 Pumpability of Cosmetic Emulsions (pg. 92)\u003cbr\u003e8.1.6.1 Estimation of the Maximum Shear Rate (pg. 93)\u003cbr\u003e8.1.6.2 Calculation of the Shear Stress (pg. 94)\u003cbr\u003e8.1.7 Stability Studies Using Yield Stress Measurements (pg. 95)\u003cbr\u003e8.1.8 Results Obtained (pg. 96)\u003cbr\u003e8.2 Steady Flow (pg. 97)\u003cbr\u003e8.2.1 Determination of the Measuring Time (pg. 97)\u003cbr\u003e8.2.2 Temperature Dependence of the Dynamic Viscosity (pg. 98)\u003cbr\u003e8.2.3 Secondary Skin Feel (pg. 99)\u003cbr\u003e8.2.3.1 Investigation of the Secondary Skin Feel (pg. 100)\u003cbr\u003e8.3 OscillatoryMeasurements (pg. 101)\u003cbr\u003e8.3.1 Temperature Dependence of the Moduli (pg. 106)\u003cbr\u003e8.3.2 Temperature Stability (pg. 110)\u003cbr\u003e8.3.3 Rheological Swing Test for Temperature Stability (pg. 112)\u003cbr\u003e8.4 Time Temperature Superposition (TTS) (pg. 117)\u003cbr\u003e8.4.1 Softening Point (pg. 118)\u003cbr\u003e8.4.2 Freezing Point (pg. 118)\u003cbr\u003e8.4.3 Determination of the Master Curve at Constant Frequency (pg.118)\u003cbr\u003e8.4.3.1 Determination of the Activation Energy)\u003cbr\u003evia the Temperature (pg.119)\u003cbr\u003e8.4.3.2 Viscosity (pg. 119)\u003cbr\u003e8.4.3.3 Arrhenius Equation (pg. 120)\u003cbr\u003e8.4.3.4 WLF Equation (pg. 122)\u003cbr\u003e8.4.3.5 First Conclusion (pg. 122)\u003cbr\u003e8.4.3.6 Determination of the Master Curve)\u003cbr\u003ewith Variable Frequency (pg. 123)\u003cbr\u003e8.4.3.7 Final Conclusion (pg. 124)\u003cbr\u003e\u003cb\u003e9 INTERPRETATION (pg. 125)\u003cbr\u003e\u003c\/b\u003e9.1 Relationships for Polymers (pg. 125)\u003cbr\u003e9.2 General Statements for Cosmetic Emulsions (pg. 127)\u003cbr\u003e\u003cb\u003e10 CALIBRATION\/VALIDATION (pg. 131)\u003cbr\u003e\u003c\/b\u003e10.1 Basic Principles of Statistical Analysis (pg. 133)\u003cbr\u003e10.1.1 NormalDistribution (GaussianDistribution) (pg. 133)\u003cbr\u003e10.1.2 MeanValue (pg. 134)\u003cbr\u003e10.1.3 True Value (pg. 135)\u003cbr\u003e10.1.4 StandardDeviation andVariance (pg. 135)\u003cbr\u003e10.1.4.1 StandardDeviation (pg. 136)\u003cbr\u003e10.1.4.2 Coefficient ofVariation (pg. 136)\u003cbr\u003e10.1.5 MeasuredValue, Result, RandomVariable (pg. 136)\u003cbr\u003e10.1.6 Population, Series,MeasuredValue (pg. 137)\u003cbr\u003e10.1.7 Errors andDeviations (pg. 137)\u003cbr\u003e10.1.7.1 Error Types (pg. 137)\u003cbr\u003e10.1.8 Precision (pg. 138)\u003cbr\u003e10.1.9 Accuracy (pg. 139)\u003cbr\u003e10.1.10 Trueness (pg. 139)\u003cbr\u003e10.1.11 Repeatability (pg. 139)\u003cbr\u003e10.1.12 Reproducibility (pg. 140)\u003cbr\u003e10.1.13 Outliers (pg. 140)\u003cbr\u003e10.2 Back to the Laboratory (pg. 140)\u003cbr\u003e10.2.1 Calibration Test forOscillatoryMeasurements (pg. 143)\u003cbr\u003e10.2.2 Temperature (pg. 145)\u003cbr\u003e\u003cb\u003e11 TIPS AND TRICKS (pg. 147)\u003cbr\u003e\u003c\/b\u003e11.1 Materials for Geometric Systems (pg. 147)\u003cbr\u003e11.2 Cone-plate (pg. 147)\u003cbr\u003e11.3 Parallel Plate (pg. 148)\u003cbr\u003e11.4 Cylinder Systems (pg. 148)\u003cbr\u003e11.5 Cleaning Measuring Systems (pg. 148)\u003cbr\u003e11.6 Measurement Artifacts (pg. 149)\u003cbr\u003e11.7 Filling of Cone-plate and Parallel Plate Measuring Systems (pg. 150)\u003cbr\u003e11.8 Interpretation (pg. 152)\u003cbr\u003e\u003cb\u003e12 DEFINITION OF COSMETICS (pg. 155)\u003cbr\u003e\u003c\/b\u003e12.1 Cosmetics vs.Drugs (pg. 155)\u003cbr\u003e12.2 Production of Cosmetic Products (pg. 155)\u003cbr\u003e12.3 Naming, Trademark Law, Patents Law (pg. 156)\u003cbr\u003e12.4 Marketing of Cosmetic Products (pg. 156)\u003cbr\u003e12.5 Advertising Cosmetic Products (pg. 157)\u003cbr\u003e12.6 Comments (pg. 160)\u003cbr\u003e\u003cb\u003e13 EXCURSION IN THEWORLD OF FOOD RHEOLOGY (pg. 161)\u003cbr\u003e\u003c\/b\u003e13.1 AShort History of Food Rheology (pg. 161)\u003cbr\u003e13.1.1 TheOrigins of Food Rheology (pg. 163)\u003cbr\u003e13.2 Honey (pg. 163)\u003cbr\u003e13.3 Sandwich Spreads (pg. 164)\u003cbr\u003e13.4 Cheese (pg. 165)\u003cbr\u003e13.5 Ketchup (pg. 165)\u003cbr\u003e13.6 Yoghurt (pg. 166)\u003cbr\u003e13.7 Marzipan (pg. 166)\u003cbr\u003e13.8 Starch (pg. 168)\u003cbr\u003e13.9 Foams (pg. 169)\u003cbr\u003e13.10 Chocolate (pg. 170)\u003cbr\u003e13.11 Psychorheology (pg. 170)\u003cbr\u003e\u003cb\u003e14 LIST OF REFERENCES (pg. 173)\u003cbr\u003e15 SUBJECT INDEX (pg. 177)\u003cbr\u003e\u003c\/b\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:14:22-04:00","created_at":"2017-06-22T21:14:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","analysis","book","cosmetic emulsions","cosmetics","emulsion","food technology","kosmetische emulsionen","p-properties","polymer","reology","rheologie","rheology","test methods","toiletries","toilettenartikel","viscosimetry"],"price":15000,"price_min":15000,"price_max":15000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413188,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology Essentials of Cosmetic and Food Emulsions","public_title":null,"options":["Default Title"],"price":15000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-25553-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-25553-6.jpg?v=1499954205"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-25553-6.jpg?v=1499954205","options":["Title"],"media":[{"alt":null,"id":358737739869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-25553-6.jpg?v=1499954205"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-25553-6.jpg?v=1499954205","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rüdiger Brummer \u003cbr\u003eISBN 978-3-540-25553-6 \u003cbr\u003e\u003cbr\u003eSpringer Laboratory \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 180, 184 illus., 139 in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks, and lotions, as well as sun-block products. Keeping track of them and their properties are not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by expert inflows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests.\u003c\/p\u003e\n\u003cp\u003eBeginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedures: how to characterize cosmetic and food emulsions with different rheological tests such as temperature, time, stress and strain, both static and dynamic. Also the critical topic of how the results correlate with other important product characteristics, for instance, skin sensation, pumping performance, stability etc. is carefully explored. Many pictures, illustrations, graphs, and tables help readers new to the measurement of cosmetic emulsions in their daily work as well as to the more experienced who seek additional special tips and tricks.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 INTRODUCTION (pg. 1) \u003cbr\u003e2 A TRIP BACK IN TIME (pg. 5)\u003cbr\u003e3 SKIN AND ITS CARE (pg. 15)\u003cbr\u003e\u003cb\u003e4 EMULSIONS – SOME THEORETICAL ASPECTS (pg. 17)\u003cbr\u003e\u003c\/b\u003e4.1 Physicochemical Structure of Cosmetic Products (pg.17)\u003cbr\u003e4.2 Modern Emulsifiers (pg. 19)\u003cbr\u003e4.3 Skin Care and Cleansing (pg. 19)\u003cbr\u003e4.4 Microemulsions (pg. 19)\u003cbr\u003e4.5 Emulsifier-Free Products (pg. 20)\u003cbr\u003e4.6 Production of Emulsions (pg.21)\u003cbr\u003e4.7 Processes occurring during Emulsification (pg. 21)\u003cbr\u003e4.8 Serrated Disc Disperser (pg. 22)\u003cbr\u003e\u003cb\u003e5 BASIC PHYSICAL AND MATHEMATICAL PRINCIPLES (pg. 25)\u003cbr\u003e\u003c\/b\u003e5.1 Important Definitions (pg. 25)\u003cbr\u003e5.2 One-Dimensional Parallel PlatesModel (pg. 28)\u003cbr\u003e5.3 Parallel PlateMeasuring System (pg. 30)\u003cbr\u003e5.4 Cone-PlateMeasuring System (pg. 31)\u003cbr\u003e5.5 Coaxial Cylinder Systems (pg. 32)\u003cbr\u003e5.6 Double GapMeasuring System (pg. 35)\u003cbr\u003e5.7 Flow Through Circular Capillary (pg. 36)\u003cbr\u003e5.8 CorrectionMethods (pg. 38)\u003cbr\u003e5.8.1 PPMeasurement System (pg. 39)\u003cbr\u003e5.8.2 Cylinder Measurement Systems (pg. 39)\u003cbr\u003e5.8.3 Circular Capillaries (pg. 39)\u003cbr\u003e5.9 Deformation and Relaxation 40)\u003cbr\u003e5.10 Thixotropy and Rheopexy (pg. 43)\u003cbr\u003e5.11 Vibration orOscillationMeasurements (pg. 44)\u003cbr\u003e5.11.1 Steady andDynamic Stress (pg. 45)\u003cbr\u003e5.11.2 Ideal Elastic Solids (pg. 46)\u003cbr\u003e5.11.3 IdealViscous Fluids (pg. 46)\u003cbr\u003e5.11.4 Real Solids (pg. 47)\u003cbr\u003e5.11.5 Complex Representation (pg. 48)\u003cbr\u003eXVI)\u003cbr\u003e\u003cb\u003e6 MEASURING INSTRUMENTS (pg. 51)\u003cbr\u003e\u003c\/b\u003e6.1 Modern Rheometer (pg. 52)\u003cbr\u003e6.2 High Shear Rheometer (pg. 54)\u003cbr\u003e6.3 StandardViscometer (pg. 55)\u003cbr\u003e6.4 OftenUsedViscometer (pg. 56)\u003cbr\u003e6.5 Automatic Sampler (pg. 57)\u003cbr\u003e6.6 In-process In-\/On-line Viscosity Measurements (pg. 58)\u003cbr\u003e6.7 Future Prospects (pg. 61)\u003cbr\u003e\u003cb\u003e7 MOST IMPORTANT TEST METHODS (pg. 63)\u003cbr\u003e\u003c\/b\u003e7.1 Stress Ramp Test (pg. 65)\u003cbr\u003e7.2 Newtonian Flow Behavior (pg. 67)\u003cbr\u003e7.3 Creep Test and Creep Recovery (pg. 67)\u003cbr\u003e7.4 The Ideal Elastic Behavior (pg. 68)\u003cbr\u003e7.5 The IdealViscous Behavior (pg. 68)\u003cbr\u003e7.6 RealViscoelastic Behavior (pg. 69)\u003cbr\u003e7.7 Steady Flow Curve (pg. 69)\u003cbr\u003e7.8 AmplitudeDependence (pg. 71)\u003cbr\u003e7.9 Structure Breakdown and BuildUp (pg. 73)\u003cbr\u003e7.10 TimeDependence (pg. 74)\u003cbr\u003e7.11 Frequency Test (pg. 75)\u003cbr\u003e7.12 Temperature Dependence (pg. 76)\u003cbr\u003e7.13 Combined Temperature-Time Test (pg. 77)\u003cbr\u003e\u003cb\u003e8 ANALYSIS OF MEASURING RESULTS AND CORRELATIONS)\u003cbr\u003eWITH OTHER TESTS (pg. 81)\u003cbr\u003e\u003c\/b\u003e8.1 Yield Stress (pg. 81)\u003cbr\u003e8.1.1 Correlations of the Yield Stress with the Primary Skin Feel (pg. 82)\u003cbr\u003e8.1.2 Optimization of the Stress Ramp Test (pg. 83)\u003cbr\u003e8.1.3 Residue Emptying (pg. 85)\u003cbr\u003e8.1.4 Energy Input (pg. 87)\u003cbr\u003e8.1.4.1 Measurement of the Energy Input (pg. 88)\u003cbr\u003e8.1.5 Droplet Sizes and their Distribution (pg. 90)\u003cbr\u003e8.1.6 Pumpability of Cosmetic Emulsions (pg. 92)\u003cbr\u003e8.1.6.1 Estimation of the Maximum Shear Rate (pg. 93)\u003cbr\u003e8.1.6.2 Calculation of the Shear Stress (pg. 94)\u003cbr\u003e8.1.7 Stability Studies Using Yield Stress Measurements (pg. 95)\u003cbr\u003e8.1.8 Results Obtained (pg. 96)\u003cbr\u003e8.2 Steady Flow (pg. 97)\u003cbr\u003e8.2.1 Determination of the Measuring Time (pg. 97)\u003cbr\u003e8.2.2 Temperature Dependence of the Dynamic Viscosity (pg. 98)\u003cbr\u003e8.2.3 Secondary Skin Feel (pg. 99)\u003cbr\u003e8.2.3.1 Investigation of the Secondary Skin Feel (pg. 100)\u003cbr\u003e8.3 OscillatoryMeasurements (pg. 101)\u003cbr\u003e8.3.1 Temperature Dependence of the Moduli (pg. 106)\u003cbr\u003e8.3.2 Temperature Stability (pg. 110)\u003cbr\u003e8.3.3 Rheological Swing Test for Temperature Stability (pg. 112)\u003cbr\u003e8.4 Time Temperature Superposition (TTS) (pg. 117)\u003cbr\u003e8.4.1 Softening Point (pg. 118)\u003cbr\u003e8.4.2 Freezing Point (pg. 118)\u003cbr\u003e8.4.3 Determination of the Master Curve at Constant Frequency (pg.118)\u003cbr\u003e8.4.3.1 Determination of the Activation Energy)\u003cbr\u003evia the Temperature (pg.119)\u003cbr\u003e8.4.3.2 Viscosity (pg. 119)\u003cbr\u003e8.4.3.3 Arrhenius Equation (pg. 120)\u003cbr\u003e8.4.3.4 WLF Equation (pg. 122)\u003cbr\u003e8.4.3.5 First Conclusion (pg. 122)\u003cbr\u003e8.4.3.6 Determination of the Master Curve)\u003cbr\u003ewith Variable Frequency (pg. 123)\u003cbr\u003e8.4.3.7 Final Conclusion (pg. 124)\u003cbr\u003e\u003cb\u003e9 INTERPRETATION (pg. 125)\u003cbr\u003e\u003c\/b\u003e9.1 Relationships for Polymers (pg. 125)\u003cbr\u003e9.2 General Statements for Cosmetic Emulsions (pg. 127)\u003cbr\u003e\u003cb\u003e10 CALIBRATION\/VALIDATION (pg. 131)\u003cbr\u003e\u003c\/b\u003e10.1 Basic Principles of Statistical Analysis (pg. 133)\u003cbr\u003e10.1.1 NormalDistribution (GaussianDistribution) (pg. 133)\u003cbr\u003e10.1.2 MeanValue (pg. 134)\u003cbr\u003e10.1.3 True Value (pg. 135)\u003cbr\u003e10.1.4 StandardDeviation andVariance (pg. 135)\u003cbr\u003e10.1.4.1 StandardDeviation (pg. 136)\u003cbr\u003e10.1.4.2 Coefficient ofVariation (pg. 136)\u003cbr\u003e10.1.5 MeasuredValue, Result, RandomVariable (pg. 136)\u003cbr\u003e10.1.6 Population, Series,MeasuredValue (pg. 137)\u003cbr\u003e10.1.7 Errors andDeviations (pg. 137)\u003cbr\u003e10.1.7.1 Error Types (pg. 137)\u003cbr\u003e10.1.8 Precision (pg. 138)\u003cbr\u003e10.1.9 Accuracy (pg. 139)\u003cbr\u003e10.1.10 Trueness (pg. 139)\u003cbr\u003e10.1.11 Repeatability (pg. 139)\u003cbr\u003e10.1.12 Reproducibility (pg. 140)\u003cbr\u003e10.1.13 Outliers (pg. 140)\u003cbr\u003e10.2 Back to the Laboratory (pg. 140)\u003cbr\u003e10.2.1 Calibration Test forOscillatoryMeasurements (pg. 143)\u003cbr\u003e10.2.2 Temperature (pg. 145)\u003cbr\u003e\u003cb\u003e11 TIPS AND TRICKS (pg. 147)\u003cbr\u003e\u003c\/b\u003e11.1 Materials for Geometric Systems (pg. 147)\u003cbr\u003e11.2 Cone-plate (pg. 147)\u003cbr\u003e11.3 Parallel Plate (pg. 148)\u003cbr\u003e11.4 Cylinder Systems (pg. 148)\u003cbr\u003e11.5 Cleaning Measuring Systems (pg. 148)\u003cbr\u003e11.6 Measurement Artifacts (pg. 149)\u003cbr\u003e11.7 Filling of Cone-plate and Parallel Plate Measuring Systems (pg. 150)\u003cbr\u003e11.8 Interpretation (pg. 152)\u003cbr\u003e\u003cb\u003e12 DEFINITION OF COSMETICS (pg. 155)\u003cbr\u003e\u003c\/b\u003e12.1 Cosmetics vs.Drugs (pg. 155)\u003cbr\u003e12.2 Production of Cosmetic Products (pg. 155)\u003cbr\u003e12.3 Naming, Trademark Law, Patents Law (pg. 156)\u003cbr\u003e12.4 Marketing of Cosmetic Products (pg. 156)\u003cbr\u003e12.5 Advertising Cosmetic Products (pg. 157)\u003cbr\u003e12.6 Comments (pg. 160)\u003cbr\u003e\u003cb\u003e13 EXCURSION IN THEWORLD OF FOOD RHEOLOGY (pg. 161)\u003cbr\u003e\u003c\/b\u003e13.1 AShort History of Food Rheology (pg. 161)\u003cbr\u003e13.1.1 TheOrigins of Food Rheology (pg. 163)\u003cbr\u003e13.2 Honey (pg. 163)\u003cbr\u003e13.3 Sandwich Spreads (pg. 164)\u003cbr\u003e13.4 Cheese (pg. 165)\u003cbr\u003e13.5 Ketchup (pg. 165)\u003cbr\u003e13.6 Yoghurt (pg. 166)\u003cbr\u003e13.7 Marzipan (pg. 166)\u003cbr\u003e13.8 Starch (pg. 168)\u003cbr\u003e13.9 Foams (pg. 169)\u003cbr\u003e13.10 Chocolate (pg. 170)\u003cbr\u003e13.11 Psychorheology (pg. 170)\u003cbr\u003e\u003cb\u003e14 LIST OF REFERENCES (pg. 173)\u003cbr\u003e15 SUBJECT INDEX (pg. 177)\u003cbr\u003e\u003c\/b\u003e\u003c\/p\u003e"}
Functional Additives f...
$180.00
{"id":11242233220,"title":"Functional Additives for the Plastics Industry","handle":"978-1-85957-145-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.W. Dufton \u003cbr\u003eISBN 978-1-85957-145-3 \u003cbr\u003e\u003cbr\u003e200 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report covers all the major functional additives used in plastics and will be of interest to additive and polymer suppliers, converters, end-users and technical libraries. Included are a technical review of the additives and the new materials available; identification of the factors which could affect their use in future, and coverage of the current situation for their supply and estimates of the demand in Europe for such materials. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAdditives:\u003c\/strong\u003e antimicrobials, antioxidants, antistatic agents, blowing agents, curing agents, compatibilizers, coupling agents, heat stabilizers, lubricants, UV stabilizers, plasticizers, fillers, colorants, flame retardants, modifiers. \u003cbr\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction \u003cbr\u003eSummary and conclusions \u003cbr\u003eTechnology\u003c\/p\u003e\n\u003cli\u003eAntimicrobial agents\u003c\/li\u003e\n\u003cli\u003eAntioxidants\u003c\/li\u003e\n\u003cli\u003eAntistatic agents\u003c\/li\u003e\n\u003cli\u003eBlowing agents\u003c\/li\u003e\n\u003cli\u003eCuring agents\u003c\/li\u003e\n\u003cli\u003eCompatibilisers and coupling agents\u003c\/li\u003e\n\u003cli\u003eHeat stabilisers\u003c\/li\u003e\n\u003cli\u003eLubricants\u003c\/li\u003e\n\u003cli\u003eUV stabilisers\u003c\/li\u003e\n\u003cli\u003ePlasticisers\u003c\/li\u003e\n\u003cli\u003eFillers\u003c\/li\u003e\n\u003cli\u003eColourants\u003c\/li\u003e\n\u003cli\u003eFlame retardants\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003eModifiers\u003c\/p\u003e\n\u003cp\u003eProducts and markets(as above) \u003cbr\u003eSupply and demand(as above\u003cstrong\u003e) \u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003ePlastics view\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePolyethylene\u003c\/li\u003e\n\u003cli\u003ePolypropylene\u003c\/li\u003e\n\u003cli\u003ePolystyrene and other styrenics\u003c\/li\u003e\n\u003cli\u003ePVC\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003eOther polymers\u003c\/p\u003e\n\u003cp\u003eEnvironmental issues – legislation and regulations \u003cbr\u003eAppendix\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003eList of additive supplier details\u003c\/li\u003e","published_at":"2017-06-22T21:14:22-04:00","created_at":"2017-06-22T21:14:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","antimicrobials","antioxidants","antistatic agents","blowing agents","book","colorants","compatibilizers","coupling agents","curing agents","fillers","flame retardants","heat stabilizers","lubricants","modifiers","plasticizers","report","UV stabilizers"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413508,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Additives for the Plastics Industry","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-145-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.W. Dufton \u003cbr\u003eISBN 978-1-85957-145-3 \u003cbr\u003e\u003cbr\u003e200 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report covers all the major functional additives used in plastics and will be of interest to additive and polymer suppliers, converters, end-users and technical libraries. Included are a technical review of the additives and the new materials available; identification of the factors which could affect their use in future, and coverage of the current situation for their supply and estimates of the demand in Europe for such materials. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAdditives:\u003c\/strong\u003e antimicrobials, antioxidants, antistatic agents, blowing agents, curing agents, compatibilizers, coupling agents, heat stabilizers, lubricants, UV stabilizers, plasticizers, fillers, colorants, flame retardants, modifiers. \u003cbr\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction \u003cbr\u003eSummary and conclusions \u003cbr\u003eTechnology\u003c\/p\u003e\n\u003cli\u003eAntimicrobial agents\u003c\/li\u003e\n\u003cli\u003eAntioxidants\u003c\/li\u003e\n\u003cli\u003eAntistatic agents\u003c\/li\u003e\n\u003cli\u003eBlowing agents\u003c\/li\u003e\n\u003cli\u003eCuring agents\u003c\/li\u003e\n\u003cli\u003eCompatibilisers and coupling agents\u003c\/li\u003e\n\u003cli\u003eHeat stabilisers\u003c\/li\u003e\n\u003cli\u003eLubricants\u003c\/li\u003e\n\u003cli\u003eUV stabilisers\u003c\/li\u003e\n\u003cli\u003ePlasticisers\u003c\/li\u003e\n\u003cli\u003eFillers\u003c\/li\u003e\n\u003cli\u003eColourants\u003c\/li\u003e\n\u003cli\u003eFlame retardants\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003eModifiers\u003c\/p\u003e\n\u003cp\u003eProducts and markets(as above) \u003cbr\u003eSupply and demand(as above\u003cstrong\u003e) \u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003ePlastics view\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePolyethylene\u003c\/li\u003e\n\u003cli\u003ePolypropylene\u003c\/li\u003e\n\u003cli\u003ePolystyrene and other styrenics\u003c\/li\u003e\n\u003cli\u003ePVC\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003eOther polymers\u003c\/p\u003e\n\u003cp\u003eEnvironmental issues – legislation and regulations \u003cbr\u003eAppendix\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003eList of additive supplier details\u003c\/li\u003e"}
Handbook of Plastic Jo...
$290.00
{"id":11242232708,"title":"Handbook of Plastic Joining 2nd Edition","handle":"978-0-815515814","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: \u003cbr\u003eISBN 978-0-815515814 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e591 Pages, 480 Illustrations, Hardbound\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis practical guide to plastic joining processes is composed of two parts: processes and materials. The processing part is divided into 15 chapters each discussing different joining technique. The joining methods discussed include: heated tool, hot gas, vibration, spin, ultrasonic, induction, radio frequency, microwave, resistance, extrusion, electrofusion, infrared, and laser welding techniques, mechanical fastening and chemical bonding. \u003cbr\u003e\u003cbr\u003eSystematic approach was taken to discuss each method. Typically, the following subjects are discussed for each method: process, processing parameters, materials, weld microstructure, effects of aging on weld strength, equipment, advantages and disadvantages, and applications. This gives concise but thorough evaluation of the potentials of each method and includes required knowledge to use this information for practical purposes. \u003cbr\u003e\u003cbr\u003eNumerous illustrations provide visual assistance in understanding the method and required equipment. Many practical observations are included under application and advantages and disadvantages which assist in method and parameters selection for the successful operation and process. \u003cbr\u003e\u003cbr\u003eThe second part of the book is divided according to the generic names of polymers used in joining techniques. This part includes 25 generic names of polymers, each containing information on one or more polymers or polymer mixtures. The polymers involved are grouped within thermoplastics, thermoplastic elastomers, thermosets, and rubbers. In total, there are 84 chapters devoted to the individual polymers. \u003cbr\u003e\u003cbr\u003eEach chapter on a particular polymer contains information organized according to different joining methods used for this polymer and typical commercial materials which belong to this polymer group. \u003cbr\u003e\u003cbr\u003eInformation given for each material covers available test data, observations from practical use of different methods, for a chosen commercial material, and a general research information on process and product. Suitable surface treatment methods and cleaners are also discussed. If technical drawings may assist users in understanding the details of the processes, they are provided. \u003cbr\u003e\u003cbr\u003eThe book contains, in addition, a glossary of important terms, references, figures, subject indices as well as supplier's directory. \u003cbr\u003e\u003cbr\u003eIt is safe to conclude that the book contains data and know-how information required for successful process application. Both current users and those who consider to enter the field of plastics joining will find this book invaluable in their practice. Considering that most of the plastics must be processed by one of these methods to produce the final goods, this book is needed for all who work in polymer industry, regardless of the focus of their activities. Production of a good final product requires concerted effort of polymer research chemist, plastic designer and compounder, part designer, manufacturing engineers and they all will benefit from frequent consulting this comprehensive resource.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJoining Methods Include:\u003c\/strong\u003e\u003cbr\u003e Adhesive Bonding\u003cbr\u003e Electrofusion Bonding\u003cbr\u003e Friction Welding\u003cbr\u003e Heated Tool Welding\u003cbr\u003e High Frequency Welding\u003cbr\u003e Hot Gas Welding\u003cbr\u003e Induction Welding\u003cbr\u003e Infrared Welding\u003cbr\u003e Laser Welding\u003cbr\u003e Mechanical Fastening\u003cbr\u003eOther Features Include\u003cbr\u003e Joint Process Selection\u003cbr\u003e Applications\u003cbr\u003e Joint Design\u003cbr\u003e Welding Process Optimization\u003cbr\u003e Mistakes to Avoid\u003cbr\u003eGlossary of Terms\u003cbr\u003eSource Documentation\u003cbr\u003eIndices\u003c\/p\u003e","published_at":"2017-06-22T21:14:21-04:00","created_at":"2017-06-22T21:14:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","chemical bonding","electrofusion","extrusion","heated tool","hot gas","induction","infrared","laser welding techniques","mechanical fastening","microwave","p-applications","polymer","radio frequency","resistance","spin","ultrasonic","vibration"],"price":29000,"price_min":29000,"price_max":29000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412996,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plastic Joining 2nd Edition","public_title":null,"options":["Default Title"],"price":29000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-815515814","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-815515814.jpg?v=1499442793"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-815515814.jpg?v=1499442793","options":["Title"],"media":[{"alt":null,"id":355733438557,"position":1,"preview_image":{"aspect_ratio":0.774,"height":499,"width":386,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-815515814.jpg?v=1499442793"},"aspect_ratio":0.774,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-815515814.jpg?v=1499442793","width":386}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: \u003cbr\u003eISBN 978-0-815515814 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e591 Pages, 480 Illustrations, Hardbound\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis practical guide to plastic joining processes is composed of two parts: processes and materials. The processing part is divided into 15 chapters each discussing different joining technique. The joining methods discussed include: heated tool, hot gas, vibration, spin, ultrasonic, induction, radio frequency, microwave, resistance, extrusion, electrofusion, infrared, and laser welding techniques, mechanical fastening and chemical bonding. \u003cbr\u003e\u003cbr\u003eSystematic approach was taken to discuss each method. Typically, the following subjects are discussed for each method: process, processing parameters, materials, weld microstructure, effects of aging on weld strength, equipment, advantages and disadvantages, and applications. This gives concise but thorough evaluation of the potentials of each method and includes required knowledge to use this information for practical purposes. \u003cbr\u003e\u003cbr\u003eNumerous illustrations provide visual assistance in understanding the method and required equipment. Many practical observations are included under application and advantages and disadvantages which assist in method and parameters selection for the successful operation and process. \u003cbr\u003e\u003cbr\u003eThe second part of the book is divided according to the generic names of polymers used in joining techniques. This part includes 25 generic names of polymers, each containing information on one or more polymers or polymer mixtures. The polymers involved are grouped within thermoplastics, thermoplastic elastomers, thermosets, and rubbers. In total, there are 84 chapters devoted to the individual polymers. \u003cbr\u003e\u003cbr\u003eEach chapter on a particular polymer contains information organized according to different joining methods used for this polymer and typical commercial materials which belong to this polymer group. \u003cbr\u003e\u003cbr\u003eInformation given for each material covers available test data, observations from practical use of different methods, for a chosen commercial material, and a general research information on process and product. Suitable surface treatment methods and cleaners are also discussed. If technical drawings may assist users in understanding the details of the processes, they are provided. \u003cbr\u003e\u003cbr\u003eThe book contains, in addition, a glossary of important terms, references, figures, subject indices as well as supplier's directory. \u003cbr\u003e\u003cbr\u003eIt is safe to conclude that the book contains data and know-how information required for successful process application. Both current users and those who consider to enter the field of plastics joining will find this book invaluable in their practice. Considering that most of the plastics must be processed by one of these methods to produce the final goods, this book is needed for all who work in polymer industry, regardless of the focus of their activities. Production of a good final product requires concerted effort of polymer research chemist, plastic designer and compounder, part designer, manufacturing engineers and they all will benefit from frequent consulting this comprehensive resource.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJoining Methods Include:\u003c\/strong\u003e\u003cbr\u003e Adhesive Bonding\u003cbr\u003e Electrofusion Bonding\u003cbr\u003e Friction Welding\u003cbr\u003e Heated Tool Welding\u003cbr\u003e High Frequency Welding\u003cbr\u003e Hot Gas Welding\u003cbr\u003e Induction Welding\u003cbr\u003e Infrared Welding\u003cbr\u003e Laser Welding\u003cbr\u003e Mechanical Fastening\u003cbr\u003eOther Features Include\u003cbr\u003e Joint Process Selection\u003cbr\u003e Applications\u003cbr\u003e Joint Design\u003cbr\u003e Welding Process Optimization\u003cbr\u003e Mistakes to Avoid\u003cbr\u003eGlossary of Terms\u003cbr\u003eSource Documentation\u003cbr\u003eIndices\u003c\/p\u003e"}
Reactive Processing of...
$165.00
{"id":11242232324,"title":"Reactive Processing of Polymers","handle":"1-895198-20-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V P Begishev and A Ya Malkin \u003cbr\u003e10-ISBN 1-895198-20-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 987-1-895198-20-1 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999\u003cbr\u003e\u003c\/span\u003e225 pages, 118 figures, 6 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe main goal of this book is to discuss various technological methods of reactive processing of polymers with a special emphasis on production of large size articles. The book also shows methods of scaling up from laboratory to production stage by a combination of process modeling and application of modern analytical techniques to evaluate the similarity of production on different scales. \u003cbr\u003e\u003cbr\u003eThis approach allows to shorten introduction of new products and design the energy efficient (environmentally-friendly) processes. The combination of physical analysis of process kinetics to elucidate data for evaluation of process similarities on different scales is very useful in setting process parameters on the most energy-efficient level and having a high production output. The proposed method allows to maximize throughput, minimize cost and ensure required quality of the final products. \u003cbr\u003e\u003cbr\u003eThis unique approach not only gives objective results required for precise evaluation of process kinetics but it is applied in the book to real systems used as examples of model application. To fulfill the above goals, the book begins with a discussion of the chemistry of reactive processes which are then discussed from the point of view of their modeling. The modeling considers that reactive processing is impacted by various opposing requirements of flow, polymerization rate, crystallization rate, heat flow, etc. This is the main advantage of the approach when used for process optimization. In the next section, analytical control methods are evaluated for their usefulness in process monitoring. The final (and the largest chapter) discusses details of various technological methods of reactive processing by means of 70 diagrams clearly discussed and thus easy to understand. This interesting monograph is addressed to process engineers and scientists developing new products since both have to optimize their processes to obtain the most economical solution. But it also goes beyond reactive processing since problems of scale-up are common in entire chemical industry and this book shows the way how to control them, introduce new processes without long trials, and design technology which is cost-efficient and environmentally-friendly. All explained in easy to understand language.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003eThe Method of Reactive Processing of Polymers\u003c\/em\u003e (Lactam polymerization, Polymerization of monomers and oligomers with double bonds, Curing of unsaturated polyester resins, Curing of epoxy resins, Curing of phenolic-based compositions, Synthesis of polyurethane compounds, Curing of liquid rubbers and oligomers with functional groups, Curing of polysulphide oligomers, Curing of silicon-organic oligomers, Processing of oligomer-monomer mixtures, Processing of filled compositions) Modelling Reactive Processing of Polymers (Objectives of mathematical modeling, Kinetics of polymer synthesis, Kinetic models of lactam polymerization, General kinetic equation, Isothermal polymerization of -caprolactam, Polymerization of -dodecalactam, Synthesis of polybutenamide, Kinetic models of polyurethane synthesis, Kinetic models of curing of epoxy-based compounds, Kinetic models of curing of unsaturated polyesters, Non-isothermal polymerization in a batch-process reactor, Non-isothermal crystallization, Superimposed processes of polymerization and crystallization, Inverse kinetic problems, Changes in rheological properties of a reactive medium, Changes in rheological properties in the process of synthesis, Influence of shear rate on induction period in oligomer curing, Flow of reactive liquids, Residual stresses an strains, Physics of residual stresses in uniform materials, Modeling residual stresses in reactive processing, Residual stresses in amorphous materials, Residual stresses in crystallizable materials)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003eResearch and Control Methods for Reactive Molding Processes\u003c\/i\u003e (Control of relaxation properties in oligomer curing, Viscometric studies, Calorimetric methods, Thermal probe method)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003ePrinciples of Technology of Reactive Molding Technology \u003c\/i\u003e(Preparing components (Preliminary operations), Engineering for open mold processes, General layout of a production unit, Component metering, Component mixing, Polymerization or solidification stage, Modeling processes in a mold during solidification, Casting into rotary molds, Technological basis, Hydrodynamic phenomena during molding in a rotary mold, Polymerization in a tube reactor, Flow without transition to the solid state, The role of radial distributions, \"Hydrodynamic\" molecular weight distribution, Polymer coating by spraying, Devices for spraying liquids, Reactive extrusion of profile parts, Frontal processes, Principles, Front development in superimposed processes, Reactive injection molding, General requirements for a composition used in the RIM-process, Plant layout for the process, Processing of reinforced composites, Modeling mold filling, Processability diagrams) \u003c\/p\u003e\n\u003cp\u003e\u003cem\u003eThe Method of Reactive Processing of Polymers\u003c\/em\u003e (Lactam polymerization, Polymerization of monomers and oligomers with double bonds, Curing of unsaturated polyester resins, Curing of epoxy resins, Curing of phenolic-based compositions, Synthesis of polyurethane compounds, Curing of liquid rubbers and oligomers with functional groups, Curing of polysulphide oligomers, Curing of silicon-organic oligomers, Processing of oligomer-monomer mixtures, Processing of filled compositions) Modelling Reactive Processing of Polymers (Objectives of mathematical modeling, Kinetics of polymer synthesis, Kinetic models of lactam polymerization, General kinetic equation, Isothermal polymerization of -caprolactam, Polymerization of -dodecalactam, Synthesis of polybutenamide, Kinetic models of polyurethane synthesis, Kinetic models of curing of epoxy-based compounds, Kinetic models of curing of unsaturated polyesters, Non-isothermal polymerization in a batch-process reactor, Non-isothermal crystallization, Superimposed processes of polymerization and crystallization, Inverse kinetic problems, Changes in rheological properties of a reactive medium, Changes in rheological properties in the process of synthesis, Influence of shear rate on induction period in oligomer curing, Flow of reactive liquids, Residual stresses an strains, Physics of residual stresses in uniform materials, Modeling residual stresses in reactive processing, Residual stresses in amorphous materials, Residual stresses in crystallizable materials)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003eResearch and Control Methods for Reactive Molding Processes\u003c\/i\u003e (Control of relaxation properties in oligomer curing, Viscometric studies, Calorimetric methods, Thermal probe method)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003ePrinciples of Technology of Reactive Molding Technology \u003c\/i\u003e(Preparing components (Preliminary operations), Engineering for open mold processes, General layout of a production unit, Component metering, Component mixing, Polymerization or solidification stage, Modeling processes in a mold during solidification, Casting into rotary molds, Technological basis, Hydrodynamic phenomena during molding in a rotary mold, Polymerization in a tube reactor, Flow without transition to the solid state, The role of radial distributions, \"Hydrodynamic\" molecular weight distribution, Polymer coating by spraying, Devices for spraying liquids, Reactive extrusion of profile parts, Frontal processes, Principles, Front development in superimposed processes, Reactive injection molding, General requirements for a composition used in the RIM-process, Plant layout for the process, Processing of reinforced composites, Modeling mold filling, Processability diagrams)\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:20-04:00","created_at":"2017-06-22T21:14:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","book","control methods","curing","flow","oligomer","oligomers","p-formulation","phenolic","polymer","polymerization","polymers","processes","processing","production","reactive molding","rheological properties","strains"," epoxy resins"," isothermal"," kinetics"," lactam"," polybutenamide"," polyester resins"," polysulphide"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412612,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Reactive Processing of Polymers","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V P Begishev and A Ya Malkin \u003cbr\u003e10-ISBN 1-895198-20-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 987-1-895198-20-1 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999\u003cbr\u003e\u003c\/span\u003e225 pages, 118 figures, 6 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe main goal of this book is to discuss various technological methods of reactive processing of polymers with a special emphasis on production of large size articles. The book also shows methods of scaling up from laboratory to production stage by a combination of process modeling and application of modern analytical techniques to evaluate the similarity of production on different scales. \u003cbr\u003e\u003cbr\u003eThis approach allows to shorten introduction of new products and design the energy efficient (environmentally-friendly) processes. The combination of physical analysis of process kinetics to elucidate data for evaluation of process similarities on different scales is very useful in setting process parameters on the most energy-efficient level and having a high production output. The proposed method allows to maximize throughput, minimize cost and ensure required quality of the final products. \u003cbr\u003e\u003cbr\u003eThis unique approach not only gives objective results required for precise evaluation of process kinetics but it is applied in the book to real systems used as examples of model application. To fulfill the above goals, the book begins with a discussion of the chemistry of reactive processes which are then discussed from the point of view of their modeling. The modeling considers that reactive processing is impacted by various opposing requirements of flow, polymerization rate, crystallization rate, heat flow, etc. This is the main advantage of the approach when used for process optimization. In the next section, analytical control methods are evaluated for their usefulness in process monitoring. The final (and the largest chapter) discusses details of various technological methods of reactive processing by means of 70 diagrams clearly discussed and thus easy to understand. This interesting monograph is addressed to process engineers and scientists developing new products since both have to optimize their processes to obtain the most economical solution. But it also goes beyond reactive processing since problems of scale-up are common in entire chemical industry and this book shows the way how to control them, introduce new processes without long trials, and design technology which is cost-efficient and environmentally-friendly. All explained in easy to understand language.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003eThe Method of Reactive Processing of Polymers\u003c\/em\u003e (Lactam polymerization, Polymerization of monomers and oligomers with double bonds, Curing of unsaturated polyester resins, Curing of epoxy resins, Curing of phenolic-based compositions, Synthesis of polyurethane compounds, Curing of liquid rubbers and oligomers with functional groups, Curing of polysulphide oligomers, Curing of silicon-organic oligomers, Processing of oligomer-monomer mixtures, Processing of filled compositions) Modelling Reactive Processing of Polymers (Objectives of mathematical modeling, Kinetics of polymer synthesis, Kinetic models of lactam polymerization, General kinetic equation, Isothermal polymerization of -caprolactam, Polymerization of -dodecalactam, Synthesis of polybutenamide, Kinetic models of polyurethane synthesis, Kinetic models of curing of epoxy-based compounds, Kinetic models of curing of unsaturated polyesters, Non-isothermal polymerization in a batch-process reactor, Non-isothermal crystallization, Superimposed processes of polymerization and crystallization, Inverse kinetic problems, Changes in rheological properties of a reactive medium, Changes in rheological properties in the process of synthesis, Influence of shear rate on induction period in oligomer curing, Flow of reactive liquids, Residual stresses an strains, Physics of residual stresses in uniform materials, Modeling residual stresses in reactive processing, Residual stresses in amorphous materials, Residual stresses in crystallizable materials)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003eResearch and Control Methods for Reactive Molding Processes\u003c\/i\u003e (Control of relaxation properties in oligomer curing, Viscometric studies, Calorimetric methods, Thermal probe method)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003ePrinciples of Technology of Reactive Molding Technology \u003c\/i\u003e(Preparing components (Preliminary operations), Engineering for open mold processes, General layout of a production unit, Component metering, Component mixing, Polymerization or solidification stage, Modeling processes in a mold during solidification, Casting into rotary molds, Technological basis, Hydrodynamic phenomena during molding in a rotary mold, Polymerization in a tube reactor, Flow without transition to the solid state, The role of radial distributions, \"Hydrodynamic\" molecular weight distribution, Polymer coating by spraying, Devices for spraying liquids, Reactive extrusion of profile parts, Frontal processes, Principles, Front development in superimposed processes, Reactive injection molding, General requirements for a composition used in the RIM-process, Plant layout for the process, Processing of reinforced composites, Modeling mold filling, Processability diagrams) \u003c\/p\u003e\n\u003cp\u003e\u003cem\u003eThe Method of Reactive Processing of Polymers\u003c\/em\u003e (Lactam polymerization, Polymerization of monomers and oligomers with double bonds, Curing of unsaturated polyester resins, Curing of epoxy resins, Curing of phenolic-based compositions, Synthesis of polyurethane compounds, Curing of liquid rubbers and oligomers with functional groups, Curing of polysulphide oligomers, Curing of silicon-organic oligomers, Processing of oligomer-monomer mixtures, Processing of filled compositions) Modelling Reactive Processing of Polymers (Objectives of mathematical modeling, Kinetics of polymer synthesis, Kinetic models of lactam polymerization, General kinetic equation, Isothermal polymerization of -caprolactam, Polymerization of -dodecalactam, Synthesis of polybutenamide, Kinetic models of polyurethane synthesis, Kinetic models of curing of epoxy-based compounds, Kinetic models of curing of unsaturated polyesters, Non-isothermal polymerization in a batch-process reactor, Non-isothermal crystallization, Superimposed processes of polymerization and crystallization, Inverse kinetic problems, Changes in rheological properties of a reactive medium, Changes in rheological properties in the process of synthesis, Influence of shear rate on induction period in oligomer curing, Flow of reactive liquids, Residual stresses an strains, Physics of residual stresses in uniform materials, Modeling residual stresses in reactive processing, Residual stresses in amorphous materials, Residual stresses in crystallizable materials)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003eResearch and Control Methods for Reactive Molding Processes\u003c\/i\u003e (Control of relaxation properties in oligomer curing, Viscometric studies, Calorimetric methods, Thermal probe method)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003ePrinciples of Technology of Reactive Molding Technology \u003c\/i\u003e(Preparing components (Preliminary operations), Engineering for open mold processes, General layout of a production unit, Component metering, Component mixing, Polymerization or solidification stage, Modeling processes in a mold during solidification, Casting into rotary molds, Technological basis, Hydrodynamic phenomena during molding in a rotary mold, Polymerization in a tube reactor, Flow without transition to the solid state, The role of radial distributions, \"Hydrodynamic\" molecular weight distribution, Polymer coating by spraying, Devices for spraying liquids, Reactive extrusion of profile parts, Frontal processes, Principles, Front development in superimposed processes, Reactive injection molding, General requirements for a composition used in the RIM-process, Plant layout for the process, Processing of reinforced composites, Modeling mold filling, Processability diagrams)\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e"}
TPE 2003
$190.00
{"id":11242232196,"title":"TPE 2003","handle":"978-1-85957-368-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-85957-368-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003e188 pages, 21 papers pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe use of thermoplastic elastomers is developing rapidly into a major success story, both as a replacement for vulcanised rubber and also for totally new applications. Several important factors are driving developments forward such as legislation on recycling materials in cars and electrical\/electronic goods, and continued growth of soft-touch applications.\u003c\/p\u003e\n\u003cp\u003eTo meet these demands there are many technical developments in hand by TPE manufacturers and compounders such as greater thermal, oxidative and weathering stability; softer grades of premium TPEs; improved properties such as resilience, oil resistance, flammability, smoke emission, fogging, adhesion and transparency; foamable grades and improved co-processibility.New types of dynamically vulcanised TPEs with improved properties, melt mixing as a low-cost route to new types of TPE, and metallocene catalysed polyolefin materials are examples of developments pushing the boundaries even further.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cb\u003eSESSION 1: INTRODUCTION AND MARKET TRENDS\u003c\/b\u003e\u003c\/p\u003e\n\u003cli\u003ePaper 1: Recent Trends and Outlook for Elastomers \u003cbr\u003e\u003ci\u003eDock No, Darren Cooper \u0026amp; Prachaya Jumpasut, International Rubber Study Group, UK\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 2: TPE Value and Growth Opportunities \u003cbr\u003e\u003ci\u003eRobert Eller, Robert Eller Associates Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 3: A New Application of TPV in Korea; Roofing and Geomembrane \u003cbr\u003e\u003ci\u003eMinjae Hwang\u003csup\u003e1\u003c\/sup\u003e, J S Kim\u003csup\u003e1\u003c\/sup\u003e, M K Yang\u003csup\u003e1\u003c\/sup\u003e, J S Choi\u003csup\u003e2\u003c\/sup\u003e \u0026amp; T S Jung\u003csup\u003e3\u003c\/sup\u003e, Honam Petrochemical Corp, Korea\u003csup\u003e1\u003c\/sup\u003e, Sung Jin Construction Co\u003csup\u003e2\u003c\/sup\u003e \u0026amp; Daeheung Industrial Co\u003csup\u003e3\u003c\/sup\u003e\u003c\/i\u003e\n\u003cp\u003e\u003cb\u003eSESSION 2: MATERIAL SELECTION\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 4: New TPEs for Durable Soft Touch Applications \u003cbr\u003e \u003ci\u003eJeffrey McCoy \u0026amp; Jane Maselli, A Schulman Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 5: Performance, Processing and Design Advantages of Santoprene® Thermoplastic Vulcanizate over Thermoset Rubber \u003cbr\u003e \u003ci\u003eBrendan Chase, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 3: NEW DEVELOPMENTS IN THERMOPLASTIC VULCANISATES\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 6: Nordel® MG - “The Game Changer” - ... For TPV \u003cbr\u003e \u003ci\u003eGary Williams, Du Pont Dow Elastomers, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 7: Short Dynamic Vulcanisation: A New and Simpler Way to Produce TPV \u003cbr\u003e\u003ci\u003eDino Bacci, Roberta Marchini \u0026amp; Maria Teresa Scrivani, Basell Polyolefins, Italy\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 8: Sarlink 6000: A new TPV Technology bringing Unique Features to the Market \u003cbr\u003e\u003ci\u003eAlberto Dozeman \u0026amp; Gart Kostemans, DSM Elastomers, The Netherlands\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 9: A Polyester Based TPV with Excellent Oil Resistance at High Temperatures \u003cbr\u003e\u003ci\u003eChrister Bergstrom, Optatech Corporation, Finland\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 10: Zeotherm: A New 150°C Capable Heat and Oil Resistant Thermoplastic Vulcanizate (TPV) \u003cbr\u003e\u003ci\u003eBrian Cail \u0026amp; Robert DeMarco, Zeon Chemicals LP, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 11: A New TPV with Excellent Recovery Performance \u003cbr\u003e \u003ci\u003eStuart Cook, TARRC, UK\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 4: AUTOMOTIVE APPLICATIONS\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 12: Intelligent Material Choice for Automotive Applications \u003cbr\u003e \u003ci\u003eMarc Setzen, PolyOne, Belgium\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 13: TPSiV™ Thermoplastic Elastomers Improve Automotive Hose Assembly Performance While Reducing Overall Costs \u003cbr\u003e\u003ci\u003eJonathan Bryant, Daniel Miles \u0026amp; Alain Bayet, Multibase (A Dow Corning Company), France\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 14: Slip Coat Materials Co-Extruded on Sarlink TPVs for Automotive Weatherstrips \u003cbr\u003e\u003ci\u003eJan Tom Fernhout \u0026amp; Ed Deckers, DSM Thermoplastic Elastomers, The Netherlands\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 15: Microcellular Foam TPV Automotive Weather Seals \u003cbr\u003e\u003ci\u003eKent Blizard, Trexel Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 16: Polyolefin TPV for Automotive Interior Applications \u003cbr\u003e \u003ci\u003eSynco de Vogel\u003csup\u003e1\u003c\/sup\u003e, Charles G Reid\u003csup\u003e2\u003c\/sup\u003e, Kevin G Cai\u003csup\u003e2\u003c\/sup\u003e, Hoan Tran\u003csup\u003e2\u003c\/sup\u003e \u0026amp; Norbert Vennemann\u003csup\u003e3\u003c\/sup\u003e, Solvay Engineered Polymers, Germany\u003csup\u003e1\u003c\/sup\u003e \u0026amp; USA\u003csup\u003e2\u003c\/sup\u003e \u0026amp; University of Applied Sciences, Germany\u003csup\u003e3\u003c\/sup\u003e\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 5: ADVANCES IN STRYENIC BLOCK COPOLYMERS\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 17: Styrene-Butadiene Random Copolymer for Enhancing Performance of Styrenic Block Copolymer Containing Thermoplastics Elastomers \u003cbr\u003e \u003ci\u003eManoj Ajbani, Thierry Materne, Chris Kiehl \u0026amp; Andy Takacs, The Goodyear Tire and Rubber Co, Chemical Division, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 18: Recent Developments of Kraton G Polymers for TPE-S Compounds \u003cbr\u003e\u003ci\u003eHenk de Groot, Kraton Polymers, Belgium\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 19: SEBS Nanocomposites \u003cbr\u003e\u003ci\u003eTony McNally, Queen's University Belfast, UK\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 20: Development of High Butylene SEBS as Compatibilizer for PP\/PS Blends \u003cbr\u003e\u003ci\u003eYuji Hongu, Kazuhisa Kodama, Nobuyuki Toyoda, Iwakazu Hattori, Masashi Shimakage\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 21: Recent Styrenic Block Co-Polymer Development - Differentiated SEPTON™ and HYBRAR™ Grades \u003cbr\u003e \u003ci\u003eKatsunori Takamoto, Kururay Europe GmbH, Germany\u003c\/i\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:14:19-04:00","created_at":"2017-06-22T21:14:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","adhesion","automotive","blends","book","eubber","flammability","fogging","market","nanocomposites","oil resistance","p-chemistry","polymer","smoke emission","stability","styrenic","weathering"," elastomers"," processibility"," properties"," resilience"," transparency"," vulcanisation"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2003","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-368-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-368-6_4eae7768-a5e4-4def-acd1-31997f4816ed.jpg?v=1499650813"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-368-6_4eae7768-a5e4-4def-acd1-31997f4816ed.jpg?v=1499650813","options":["Title"],"media":[{"alt":null,"id":358830964829,"position":1,"preview_image":{"aspect_ratio":0.712,"height":500,"width":356,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-368-6_4eae7768-a5e4-4def-acd1-31997f4816ed.jpg?v=1499650813"},"aspect_ratio":0.712,"height":500,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-368-6_4eae7768-a5e4-4def-acd1-31997f4816ed.jpg?v=1499650813","width":356}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-85957-368-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003e188 pages, 21 papers pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe use of thermoplastic elastomers is developing rapidly into a major success story, both as a replacement for vulcanised rubber and also for totally new applications. Several important factors are driving developments forward such as legislation on recycling materials in cars and electrical\/electronic goods, and continued growth of soft-touch applications.\u003c\/p\u003e\n\u003cp\u003eTo meet these demands there are many technical developments in hand by TPE manufacturers and compounders such as greater thermal, oxidative and weathering stability; softer grades of premium TPEs; improved properties such as resilience, oil resistance, flammability, smoke emission, fogging, adhesion and transparency; foamable grades and improved co-processibility.New types of dynamically vulcanised TPEs with improved properties, melt mixing as a low-cost route to new types of TPE, and metallocene catalysed polyolefin materials are examples of developments pushing the boundaries even further.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cb\u003eSESSION 1: INTRODUCTION AND MARKET TRENDS\u003c\/b\u003e\u003c\/p\u003e\n\u003cli\u003ePaper 1: Recent Trends and Outlook for Elastomers \u003cbr\u003e\u003ci\u003eDock No, Darren Cooper \u0026amp; Prachaya Jumpasut, International Rubber Study Group, UK\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 2: TPE Value and Growth Opportunities \u003cbr\u003e\u003ci\u003eRobert Eller, Robert Eller Associates Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 3: A New Application of TPV in Korea; Roofing and Geomembrane \u003cbr\u003e\u003ci\u003eMinjae Hwang\u003csup\u003e1\u003c\/sup\u003e, J S Kim\u003csup\u003e1\u003c\/sup\u003e, M K Yang\u003csup\u003e1\u003c\/sup\u003e, J S Choi\u003csup\u003e2\u003c\/sup\u003e \u0026amp; T S Jung\u003csup\u003e3\u003c\/sup\u003e, Honam Petrochemical Corp, Korea\u003csup\u003e1\u003c\/sup\u003e, Sung Jin Construction Co\u003csup\u003e2\u003c\/sup\u003e \u0026amp; Daeheung Industrial Co\u003csup\u003e3\u003c\/sup\u003e\u003c\/i\u003e\n\u003cp\u003e\u003cb\u003eSESSION 2: MATERIAL SELECTION\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 4: New TPEs for Durable Soft Touch Applications \u003cbr\u003e \u003ci\u003eJeffrey McCoy \u0026amp; Jane Maselli, A Schulman Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 5: Performance, Processing and Design Advantages of Santoprene® Thermoplastic Vulcanizate over Thermoset Rubber \u003cbr\u003e \u003ci\u003eBrendan Chase, Advanced Elastomer Systems NV\/SA, Belgium\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 3: NEW DEVELOPMENTS IN THERMOPLASTIC VULCANISATES\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 6: Nordel® MG - “The Game Changer” - ... For TPV \u003cbr\u003e \u003ci\u003eGary Williams, Du Pont Dow Elastomers, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 7: Short Dynamic Vulcanisation: A New and Simpler Way to Produce TPV \u003cbr\u003e\u003ci\u003eDino Bacci, Roberta Marchini \u0026amp; Maria Teresa Scrivani, Basell Polyolefins, Italy\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 8: Sarlink 6000: A new TPV Technology bringing Unique Features to the Market \u003cbr\u003e\u003ci\u003eAlberto Dozeman \u0026amp; Gart Kostemans, DSM Elastomers, The Netherlands\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 9: A Polyester Based TPV with Excellent Oil Resistance at High Temperatures \u003cbr\u003e\u003ci\u003eChrister Bergstrom, Optatech Corporation, Finland\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 10: Zeotherm: A New 150°C Capable Heat and Oil Resistant Thermoplastic Vulcanizate (TPV) \u003cbr\u003e\u003ci\u003eBrian Cail \u0026amp; Robert DeMarco, Zeon Chemicals LP, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 11: A New TPV with Excellent Recovery Performance \u003cbr\u003e \u003ci\u003eStuart Cook, TARRC, UK\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 4: AUTOMOTIVE APPLICATIONS\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 12: Intelligent Material Choice for Automotive Applications \u003cbr\u003e \u003ci\u003eMarc Setzen, PolyOne, Belgium\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 13: TPSiV™ Thermoplastic Elastomers Improve Automotive Hose Assembly Performance While Reducing Overall Costs \u003cbr\u003e\u003ci\u003eJonathan Bryant, Daniel Miles \u0026amp; Alain Bayet, Multibase (A Dow Corning Company), France\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 14: Slip Coat Materials Co-Extruded on Sarlink TPVs for Automotive Weatherstrips \u003cbr\u003e\u003ci\u003eJan Tom Fernhout \u0026amp; Ed Deckers, DSM Thermoplastic Elastomers, The Netherlands\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 15: Microcellular Foam TPV Automotive Weather Seals \u003cbr\u003e\u003ci\u003eKent Blizard, Trexel Inc, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cp\u003ePaper 16: Polyolefin TPV for Automotive Interior Applications \u003cbr\u003e \u003ci\u003eSynco de Vogel\u003csup\u003e1\u003c\/sup\u003e, Charles G Reid\u003csup\u003e2\u003c\/sup\u003e, Kevin G Cai\u003csup\u003e2\u003c\/sup\u003e, Hoan Tran\u003csup\u003e2\u003c\/sup\u003e \u0026amp; Norbert Vennemann\u003csup\u003e3\u003c\/sup\u003e, Solvay Engineered Polymers, Germany\u003csup\u003e1\u003c\/sup\u003e \u0026amp; USA\u003csup\u003e2\u003c\/sup\u003e \u0026amp; University of Applied Sciences, Germany\u003csup\u003e3\u003c\/sup\u003e\u003c\/i\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eSESSION 5: ADVANCES IN STRYENIC BLOCK COPOLYMERS\u003c\/b\u003e\u003c\/p\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 17: Styrene-Butadiene Random Copolymer for Enhancing Performance of Styrenic Block Copolymer Containing Thermoplastics Elastomers \u003cbr\u003e \u003ci\u003eManoj Ajbani, Thierry Materne, Chris Kiehl \u0026amp; Andy Takacs, The Goodyear Tire and Rubber Co, Chemical Division, USA\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 18: Recent Developments of Kraton G Polymers for TPE-S Compounds \u003cbr\u003e\u003ci\u003eHenk de Groot, Kraton Polymers, Belgium\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 19: SEBS Nanocomposites \u003cbr\u003e\u003ci\u003eTony McNally, Queen's University Belfast, UK\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 20: Development of High Butylene SEBS as Compatibilizer for PP\/PS Blends \u003cbr\u003e\u003ci\u003eYuji Hongu, Kazuhisa Kodama, Nobuyuki Toyoda, Iwakazu Hattori, Masashi Shimakage\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003ePaper 21: Recent Styrenic Block Co-Polymer Development - Differentiated SEPTON™ and HYBRAR™ Grades \u003cbr\u003e \u003ci\u003eKatsunori Takamoto, Kururay Europe GmbH, Germany\u003c\/i\u003e\n\u003c\/li\u003e"}
Physical Testing of Ru...
$229.00
{"id":11242231940,"title":"Physical Testing of Rubber","handle":"978-0-387-28286-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rogers Brown \u003cbr\u003eISBN 978-0-387-28286-2 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003e4th Ed, pages 387, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber is important in many engineering applications because of its unique properties. These properties must be measured with appropriate test methods developed specifically for this class of materials. This book provides, in one volume, comprehensive coverage of the procedures for measuring the whole range of the physical properties of rubber.\n\u003cp\u003eThis new edition presents an up-to-date introduction to the standard methods used for testing, quality control analysis, product evaluation, and production of design data for rubber and elastomers. Factors to be incorporated in the revision include the effects of newer instrumentation, the cutting back of laboratory staff, increased demands for formal accreditation and calibration, the trend to product testing, the overlap of thermoplastic elastomers with plastics and increased need for design data.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e- General Considerations.\u003c\/p\u003e\n\u003cp\u003e- Standards and Standards Organisations.\u003c\/p\u003e\n\u003cp\u003e-Preparation of Test Pieces.\u003c\/p\u003e\n\u003cp\u003e- Conditioning and Test Atmospheres.\u003c\/p\u003e\n\u003cp\u003e- Tests on Unvulcanized Rubbers.\u003c\/p\u003e\n\u003cp\u003e- Mass, Density, and Dimensions.\u003c\/p\u003e\n\u003cp\u003e- Short-term Stress-Strain Properties.\u003c\/p\u003e\n\u003cp\u003e- Dynamic Stress and Strain Properties.\u003c\/p\u003e\n\u003cp\u003e- Creep, Relaxation, and Set.\u003c\/p\u003e\n\u003cp\u003e- Friction and Wear.- Fatigue.\u003c\/p\u003e\n\u003cp\u003e- Electrical Tests.\u003c\/p\u003e\n\u003cp\u003e- Thermal Properties.\u003c\/p\u003e\n\u003cp\u003e- Effect of Temperature.\u003c\/p\u003e\n\u003cp\u003e- Environmental Resistance.\u003c\/p\u003e\n\u003cp\u003e- Permeability.\u003c\/p\u003e\n\u003cp\u003e- Adhesion, Corrosion, and Staining.\u003c\/p\u003e\n\u003cp\u003e- Index.\u003c\/p\u003e","published_at":"2017-06-22T21:14:19-04:00","created_at":"2017-06-22T21:14:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","adhesion","book","conditioning","corrosion","creep","density","dimensions","dynamic","electrical","environmental","fatigue","friction","general","mass","permeability","relaxation","resistance","rubber","staining","standards","strain","stress","temperature","test atmospheres","thermal","unvulcanized rubbers","wear"],"price":22900,"price_min":22900,"price_max":22900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412228,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Physical Testing of Rubber","public_title":null,"options":["Default Title"],"price":22900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-387-28286-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-28286-2.jpg?v=1499952165"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-28286-2.jpg?v=1499952165","options":["Title"],"media":[{"alt":null,"id":358531367005,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-28286-2.jpg?v=1499952165"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-387-28286-2.jpg?v=1499952165","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rogers Brown \u003cbr\u003eISBN 978-0-387-28286-2 \u003cbr\u003e\u003cbr\u003eSpringer \u003cbr\u003e\u003cbr\u003e4th Ed, pages 387, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber is important in many engineering applications because of its unique properties. These properties must be measured with appropriate test methods developed specifically for this class of materials. This book provides, in one volume, comprehensive coverage of the procedures for measuring the whole range of the physical properties of rubber.\n\u003cp\u003eThis new edition presents an up-to-date introduction to the standard methods used for testing, quality control analysis, product evaluation, and production of design data for rubber and elastomers. Factors to be incorporated in the revision include the effects of newer instrumentation, the cutting back of laboratory staff, increased demands for formal accreditation and calibration, the trend to product testing, the overlap of thermoplastic elastomers with plastics and increased need for design data.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e- General Considerations.\u003c\/p\u003e\n\u003cp\u003e- Standards and Standards Organisations.\u003c\/p\u003e\n\u003cp\u003e-Preparation of Test Pieces.\u003c\/p\u003e\n\u003cp\u003e- Conditioning and Test Atmospheres.\u003c\/p\u003e\n\u003cp\u003e- Tests on Unvulcanized Rubbers.\u003c\/p\u003e\n\u003cp\u003e- Mass, Density, and Dimensions.\u003c\/p\u003e\n\u003cp\u003e- Short-term Stress-Strain Properties.\u003c\/p\u003e\n\u003cp\u003e- Dynamic Stress and Strain Properties.\u003c\/p\u003e\n\u003cp\u003e- Creep, Relaxation, and Set.\u003c\/p\u003e\n\u003cp\u003e- Friction and Wear.- Fatigue.\u003c\/p\u003e\n\u003cp\u003e- Electrical Tests.\u003c\/p\u003e\n\u003cp\u003e- Thermal Properties.\u003c\/p\u003e\n\u003cp\u003e- Effect of Temperature.\u003c\/p\u003e\n\u003cp\u003e- Environmental Resistance.\u003c\/p\u003e\n\u003cp\u003e- Permeability.\u003c\/p\u003e\n\u003cp\u003e- Adhesion, Corrosion, and Staining.\u003c\/p\u003e\n\u003cp\u003e- Index.\u003c\/p\u003e"}
Imaging and Image Anal...
$215.00
{"id":11242232132,"title":"Imaging and Image Analysis Applications for Plastics","handle":"1-884207-81-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Behnam Pourdeyhimi \u003cbr\u003eISBN 1-884207-81-2 \u003cbr\u003e\u003cbr\u003e308 pages, 224 figures, 36 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is of interest for all functions in research, development, new product implementation, production, product engineering in industries which process polymers and plastics. Those who already made use of image analysis in their practice will find useful hints on how to improve and better utilize their methods. Others who did not use these methods so far will find that these inexpensive techniques can provide answers to many important technical problems which are not resolved because just a few years ago these methods were not available or too expensive to apply. Only several years ago, these observations were either not quantified at all or various graphical standards were used for comparison to develop a point scale to assign observed images. This was not precise and confusing. The advent of high-speed digital cameras working with image processing software is changing this situation. The list of some topics included in the book shows the wealth of opportunities. This book presents results of studies in which imaging and image analyses were used to quantify many important determinants of production technology and product performance such as flow and mixing behavior, optimization of equipment configuration and material homogenization, morphology of plastics, size of polymers domains in blends, compatibilization methods and conditions, effects of grafting, reasons for surface roughness, scratch and mar resistance, fiber orientation, improved barrier properties, improved magnetic permeability, improved mechanical properties, distribution of voids in laminates, determination of cell sizes in cellular plastics, formation of crazes during fatigue, fiber radius determination during spinning, blister formation and adhesion, effects of glass fiber orientation on weld strength, analysis of welding process, dispersion of agglomerates formed by additives and the effect of mixing and transport conditions, formation of gels and impurities, particles structure and distribution, rate of crystallization, and many others. Having numerical data it is possible to optimize the processes to increase output, decrease a reject rate, save materials, and improve product properties.\u003cbr\u003eConsidering that every product must appeal to a customer and perform under conditions of its use, these studies are the most important for optimizing numerous conflicting properties. For example in one research, product performance is combined with high output rate and requirement of low weight. The potential applications of image analysis allow following these interrelations to optimize a product which is why research and production are eager to apply this emerging technology. The number of research reports on this subject is systematically growing. The methods of observation, such as various forms of microscopy, tracers, and lasers, are simple and in most cases available in most facilities.\u003cbr\u003e\u003cbr\u003eThe book contains references to various applications already in use, methods of image capture, data processing, hardware and software required. The examples of processes discussed include: extrusion, extruding reactors, injection molding, impregnation, foam production, film manufacture, compression molding, vulcanization, melt spinning, reactive blending, welding, blow molding, conveying, composite manufacture, compounding, and thermosetting. The examples of studies and improvements include: increased homogeneity of dye, pigment and filler mixing, improved fiber orientation, increased tooth stiffness in composite gears, the rate of spherulites growth, optimization of screw configuration, increased miscibility in polymer blends, study of polymer crystallization rate, melt flow analysis, void content, particle size in polymer blends, pore size and shape in foams, cell density in foams, modifier dispersion, improvement of bidirectional properties, effect of low molecular additives on morphology, interparticle distance, effect of mixing conditions and geometry on morphology, crack formation during fatigue testing, mechanism of crazing, chemical resistance, oil penetration, kinetic measurement of fiber diameter, stress profile, quantified flow visualization, effect of compatibilization, domain distribution, correlation of morphology with mechanical performance, analysis of melt fracture aids, surface roughness, droplet\/fiber transition, barrier properties, effect of orientation on electric conductivity, peel adhesion, fiber length after processing, fractal dimension, nucleation, thermography, thermal imaging, failure analysis, agglomerate dispersion, and impurity monitoring. The large variety of processing methods, possible studies and improvements show that this book is of interest to the entire cross-section of plastic manufacturing industry. It offers data which not only allow to better understand materials and processing methods but the book helps in process optimization and development of processes having higher throughput and superior performance.\u003cbr\u003eThis book is about the design and processing of various materials rather than algorithms and design of image analysis equipment. But by showing actual research and data in a form familiar to any technologist in the plastics industry, it demonstrates benefits and capabilities of the methods.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e• The Optimized Performance of Linear Vibration Welded Nylon 6 and Nylon 66 Butt Joints\u003cbr\u003e• Image Analysis of Polypropylene Melt Fiber Stretching\u003cbr\u003e• The Effect of Fiber Orientation on Distribution on the Tooth Stiffness of a Polymer Composite Gear\u003cbr\u003e• Novel Processing and Performance of Aligned Discontinuous Fiber Polymer Composites\u003cbr\u003e• Characterization of Kneading Block Performance on Co-Rotating Twin Screw Extruders\u003cbr\u003e• A Quantitative Description of the Effects of Molecular Weight and Atactic Level on the Spherulite Growth Rate of Ziegler-Natta Isotactic Polypropylene\u003cbr\u003e• Miscibility and Co-Continuous Morphology of Polypropylene-Polyethylene Blends\u003cbr\u003e• Flow Visualization for Extensional Viscosity Assessment\u003cbr\u003e• PP\/LLDPE\/EDPM Blends: Effect of Elastomer Viscosity on Impact\u003cbr\u003e• Mixing of a Low Molecular Weight Additive in a Co-Rotating TSE: Morphological Analysis of a HDPE\/PDMS Systems\u003cbr\u003e• The in situ Compatibilization of HDPE\/PET Blends\u003cbr\u003e• Evaluation of Process Aids for Controlling Surface Roughness of Extruded LLDPE\u003cbr\u003e• Evaluation of Scratch and Mar Resistance in Automotive Coatings: Nanoscratching by Atomic Force Microscope\u003cbr\u003e• Study of the Morphology and Tensile Mechanical Properties of Biaxially Oriented PET\/PP Blends\u003cbr\u003e• Improved Barrier and Mechanical Properties of Laminar Polymer Blends\u003cbr\u003e• Relative Magnetic Permeability of Injection Molded Composites as Affected by the Flow Induced Orientation of Ferromagnetic Particles\u003cbr\u003e• Processing-Structure-Property Relations in PS\/PE Blends: Compression versus Injection Molding\u003cbr\u003e• Polyetherimide Epoxy-Based Prepreg Systems with Variable Temperature Cure Capability\u003cbr\u003e• CO 2 Blown PETG Foams\u003cbr\u003e• Tear Strength Enhancement Mechanisms in TPO Films\u003cbr\u003e• Morphological Study of Fatigue Induced Damage in Semicrystalline Polymers\u003cbr\u003e• The Effect of Several Kinds of Oils on the Oil Resistance Behavior of Polystyrenic Thermoplastic Vulcanizate\u003cbr\u003e• Visualization of Polymer Melt Convergent Flows in Extrusion\u003cbr\u003e• Evaluation of the Constrained Blister Test for Measurement of an Intrinsic Adhesion\u003cbr\u003e• Fractal Analysis and Radiographic Inspection of Microwave Welded HDPE Bars\u003cbr\u003e• Application of Thermography for the Optimization of the Blow Molding Process\u003cbr\u003e• The Use of Video and the Development of Solids Conveying Theory\u003cbr\u003e• Microcellular PET Foams Produced by the Solid State Process\u003cbr\u003e• Thermal Wave Imaging of Propagating Cracks in Polypropylene and a Thermoplastic Olefin\u003cbr\u003e• The Division of Agglomerates in Molten Environment of Polymers: A Physical Model for Mathematical Description\u003cbr\u003e• A New On-Line Technique for Morphology Analysis and Residence Time Measurement in a Twin-Screw Extruder\u003cbr\u003e• Controlled Order Thermosets for Electronic Packaging\u003cbr\u003e• Fatigue Fracture in Polypropylene with Different Spherulitic Sizes\u003cbr\u003e• Brittle-Ductile Transition of PP\/Rubber\/Filler Hybrids\u003cbr\u003e• Index\u003c\/p\u003e","published_at":"2017-06-22T21:14:19-04:00","created_at":"2017-06-22T21:14:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","agglomerates","automotive","blister test","book","coatings","composite gears","cracks","crystallization rate","environment","fatigue","fibers","foams","imaging","increased miscibility polymer blends","LLDPE","magnetic permeability","Mar resistance","melt flow analysis","morphology","optimization screw configuration","p-testing","particle size","PET\/PP","polymer","polymer blends","PS\/PE","rate spherulites growth","scratch","semicrystalline","tear strength","tensile"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412420,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Imaging and Image Analysis Applications for Plastics","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-81-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805","options":["Title"],"media":[{"alt":null,"id":356441260125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-81-2.jpg?v=1499725805","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Behnam Pourdeyhimi \u003cbr\u003eISBN 1-884207-81-2 \u003cbr\u003e\u003cbr\u003e308 pages, 224 figures, 36 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is of interest for all functions in research, development, new product implementation, production, product engineering in industries which process polymers and plastics. Those who already made use of image analysis in their practice will find useful hints on how to improve and better utilize their methods. Others who did not use these methods so far will find that these inexpensive techniques can provide answers to many important technical problems which are not resolved because just a few years ago these methods were not available or too expensive to apply. Only several years ago, these observations were either not quantified at all or various graphical standards were used for comparison to develop a point scale to assign observed images. This was not precise and confusing. The advent of high-speed digital cameras working with image processing software is changing this situation. The list of some topics included in the book shows the wealth of opportunities. This book presents results of studies in which imaging and image analyses were used to quantify many important determinants of production technology and product performance such as flow and mixing behavior, optimization of equipment configuration and material homogenization, morphology of plastics, size of polymers domains in blends, compatibilization methods and conditions, effects of grafting, reasons for surface roughness, scratch and mar resistance, fiber orientation, improved barrier properties, improved magnetic permeability, improved mechanical properties, distribution of voids in laminates, determination of cell sizes in cellular plastics, formation of crazes during fatigue, fiber radius determination during spinning, blister formation and adhesion, effects of glass fiber orientation on weld strength, analysis of welding process, dispersion of agglomerates formed by additives and the effect of mixing and transport conditions, formation of gels and impurities, particles structure and distribution, rate of crystallization, and many others. Having numerical data it is possible to optimize the processes to increase output, decrease a reject rate, save materials, and improve product properties.\u003cbr\u003eConsidering that every product must appeal to a customer and perform under conditions of its use, these studies are the most important for optimizing numerous conflicting properties. For example in one research, product performance is combined with high output rate and requirement of low weight. The potential applications of image analysis allow following these interrelations to optimize a product which is why research and production are eager to apply this emerging technology. The number of research reports on this subject is systematically growing. The methods of observation, such as various forms of microscopy, tracers, and lasers, are simple and in most cases available in most facilities.\u003cbr\u003e\u003cbr\u003eThe book contains references to various applications already in use, methods of image capture, data processing, hardware and software required. The examples of processes discussed include: extrusion, extruding reactors, injection molding, impregnation, foam production, film manufacture, compression molding, vulcanization, melt spinning, reactive blending, welding, blow molding, conveying, composite manufacture, compounding, and thermosetting. The examples of studies and improvements include: increased homogeneity of dye, pigment and filler mixing, improved fiber orientation, increased tooth stiffness in composite gears, the rate of spherulites growth, optimization of screw configuration, increased miscibility in polymer blends, study of polymer crystallization rate, melt flow analysis, void content, particle size in polymer blends, pore size and shape in foams, cell density in foams, modifier dispersion, improvement of bidirectional properties, effect of low molecular additives on morphology, interparticle distance, effect of mixing conditions and geometry on morphology, crack formation during fatigue testing, mechanism of crazing, chemical resistance, oil penetration, kinetic measurement of fiber diameter, stress profile, quantified flow visualization, effect of compatibilization, domain distribution, correlation of morphology with mechanical performance, analysis of melt fracture aids, surface roughness, droplet\/fiber transition, barrier properties, effect of orientation on electric conductivity, peel adhesion, fiber length after processing, fractal dimension, nucleation, thermography, thermal imaging, failure analysis, agglomerate dispersion, and impurity monitoring. The large variety of processing methods, possible studies and improvements show that this book is of interest to the entire cross-section of plastic manufacturing industry. It offers data which not only allow to better understand materials and processing methods but the book helps in process optimization and development of processes having higher throughput and superior performance.\u003cbr\u003eThis book is about the design and processing of various materials rather than algorithms and design of image analysis equipment. But by showing actual research and data in a form familiar to any technologist in the plastics industry, it demonstrates benefits and capabilities of the methods.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e• The Optimized Performance of Linear Vibration Welded Nylon 6 and Nylon 66 Butt Joints\u003cbr\u003e• Image Analysis of Polypropylene Melt Fiber Stretching\u003cbr\u003e• The Effect of Fiber Orientation on Distribution on the Tooth Stiffness of a Polymer Composite Gear\u003cbr\u003e• Novel Processing and Performance of Aligned Discontinuous Fiber Polymer Composites\u003cbr\u003e• Characterization of Kneading Block Performance on Co-Rotating Twin Screw Extruders\u003cbr\u003e• A Quantitative Description of the Effects of Molecular Weight and Atactic Level on the Spherulite Growth Rate of Ziegler-Natta Isotactic Polypropylene\u003cbr\u003e• Miscibility and Co-Continuous Morphology of Polypropylene-Polyethylene Blends\u003cbr\u003e• Flow Visualization for Extensional Viscosity Assessment\u003cbr\u003e• PP\/LLDPE\/EDPM Blends: Effect of Elastomer Viscosity on Impact\u003cbr\u003e• Mixing of a Low Molecular Weight Additive in a Co-Rotating TSE: Morphological Analysis of a HDPE\/PDMS Systems\u003cbr\u003e• The in situ Compatibilization of HDPE\/PET Blends\u003cbr\u003e• Evaluation of Process Aids for Controlling Surface Roughness of Extruded LLDPE\u003cbr\u003e• Evaluation of Scratch and Mar Resistance in Automotive Coatings: Nanoscratching by Atomic Force Microscope\u003cbr\u003e• Study of the Morphology and Tensile Mechanical Properties of Biaxially Oriented PET\/PP Blends\u003cbr\u003e• Improved Barrier and Mechanical Properties of Laminar Polymer Blends\u003cbr\u003e• Relative Magnetic Permeability of Injection Molded Composites as Affected by the Flow Induced Orientation of Ferromagnetic Particles\u003cbr\u003e• Processing-Structure-Property Relations in PS\/PE Blends: Compression versus Injection Molding\u003cbr\u003e• Polyetherimide Epoxy-Based Prepreg Systems with Variable Temperature Cure Capability\u003cbr\u003e• CO 2 Blown PETG Foams\u003cbr\u003e• Tear Strength Enhancement Mechanisms in TPO Films\u003cbr\u003e• Morphological Study of Fatigue Induced Damage in Semicrystalline Polymers\u003cbr\u003e• The Effect of Several Kinds of Oils on the Oil Resistance Behavior of Polystyrenic Thermoplastic Vulcanizate\u003cbr\u003e• Visualization of Polymer Melt Convergent Flows in Extrusion\u003cbr\u003e• Evaluation of the Constrained Blister Test for Measurement of an Intrinsic Adhesion\u003cbr\u003e• Fractal Analysis and Radiographic Inspection of Microwave Welded HDPE Bars\u003cbr\u003e• Application of Thermography for the Optimization of the Blow Molding Process\u003cbr\u003e• The Use of Video and the Development of Solids Conveying Theory\u003cbr\u003e• Microcellular PET Foams Produced by the Solid State Process\u003cbr\u003e• Thermal Wave Imaging of Propagating Cracks in Polypropylene and a Thermoplastic Olefin\u003cbr\u003e• The Division of Agglomerates in Molten Environment of Polymers: A Physical Model for Mathematical Description\u003cbr\u003e• A New On-Line Technique for Morphology Analysis and Residence Time Measurement in a Twin-Screw Extruder\u003cbr\u003e• Controlled Order Thermosets for Electronic Packaging\u003cbr\u003e• Fatigue Fracture in Polypropylene with Different Spherulitic Sizes\u003cbr\u003e• Brittle-Ductile Transition of PP\/Rubber\/Filler Hybrids\u003cbr\u003e• Index\u003c\/p\u003e"}
REACH USA 2011
$165.00
{"id":11242231812,"title":"REACH USA 2011","handle":"978-1-84735-629-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-629-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e9th International Conference on the Registration, Evaluation, and Authorisation of Chemicals and its Impact on US Trade\n\u003ch5\u003eSummary\u003c\/h5\u003e\n30 November 2010 marked the deadline for chemical producers and importers to register all high volume and potentially toxic substances. Chemicals that have not been registered with the requisite safety information by this date are to be withdrawn from the market under the \"no data, no market\" ruling, giving the potential to cause untold chaos in chemical supply chains. Indeed, successes and failures from this first set of REACH registrations in 2010 are expected to impact the use of products on the EU market and beyond, as well as influence chemical legislation initiatives across the globe. In particular, industry and regulators will become engaged with Evaluation during 2011, where data submitted in registration dossiers are reviewed and potentially challenged.\u003cbr\u003e\u003cbr\u003eIn 2011 customers in the EU will begin facing the knock-on requirements of registrations from 2010, changes in classification under the EU implementation of the Globally Harmonised System (GHS), conditions imposed by Exposure Scenarios and even 'uses advised against'. Not only are there widespread concerns over the EU's implementation of the GHS for the classification, labelling, and packaging of substances (CLP), but 2011 also brings new obligations, such as the need to notify substances of very high concern (SVHC) to the European Chemicals Agency (ECHA). In the US plans to introduce the GHS will undoubtedly cause similar fears.\u003cbr\u003e\u003cbr\u003eAt the same time, the next registration deadline is only 2 ½ years away. This second phase of Registration presents additional management hurdles, as it involves a large number of substances that may be relatively 'data poor' compared with substances registered in 2010. Companies must already begin planning, in particular with regards to budgeting for this next step in REACH.\u003cbr\u003e\u003cbr\u003e2011, therefore, presents industry and regulators with a critical year for gaining experience with how REACH actually works in practice. In turn, changes in official guidance and a legislative review in 2012 offer the possibility of improvements to the workability of REACH.\u003cbr\u003e\u003cbr\u003eWhether you're a cosmetics company, an aerospace manufacturer or a raw material supplier, REACH applies to you. These proceedings cover all the presentations from the conference which enveloped some of the vital lessons that have been learned, how the next deadlines in 2013 will affect the way you do business and what damage limitation controls can be put in place for 2011 when many fail to meet their obligations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 1: REACH – Experiences \u0026amp; Updates \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 1 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eKeynote Presentation REACH update and progress on registration \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 2 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eManaging dossiers – deadlines and updates \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Steffen Erler, Smithers Viscient, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 3 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eLessons learned from REACH implementation and thoughts for going forward to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eThomas G Grumbles, Cardno ENTRIX, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 2: Technical Complexities \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 4 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eNavigating REACH from a small business perspective \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eApril A Cesaretti, The HallStar Company, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 5 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eUse of science in REACH regulatory affairs \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Robbie Waites, SABIC Innovative Plastics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 6 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eConsortium Management – How will best practice evolve in the period to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaul Ashford, Caleb Management Services Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 3: Tools \u0026amp; Methods \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 7 Legal interpretations and challenges Ruxandra Cana, Field Fisher Waterhouse LLP, Belgium PAPER UNAVAILABLE \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 8 Sens-it-iv: in vitro methods for sensitisation Erwin Roggen, Novozymes AS, Denmark \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 9 Exposure in the supply chain: from development to implementation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eTine Vandenbrouck \u0026amp; Elke Van Asbroeck, Apeiron-Team NV, Belgium \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 10 The extended safety datasheet – challenges and opportunities \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Mark Pemberton, Lucite International UK Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 4: Safe Use, Restriction, and Authorisation \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 11 From use descriptors to safe use - one more step in the REACH journey \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Clayton, Reichhold Inc, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 12 SVHC duties as we move towards notification and authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 13 SIN list, restriction \u0026amp; authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJerker Ligthart \u0026amp;, Nardono Nimpuno International Chemical Secretariat, Sweden \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 5: Managing SVHCs \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 14 SVHCs in articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDave Bender, Tyco Electronics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 15 Managing substances of very high concern in the retail sector \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 16 Impact of REACH and CLP for manufacturers of articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Podd, Kimberly-Clark Europe, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 6: Chemicals Policy \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 17 EU chemicals policy – beyond REACH \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eMamta Patel, Chemical Watch, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 18 TSCA reform: Learning hard lessons from REACH experience \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Herb Estreicher, Keller \u0026amp; Heckman LLP, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 19 REACH and the interplay of state and federal chemicals policy in the US: Lessons Learned \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eProf Joel A Tickner, University of Massachusetts Lowell, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 7: GHS and CLP \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 20 CLP: The harmonisation process and the C\u0026amp;L inventory \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 21 US OSHA implementation of the GHS \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJennifer Silk, Retired from OSHA, currently Consultant \u0026amp; UNITAR Training Advisor on GHS, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 22 Managing CLP compliance: the essentials for business \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:18-04:00","created_at":"2017-06-22T21:14:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","chemical policy","legal interpretations","OSHA","p-properties","packaging","polymer","raw materials","REACH implementation","safety","safety datasheet"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378411268,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"REACH USA 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-629-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-629-1.jpg?v=1499954018"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-629-1.jpg?v=1499954018","options":["Title"],"media":[{"alt":null,"id":358730596445,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-629-1.jpg?v=1499954018"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-629-1.jpg?v=1499954018","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-629-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e9th International Conference on the Registration, Evaluation, and Authorisation of Chemicals and its Impact on US Trade\n\u003ch5\u003eSummary\u003c\/h5\u003e\n30 November 2010 marked the deadline for chemical producers and importers to register all high volume and potentially toxic substances. Chemicals that have not been registered with the requisite safety information by this date are to be withdrawn from the market under the \"no data, no market\" ruling, giving the potential to cause untold chaos in chemical supply chains. Indeed, successes and failures from this first set of REACH registrations in 2010 are expected to impact the use of products on the EU market and beyond, as well as influence chemical legislation initiatives across the globe. In particular, industry and regulators will become engaged with Evaluation during 2011, where data submitted in registration dossiers are reviewed and potentially challenged.\u003cbr\u003e\u003cbr\u003eIn 2011 customers in the EU will begin facing the knock-on requirements of registrations from 2010, changes in classification under the EU implementation of the Globally Harmonised System (GHS), conditions imposed by Exposure Scenarios and even 'uses advised against'. Not only are there widespread concerns over the EU's implementation of the GHS for the classification, labelling, and packaging of substances (CLP), but 2011 also brings new obligations, such as the need to notify substances of very high concern (SVHC) to the European Chemicals Agency (ECHA). In the US plans to introduce the GHS will undoubtedly cause similar fears.\u003cbr\u003e\u003cbr\u003eAt the same time, the next registration deadline is only 2 ½ years away. This second phase of Registration presents additional management hurdles, as it involves a large number of substances that may be relatively 'data poor' compared with substances registered in 2010. Companies must already begin planning, in particular with regards to budgeting for this next step in REACH.\u003cbr\u003e\u003cbr\u003e2011, therefore, presents industry and regulators with a critical year for gaining experience with how REACH actually works in practice. In turn, changes in official guidance and a legislative review in 2012 offer the possibility of improvements to the workability of REACH.\u003cbr\u003e\u003cbr\u003eWhether you're a cosmetics company, an aerospace manufacturer or a raw material supplier, REACH applies to you. These proceedings cover all the presentations from the conference which enveloped some of the vital lessons that have been learned, how the next deadlines in 2013 will affect the way you do business and what damage limitation controls can be put in place for 2011 when many fail to meet their obligations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 1: REACH – Experiences \u0026amp; Updates \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 1 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eKeynote Presentation REACH update and progress on registration \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 2 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eManaging dossiers – deadlines and updates \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Steffen Erler, Smithers Viscient, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 3 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eLessons learned from REACH implementation and thoughts for going forward to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eThomas G Grumbles, Cardno ENTRIX, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 2: Technical Complexities \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 4 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eNavigating REACH from a small business perspective \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eApril A Cesaretti, The HallStar Company, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 5 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eUse of science in REACH regulatory affairs \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Robbie Waites, SABIC Innovative Plastics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 6 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eConsortium Management – How will best practice evolve in the period to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaul Ashford, Caleb Management Services Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 3: Tools \u0026amp; Methods \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 7 Legal interpretations and challenges Ruxandra Cana, Field Fisher Waterhouse LLP, Belgium PAPER UNAVAILABLE \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 8 Sens-it-iv: in vitro methods for sensitisation Erwin Roggen, Novozymes AS, Denmark \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 9 Exposure in the supply chain: from development to implementation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eTine Vandenbrouck \u0026amp; Elke Van Asbroeck, Apeiron-Team NV, Belgium \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 10 The extended safety datasheet – challenges and opportunities \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Mark Pemberton, Lucite International UK Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 4: Safe Use, Restriction, and Authorisation \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 11 From use descriptors to safe use - one more step in the REACH journey \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Clayton, Reichhold Inc, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 12 SVHC duties as we move towards notification and authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 13 SIN list, restriction \u0026amp; authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJerker Ligthart \u0026amp;, Nardono Nimpuno International Chemical Secretariat, Sweden \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 5: Managing SVHCs \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 14 SVHCs in articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDave Bender, Tyco Electronics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 15 Managing substances of very high concern in the retail sector \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 16 Impact of REACH and CLP for manufacturers of articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Podd, Kimberly-Clark Europe, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 6: Chemicals Policy \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 17 EU chemicals policy – beyond REACH \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eMamta Patel, Chemical Watch, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 18 TSCA reform: Learning hard lessons from REACH experience \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Herb Estreicher, Keller \u0026amp; Heckman LLP, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 19 REACH and the interplay of state and federal chemicals policy in the US: Lessons Learned \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eProf Joel A Tickner, University of Massachusetts Lowell, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 7: GHS and CLP \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 20 CLP: The harmonisation process and the C\u0026amp;L inventory \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 21 US OSHA implementation of the GHS \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJennifer Silk, Retired from OSHA, currently Consultant \u0026amp; UNITAR Training Advisor on GHS, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 22 Managing CLP compliance: the essentials for business \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Physical Testing of Pl...
$205.00
{"id":11242231748,"title":"Physical Testing of Plastics","handle":"9781847354853","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847354853 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book discusses the physical rather than the chemical examination of the properties of polymers on the basis of the type of equipment used, examples of the applications of these techniques are given.\u003cbr\u003e\u003cbr\u003eTechniques examined include thermal analysis (thermogravimetric analysis and evolved gas analysis), dynamic mechanical analysis and thermomechanical analysis, dielectric thermal analysis, ESR, MALDI, luminescence testing, photocalorimetry testing and the full range of equipment for mechanical, thermal, electrical, rheological, particle size, molecular weight. \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1Mechanical Properties of Polymers\u003cbr\u003e1.1Introduction\u003cbr\u003e1.2Tensile Strength\u003cbr\u003e1.2.1Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1Torsion Test\u003cbr\u003e1.3.2Hand Test\u003cbr\u003e1.4Elongation at Break\u003cbr\u003e1.4.1Basic Creep Data\u003cbr\u003e1.5Strain at Yield\u003cbr\u003e1.5.1Isochronous Stress-strain Curves\u003cbr\u003e1.5.2Stress-time Curves\u003cbr\u003e1.5.3Stress-temperature Curves\u003cbr\u003e1.5.4Extrapolation Techniques\u003cbr\u003e1.5.5Basic Parameters\u003cbr\u003e1.5.6Recovery in Stress Phenomena\u003cbr\u003e1.5.7Stress Relaxation\u003cbr\u003e1.5.8Rupture Data\u003cbr\u003e1.5.9Long-term Strain-time Data\u003cbr\u003e1.6Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1Notched Izod Impact Strength\u003cbr\u003e1.6.2Falling Weight Impact Test\u003cbr\u003e1.6.3Notch Sensitivity\u003cbr\u003e1.6.4Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5Effect of Molecular Parameters\u003cbr\u003e1.7Shear Strength\u003cbr\u003e1.8Elongation in Tension\u003cbr\u003e1.9Deformation Under Load\u003cbr\u003e1.10Compressive Set (Permanent Deformation)\u003cbr\u003e1.11Mould Shrinkage\u003cbr\u003e1.12Coefficient of Friction\u003cbr\u003e1.13Fatigue Index\u003cbr\u003e1.14Toughness\u003cbr\u003e1.15Abrasion Resistance or Wear\u003cbr\u003e1.16Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1Glass Fibres\u003cbr\u003e1.16.1.1Poly Tetrafluoroethylene\u003cbr\u003e1.16.2Polyethylene Terephthalate\u003cbr\u003e1.16.2.1Polyether Ether Ketone\u003cbr\u003e1.16.2.2Polyimide\u003cbr\u003e1.16.2.3Polyamide Imide\u003cbr\u003e1.16.3Calcium Carbonate\u003cbr\u003e1.16.4Modified Clays\u003cbr\u003e1.16.5Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6Carbon Fibres\u003cbr\u003e1.16.7Carbon Nanotubes\u003cbr\u003e1.16.8Miscellaneous Fillers\/Reinforcing Agents\u003cbr\u003e1.16.9Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17Application of Dynamic Mechanical Analysis\u003cbr\u003e1.17.1Theory\u003cbr\u003e1.17.2Instrumentation (Appendix 1)\u003cbr\u003e1.17.3Fixed Frequency Mode\u003cbr\u003e1.17.3.1Resonant Frequency Mode\u003cbr\u003e1.17.3.2Stress Relaxation Mode\u003cbr\u003e1.17.3.3Creep Mode\u003cbr\u003e1.17.3.4Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8Storage Modulus\u003cbr\u003e1.17.3.9Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10Elastomer Low Temperature Properties\u003cbr\u003e1.17.3.11Tensile Modulus\u003cbr\u003e1.17.3.12Stress-strain Relationships\u003cbr\u003e1.17.3.13Viscosity\u003cbr\u003e1.17.3.14Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18Rheology and Viscoelasticity\u003cbr\u003e1.19Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1Measurement of Rheological Properties\u003cbr\u003e1.19.2Viscosity and Elasticity\u003cbr\u003e1.19.3Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4Flexing Test\u003cbr\u003e1.19.5Deformation\u003cbr\u003e1.19.6Tensile Properties\u003cbr\u003e1.19.7Mechanical Stability of Natural and \u003cbr\u003eSynthetic Lattices\u003cbr\u003e1.19.8Abrasion Test\u003cbr\u003e1.19.9Peel Adhesion Test\u003cbr\u003e1.19.10Ozone Resistance Test\u003cbr\u003e1.20Physical Testing of Polymer Powders\u003cbr\u003e1.20.1Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2Artificial Weathering\u003cbr\u003e1.20.3Natural Weathering\u003cbr\u003e1.20.4Reactivity\u003cbr\u003e1.20.5Melt Viscosity\u003cbr\u003e1.20.6Loss on Stoving\u003cbr\u003e1.20.7True Density\u003cbr\u003e1.20.8Bulk Density\u003cbr\u003e1.20.9Powder Flow\u003cbr\u003e1.20.10Test for Cure\u003cbr\u003e1.20.11Electrical Properties.\u003cbr\u003e1.20.12Thermal Analysis\u003cbr\u003e1.20.13Particle-size Distribution\u003cbr\u003e1.20.13.1Methods Based on Electrical Sensing \u003cbr\u003eZone (Coulter Principle)\u003cbr\u003e1.20.13.2Laser Particle Size Analysers\u003cbr\u003e1.20.13.3Photon Correlation Spectroscopy \u003cbr\u003e(Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4Sedimentation.\u003cbr\u003e1.20.13.5Acoustic Spectroscopy\u003cbr\u003e1.20.13.6Capillary Hydrodynamic \u003cbr\u003eFractionation.\u003cbr\u003e1.20.13.7Small-angle Light Scattering\u003cbr\u003e1.21Plastic Pipe Materials\u003cbr\u003e1.22Plastic Film.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2Thermal Properties of Polymers\u003cbr\u003e2.1Linear Co-efficient of Expansion\u003cbr\u003e2.2Mould Shrinkage\u003cbr\u003e2.3Distortion Temperature\u003cbr\u003e2.3.1Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5Melting Temperature\u003cbr\u003e2.6Maximum Operating Temperature\u003cbr\u003e2.7Melt Flow Index\u003cbr\u003e2.8VICAT Softening Point\u003cbr\u003e2.9Thermal Conductivity\u003cbr\u003e2.10Specific Heat\u003cbr\u003e2.10.1Hot-wire Techniques\u003cbr\u003e2.10.2Transient Plane Source Technique\u003cbr\u003e2.10.3Laser Flash Technique\u003cbr\u003e2.10.4Thermal Diffusivity\u003cbr\u003e2.11Maximum Filming Temperature\u003cbr\u003e2.12Heat at Volatilisation\u003cbr\u003e2.13Glass Transition Temperature\u003cbr\u003e2.13.1Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1Theory\u003cbr\u003e2.14Thermomechanical Analysis\u003cbr\u003e2.14.1Theory\u003cbr\u003e2.15Dynamic Mechanical Analysis\u003cbr\u003e2.16Differential Thermal Analysis and Thermogravimetric Analysis\u003cbr\u003e2.17Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18Dielectric Thermal Analysis\u003cbr\u003e2.19Inverse Gas Chromatography\u003cbr\u003e2.20Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1Differential Thermal Analysis\u003cbr\u003e2.20.2Dynamic Mechanical Analysis\u003cbr\u003e2.20.3Dielectric Thermal Analysis\u003cbr\u003e2.20.4Thermomechanical Analysis\u003cbr\u003e2.20.5Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3Electrical Properties\u003cbr\u003e3.1Volume Resistivity\u003cbr\u003e3.2Dielectric Strength\u003cbr\u003e3.3Dielectric Constant\u003cbr\u003e3.4Dissipation Factor\u003cbr\u003e3.5Surface Arc Resistance\u003cbr\u003e3.6Tracking Resistance\u003cbr\u003e3.7Electrical Resistance and Resistivity\u003cbr\u003e3.8Electrical Conductivity\u003cbr\u003e3.9Electronically Conducting Polymers\u003cbr\u003e3.10Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4Other Physical Properties\u003cbr\u003e4.1Surface Hardness\u003cbr\u003e4.2Specific Gravity and Bulk Density\u003cbr\u003e4.3Gas Barrier Properties\u003cbr\u003e4.4Optical Properties\u003cbr\u003e4.4.1Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2Light Scattering\u003cbr\u003e4.4.3Optical Properties\u003cbr\u003e4.4.4Electro-optical Effect\u003cbr\u003e4.4.5Infrared Optical Properties\u003cbr\u003e4.5Monitoring of Resin Cure\u003cbr\u003e4.5.1Thermally Cured Resins\u003cbr\u003e4.5.1.1Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5Thermal Conductivity\u003cbr\u003e4.5.2Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1Differential Photo-calorimetry\u003cbr\u003e4.5.2.2Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4Gas Chromatography-based Methods\u003cbr\u003e4.6Adhesion Studies\u003cbr\u003e4.7Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1Dynamic Mechanical Analysis\u003cbr\u003e4.7.2Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5Thermal Stability\u003cbr\u003e5.1Thermogravimetric Analysis\u003cbr\u003e5.2Differential Thermal Analysis\u003cbr\u003e5.3Differential Scanning Calorimetry\u003cbr\u003e5.4Thermal Volatilisation Analysis\u003cbr\u003e5.5Evolved Gas Analysis\u003cbr\u003e5.6Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7Mass Spectroscopy\u003cbr\u003e5.8Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6Thermo-oxidative Stability\u003cbr\u003e6.1Thermogravimetric Analysis\u003cbr\u003e6.2Differential Scanning Calorimetry\u003cbr\u003e6.3Evolved Gas Analysis\u003cbr\u003e6.4Infrared Spectroscopy\u003cbr\u003e6.5Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7Imaging Chemiluminescence\u003cbr\u003e6.8Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7Assessment of Polymer Stability\u003cbr\u003e7.1Light Stability\u003cbr\u003e7.1.1Ultraviolet Light Weathering\u003cbr\u003e7.1.2Natural Weathering Tests\u003cbr\u003e7.2Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1Effect of Pigments\u003cbr\u003e7.2.2Effect of Carbon Black\u003cbr\u003e7.2.3Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4Effect of Thickness\u003cbr\u003e7.2.5Effect of Stress during Exposure\u003cbr\u003e7.3Gamma Radiation\u003cbr\u003e7.4Electron Irradiation\u003cbr\u003e7.5Irradiation by Carbon Ion Beam\u003cbr\u003e7.6Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8Water Absorption\u003cbr\u003e7.9Chemical Resistance\u003cbr\u003e7.9.1Detergent Resistance\u003cbr\u003e7.10Hydrolytic Stability\u003cbr\u003e7.11Resistance to Gases\u003cbr\u003e7.12Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8Selecting a Suitable Polymer\u003cbr\u003e8.1Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers.\u003cbr\u003eAppendix 2 – Mechanical properties of polymers.\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:18-04:00","created_at":"2017-06-22T21:14:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","creep","deformation","elongation","elongation at break","flexural modulus","general","mechanical properties polybenzoxazines","mould","plastics","shrinkage","stress","tensil","thermal analysis","thermal conductivity"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378410948,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Physical Testing of Plastics","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847354853","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847354853.jpg?v=1499952143"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354853.jpg?v=1499952143","options":["Title"],"media":[{"alt":null,"id":358531072093,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354853.jpg?v=1499952143"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354853.jpg?v=1499952143","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. R. Crompton \u003cbr\u003eISBN 9781847354853 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book discusses the physical rather than the chemical examination of the properties of polymers on the basis of the type of equipment used, examples of the applications of these techniques are given.\u003cbr\u003e\u003cbr\u003eTechniques examined include thermal analysis (thermogravimetric analysis and evolved gas analysis), dynamic mechanical analysis and thermomechanical analysis, dielectric thermal analysis, ESR, MALDI, luminescence testing, photocalorimetry testing and the full range of equipment for mechanical, thermal, electrical, rheological, particle size, molecular weight. \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1Mechanical Properties of Polymers\u003cbr\u003e1.1Introduction\u003cbr\u003e1.2Tensile Strength\u003cbr\u003e1.2.1Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1Torsion Test\u003cbr\u003e1.3.2Hand Test\u003cbr\u003e1.4Elongation at Break\u003cbr\u003e1.4.1Basic Creep Data\u003cbr\u003e1.5Strain at Yield\u003cbr\u003e1.5.1Isochronous Stress-strain Curves\u003cbr\u003e1.5.2Stress-time Curves\u003cbr\u003e1.5.3Stress-temperature Curves\u003cbr\u003e1.5.4Extrapolation Techniques\u003cbr\u003e1.5.5Basic Parameters\u003cbr\u003e1.5.6Recovery in Stress Phenomena\u003cbr\u003e1.5.7Stress Relaxation\u003cbr\u003e1.5.8Rupture Data\u003cbr\u003e1.5.9Long-term Strain-time Data\u003cbr\u003e1.6Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1Notched Izod Impact Strength\u003cbr\u003e1.6.2Falling Weight Impact Test\u003cbr\u003e1.6.3Notch Sensitivity\u003cbr\u003e1.6.4Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5Effect of Molecular Parameters\u003cbr\u003e1.7Shear Strength\u003cbr\u003e1.8Elongation in Tension\u003cbr\u003e1.9Deformation Under Load\u003cbr\u003e1.10Compressive Set (Permanent Deformation)\u003cbr\u003e1.11Mould Shrinkage\u003cbr\u003e1.12Coefficient of Friction\u003cbr\u003e1.13Fatigue Index\u003cbr\u003e1.14Toughness\u003cbr\u003e1.15Abrasion Resistance or Wear\u003cbr\u003e1.16Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1Glass Fibres\u003cbr\u003e1.16.1.1Poly Tetrafluoroethylene\u003cbr\u003e1.16.2Polyethylene Terephthalate\u003cbr\u003e1.16.2.1Polyether Ether Ketone\u003cbr\u003e1.16.2.2Polyimide\u003cbr\u003e1.16.2.3Polyamide Imide\u003cbr\u003e1.16.3Calcium Carbonate\u003cbr\u003e1.16.4Modified Clays\u003cbr\u003e1.16.5Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6Carbon Fibres\u003cbr\u003e1.16.7Carbon Nanotubes\u003cbr\u003e1.16.8Miscellaneous Fillers\/Reinforcing Agents\u003cbr\u003e1.16.9Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17Application of Dynamic Mechanical Analysis\u003cbr\u003e1.17.1Theory\u003cbr\u003e1.17.2Instrumentation (Appendix 1)\u003cbr\u003e1.17.3Fixed Frequency Mode\u003cbr\u003e1.17.3.1Resonant Frequency Mode\u003cbr\u003e1.17.3.2Stress Relaxation Mode\u003cbr\u003e1.17.3.3Creep Mode\u003cbr\u003e1.17.3.4Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8Storage Modulus\u003cbr\u003e1.17.3.9Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10Elastomer Low Temperature Properties\u003cbr\u003e1.17.3.11Tensile Modulus\u003cbr\u003e1.17.3.12Stress-strain Relationships\u003cbr\u003e1.17.3.13Viscosity\u003cbr\u003e1.17.3.14Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18Rheology and Viscoelasticity\u003cbr\u003e1.19Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1Measurement of Rheological Properties\u003cbr\u003e1.19.2Viscosity and Elasticity\u003cbr\u003e1.19.3Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4Flexing Test\u003cbr\u003e1.19.5Deformation\u003cbr\u003e1.19.6Tensile Properties\u003cbr\u003e1.19.7Mechanical Stability of Natural and \u003cbr\u003eSynthetic Lattices\u003cbr\u003e1.19.8Abrasion Test\u003cbr\u003e1.19.9Peel Adhesion Test\u003cbr\u003e1.19.10Ozone Resistance Test\u003cbr\u003e1.20Physical Testing of Polymer Powders\u003cbr\u003e1.20.1Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2Artificial Weathering\u003cbr\u003e1.20.3Natural Weathering\u003cbr\u003e1.20.4Reactivity\u003cbr\u003e1.20.5Melt Viscosity\u003cbr\u003e1.20.6Loss on Stoving\u003cbr\u003e1.20.7True Density\u003cbr\u003e1.20.8Bulk Density\u003cbr\u003e1.20.9Powder Flow\u003cbr\u003e1.20.10Test for Cure\u003cbr\u003e1.20.11Electrical Properties.\u003cbr\u003e1.20.12Thermal Analysis\u003cbr\u003e1.20.13Particle-size Distribution\u003cbr\u003e1.20.13.1Methods Based on Electrical Sensing \u003cbr\u003eZone (Coulter Principle)\u003cbr\u003e1.20.13.2Laser Particle Size Analysers\u003cbr\u003e1.20.13.3Photon Correlation Spectroscopy \u003cbr\u003e(Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4Sedimentation.\u003cbr\u003e1.20.13.5Acoustic Spectroscopy\u003cbr\u003e1.20.13.6Capillary Hydrodynamic \u003cbr\u003eFractionation.\u003cbr\u003e1.20.13.7Small-angle Light Scattering\u003cbr\u003e1.21Plastic Pipe Materials\u003cbr\u003e1.22Plastic Film.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2Thermal Properties of Polymers\u003cbr\u003e2.1Linear Co-efficient of Expansion\u003cbr\u003e2.2Mould Shrinkage\u003cbr\u003e2.3Distortion Temperature\u003cbr\u003e2.3.1Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5Melting Temperature\u003cbr\u003e2.6Maximum Operating Temperature\u003cbr\u003e2.7Melt Flow Index\u003cbr\u003e2.8VICAT Softening Point\u003cbr\u003e2.9Thermal Conductivity\u003cbr\u003e2.10Specific Heat\u003cbr\u003e2.10.1Hot-wire Techniques\u003cbr\u003e2.10.2Transient Plane Source Technique\u003cbr\u003e2.10.3Laser Flash Technique\u003cbr\u003e2.10.4Thermal Diffusivity\u003cbr\u003e2.11Maximum Filming Temperature\u003cbr\u003e2.12Heat at Volatilisation\u003cbr\u003e2.13Glass Transition Temperature\u003cbr\u003e2.13.1Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1Theory\u003cbr\u003e2.14Thermomechanical Analysis\u003cbr\u003e2.14.1Theory\u003cbr\u003e2.15Dynamic Mechanical Analysis\u003cbr\u003e2.16Differential Thermal Analysis and Thermogravimetric Analysis\u003cbr\u003e2.17Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18Dielectric Thermal Analysis\u003cbr\u003e2.19Inverse Gas Chromatography\u003cbr\u003e2.20Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1Differential Thermal Analysis\u003cbr\u003e2.20.2Dynamic Mechanical Analysis\u003cbr\u003e2.20.3Dielectric Thermal Analysis\u003cbr\u003e2.20.4Thermomechanical Analysis\u003cbr\u003e2.20.5Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3Electrical Properties\u003cbr\u003e3.1Volume Resistivity\u003cbr\u003e3.2Dielectric Strength\u003cbr\u003e3.3Dielectric Constant\u003cbr\u003e3.4Dissipation Factor\u003cbr\u003e3.5Surface Arc Resistance\u003cbr\u003e3.6Tracking Resistance\u003cbr\u003e3.7Electrical Resistance and Resistivity\u003cbr\u003e3.8Electrical Conductivity\u003cbr\u003e3.9Electronically Conducting Polymers\u003cbr\u003e3.10Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4Other Physical Properties\u003cbr\u003e4.1Surface Hardness\u003cbr\u003e4.2Specific Gravity and Bulk Density\u003cbr\u003e4.3Gas Barrier Properties\u003cbr\u003e4.4Optical Properties\u003cbr\u003e4.4.1Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2Light Scattering\u003cbr\u003e4.4.3Optical Properties\u003cbr\u003e4.4.4Electro-optical Effect\u003cbr\u003e4.4.5Infrared Optical Properties\u003cbr\u003e4.5Monitoring of Resin Cure\u003cbr\u003e4.5.1Thermally Cured Resins\u003cbr\u003e4.5.1.1Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5Thermal Conductivity\u003cbr\u003e4.5.2Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1Differential Photo-calorimetry\u003cbr\u003e4.5.2.2Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4Gas Chromatography-based Methods\u003cbr\u003e4.6Adhesion Studies\u003cbr\u003e4.7Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1Dynamic Mechanical Analysis\u003cbr\u003e4.7.2Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5Thermal Stability\u003cbr\u003e5.1Thermogravimetric Analysis\u003cbr\u003e5.2Differential Thermal Analysis\u003cbr\u003e5.3Differential Scanning Calorimetry\u003cbr\u003e5.4Thermal Volatilisation Analysis\u003cbr\u003e5.5Evolved Gas Analysis\u003cbr\u003e5.6Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7Mass Spectroscopy\u003cbr\u003e5.8Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6Thermo-oxidative Stability\u003cbr\u003e6.1Thermogravimetric Analysis\u003cbr\u003e6.2Differential Scanning Calorimetry\u003cbr\u003e6.3Evolved Gas Analysis\u003cbr\u003e6.4Infrared Spectroscopy\u003cbr\u003e6.5Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7Imaging Chemiluminescence\u003cbr\u003e6.8Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7Assessment of Polymer Stability\u003cbr\u003e7.1Light Stability\u003cbr\u003e7.1.1Ultraviolet Light Weathering\u003cbr\u003e7.1.2Natural Weathering Tests\u003cbr\u003e7.2Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1Effect of Pigments\u003cbr\u003e7.2.2Effect of Carbon Black\u003cbr\u003e7.2.3Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4Effect of Thickness\u003cbr\u003e7.2.5Effect of Stress during Exposure\u003cbr\u003e7.3Gamma Radiation\u003cbr\u003e7.4Electron Irradiation\u003cbr\u003e7.5Irradiation by Carbon Ion Beam\u003cbr\u003e7.6Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8Water Absorption\u003cbr\u003e7.9Chemical Resistance\u003cbr\u003e7.9.1Detergent Resistance\u003cbr\u003e7.10Hydrolytic Stability\u003cbr\u003e7.11Resistance to Gases\u003cbr\u003e7.12Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8Selecting a Suitable Polymer\u003cbr\u003e8.1Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers.\u003cbr\u003eAppendix 2 – Mechanical properties of polymers.\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
Block Copolymers in So...
$256.00
{"id":11242231620,"title":"Block Copolymers in Solution: Fundamentals and Applications","handle":"978-0-470-01557-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ian W. Hamley \u003cbr\u003eISBN \u003cspan\u003e 978-0-470-01697-8\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003epages 300, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis unique text discusses the solution self-assembly of block copolymers and covers all aspects from basic physical chemistry to applications in soft nanotechnology. Recent advances have enabled the preparation of new materials with novel self-assembling structures, functionality and responsiveness and there have also been concomitant advances in theory and modelling.\u003cbr\u003e\u003cbr\u003eThe present text covers the principles of self-assembly in both dilute and concentrated solution, for example micellization and mesophase formation, etc., in chapters 2 and 3 respectively. Chapter 4 covers polyelectrolyte block copolymers - these materials are attracting significant attention from researchers and a solid basis for understanding their physical chemistry is emerging, and this is discussed. The next chapter discusses adsorption of block copolymers from solution at liquid and solid interfaces. The concluding chapter presents a discussion of selected applications, focussing on several important new concepts.\u003cbr\u003e\u003cbr\u003eThe book is aimed at researchers in polymer science as well as industrial scientists involved in the polymer and coatings industries. It will also be of interest to scientists working in soft matter self-assembly and self-organizing polymers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003ePreface. \u003cbr\u003e1. Introduction. \u003cbr\u003eReferences. \u003cbr\u003e2. Neutral Block Copolymers in Dilute Solution. \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Techniques for Studying Micellization. \u003cbr\u003e2.3 Micellization in PEO-based Block Copolymers. \u003cbr\u003e2.4 Micellization in Styrenic Block Copolymers. \u003cbr\u003e2.5 Determination of cmc. \u003cbr\u003e2.6 Thermodynamics of Micellization. \u003cbr\u003e2.7 Micellization and Micelle Dimensions: Theory and Simulation. \u003cbr\u003e2.8 Micelle Dimensions: Comparison Between Experiment and Theory. \u003cbr\u003e2.9 Interaction between Micelles. \u003cbr\u003e2.10 Dynamics of Micellization. \u003cbr\u003e2.11 Dynamic Modes. \u003cbr\u003e2.12 Specific Types of Micelles. \u003cbr\u003e2.13 Micellization in Mixed solvents. \u003cbr\u003e2.14 Mixed micelles. \u003cbr\u003e2.15 Block Copolymer\/Surfactant complexes. \u003cbr\u003e2.16 Complex Morphologies. \u003cbr\u003e2.17 Vesicles. \u003cbr\u003e2.18 Crystallization in Micelles. \u003cbr\u003eReferences. \u003cbr\u003e3. Concentrated Solutions. \u003cbr\u003e3.1 Understanding Phase Diagrams. \u003cbr\u003e3.2 Phase Behaviour of PEO-containing Block Copolymers. \u003cbr\u003e3.3 Gelation. \u003cbr\u003e3.4 Order-Disorder Phase Transition. \u003cbr\u003e3.5 Order-order Phase Transitions. \u003cbr\u003e3.6 Domain Spacing Scaling, and Solvent Distribution profiles. \u003cbr\u003e3.7 Semidilute Block Copolymer Solution Theory. \u003cbr\u003e3.8 Theoretical understanding of Phase Diagrams. \u003cbr\u003e3.9 Flow Alignment. \u003cbr\u003e3.10 Dynamics. \u003cbr\u003eReferences. \u003cbr\u003e4. Polyelectrolyte Block Copolymers. \u003cbr\u003e4.1 Micellization. \u003cbr\u003e4.2 Chain Conformation. \u003cbr\u003e4.3 Theory. \u003cbr\u003e4.4 Polyion Complexes. \u003cbr\u003e4.5 Copolymer-surfactant complexes. \u003cbr\u003e4.6 Complexation with other Molecules. \u003cbr\u003e4.7 Gelation. \u003cbr\u003e4.8 Hierarchical Order in Peptide Block Copolyelectrolyte Solutions. \u003cbr\u003eReferences. \u003cbr\u003e5. Adsorption. \u003cbr\u003e5.1 Introduction. \u003cbr\u003e5.2 Adsorption at the Air-Water Interface. \u003cbr\u003e5.3 Adsorption on Solid Substrates. \u003cbr\u003e5.4 Surface Forces Experiments. \u003cbr\u003e5.5 Modelling Adsorption. \u003cbr\u003eReferences. \u003cbr\u003e6. Applications \u003cbr\u003e6.1 Surfactancy\/Detergency. \u003cbr\u003e6.2 Solubilisation, Emusification and Stabilization. \u003cbr\u003e6.3 Drug Delivery. \u003cbr\u003e6.4 Biodegradable Block Copolymer Micelles. \u003cbr\u003e6.5 Thermoresponsive Micellar Systems. \u003cbr\u003e6.6 Metal-Containing Copolymer Micelles and Nanoreactors. \u003cbr\u003e6.7 Vesicles. \u003cbr\u003e6.8 Separation Media. \u003cbr\u003e6.9 Templating. \u003cbr\u003e6.10 Membranes. \u003cbr\u003e6.11 Other Applications. \u003cbr\u003eReferences. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:17-04:00","created_at":"2017-06-22T21:14:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","adsorption","biodegradable","block","book","copolymer","detergency","drug delivery","emusification","gelation","micellization","phase transition","polymers","solubilisation","solution","stabilization","styrenic","surfactancy","thermoresponsive","wiley"],"price":25600,"price_min":25600,"price_max":25600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378409796,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Block Copolymers in Solution: Fundamentals and Applications","public_title":null,"options":["Default Title"],"price":25600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-01697-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-01557-5.jpg?v=1499189998"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-01557-5.jpg?v=1499189998","options":["Title"],"media":[{"alt":null,"id":353916256349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-01557-5.jpg?v=1499189998"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-01557-5.jpg?v=1499189998","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ian W. Hamley \u003cbr\u003eISBN \u003cspan\u003e 978-0-470-01697-8\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003epages 300, Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis unique text discusses the solution self-assembly of block copolymers and covers all aspects from basic physical chemistry to applications in soft nanotechnology. Recent advances have enabled the preparation of new materials with novel self-assembling structures, functionality and responsiveness and there have also been concomitant advances in theory and modelling.\u003cbr\u003e\u003cbr\u003eThe present text covers the principles of self-assembly in both dilute and concentrated solution, for example micellization and mesophase formation, etc., in chapters 2 and 3 respectively. Chapter 4 covers polyelectrolyte block copolymers - these materials are attracting significant attention from researchers and a solid basis for understanding their physical chemistry is emerging, and this is discussed. The next chapter discusses adsorption of block copolymers from solution at liquid and solid interfaces. The concluding chapter presents a discussion of selected applications, focussing on several important new concepts.\u003cbr\u003e\u003cbr\u003eThe book is aimed at researchers in polymer science as well as industrial scientists involved in the polymer and coatings industries. It will also be of interest to scientists working in soft matter self-assembly and self-organizing polymers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003ePreface. \u003cbr\u003e1. Introduction. \u003cbr\u003eReferences. \u003cbr\u003e2. Neutral Block Copolymers in Dilute Solution. \u003cbr\u003e2.1 Introduction. \u003cbr\u003e2.2 Techniques for Studying Micellization. \u003cbr\u003e2.3 Micellization in PEO-based Block Copolymers. \u003cbr\u003e2.4 Micellization in Styrenic Block Copolymers. \u003cbr\u003e2.5 Determination of cmc. \u003cbr\u003e2.6 Thermodynamics of Micellization. \u003cbr\u003e2.7 Micellization and Micelle Dimensions: Theory and Simulation. \u003cbr\u003e2.8 Micelle Dimensions: Comparison Between Experiment and Theory. \u003cbr\u003e2.9 Interaction between Micelles. \u003cbr\u003e2.10 Dynamics of Micellization. \u003cbr\u003e2.11 Dynamic Modes. \u003cbr\u003e2.12 Specific Types of Micelles. \u003cbr\u003e2.13 Micellization in Mixed solvents. \u003cbr\u003e2.14 Mixed micelles. \u003cbr\u003e2.15 Block Copolymer\/Surfactant complexes. \u003cbr\u003e2.16 Complex Morphologies. \u003cbr\u003e2.17 Vesicles. \u003cbr\u003e2.18 Crystallization in Micelles. \u003cbr\u003eReferences. \u003cbr\u003e3. Concentrated Solutions. \u003cbr\u003e3.1 Understanding Phase Diagrams. \u003cbr\u003e3.2 Phase Behaviour of PEO-containing Block Copolymers. \u003cbr\u003e3.3 Gelation. \u003cbr\u003e3.4 Order-Disorder Phase Transition. \u003cbr\u003e3.5 Order-order Phase Transitions. \u003cbr\u003e3.6 Domain Spacing Scaling, and Solvent Distribution profiles. \u003cbr\u003e3.7 Semidilute Block Copolymer Solution Theory. \u003cbr\u003e3.8 Theoretical understanding of Phase Diagrams. \u003cbr\u003e3.9 Flow Alignment. \u003cbr\u003e3.10 Dynamics. \u003cbr\u003eReferences. \u003cbr\u003e4. Polyelectrolyte Block Copolymers. \u003cbr\u003e4.1 Micellization. \u003cbr\u003e4.2 Chain Conformation. \u003cbr\u003e4.3 Theory. \u003cbr\u003e4.4 Polyion Complexes. \u003cbr\u003e4.5 Copolymer-surfactant complexes. \u003cbr\u003e4.6 Complexation with other Molecules. \u003cbr\u003e4.7 Gelation. \u003cbr\u003e4.8 Hierarchical Order in Peptide Block Copolyelectrolyte Solutions. \u003cbr\u003eReferences. \u003cbr\u003e5. Adsorption. \u003cbr\u003e5.1 Introduction. \u003cbr\u003e5.2 Adsorption at the Air-Water Interface. \u003cbr\u003e5.3 Adsorption on Solid Substrates. \u003cbr\u003e5.4 Surface Forces Experiments. \u003cbr\u003e5.5 Modelling Adsorption. \u003cbr\u003eReferences. \u003cbr\u003e6. Applications \u003cbr\u003e6.1 Surfactancy\/Detergency. \u003cbr\u003e6.2 Solubilisation, Emusification and Stabilization. \u003cbr\u003e6.3 Drug Delivery. \u003cbr\u003e6.4 Biodegradable Block Copolymer Micelles. \u003cbr\u003e6.5 Thermoresponsive Micellar Systems. \u003cbr\u003e6.6 Metal-Containing Copolymer Micelles and Nanoreactors. \u003cbr\u003e6.7 Vesicles. \u003cbr\u003e6.8 Separation Media. \u003cbr\u003e6.9 Templating. \u003cbr\u003e6.10 Membranes. \u003cbr\u003e6.11 Other Applications. \u003cbr\u003eReferences. \u003cbr\u003eIndex. \u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers 2011
$165.00
{"id":11242230852,"title":"Silicone Elastomers 2011","handle":"978-1-84735-627-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-627-7\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers have a unique combination of properties not found with organic elastomers, such as stability over a very wide temperature range, good electrical properties and environmental resistance, no smell or taste, high biocompatibility, low softness without plasticizers, and high colourability and transparency. Despite their relatively high cost, silicone elastomers are being increasingly used for applications where durability and safety in use are particularly important such as; automotive, electrical and electronic, domestic appliances, food processing, medical devices and baby bottle teats.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered the whole range of silicone elastomer materials, including high temperature vulcanised (HTV), room temperature vulcanised (RTV) and liquid silicone rubber (LSR).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1 MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 1 Silicone elastomers – from innovation to function\u003cbr\u003eHans Winkelbach, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 2 Building the future on silicone elastomers – sustainable innovation\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cb\u003eSESSION 2 SILICONE ELASTOMER MATERIALS\u003c\/b\u003e\u003cbr\u003ePaper 3 Silicone elastomers beyond traditional self bonding and self lubricating technology\u003cbr\u003eDr. Jürgen Ismeier \u0026amp; Axel Schmidt, Wacker Chemie AG, Germany\u003cbr\u003ePaper 4 Innovations in silicone rubber technologies\u003cbr\u003eFabien Virlogeux, Dr. H P Wolf \u0026amp; P Beyer, Dow Corning France SaS, France\u003cbr\u003ePaper 5 Novel silicone rubber curing technology with UV light\u003cbr\u003eClemens Trumm, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 6 Effect of electron beam irradiation on structure-property relationship of compatible blends of LLDPE and PDMS rubber\u003cbr\u003eRadhasvam Giri, K Naskar \u0026amp; Prof G B Nando, Rubber Technology Centre, Indian Institute of Technology, India\u003cbr\u003e\u003cb\u003eSESSION 3 APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 7 High-temperature silicone elastomers for rolling stock cables\u003cbr\u003eDr. Bernard Dalbe, Nexans Research Centre, France\u003cbr\u003ePaper 8 New high modulus silicone elastomer – fibre reinforced LSR\u003cbr\u003eOliver Franssen, Momentive Performance Materials GmbH, Germany \u0026amp; Alexander Widmayr Woco Industrietechnik GmbH, Germany\u003cbr\u003ePaper 9 Lighting applications for silicones\u003cbr\u003eMariusz Kalecinski, Philips Lighting Poland SA, Poland\u003cbr\u003ePAPER UNAVAILABLE Paper 10 Silicone soft skin adhesive technology\u003cbr\u003eAudrey Wipret, Dow Corning Europe SA, Belgium\u003cbr\u003e\u003cb\u003eSESSION 4 TESTING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 11 Are silicone elastomers suitable for all food contact applications? Migration properties and durability of silicone elastomers in food contact\u003cbr\u003eRuediger Helling, Saxon Institute for Public and Veterinary Health \u0026amp; Prof Dr. Thomas J Simat, University of Technology Dresden, Germany\u003cbr\u003e\u003cb\u003eSESSION 5 FILLERS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 12 New and tailor-made precipitated silica grades for high performance silicone rubber\u003cbr\u003eDr. Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003ePaper 13 Preparation and structure-property behaviour of silica modified silicone-urea copolymers\u003cbr\u003eIskender Yilgor \u0026amp; Emel Yilgor, Koc University, Turkey\u003cbr\u003e\u003cb\u003eSESSION 6 PROCESSING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 14 Bonding capabilities of a new agent for silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003ePaper 15 Innovation in silicone processing equipment\u003cbr\u003eDr. Fabio Belotti, Battaggion SpA, Italy\u003cbr\u003ePaper 16 The latest technical advances in mixing and extrusion of silicone compounds\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003ePaper 17 Quality requirements and economic aspects for the production of high-quality silicone elastomers\u003cbr\u003eHorst Hain, Uth GmbH, Germany\u003cbr\u003ePaper 18 2K solutions for thermoplastics and LSR\u003cbr\u003eDaniel Schölmberger, Elmet GmbH, Austria\u003cbr\u003ePaper 19 HTV\/LSR machinery and equipment, highest accuracy and lowest energy consumption\u003cbr\u003eArmin Mattes, Engel Austria GmbH, Austria\u003cbr\u003ePaper 20 State of the art dosing technology for LSR\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria","published_at":"2017-06-22T21:14:16-04:00","created_at":"2017-06-22T21:14:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","application","biocompatibility","bonding","book","environmental resistance","fillers","food contact","high temperature vulcanised (HTV)","medical devices","p-chemistry","plasticizers","polymer","room temperature vulcanised (RTV)","rubber","Silicone elastomers","silicone rubber","testing"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378402948,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-627-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957","options":["Title"],"media":[{"alt":null,"id":358752190557,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-627-7\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers have a unique combination of properties not found with organic elastomers, such as stability over a very wide temperature range, good electrical properties and environmental resistance, no smell or taste, high biocompatibility, low softness without plasticizers, and high colourability and transparency. Despite their relatively high cost, silicone elastomers are being increasingly used for applications where durability and safety in use are particularly important such as; automotive, electrical and electronic, domestic appliances, food processing, medical devices and baby bottle teats.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered the whole range of silicone elastomer materials, including high temperature vulcanised (HTV), room temperature vulcanised (RTV) and liquid silicone rubber (LSR).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1 MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 1 Silicone elastomers – from innovation to function\u003cbr\u003eHans Winkelbach, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 2 Building the future on silicone elastomers – sustainable innovation\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cb\u003eSESSION 2 SILICONE ELASTOMER MATERIALS\u003c\/b\u003e\u003cbr\u003ePaper 3 Silicone elastomers beyond traditional self bonding and self lubricating technology\u003cbr\u003eDr. Jürgen Ismeier \u0026amp; Axel Schmidt, Wacker Chemie AG, Germany\u003cbr\u003ePaper 4 Innovations in silicone rubber technologies\u003cbr\u003eFabien Virlogeux, Dr. H P Wolf \u0026amp; P Beyer, Dow Corning France SaS, France\u003cbr\u003ePaper 5 Novel silicone rubber curing technology with UV light\u003cbr\u003eClemens Trumm, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 6 Effect of electron beam irradiation on structure-property relationship of compatible blends of LLDPE and PDMS rubber\u003cbr\u003eRadhasvam Giri, K Naskar \u0026amp; Prof G B Nando, Rubber Technology Centre, Indian Institute of Technology, India\u003cbr\u003e\u003cb\u003eSESSION 3 APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 7 High-temperature silicone elastomers for rolling stock cables\u003cbr\u003eDr. Bernard Dalbe, Nexans Research Centre, France\u003cbr\u003ePaper 8 New high modulus silicone elastomer – fibre reinforced LSR\u003cbr\u003eOliver Franssen, Momentive Performance Materials GmbH, Germany \u0026amp; Alexander Widmayr Woco Industrietechnik GmbH, Germany\u003cbr\u003ePaper 9 Lighting applications for silicones\u003cbr\u003eMariusz Kalecinski, Philips Lighting Poland SA, Poland\u003cbr\u003ePAPER UNAVAILABLE Paper 10 Silicone soft skin adhesive technology\u003cbr\u003eAudrey Wipret, Dow Corning Europe SA, Belgium\u003cbr\u003e\u003cb\u003eSESSION 4 TESTING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 11 Are silicone elastomers suitable for all food contact applications? Migration properties and durability of silicone elastomers in food contact\u003cbr\u003eRuediger Helling, Saxon Institute for Public and Veterinary Health \u0026amp; Prof Dr. Thomas J Simat, University of Technology Dresden, Germany\u003cbr\u003e\u003cb\u003eSESSION 5 FILLERS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 12 New and tailor-made precipitated silica grades for high performance silicone rubber\u003cbr\u003eDr. Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003ePaper 13 Preparation and structure-property behaviour of silica modified silicone-urea copolymers\u003cbr\u003eIskender Yilgor \u0026amp; Emel Yilgor, Koc University, Turkey\u003cbr\u003e\u003cb\u003eSESSION 6 PROCESSING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 14 Bonding capabilities of a new agent for silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003ePaper 15 Innovation in silicone processing equipment\u003cbr\u003eDr. Fabio Belotti, Battaggion SpA, Italy\u003cbr\u003ePaper 16 The latest technical advances in mixing and extrusion of silicone compounds\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003ePaper 17 Quality requirements and economic aspects for the production of high-quality silicone elastomers\u003cbr\u003eHorst Hain, Uth GmbH, Germany\u003cbr\u003ePaper 18 2K solutions for thermoplastics and LSR\u003cbr\u003eDaniel Schölmberger, Elmet GmbH, Austria\u003cbr\u003ePaper 19 HTV\/LSR machinery and equipment, highest accuracy and lowest energy consumption\u003cbr\u003eArmin Mattes, Engel Austria GmbH, Austria\u003cbr\u003ePaper 20 State of the art dosing technology for LSR\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria"}