- Grid List
Filter
Handbook of Analytical...
$300.00
{"id":11242218052,"title":"Handbook of Analytical Techniques in Concrete","handle":"0-8155-1437-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V.S. Ramachandran, J.J. Beaudoin \u003cbr\u003eISBN 0-8155-1437-9 \u003cbr\u003e\u003cbr\u003eNational Research Council of Canada, Ottawa, Canada\u003cbr\u003e\u003cbr\u003ePages: 985, Figures: 420, Tables: 70\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nScientific analysis techniques for a wide variety of concretes and their additives as well as concrete technologies, perfect for practitioners, students, and professional standards writers. \u003cbr\u003eMeasuring the long-term durability of new types of concrete and concrete technologies is crucial to their acceptance in the marketplace. This long-needed handbook of analytical techniques provides a complete reference to the cutting-edge procedures used to test today's innovative materials. \u003cbr\u003eRanging from chemical and thermal analysis, to IR and Nuclear Magnetic Resonance spectroscopy, to Scanning Electron Microscopy, x-ray diffraction, computer modeling and more, the book provides first-hand explanations of modern methods - contributed by 24 leading scientists, many of whom actually developed or refined the techniques. The book includes many analytic techniques, applied to a wide range of organic, inorganic and composite materials and additives. \u003cbr\u003ePerfect for practitioners, students, and professional standards writers, the handbook is highly useful for scrutinizing materials in a variety of environments. It takes into account the many factors that affect the qualities of concrete - temperature, pore and pore size distribution, surface area, and exposure - gathering diverse evaluation methods into one convenient resource.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003eConcrete is a composite material formed by mixing and curing ingredients such as cement, fine and coarse aggregates, and water. Most concretes, however, contain additional ingredients such as chemical admixtures including air-entraining admixtures, fly ash, fibers, slag, and other products.\u003cbr\u003eThe physical, chemical and durability characteristics of concrete depend on many factors such as the type and amount of the components, temperature, pore and pore size distribution, surface area, interfacial features, exposure conditions, etc. Consequently, a good understanding of various processes occurring in cementitious systems necessitates the application of diverse techniques.\u003cbr\u003eSeveral physical, chemical, and mechanical techniques are applied in concrete research and practice. They provide important information, including characterization of raw materials and cured concrete, quality control, quantitative estimation of products, prediction of performance, development of accelerated test methods, study of interrelationships amongst physical, chemical, mechanical, and durability characteristics, development of new materials, etc. In most instances, no single technique provides all the needed information and hence application of several techniques becomes necessary. Information on the application of various techniques in concrete is dispersed in literature, and few books are available that serve as a source or reference. Hence a handbook incorporating the latest knowledge on the application of various investigative techniques in concrete science and technology has been prepared. Standard test methods are not covered in this book as they are well described in publications of national and international standards organizations.\u003cbr\u003eThe book is divided into twenty chapters. Each chapter describes the technique and its application and limitations for the study of concrete,. Each chapter also contains a list of important references that should serve as a useful guide for further information.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nThe first chapter on concrete science describes the essential concepts so that information presented in subsequent chapters can be easily followed. The chapter deals with the formation of cement, its hydration behavior, physicochemical processes related to the cement paste, and several important properties of concrete and durability aspects.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 2 deals with the description of a number of specialized techniques used in conjunction with petrography for the evaluation and analysis of aggregates of concrete.\u003cbr\u003eChemical analysis methods have been applied extensively to analyze the components of concrete, chemical and mineral admixtures, raw materials for making cement and also to estimate cement contents. Modern analytical tools enable much faster analysis than the wet chemical methods. \u003cbr\u003e\u003cbr\u003eIn Chapter 3, chemical analysis techniques reviewed include atomic absorption, x-ray emission and plasma spectroscopy. The chapter also contains information on chemical (wet) methods of analysis.\u003cbr\u003eThermal analysis techniques based on the determination of physical, chemical, and mechanical changes in a material as a function of temperature, have been routinely used in concrete science and technology. Identification, estimation of compounds, kinetics of reactions, mechanisms of the action of admixtures, synthesis of compounds, quality control and causes leading to the deterioration of cementitious materials are investigated by these techniques. Various types of thermal techniques and their applications and limitations are included in Chapter 4.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAlthough comparatively recent, IR spectroscopy is gaining importance, especially with the development of user-friendly equipment as described in the fifth chapter. This technique has been applied for identification of new products and characterization of raw materials, hydrated materials, and deteriorated products. Discussion on Raman spectroscopy, a complementary technique to IR, also forms a part of this chapter.\u003cbr\u003eNuclear Magnetic Resonance spectroscopy (NMR) is a effective tool to probe atomic scale structure and dynamic behavior of cementing materials. The application of NMR for determining the pore structure and transport properties of cement and concrete via relaxation and imaging methods and its application to anhydrous cement and hydrated cement phases form some of the contents of Chapter 6.\u003cbr\u003eScanning Electron Microscopy and its adjunct, microanalytical unit, known as Energy Dispersive X-ray Analyzer, have been accepted as important investigative techniques in concrete technology. \u003cbr\u003e\u003cbr\u003eChapter 7 comprises discussion on the microstructure of hydrated cement paste, C-S-H phase, calcium hydroxide, aluminate hydrate phases, paste-aggregate interface, admixtures, slags, and fly ashes. Also included are studies on the correlation of microstructure with durability.\u003cbr\u003eThe eighth chapter on the application of x-ray diffraction focuses on some of the fundamental aspects of the technique, the hardware and software developments, and its applications to cement and concrete.\u003cbr\u003eAn understanding of the Theology of fresh cement paste and concrete is essential for following the behavior of concrete in the fresh state. Additions and admixtures in concrete alter its Theological behavior. \u003cbr\u003e\u003cbr\u003eChapter 9 deals with Theological techniques and their application to fresh cement paste and concrete.\u003cbr\u003eDimensional changes occur in cement paste and concrete due to physical, chemical, and electrochemical processes. A discussion of energetics of surface adsorption and volume changes forms the scope of Chapter 10. Relevance of length changes to concrete deterioration is also highlighted in this chapter.\u003cbr\u003eThe use of miniature specimens in cement science investigations has proven to be very valuable because it assures a greater homogeneity of the sample and increased sensitivity to the dimensional changes resulting from physical and chemical processes. \u003cbr\u003e\u003cbr\u003eChapter 11 provides results on compacted powder used as a model system and includes discussion on creep and shrinkage, volume stability, workability, and surface chemical changes.\u003cbr\u003eCorrosion of reinforced concrete is a major destructive process. Many electrochemical techniques have been developed to study corrosion. \u003cbr\u003e\u003cbr\u003eChapter 12 presents a comprehensive treatment of the principles of corrosion, factors responsible for corrosion, and corrosion assessment techniques relevant to concrete.\u003cbr\u003eSurface area has an important influence on the rate of reaction of cement to water and other chemicals. Many physical and mechanical characteristics of cement and concrete are modified by changes in the surface area. \u003cbr\u003e\u003cbr\u003eIn Chapter 13, the techniques that are used for measuring surface area are given with respect to their application to systems such as raw materials for cement, hydrated cement, concrete mix, and also to durability studies.\u003cbr\u003eThe pore structure of hydrated cement systems influences significantly the physico-mechanical and chemical behavior of concrete. Several experimental techniques have been employed to evaluate the microstructure of the cement paste. \u003cbr\u003e\u003cbr\u003eChapter 14 presents a description of six techniques that have been developed for the determination of pore structure. The relationship between pore structure and strength\/permeability is also included.\u003cbr\u003eThe application of silica polymerization analysis for an understanding of the hydration process and structure of calcium silicate hydrates is detailed in Chapter 15. Three major techniques used for polymerization studies are described.\u003cbr\u003eIn concrete, the physical structure and the state of water in the matrix influences the permeation process. \u003cbr\u003e\u003cbr\u003eIn Chapter 16, test methods that are employed to measure various transport characteristics of concrete are evaluated. The applicability and limitations of these techniques is also reviewed.\u003cbr\u003eInspection and testing of placed concrete may be carried out by nondestructive testing methods. Sonic and pulse velocity techniques are commonly used. Nondestructive methods are also applied to estimate strength, surface hardness, pullout strength, etc. Details of various nondestructive techniques and their applications are included in Chapter 17.\u003cbr\u003e\u003cbr\u003eThere is evidence of a significant impact of computer and information technologies on concrete science and technology. General development of these technologies in recent years is reviewed in Chapter 18. The treatment includes computer models, databases, artificial knowledge-based and computer-integrated systems.\u003cbr\u003e\u003cbr\u003eIn Chapter 19, entitled \"Image Analysis,\" steps needed to identify reactions of interest and extract quantitative information from digital images are reviewed. In image analysis, multiple images are acquired and analyzed. The principle steps required for image analysis of cementitious materials are described in this chapter.\u003cbr\u003eSome of the more commonly used techniques in concrete studies are presented in Chapters 2 to 19. There has been continued interest in developing new techniques for the investigation of cement and concrete. \u003cbr\u003e\u003cbr\u003eChapter 20 comprises the description and application of fourteen of these specialized techniques. They include such techniques as Auger Electron Microscopy, Chromatography, Mass Spectrometry, X-Ray Absorption Fine Structure Analysis, Synchrotron Orbital Radiation Analysis, Mossbauer Spectrometry, Radio Tracer Technique, and Photoacoustic Spectroscopy.\u003cbr\u003eAlthough every attempt has been made to cover the important investigative techniques used in concrete technology, it is quite possible that some information has been excluded or is missing. In addition, some duplication of information occurs in some chapters. This was intentional because some specific chapters may only be of interest to specialized groups, and they provide enough self-contained information so that gleaning through other chapters will not be needed.\u003cbr\u003eThis comprehensive handbook should serve as a reference material to concrete technologists, materials scientists, analytical chemists, engineers, architects, researchers, manufacturers of cement and concrete, standards writing bodies, and users of concrete.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. V.S. Ramachandran is Distinguished Researcher at the Institute for Research in Construction, National Research Council Canada, Ottawa, Canada. He is author of six other books and numerous articles. Dr. Ramachandran is a Fellow of the Royal Society of Chemistry, the Ceramic Society (UK), the American Ceramic Society, and is the recipient of many awards and honors for his scientific accomplishments in the concrete and ceramic fields Dr. James J. Beaudoin is Principal Research Officer at the Institute for Research in Construction, National Research Council Canada, Ottawa, Canada. He is author of over 300 publications, including three books, and holds several patents. He received the Copeland Award from the American Ceramic Society in 1998 and the American Concrete Institute Wason Medal for materials research in 1999.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:35-04:00","created_at":"2017-06-22T21:13:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","additives","admixtures","aggregate interface","aluminate hydrate","book","calcium hydroxide","cement","chemical analysis","concrete","electron microscopy","fly ashes","IR spectroscopy","mineral admixtures","NMR","p-applications","poly","slags","thermal analysis"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378361604,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Analytical Techniques in Concrete","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"0-8155-1437-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1437-9.jpg?v=1499387282"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1437-9.jpg?v=1499387282","options":["Title"],"media":[{"alt":null,"id":354809118813,"position":1,"preview_image":{"aspect_ratio":0.676,"height":450,"width":304,"src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1437-9.jpg?v=1499387282"},"aspect_ratio":0.676,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/0-8155-1437-9.jpg?v=1499387282","width":304}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V.S. Ramachandran, J.J. Beaudoin \u003cbr\u003eISBN 0-8155-1437-9 \u003cbr\u003e\u003cbr\u003eNational Research Council of Canada, Ottawa, Canada\u003cbr\u003e\u003cbr\u003ePages: 985, Figures: 420, Tables: 70\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nScientific analysis techniques for a wide variety of concretes and their additives as well as concrete technologies, perfect for practitioners, students, and professional standards writers. \u003cbr\u003eMeasuring the long-term durability of new types of concrete and concrete technologies is crucial to their acceptance in the marketplace. This long-needed handbook of analytical techniques provides a complete reference to the cutting-edge procedures used to test today's innovative materials. \u003cbr\u003eRanging from chemical and thermal analysis, to IR and Nuclear Magnetic Resonance spectroscopy, to Scanning Electron Microscopy, x-ray diffraction, computer modeling and more, the book provides first-hand explanations of modern methods - contributed by 24 leading scientists, many of whom actually developed or refined the techniques. The book includes many analytic techniques, applied to a wide range of organic, inorganic and composite materials and additives. \u003cbr\u003ePerfect for practitioners, students, and professional standards writers, the handbook is highly useful for scrutinizing materials in a variety of environments. It takes into account the many factors that affect the qualities of concrete - temperature, pore and pore size distribution, surface area, and exposure - gathering diverse evaluation methods into one convenient resource.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003eConcrete is a composite material formed by mixing and curing ingredients such as cement, fine and coarse aggregates, and water. Most concretes, however, contain additional ingredients such as chemical admixtures including air-entraining admixtures, fly ash, fibers, slag, and other products.\u003cbr\u003eThe physical, chemical and durability characteristics of concrete depend on many factors such as the type and amount of the components, temperature, pore and pore size distribution, surface area, interfacial features, exposure conditions, etc. Consequently, a good understanding of various processes occurring in cementitious systems necessitates the application of diverse techniques.\u003cbr\u003eSeveral physical, chemical, and mechanical techniques are applied in concrete research and practice. They provide important information, including characterization of raw materials and cured concrete, quality control, quantitative estimation of products, prediction of performance, development of accelerated test methods, study of interrelationships amongst physical, chemical, mechanical, and durability characteristics, development of new materials, etc. In most instances, no single technique provides all the needed information and hence application of several techniques becomes necessary. Information on the application of various techniques in concrete is dispersed in literature, and few books are available that serve as a source or reference. Hence a handbook incorporating the latest knowledge on the application of various investigative techniques in concrete science and technology has been prepared. Standard test methods are not covered in this book as they are well described in publications of national and international standards organizations.\u003cbr\u003eThe book is divided into twenty chapters. Each chapter describes the technique and its application and limitations for the study of concrete,. Each chapter also contains a list of important references that should serve as a useful guide for further information.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nThe first chapter on concrete science describes the essential concepts so that information presented in subsequent chapters can be easily followed. The chapter deals with the formation of cement, its hydration behavior, physicochemical processes related to the cement paste, and several important properties of concrete and durability aspects.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 2 deals with the description of a number of specialized techniques used in conjunction with petrography for the evaluation and analysis of aggregates of concrete.\u003cbr\u003eChemical analysis methods have been applied extensively to analyze the components of concrete, chemical and mineral admixtures, raw materials for making cement and also to estimate cement contents. Modern analytical tools enable much faster analysis than the wet chemical methods. \u003cbr\u003e\u003cbr\u003eIn Chapter 3, chemical analysis techniques reviewed include atomic absorption, x-ray emission and plasma spectroscopy. The chapter also contains information on chemical (wet) methods of analysis.\u003cbr\u003eThermal analysis techniques based on the determination of physical, chemical, and mechanical changes in a material as a function of temperature, have been routinely used in concrete science and technology. Identification, estimation of compounds, kinetics of reactions, mechanisms of the action of admixtures, synthesis of compounds, quality control and causes leading to the deterioration of cementitious materials are investigated by these techniques. Various types of thermal techniques and their applications and limitations are included in Chapter 4.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAlthough comparatively recent, IR spectroscopy is gaining importance, especially with the development of user-friendly equipment as described in the fifth chapter. This technique has been applied for identification of new products and characterization of raw materials, hydrated materials, and deteriorated products. Discussion on Raman spectroscopy, a complementary technique to IR, also forms a part of this chapter.\u003cbr\u003eNuclear Magnetic Resonance spectroscopy (NMR) is a effective tool to probe atomic scale structure and dynamic behavior of cementing materials. The application of NMR for determining the pore structure and transport properties of cement and concrete via relaxation and imaging methods and its application to anhydrous cement and hydrated cement phases form some of the contents of Chapter 6.\u003cbr\u003eScanning Electron Microscopy and its adjunct, microanalytical unit, known as Energy Dispersive X-ray Analyzer, have been accepted as important investigative techniques in concrete technology. \u003cbr\u003e\u003cbr\u003eChapter 7 comprises discussion on the microstructure of hydrated cement paste, C-S-H phase, calcium hydroxide, aluminate hydrate phases, paste-aggregate interface, admixtures, slags, and fly ashes. Also included are studies on the correlation of microstructure with durability.\u003cbr\u003eThe eighth chapter on the application of x-ray diffraction focuses on some of the fundamental aspects of the technique, the hardware and software developments, and its applications to cement and concrete.\u003cbr\u003eAn understanding of the Theology of fresh cement paste and concrete is essential for following the behavior of concrete in the fresh state. Additions and admixtures in concrete alter its Theological behavior. \u003cbr\u003e\u003cbr\u003eChapter 9 deals with Theological techniques and their application to fresh cement paste and concrete.\u003cbr\u003eDimensional changes occur in cement paste and concrete due to physical, chemical, and electrochemical processes. A discussion of energetics of surface adsorption and volume changes forms the scope of Chapter 10. Relevance of length changes to concrete deterioration is also highlighted in this chapter.\u003cbr\u003eThe use of miniature specimens in cement science investigations has proven to be very valuable because it assures a greater homogeneity of the sample and increased sensitivity to the dimensional changes resulting from physical and chemical processes. \u003cbr\u003e\u003cbr\u003eChapter 11 provides results on compacted powder used as a model system and includes discussion on creep and shrinkage, volume stability, workability, and surface chemical changes.\u003cbr\u003eCorrosion of reinforced concrete is a major destructive process. Many electrochemical techniques have been developed to study corrosion. \u003cbr\u003e\u003cbr\u003eChapter 12 presents a comprehensive treatment of the principles of corrosion, factors responsible for corrosion, and corrosion assessment techniques relevant to concrete.\u003cbr\u003eSurface area has an important influence on the rate of reaction of cement to water and other chemicals. Many physical and mechanical characteristics of cement and concrete are modified by changes in the surface area. \u003cbr\u003e\u003cbr\u003eIn Chapter 13, the techniques that are used for measuring surface area are given with respect to their application to systems such as raw materials for cement, hydrated cement, concrete mix, and also to durability studies.\u003cbr\u003eThe pore structure of hydrated cement systems influences significantly the physico-mechanical and chemical behavior of concrete. Several experimental techniques have been employed to evaluate the microstructure of the cement paste. \u003cbr\u003e\u003cbr\u003eChapter 14 presents a description of six techniques that have been developed for the determination of pore structure. The relationship between pore structure and strength\/permeability is also included.\u003cbr\u003eThe application of silica polymerization analysis for an understanding of the hydration process and structure of calcium silicate hydrates is detailed in Chapter 15. Three major techniques used for polymerization studies are described.\u003cbr\u003eIn concrete, the physical structure and the state of water in the matrix influences the permeation process. \u003cbr\u003e\u003cbr\u003eIn Chapter 16, test methods that are employed to measure various transport characteristics of concrete are evaluated. The applicability and limitations of these techniques is also reviewed.\u003cbr\u003eInspection and testing of placed concrete may be carried out by nondestructive testing methods. Sonic and pulse velocity techniques are commonly used. Nondestructive methods are also applied to estimate strength, surface hardness, pullout strength, etc. Details of various nondestructive techniques and their applications are included in Chapter 17.\u003cbr\u003e\u003cbr\u003eThere is evidence of a significant impact of computer and information technologies on concrete science and technology. General development of these technologies in recent years is reviewed in Chapter 18. The treatment includes computer models, databases, artificial knowledge-based and computer-integrated systems.\u003cbr\u003e\u003cbr\u003eIn Chapter 19, entitled \"Image Analysis,\" steps needed to identify reactions of interest and extract quantitative information from digital images are reviewed. In image analysis, multiple images are acquired and analyzed. The principle steps required for image analysis of cementitious materials are described in this chapter.\u003cbr\u003eSome of the more commonly used techniques in concrete studies are presented in Chapters 2 to 19. There has been continued interest in developing new techniques for the investigation of cement and concrete. \u003cbr\u003e\u003cbr\u003eChapter 20 comprises the description and application of fourteen of these specialized techniques. They include such techniques as Auger Electron Microscopy, Chromatography, Mass Spectrometry, X-Ray Absorption Fine Structure Analysis, Synchrotron Orbital Radiation Analysis, Mossbauer Spectrometry, Radio Tracer Technique, and Photoacoustic Spectroscopy.\u003cbr\u003eAlthough every attempt has been made to cover the important investigative techniques used in concrete technology, it is quite possible that some information has been excluded or is missing. In addition, some duplication of information occurs in some chapters. This was intentional because some specific chapters may only be of interest to specialized groups, and they provide enough self-contained information so that gleaning through other chapters will not be needed.\u003cbr\u003eThis comprehensive handbook should serve as a reference material to concrete technologists, materials scientists, analytical chemists, engineers, architects, researchers, manufacturers of cement and concrete, standards writing bodies, and users of concrete.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. V.S. Ramachandran is Distinguished Researcher at the Institute for Research in Construction, National Research Council Canada, Ottawa, Canada. He is author of six other books and numerous articles. Dr. Ramachandran is a Fellow of the Royal Society of Chemistry, the Ceramic Society (UK), the American Ceramic Society, and is the recipient of many awards and honors for his scientific accomplishments in the concrete and ceramic fields Dr. James J. Beaudoin is Principal Research Officer at the Institute for Research in Construction, National Research Council Canada, Ottawa, Canada. He is author of over 300 publications, including three books, and holds several patents. He received the Copeland Award from the American Ceramic Society in 1998 and the American Concrete Institute Wason Medal for materials research in 1999.\u003cbr\u003e\u003cbr\u003e"}
Handbook of Antiblocki...
$275.00
{"id":11242220548,"title":"Handbook of Antiblocking, Release, and Slip Additives","handle":"978-1-895198-45-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-45-4 \u003cbr\u003e\u003cbr\u003eSecond Edition\u003cbr\u003e\u003cbr\u003ePages: 340\u003cbr\u003eTables: 116\u003cbr\u003eFigures: 130\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first ever book written on the subject of antiblocking, release, and slip additives, which are of high industrial importance. The second edition has included all new information which became available in the last six years since the publication of the first edition.\u003cbr\u003eEighteen chemical families form a core of industrial developments, which resulted in a large number of commercial products used by industry as antiblocking, release, and slip additives.\u003cbr\u003e \u003cbr\u003eThese additives are used in the production of materials from 44 generic families of polymers. Polymers containing antiblocking, release, and slip additives are processed by 17 groups of processing methods. The processing methods are used by 29 industries.\u003cbr\u003eInformation on the use of additives in various polymers is divided into the following sections: Types and concentrations, Effect on polymer and\/or other additives, and Typical formulations.\u003cbr\u003eInformation on the use of additives in various products is divided into the following sections: Types and concentrations, Reasons for use, Advantages and disadvantages of additive use, Effect on product properties, and Examples of formulations.\u003cbr\u003eProcessing methods are discussed using the following breakdown: Types and concentrations, Effect on the process, Effect on product properties, Advantages and disadvantages of additive use, Examples of formulations.\u003cbr\u003eA complete analysis of literature and patents available from the first use of these additives until now is included in the book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and environment.\u003cbr\u003eThe book contains 18 chapters, each addressing the specific aspect of properties and applications of antiblocking, release, and slip agents. In addition, a separate publication is available (Database of Antiblocking, Release, and Slip Agents), which is a database of commercial and generic materials used as antiblocking, release, and slip additives in various (not only polymeric) materials.\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 Introduction \u003c\/b\u003e\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from commercial additives \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 Generic Types \u003c\/b\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of commercial additives \u003cbr\u003e2.2.1 Antiblocking agents \u003cbr\u003e2.2.2 Mold release agents \u003cbr\u003e2.2.3 Slip agents \u003cbr\u003e\u003cb\u003e\u003cbr\u003e3 Standard Methods of Control\u003c\/b\u003e \u003cbr\u003e3.1 Adhesives \u003cbr\u003e3.2 Floor coverings \u003cbr\u003e3.3 Footwear and walkway surfaces \u003cbr\u003e3.4 Geosynthetics \u003cbr\u003e3.5 Leather and coated fabrics \u003cbr\u003e3.6 Lubricants \u003cbr\u003e3.7 Medical \u003cbr\u003e3.8 Paints and Coatings \u003cbr\u003e3.9 Paper \u003cbr\u003e3.10 Plastics and rubber \u003cbr\u003e3.11 Roads and pavement \u003cbr\u003e3.12 Sport equipment \u003cbr\u003e3.13 Textiles \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 Transportation and Storage \u003c\/b\u003e\u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cb\u003e5 Mechanisms of Action \u003c\/b\u003e \u003cbr\u003e5.1 Antiblocking agents \u003cbr\u003e5.2 Slip agents \u003cbr\u003e5.3 Release agents \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6 Compatibility and Performance \u003cbr\u003e\u003cbr\u003e7 Diffusion and Migration\u003c\/b\u003e \u003cbr\u003e7.1 Diffusion \u003cbr\u003e7.2 Distribution of additive in bulk and on surface \u003cbr\u003e7.3 How mobility affects additive selection? \u003cbr\u003e7.4 Additive transfer to material in contact\u003cbr\u003e7.5 Additive loss \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8 Interaction with Other Components of Formulation\u003c\/b\u003e \u003cbr\u003e8.1 Fillers \u003cbr\u003e8.2 Other components of formulation \u003cbr\u003e8.3 Synergy between surface additives \u003cbr\u003e8.4 Other properties \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9 Processing and Additive Performance \u003cbr\u003e\u003cbr\u003e10 Effect on Product Properties\u003c\/b\u003e \u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.2 Mar and abrasion \u003cbr\u003e10.3 Shrinkage and warpage \u003cbr\u003e10.4 Blocking force \u003cbr\u003e10.5 Adhesion to mold and demolding \u003cbr\u003e10.6 Coefficient of friction \u003cbr\u003e10.7 Residues on molds \u003cbr\u003e10.8 Residues on molded parts \u003cbr\u003e10.9 Optical properties \u003cbr\u003e10.10 Rheological properties \u003cbr\u003e10.11 Electrical properties \u003cbr\u003e10.12 Structure and orientation \u003cbr\u003e10.13 Thermal aging \u003cbr\u003e10.14 UV radiation \u003cbr\u003e10.15 Effect on other properties \u003cbr\u003e\u003cb\u003e\u003cbr\u003e11 Use in Specific Polymers \u003c\/b\u003e\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Cellulose acetate \u003cbr\u003e11.5 Cellulose, acetate, butyrate and propionate \u003cbr\u003e11.6 Cellulose nitrate\u003cbr\u003e11.7 Chlorinated polyvinylchloride \u003cbr\u003e11.8 Chlorosulfonated polyethylene \u003cbr\u003e11.9 Copolymers \u003cbr\u003e11.10 Cyanoacrylates \u003cbr\u003e11.11 Ethyl cellulose \u003cbr\u003e11.12 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.13 Ethylene-propylene rubber, EPR \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.15 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.16 Ionomers \u003cbr\u003e11.17 Nitrile rubber \u003cbr\u003e11.18 Polyamide \u003cbr\u003e11.19 Polybutadiene \u003cbr\u003e11.20 Polycarbonate \u003cbr\u003e11.21 Polyester \u003cbr\u003e11.22 Polyetherimide \u003cbr\u003e11.23 Polyethylene \u003cbr\u003e11.24 Polyimide \u003cbr\u003e11.25 Polylactide \u003cbr\u003e11.26 Polymethylmethacrylate \u003cbr\u003e11.27 Polyoxymethylene \u003cbr\u003e11.28 Poly(N-vinylcarbazole) \u003cbr\u003e11.29 Poly(phenylene ether) \u003cbr\u003e11.30 Polypropylene \u003cbr\u003e11.31 Polystyrene \u003cbr\u003e11.32 Polysulfone \u003cbr\u003e11.33 Poly(phenylene sulfide) \u003cbr\u003e11.34 Polyvinylacetate \u003cbr\u003e11.35 Polyvinylalcohol \u003cbr\u003e11.36 Polyvinylbutyral \u003cbr\u003e11.37 Polyvinylchloride \u003cbr\u003e11.38 Polyurethanes \u003cbr\u003e11.39 Proteins \u003cbr\u003e11.40 Rubber, natural \u003cbr\u003e11.41 Silicone \u003cbr\u003e11.42 Styrene-butadiene rubber \u003cbr\u003e11.43 Styrene-butadiene-styrene \u003cbr\u003e11.44 Starch \u003cbr\u003e\u003cbr\u003e\u003cb\u003e12 Use in Industrial Products \u003c\/b\u003e\u003cbr\u003e12.1 Adhesives and sealants \u003cbr\u003e12.2 Aerospace \u003cbr\u003e12.3 Agriculture \u003cbr\u003e12.4 Automotive applications \u003cbr\u003e12.5 Bottles \u003cbr\u003e12.6 Ceramic materials \u003cbr\u003e12.7 Composites \u003cbr\u003e12.8 Coated fabrics \u003cbr\u003e12.9 Cosmetics \u003cbr\u003e12.10 Dental materials \u003cbr\u003e12.11 Electronics \u003cbr\u003e12.12 Fibers \u003cbr\u003e12.13 Film \u003cbr\u003e12.14 Food \u003cbr\u003e12.15 Foams \u003cbr\u003e12.16 Gaskets \u003cbr\u003e12.17 Inks, varnishes, and lacquers \u003cbr\u003e12.18 Medical devices \u003cbr\u003e12.19 Membranes \u003cbr\u003e12.20 Paints and coatings \u003cbr\u003e12.21 Pharmaceutical products \u003cbr\u003e12.22 Photographic materials \u003cbr\u003e12.23 Pipes \u003cbr\u003e12.24 Road construction \u003cbr\u003e12.25 Roofing materials \u003cbr\u003e12.26 Synthetic paper \u003cbr\u003e12.27 Tires \u003cbr\u003e12.28 Toys \u003cbr\u003e12.29 Wire \u0026amp; cable \u003cbr\u003e \u003cbr\u003e\u003cb\u003e13 Various Processing Methods \u003c\/b\u003e \u003cbr\u003e13.1 Blow molding \u003cbr\u003e13.2 Calendering \u003cbr\u003e13.3 Coextrusion \u003cbr\u003e13.4 Compression molding \u003cbr\u003e13.5 Compounding (mixing) \u003cbr\u003e13.6 Dip coating \u003cbr\u003e13.7 Dryblending \u003cbr\u003e13.8 Extrusion \u003cbr\u003e13.9 Extrusion blow molding \u003cbr\u003e13.10 Injection molding \u003cbr\u003e13.11 Lithography \u003cbr\u003e13.12 Printing \u003cbr\u003e13.13 Reaction injection molding \u003cbr\u003e13.14 Rotational molding \u003cbr\u003e13.15 Rubber processing \u003cbr\u003e13.16 Slip casting \u003cbr\u003e13.17 Thermoforming \u003cbr\u003e13.18 Transfer molding \u003cbr\u003e\u003cbr\u003e\u003cb\u003e14 Specialized Analytical Methods \u003c\/b\u003e\u003cbr\u003e14.1 Identification \u003cbr\u003e14.2 Determination of concentration \u003cbr\u003e14.3 Determination of volatility and molecular motion \u003cbr\u003e14.4 Study of materials containing additives \u003cbr\u003e\u003cbr\u003e\u003cb\u003e15 Mathematical Modelling \u003cbr\u003e \u003cbr\u003e16 Health, Safety and Environmental Issues \u003c\/b\u003e\u003cbr\u003e16.1 Antiblocking agents \u003cbr\u003e16.1.1 Inorganic \u003cbr\u003e16.1.2 Organic \u003cbr\u003e16.2 Release agents \u003cbr\u003e16.2.1 Fluorocompounds \u003cbr\u003e16.2.2 Polydimethylsiloxane \u003cbr\u003e16.2.3 Polymeric waxes \u003cbr\u003e16.2.4 Other chemical compounds \u003cbr\u003e16.3 Slip agents \u003cbr\u003e16.3.1 Acids \u003cbr\u003e16.3.2 Esters \u003cbr\u003e16.3.3 Fatty acid amides \u003cbr\u003e16.3.4 Natural wax \u003cbr\u003e16.3.5 Salts \u003cbr\u003e\u003cbr\u003e\u003cb\u003e17 Regulations and Data \u003c\/b\u003e\u003cbr\u003e17.1 Toxic substance control \u003cbr\u003e17.2. Carcinogenic effect \u003cbr\u003e17.3 Workplace exposure limits \u003cbr\u003e17.4 Food regulatory acts \u003cbr\u003e\u003cbr\u003e\u003cb\u003e18 Personal Protection \u003c\/b\u003e\u003cbr\u003e18.1 Clothing \u003cbr\u003e18.2 Gloves \u003cbr\u003e18.3 Eye protection \u003cbr\u003e18.4 Respiratory protection \u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-16T10:40:12-05:00","created_at":"2017-06-22T21:13:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","antiblocking additives","antiblocking agents","characteristic properties of commercial additives","formulation","slip additives","slip agents"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372228,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Antiblocking, Release, and Slip Additives","public_title":null,"options":["Default Title"],"price":27500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-45-4.jpg?v=1499887515"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-45-4.jpg?v=1499887515","options":["Title"],"media":[{"alt":null,"id":354809151581,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-45-4.jpg?v=1499887515"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-45-4.jpg?v=1499887515","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-45-4 \u003cbr\u003e\u003cbr\u003eSecond Edition\u003cbr\u003e\u003cbr\u003ePages: 340\u003cbr\u003eTables: 116\u003cbr\u003eFigures: 130\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first ever book written on the subject of antiblocking, release, and slip additives, which are of high industrial importance. The second edition has included all new information which became available in the last six years since the publication of the first edition.\u003cbr\u003eEighteen chemical families form a core of industrial developments, which resulted in a large number of commercial products used by industry as antiblocking, release, and slip additives.\u003cbr\u003e \u003cbr\u003eThese additives are used in the production of materials from 44 generic families of polymers. Polymers containing antiblocking, release, and slip additives are processed by 17 groups of processing methods. The processing methods are used by 29 industries.\u003cbr\u003eInformation on the use of additives in various polymers is divided into the following sections: Types and concentrations, Effect on polymer and\/or other additives, and Typical formulations.\u003cbr\u003eInformation on the use of additives in various products is divided into the following sections: Types and concentrations, Reasons for use, Advantages and disadvantages of additive use, Effect on product properties, and Examples of formulations.\u003cbr\u003eProcessing methods are discussed using the following breakdown: Types and concentrations, Effect on the process, Effect on product properties, Advantages and disadvantages of additive use, Examples of formulations.\u003cbr\u003eA complete analysis of literature and patents available from the first use of these additives until now is included in the book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and environment.\u003cbr\u003eThe book contains 18 chapters, each addressing the specific aspect of properties and applications of antiblocking, release, and slip agents. In addition, a separate publication is available (Database of Antiblocking, Release, and Slip Agents), which is a database of commercial and generic materials used as antiblocking, release, and slip additives in various (not only polymeric) materials.\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 Introduction \u003c\/b\u003e\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from commercial additives \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 Generic Types \u003c\/b\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of commercial additives \u003cbr\u003e2.2.1 Antiblocking agents \u003cbr\u003e2.2.2 Mold release agents \u003cbr\u003e2.2.3 Slip agents \u003cbr\u003e\u003cb\u003e\u003cbr\u003e3 Standard Methods of Control\u003c\/b\u003e \u003cbr\u003e3.1 Adhesives \u003cbr\u003e3.2 Floor coverings \u003cbr\u003e3.3 Footwear and walkway surfaces \u003cbr\u003e3.4 Geosynthetics \u003cbr\u003e3.5 Leather and coated fabrics \u003cbr\u003e3.6 Lubricants \u003cbr\u003e3.7 Medical \u003cbr\u003e3.8 Paints and Coatings \u003cbr\u003e3.9 Paper \u003cbr\u003e3.10 Plastics and rubber \u003cbr\u003e3.11 Roads and pavement \u003cbr\u003e3.12 Sport equipment \u003cbr\u003e3.13 Textiles \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 Transportation and Storage \u003c\/b\u003e\u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cb\u003e5 Mechanisms of Action \u003c\/b\u003e \u003cbr\u003e5.1 Antiblocking agents \u003cbr\u003e5.2 Slip agents \u003cbr\u003e5.3 Release agents \u003cbr\u003e\u003cbr\u003e\u003cb\u003e6 Compatibility and Performance \u003cbr\u003e\u003cbr\u003e7 Diffusion and Migration\u003c\/b\u003e \u003cbr\u003e7.1 Diffusion \u003cbr\u003e7.2 Distribution of additive in bulk and on surface \u003cbr\u003e7.3 How mobility affects additive selection? \u003cbr\u003e7.4 Additive transfer to material in contact\u003cbr\u003e7.5 Additive loss \u003cbr\u003e\u003cbr\u003e\u003cb\u003e8 Interaction with Other Components of Formulation\u003c\/b\u003e \u003cbr\u003e8.1 Fillers \u003cbr\u003e8.2 Other components of formulation \u003cbr\u003e8.3 Synergy between surface additives \u003cbr\u003e8.4 Other properties \u003cbr\u003e\u003cbr\u003e\u003cb\u003e9 Processing and Additive Performance \u003cbr\u003e\u003cbr\u003e10 Effect on Product Properties\u003c\/b\u003e \u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.2 Mar and abrasion \u003cbr\u003e10.3 Shrinkage and warpage \u003cbr\u003e10.4 Blocking force \u003cbr\u003e10.5 Adhesion to mold and demolding \u003cbr\u003e10.6 Coefficient of friction \u003cbr\u003e10.7 Residues on molds \u003cbr\u003e10.8 Residues on molded parts \u003cbr\u003e10.9 Optical properties \u003cbr\u003e10.10 Rheological properties \u003cbr\u003e10.11 Electrical properties \u003cbr\u003e10.12 Structure and orientation \u003cbr\u003e10.13 Thermal aging \u003cbr\u003e10.14 UV radiation \u003cbr\u003e10.15 Effect on other properties \u003cbr\u003e\u003cb\u003e\u003cbr\u003e11 Use in Specific Polymers \u003c\/b\u003e\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Cellulose acetate \u003cbr\u003e11.5 Cellulose, acetate, butyrate and propionate \u003cbr\u003e11.6 Cellulose nitrate\u003cbr\u003e11.7 Chlorinated polyvinylchloride \u003cbr\u003e11.8 Chlorosulfonated polyethylene \u003cbr\u003e11.9 Copolymers \u003cbr\u003e11.10 Cyanoacrylates \u003cbr\u003e11.11 Ethyl cellulose \u003cbr\u003e11.12 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.13 Ethylene-propylene rubber, EPR \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.15 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.16 Ionomers \u003cbr\u003e11.17 Nitrile rubber \u003cbr\u003e11.18 Polyamide \u003cbr\u003e11.19 Polybutadiene \u003cbr\u003e11.20 Polycarbonate \u003cbr\u003e11.21 Polyester \u003cbr\u003e11.22 Polyetherimide \u003cbr\u003e11.23 Polyethylene \u003cbr\u003e11.24 Polyimide \u003cbr\u003e11.25 Polylactide \u003cbr\u003e11.26 Polymethylmethacrylate \u003cbr\u003e11.27 Polyoxymethylene \u003cbr\u003e11.28 Poly(N-vinylcarbazole) \u003cbr\u003e11.29 Poly(phenylene ether) \u003cbr\u003e11.30 Polypropylene \u003cbr\u003e11.31 Polystyrene \u003cbr\u003e11.32 Polysulfone \u003cbr\u003e11.33 Poly(phenylene sulfide) \u003cbr\u003e11.34 Polyvinylacetate \u003cbr\u003e11.35 Polyvinylalcohol \u003cbr\u003e11.36 Polyvinylbutyral \u003cbr\u003e11.37 Polyvinylchloride \u003cbr\u003e11.38 Polyurethanes \u003cbr\u003e11.39 Proteins \u003cbr\u003e11.40 Rubber, natural \u003cbr\u003e11.41 Silicone \u003cbr\u003e11.42 Styrene-butadiene rubber \u003cbr\u003e11.43 Styrene-butadiene-styrene \u003cbr\u003e11.44 Starch \u003cbr\u003e\u003cbr\u003e\u003cb\u003e12 Use in Industrial Products \u003c\/b\u003e\u003cbr\u003e12.1 Adhesives and sealants \u003cbr\u003e12.2 Aerospace \u003cbr\u003e12.3 Agriculture \u003cbr\u003e12.4 Automotive applications \u003cbr\u003e12.5 Bottles \u003cbr\u003e12.6 Ceramic materials \u003cbr\u003e12.7 Composites \u003cbr\u003e12.8 Coated fabrics \u003cbr\u003e12.9 Cosmetics \u003cbr\u003e12.10 Dental materials \u003cbr\u003e12.11 Electronics \u003cbr\u003e12.12 Fibers \u003cbr\u003e12.13 Film \u003cbr\u003e12.14 Food \u003cbr\u003e12.15 Foams \u003cbr\u003e12.16 Gaskets \u003cbr\u003e12.17 Inks, varnishes, and lacquers \u003cbr\u003e12.18 Medical devices \u003cbr\u003e12.19 Membranes \u003cbr\u003e12.20 Paints and coatings \u003cbr\u003e12.21 Pharmaceutical products \u003cbr\u003e12.22 Photographic materials \u003cbr\u003e12.23 Pipes \u003cbr\u003e12.24 Road construction \u003cbr\u003e12.25 Roofing materials \u003cbr\u003e12.26 Synthetic paper \u003cbr\u003e12.27 Tires \u003cbr\u003e12.28 Toys \u003cbr\u003e12.29 Wire \u0026amp; cable \u003cbr\u003e \u003cbr\u003e\u003cb\u003e13 Various Processing Methods \u003c\/b\u003e \u003cbr\u003e13.1 Blow molding \u003cbr\u003e13.2 Calendering \u003cbr\u003e13.3 Coextrusion \u003cbr\u003e13.4 Compression molding \u003cbr\u003e13.5 Compounding (mixing) \u003cbr\u003e13.6 Dip coating \u003cbr\u003e13.7 Dryblending \u003cbr\u003e13.8 Extrusion \u003cbr\u003e13.9 Extrusion blow molding \u003cbr\u003e13.10 Injection molding \u003cbr\u003e13.11 Lithography \u003cbr\u003e13.12 Printing \u003cbr\u003e13.13 Reaction injection molding \u003cbr\u003e13.14 Rotational molding \u003cbr\u003e13.15 Rubber processing \u003cbr\u003e13.16 Slip casting \u003cbr\u003e13.17 Thermoforming \u003cbr\u003e13.18 Transfer molding \u003cbr\u003e\u003cbr\u003e\u003cb\u003e14 Specialized Analytical Methods \u003c\/b\u003e\u003cbr\u003e14.1 Identification \u003cbr\u003e14.2 Determination of concentration \u003cbr\u003e14.3 Determination of volatility and molecular motion \u003cbr\u003e14.4 Study of materials containing additives \u003cbr\u003e\u003cbr\u003e\u003cb\u003e15 Mathematical Modelling \u003cbr\u003e \u003cbr\u003e16 Health, Safety and Environmental Issues \u003c\/b\u003e\u003cbr\u003e16.1 Antiblocking agents \u003cbr\u003e16.1.1 Inorganic \u003cbr\u003e16.1.2 Organic \u003cbr\u003e16.2 Release agents \u003cbr\u003e16.2.1 Fluorocompounds \u003cbr\u003e16.2.2 Polydimethylsiloxane \u003cbr\u003e16.2.3 Polymeric waxes \u003cbr\u003e16.2.4 Other chemical compounds \u003cbr\u003e16.3 Slip agents \u003cbr\u003e16.3.1 Acids \u003cbr\u003e16.3.2 Esters \u003cbr\u003e16.3.3 Fatty acid amides \u003cbr\u003e16.3.4 Natural wax \u003cbr\u003e16.3.5 Salts \u003cbr\u003e\u003cbr\u003e\u003cb\u003e17 Regulations and Data \u003c\/b\u003e\u003cbr\u003e17.1 Toxic substance control \u003cbr\u003e17.2. Carcinogenic effect \u003cbr\u003e17.3 Workplace exposure limits \u003cbr\u003e17.4 Food regulatory acts \u003cbr\u003e\u003cbr\u003e\u003cb\u003e18 Personal Protection \u003c\/b\u003e\u003cbr\u003e18.1 Clothing \u003cbr\u003e18.2 Gloves \u003cbr\u003e18.3 Eye protection \u003cbr\u003e18.4 Respiratory protection \u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Antiblocki...
$285.00
{"id":11242221380,"title":"Handbook of Antiblocking, Release, and Slip Additives","handle":"978-1-895198-83-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-83-6 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eThird Edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2014\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eTables: 124\u003c\/div\u003e\n\u003cdiv\u003eFigures: 145\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first ever book written on the subject of antiblocking, release, and slip additives, which are of high industrial importance. The third edition has included all new information which became available in the last 8 years since the publication of the first edition.\u003cbr\u003e\u003cbr\u003eEighteen chemical families form a core of industrial developments, which resulted in a large number of commercial products used by industry as antiblocking, release, and slip additives.\u003cbr\u003e \u003cbr\u003eThese additives are used in the production of materials from 44 generic families of polymers. Polymers containing antiblocking, release, and slip additives are processed by 17 groups of processing methods. The processing methods are used by 29 industries.\u003cbr\u003e\u003cbr\u003eInformation on the use of additives in various polymers is divided into the following sections: Types and concentrations, Effect on polymer and\/or other additives, and Typical formulations.\u003cbr\u003e\u003cbr\u003eInformation on the use of additives in various products is divided into the following sections: Types and concentrations, Reasons for use, Advantages and disadvantages of additive use, Effect on product properties, and Examples of formulations.\u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: Types and concentrations, Effect on a process, Effect on product properties, Advantages and disadvantages of additive use, Examples of formulations.\u003cbr\u003e\u003cbr\u003eA complete analysis of literature and patents available from the first use of these additives until now is included in the book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and environment.\u003cbr\u003e\u003cbr\u003eThe book contains 18 chapters, each addressing the specific aspect of properties and applications of antiblocking, release, and slip agents. In addition, a separate publication is available (Database of Antiblocking, Release, and Slip Agents), which is a database of commercial and generic materials used as antiblocking, release, and slip additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eAlso, Databook of Antiblocking, Release, and Slip Additives has been published last year. Databook of Antiblocking, Release, and Slip Additives contains data on over 300 the most important additives.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from commercial additives \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e2 Generic Types \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of commercial additives \u003cbr\u003e2.2.1 Antiblocking agents \u003cbr\u003e2.2.2 Mold release agents \u003cbr\u003e2.2.3 Slip agents \u003cbr\u003e\u003cbr\u003e3 Standard Methods of Control \u003cbr\u003e3.1 Adhesives \u003cbr\u003e3.2 Floor coverings \u003cbr\u003e3.3 Footwear and walkway surfaces \u003cbr\u003e3.4 Geosynthetics \u003cbr\u003e3.5 Leather and coated fabrics \u003cbr\u003e3.6 Lubricants \u003cbr\u003e3.7 Medical \u003cbr\u003e3.8 Paints and Coatings \u003cbr\u003e3.9 Paper \u003cbr\u003e3.10 Plastics and rubber \u003cbr\u003e3.11 Roads and pavement \u003cbr\u003e3.12 Sport equipment \u003cbr\u003e3.13 Textiles \u003cbr\u003e\u003cbr\u003e4 Transportation and Storage \u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e5 Mechanisms of Action \u003cbr\u003e5.1 Antiblocking agents \u003cbr\u003e5.2 Slip agents \u003cbr\u003e5.3 Release agents \u003cbr\u003e\u003cbr\u003e6 Compatibility and Performance \u003cbr\u003e\u003cbr\u003e7 Diffusion and Migration \u003cbr\u003e7.1 Diffusion \u003cbr\u003e7.2 Distribution of additive in bulk and on surface \u003cbr\u003e7.3 How mobility affects additive selection? \u003cbr\u003e7.4 Additive transfer to material in contact\u003cbr\u003e7.5 Additive loss \u003cbr\u003e\u003cbr\u003e8 Interaction with Other Components of Formulation \u003cbr\u003e8.1 Fillers \u003cbr\u003e8.2 Other components of formulation \u003cbr\u003e8.3 Synergy between surface additives \u003cbr\u003e8.4 Other properties \u003cbr\u003e\u003cbr\u003e9 Processing and Additive Performance \u003cbr\u003e\u003cbr\u003e10 Effect on Product Properties \u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.2 Mar and abrasion \u003cbr\u003e10.3 Shrinkage and warpage \u003cbr\u003e10.4 Blocking force \u003cbr\u003e10.5 Adhesion to mold and demolding \u003cbr\u003e10.6 Coefficient of friction \u003cbr\u003e10.7 Residues on molds \u003cbr\u003e10.8 Residues on molded parts \u003cbr\u003e10.9 Optical properties \u003cbr\u003e10.10 Rheological properties \u003cbr\u003e10.11 Electrical properties \u003cbr\u003e10.12 Structure and orientation \u003cbr\u003e10.13 Thermal aging \u003cbr\u003e10.14 UV radiation \u003cbr\u003e10.15 Effect on other properties \u003cbr\u003e\u003cbr\u003e11 Use in Specific Polymers \u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Cellulose acetate \u003cbr\u003e11.5 Cellulose, acetate, butyrate and propionate \u003cbr\u003e11.6 Cellulose nitrate\u003cbr\u003e11.7 Chlorinated polyvinylchloride \u003cbr\u003e11.8 Chlorosulfonated polyethylene \u003cbr\u003e11.9 Copolymers \u003cbr\u003e11.10 Cyanoacrylates \u003cbr\u003e11.11 Ethyl cellulose \u003cbr\u003e11.12 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.13 Ethylene-propylene rubber, EPR \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.15 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.16 Ionomers \u003cbr\u003e11.17 Nitrile rubber \u003cbr\u003e11.18 Polyamide \u003cbr\u003e11.19 Polybutadiene \u003cbr\u003e11.20 Polycarbonate \u003cbr\u003e11.21 Polyester \u003cbr\u003e11.22 Polyetherimide \u003cbr\u003e11.23 Polyethylene \u003cbr\u003e11.24 Polyimide \u003cbr\u003e11.25 Polylactide \u003cbr\u003e11.26 Polymethylmethacrylate \u003cbr\u003e11.27 Polyoxymethylene \u003cbr\u003e11.28 Poly(N-vinylcarbazole) \u003cbr\u003e11.29 Poly(phenylene ether) \u003cbr\u003e11.30 Polypropylene \u003cbr\u003e11.31 Polystyrene \u003cbr\u003e11.32 Polysulfone \u003cbr\u003e11.33 Poly(phenylene sulfide) \u003cbr\u003e11.34 Polyvinylacetate \u003cbr\u003e11.35 Polyvinylalcohol \u003cbr\u003e11.36 Polyvinylbutyral \u003cbr\u003e11.37 Polyvinylchloride \u003cbr\u003e11.38 Polyurethanes \u003cbr\u003e11.39 Proteins \u003cbr\u003e11.40 Rubber, natural \u003cbr\u003e11.41 Silicone \u003cbr\u003e11.42 Styrene-butadiene rubber \u003cbr\u003e11.43 Styrene-butadiene-styrene \u003cbr\u003e11.44 Starch \u003cbr\u003e\u003cbr\u003e12 Use in Industrial Products \u003cbr\u003e12.1 Adhesives and sealants \u003cbr\u003e12.2 Aerospace \u003cbr\u003e12.3 Agriculture \u003cbr\u003e12.4 Automotive applications \u003cbr\u003e12.5 Bottles \u003cbr\u003e12.6 Ceramic materials \u003cbr\u003e12.7 Composites \u003cbr\u003e12.8 Coated fabrics \u003cbr\u003e12.9 Cosmetics \u003cbr\u003e12.10 Dental materials \u003cbr\u003e12.11 Electronics \u003cbr\u003e12.12 Fibers \u003cbr\u003e12.13 Film \u003cbr\u003e12.14 Food \u003cbr\u003e12.15 Foams \u003cbr\u003e12.16 Gaskets \u003cbr\u003e12.17 Inks, varnishes, and lacquers \u003cbr\u003e12.18 Medical devices \u003cbr\u003e12.19 Membranes \u003cbr\u003e12.20 Paints and coatings \u003cbr\u003e12.21 Pharmaceutical products \u003cbr\u003e12.22 Photographic materials \u003cbr\u003e12.23 Pipes \u003cbr\u003e12.24 Road construction \u003cbr\u003e12.25 Roofing materials \u003cbr\u003e12.26 Synthetic paper \u003cbr\u003e12.27 Tires \u003cbr\u003e12.28 Toys \u003cbr\u003e12.29 Wire \u0026amp; cable \u003cbr\u003e \u003cbr\u003e13 Various Processing Methods \u003cbr\u003e13.1 Blow molding \u003cbr\u003e13.2 Calendering \u003cbr\u003e13.3 Coextrusion \u003cbr\u003e13.4 Compression molding \u003cbr\u003e13.5 Compounding (mixing) \u003cbr\u003e13.6 Dip coating \u003cbr\u003e13.7 Dryblending \u003cbr\u003e13.8 Extrusion \u003cbr\u003e13.9 Extrusion blow molding \u003cbr\u003e13.10 Injection molding \u003cbr\u003e13.11 Lithography \u003cbr\u003e13.12 Printing \u003cbr\u003e13.13 Reaction injection molding \u003cbr\u003e13.14 Rotational molding \u003cbr\u003e13.15 Rubber processing \u003cbr\u003e13.16 Slip casting \u003cbr\u003e13.17 Thermoforming \u003cbr\u003e13.18 Transfer molding \u003cbr\u003e\u003cbr\u003e14 Specialized Analytical Methods \u003cbr\u003e14.1 Identification \u003cbr\u003e14.2 Determination of concentration \u003cbr\u003e14.3 Determination of volatility and molecular motion \u003cbr\u003e14.4 Study of materials containing additives \u003cbr\u003e\u003cbr\u003e15 Mathematical Modelling \u003cbr\u003e \u003cbr\u003e16 Health, Safety and Environmental Issues \u003cbr\u003e16.1 Antiblocking agents \u003cbr\u003e16.1.1 Inorganic \u003cbr\u003e16.1.2 Organic \u003cbr\u003e16.2 Release agents \u003cbr\u003e16.2.1 Fluorocompounds \u003cbr\u003e16.2.2 Polydimethylsiloxane \u003cbr\u003e16.2.3 Polymeric waxes \u003cbr\u003e16.2.4 Other chemical compounds \u003cbr\u003e16.3 Slip agents \u003cbr\u003e16.3.1 Acids \u003cbr\u003e16.3.2 Esters \u003cbr\u003e16.3.3 Fatty acid amides \u003cbr\u003e16.3.4 Natural wax \u003cbr\u003e16.3.5 Salts \u003cbr\u003e\u003cbr\u003e17 Regulations and Data \u003cbr\u003e17.1 Toxic substance control \u003cbr\u003e17.2. Carcinogenic effect \u003cbr\u003e17.3 Workplace exposure limits \u003cbr\u003e17.4 Food regulatory acts \u003cbr\u003e\u003cbr\u003e18 Personal Protection \u003cbr\u003e18.1 Clothing \u003cbr\u003e18.2 Gloves \u003cbr\u003e18.3 Eye protection \u003cbr\u003e18.4 Respiratory protection \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:46-04:00","created_at":"2017-06-22T21:13:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","antiblocking additives","antiblocking agents","book","characteristic properties of commercial additives","formulation","general","modelling","properties","regulations","release agents","slip additives","slip agents"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374404,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Antiblocking, Release, and Slip Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-83-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-83-6.jpg?v=1499887491"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-83-6.jpg?v=1499887491","options":["Title"],"media":[{"alt":null,"id":354809217117,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-83-6.jpg?v=1499887491"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-83-6.jpg?v=1499887491","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-83-6 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eThird Edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2014\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eTables: 124\u003c\/div\u003e\n\u003cdiv\u003eFigures: 145\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first ever book written on the subject of antiblocking, release, and slip additives, which are of high industrial importance. The third edition has included all new information which became available in the last 8 years since the publication of the first edition.\u003cbr\u003e\u003cbr\u003eEighteen chemical families form a core of industrial developments, which resulted in a large number of commercial products used by industry as antiblocking, release, and slip additives.\u003cbr\u003e \u003cbr\u003eThese additives are used in the production of materials from 44 generic families of polymers. Polymers containing antiblocking, release, and slip additives are processed by 17 groups of processing methods. The processing methods are used by 29 industries.\u003cbr\u003e\u003cbr\u003eInformation on the use of additives in various polymers is divided into the following sections: Types and concentrations, Effect on polymer and\/or other additives, and Typical formulations.\u003cbr\u003e\u003cbr\u003eInformation on the use of additives in various products is divided into the following sections: Types and concentrations, Reasons for use, Advantages and disadvantages of additive use, Effect on product properties, and Examples of formulations.\u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: Types and concentrations, Effect on a process, Effect on product properties, Advantages and disadvantages of additive use, Examples of formulations.\u003cbr\u003e\u003cbr\u003eA complete analysis of literature and patents available from the first use of these additives until now is included in the book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and environment.\u003cbr\u003e\u003cbr\u003eThe book contains 18 chapters, each addressing the specific aspect of properties and applications of antiblocking, release, and slip agents. In addition, a separate publication is available (Database of Antiblocking, Release, and Slip Agents), which is a database of commercial and generic materials used as antiblocking, release, and slip additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eAlso, Databook of Antiblocking, Release, and Slip Additives has been published last year. Databook of Antiblocking, Release, and Slip Additives contains data on over 300 the most important additives.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from commercial additives \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e2 Generic Types \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of commercial additives \u003cbr\u003e2.2.1 Antiblocking agents \u003cbr\u003e2.2.2 Mold release agents \u003cbr\u003e2.2.3 Slip agents \u003cbr\u003e\u003cbr\u003e3 Standard Methods of Control \u003cbr\u003e3.1 Adhesives \u003cbr\u003e3.2 Floor coverings \u003cbr\u003e3.3 Footwear and walkway surfaces \u003cbr\u003e3.4 Geosynthetics \u003cbr\u003e3.5 Leather and coated fabrics \u003cbr\u003e3.6 Lubricants \u003cbr\u003e3.7 Medical \u003cbr\u003e3.8 Paints and Coatings \u003cbr\u003e3.9 Paper \u003cbr\u003e3.10 Plastics and rubber \u003cbr\u003e3.11 Roads and pavement \u003cbr\u003e3.12 Sport equipment \u003cbr\u003e3.13 Textiles \u003cbr\u003e\u003cbr\u003e4 Transportation and Storage \u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e5 Mechanisms of Action \u003cbr\u003e5.1 Antiblocking agents \u003cbr\u003e5.2 Slip agents \u003cbr\u003e5.3 Release agents \u003cbr\u003e\u003cbr\u003e6 Compatibility and Performance \u003cbr\u003e\u003cbr\u003e7 Diffusion and Migration \u003cbr\u003e7.1 Diffusion \u003cbr\u003e7.2 Distribution of additive in bulk and on surface \u003cbr\u003e7.3 How mobility affects additive selection? \u003cbr\u003e7.4 Additive transfer to material in contact\u003cbr\u003e7.5 Additive loss \u003cbr\u003e\u003cbr\u003e8 Interaction with Other Components of Formulation \u003cbr\u003e8.1 Fillers \u003cbr\u003e8.2 Other components of formulation \u003cbr\u003e8.3 Synergy between surface additives \u003cbr\u003e8.4 Other properties \u003cbr\u003e\u003cbr\u003e9 Processing and Additive Performance \u003cbr\u003e\u003cbr\u003e10 Effect on Product Properties \u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.2 Mar and abrasion \u003cbr\u003e10.3 Shrinkage and warpage \u003cbr\u003e10.4 Blocking force \u003cbr\u003e10.5 Adhesion to mold and demolding \u003cbr\u003e10.6 Coefficient of friction \u003cbr\u003e10.7 Residues on molds \u003cbr\u003e10.8 Residues on molded parts \u003cbr\u003e10.9 Optical properties \u003cbr\u003e10.10 Rheological properties \u003cbr\u003e10.11 Electrical properties \u003cbr\u003e10.12 Structure and orientation \u003cbr\u003e10.13 Thermal aging \u003cbr\u003e10.14 UV radiation \u003cbr\u003e10.15 Effect on other properties \u003cbr\u003e\u003cbr\u003e11 Use in Specific Polymers \u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Cellulose acetate \u003cbr\u003e11.5 Cellulose, acetate, butyrate and propionate \u003cbr\u003e11.6 Cellulose nitrate\u003cbr\u003e11.7 Chlorinated polyvinylchloride \u003cbr\u003e11.8 Chlorosulfonated polyethylene \u003cbr\u003e11.9 Copolymers \u003cbr\u003e11.10 Cyanoacrylates \u003cbr\u003e11.11 Ethyl cellulose \u003cbr\u003e11.12 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.13 Ethylene-propylene rubber, EPR \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.15 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.16 Ionomers \u003cbr\u003e11.17 Nitrile rubber \u003cbr\u003e11.18 Polyamide \u003cbr\u003e11.19 Polybutadiene \u003cbr\u003e11.20 Polycarbonate \u003cbr\u003e11.21 Polyester \u003cbr\u003e11.22 Polyetherimide \u003cbr\u003e11.23 Polyethylene \u003cbr\u003e11.24 Polyimide \u003cbr\u003e11.25 Polylactide \u003cbr\u003e11.26 Polymethylmethacrylate \u003cbr\u003e11.27 Polyoxymethylene \u003cbr\u003e11.28 Poly(N-vinylcarbazole) \u003cbr\u003e11.29 Poly(phenylene ether) \u003cbr\u003e11.30 Polypropylene \u003cbr\u003e11.31 Polystyrene \u003cbr\u003e11.32 Polysulfone \u003cbr\u003e11.33 Poly(phenylene sulfide) \u003cbr\u003e11.34 Polyvinylacetate \u003cbr\u003e11.35 Polyvinylalcohol \u003cbr\u003e11.36 Polyvinylbutyral \u003cbr\u003e11.37 Polyvinylchloride \u003cbr\u003e11.38 Polyurethanes \u003cbr\u003e11.39 Proteins \u003cbr\u003e11.40 Rubber, natural \u003cbr\u003e11.41 Silicone \u003cbr\u003e11.42 Styrene-butadiene rubber \u003cbr\u003e11.43 Styrene-butadiene-styrene \u003cbr\u003e11.44 Starch \u003cbr\u003e\u003cbr\u003e12 Use in Industrial Products \u003cbr\u003e12.1 Adhesives and sealants \u003cbr\u003e12.2 Aerospace \u003cbr\u003e12.3 Agriculture \u003cbr\u003e12.4 Automotive applications \u003cbr\u003e12.5 Bottles \u003cbr\u003e12.6 Ceramic materials \u003cbr\u003e12.7 Composites \u003cbr\u003e12.8 Coated fabrics \u003cbr\u003e12.9 Cosmetics \u003cbr\u003e12.10 Dental materials \u003cbr\u003e12.11 Electronics \u003cbr\u003e12.12 Fibers \u003cbr\u003e12.13 Film \u003cbr\u003e12.14 Food \u003cbr\u003e12.15 Foams \u003cbr\u003e12.16 Gaskets \u003cbr\u003e12.17 Inks, varnishes, and lacquers \u003cbr\u003e12.18 Medical devices \u003cbr\u003e12.19 Membranes \u003cbr\u003e12.20 Paints and coatings \u003cbr\u003e12.21 Pharmaceutical products \u003cbr\u003e12.22 Photographic materials \u003cbr\u003e12.23 Pipes \u003cbr\u003e12.24 Road construction \u003cbr\u003e12.25 Roofing materials \u003cbr\u003e12.26 Synthetic paper \u003cbr\u003e12.27 Tires \u003cbr\u003e12.28 Toys \u003cbr\u003e12.29 Wire \u0026amp; cable \u003cbr\u003e \u003cbr\u003e13 Various Processing Methods \u003cbr\u003e13.1 Blow molding \u003cbr\u003e13.2 Calendering \u003cbr\u003e13.3 Coextrusion \u003cbr\u003e13.4 Compression molding \u003cbr\u003e13.5 Compounding (mixing) \u003cbr\u003e13.6 Dip coating \u003cbr\u003e13.7 Dryblending \u003cbr\u003e13.8 Extrusion \u003cbr\u003e13.9 Extrusion blow molding \u003cbr\u003e13.10 Injection molding \u003cbr\u003e13.11 Lithography \u003cbr\u003e13.12 Printing \u003cbr\u003e13.13 Reaction injection molding \u003cbr\u003e13.14 Rotational molding \u003cbr\u003e13.15 Rubber processing \u003cbr\u003e13.16 Slip casting \u003cbr\u003e13.17 Thermoforming \u003cbr\u003e13.18 Transfer molding \u003cbr\u003e\u003cbr\u003e14 Specialized Analytical Methods \u003cbr\u003e14.1 Identification \u003cbr\u003e14.2 Determination of concentration \u003cbr\u003e14.3 Determination of volatility and molecular motion \u003cbr\u003e14.4 Study of materials containing additives \u003cbr\u003e\u003cbr\u003e15 Mathematical Modelling \u003cbr\u003e \u003cbr\u003e16 Health, Safety and Environmental Issues \u003cbr\u003e16.1 Antiblocking agents \u003cbr\u003e16.1.1 Inorganic \u003cbr\u003e16.1.2 Organic \u003cbr\u003e16.2 Release agents \u003cbr\u003e16.2.1 Fluorocompounds \u003cbr\u003e16.2.2 Polydimethylsiloxane \u003cbr\u003e16.2.3 Polymeric waxes \u003cbr\u003e16.2.4 Other chemical compounds \u003cbr\u003e16.3 Slip agents \u003cbr\u003e16.3.1 Acids \u003cbr\u003e16.3.2 Esters \u003cbr\u003e16.3.3 Fatty acid amides \u003cbr\u003e16.3.4 Natural wax \u003cbr\u003e16.3.5 Salts \u003cbr\u003e\u003cbr\u003e17 Regulations and Data \u003cbr\u003e17.1 Toxic substance control \u003cbr\u003e17.2. Carcinogenic effect \u003cbr\u003e17.3 Workplace exposure limits \u003cbr\u003e17.4 Food regulatory acts \u003cbr\u003e\u003cbr\u003e18 Personal Protection \u003cbr\u003e18.1 Clothing \u003cbr\u003e18.2 Gloves \u003cbr\u003e18.3 Eye protection \u003cbr\u003e18.4 Respiratory protection \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Antioxidants
$285.00
{"id":4534951215197,"title":"Handbook of Antioxidants","handle":"handbook-of-antioxidants","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-59-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFirst Edition\u003cbr\u003eNumber of pages 238+vi\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Antioxidants contains information on both natural and man-made antioxidants available in natural products and added to numerous industrial applications. The book contains 5 chapters, each discussing different aspect of phenomena occurring when materials are exposed to ambient air which contains oxygen, ozone, singlet oxygen, and many other oxidizing species (radicals).\u003cbr\u003e\u003cbr\u003eThe introduction includes discussion of general concepts related to antioxidants and their application. This is followed in Chapter 2 by information on existing natural and synthetic antioxidants which are presented in the form of tables characterizing their general properties and applications. \u003cbr\u003e\u003cbr\u003eChapter 3 contains information on the physics and chemistry of oxidation and antioxidation, including the influence of UV radiation. In this chapter, peculiarities of oxidation and its prevention by antioxidants are discussed for different groups of antioxidants. In total, 25 groups of antioxidants are discussed in separate sections of this chapter. The focus of the evaluation of research findings is on the mechanism of action of antioxidants, their stability, and eventual methods of its improvement.\u003cbr\u003e\u003cbr\u003eA separate discussion of the effects of oxidation and photooxidation on living cells is included in Chapter 4. In the introduction, the differences and similarities between the behavior of polymers and livings things and their use of antioxidants are briefly outlined. The opening is followed by separate sections discussing oxidation phenomena in microorganisms, plants, fish, animals, and humans.\u003cbr\u003e\u003cbr\u003eChapter 5 constitutes the technological part of the book, which includes the analysis of progress and applications of antioxidants in different polymers and rubbers. In total, 66 polymers are discussed in separate sections of this chapter. The main subjects of this discussion include mechanisms of degradation and its prevention by antioxidants. Selection of the most suitable antioxidants and methods of their use constitutes one of the main subjects of discussion. This part of the book heavily relies on patent literature in addition to the scientific findings. The emphasis is given to the most recent applications rather than a historical review of applications.\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Databook of Antioxidants which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential in medicine, pharmaceutical science and technology, automotive industry, aerospace, oil industry, polymers and plastics, rubber, food preservation, cosmetics, natural oil production, lubrication, and many product groups derived from polymers and rubber.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 3 Typical Groups of Antioxidants\u003cbr\u003e2.1 Acids and their esters\u003cbr\u003e2.2 Algae\u003cbr\u003e2.3 Amines\u003cbr\u003e2.4 Anthocyanidins\u003cbr\u003e2.5 Ascorbates\u003cbr\u003e2.6 Benzofuranones\u003cbr\u003e2.7 Benzimidazoles\u003cbr\u003e2.8 Benzoquinones\u003cbr\u003e2.9 Biopolyphenols\u003cbr\u003e2.10 Curcumin\u003cbr\u003e2.11 Coumarin\u003cbr\u003e2.12 Enzymes\u003cbr\u003e2.13 Extracts\u003cbr\u003e2.14 Flavonoids\u003cbr\u003e2.15 Graphene\u003cbr\u003e2.16 Hydrazide metal deactivators\u003cbr\u003e2.17 Hydroquinidines\u003cbr\u003e2.18 Hydroquinone\u003cbr\u003e2.19 Hydroxylamines\u003cbr\u003e2.20 Isoflavones\u003cbr\u003e2.21 Lignanamide\u003cbr\u003e2.22 Liposomes\u003cbr\u003e2.23 Mitochondria-targeted antioxidants\u003cbr\u003e2.24 Oil-derivatives\u003cbr\u003e2.25 Peptides\u003cbr\u003e2.26 Phenolics\u003cbr\u003e2.27 Phosphites, diphosphite, and diphosphonites\u003cbr\u003e2.28 Polyphenols\u003cbr\u003e2.29 Stilbene derivatives\u003cbr\u003e2.30 Sulfur-containing compounds\u003cbr\u003e2.31 Terpenoids\u003cbr\u003e2.32 Tocopherols\u003cbr\u003e3 Physics and Chemistry of Oxidation and Antioxidants \u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Amines\u003cbr\u003e3.3 Anthocyanidins\u003cbr\u003e3.4 Ascorbates\u003cbr\u003e3.5 Benzofuranones\u003cbr\u003e3.6 Benzimidazoles\u003cbr\u003e3.7 Benzoquinones\u003cbr\u003e3.8 Curcumin\u003cbr\u003e3.9 Coumarin\u003cbr\u003e3.10 Enzymes\u003cbr\u003e3.11 Flavonoids\u003cbr\u003e3.12 Graphene\u003cbr\u003e3.13 Hydroquinones\u003cbr\u003e3.14 Hydroxylamines\u003cbr\u003e3.15 Isoflavones\u003cbr\u003e3.16 Lignanamide\u003cbr\u003e3.17 Oil components\u003cbr\u003e3.18 Peptides\u003cbr\u003e3.19 Phenolics\u003cbr\u003e3.20 Phosphites\u003cbr\u003e3.21 Polyphenols\u003cbr\u003e3.22 Stilbene derivatives\u003cbr\u003e3.23 Sulfur-containing compounds\u003cbr\u003e3.24 Terpenoids\u003cbr\u003e3.25 Tocopherols\u003cbr\u003e4 Oxidation in Living Cells\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Microorganisms\u003cbr\u003e4.3 Plants\u003cbr\u003e4.4 Fish\u003cbr\u003e4.5 Animals\u003cbr\u003e4.6 Humans\u003cbr\u003e5 Prevention of Oxidation of Selected Polymers and Rubbers\u003cbr\u003e5.1 ABS (Acrylonitrile-butadiene-styrene)\u003cbr\u003e5.2 AK (alkyd resin)\u003cbr\u003e5.3 C (cellulose)\u003cbr\u003e5.4 CA (cellulose acetate)\u003cbr\u003e5.5 CAR (carrageenan)\u003cbr\u003e5.6 CHI (chitosan)\u003cbr\u003e5.7 CMC (carboxymethyl cellulose)\u003cbr\u003e5.8 CN (cellulose nitrate)\u003cbr\u003e5.9 COC (cyclic olefin copolymer)\u003cbr\u003e5.10 CPE (chlorinated polyethylene)\u003cbr\u003e5.11 CPVC (chlorinated poly(vinyl chloride))\u003cbr\u003e5.12 CR (polychloroprene)\u003cbr\u003e5.13 CY (cyanoacrylate)\u003cbr\u003e5.14 EC (ethyl cellulose)\u003cbr\u003e5.15 ECTFE (poly(ethylene-co-chlorotrifluoroethylene))\u003cbr\u003e5.16 EP (epoxy resin)\u003cbr\u003e5.17 EPDM (ethylene-propylene diene terpolymer)\u003cbr\u003e5.18 EPR (ethylene-propylene rubber)\u003cbr\u003e5.19 EVAc (ethylene-vinyl acetate copolymer)\u003cbr\u003e5.20 EVOH (ethylene-vinyl alcohol copolymer)\u003cbr\u003e5.21 GEL (gelatin)\u003cbr\u003e5.22 HDPE (high-density polyethylene)\u003cbr\u003e5.23 LDPE (low-density polyethylene)\u003cbr\u003e5.24 LLDPE (linear low-density polyethylene)\u003cbr\u003e5.25 NBR (acrylonitrile-butadiene elastomer)\u003cbr\u003e5.26 PA (polyamide)\u003cbr\u003e5.27 PANI (polyaniline)\u003cbr\u003e5.28 PB (polybutylene)\u003cbr\u003e5.29 PBD (polybutadiene)\u003cbr\u003e5.30 PC (polycarbonate)\u003cbr\u003e5.31 PCL (poly(ε-caprolactone))\u003cbr\u003e5.32 PDL (polylysine)\u003cbr\u003e5.33 PDMS (polydimethylsiloxane)\u003cbr\u003e5.34 PEEK (polyetheretherketone)\u003cbr\u003e5.35 PET (poly(ethylene terephthalate))\u003cbr\u003e5.36 PEX (silane-crosslinkable polyethylene)\u003cbr\u003e5.37 PFPE (perfluoropolyether)\u003cbr\u003e5.38 PHB (poly(3-hydroxybutyrate))\u003cbr\u003e5.39 pHEMA (poly(2-hydroxyethyl methacrylate))\u003cbr\u003e5.40 PI (polyimide)\u003cbr\u003e5.41 PIB (polyisobutylene)\u003cbr\u003e5.42 PIP (polyisoprene)\u003cbr\u003e5.43 PK (polyketone)\u003cbr\u003e5.44 PLA (poly(lactic acid))\u003cbr\u003e5.45 PMMA (polymethylmethacrylate)\u003cbr\u003e5.46 PP (polypropylene)\u003cbr\u003e5.47 PPG (poly(propylene glycol))\u003cbr\u003e5.48 PPS (poly(p-phenylene sulfide))\u003cbr\u003e5.49 PPy (polypyrrole)\u003cbr\u003e5.50 PR (proteins)\u003cbr\u003e5.51 PS (polystyrene)\u003cbr\u003e5.52 PSR (polysulfide)\u003cbr\u003e5.53 PSU (polysulfone)\u003cbr\u003e5.54 PU (polyurethane)\u003cbr\u003e5.55 PVAl (poly(vinyl alcohol))\u003cbr\u003e5.56 PVB (poly(vinyl butyrate))\u003cbr\u003e5.57 PVC (poly(vinyl chloride))\u003cbr\u003e5.58 PVP (poly(N-vinyl pyrrolidone))\u003cbr\u003e5.59 SBC (styrene-butadiene block copolymer)\u003cbr\u003e5.60 SBR (poly(styrene-co-butadiene))\u003cbr\u003e5.61 SBS (styrene-butadiene-styrene triblock copolymer)\u003cbr\u003e5.62 SEBS (styrene-ethylene-butylene-styrene triblock copolymer)\u003cbr\u003e5.63 SIS (styrene-isoprene-styrene block copolymer)\u003cbr\u003e5.64 ST (starch)\u003cbr\u003e5.65 UHMWPE (ultrahigh molecular weight polyethylene)\u003cbr\u003e5.66 XG (xanthan gum)\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:12:19-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","plastics"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943855341661,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Antioxidants","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-59-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885598-Case.png?v=1581110181"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885598-Case.png?v=1581110181","options":["Title"],"media":[{"alt":null,"id":6968057430109,"position":1,"preview_image":{"aspect_ratio":0.651,"height":450,"width":293,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885598-Case.png?v=1581110181"},"aspect_ratio":0.651,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885598-Case.png?v=1581110181","width":293}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-59-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFirst Edition\u003cbr\u003eNumber of pages 238+vi\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Antioxidants contains information on both natural and man-made antioxidants available in natural products and added to numerous industrial applications. The book contains 5 chapters, each discussing different aspect of phenomena occurring when materials are exposed to ambient air which contains oxygen, ozone, singlet oxygen, and many other oxidizing species (radicals).\u003cbr\u003e\u003cbr\u003eThe introduction includes discussion of general concepts related to antioxidants and their application. This is followed in Chapter 2 by information on existing natural and synthetic antioxidants which are presented in the form of tables characterizing their general properties and applications. \u003cbr\u003e\u003cbr\u003eChapter 3 contains information on the physics and chemistry of oxidation and antioxidation, including the influence of UV radiation. In this chapter, peculiarities of oxidation and its prevention by antioxidants are discussed for different groups of antioxidants. In total, 25 groups of antioxidants are discussed in separate sections of this chapter. The focus of the evaluation of research findings is on the mechanism of action of antioxidants, their stability, and eventual methods of its improvement.\u003cbr\u003e\u003cbr\u003eA separate discussion of the effects of oxidation and photooxidation on living cells is included in Chapter 4. In the introduction, the differences and similarities between the behavior of polymers and livings things and their use of antioxidants are briefly outlined. The opening is followed by separate sections discussing oxidation phenomena in microorganisms, plants, fish, animals, and humans.\u003cbr\u003e\u003cbr\u003eChapter 5 constitutes the technological part of the book, which includes the analysis of progress and applications of antioxidants in different polymers and rubbers. In total, 66 polymers are discussed in separate sections of this chapter. The main subjects of this discussion include mechanisms of degradation and its prevention by antioxidants. Selection of the most suitable antioxidants and methods of their use constitutes one of the main subjects of discussion. This part of the book heavily relies on patent literature in addition to the scientific findings. The emphasis is given to the most recent applications rather than a historical review of applications.\u003cbr\u003e\u003cbr\u003eThis book is an excellent companion to the Databook of Antioxidants which has also been published recently. Both books supplement each other without repeating the same information – one contains data another theory, mechanisms of action, practical effects and implications of application.\u003cbr\u003e\u003cbr\u003eThe information contained in both books is essential in medicine, pharmaceutical science and technology, automotive industry, aerospace, oil industry, polymers and plastics, rubber, food preservation, cosmetics, natural oil production, lubrication, and many product groups derived from polymers and rubber.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 3 Typical Groups of Antioxidants\u003cbr\u003e2.1 Acids and their esters\u003cbr\u003e2.2 Algae\u003cbr\u003e2.3 Amines\u003cbr\u003e2.4 Anthocyanidins\u003cbr\u003e2.5 Ascorbates\u003cbr\u003e2.6 Benzofuranones\u003cbr\u003e2.7 Benzimidazoles\u003cbr\u003e2.8 Benzoquinones\u003cbr\u003e2.9 Biopolyphenols\u003cbr\u003e2.10 Curcumin\u003cbr\u003e2.11 Coumarin\u003cbr\u003e2.12 Enzymes\u003cbr\u003e2.13 Extracts\u003cbr\u003e2.14 Flavonoids\u003cbr\u003e2.15 Graphene\u003cbr\u003e2.16 Hydrazide metal deactivators\u003cbr\u003e2.17 Hydroquinidines\u003cbr\u003e2.18 Hydroquinone\u003cbr\u003e2.19 Hydroxylamines\u003cbr\u003e2.20 Isoflavones\u003cbr\u003e2.21 Lignanamide\u003cbr\u003e2.22 Liposomes\u003cbr\u003e2.23 Mitochondria-targeted antioxidants\u003cbr\u003e2.24 Oil-derivatives\u003cbr\u003e2.25 Peptides\u003cbr\u003e2.26 Phenolics\u003cbr\u003e2.27 Phosphites, diphosphite, and diphosphonites\u003cbr\u003e2.28 Polyphenols\u003cbr\u003e2.29 Stilbene derivatives\u003cbr\u003e2.30 Sulfur-containing compounds\u003cbr\u003e2.31 Terpenoids\u003cbr\u003e2.32 Tocopherols\u003cbr\u003e3 Physics and Chemistry of Oxidation and Antioxidants \u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Amines\u003cbr\u003e3.3 Anthocyanidins\u003cbr\u003e3.4 Ascorbates\u003cbr\u003e3.5 Benzofuranones\u003cbr\u003e3.6 Benzimidazoles\u003cbr\u003e3.7 Benzoquinones\u003cbr\u003e3.8 Curcumin\u003cbr\u003e3.9 Coumarin\u003cbr\u003e3.10 Enzymes\u003cbr\u003e3.11 Flavonoids\u003cbr\u003e3.12 Graphene\u003cbr\u003e3.13 Hydroquinones\u003cbr\u003e3.14 Hydroxylamines\u003cbr\u003e3.15 Isoflavones\u003cbr\u003e3.16 Lignanamide\u003cbr\u003e3.17 Oil components\u003cbr\u003e3.18 Peptides\u003cbr\u003e3.19 Phenolics\u003cbr\u003e3.20 Phosphites\u003cbr\u003e3.21 Polyphenols\u003cbr\u003e3.22 Stilbene derivatives\u003cbr\u003e3.23 Sulfur-containing compounds\u003cbr\u003e3.24 Terpenoids\u003cbr\u003e3.25 Tocopherols\u003cbr\u003e4 Oxidation in Living Cells\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Microorganisms\u003cbr\u003e4.3 Plants\u003cbr\u003e4.4 Fish\u003cbr\u003e4.5 Animals\u003cbr\u003e4.6 Humans\u003cbr\u003e5 Prevention of Oxidation of Selected Polymers and Rubbers\u003cbr\u003e5.1 ABS (Acrylonitrile-butadiene-styrene)\u003cbr\u003e5.2 AK (alkyd resin)\u003cbr\u003e5.3 C (cellulose)\u003cbr\u003e5.4 CA (cellulose acetate)\u003cbr\u003e5.5 CAR (carrageenan)\u003cbr\u003e5.6 CHI (chitosan)\u003cbr\u003e5.7 CMC (carboxymethyl cellulose)\u003cbr\u003e5.8 CN (cellulose nitrate)\u003cbr\u003e5.9 COC (cyclic olefin copolymer)\u003cbr\u003e5.10 CPE (chlorinated polyethylene)\u003cbr\u003e5.11 CPVC (chlorinated poly(vinyl chloride))\u003cbr\u003e5.12 CR (polychloroprene)\u003cbr\u003e5.13 CY (cyanoacrylate)\u003cbr\u003e5.14 EC (ethyl cellulose)\u003cbr\u003e5.15 ECTFE (poly(ethylene-co-chlorotrifluoroethylene))\u003cbr\u003e5.16 EP (epoxy resin)\u003cbr\u003e5.17 EPDM (ethylene-propylene diene terpolymer)\u003cbr\u003e5.18 EPR (ethylene-propylene rubber)\u003cbr\u003e5.19 EVAc (ethylene-vinyl acetate copolymer)\u003cbr\u003e5.20 EVOH (ethylene-vinyl alcohol copolymer)\u003cbr\u003e5.21 GEL (gelatin)\u003cbr\u003e5.22 HDPE (high-density polyethylene)\u003cbr\u003e5.23 LDPE (low-density polyethylene)\u003cbr\u003e5.24 LLDPE (linear low-density polyethylene)\u003cbr\u003e5.25 NBR (acrylonitrile-butadiene elastomer)\u003cbr\u003e5.26 PA (polyamide)\u003cbr\u003e5.27 PANI (polyaniline)\u003cbr\u003e5.28 PB (polybutylene)\u003cbr\u003e5.29 PBD (polybutadiene)\u003cbr\u003e5.30 PC (polycarbonate)\u003cbr\u003e5.31 PCL (poly(ε-caprolactone))\u003cbr\u003e5.32 PDL (polylysine)\u003cbr\u003e5.33 PDMS (polydimethylsiloxane)\u003cbr\u003e5.34 PEEK (polyetheretherketone)\u003cbr\u003e5.35 PET (poly(ethylene terephthalate))\u003cbr\u003e5.36 PEX (silane-crosslinkable polyethylene)\u003cbr\u003e5.37 PFPE (perfluoropolyether)\u003cbr\u003e5.38 PHB (poly(3-hydroxybutyrate))\u003cbr\u003e5.39 pHEMA (poly(2-hydroxyethyl methacrylate))\u003cbr\u003e5.40 PI (polyimide)\u003cbr\u003e5.41 PIB (polyisobutylene)\u003cbr\u003e5.42 PIP (polyisoprene)\u003cbr\u003e5.43 PK (polyketone)\u003cbr\u003e5.44 PLA (poly(lactic acid))\u003cbr\u003e5.45 PMMA (polymethylmethacrylate)\u003cbr\u003e5.46 PP (polypropylene)\u003cbr\u003e5.47 PPG (poly(propylene glycol))\u003cbr\u003e5.48 PPS (poly(p-phenylene sulfide))\u003cbr\u003e5.49 PPy (polypyrrole)\u003cbr\u003e5.50 PR (proteins)\u003cbr\u003e5.51 PS (polystyrene)\u003cbr\u003e5.52 PSR (polysulfide)\u003cbr\u003e5.53 PSU (polysulfone)\u003cbr\u003e5.54 PU (polyurethane)\u003cbr\u003e5.55 PVAl (poly(vinyl alcohol))\u003cbr\u003e5.56 PVB (poly(vinyl butyrate))\u003cbr\u003e5.57 PVC (poly(vinyl chloride))\u003cbr\u003e5.58 PVP (poly(N-vinyl pyrrolidone))\u003cbr\u003e5.59 SBC (styrene-butadiene block copolymer)\u003cbr\u003e5.60 SBR (poly(styrene-co-butadiene))\u003cbr\u003e5.61 SBS (styrene-butadiene-styrene triblock copolymer)\u003cbr\u003e5.62 SEBS (styrene-ethylene-butylene-styrene triblock copolymer)\u003cbr\u003e5.63 SIS (styrene-isoprene-styrene block copolymer)\u003cbr\u003e5.64 ST (starch)\u003cbr\u003e5.65 UHMWPE (ultrahigh molecular weight polyethylene)\u003cbr\u003e5.66 XG (xanthan gum)\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Handbook of Antistatics
$265.00
{"id":11242205060,"title":"Handbook of Antistatics","handle":"1-895198-34-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jürgen Pionteck \u0026amp; George Wypych \u003cbr\u003eISBN 1-895198-34-8 \u003cbr\u003e\u003cbr\u003ePages 359,Tables 140, Figures 110\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first comprehensive book written on the subject of antistatic additives. A few previously published books are either very old or they constitute short reviews or chapters in books on polymer additives.\u003cbr\u003e\u003cbr\u003eThe present volume includes information based on the complete review of existing literature and patented inventions on additives capable to modify properties of materials in such a manner that they become antistatic, conductive, and\/or EMI shielding.\u003cbr\u003e\u003cbr\u003eThirteen chemical families of materials are used for a production of antistatic additives. There are about 700 commercial products derived from these developments and used by industry to change electric conductivity of materials. The properties of these commercial products are given in the extensive database of antistatics which constitutes a separate publication but useful together with this handbook (see separate publication: Database of Antistatics). The information in both publications is not repeated but it is complementary.\u003cbr\u003e\u003cbr\u003eAntistatic additives are used in the production of materials from 57 generic families of polymers and numerous polymer blends having excellent conductive properties. Polymers containing antistatic additives are processed by 18 groups of processing methods and, in addition, 9 incorporation methods are used on the commercial scale with these products. The processing methods are used by 40 industries, listed in the box on the left side of the page, for the manufacture of a large number of commercial products.\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various polymers is divided into the following sections: types and concentrations of antistatics used, the potential effect of antistatics on polymer and\/or other additives, and examples of typical formulations used for processing of polymers containing the antistatic additive.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various products is divided into the following sections: types and concentrations of antistatics used by a particular industry, reasons for their use, advantages, and disadvantages of the use of different additives, the effect on product properties, and examples of formulations. \u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: types and concentrations of antistatics, eventual influence on processing, and examples of formulations. The goal of this chapter is to provide information on the amount and the type of antistatics used in each processing method, discuss the eventual influence of antistatics on a process and give examples of typical formulations used by the discussed here processing methods.\u003cbr\u003e\u003cbr\u003eThe book contains 22 chapters, each addressing specific aspect of properties and applications of antistatic agents. Please review the attached table contents for a detailed list of topics, ideas, and reviews included in this comprehensive volume. In addition, a separate publication is also available (Database of Antistatics), which is a database of commercial materials used as antistatic additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Historical developments in studies on static electricity \u003cbr\u003e1.2 The triboelectric series and electrostatic charging \u003cbr\u003e1.3 Electrical properties of plastics \u003cbr\u003e1.3.1 Electrical conductivity \u003cbr\u003e1.3.2 Dielectric behavior of plastics in low electric fields \u003cbr\u003e1.3.3 Electrostatic charging of dielectric polymers \u003cbr\u003e1.3.4 Stability of plastics in high electric fields \u003cbr\u003e1.4 Antistatic agents \u003cbr\u003e1.4.1 Classification of antistatics \u003cbr\u003e1.4.2 Expectations from antistatics \u003cbr\u003e1.5 Definitions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Types of Antistatic Agents \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial antistatic agents \u003cbr\u003e2.2.1 Amines (quaternary and others) \u003cbr\u003e2.2.2 Carbon black \u003cbr\u003e2.2.3 Esters \u003cbr\u003e2.2.4 Fibers \u003cbr\u003e2.2.4.1 Metal \u003cbr\u003e2.2.4.2 Carbon and graphite fibers \u003cbr\u003e2.2.4.3 Others \u003cbr\u003e2.2.5 Inorganic materials \u003cbr\u003e2.2.6 Masterbatches \u003cbr\u003e2.2.7 Metal powders and nanopowders \u003cbr\u003e2.2.8 Nanotubes \u003cbr\u003e2.2.9 Polyethylene glycol \u003cbr\u003e2.2.10 Polymers \u003cbr\u003e2.2.10.1 Inherently conductive \u003cbr\u003e2.2.10.2 Containing antistatic \u003cbr\u003e\u003cbr\u003e3 Typical Methods of Quality Control of Antistatics \u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Brookfield viscosity \u003cbr\u003e3.4 Capacitance \u003cbr\u003e3.5 Chemical resistance \u003cbr\u003e3.6 Color \u003cbr\u003e3.7 Compression set \u003cbr\u003e3.8 Dielectric breakdown voltage \u003cbr\u003e3.9 Dielectric constant (relative permittivity) \u003cbr\u003e3.10 Dielectric strength \u003cbr\u003e3.11 Dissipation factor \u003cbr\u003e3.12 Dry arc resistance \u003cbr\u003e3.13 Electrical resistivity \u003cbr\u003e3.14 Erosion resistance \u003cbr\u003e3.15 Flash and fire point \u003cbr\u003e3.16 Hardness \u003cbr\u003e3.17 Kinematic viscosity \u003cbr\u003e3.18 Loss index \u003cbr\u003e3.19 Marking (classification) \u003cbr\u003e3.20 Melt rheology \u003cbr\u003e3.21 Refractive index \u003cbr\u003e3.22 Residual contamination \u003cbr\u003e3.23 Saponification value \u003cbr\u003e3.24 Specific gravity \u003cbr\u003e3.25 Specifications for commercial products and standard test methods \u003cbr\u003e3.25.1 Adhesive bonding \u003cbr\u003e3.25.2 Aviation and distillate fuels \u003cbr\u003e3.25.3 Conductive adhesives \u003cbr\u003e3.25.4 Conveyor belting \u003cbr\u003e3.25.5 Crosslinkable ethylene plastics \u003cbr\u003e3.25.6 Electrical insulating materials \u003cbr\u003e3.25.7 Electrocoat bath \u003cbr\u003e3.25.8 Electronic devices \u003cbr\u003e3.25.9 Endless belts \u003cbr\u003e3.25.10 Extruded film and tape \u003cbr\u003e3.25.11 Flooring \u003cbr\u003e3.25.12 Footwear (protective) \u003cbr\u003e3.25.13 Hoses \u003cbr\u003e3.25.14 Insulation shielding materials \u003cbr\u003e3.25.15 Liquid paints \u003cbr\u003e3.25.16 Medical applications \u003cbr\u003e3.25.17 Polymer-based microwave circuit substrates \u003cbr\u003e3.25.18 Protective clothing \u003cbr\u003e3.25.19 Rubber \u003cbr\u003e3.25.20 Textile fabric \u003cbr\u003e3.25.21 Ventilation materials \u003cbr\u003e3.25.22 Writing paper \u003cbr\u003e3.26 Tensile properties \u003cbr\u003e3.27 Thermal expansion coefficient \u003cbr\u003e3.28 Water concentration \u003cbr\u003e3.29 Weight loss \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 Electrostatic Hazards \u003cbr\u003e4.1 Electrostatic charge generation \u003cbr\u003e4.2 Electromagnetic interference \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Ignition Hazards and Preventive Measures \u003cbr\u003e5.1 Conditions of ignition \u003cbr\u003e5.2 Types of discharge and discharge energy \u003cbr\u003e5.3 Minimum ignition energy \u003cbr\u003e5.4 Preventive measures \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Mechanisms of Action of Antistatic Agents \u003cbr\u003ePetra Pötschke \u0026amp; Jürgen Pionteck\u003cbr\u003e6.1 Conductive modification of polymer surfaces \u003cbr\u003e6.2 Mechanism of action of antistatics added into bulk \u003cbr\u003e6.2.1 Internal organic antistatics \u003cbr\u003e6.2.2 Conductive inorganic fillers \u003cbr\u003e6.2.3 Conductive inorganic materials in blends of insulating polymers \u003cbr\u003e6.2.4 Conductive polymer\/insulating polymer composites \u003cbr\u003e6.3 Consideration of mechanism in selection of antistatic agents for particular application\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Compatibility of Antistatic Agents with Matrix and Their Performance \u003cbr\u003e7.1 What influences compatibility of antistatic agents with matrix? \u003cbr\u003e7.2 Methods of antistatic agent selection based on principles of compatibility \u003cbr\u003e7.3 Influence of compatibility on permanence of antistatic agent incorporation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Antistatic Agent Motion and Diffusion \u003cbr\u003e8.1 Antistatic agent diffusion rate and the methods of study \u003cbr\u003e8.2 Antistatic agent motion and distribution in matrix \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Structure and Distribution of Non-migrating Antistatics \u003cbr\u003e9.1 Morphological structure and distribution of non-migrating (permanent) antistatics \u003cbr\u003e9.2 Percolation threshold \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Antistatic Agent Incorporation Method and Its Performance \u003cbr\u003e10.1 Grafting \u003cbr\u003e10.2 Chemical modification \u003cbr\u003e10.3 Surface coating \u003cbr\u003e10.4 UV and electron beam curing \u003cbr\u003e10.5 Plasma treatment \u003cbr\u003e10.6 Physical vapor deposition \u003cbr\u003e10.7 Mixing\/dispersion \u003cbr\u003e10.8 Crystallization in matrix \u003cbr\u003e10.9 Nucleation of inorganic nanoparticles \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 Antistatic Agents and Other Components of Formulation \u003cbr\u003e11.1 Antistatic agent consumption by fillers \u003cbr\u003e11.2 Absorption of additives by antistatic agents \u003cbr\u003e11.3 Molecular mobility and transport in the presence of antistatic agents \u003cbr\u003e11.4 Effect of antistatic agents on polymerization and curing reactions \u003cbr\u003e11.5 Effect of moisture and humidity \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 Effect of Antistatic Agents on Some Properties of Compounded Materials \u003cbr\u003e12.1 Mechanical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.2 Optical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.3 Spectral properties \u003cbr\u003e12.4 Rheological properties \u003cbr\u003ePetra Pötschke \u003cbr\u003e12.4.1 Effect of low molecular weight organic additives \u003cbr\u003e12.4.2 Effect of conductive inorganic materials \u003cbr\u003e12.5 Electrical properties \u003cbr\u003e12.6 Glass transition temperature \u003cbr\u003e12.7 Thermal stability \u003cbr\u003e12.8 Effect of UV and ionized radiation on materials containing antistatics \u003cbr\u003e12.9 Morphology, crystallization, structure, and orientation of macromolecules \u003cbr\u003e12.10 Hydrophilic properties, surface free energy \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 Antistatic Agent Selection for Specific Polymers \u003cbr\u003e13.1 ABS \u003cbr\u003e13.2 Acrylics \u003cbr\u003e13.3 Cellulose acetate \u003cbr\u003e13.4 Cellulose butyrate and propionate \u003cbr\u003e13.5 Cellulose nitrate \u003cbr\u003e13.6 Charge transfer polymers \u003cbr\u003e13.7 Chlorinated polyvinylchloride \u003cbr\u003e13.8 Chlorosulfonated polyethylene \u003cbr\u003e13.9 Epoxy resin \u003cbr\u003e13.10 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e13.11 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e13.12 Ionomers \u003cbr\u003e13.13 Nitrile rubber \u003cbr\u003e13.14 Polyacene \u003cbr\u003e13.15 Polyacetylene \u003cbr\u003e13.16 Polyacrylonitrile \u003cbr\u003e13.17 Polyamide \u003cbr\u003e13.18 Polyaniline \u003cbr\u003e13.19 Polybutadiene \u003cbr\u003e13.20 Polybutylmethacrylate \u003cbr\u003e13.21 Polycarbonate \u003cbr\u003e13.22 Polyester \u003cbr\u003e13.23 Polyetheretherketone \u003cbr\u003e13.24 Polyetherimide \u003cbr\u003e13.25 Polyethylene \u003cbr\u003e13.26 Polyimide \u003cbr\u003e13.27 Polyisoprene \u003cbr\u003e13.28 Polyisothionaphthene \u003cbr\u003e13.29 Polylactide \u003cbr\u003e13.30 Polymethylmethacrylate \u003cbr\u003e13.31 Polyoxyethylene \u003cbr\u003e13.32 Polyoxymethylene \u003cbr\u003e13.33 Poly(N-vinyl-2-pyrrolidone) 176\u003cbr\u003e13.34 Polyparaphenylene \u003cbr\u003e13.35 Poly(phenylene ether) \u003cbr\u003e13.36 Poly(phenylene sulfide) \u003cbr\u003e13.37 Poly(phenylene vinylene) \u003cbr\u003e13.38 Polypropylene \u003cbr\u003e13.39 Polypyrrole \u003cbr\u003e13.40 Polystyrene \u003cbr\u003e13.41 Polysulfone \u003cbr\u003e13.42 Polythiophene \u003cbr\u003e13.43 Polyvinylacetate \u003cbr\u003e13.44 Polyvinylalcohol \u003cbr\u003e13.45 Polyvinylbenzylalcohol \u003cbr\u003e13.46 Polyvinylbutyral \u003cbr\u003e13.47 Polyvinylchloride \u003cbr\u003e13.48 Poly(vinylene sulfide) \u003cbr\u003e13.49 Polyvinylidenechloride \u003cbr\u003e13.50 Polyvinylidenefluoride \u003cbr\u003e13.51 Polyurethanes \u003cbr\u003e13.52 Proteins \u003cbr\u003e13.53 Rubber, natural \u003cbr\u003e13.54 Silicone \u003cbr\u003e13.55 Styrene-butadiene rubber \u003cbr\u003e13.56 Styrene-butadiene-styrene copolymer \u003cbr\u003e13.57 Starch \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 Antistatic Agents in Polymer Blends \u003cbr\u003e14.1 Antistatic agent partition between blend component polymers \u003cbr\u003e14.2 Interaction of antistatic agents with blend components \u003cbr\u003e14.3 Blends of conductive and non-conductive polymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 Antistatic Agents in Various Industrial Products \u003cbr\u003e15.1 Adhesives and sealants \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Agriculture \u003cbr\u003e15.4 Automotive applications \u003cbr\u003e15.5 Bottles and plastic containers \u003cbr\u003e15.6 Bulk shipping containers \u003cbr\u003e15.7 Business machines \u003cbr\u003e15.8 Cementitious materials \u003cbr\u003e15.9 Ceramics \u003cbr\u003e15.10 Coated fabrics \u003cbr\u003e15.11 Composites \u003cbr\u003e15.12 Cosmetics \u003cbr\u003e15.13 Equipment manufacture \u003cbr\u003e15.14 Electrical equipment \u003cbr\u003e15.15 Electronics \u003cbr\u003e15.16 Fibers and textile materials \u003cbr\u003e15.17 Filtration \u003cbr\u003e15.18 Flooring \u003cbr\u003e15.19 Foams \u003cbr\u003e15.20 Footwear \u003cbr\u003e15.21 Fuels \u003cbr\u003e15.22 Gaskets \u003cbr\u003e15.23 Glass \u003cbr\u003e15.24 Inks, varnishes, and lacquers \u003cbr\u003e15.25 Magnetic tapes and disks \u003cbr\u003e15.26 Masking tapes \u003cbr\u003e15.27 Medical applications \u003cbr\u003e15.28 Membranes \u003cbr\u003e15.29 Packaging \u003cbr\u003e15.30 Paints and coatings \u003cbr\u003e15.31 Paper \u003cbr\u003e15.32 Pharmaceutical products \u003cbr\u003e15.33 Photographic materials \u003cbr\u003e15.34 Pipes and conveying systems \u003cbr\u003e15.35 Roofing and pavement materials \u003cbr\u003e15.36 Tires \u003cbr\u003e15.37 Tubing \u003cbr\u003e15.38 Upholstery \u003cbr\u003e15.39 Wire and cable \u003cbr\u003e15.40 Work clothing \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 Antistatic Agents in Various Processing Methods \u003cbr\u003e16.1 Blow molding \u003cbr\u003e16.2 Calendering \u003cbr\u003e16.3 Casting \u003cbr\u003e16.4 Coil coating \u003cbr\u003e16.5 Compression molding \u003cbr\u003e16.6 Dip coating \u003cbr\u003e16.7 Extrusion \u003cbr\u003e16.8 Injection molding \u003cbr\u003e16.9 Multilayered lamination \u003cbr\u003e16.10 Powder molding \u003cbr\u003e16.11 Rotational molding \u003cbr\u003e16.12 Rubber processing \u003cbr\u003e16.13 Spray coating \u003cbr\u003e16.14 Spin coating and finishing \u003cbr\u003e16.15 Sputtering \u003cbr\u003e16.16 Thermoforming \u003cbr\u003e16.17 Vacuum molding \u003cbr\u003e16.18 Web coating \u003cbr\u003e16.18 Wire coating \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 Specialized Analytical Methods in Antistatic Agent Testing \u003cbr\u003e17.1 Identification \u003cbr\u003e17.2 Methods of determination of concentration \u003cbr\u003e17.3 General methods \u003cbr\u003e17.3.1 Time-of-flight secondary ion mass spectrometry \u003cbr\u003e17.3.2 Atomic force microscopy \u003cbr\u003e17.3.3 Microscopy \u003cbr\u003e17.3.4 X-ray photoelectron spectroscopy, XPS or ESCA \u003cbr\u003e17.3.5 X-ray analysis \u003cbr\u003e17.3.6 Visible, UV and IR spectroscopy \u003cbr\u003e17.3.7 Ellipsometry \u003cbr\u003e17.3.8 Contact angle \u003cbr\u003e17.3.9 Atomic absorption spectroscopy \u003cbr\u003e17.3.10 Thermal analysis \u003cbr\u003e17.3.11 Molecular mass \u003cbr\u003e17.3.12 Specific surface area \u003cbr\u003e17.3.14 Mechanical aging \u003cbr\u003e17.4 Specific methods \u003cbr\u003e17.4.1 Charge accumulation and charge decay time \u003cbr\u003e17.4.2 Dielectric spectroscopy \u003cbr\u003e17.4.3 Dirt pickup methods \u003cbr\u003e17.4.4 Electrical conductivity \u003cbr\u003e17.4.5 Shielding effectiveness \u003cbr\u003e17.4.6 Propagating brush discharge \u003cbr\u003e17.4.7 Half-life discharge \u003cbr\u003e17.4.8 Tribocharging \u003cbr\u003e17.4.9 Electrostatic charge and field \u003cbr\u003e17.4.10 Surface and volume resistivity \u003cbr\u003e17.4.11 Internal space charge \u003cbr\u003e17.4.12 Ionic-conductivity spectra \u003cbr\u003e17.4.13 Electrical capacitance tomography \u003cbr\u003e17.4.14 Contact potential \u003cbr\u003e17.4.15 Transfer efficiency \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 Mathematical Modelling of Antistatic Properties \u003cbr\u003e18.1 Percolation concentration of antistatic filler \u003cbr\u003e18.2 Conduction mechanism modeling \u003cbr\u003e18.3 Charge decay \u003cbr\u003e18.4 Dielectric permittivity \u003cbr\u003e18.5 Electromagnetic wave shielding effectiveness \u003cbr\u003e18.6 Electrification of transformer oil \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 Health and Safety Issues with Antistatic Agents \u003cbr\u003e19.1 Aluminum \u003cbr\u003e19.2 Carbon black \u003cbr\u003e19.3 Copper \u003cbr\u003e19.4 Graphite \u003cbr\u003e19.5 Nickel and its compounds \u003cbr\u003e19.6 Silver \u003cbr\u003e19.7 Sorbitan monooleate \u003cbr\u003e19.8 Sorbitan monostearate \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 The Environmental Fate of Antistatic Agents \u003cbr\u003eWilliam R. Roy\u003cbr\u003e20.1 Introduction \u003cbr\u003e20.2 A lack of information \u003cbr\u003e20.3 Surfactants and metals \u003cbr\u003e20.3.1 Surfactants \u003cbr\u003e20.3.2 Sorption of surfactants by soils and clays \u003cbr\u003e20.3.3 Silver and nickel \u003cbr\u003e20.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e21 Regulations and Data \u003cbr\u003e21.1 Toxic substance control \u003cbr\u003e21.2. Carcinogenic effect \u003cbr\u003e21.3 Workplace exposure limits \u003cbr\u003e21.4 Food regulatory acts \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e22 Personal Protection \u003cbr\u003e22.1 Clothing \u003cbr\u003e22.2 Gloves \u003cbr\u003e22.3 Eye protection \u003cbr\u003e22.4 Respiratory protection \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJürgen Pionteck\u003c\/strong\u003e, born in 1957, studied chemistry at the Dresden Technical University, where he obtained his Ph. D. (Dr. rer. nat.) in the field of physical-organic chemistry under the guidance of K. Schwetlick in 1988. Since 1988 he is the researcher at the Leibniz Institute of Polymer Research Dresden, where he was heading the Polymer Blend Department from 1990 till 1998. In 1991\/1992 he worked for 1 year with W. J. MacKnight at the University of Massachusetts at Amherst. Jürgen Pionteck is author or co-author of almost 100 scientific papers. He was awarded the Science Award of the Dresden Technical University, third-class, the Award of the Association of Supporters of the IPF for Innovative Research on New Materials, and the Honorary Medal of the Polymer Institute Bratislava.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003e has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/p\u003e","published_at":"2017-06-22T21:12:52-04:00","created_at":"2017-06-22T21:12:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","antistatic","antistatic agents","antistatics additives","application of antistatic agents","book","conductive","environmental","medical applications","p-additives","polymer","regulations","stability of plastics in high electric fields","types of antistatics agents"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378319556,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Antistatics","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-34-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-34-8.jpg?v=1499387415"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-34-8.jpg?v=1499387415","options":["Title"],"media":[{"alt":null,"id":354809249885,"position":1,"preview_image":{"aspect_ratio":0.754,"height":499,"width":376,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-34-8.jpg?v=1499387415"},"aspect_ratio":0.754,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-34-8.jpg?v=1499387415","width":376}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jürgen Pionteck \u0026amp; George Wypych \u003cbr\u003eISBN 1-895198-34-8 \u003cbr\u003e\u003cbr\u003ePages 359,Tables 140, Figures 110\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook is the first comprehensive book written on the subject of antistatic additives. A few previously published books are either very old or they constitute short reviews or chapters in books on polymer additives.\u003cbr\u003e\u003cbr\u003eThe present volume includes information based on the complete review of existing literature and patented inventions on additives capable to modify properties of materials in such a manner that they become antistatic, conductive, and\/or EMI shielding.\u003cbr\u003e\u003cbr\u003eThirteen chemical families of materials are used for a production of antistatic additives. There are about 700 commercial products derived from these developments and used by industry to change electric conductivity of materials. The properties of these commercial products are given in the extensive database of antistatics which constitutes a separate publication but useful together with this handbook (see separate publication: Database of Antistatics). The information in both publications is not repeated but it is complementary.\u003cbr\u003e\u003cbr\u003eAntistatic additives are used in the production of materials from 57 generic families of polymers and numerous polymer blends having excellent conductive properties. Polymers containing antistatic additives are processed by 18 groups of processing methods and, in addition, 9 incorporation methods are used on the commercial scale with these products. The processing methods are used by 40 industries, listed in the box on the left side of the page, for the manufacture of a large number of commercial products.\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various polymers is divided into the following sections: types and concentrations of antistatics used, the potential effect of antistatics on polymer and\/or other additives, and examples of typical formulations used for processing of polymers containing the antistatic additive.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eInformation on use of additives in various products is divided into the following sections: types and concentrations of antistatics used by a particular industry, reasons for their use, advantages, and disadvantages of the use of different additives, the effect on product properties, and examples of formulations. \u003cbr\u003e\u003cbr\u003eProcessing methods are discussed using the following breakdown: types and concentrations of antistatics, eventual influence on processing, and examples of formulations. The goal of this chapter is to provide information on the amount and the type of antistatics used in each processing method, discuss the eventual influence of antistatics on a process and give examples of typical formulations used by the discussed here processing methods.\u003cbr\u003e\u003cbr\u003eThe book contains 22 chapters, each addressing specific aspect of properties and applications of antistatic agents. Please review the attached table contents for a detailed list of topics, ideas, and reviews included in this comprehensive volume. In addition, a separate publication is also available (Database of Antistatics), which is a database of commercial materials used as antistatic additives in various (not only polymeric) materials.\u003cbr\u003e\u003cbr\u003eThe combination of the data and the comprehensive analysis of the performance of these materials form very important source of information for industry, research, academia, and legislature. These publications should be considered by any industrial, university, governmental, and public library because of widespread applications of these additives in the industry and everyday life.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Historical developments in studies on static electricity \u003cbr\u003e1.2 The triboelectric series and electrostatic charging \u003cbr\u003e1.3 Electrical properties of plastics \u003cbr\u003e1.3.1 Electrical conductivity \u003cbr\u003e1.3.2 Dielectric behavior of plastics in low electric fields \u003cbr\u003e1.3.3 Electrostatic charging of dielectric polymers \u003cbr\u003e1.3.4 Stability of plastics in high electric fields \u003cbr\u003e1.4 Antistatic agents \u003cbr\u003e1.4.1 Classification of antistatics \u003cbr\u003e1.4.2 Expectations from antistatics \u003cbr\u003e1.5 Definitions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Types of Antistatic Agents \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial antistatic agents \u003cbr\u003e2.2.1 Amines (quaternary and others) \u003cbr\u003e2.2.2 Carbon black \u003cbr\u003e2.2.3 Esters \u003cbr\u003e2.2.4 Fibers \u003cbr\u003e2.2.4.1 Metal \u003cbr\u003e2.2.4.2 Carbon and graphite fibers \u003cbr\u003e2.2.4.3 Others \u003cbr\u003e2.2.5 Inorganic materials \u003cbr\u003e2.2.6 Masterbatches \u003cbr\u003e2.2.7 Metal powders and nanopowders \u003cbr\u003e2.2.8 Nanotubes \u003cbr\u003e2.2.9 Polyethylene glycol \u003cbr\u003e2.2.10 Polymers \u003cbr\u003e2.2.10.1 Inherently conductive \u003cbr\u003e2.2.10.2 Containing antistatic \u003cbr\u003e\u003cbr\u003e3 Typical Methods of Quality Control of Antistatics \u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Brookfield viscosity \u003cbr\u003e3.4 Capacitance \u003cbr\u003e3.5 Chemical resistance \u003cbr\u003e3.6 Color \u003cbr\u003e3.7 Compression set \u003cbr\u003e3.8 Dielectric breakdown voltage \u003cbr\u003e3.9 Dielectric constant (relative permittivity) \u003cbr\u003e3.10 Dielectric strength \u003cbr\u003e3.11 Dissipation factor \u003cbr\u003e3.12 Dry arc resistance \u003cbr\u003e3.13 Electrical resistivity \u003cbr\u003e3.14 Erosion resistance \u003cbr\u003e3.15 Flash and fire point \u003cbr\u003e3.16 Hardness \u003cbr\u003e3.17 Kinematic viscosity \u003cbr\u003e3.18 Loss index \u003cbr\u003e3.19 Marking (classification) \u003cbr\u003e3.20 Melt rheology \u003cbr\u003e3.21 Refractive index \u003cbr\u003e3.22 Residual contamination \u003cbr\u003e3.23 Saponification value \u003cbr\u003e3.24 Specific gravity \u003cbr\u003e3.25 Specifications for commercial products and standard test methods \u003cbr\u003e3.25.1 Adhesive bonding \u003cbr\u003e3.25.2 Aviation and distillate fuels \u003cbr\u003e3.25.3 Conductive adhesives \u003cbr\u003e3.25.4 Conveyor belting \u003cbr\u003e3.25.5 Crosslinkable ethylene plastics \u003cbr\u003e3.25.6 Electrical insulating materials \u003cbr\u003e3.25.7 Electrocoat bath \u003cbr\u003e3.25.8 Electronic devices \u003cbr\u003e3.25.9 Endless belts \u003cbr\u003e3.25.10 Extruded film and tape \u003cbr\u003e3.25.11 Flooring \u003cbr\u003e3.25.12 Footwear (protective) \u003cbr\u003e3.25.13 Hoses \u003cbr\u003e3.25.14 Insulation shielding materials \u003cbr\u003e3.25.15 Liquid paints \u003cbr\u003e3.25.16 Medical applications \u003cbr\u003e3.25.17 Polymer-based microwave circuit substrates \u003cbr\u003e3.25.18 Protective clothing \u003cbr\u003e3.25.19 Rubber \u003cbr\u003e3.25.20 Textile fabric \u003cbr\u003e3.25.21 Ventilation materials \u003cbr\u003e3.25.22 Writing paper \u003cbr\u003e3.26 Tensile properties \u003cbr\u003e3.27 Thermal expansion coefficient \u003cbr\u003e3.28 Water concentration \u003cbr\u003e3.29 Weight loss \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 Electrostatic Hazards \u003cbr\u003e4.1 Electrostatic charge generation \u003cbr\u003e4.2 Electromagnetic interference \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Ignition Hazards and Preventive Measures \u003cbr\u003e5.1 Conditions of ignition \u003cbr\u003e5.2 Types of discharge and discharge energy \u003cbr\u003e5.3 Minimum ignition energy \u003cbr\u003e5.4 Preventive measures \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Mechanisms of Action of Antistatic Agents \u003cbr\u003ePetra Pötschke \u0026amp; Jürgen Pionteck\u003cbr\u003e6.1 Conductive modification of polymer surfaces \u003cbr\u003e6.2 Mechanism of action of antistatics added into bulk \u003cbr\u003e6.2.1 Internal organic antistatics \u003cbr\u003e6.2.2 Conductive inorganic fillers \u003cbr\u003e6.2.3 Conductive inorganic materials in blends of insulating polymers \u003cbr\u003e6.2.4 Conductive polymer\/insulating polymer composites \u003cbr\u003e6.3 Consideration of mechanism in selection of antistatic agents for particular application\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Compatibility of Antistatic Agents with Matrix and Their Performance \u003cbr\u003e7.1 What influences compatibility of antistatic agents with matrix? \u003cbr\u003e7.2 Methods of antistatic agent selection based on principles of compatibility \u003cbr\u003e7.3 Influence of compatibility on permanence of antistatic agent incorporation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Antistatic Agent Motion and Diffusion \u003cbr\u003e8.1 Antistatic agent diffusion rate and the methods of study \u003cbr\u003e8.2 Antistatic agent motion and distribution in matrix \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Structure and Distribution of Non-migrating Antistatics \u003cbr\u003e9.1 Morphological structure and distribution of non-migrating (permanent) antistatics \u003cbr\u003e9.2 Percolation threshold \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Antistatic Agent Incorporation Method and Its Performance \u003cbr\u003e10.1 Grafting \u003cbr\u003e10.2 Chemical modification \u003cbr\u003e10.3 Surface coating \u003cbr\u003e10.4 UV and electron beam curing \u003cbr\u003e10.5 Plasma treatment \u003cbr\u003e10.6 Physical vapor deposition \u003cbr\u003e10.7 Mixing\/dispersion \u003cbr\u003e10.8 Crystallization in matrix \u003cbr\u003e10.9 Nucleation of inorganic nanoparticles \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 Antistatic Agents and Other Components of Formulation \u003cbr\u003e11.1 Antistatic agent consumption by fillers \u003cbr\u003e11.2 Absorption of additives by antistatic agents \u003cbr\u003e11.3 Molecular mobility and transport in the presence of antistatic agents \u003cbr\u003e11.4 Effect of antistatic agents on polymerization and curing reactions \u003cbr\u003e11.5 Effect of moisture and humidity \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 Effect of Antistatic Agents on Some Properties of Compounded Materials \u003cbr\u003e12.1 Mechanical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.2 Optical properties \u003cbr\u003eMária Omastová \u003cbr\u003e12.3 Spectral properties \u003cbr\u003e12.4 Rheological properties \u003cbr\u003ePetra Pötschke \u003cbr\u003e12.4.1 Effect of low molecular weight organic additives \u003cbr\u003e12.4.2 Effect of conductive inorganic materials \u003cbr\u003e12.5 Electrical properties \u003cbr\u003e12.6 Glass transition temperature \u003cbr\u003e12.7 Thermal stability \u003cbr\u003e12.8 Effect of UV and ionized radiation on materials containing antistatics \u003cbr\u003e12.9 Morphology, crystallization, structure, and orientation of macromolecules \u003cbr\u003e12.10 Hydrophilic properties, surface free energy \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 Antistatic Agent Selection for Specific Polymers \u003cbr\u003e13.1 ABS \u003cbr\u003e13.2 Acrylics \u003cbr\u003e13.3 Cellulose acetate \u003cbr\u003e13.4 Cellulose butyrate and propionate \u003cbr\u003e13.5 Cellulose nitrate \u003cbr\u003e13.6 Charge transfer polymers \u003cbr\u003e13.7 Chlorinated polyvinylchloride \u003cbr\u003e13.8 Chlorosulfonated polyethylene \u003cbr\u003e13.9 Epoxy resin \u003cbr\u003e13.10 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e13.11 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e13.12 Ionomers \u003cbr\u003e13.13 Nitrile rubber \u003cbr\u003e13.14 Polyacene \u003cbr\u003e13.15 Polyacetylene \u003cbr\u003e13.16 Polyacrylonitrile \u003cbr\u003e13.17 Polyamide \u003cbr\u003e13.18 Polyaniline \u003cbr\u003e13.19 Polybutadiene \u003cbr\u003e13.20 Polybutylmethacrylate \u003cbr\u003e13.21 Polycarbonate \u003cbr\u003e13.22 Polyester \u003cbr\u003e13.23 Polyetheretherketone \u003cbr\u003e13.24 Polyetherimide \u003cbr\u003e13.25 Polyethylene \u003cbr\u003e13.26 Polyimide \u003cbr\u003e13.27 Polyisoprene \u003cbr\u003e13.28 Polyisothionaphthene \u003cbr\u003e13.29 Polylactide \u003cbr\u003e13.30 Polymethylmethacrylate \u003cbr\u003e13.31 Polyoxyethylene \u003cbr\u003e13.32 Polyoxymethylene \u003cbr\u003e13.33 Poly(N-vinyl-2-pyrrolidone) 176\u003cbr\u003e13.34 Polyparaphenylene \u003cbr\u003e13.35 Poly(phenylene ether) \u003cbr\u003e13.36 Poly(phenylene sulfide) \u003cbr\u003e13.37 Poly(phenylene vinylene) \u003cbr\u003e13.38 Polypropylene \u003cbr\u003e13.39 Polypyrrole \u003cbr\u003e13.40 Polystyrene \u003cbr\u003e13.41 Polysulfone \u003cbr\u003e13.42 Polythiophene \u003cbr\u003e13.43 Polyvinylacetate \u003cbr\u003e13.44 Polyvinylalcohol \u003cbr\u003e13.45 Polyvinylbenzylalcohol \u003cbr\u003e13.46 Polyvinylbutyral \u003cbr\u003e13.47 Polyvinylchloride \u003cbr\u003e13.48 Poly(vinylene sulfide) \u003cbr\u003e13.49 Polyvinylidenechloride \u003cbr\u003e13.50 Polyvinylidenefluoride \u003cbr\u003e13.51 Polyurethanes \u003cbr\u003e13.52 Proteins \u003cbr\u003e13.53 Rubber, natural \u003cbr\u003e13.54 Silicone \u003cbr\u003e13.55 Styrene-butadiene rubber \u003cbr\u003e13.56 Styrene-butadiene-styrene copolymer \u003cbr\u003e13.57 Starch \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 Antistatic Agents in Polymer Blends \u003cbr\u003e14.1 Antistatic agent partition between blend component polymers \u003cbr\u003e14.2 Interaction of antistatic agents with blend components \u003cbr\u003e14.3 Blends of conductive and non-conductive polymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 Antistatic Agents in Various Industrial Products \u003cbr\u003e15.1 Adhesives and sealants \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Agriculture \u003cbr\u003e15.4 Automotive applications \u003cbr\u003e15.5 Bottles and plastic containers \u003cbr\u003e15.6 Bulk shipping containers \u003cbr\u003e15.7 Business machines \u003cbr\u003e15.8 Cementitious materials \u003cbr\u003e15.9 Ceramics \u003cbr\u003e15.10 Coated fabrics \u003cbr\u003e15.11 Composites \u003cbr\u003e15.12 Cosmetics \u003cbr\u003e15.13 Equipment manufacture \u003cbr\u003e15.14 Electrical equipment \u003cbr\u003e15.15 Electronics \u003cbr\u003e15.16 Fibers and textile materials \u003cbr\u003e15.17 Filtration \u003cbr\u003e15.18 Flooring \u003cbr\u003e15.19 Foams \u003cbr\u003e15.20 Footwear \u003cbr\u003e15.21 Fuels \u003cbr\u003e15.22 Gaskets \u003cbr\u003e15.23 Glass \u003cbr\u003e15.24 Inks, varnishes, and lacquers \u003cbr\u003e15.25 Magnetic tapes and disks \u003cbr\u003e15.26 Masking tapes \u003cbr\u003e15.27 Medical applications \u003cbr\u003e15.28 Membranes \u003cbr\u003e15.29 Packaging \u003cbr\u003e15.30 Paints and coatings \u003cbr\u003e15.31 Paper \u003cbr\u003e15.32 Pharmaceutical products \u003cbr\u003e15.33 Photographic materials \u003cbr\u003e15.34 Pipes and conveying systems \u003cbr\u003e15.35 Roofing and pavement materials \u003cbr\u003e15.36 Tires \u003cbr\u003e15.37 Tubing \u003cbr\u003e15.38 Upholstery \u003cbr\u003e15.39 Wire and cable \u003cbr\u003e15.40 Work clothing \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 Antistatic Agents in Various Processing Methods \u003cbr\u003e16.1 Blow molding \u003cbr\u003e16.2 Calendering \u003cbr\u003e16.3 Casting \u003cbr\u003e16.4 Coil coating \u003cbr\u003e16.5 Compression molding \u003cbr\u003e16.6 Dip coating \u003cbr\u003e16.7 Extrusion \u003cbr\u003e16.8 Injection molding \u003cbr\u003e16.9 Multilayered lamination \u003cbr\u003e16.10 Powder molding \u003cbr\u003e16.11 Rotational molding \u003cbr\u003e16.12 Rubber processing \u003cbr\u003e16.13 Spray coating \u003cbr\u003e16.14 Spin coating and finishing \u003cbr\u003e16.15 Sputtering \u003cbr\u003e16.16 Thermoforming \u003cbr\u003e16.17 Vacuum molding \u003cbr\u003e16.18 Web coating \u003cbr\u003e16.18 Wire coating \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 Specialized Analytical Methods in Antistatic Agent Testing \u003cbr\u003e17.1 Identification \u003cbr\u003e17.2 Methods of determination of concentration \u003cbr\u003e17.3 General methods \u003cbr\u003e17.3.1 Time-of-flight secondary ion mass spectrometry \u003cbr\u003e17.3.2 Atomic force microscopy \u003cbr\u003e17.3.3 Microscopy \u003cbr\u003e17.3.4 X-ray photoelectron spectroscopy, XPS or ESCA \u003cbr\u003e17.3.5 X-ray analysis \u003cbr\u003e17.3.6 Visible, UV and IR spectroscopy \u003cbr\u003e17.3.7 Ellipsometry \u003cbr\u003e17.3.8 Contact angle \u003cbr\u003e17.3.9 Atomic absorption spectroscopy \u003cbr\u003e17.3.10 Thermal analysis \u003cbr\u003e17.3.11 Molecular mass \u003cbr\u003e17.3.12 Specific surface area \u003cbr\u003e17.3.14 Mechanical aging \u003cbr\u003e17.4 Specific methods \u003cbr\u003e17.4.1 Charge accumulation and charge decay time \u003cbr\u003e17.4.2 Dielectric spectroscopy \u003cbr\u003e17.4.3 Dirt pickup methods \u003cbr\u003e17.4.4 Electrical conductivity \u003cbr\u003e17.4.5 Shielding effectiveness \u003cbr\u003e17.4.6 Propagating brush discharge \u003cbr\u003e17.4.7 Half-life discharge \u003cbr\u003e17.4.8 Tribocharging \u003cbr\u003e17.4.9 Electrostatic charge and field \u003cbr\u003e17.4.10 Surface and volume resistivity \u003cbr\u003e17.4.11 Internal space charge \u003cbr\u003e17.4.12 Ionic-conductivity spectra \u003cbr\u003e17.4.13 Electrical capacitance tomography \u003cbr\u003e17.4.14 Contact potential \u003cbr\u003e17.4.15 Transfer efficiency \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 Mathematical Modelling of Antistatic Properties \u003cbr\u003e18.1 Percolation concentration of antistatic filler \u003cbr\u003e18.2 Conduction mechanism modeling \u003cbr\u003e18.3 Charge decay \u003cbr\u003e18.4 Dielectric permittivity \u003cbr\u003e18.5 Electromagnetic wave shielding effectiveness \u003cbr\u003e18.6 Electrification of transformer oil \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 Health and Safety Issues with Antistatic Agents \u003cbr\u003e19.1 Aluminum \u003cbr\u003e19.2 Carbon black \u003cbr\u003e19.3 Copper \u003cbr\u003e19.4 Graphite \u003cbr\u003e19.5 Nickel and its compounds \u003cbr\u003e19.6 Silver \u003cbr\u003e19.7 Sorbitan monooleate \u003cbr\u003e19.8 Sorbitan monostearate \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 The Environmental Fate of Antistatic Agents \u003cbr\u003eWilliam R. Roy\u003cbr\u003e20.1 Introduction \u003cbr\u003e20.2 A lack of information \u003cbr\u003e20.3 Surfactants and metals \u003cbr\u003e20.3.1 Surfactants \u003cbr\u003e20.3.2 Sorption of surfactants by soils and clays \u003cbr\u003e20.3.3 Silver and nickel \u003cbr\u003e20.4 Conclusions \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e21 Regulations and Data \u003cbr\u003e21.1 Toxic substance control \u003cbr\u003e21.2. Carcinogenic effect \u003cbr\u003e21.3 Workplace exposure limits \u003cbr\u003e21.4 Food regulatory acts \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e22 Personal Protection \u003cbr\u003e22.1 Clothing \u003cbr\u003e22.2 Gloves \u003cbr\u003e22.3 Eye protection \u003cbr\u003e22.4 Respiratory protection \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJürgen Pionteck\u003c\/strong\u003e, born in 1957, studied chemistry at the Dresden Technical University, where he obtained his Ph. D. (Dr. rer. nat.) in the field of physical-organic chemistry under the guidance of K. Schwetlick in 1988. Since 1988 he is the researcher at the Leibniz Institute of Polymer Research Dresden, where he was heading the Polymer Blend Department from 1990 till 1998. In 1991\/1992 he worked for 1 year with W. J. MacKnight at the University of Massachusetts at Amherst. Jürgen Pionteck is author or co-author of almost 100 scientific papers. He was awarded the Science Award of the Dresden Technical University, third-class, the Award of the Association of Supporters of the IPF for Innovative Research on New Materials, and the Honorary Medal of the Polymer Institute Bratislava.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003e has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/p\u003e"}
Handbook of Benzoxazin...
$305.00
{"id":11242249604,"title":"Handbook of Benzoxazine Resins","handle":"978-0-444-53790-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited By Hatsuo Ishida \u0026amp; Tarek Agag \u003cbr\u003eISBN 978-0-444-53790-4 \u003cbr\u003e\u003cbr\u003e712 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Provides thorough coverage of the chemistry and applications of benzoxazine resins with an evidence-based approach to enable chemists, engineers and material scientists to evaluate effectiveness\u003cbr\u003e\u003cbr\u003e• Features spectra, which allow researchers to compare results, avoid repetition and save time as well as tables on key NMR frequency, IR frequency, heat of polymerization, of many benzoxazine resins to aid them in selection of materials\u003cbr\u003e\u003cbr\u003e• Written by the foremost experts in the field\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThis handbook provides a wide overview of the field, fundamental understanding of the synthetic methods and structure\/property correlation, as well as studies related to applications in a wide range of subjects. The handbook also provides 1H and 13C NMR spectra, FTIR spectra, DSC and TGA thermograms to aid in research activities. Additional tables on key NMR and FTIR frequencies unique to benzoxazine, heat of polymerization, Tg, and char yield will greatly aid in the choice of proper benzoxazine for a specific application.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003ePart I. Introduction\u003cbr\u003e1. Overview and historical background of polybenzoxazine research (H. Ishida) \u003cbr\u003ePart II. Physical and Chemical Properties of Benzoxazine Resins\u003cbr\u003e2. Synthesis of benzoxazines in solutions and melt (H. Ishida, and Jin-Ping Liu)\u003cbr\u003e3. Molecular modeling (Yi Gu, and Ming Li)\u003cbr\u003e4. Mono-substituted phenol-based benzoxazines : Inevitable dimerization via self-termination and its metal complexation (S. Chirachanchai, S. Phongtamrug, A. Laobuthee, and K. Tashiro) \u003cbr\u003e5. Using molecular simulation to predict the physical and mechanical properties of polybenzoxazines (I. Hamerton, B.J. Howlin, A.L. Mitchell, S.A.Hall, and L. McNamara)\u003cbr\u003e6. Chemorheology of benzoxazine-based resins (S. Rimdusit, C. Jubsilp, P. Kunopast, and W. Bangsen)\u003cbr\u003e7. Polymerization kinetics (C. Jubsilp, and S. Rimdusit)\u003cbr\u003e8. Electrochemical polymerization of benzoxazines (Wei Chen)\u003cbr\u003e9. Light Induced Reactions of Benzoxazines (M.At. Tasdelen, B. Kiskan, B. Gacal, F. Kasapoglu, L. Cianga, and Y. Yagci)\u003cbr\u003e10. Effect of Neighboring Groups on Enhancing Benzoxazine Autocatalytic Polymerization (M. Baqar, T. Agag, S. Qutubuddin, and H. Ishida)\u003cbr\u003e11. Catalytic Opening of Lateral Benzoxazine Rings by Thiols (I. Gorodisher, R.J. DeVoe, and R.J. Webb)\u003cbr\u003ePart III. Physical and Chemical Properties of Cross-linked Polybenzoxazines\u003cbr\u003e12. Hydrogen bonding of polybenzoxazines (Ho-Dong Kim, and H. Ishida)\u003cbr\u003e13. Polybenzoxazines of Enhanced Thermal Properties: The Role of Additional Non-Benzoxazine Polymerizable Groups (T. Agag, S. Geiger, and H. Ishida)\u003cbr\u003e14. Thermal degradation mechanism of polybenzoxazines (J. Hacaloglu, T. Uyer, and H. Ishida)\u003cbr\u003ePart IV. Main-chain, Side-chain, Telechelic and Supramolecular Benzoxazine Architectures\u003cbr\u003e15. Various approaches for main-chain type benzoxazine polymers (S. Alhassan, D. Schiraldi, T. Agag, S. Qutubuddin, and H. Ishida)\u003cbr\u003e16. Side and end chain benzoxazine functional polymers (B. Kiskan, and Y. Yagci)\u003cbr\u003e17. Supramolecular chemistry of benzoxazines: from simple, selective, effective, and efficient macrocyclization pathway to host-guest properties (S. Chirachanchai, S. Phongtamrug, and K. Tashiro)\u003cbr\u003e18. Main-chain type benzoxazine oligomers: A new concept for easily processable high performance polybenzoxazines (Jia Liu, T. Agag, and H. Ishida)\u003cbr\u003ePart V. Renewable Resources Based Polybenzoxazine Materials\u003cbr\u003e19. Study of a cardanol-based benzoxazine as reactive diluent and toughening agent of conventional benzoxazines (P. Campaner, D. D’Amico, L. Longo, C. Stifani, A. Tarzia, and S. Tiburzio) \u003cbr\u003ePart VI. Polybenzoxazine Blends and Alloys\u003cbr\u003e20. Polybenzoxazine\/polyimide alloys (T. Takeichi, T. Kawauchi, and T. Agag)\u003cbr\u003e21. Polybenzoxazine\/polyurethane alloys (H. Yeganeh)\u003cbr\u003e22. The Blends of a Silicon-containing Arylacetylene Resin and an Acetylene-Functional Benzoxazine (Farong Huang, Jianxiang Huang, Yu Gao, Yan Zhou, and Lei Du)\u003cbr\u003e23. Polybenzoxazine\/polysiloxanes (T. Kawauchi, and T. Takeichi)\u003cbr\u003e24. Polybenzoxazine\/bisoxazolines (H. Kimura, K. Ohtsuka, and A. Matsumoto)\u003cbr\u003ePart VII. Morphological Control of Polybenzoxazines\u003cbr\u003e25. Morphology and properties of polybenzoxazine Blends (Chongyin Zhang, Lei Wang, Rentong Yu, and Sixun Zheng)\u003cbr\u003e26. Porous materials from polybenzoxazine (T. Chaisuwan)\u003cbr\u003e27. Spherical polybenzoxazine resin (Xinsheng Zheng, Yang Xue, Youmiao Xu, and Qianquan Chang)\u003cbr\u003ePart VIII. Polybenzoxazine Composites, Hybrid Materials and Nanocomposites\u003cbr\u003e28. Polybenzoxazine \/fiber composites (Yi Gu, and Qi-chao Ran)\u003cbr\u003e29. Polybenzoxazine-clay nanocomposites (T. Agag, and A. Akelah)\u003cbr\u003e30. Polybenzoxazine-POSS nanocomposites (Riwei Xu, Lei Wang, and Dingsheng Yu)\u003cbr\u003e31. Polybenzoxazine-CNT nanocomposites (Riwei Xu, Pengli Zhang, Jing Wang, and Dingsheng Yu)\u003cbr\u003ePart IX. Polybenzoxazine Applications and Potential Applications\u003cbr\u003e32. Polybenzoxazines with enhanced flame retardancy (V. Cadiz, J. C. Ronda, G. Lligadas, M. Galia)\u003cbr\u003e33. Surface properties of polybenzoxazines (Chih-Feng Wang, Feng-Chih Chang, and Shiao-Wei Kuo)\u003cbr\u003e34. Advanced Benzoxazine Chemistries Provide Improved Performance in Broad Range of Applications (R. Tietze, and M. Chaudhari)\u003cbr\u003e35. Benzoxazines for Industrial Applications: Comparison with other Resins, Formulation \u0026amp; Toughening Know-how and Water-based Dispersion Technology (C. Sawaryn, S. Kreiling, R. Schoenfeld, K. Landfester, and A. Taden)\u003cbr\u003e36. Polybenzoxazines for increased dielectric constant (H. Manuspia, and H. Ishida)\u003cbr\u003e37. Preparation of Polybenzoxazine- Ni- Zn Ferrite nanocomposites and their magnetic property (N.N. Ghosh, and A.B. Rajput)\u003cbr\u003ePart X. Material Properties and Spectra\u003cbr\u003e38. 1H NMR spectra of benzoxazine resins\u003cbr\u003e39. FTIR spectra of benzoxazine resins\u003cbr\u003e40. Raman spectra of benzoxazine resins\u003cbr\u003e41. DSC thermograms of benzoxazine resins\u003cbr\u003e42. TGA thermograms of benzoxazine resins\u003cbr\u003e43. Dynamic mechanical spectra of benzoxazine resins","published_at":"2017-06-22T21:15:13-04:00","created_at":"2017-06-22T21:15:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","applications of benzoxazine resins","benzoxazine resins","book","material","mechanical properties polybenzoxazines","physical properties polybenzoxazines"],"price":30500,"price_min":30500,"price_max":30500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378470404,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Benzoxazine Resins","public_title":null,"options":["Default Title"],"price":30500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-444-53790-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53790-4.jpg?v=1499387464"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53790-4.jpg?v=1499387464","options":["Title"],"media":[{"alt":null,"id":354809610333,"position":1,"preview_image":{"aspect_ratio":0.782,"height":450,"width":352,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53790-4.jpg?v=1499387464"},"aspect_ratio":0.782,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-53790-4.jpg?v=1499387464","width":352}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited By Hatsuo Ishida \u0026amp; Tarek Agag \u003cbr\u003eISBN 978-0-444-53790-4 \u003cbr\u003e\u003cbr\u003e712 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Provides thorough coverage of the chemistry and applications of benzoxazine resins with an evidence-based approach to enable chemists, engineers and material scientists to evaluate effectiveness\u003cbr\u003e\u003cbr\u003e• Features spectra, which allow researchers to compare results, avoid repetition and save time as well as tables on key NMR frequency, IR frequency, heat of polymerization, of many benzoxazine resins to aid them in selection of materials\u003cbr\u003e\u003cbr\u003e• Written by the foremost experts in the field\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThis handbook provides a wide overview of the field, fundamental understanding of the synthetic methods and structure\/property correlation, as well as studies related to applications in a wide range of subjects. The handbook also provides 1H and 13C NMR spectra, FTIR spectra, DSC and TGA thermograms to aid in research activities. Additional tables on key NMR and FTIR frequencies unique to benzoxazine, heat of polymerization, Tg, and char yield will greatly aid in the choice of proper benzoxazine for a specific application.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003ePart I. Introduction\u003cbr\u003e1. Overview and historical background of polybenzoxazine research (H. Ishida) \u003cbr\u003ePart II. Physical and Chemical Properties of Benzoxazine Resins\u003cbr\u003e2. Synthesis of benzoxazines in solutions and melt (H. Ishida, and Jin-Ping Liu)\u003cbr\u003e3. Molecular modeling (Yi Gu, and Ming Li)\u003cbr\u003e4. Mono-substituted phenol-based benzoxazines : Inevitable dimerization via self-termination and its metal complexation (S. Chirachanchai, S. Phongtamrug, A. Laobuthee, and K. Tashiro) \u003cbr\u003e5. Using molecular simulation to predict the physical and mechanical properties of polybenzoxazines (I. Hamerton, B.J. Howlin, A.L. Mitchell, S.A.Hall, and L. McNamara)\u003cbr\u003e6. Chemorheology of benzoxazine-based resins (S. Rimdusit, C. Jubsilp, P. Kunopast, and W. Bangsen)\u003cbr\u003e7. Polymerization kinetics (C. Jubsilp, and S. Rimdusit)\u003cbr\u003e8. Electrochemical polymerization of benzoxazines (Wei Chen)\u003cbr\u003e9. Light Induced Reactions of Benzoxazines (M.At. Tasdelen, B. Kiskan, B. Gacal, F. Kasapoglu, L. Cianga, and Y. Yagci)\u003cbr\u003e10. Effect of Neighboring Groups on Enhancing Benzoxazine Autocatalytic Polymerization (M. Baqar, T. Agag, S. Qutubuddin, and H. Ishida)\u003cbr\u003e11. Catalytic Opening of Lateral Benzoxazine Rings by Thiols (I. Gorodisher, R.J. DeVoe, and R.J. Webb)\u003cbr\u003ePart III. Physical and Chemical Properties of Cross-linked Polybenzoxazines\u003cbr\u003e12. Hydrogen bonding of polybenzoxazines (Ho-Dong Kim, and H. Ishida)\u003cbr\u003e13. Polybenzoxazines of Enhanced Thermal Properties: The Role of Additional Non-Benzoxazine Polymerizable Groups (T. Agag, S. Geiger, and H. Ishida)\u003cbr\u003e14. Thermal degradation mechanism of polybenzoxazines (J. Hacaloglu, T. Uyer, and H. Ishida)\u003cbr\u003ePart IV. Main-chain, Side-chain, Telechelic and Supramolecular Benzoxazine Architectures\u003cbr\u003e15. Various approaches for main-chain type benzoxazine polymers (S. Alhassan, D. Schiraldi, T. Agag, S. Qutubuddin, and H. Ishida)\u003cbr\u003e16. Side and end chain benzoxazine functional polymers (B. Kiskan, and Y. Yagci)\u003cbr\u003e17. Supramolecular chemistry of benzoxazines: from simple, selective, effective, and efficient macrocyclization pathway to host-guest properties (S. Chirachanchai, S. Phongtamrug, and K. Tashiro)\u003cbr\u003e18. Main-chain type benzoxazine oligomers: A new concept for easily processable high performance polybenzoxazines (Jia Liu, T. Agag, and H. Ishida)\u003cbr\u003ePart V. Renewable Resources Based Polybenzoxazine Materials\u003cbr\u003e19. Study of a cardanol-based benzoxazine as reactive diluent and toughening agent of conventional benzoxazines (P. Campaner, D. D’Amico, L. Longo, C. Stifani, A. Tarzia, and S. Tiburzio) \u003cbr\u003ePart VI. Polybenzoxazine Blends and Alloys\u003cbr\u003e20. Polybenzoxazine\/polyimide alloys (T. Takeichi, T. Kawauchi, and T. Agag)\u003cbr\u003e21. Polybenzoxazine\/polyurethane alloys (H. Yeganeh)\u003cbr\u003e22. The Blends of a Silicon-containing Arylacetylene Resin and an Acetylene-Functional Benzoxazine (Farong Huang, Jianxiang Huang, Yu Gao, Yan Zhou, and Lei Du)\u003cbr\u003e23. Polybenzoxazine\/polysiloxanes (T. Kawauchi, and T. Takeichi)\u003cbr\u003e24. Polybenzoxazine\/bisoxazolines (H. Kimura, K. Ohtsuka, and A. Matsumoto)\u003cbr\u003ePart VII. Morphological Control of Polybenzoxazines\u003cbr\u003e25. Morphology and properties of polybenzoxazine Blends (Chongyin Zhang, Lei Wang, Rentong Yu, and Sixun Zheng)\u003cbr\u003e26. Porous materials from polybenzoxazine (T. Chaisuwan)\u003cbr\u003e27. Spherical polybenzoxazine resin (Xinsheng Zheng, Yang Xue, Youmiao Xu, and Qianquan Chang)\u003cbr\u003ePart VIII. Polybenzoxazine Composites, Hybrid Materials and Nanocomposites\u003cbr\u003e28. Polybenzoxazine \/fiber composites (Yi Gu, and Qi-chao Ran)\u003cbr\u003e29. Polybenzoxazine-clay nanocomposites (T. Agag, and A. Akelah)\u003cbr\u003e30. Polybenzoxazine-POSS nanocomposites (Riwei Xu, Lei Wang, and Dingsheng Yu)\u003cbr\u003e31. Polybenzoxazine-CNT nanocomposites (Riwei Xu, Pengli Zhang, Jing Wang, and Dingsheng Yu)\u003cbr\u003ePart IX. Polybenzoxazine Applications and Potential Applications\u003cbr\u003e32. Polybenzoxazines with enhanced flame retardancy (V. Cadiz, J. C. Ronda, G. Lligadas, M. Galia)\u003cbr\u003e33. Surface properties of polybenzoxazines (Chih-Feng Wang, Feng-Chih Chang, and Shiao-Wei Kuo)\u003cbr\u003e34. Advanced Benzoxazine Chemistries Provide Improved Performance in Broad Range of Applications (R. Tietze, and M. Chaudhari)\u003cbr\u003e35. Benzoxazines for Industrial Applications: Comparison with other Resins, Formulation \u0026amp; Toughening Know-how and Water-based Dispersion Technology (C. Sawaryn, S. Kreiling, R. Schoenfeld, K. Landfester, and A. Taden)\u003cbr\u003e36. Polybenzoxazines for increased dielectric constant (H. Manuspia, and H. Ishida)\u003cbr\u003e37. Preparation of Polybenzoxazine- Ni- Zn Ferrite nanocomposites and their magnetic property (N.N. Ghosh, and A.B. Rajput)\u003cbr\u003ePart X. Material Properties and Spectra\u003cbr\u003e38. 1H NMR spectra of benzoxazine resins\u003cbr\u003e39. FTIR spectra of benzoxazine resins\u003cbr\u003e40. Raman spectra of benzoxazine resins\u003cbr\u003e41. DSC thermograms of benzoxazine resins\u003cbr\u003e42. TGA thermograms of benzoxazine resins\u003cbr\u003e43. Dynamic mechanical spectra of benzoxazine resins"}
Handbook of Biodegrada...
$198.00
{"id":11242212484,"title":"Handbook of Biodegradable Polymers","handle":"978-1-85957-389-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Bastioli \u003cbr\u003eISBN 978-1-85957-389-1 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 533\u003c\/p\u003e\n\u003cp\u003eSoftcover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers are niche market materials finding focused applications, including agricultural applications such as mulch films, flowerpots and controlled-release fertilisers and packaging items such as carrier bags and food wrapping and containers. They have the potential to provide a solution to a range of environmental concerns: decreasing availability of landfill space, declining petrochemical sources, and also offer an alternative option to recycling. Rapra's Handbook of Biodegradable Polymers is a complete guide to the subject of biodegradable polymers and is ideal for those new to the subject or those wanting to supplement their existing knowledge. The book covers the mechanisms of degradation in various environments, by both biological and non-biological means, and the methods for measuring biodegradation. The degree and rate of biodegradation is dependent on the chemical composition of the polymer and its working environment, and so there is no single optimal method for determining biodegradation. This handbook provides discussion of international and national standards and certification procedures developed to ensure accurate communication of a material's biodegradability between producers, authorities and consumers. The book goes on to consider the characteristics, processability and application areas for biodegradable polymers, with key polymer family groups discussed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Biodegradability of Polymers – Mechanisms and Evaluation Methods\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Background\u003cbr\u003e1.3 Defining Biodegradability\u003cbr\u003e1.4 Mechanisms of Polymer Degradation\u003cbr\u003e1.4.1 Non-biological Degradation of Polymers\u003cbr\u003e1.4.2 Biological Degradation of Polymers\u003cbr\u003e1.5 Measuring Biodegradation of Polymers\u003cbr\u003e1.5.1 Enzyme Assays\u003cbr\u003e1.5.2 Plate Tests\u003cbr\u003e1.5.3 Respiration Tests\u003cbr\u003e1.5.4 Gas (CO2 or CH4) Evolution Tests\u003cbr\u003e1.5.5 Radioactively Labelled Polymers\u003cbr\u003e1.5.6 Laboratory-scale Simulated Accelerating Environments\u003cbr\u003e1.5.7 Natural Environments – Field Trials\u003cbr\u003e1.6 Factors Affecting Biodegradability\u003cbr\u003e1.7 Conclusions \u003cbr\u003e\u003cbr\u003e2 Biodegradation Behaviour of Polymers in Liquid Environments\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Degradation in Real Liquid Environments\u003cbr\u003e2.2.1 Degradation in Sweet Water and Marine Environment\u003cbr\u003e2.3 Degradation in Laboratory Tests Simulating Real Aquatic Environments\u003cbr\u003e2.3.1 Aerobic Liquid Environments\u003cbr\u003e2.3.2 Anaerobic Liquid Environments\u003cbr\u003e2.4 Degradation in Laboratory Tests with Optimised and Defined Liquid Media\u003cbr\u003e2.5 Standard Tests for Biodegradable Polymers Using Liquid Media\u003cbr\u003e2.6 Summary \u003cbr\u003e\u003cbr\u003e3 Biodegradation Behaviour of Polymers in the Soil\u003cbr\u003e3.1 I Introduction\u003cbr\u003e3.1.1 Biodegradable Polymers and the Environment\u003cbr\u003e3.1.2 Biodegradable Polymers and Soil\u003cbr\u003e3.2 How Polymers Reach Soil\u003cbr\u003e3.2.1 Intentional Delivery\u003cbr\u003e3.2.2 Unintentional Delivery: Littering\u003cbr\u003e3.3 The Soil Environment\u003cbr\u003e3.3.1 Surface Factors\u003cbr\u003e3.3.2 Underground Factors\u003cbr\u003e3.4 Degradability of Polymers in Soil\u003cbr\u003e3.4.1 The Standardisation Approach\u003cbr\u003e3.4.2 T Test Methods and Criteria\u003cbr\u003e3.5 Effects of Biodegradable Polymers on Soil Living Organisms\u003cbr\u003e3.5.1 Performing the Assessment: Transient and Permanent Effects\u003cbr\u003e3.5.2 Test Material Concentration\u003cbr\u003e3.5.3 Preparation of the Soil Sample Ready for Ecotoxicity Testing\u003cbr\u003e3.5.4 Test Methods\u003cbr\u003e3.6 Biodegradability of Materials in Soil: A Survey of the Literature \u003cbr\u003e\u003cbr\u003e4 Ecotoxicological Aspects in the Biodegradation Process of Polymers\u003cbr\u003e4.1 The Need of Ecotoxicity Analysis for Biodegradable Materials\u003cbr\u003e4.1.1 Standards and Regulations for Testing of Biodegradable Polymers\u003cbr\u003e4.1.2 Detection of the Influences on an Ecosystem Caused by the Biodegradation of Polymers\u003cbr\u003e4.1.3 Potential Influences of Polymers After Composting\u003cbr\u003e4.1.4 Potential Influences of Polymers During and After Biodegradation in Soil and Sediment\u003cbr\u003e4.2 A Short Introduction to Ecotoxicology\u003cbr\u003e4.2.1 Theory of Dose-Response Relationships\u003cbr\u003e4.2.2 Test Design in Ecotoxicology\u003cbr\u003e4.2.3 Toxicity Tests and Bioassays\u003cbr\u003e4.2.4 Ecotoxicity Profile Analysis\u003cbr\u003e4.3 Recommendations and Standard Procedures for Biotests\u003cbr\u003e4.3.1 Bioassays with Higher Plants\u003cbr\u003e4.3.2 Bioassays with Earthworms (Eisenia foetida)\u003cbr\u003e4.3 Preparation of Elutriates for Aquatic Ecotoxicity Tests\u003cbr\u003e4.3.4 Bioassays with Algae\u003cbr\u003e4.3.5 Bioassays with Luminescent Bacteria\u003cbr\u003e4.3.6 Bioassays with Daphnia\u003cbr\u003e4.3.7 Evaluation of Bioassay Results Obtained from Samples of Complex Composition\u003cbr\u003e4.3.8 Testing of Sediments\u003cbr\u003e4.4 Special Prerequisites to be Considered when Applying Bioassays for Biodegradable Polymers\u003cbr\u003e4.4.1 Nutrients in the Sample\u003cbr\u003e4.4.2 Biodegradation Intermediates\u003cbr\u003e4.4.3 Diversity of the Microorganism Population\u003cbr\u003e4.4.4 Humic Substances\u003cbr\u003e4.4.5 Evaluation of Test Results and Limits of Bioassays\u003cbr\u003e4.5 Research Results for Ecotoxicity Testing of Biodegradable Polymers\u003cbr\u003e4.5.1 The Relationship Between Chemical Structure, Biodegradation Pathways and Formation of Potentially Ecotoxic Metabolites\u003cbr\u003e4.5.2 Ecotoxicity of the Polymers\u003cbr\u003e4.5.3 Ecotoxic Effects Appearing After Degradation in Compost or After Anaerobic Digestion\u003cbr\u003e4.5.4 Ecotoxic Effects Appearing During Degradation in Soil\u003cbr\u003e4.6 Conclusion\u003cbr\u003e4.6.1 Consequences for Test Schemes for Investigations on Biodegradable Polymers\u003cbr\u003e4.6.2 Conclusion \u003cbr\u003e\u003cbr\u003e5 International and National Norms on Biodegradability and Certification Procedures\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Organisations for Standardisation\u003cbr\u003e5.3 Norms\u003cbr\u003e5.3.1 Aquatic, Aerobic Biodegradation Tests\u003cbr\u003e5.3.2 Compost Biodegradation Tests\u003cbr\u003e5.3.3 Compostability Norms\u003cbr\u003e5.3.4 Compost Disintegration Tests\u003cbr\u003e5.3.5 Soil Biodegradation Tests\u003cbr\u003e5.3.6 Aquatic, Anaerobic Biodegradation Tests\u003cbr\u003e5.3.7 High-Solids, Anaerobic Biodegradation Tests\u003cbr\u003e5.3.8 Marine Biodegradation Tests\u003cbr\u003e5.3.9 Other Biodegradation Tests\u003cbr\u003e5.4 Certification\u003cbr\u003e5.4.1 Introduction\u003cbr\u003e5.4.2 Different Certification Systems \u003cbr\u003e\u003cbr\u003e6 General Characteristics, Processability, Industrial Applications and Market Evolution of Biodegradable Polymers\u003cbr\u003e6.1 General Characteristics\u003cbr\u003e6.1.1 Polymer Biodegradation Mechanisms\u003cbr\u003e6.1.2 Polymer Molecular Size, Structure and Chemical Composition\u003cbr\u003e6.1.3 Biodegradable Polymer Classes\u003cbr\u003e6.1.4 Naturally Biodegradable Polymers\u003cbr\u003e6.1.5 Synthetic Biodegradable Polymers\u003cbr\u003e6.1.6 Modified Naturally Biodegradable Polymers\u003cbr\u003e6.2 Processability\u003cbr\u003e6.2.1 Extrusion\u003cbr\u003e6.2.2 Film Blowing and Casting\u003cbr\u003e6.2.3 Moulding\u003cbr\u003e6.2.4 Fibre Spinning\u003cbr\u003e6.3 Industrial Applications\u003cbr\u003e6.3.1 Loose-Fill Packaging\u003cbr\u003e6.3.2 Compost Bags\u003cbr\u003e6.3.3 Other Applications\u003cbr\u003e6.4 Market Evolution \u003cbr\u003e\u003cbr\u003e7 Polyhydroxyalkanoates\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 The Various Types of PHA\u003cbr\u003e7.2.1 Poly[R-3-hydroxybutyrate] (P[3HB])\u003cbr\u003e7.2.2 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (P[3HB-co-3HV])\u003cbr\u003e7.2.3 Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] (P[3HB-co-4HB])\u003cbr\u003e7.2.4 Other PHA Copolymers with Interesting Physical Properties\u003cbr\u003e7.2.5 Uncommon PHA Constituents\u003cbr\u003e7.3 Mechanisms of PHA Biosynthesis\u003cbr\u003e7.3.1 Conditions that Promote the Biosynthesis and Accumulation of PHA in Microorganisms\u003cbr\u003e7.3.2 Carbon Sources for the Production of PHA\u003cbr\u003e7.3.3 Biochemical Pathways Involved in the Metabolism of PHA\u003cbr\u003e7.3.4 The Key Enzyme of PHA Biosynthesis, PHA Synthase\u003cbr\u003e7.4 Genetically Modified Systems and Other Methods for the Production of PHA\u003cbr\u003e7.4.1 Recombinant Escherichia coli\u003cbr\u003e7.4.2 Transgenic Plants\u003cbr\u003e7.4.3 In vitro Production of PHA\u003cbr\u003e7.5 Biodegradation of PHA\u003cbr\u003e7.6 Applications of PHA\u003cbr\u003e7.7 Conclusions and Outlook \u003cbr\u003e\u003cbr\u003e8 Starch-Based Technology\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Starch Polymer\u003cbr\u003e8.3 Starch-filled Plastics\u003cbr\u003e8.4 Thermoplastic Starch\u003cbr\u003e8.5 Starch-Based Materials on the Market\u003cbr\u003e8.6 Conclusions \u003cbr\u003e\u003cbr\u003e9 Poly(Lactic Acid) and Copolyesters\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Synthesis\u003cbr\u003e9.2.1 Homopolymers\u003cbr\u003e9.2.2 Copolymers\u003cbr\u003e9.2.3 Functionalised Polymers\u003cbr\u003e9.3 Structure, Properties, Degradation, and Applications\u003cbr\u003e9.3.1 Physical Properties\u003cbr\u003e9.3.2 Chemical Properties\u003cbr\u003e9.3.3 Applications\u003cbr\u003e9.4 Conclusions \u003cbr\u003e\u003cbr\u003e10 Aliphatic-Aromatic Polyesters\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Development of Biodegradable Aliphatic-Aromatic Copolyesters\u003cbr\u003e10.3 Degradability and Degradation Mechanism\u003cbr\u003e10.3.1 General Mechanism\/Definition\u003cbr\u003e10.3.2 Degradation of Pure Aromatic Polyesters\u003cbr\u003e10.3.3 Degradation of Aliphatic-Aromatic Copolyesters\u003cbr\u003e10.4 Commercial Products and Characteristic Material Data\u003cbr\u003e10.4.1 Ecoflex\u003cbr\u003e10.4.2 Eastar Bio\u003cbr\u003e10.4.3 Biomax\u003cbr\u003e10.4.4 EnPol\u003cbr\u003e10.4.5 Characteristic Material Data \u003cbr\u003e\u003cbr\u003e11 Material Formed from Proteins\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Structure of Material Proteins\u003cbr\u003e11.3 Protein-Based Materials\u003cbr\u003e11.4 Formation of Protein-Based Materials\u003cbr\u003e11.4.1 ‘Solvent Process’\u003cbr\u003e11.4.2 ‘Thermoplastic Process’\u003cbr\u003e11.5 Properties of Protein-Based Materials\u003cbr\u003e11.6 Applications \u003cbr\u003e\u003cbr\u003e12 Enzyme Catalysis in the Synthesis of Biodegradable Polymers\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 Polyester Synthesis\u003cbr\u003e12.2.1 Polycondensation of Hydroxyacids and Esters\u003cbr\u003e12.2.2 Polymerisation of Dicarboxylic Acids or Their Activated Derivatives with Glycols\u003cbr\u003e12.2.3 Ring Opening Polymerisation of Carbonates and Other Cyclic Monomers\u003cbr\u003e12.2.4 Ring Opening Polymerisation and Copolymerisation of Lactones\u003cbr\u003e12.3 Oxidative Polymerisation of Phenol and Derivatives of Phenol\u003cbr\u003e12.4 Enzymatic Polymerisation of Polysaccharides\u003cbr\u003e12.5 Conclusions \u003cbr\u003e\u003cbr\u003e13 Environmental Life Cycle Comparisons of Biodegradable Plastics\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Methodology of LCA\u003cbr\u003e13.3 Presentation of Comparative Data\u003cbr\u003e13.3.1 Starch Polymers\u003cbr\u003e13.3.2 Polyhydroxyalkanoates\u003cbr\u003e13.3.3 Polylactides (PLA)\u003cbr\u003e13.3.4 Other Biodegradable Polymers\u003cbr\u003e13.4 Summarising Comparison\u003cbr\u003e13.5 Discussion\u003cbr\u003e13.6 Conclusions\u003cbr\u003eAppendix 13.1 Overview of environmental life cycle comparisons or biodegradable polymers included in this review\u003cbr\u003eAppendix 13.2 Checklist for the preparation of an LCA for biodegradable plastics\u003cbr\u003eAppendix 13.3 List of abbreviations \u003cbr\u003e\u003cbr\u003e14 Biodegradable Polymers and the Optimisation of Models for Source Separation and Composting of Municipal Solid Waste\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.1.1 The Development of Composting and Schemes for Source Separation of Biowaste in Europe: A Matter of Quality\u003cbr\u003e14.2 The Driving Forces for Composting in the EU\u003cbr\u003e14.2.1 The Directive on the Landfill of Waste\u003cbr\u003e14.2.2 The Proposed Directive on Biological Treatment of Biodegradable Waste\u003cbr\u003e14.3 Source Separation of Organic Waste in Mediterranean Countries: An Overview\u003cbr\u003e14.5 ‘Biowaste’, ‘VGF’ and ‘Food Waste’: Relevance of a Definition on Performances of the Waste Management System\u003cbr\u003e14.6 The Importance of Biobags\u003cbr\u003e14.6.1 Features of ‘Biobags’: The Importance of Biodegradability and its Cost-Efficiency\u003cbr\u003e14.7 Cost Assessment of Optimised Schemes\u003cbr\u003e14.7.1 Tools to Optimise the Schemes and their Suitability in Different Situations\u003cbr\u003e14.8 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003eContributors\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCatia Bastioli is the Managing Director and Research Manager of Novamont, a leading innovation company in the sector of bioplastics. She is the author of more than 90 papers on various scientific and industrial subjects published in International Journals, Proceedings of International Conferences and books. She has filed more than 50 patents and patent applications in the sectors of synthetic and natural polymers. The patents in the sector of starch-based materials are a significant part of the Novamont patent portfolio.","published_at":"2017-06-22T21:13:16-04:00","created_at":"2017-06-22T21:13:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","applications","aquatic","assays","biodegradable polymers","biopolymers","biowaste","book","copolymers","degradation","environment","enzyme","evolution","food waste","gas","homopolymers","landfill","measuring biodegradation","physical properties","plate tests","properties","radioactively labelled Simulated","respiration tests","soil","structure","VGF","waste"],"price":19800,"price_min":19800,"price_max":19800,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378341764,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biodegradable Polymers","public_title":null,"options":["Default Title"],"price":19800,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-389-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-389-1.jpg?v=1499725547"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-389-1.jpg?v=1499725547","options":["Title"],"media":[{"alt":null,"id":354809708637,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-389-1.jpg?v=1499725547"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-389-1.jpg?v=1499725547","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: C. Bastioli \u003cbr\u003eISBN 978-1-85957-389-1 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 533\u003c\/p\u003e\n\u003cp\u003eSoftcover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBiodegradable polymers are niche market materials finding focused applications, including agricultural applications such as mulch films, flowerpots and controlled-release fertilisers and packaging items such as carrier bags and food wrapping and containers. They have the potential to provide a solution to a range of environmental concerns: decreasing availability of landfill space, declining petrochemical sources, and also offer an alternative option to recycling. Rapra's Handbook of Biodegradable Polymers is a complete guide to the subject of biodegradable polymers and is ideal for those new to the subject or those wanting to supplement their existing knowledge. The book covers the mechanisms of degradation in various environments, by both biological and non-biological means, and the methods for measuring biodegradation. The degree and rate of biodegradation is dependent on the chemical composition of the polymer and its working environment, and so there is no single optimal method for determining biodegradation. This handbook provides discussion of international and national standards and certification procedures developed to ensure accurate communication of a material's biodegradability between producers, authorities and consumers. The book goes on to consider the characteristics, processability and application areas for biodegradable polymers, with key polymer family groups discussed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Biodegradability of Polymers – Mechanisms and Evaluation Methods\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Background\u003cbr\u003e1.3 Defining Biodegradability\u003cbr\u003e1.4 Mechanisms of Polymer Degradation\u003cbr\u003e1.4.1 Non-biological Degradation of Polymers\u003cbr\u003e1.4.2 Biological Degradation of Polymers\u003cbr\u003e1.5 Measuring Biodegradation of Polymers\u003cbr\u003e1.5.1 Enzyme Assays\u003cbr\u003e1.5.2 Plate Tests\u003cbr\u003e1.5.3 Respiration Tests\u003cbr\u003e1.5.4 Gas (CO2 or CH4) Evolution Tests\u003cbr\u003e1.5.5 Radioactively Labelled Polymers\u003cbr\u003e1.5.6 Laboratory-scale Simulated Accelerating Environments\u003cbr\u003e1.5.7 Natural Environments – Field Trials\u003cbr\u003e1.6 Factors Affecting Biodegradability\u003cbr\u003e1.7 Conclusions \u003cbr\u003e\u003cbr\u003e2 Biodegradation Behaviour of Polymers in Liquid Environments\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Degradation in Real Liquid Environments\u003cbr\u003e2.2.1 Degradation in Sweet Water and Marine Environment\u003cbr\u003e2.3 Degradation in Laboratory Tests Simulating Real Aquatic Environments\u003cbr\u003e2.3.1 Aerobic Liquid Environments\u003cbr\u003e2.3.2 Anaerobic Liquid Environments\u003cbr\u003e2.4 Degradation in Laboratory Tests with Optimised and Defined Liquid Media\u003cbr\u003e2.5 Standard Tests for Biodegradable Polymers Using Liquid Media\u003cbr\u003e2.6 Summary \u003cbr\u003e\u003cbr\u003e3 Biodegradation Behaviour of Polymers in the Soil\u003cbr\u003e3.1 I Introduction\u003cbr\u003e3.1.1 Biodegradable Polymers and the Environment\u003cbr\u003e3.1.2 Biodegradable Polymers and Soil\u003cbr\u003e3.2 How Polymers Reach Soil\u003cbr\u003e3.2.1 Intentional Delivery\u003cbr\u003e3.2.2 Unintentional Delivery: Littering\u003cbr\u003e3.3 The Soil Environment\u003cbr\u003e3.3.1 Surface Factors\u003cbr\u003e3.3.2 Underground Factors\u003cbr\u003e3.4 Degradability of Polymers in Soil\u003cbr\u003e3.4.1 The Standardisation Approach\u003cbr\u003e3.4.2 T Test Methods and Criteria\u003cbr\u003e3.5 Effects of Biodegradable Polymers on Soil Living Organisms\u003cbr\u003e3.5.1 Performing the Assessment: Transient and Permanent Effects\u003cbr\u003e3.5.2 Test Material Concentration\u003cbr\u003e3.5.3 Preparation of the Soil Sample Ready for Ecotoxicity Testing\u003cbr\u003e3.5.4 Test Methods\u003cbr\u003e3.6 Biodegradability of Materials in Soil: A Survey of the Literature \u003cbr\u003e\u003cbr\u003e4 Ecotoxicological Aspects in the Biodegradation Process of Polymers\u003cbr\u003e4.1 The Need of Ecotoxicity Analysis for Biodegradable Materials\u003cbr\u003e4.1.1 Standards and Regulations for Testing of Biodegradable Polymers\u003cbr\u003e4.1.2 Detection of the Influences on an Ecosystem Caused by the Biodegradation of Polymers\u003cbr\u003e4.1.3 Potential Influences of Polymers After Composting\u003cbr\u003e4.1.4 Potential Influences of Polymers During and After Biodegradation in Soil and Sediment\u003cbr\u003e4.2 A Short Introduction to Ecotoxicology\u003cbr\u003e4.2.1 Theory of Dose-Response Relationships\u003cbr\u003e4.2.2 Test Design in Ecotoxicology\u003cbr\u003e4.2.3 Toxicity Tests and Bioassays\u003cbr\u003e4.2.4 Ecotoxicity Profile Analysis\u003cbr\u003e4.3 Recommendations and Standard Procedures for Biotests\u003cbr\u003e4.3.1 Bioassays with Higher Plants\u003cbr\u003e4.3.2 Bioassays with Earthworms (Eisenia foetida)\u003cbr\u003e4.3 Preparation of Elutriates for Aquatic Ecotoxicity Tests\u003cbr\u003e4.3.4 Bioassays with Algae\u003cbr\u003e4.3.5 Bioassays with Luminescent Bacteria\u003cbr\u003e4.3.6 Bioassays with Daphnia\u003cbr\u003e4.3.7 Evaluation of Bioassay Results Obtained from Samples of Complex Composition\u003cbr\u003e4.3.8 Testing of Sediments\u003cbr\u003e4.4 Special Prerequisites to be Considered when Applying Bioassays for Biodegradable Polymers\u003cbr\u003e4.4.1 Nutrients in the Sample\u003cbr\u003e4.4.2 Biodegradation Intermediates\u003cbr\u003e4.4.3 Diversity of the Microorganism Population\u003cbr\u003e4.4.4 Humic Substances\u003cbr\u003e4.4.5 Evaluation of Test Results and Limits of Bioassays\u003cbr\u003e4.5 Research Results for Ecotoxicity Testing of Biodegradable Polymers\u003cbr\u003e4.5.1 The Relationship Between Chemical Structure, Biodegradation Pathways and Formation of Potentially Ecotoxic Metabolites\u003cbr\u003e4.5.2 Ecotoxicity of the Polymers\u003cbr\u003e4.5.3 Ecotoxic Effects Appearing After Degradation in Compost or After Anaerobic Digestion\u003cbr\u003e4.5.4 Ecotoxic Effects Appearing During Degradation in Soil\u003cbr\u003e4.6 Conclusion\u003cbr\u003e4.6.1 Consequences for Test Schemes for Investigations on Biodegradable Polymers\u003cbr\u003e4.6.2 Conclusion \u003cbr\u003e\u003cbr\u003e5 International and National Norms on Biodegradability and Certification Procedures\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Organisations for Standardisation\u003cbr\u003e5.3 Norms\u003cbr\u003e5.3.1 Aquatic, Aerobic Biodegradation Tests\u003cbr\u003e5.3.2 Compost Biodegradation Tests\u003cbr\u003e5.3.3 Compostability Norms\u003cbr\u003e5.3.4 Compost Disintegration Tests\u003cbr\u003e5.3.5 Soil Biodegradation Tests\u003cbr\u003e5.3.6 Aquatic, Anaerobic Biodegradation Tests\u003cbr\u003e5.3.7 High-Solids, Anaerobic Biodegradation Tests\u003cbr\u003e5.3.8 Marine Biodegradation Tests\u003cbr\u003e5.3.9 Other Biodegradation Tests\u003cbr\u003e5.4 Certification\u003cbr\u003e5.4.1 Introduction\u003cbr\u003e5.4.2 Different Certification Systems \u003cbr\u003e\u003cbr\u003e6 General Characteristics, Processability, Industrial Applications and Market Evolution of Biodegradable Polymers\u003cbr\u003e6.1 General Characteristics\u003cbr\u003e6.1.1 Polymer Biodegradation Mechanisms\u003cbr\u003e6.1.2 Polymer Molecular Size, Structure and Chemical Composition\u003cbr\u003e6.1.3 Biodegradable Polymer Classes\u003cbr\u003e6.1.4 Naturally Biodegradable Polymers\u003cbr\u003e6.1.5 Synthetic Biodegradable Polymers\u003cbr\u003e6.1.6 Modified Naturally Biodegradable Polymers\u003cbr\u003e6.2 Processability\u003cbr\u003e6.2.1 Extrusion\u003cbr\u003e6.2.2 Film Blowing and Casting\u003cbr\u003e6.2.3 Moulding\u003cbr\u003e6.2.4 Fibre Spinning\u003cbr\u003e6.3 Industrial Applications\u003cbr\u003e6.3.1 Loose-Fill Packaging\u003cbr\u003e6.3.2 Compost Bags\u003cbr\u003e6.3.3 Other Applications\u003cbr\u003e6.4 Market Evolution \u003cbr\u003e\u003cbr\u003e7 Polyhydroxyalkanoates\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 The Various Types of PHA\u003cbr\u003e7.2.1 Poly[R-3-hydroxybutyrate] (P[3HB])\u003cbr\u003e7.2.2 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (P[3HB-co-3HV])\u003cbr\u003e7.2.3 Poly[3-hydroxybutyrate-co-4-hydroxybutyrate] (P[3HB-co-4HB])\u003cbr\u003e7.2.4 Other PHA Copolymers with Interesting Physical Properties\u003cbr\u003e7.2.5 Uncommon PHA Constituents\u003cbr\u003e7.3 Mechanisms of PHA Biosynthesis\u003cbr\u003e7.3.1 Conditions that Promote the Biosynthesis and Accumulation of PHA in Microorganisms\u003cbr\u003e7.3.2 Carbon Sources for the Production of PHA\u003cbr\u003e7.3.3 Biochemical Pathways Involved in the Metabolism of PHA\u003cbr\u003e7.3.4 The Key Enzyme of PHA Biosynthesis, PHA Synthase\u003cbr\u003e7.4 Genetically Modified Systems and Other Methods for the Production of PHA\u003cbr\u003e7.4.1 Recombinant Escherichia coli\u003cbr\u003e7.4.2 Transgenic Plants\u003cbr\u003e7.4.3 In vitro Production of PHA\u003cbr\u003e7.5 Biodegradation of PHA\u003cbr\u003e7.6 Applications of PHA\u003cbr\u003e7.7 Conclusions and Outlook \u003cbr\u003e\u003cbr\u003e8 Starch-Based Technology\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Starch Polymer\u003cbr\u003e8.3 Starch-filled Plastics\u003cbr\u003e8.4 Thermoplastic Starch\u003cbr\u003e8.5 Starch-Based Materials on the Market\u003cbr\u003e8.6 Conclusions \u003cbr\u003e\u003cbr\u003e9 Poly(Lactic Acid) and Copolyesters\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Synthesis\u003cbr\u003e9.2.1 Homopolymers\u003cbr\u003e9.2.2 Copolymers\u003cbr\u003e9.2.3 Functionalised Polymers\u003cbr\u003e9.3 Structure, Properties, Degradation, and Applications\u003cbr\u003e9.3.1 Physical Properties\u003cbr\u003e9.3.2 Chemical Properties\u003cbr\u003e9.3.3 Applications\u003cbr\u003e9.4 Conclusions \u003cbr\u003e\u003cbr\u003e10 Aliphatic-Aromatic Polyesters\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Development of Biodegradable Aliphatic-Aromatic Copolyesters\u003cbr\u003e10.3 Degradability and Degradation Mechanism\u003cbr\u003e10.3.1 General Mechanism\/Definition\u003cbr\u003e10.3.2 Degradation of Pure Aromatic Polyesters\u003cbr\u003e10.3.3 Degradation of Aliphatic-Aromatic Copolyesters\u003cbr\u003e10.4 Commercial Products and Characteristic Material Data\u003cbr\u003e10.4.1 Ecoflex\u003cbr\u003e10.4.2 Eastar Bio\u003cbr\u003e10.4.3 Biomax\u003cbr\u003e10.4.4 EnPol\u003cbr\u003e10.4.5 Characteristic Material Data \u003cbr\u003e\u003cbr\u003e11 Material Formed from Proteins\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Structure of Material Proteins\u003cbr\u003e11.3 Protein-Based Materials\u003cbr\u003e11.4 Formation of Protein-Based Materials\u003cbr\u003e11.4.1 ‘Solvent Process’\u003cbr\u003e11.4.2 ‘Thermoplastic Process’\u003cbr\u003e11.5 Properties of Protein-Based Materials\u003cbr\u003e11.6 Applications \u003cbr\u003e\u003cbr\u003e12 Enzyme Catalysis in the Synthesis of Biodegradable Polymers\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 Polyester Synthesis\u003cbr\u003e12.2.1 Polycondensation of Hydroxyacids and Esters\u003cbr\u003e12.2.2 Polymerisation of Dicarboxylic Acids or Their Activated Derivatives with Glycols\u003cbr\u003e12.2.3 Ring Opening Polymerisation of Carbonates and Other Cyclic Monomers\u003cbr\u003e12.2.4 Ring Opening Polymerisation and Copolymerisation of Lactones\u003cbr\u003e12.3 Oxidative Polymerisation of Phenol and Derivatives of Phenol\u003cbr\u003e12.4 Enzymatic Polymerisation of Polysaccharides\u003cbr\u003e12.5 Conclusions \u003cbr\u003e\u003cbr\u003e13 Environmental Life Cycle Comparisons of Biodegradable Plastics\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Methodology of LCA\u003cbr\u003e13.3 Presentation of Comparative Data\u003cbr\u003e13.3.1 Starch Polymers\u003cbr\u003e13.3.2 Polyhydroxyalkanoates\u003cbr\u003e13.3.3 Polylactides (PLA)\u003cbr\u003e13.3.4 Other Biodegradable Polymers\u003cbr\u003e13.4 Summarising Comparison\u003cbr\u003e13.5 Discussion\u003cbr\u003e13.6 Conclusions\u003cbr\u003eAppendix 13.1 Overview of environmental life cycle comparisons or biodegradable polymers included in this review\u003cbr\u003eAppendix 13.2 Checklist for the preparation of an LCA for biodegradable plastics\u003cbr\u003eAppendix 13.3 List of abbreviations \u003cbr\u003e\u003cbr\u003e14 Biodegradable Polymers and the Optimisation of Models for Source Separation and Composting of Municipal Solid Waste\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.1.1 The Development of Composting and Schemes for Source Separation of Biowaste in Europe: A Matter of Quality\u003cbr\u003e14.2 The Driving Forces for Composting in the EU\u003cbr\u003e14.2.1 The Directive on the Landfill of Waste\u003cbr\u003e14.2.2 The Proposed Directive on Biological Treatment of Biodegradable Waste\u003cbr\u003e14.3 Source Separation of Organic Waste in Mediterranean Countries: An Overview\u003cbr\u003e14.5 ‘Biowaste’, ‘VGF’ and ‘Food Waste’: Relevance of a Definition on Performances of the Waste Management System\u003cbr\u003e14.6 The Importance of Biobags\u003cbr\u003e14.6.1 Features of ‘Biobags’: The Importance of Biodegradability and its Cost-Efficiency\u003cbr\u003e14.7 Cost Assessment of Optimised Schemes\u003cbr\u003e14.7.1 Tools to Optimise the Schemes and their Suitability in Different Situations\u003cbr\u003e14.8 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003eContributors\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCatia Bastioli is the Managing Director and Research Manager of Novamont, a leading innovation company in the sector of bioplastics. She is the author of more than 90 papers on various scientific and industrial subjects published in International Journals, Proceedings of International Conferences and books. She has filed more than 50 patents and patent applications in the sectors of synthetic and natural polymers. The patents in the sector of starch-based materials are a significant part of the Novamont patent portfolio."}
Handbook of Biodegrada...
$215.00
{"id":11242201604,"title":"Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications","handle":"978-3-527-32441-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Andreas Lendlein (Editor), Adam Sisson (Editor) \u003cbr\u003eISBN 978-3-527-32441-5 \u003cbr\u003e\u003cbr\u003e426 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA comprehensive overview of biodegradable polymers, covering everything from synthesis, characterization, and degradation mechanisms while also introducing useful applications, such as drug delivery systems and biomaterial-based regenerative therapies. An introductory section deals with such fundamentals as basic chemical reactions during degradation, the complexity of biological environments and experimental methods for monitoring degradation processes.\u003cbr\u003e\u003cbr\u003eThe result is a reliable reference source for those wanting to learn more about this important class of polymer materials, as well as scientists in the field seeking a deeper insight.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface.\u003cbr\u003eList of Contributors.\u003cbr\u003e\u003cb\u003e1 Polyesters (Adam L. Sisson, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e1.1 Historical Background.\u003cbr\u003e1.2 Preparative Methods.\u003cbr\u003e1.3 Physical Properties.\u003cbr\u003e1.4 Degradation Mechanisms.\u003cbr\u003e1.5 Beyond Classical Poly(Hydroxycarboxylic Acids).\u003cbr\u003e\u003cb\u003e2 Biotechnologically Produced Biodegradable Polyesters (Jaciane Lutz Ienczak and Gláucia Maria Falcão de Aragão).\u003c\/b\u003e\u003cbr\u003e2.1 Introduction.\u003cbr\u003e2.2 History.\u003cbr\u003e2.3 Polyhydroxyalkanoates – Granules Morphology.\u003cbr\u003e2.4 Biosynthesis and Biodegradability of Poly(3-Hydroxybutyrate) and Other Polyhydroxyalkanoates.\u003cbr\u003e2.5 Extraction and Recovery.\u003cbr\u003e2.6 Physical, Mechanical, and Thermal Properties of Polyhydroxyalkanoates.\u003cbr\u003e2.7 Future Directions.\u003cbr\u003e\u003cb\u003e3 Polyanhydrides (Avi Domb, Jay Prakash Jain, and Neeraj Kumar).\u003c\/b\u003e\u003cbr\u003e3.1 Introduction.\u003cbr\u003e3.2 Types of Polyanhydride.\u003cbr\u003e3.3 Synthesis.\u003cbr\u003e3.4 Properties.\u003cbr\u003e3.5 In Vitro Degradation and Erosion of Polyanhydrides.\u003cbr\u003e3.6 In Vivo Degradation and Elimination of Polyanhydrides.\u003cbr\u003e3.7 Toxicological Aspects of Polyanhydrides.\u003cbr\u003e3.8 Fabrication of Delivery Systems.\u003cbr\u003e3.9 Production and World Market.\u003cbr\u003e3.10 Biomedical Applications.\u003cbr\u003e\u003cb\u003e4 Poly(Ortho Esters) (Jorge Heller).\u003c\/b\u003e\u003cbr\u003e4.1 Introduction.\u003cbr\u003e4.2 POE II.\u003cbr\u003e4.3 POE IV.\u003cbr\u003e4.4 Solid Polymers.\u003cbr\u003e4.5 Gel-Like Materials.\u003cbr\u003e4.6 Polymers Based on an Alternate Diketene Acetal.\u003cbr\u003e4.7 Conclusions.\u003cbr\u003e\u003cb\u003e5 Biodegradable Polymers Composed of Naturally Occurring α-Amino Acids (Ramaz Katsarava and Zaza Gomurashvili).\u003c\/b\u003e\u003cbr\u003e5.1 Introduction.\u003cbr\u003e5.2 Amino Acid-Based Biodegradable Polymers (AABBPs).\u003cbr\u003e5.3 Conclusion and Perspectives.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e6 Biodegradable Polyurethanes and Poly(ester amide)s (Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e6.1 Chemistry and Properties of Biodegradable Polyurethanes.\u003cbr\u003e6.2 Biodegradation Mechanisms of Polyurethanes.\u003cbr\u003e6.3 Applications of Biodegradable Polyurethanes.\u003cbr\u003e6.4 New Polymerization Trends to Obtain Degradable Polyurethanes.\u003cbr\u003e6.5 Aliphatic Poly(ester amide)s: A Family of Biodegradable Thermoplastics with Interest as New Biomaterials.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e7 Carbohydrates (Gerald Dräger, Andreas Krause, Lena Möller, and Severian Dumitriu).\u003c\/b\u003e\u003cbr\u003e7.1 Introduction.\u003cbr\u003e7.2 Alginate.\u003cbr\u003e7.3 Carrageenan.\u003cbr\u003e7.4 Cellulose and Its Derivatives.\u003cbr\u003e7.5 Microbial Cellulose.\u003cbr\u003e7.6 Chitin and Chitosan.\u003cbr\u003e7.7 Dextran.\u003cbr\u003e7.8 Gellan.\u003cbr\u003e7.9 Guar Gum.\u003cbr\u003e7.10 Hyaluronic Acid (Hyaluronan).\u003cbr\u003e7.11 Pullulan.\u003cbr\u003e7.12 Scleroglucan.\u003cbr\u003e7.13 Xanthan.\u003cbr\u003e7.14 Summary.\u003cbr\u003eAcknowledgments.\u003cbr\u003eIn Memoriam.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e8 Biodegradable Shape-Memory Polymers (Marc Behl, Jörg Zotzmann, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e8.1 Introduction.\u003cbr\u003e8.2 General Concept of SMPs.\u003cbr\u003e8.3 Classes of Degradable SMPs.\u003cbr\u003e8.4 Applications of Biodegradable SMPs.\u003cbr\u003e\u003cb\u003e9 Biodegradable Elastic Hydrogels for Tissue Expander Application (Thanh Huyen Tran, John Garner, Yourong Fu, Kinam Park, and Kang Moo Huh).\u003c\/b\u003e\u003cbr\u003e9.1 Introduction.\u003cbr\u003e9.2 Synthesis of Elastic Hydrogels.\u003cbr\u003e9.3 Physical Properties of Elastic Hydrogels.\u003cbr\u003e9.4 Applications of Elastic Hydrogels.\u003cbr\u003e9.5 Elastic Hydrogels for Tissue Expander Applications.\u003cbr\u003e9.6 Conclusion.\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003e10 Biodegradable Dendrimers and Dendritic Polymers (Jayant Khandare and Sanjay Kumar).\u003c\/b\u003e\u003cbr\u003e10.1 Introduction.\u003cbr\u003e10.2 Challenges for Designing Biodegradable Dendrimers.\u003cbr\u003e10.3 Design of Self-Immolative Biodegradable Dendrimers.\u003cbr\u003e10.4 Biological Implications of Biodegradable Dendrimers.\u003cbr\u003e10.5 Future Perspectives of Biodegradable Dendrimers.\u003cbr\u003e10.6 Concluding Remarks.\u003cbr\u003e\u003cb\u003e11 Analytical Methods for Monitoring Biodegradation Processes of Environmentally Degradable Polymers (Maarten van der Zee).\u003c\/b\u003e\u003cbr\u003e11.1 Introduction.\u003cbr\u003e11.2 Some Background.\u003cbr\u003e11.3 Defining Biodegradability.\u003cbr\u003e11.4 Mechanisms of Polymer Degradation.\u003cbr\u003e11.5 Measuring Biodegradation of Polymers.\u003cbr\u003e11.6 Conclusions.\u003cbr\u003e\u003cb\u003e12 Modeling and Simulation of Microbial Depolymerization Processes of Xenobiotic Polymers (Masaji Watanabe and Fusako Kawai).\u003c\/b\u003e\u003cbr\u003e12.1 Introduction.\u003cbr\u003e12.2 Analysis of Exogenous Depolymerization.\u003cbr\u003e12.3 Materials and Methods.\u003cbr\u003e12.4 Analysis of Endogenous Depolymerization.\u003cbr\u003e12.5 Discussion.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e13 Regenerative Medicine: Reconstruction of Tracheal and Pharyngeal Mucosal Defects in Head and Neck Surgery (Dorothee Rickert, Bernhard Hiebl, Rosemarie Fuhrmann, Friedrich Jung, Andreas Lendlein, and Ralf-Peter Franke).\u003c\/b\u003e\u003cbr\u003e13.1 Introduction.\u003cbr\u003e13.2 Regenerative Medicine for the Reconstruction of the Upper Aerodigestive Tract.\u003cbr\u003e13.3 Methods and Novel Therapeutical Options in Head and Neck Surgery.\u003cbr\u003e13.4 Vascularization of Tissue-Engineered Constructs.\u003cbr\u003e13.5 Application of Stem Cells in Regenerative Medicine.\u003cbr\u003e13.6 Conclusion.\u003cbr\u003e\u003cb\u003e14 Biodegradable Polymers as Scaffolds for Tissue Engineering (Yoshito Ikada).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e14.1 Introduction.\u003cbr\u003e14.2 Short Overview of Regenerative Biology.\u003cbr\u003e14.3 Minimum Requirements for Tissue Engineering.\u003cbr\u003e14.4 Structure of Scaffolds.\u003cbr\u003e14.5 Biodegradable Polymers for Tissue Engineering.\u003cbr\u003e14.6 Some Examples of Clinical Application of Scaffold.\u003cbr\u003e\u003cb\u003e15 Drug Delivery Systems (Kevin M. Shakesheff).\u003c\/b\u003e\u003cbr\u003e15.1 Introduction.\u003cbr\u003e15.2 The Clinical Need for Drug Delivery Systems.\u003cbr\u003e15.3 Poly(α-Hydroxyl Acids).\u003cbr\u003e15.4 Polyanhydrides.\u003cbr\u003e15.5 Manufacturing Routes.\u003cbr\u003e15.6 Examples of Biodegradable Polymer Drug Delivery Systems Under Development.\u003cbr\u003e15.7 Concluding Remarks.\u003cbr\u003e\u003cb\u003e16 Oxo-biodegradable Polymers: Present Status and Future Perspectives (Emo Chiellini, Andrea Corti, Salvatore D’Antone, and David Mckeen Wiles).\u003c\/b\u003e\u003cbr\u003e16.1 Introduction.\u003cbr\u003e16.2 Controlled – Lifetime Plastics.\u003cbr\u003e16.3 The Abiotic Oxidation of Polyolefins.\u003cbr\u003e16.4 Enhanced Oxo-biodegradation of Polyolefins.\u003cbr\u003e16.5 Processability and Recovery of Oxo-biodegradable Polyolefins.\u003cbr\u003e16.6 Concluding Remarks.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003eIndex.\u003c\/b\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eAndreas Lendlein\u003c\/b\u003e is Director of the Institute of Polymer Research at Helmholtz-Zentrum\u003c\/div\u003e\n\u003cdiv\u003eGeesthacht in Teltow, Germany, and serves on the Board of Directors of the Berlin-Brandenburg\u003c\/div\u003e\n\u003cdiv\u003eCenter for Regenerative Therapies, Berlin. He is Professor of Materials in Life Sciences\u003c\/div\u003e\n\u003cdiv\u003eat University of Potsdam and Professor in Chemistry at the Freie Universitat Berlin as well as\u003c\/div\u003e\n\u003cdiv\u003ethe member of the medical faculty of Charite University Medicine Berlin. His research interests in\u003c\/div\u003e\n\u003cdiv\u003emacromolecular chemistry and material science are polymer-based biomaterials with special\u003c\/div\u003e\n\u003cdiv\u003eemphasis given to multifunctional materials, stimuli-sensitive polymers, especially shape-memory\u003c\/div\u003e\n\u003cdiv\u003epolymers, and biomimetic polymers. Furthermore, he explores potential applications of\u003c\/div\u003e\n\u003cdiv\u003esuch biomaterials in biofunctional implants, controlled drug delivery systems, and regenerative\u003c\/div\u003e\n\u003cdiv\u003etherapies. He completed his habilitation in Macromolecular Chemistry in 2002 at the RWTH\u003c\/div\u003e\n\u003cdiv\u003eAachen University worked as a visiting scientist at the Massachusetts Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003eand received his doctoral degree in Materials Science from Swiss Federal Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e(ETH) in Zurich in 1996. Andreas Lendlein received more than 20 awards for his scientific\u003c\/div\u003e\n\u003cdiv\u003ework, and his achievements as an entrepreneur including the BioFUTURE Award in 1998, the\u003c\/div\u003e\n\u003cdiv\u003e2000 Hermann-Schnell Award and the World Technology Network Award in the category\u003c\/div\u003e\n\u003cdiv\u003eHealth \u0026amp; Medicine in 2005. He has published more than 220 papers in journals and books,\u003c\/div\u003e\n\u003cdiv\u003eand is an inventor of more than 250 published patents and patent applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eAdam Sisson\u003c\/b\u003e received his PhD in Supramolecular Chemistry in 2005 under the guidance of\u003c\/div\u003e\n\u003cdiv\u003eProfessor Anthony Davis at the University of Bristol, UK. Following this, he moved into the\u003c\/div\u003e\n\u003cdiv\u003egroup of Professor Stefan Matile at the University of Geneva, Switzerland, to conduct postdoctoral\u003c\/div\u003e\n\u003cdiv\u003eresearch in self-assembling nanomaterials. In 2007 he embarked upon research into\u003c\/div\u003e\n\u003cdiv\u003epolymeric nanogels as an Alexander von Humboldt Stiftung sponsored research fellow with\u003c\/div\u003e\n\u003cdiv\u003eProfessor Rainer Haag at the Free University of Berlin, Germany. Since 2010 he is leading a\u003c\/div\u003e\n\u003cdiv\u003eJunior research group ?Cell and Tissue Specifi c Materials? at the Berlin-Brandenburg Center\u003c\/div\u003e\n\u003cdiv\u003efor Regenerative Therapies, Helmholtz-Zentrum Geesthacht in Teltow, Germany. His research\u003c\/div\u003e\n\u003cdiv\u003einterests focus on studying and manipulating the interactions of synthetic materials with various\u003c\/div\u003e\n\u003cdiv\u003ebiological moieties in a range of applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:41-04:00","created_at":"2017-06-22T21:12:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","biodegradable polymers","biodegradation processes","biomaterials","biopolymers","biopolymers in drug delivery system","book","degradation","drug delivery systems","polymers"],"price":21500,"price_min":21500,"price_max":21500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309124,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications","public_title":null,"options":["Default Title"],"price":21500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-527-32441-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604","options":["Title"],"media":[{"alt":null,"id":354809774173,"position":1,"preview_image":{"aspect_ratio":0.711,"height":499,"width":355,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604"},"aspect_ratio":0.711,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-527-32441-5.jpg?v=1499387604","width":355}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Andreas Lendlein (Editor), Adam Sisson (Editor) \u003cbr\u003eISBN 978-3-527-32441-5 \u003cbr\u003e\u003cbr\u003e426 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA comprehensive overview of biodegradable polymers, covering everything from synthesis, characterization, and degradation mechanisms while also introducing useful applications, such as drug delivery systems and biomaterial-based regenerative therapies. An introductory section deals with such fundamentals as basic chemical reactions during degradation, the complexity of biological environments and experimental methods for monitoring degradation processes.\u003cbr\u003e\u003cbr\u003eThe result is a reliable reference source for those wanting to learn more about this important class of polymer materials, as well as scientists in the field seeking a deeper insight.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface.\u003cbr\u003eList of Contributors.\u003cbr\u003e\u003cb\u003e1 Polyesters (Adam L. Sisson, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e1.1 Historical Background.\u003cbr\u003e1.2 Preparative Methods.\u003cbr\u003e1.3 Physical Properties.\u003cbr\u003e1.4 Degradation Mechanisms.\u003cbr\u003e1.5 Beyond Classical Poly(Hydroxycarboxylic Acids).\u003cbr\u003e\u003cb\u003e2 Biotechnologically Produced Biodegradable Polyesters (Jaciane Lutz Ienczak and Gláucia Maria Falcão de Aragão).\u003c\/b\u003e\u003cbr\u003e2.1 Introduction.\u003cbr\u003e2.2 History.\u003cbr\u003e2.3 Polyhydroxyalkanoates – Granules Morphology.\u003cbr\u003e2.4 Biosynthesis and Biodegradability of Poly(3-Hydroxybutyrate) and Other Polyhydroxyalkanoates.\u003cbr\u003e2.5 Extraction and Recovery.\u003cbr\u003e2.6 Physical, Mechanical, and Thermal Properties of Polyhydroxyalkanoates.\u003cbr\u003e2.7 Future Directions.\u003cbr\u003e\u003cb\u003e3 Polyanhydrides (Avi Domb, Jay Prakash Jain, and Neeraj Kumar).\u003c\/b\u003e\u003cbr\u003e3.1 Introduction.\u003cbr\u003e3.2 Types of Polyanhydride.\u003cbr\u003e3.3 Synthesis.\u003cbr\u003e3.4 Properties.\u003cbr\u003e3.5 In Vitro Degradation and Erosion of Polyanhydrides.\u003cbr\u003e3.6 In Vivo Degradation and Elimination of Polyanhydrides.\u003cbr\u003e3.7 Toxicological Aspects of Polyanhydrides.\u003cbr\u003e3.8 Fabrication of Delivery Systems.\u003cbr\u003e3.9 Production and World Market.\u003cbr\u003e3.10 Biomedical Applications.\u003cbr\u003e\u003cb\u003e4 Poly(Ortho Esters) (Jorge Heller).\u003c\/b\u003e\u003cbr\u003e4.1 Introduction.\u003cbr\u003e4.2 POE II.\u003cbr\u003e4.3 POE IV.\u003cbr\u003e4.4 Solid Polymers.\u003cbr\u003e4.5 Gel-Like Materials.\u003cbr\u003e4.6 Polymers Based on an Alternate Diketene Acetal.\u003cbr\u003e4.7 Conclusions.\u003cbr\u003e\u003cb\u003e5 Biodegradable Polymers Composed of Naturally Occurring α-Amino Acids (Ramaz Katsarava and Zaza Gomurashvili).\u003c\/b\u003e\u003cbr\u003e5.1 Introduction.\u003cbr\u003e5.2 Amino Acid-Based Biodegradable Polymers (AABBPs).\u003cbr\u003e5.3 Conclusion and Perspectives.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e6 Biodegradable Polyurethanes and Poly(ester amide)s (Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e6.1 Chemistry and Properties of Biodegradable Polyurethanes.\u003cbr\u003e6.2 Biodegradation Mechanisms of Polyurethanes.\u003cbr\u003e6.3 Applications of Biodegradable Polyurethanes.\u003cbr\u003e6.4 New Polymerization Trends to Obtain Degradable Polyurethanes.\u003cbr\u003e6.5 Aliphatic Poly(ester amide)s: A Family of Biodegradable Thermoplastics with Interest as New Biomaterials.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e7 Carbohydrates (Gerald Dräger, Andreas Krause, Lena Möller, and Severian Dumitriu).\u003c\/b\u003e\u003cbr\u003e7.1 Introduction.\u003cbr\u003e7.2 Alginate.\u003cbr\u003e7.3 Carrageenan.\u003cbr\u003e7.4 Cellulose and Its Derivatives.\u003cbr\u003e7.5 Microbial Cellulose.\u003cbr\u003e7.6 Chitin and Chitosan.\u003cbr\u003e7.7 Dextran.\u003cbr\u003e7.8 Gellan.\u003cbr\u003e7.9 Guar Gum.\u003cbr\u003e7.10 Hyaluronic Acid (Hyaluronan).\u003cbr\u003e7.11 Pullulan.\u003cbr\u003e7.12 Scleroglucan.\u003cbr\u003e7.13 Xanthan.\u003cbr\u003e7.14 Summary.\u003cbr\u003eAcknowledgments.\u003cbr\u003eIn Memoriam.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e8 Biodegradable Shape-Memory Polymers (Marc Behl, Jörg Zotzmann, Michael Schroeter, and Andreas Lendlein).\u003c\/b\u003e\u003cbr\u003e8.1 Introduction.\u003cbr\u003e8.2 General Concept of SMPs.\u003cbr\u003e8.3 Classes of Degradable SMPs.\u003cbr\u003e8.4 Applications of Biodegradable SMPs.\u003cbr\u003e\u003cb\u003e9 Biodegradable Elastic Hydrogels for Tissue Expander Application (Thanh Huyen Tran, John Garner, Yourong Fu, Kinam Park, and Kang Moo Huh).\u003c\/b\u003e\u003cbr\u003e9.1 Introduction.\u003cbr\u003e9.2 Synthesis of Elastic Hydrogels.\u003cbr\u003e9.3 Physical Properties of Elastic Hydrogels.\u003cbr\u003e9.4 Applications of Elastic Hydrogels.\u003cbr\u003e9.5 Elastic Hydrogels for Tissue Expander Applications.\u003cbr\u003e9.6 Conclusion.\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003e10 Biodegradable Dendrimers and Dendritic Polymers (Jayant Khandare and Sanjay Kumar).\u003c\/b\u003e\u003cbr\u003e10.1 Introduction.\u003cbr\u003e10.2 Challenges for Designing Biodegradable Dendrimers.\u003cbr\u003e10.3 Design of Self-Immolative Biodegradable Dendrimers.\u003cbr\u003e10.4 Biological Implications of Biodegradable Dendrimers.\u003cbr\u003e10.5 Future Perspectives of Biodegradable Dendrimers.\u003cbr\u003e10.6 Concluding Remarks.\u003cbr\u003e\u003cb\u003e11 Analytical Methods for Monitoring Biodegradation Processes of Environmentally Degradable Polymers (Maarten van der Zee).\u003c\/b\u003e\u003cbr\u003e11.1 Introduction.\u003cbr\u003e11.2 Some Background.\u003cbr\u003e11.3 Defining Biodegradability.\u003cbr\u003e11.4 Mechanisms of Polymer Degradation.\u003cbr\u003e11.5 Measuring Biodegradation of Polymers.\u003cbr\u003e11.6 Conclusions.\u003cbr\u003e\u003cb\u003e12 Modeling and Simulation of Microbial Depolymerization Processes of Xenobiotic Polymers (Masaji Watanabe and Fusako Kawai).\u003c\/b\u003e\u003cbr\u003e12.1 Introduction.\u003cbr\u003e12.2 Analysis of Exogenous Depolymerization.\u003cbr\u003e12.3 Materials and Methods.\u003cbr\u003e12.4 Analysis of Endogenous Depolymerization.\u003cbr\u003e12.5 Discussion.\u003cbr\u003eAcknowledgments.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003e13 Regenerative Medicine: Reconstruction of Tracheal and Pharyngeal Mucosal Defects in Head and Neck Surgery (Dorothee Rickert, Bernhard Hiebl, Rosemarie Fuhrmann, Friedrich Jung, Andreas Lendlein, and Ralf-Peter Franke).\u003c\/b\u003e\u003cbr\u003e13.1 Introduction.\u003cbr\u003e13.2 Regenerative Medicine for the Reconstruction of the Upper Aerodigestive Tract.\u003cbr\u003e13.3 Methods and Novel Therapeutical Options in Head and Neck Surgery.\u003cbr\u003e13.4 Vascularization of Tissue-Engineered Constructs.\u003cbr\u003e13.5 Application of Stem Cells in Regenerative Medicine.\u003cbr\u003e13.6 Conclusion.\u003cbr\u003e\u003cb\u003e14 Biodegradable Polymers as Scaffolds for Tissue Engineering (Yoshito Ikada).\u003c\/b\u003e\u003cbr\u003eAbbreviations.\u003cbr\u003e14.1 Introduction.\u003cbr\u003e14.2 Short Overview of Regenerative Biology.\u003cbr\u003e14.3 Minimum Requirements for Tissue Engineering.\u003cbr\u003e14.4 Structure of Scaffolds.\u003cbr\u003e14.5 Biodegradable Polymers for Tissue Engineering.\u003cbr\u003e14.6 Some Examples of Clinical Application of Scaffold.\u003cbr\u003e\u003cb\u003e15 Drug Delivery Systems (Kevin M. Shakesheff).\u003c\/b\u003e\u003cbr\u003e15.1 Introduction.\u003cbr\u003e15.2 The Clinical Need for Drug Delivery Systems.\u003cbr\u003e15.3 Poly(α-Hydroxyl Acids).\u003cbr\u003e15.4 Polyanhydrides.\u003cbr\u003e15.5 Manufacturing Routes.\u003cbr\u003e15.6 Examples of Biodegradable Polymer Drug Delivery Systems Under Development.\u003cbr\u003e15.7 Concluding Remarks.\u003cbr\u003e\u003cb\u003e16 Oxo-biodegradable Polymers: Present Status and Future Perspectives (Emo Chiellini, Andrea Corti, Salvatore D’Antone, and David Mckeen Wiles).\u003c\/b\u003e\u003cbr\u003e16.1 Introduction.\u003cbr\u003e16.2 Controlled – Lifetime Plastics.\u003cbr\u003e16.3 The Abiotic Oxidation of Polyolefins.\u003cbr\u003e16.4 Enhanced Oxo-biodegradation of Polyolefins.\u003cbr\u003e16.5 Processability and Recovery of Oxo-biodegradable Polyolefins.\u003cbr\u003e16.6 Concluding Remarks.\u003cbr\u003eReferences.\u003cbr\u003e\u003cb\u003eIndex.\u003c\/b\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\n\u003cb\u003eAndreas Lendlein\u003c\/b\u003e is Director of the Institute of Polymer Research at Helmholtz-Zentrum\u003c\/div\u003e\n\u003cdiv\u003eGeesthacht in Teltow, Germany, and serves on the Board of Directors of the Berlin-Brandenburg\u003c\/div\u003e\n\u003cdiv\u003eCenter for Regenerative Therapies, Berlin. He is Professor of Materials in Life Sciences\u003c\/div\u003e\n\u003cdiv\u003eat University of Potsdam and Professor in Chemistry at the Freie Universitat Berlin as well as\u003c\/div\u003e\n\u003cdiv\u003ethe member of the medical faculty of Charite University Medicine Berlin. His research interests in\u003c\/div\u003e\n\u003cdiv\u003emacromolecular chemistry and material science are polymer-based biomaterials with special\u003c\/div\u003e\n\u003cdiv\u003eemphasis given to multifunctional materials, stimuli-sensitive polymers, especially shape-memory\u003c\/div\u003e\n\u003cdiv\u003epolymers, and biomimetic polymers. Furthermore, he explores potential applications of\u003c\/div\u003e\n\u003cdiv\u003esuch biomaterials in biofunctional implants, controlled drug delivery systems, and regenerative\u003c\/div\u003e\n\u003cdiv\u003etherapies. He completed his habilitation in Macromolecular Chemistry in 2002 at the RWTH\u003c\/div\u003e\n\u003cdiv\u003eAachen University worked as a visiting scientist at the Massachusetts Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003eand received his doctoral degree in Materials Science from Swiss Federal Institute of Technology\u003c\/div\u003e\n\u003cdiv\u003e(ETH) in Zurich in 1996. Andreas Lendlein received more than 20 awards for his scientific\u003c\/div\u003e\n\u003cdiv\u003ework, and his achievements as an entrepreneur including the BioFUTURE Award in 1998, the\u003c\/div\u003e\n\u003cdiv\u003e2000 Hermann-Schnell Award and the World Technology Network Award in the category\u003c\/div\u003e\n\u003cdiv\u003eHealth \u0026amp; Medicine in 2005. He has published more than 220 papers in journals and books,\u003c\/div\u003e\n\u003cdiv\u003eand is an inventor of more than 250 published patents and patent applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cb\u003eAdam Sisson\u003c\/b\u003e received his PhD in Supramolecular Chemistry in 2005 under the guidance of\u003c\/div\u003e\n\u003cdiv\u003eProfessor Anthony Davis at the University of Bristol, UK. Following this, he moved into the\u003c\/div\u003e\n\u003cdiv\u003egroup of Professor Stefan Matile at the University of Geneva, Switzerland, to conduct postdoctoral\u003c\/div\u003e\n\u003cdiv\u003eresearch in self-assembling nanomaterials. In 2007 he embarked upon research into\u003c\/div\u003e\n\u003cdiv\u003epolymeric nanogels as an Alexander von Humboldt Stiftung sponsored research fellow with\u003c\/div\u003e\n\u003cdiv\u003eProfessor Rainer Haag at the Free University of Berlin, Germany. Since 2010 he is leading a\u003c\/div\u003e\n\u003cdiv\u003eJunior research group ?Cell and Tissue Specifi c Materials? at the Berlin-Brandenburg Center\u003c\/div\u003e\n\u003cdiv\u003efor Regenerative Therapies, Helmholtz-Zentrum Geesthacht in Teltow, Germany. His research\u003c\/div\u003e\n\u003cdiv\u003einterests focus on studying and manipulating the interactions of synthetic materials with various\u003c\/div\u003e\n\u003cdiv\u003ebiological moieties in a range of applications.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Handbook of Biodegrada...
$285.00
{"id":11242208772,"title":"Handbook of Biodegradation, Biodeterioration, and Biostabilization, 2nd Edition","handle":"978-1-895198-87-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Falkiewicz-Dulik, M; Janda, K; Wypych, G \u003cbr\u003eISBN 978-1-895198-87-4 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages 464\u003c\/div\u003e\n\u003cdiv\u003eTables 208\u003c\/div\u003e\n\u003cdiv\u003eFigures 85\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is about protection of materials and products against colonization and subsequent degradation of their properties. The book contains 11 chapters each devoted to essential aspects related to biodegradation and biostabilization.\u003cbr\u003e\u003cbr\u003eThe introductory chapter gives the historical note on chronological developments in the field, presents the classification of biocidal products, and defines essential terms which are frequently used in the subject of the book.\u003cbr\u003e\u003cbr\u003eMicroorganisms involved in biodegradation and biodeterioration of materials are presented within the framework of their classification, based on the most recent findings and conclusions. Information on 13 groups of bacteria 7 groups of fungi and 4 groups of protozoa involved in biodegradative processes are discussed in Chapter 2. \u003cbr\u003e\u003cbr\u003eChapter 3 is devoted to industrial biocides. In this discussion, biocides are divided into 19 groups and properties of stabilizers for each group are given in the tabular form. Only stabilizers permitted for use in European Union and the USA are included in the discussion. The selection is based on the most current lists of approved substances. Information on different biocides is followed by sections discussing principles of selection of biostabilizers and methods of stabilizers delivery (bulk addition, nanoparticles, delayed delivery, surface coating, and reaction with functionalized polymer).\u003cbr\u003e\u003cbr\u003eChapter 4 contains discussion on the influence of material properties on biodeterioration. The following topics are discussed in this chapter: surface properties, crystalline structure, pH, the effect of oxidation prior to biodegradation, and effect of pigments.\u003cbr\u003e\u003cbr\u003eChapter 5 aims at the discussion of mechanism and kinetics of biostabilizers action. Among many other topics influence of biomass adhesion, resistance to the biocide, biocide leaching rate, and longevity of biostabilized materials are discussed.\u003cbr\u003e\u003cbr\u003eChapter 6 contains information on biodegradation, biodeterioration, and biostabilization of industrial products. For each group of products, relevant microorganisms, essential product components, mechanisms of biodegradation and biodeterioration, results of biodeterioration, biostabilization, and used formulations are given. 22 groups of industrial products are included in the evaluation. This, the most important chapter, discusses also, more than 28 groups of polymers in separate sections.\u003cbr\u003e\u003cbr\u003eChapter 7 contains information on standard and frequently used analytical methods in the field of the biodegradation, biodeterioration, and biostabilization of materials.\u003cbr\u003e\u003cbr\u003eChapter 8 contains the evaluation of health and safety aspects of biocide application, including topics, such as toxic substance control, carcinogenic effect, workplace exposure limits, and food regulatory acts.\u003cbr\u003e\u003cbr\u003eChapter 9 contains the most current information on the environmental fate of biostabilizers, including their concentrations, toxicity, and the rates of decay. The discussion is based on the data to give a real picture of the current situation.\u003cbr\u003e\u003cbr\u003eChapter 10 contains information on regulations developed in European Union, by world organizations, and in the USA to give a comprehensive background of legislative measures. The last chapter is on the protection of workers who use biocides in their work.\u003cbr\u003e\u003cbr\u003eThis comprehensive source of fundamental information and data is based on thousands of papers, patents, and information from biocide manufacturers. The above contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.\u003cbr\u003e\u003cbr\u003eVery drastic changes in biocides which can be used according to regulations make most of the very informative books published in past misleading because regulations eliminated many products, which they discuss. This book only looks at future applications, giving ideas on how to protect materials in today’s environment.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Microorganism involved in biodegradation of materials \u003cbr\u003e3 Industrial biocides\u003cbr\u003e4 Effect of material properties on biodeterioration\u003cbr\u003e5 Mechanisms and kinetics\u003cbr\u003e6 Biodegradation, biodeterioration, and biostabilization of industrial products\u003cbr\u003e7 Analytical methods in biodegradation, biodeterioration, and biostabilization \u003cbr\u003e8 Biostabilizers - health \u0026amp; safety \u003cbr\u003e9 Environmental fates of biostabilizers \u003cbr\u003e10 Legislation \u003cbr\u003e11 Personal protection\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMichalina Falkiewicz-Dulik\u003c\/strong\u003e has an M.Sc. degree in experimental physics and thirty years of experience in leather products manufacture with special reference to research, development, and technology implementation on an industrial scale. She coauthored 2 books: Microbiology of materials (Technical University of ?ód? Press) and Light industry - management and organization of production, materials science, technology, and design, (Kazimierz Pu?aski Technical University of Radom Press). She has published 24 scientific papers, 3 know-how manuals, 87 articles and reports in Medical Mycology, Advances in Dermatology and Allergology, Przegl?d Skórzany, Przegl?d W?ókienniczy WOS, Ochrona Przed Korozj?. She has been awarded four prizes by Polish Federation of Engineering Associations NOT for technologies of manufacturing synthetic materials and one prize by National Fund for Environmental Protection and Water Management for the project “Recycling Technology – Technology Recycling”. She is also a forensic expert in the area of leather and leather goods, raw materials, plastic and rubber, and leather processing and footwear as well as an auditor of Quality Management System according to ISO 9001.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. Eng. Katarzyna Janda\u003c\/strong\u003e is an associate professor at the Faculty of Environmental Management and Agriculture in the West Pomeranian University of Technology in Szczecin. She has been teaching in the area of preservation, storage, processing, and evaluation of commodity plant materials. Dr. Janda conducts research on enzymatic activity and effects of fungi, especially those colonizing plant materials, on storage stability of various materials. She has published 47 research papers and coauthored a book entitled Microbiology of Materials published by the Technical University of Lodz Press, with the contribution on biodeterioration of petroleum products.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych has a Ph. D.\u003c\/strong\u003e in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 15 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:04-04:00","created_at":"2017-06-22T21:13:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","biodegradable plastics","Biodegradation","Biodeterioration","biopolymers","Biostabilization","biostabilizers","book","environmental","industrial biocides","mechanism of biodegradation"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378329028,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biodegradation, Biodeterioration, and Biostabilization, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-87-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-87-4.jpg?v=1499387642"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-87-4.jpg?v=1499387642","options":["Title"],"media":[{"alt":null,"id":354809806941,"position":1,"preview_image":{"aspect_ratio":0.704,"height":450,"width":317,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-87-4.jpg?v=1499387642"},"aspect_ratio":0.704,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-87-4.jpg?v=1499387642","width":317}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Falkiewicz-Dulik, M; Janda, K; Wypych, G \u003cbr\u003eISBN 978-1-895198-87-4 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages 464\u003c\/div\u003e\n\u003cdiv\u003eTables 208\u003c\/div\u003e\n\u003cdiv\u003eFigures 85\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is about protection of materials and products against colonization and subsequent degradation of their properties. The book contains 11 chapters each devoted to essential aspects related to biodegradation and biostabilization.\u003cbr\u003e\u003cbr\u003eThe introductory chapter gives the historical note on chronological developments in the field, presents the classification of biocidal products, and defines essential terms which are frequently used in the subject of the book.\u003cbr\u003e\u003cbr\u003eMicroorganisms involved in biodegradation and biodeterioration of materials are presented within the framework of their classification, based on the most recent findings and conclusions. Information on 13 groups of bacteria 7 groups of fungi and 4 groups of protozoa involved in biodegradative processes are discussed in Chapter 2. \u003cbr\u003e\u003cbr\u003eChapter 3 is devoted to industrial biocides. In this discussion, biocides are divided into 19 groups and properties of stabilizers for each group are given in the tabular form. Only stabilizers permitted for use in European Union and the USA are included in the discussion. The selection is based on the most current lists of approved substances. Information on different biocides is followed by sections discussing principles of selection of biostabilizers and methods of stabilizers delivery (bulk addition, nanoparticles, delayed delivery, surface coating, and reaction with functionalized polymer).\u003cbr\u003e\u003cbr\u003eChapter 4 contains discussion on the influence of material properties on biodeterioration. The following topics are discussed in this chapter: surface properties, crystalline structure, pH, the effect of oxidation prior to biodegradation, and effect of pigments.\u003cbr\u003e\u003cbr\u003eChapter 5 aims at the discussion of mechanism and kinetics of biostabilizers action. Among many other topics influence of biomass adhesion, resistance to the biocide, biocide leaching rate, and longevity of biostabilized materials are discussed.\u003cbr\u003e\u003cbr\u003eChapter 6 contains information on biodegradation, biodeterioration, and biostabilization of industrial products. For each group of products, relevant microorganisms, essential product components, mechanisms of biodegradation and biodeterioration, results of biodeterioration, biostabilization, and used formulations are given. 22 groups of industrial products are included in the evaluation. This, the most important chapter, discusses also, more than 28 groups of polymers in separate sections.\u003cbr\u003e\u003cbr\u003eChapter 7 contains information on standard and frequently used analytical methods in the field of the biodegradation, biodeterioration, and biostabilization of materials.\u003cbr\u003e\u003cbr\u003eChapter 8 contains the evaluation of health and safety aspects of biocide application, including topics, such as toxic substance control, carcinogenic effect, workplace exposure limits, and food regulatory acts.\u003cbr\u003e\u003cbr\u003eChapter 9 contains the most current information on the environmental fate of biostabilizers, including their concentrations, toxicity, and the rates of decay. The discussion is based on the data to give a real picture of the current situation.\u003cbr\u003e\u003cbr\u003eChapter 10 contains information on regulations developed in European Union, by world organizations, and in the USA to give a comprehensive background of legislative measures. The last chapter is on the protection of workers who use biocides in their work.\u003cbr\u003e\u003cbr\u003eThis comprehensive source of fundamental information and data is based on thousands of papers, patents, and information from biocide manufacturers. The above contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.\u003cbr\u003e\u003cbr\u003eVery drastic changes in biocides which can be used according to regulations make most of the very informative books published in past misleading because regulations eliminated many products, which they discuss. This book only looks at future applications, giving ideas on how to protect materials in today’s environment.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Microorganism involved in biodegradation of materials \u003cbr\u003e3 Industrial biocides\u003cbr\u003e4 Effect of material properties on biodeterioration\u003cbr\u003e5 Mechanisms and kinetics\u003cbr\u003e6 Biodegradation, biodeterioration, and biostabilization of industrial products\u003cbr\u003e7 Analytical methods in biodegradation, biodeterioration, and biostabilization \u003cbr\u003e8 Biostabilizers - health \u0026amp; safety \u003cbr\u003e9 Environmental fates of biostabilizers \u003cbr\u003e10 Legislation \u003cbr\u003e11 Personal protection\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMichalina Falkiewicz-Dulik\u003c\/strong\u003e has an M.Sc. degree in experimental physics and thirty years of experience in leather products manufacture with special reference to research, development, and technology implementation on an industrial scale. She coauthored 2 books: Microbiology of materials (Technical University of ?ód? Press) and Light industry - management and organization of production, materials science, technology, and design, (Kazimierz Pu?aski Technical University of Radom Press). She has published 24 scientific papers, 3 know-how manuals, 87 articles and reports in Medical Mycology, Advances in Dermatology and Allergology, Przegl?d Skórzany, Przegl?d W?ókienniczy WOS, Ochrona Przed Korozj?. She has been awarded four prizes by Polish Federation of Engineering Associations NOT for technologies of manufacturing synthetic materials and one prize by National Fund for Environmental Protection and Water Management for the project “Recycling Technology – Technology Recycling”. She is also a forensic expert in the area of leather and leather goods, raw materials, plastic and rubber, and leather processing and footwear as well as an auditor of Quality Management System according to ISO 9001.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. Eng. Katarzyna Janda\u003c\/strong\u003e is an associate professor at the Faculty of Environmental Management and Agriculture in the West Pomeranian University of Technology in Szczecin. She has been teaching in the area of preservation, storage, processing, and evaluation of commodity plant materials. Dr. Janda conducts research on enzymatic activity and effects of fungi, especially those colonizing plant materials, on storage stability of various materials. She has published 47 research papers and coauthored a book entitled Microbiology of Materials published by the Technical University of Lodz Press, with the contribution on biodeterioration of petroleum products.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGeorge Wypych has a Ph. D.\u003c\/strong\u003e in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 15 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Biopolymer...
$249.00
{"id":11242202820,"title":"Handbook of Biopolymers and Biodegradable Plastics, Properties, Processing and Applications","handle":"978-1-4557-2834-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ebnesajjad \u003cbr\u003eISBN 978-1-4557-2834-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e448 Pages \u003c\/p\u003e\n\u003cp\u003e1st edition\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEssential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics.\u003cbr\u003eIncludes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds.\u003cbr\u003eCoverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBiopolymers and Biodegradable Plastics are a hot issue across the Plastics industry and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction industry to the automotive sector.\u003cbr\u003eThis book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers.\u003cbr\u003eTopics covered include preparation, fabrication, applications, and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed.\u003cbr\u003eDr. Ebnesajjad provides readers with an in-depth reference for the plastics industry - material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators - and for industry sectors utilizing biopolymers - automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, product designers, packaging engineers and materials scientists, medical device and packaging designers and users; polymer and coatings chemists; producers and users of biopolymers; Sectors: food, beverage and pharmaceutical packaging, medical devices, chemical processing, construction, automotive\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1: Overview of Plant Polymers - Resources, Demands, and Sustainability\u003cbr\u003e\u003cbr\u003eby: Xiuzhi S. Sun\u003cbr\u003e\u003cbr\u003ePART I. MATERIALS\u003cbr\u003e\u003cbr\u003eChapter 2: The State of the Art of Renewable Resources\u003cbr\u003e\u003cbr\u003eby: A. Gandini and M. N. Belgacem\u003cbr\u003e\u003cbr\u003eChapter 3: Polymeric Biomaterials\u003cbr\u003e\u003cbr\u003eby: W. He and R. Benson\u003cbr\u003e\u003cbr\u003eChapter 4: Biodegradable and Biobased Polymers\u003cbr\u003e\u003cbr\u003eby: L. Jiang, X. Liu and J. Zhang\u003cbr\u003e\u003cbr\u003eChapter 5: Starch: Major Sources, Properties, and Applications of Thermoplastic Materials\u003cbr\u003e\u003cbr\u003eby: A. J.F. Carvalho\u003cbr\u003e\u003cbr\u003eChapter 6: Cellulose-Based Composites and Nanocomposites\u003cbr\u003e\u003cbr\u003eby: A. Dufresne\u003cbr\u003e\u003cbr\u003eChapter 7: Polylactic Acid: Synthesis, Properties, and Applications\u003cbr\u003e\u003cbr\u003eby: L. Avérous\u003cbr\u003e\u003cbr\u003eChapter 8: Properties of Poly(lactic acid)\u003cbr\u003e\u003cbr\u003eby: A. R. Rahmat et al\u003cbr\u003e\u003cbr\u003eChapter 9: Compostable polymer materials definitions, structures, and methods of preparation\u003cbr\u003e\u003cbr\u003eby: E. Rudnik\u003cbr\u003e\u003cbr\u003eChapter 10: Biodegradability testing of compostable polymer materials\u003cbr\u003e\u003cbr\u003eby: E. Rudnik\u003cbr\u003e\u003cbr\u003ePART II. APPLICATIONS\u003cbr\u003e\u003cbr\u003eChapter 11: Pressure-Sensitive Adhesives, Elastomers, and Coatings from plant Oil\u003cbr\u003e\u003cbr\u003eby: R. P. Wool\u003cbr\u003e\u003cbr\u003eChapter 12: Biopolymer Films and Composite Coatings\u003cbr\u003e\u003cbr\u003eby: A. Nussinovitch\u003cbr\u003e\u003cbr\u003eChapter 13: Biopolymers in Controlled-Release Delivery Systems\u003cbr\u003e\u003cbr\u003eby: K. Pal\u003cbr\u003e\u003cbr\u003eChapter 14: Hydrocolloids and Medicinal Chemistry Applications\u003cbr\u003e\u003cbr\u003eby: L. M. Grover and A. M. Smith\u003cbr\u003e\u003cbr\u003eChapter 15: Natural Polymers in tissue engineering applications\u003cbr\u003e\u003cbr\u003eby: Gomez et al.\u003cbr\u003e\u003cbr\u003eChapter 16: Fabrication of Tissue Engineering Scaffolds\u003cbr\u003e\u003cbr\u003eby: A. Kramschuster \u0026amp; L.S. Turng\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAreas of Expertise\u003c\/div\u003e\n\u003cdiv\u003eFluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:45-04:00","created_at":"2017-06-22T21:12:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","biodegradable polymers","biopolymer films","biopolymers","book","coating","composite","films","nanocomposite","p-applications","polymers"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378313476,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Biopolymers and Biodegradable Plastics, Properties, Processing and Applications","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-2834-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2834-3.jpg?v=1499387728"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2834-3.jpg?v=1499387728","options":["Title"],"media":[{"alt":null,"id":354809839709,"position":1,"preview_image":{"aspect_ratio":0.784,"height":499,"width":391,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2834-3.jpg?v=1499387728"},"aspect_ratio":0.784,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-2834-3.jpg?v=1499387728","width":391}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ebnesajjad \u003cbr\u003eISBN 978-1-4557-2834-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e448 Pages \u003c\/p\u003e\n\u003cp\u003e1st edition\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEssential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics.\u003cbr\u003eIncludes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds.\u003cbr\u003eCoverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eBiopolymers and Biodegradable Plastics are a hot issue across the Plastics industry and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction industry to the automotive sector.\u003cbr\u003eThis book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers.\u003cbr\u003eTopics covered include preparation, fabrication, applications, and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed.\u003cbr\u003eDr. Ebnesajjad provides readers with an in-depth reference for the plastics industry - material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators - and for industry sectors utilizing biopolymers - automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003e\u003c\/b\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, product designers, packaging engineers and materials scientists, medical device and packaging designers and users; polymer and coatings chemists; producers and users of biopolymers; Sectors: food, beverage and pharmaceutical packaging, medical devices, chemical processing, construction, automotive\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChapter 1: Overview of Plant Polymers - Resources, Demands, and Sustainability\u003cbr\u003e\u003cbr\u003eby: Xiuzhi S. Sun\u003cbr\u003e\u003cbr\u003ePART I. MATERIALS\u003cbr\u003e\u003cbr\u003eChapter 2: The State of the Art of Renewable Resources\u003cbr\u003e\u003cbr\u003eby: A. Gandini and M. N. Belgacem\u003cbr\u003e\u003cbr\u003eChapter 3: Polymeric Biomaterials\u003cbr\u003e\u003cbr\u003eby: W. He and R. Benson\u003cbr\u003e\u003cbr\u003eChapter 4: Biodegradable and Biobased Polymers\u003cbr\u003e\u003cbr\u003eby: L. Jiang, X. Liu and J. Zhang\u003cbr\u003e\u003cbr\u003eChapter 5: Starch: Major Sources, Properties, and Applications of Thermoplastic Materials\u003cbr\u003e\u003cbr\u003eby: A. J.F. Carvalho\u003cbr\u003e\u003cbr\u003eChapter 6: Cellulose-Based Composites and Nanocomposites\u003cbr\u003e\u003cbr\u003eby: A. Dufresne\u003cbr\u003e\u003cbr\u003eChapter 7: Polylactic Acid: Synthesis, Properties, and Applications\u003cbr\u003e\u003cbr\u003eby: L. Avérous\u003cbr\u003e\u003cbr\u003eChapter 8: Properties of Poly(lactic acid)\u003cbr\u003e\u003cbr\u003eby: A. R. Rahmat et al\u003cbr\u003e\u003cbr\u003eChapter 9: Compostable polymer materials definitions, structures, and methods of preparation\u003cbr\u003e\u003cbr\u003eby: E. Rudnik\u003cbr\u003e\u003cbr\u003eChapter 10: Biodegradability testing of compostable polymer materials\u003cbr\u003e\u003cbr\u003eby: E. Rudnik\u003cbr\u003e\u003cbr\u003ePART II. APPLICATIONS\u003cbr\u003e\u003cbr\u003eChapter 11: Pressure-Sensitive Adhesives, Elastomers, and Coatings from plant Oil\u003cbr\u003e\u003cbr\u003eby: R. P. Wool\u003cbr\u003e\u003cbr\u003eChapter 12: Biopolymer Films and Composite Coatings\u003cbr\u003e\u003cbr\u003eby: A. Nussinovitch\u003cbr\u003e\u003cbr\u003eChapter 13: Biopolymers in Controlled-Release Delivery Systems\u003cbr\u003e\u003cbr\u003eby: K. Pal\u003cbr\u003e\u003cbr\u003eChapter 14: Hydrocolloids and Medicinal Chemistry Applications\u003cbr\u003e\u003cbr\u003eby: L. M. Grover and A. M. Smith\u003cbr\u003e\u003cbr\u003eChapter 15: Natural Polymers in tissue engineering applications\u003cbr\u003e\u003cbr\u003eby: Gomez et al.\u003cbr\u003e\u003cbr\u003eChapter 16: Fabrication of Tissue Engineering Scaffolds\u003cbr\u003e\u003cbr\u003eby: A. Kramschuster \u0026amp; L.S. Turng\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eSina Ebnesajjad\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eAreas of Expertise\u003c\/div\u003e\n\u003cdiv\u003eFluoroconsultants Group, Chadds Ford, Pennsylvania, U.S.A; formerly DuPont\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Handbook of Conducting...
$299.00
{"id":11242239172,"title":"Handbook of Conducting Polymers, 3rd Ed. 2 Vol. Set","handle":"9781574446654","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. A. Skotheim, J. Reynolds \u003cbr\u003eISBN 9781574446654 \u003cbr\u003e\u003cbr\u003epages 1680\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAs the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two volumes, this third edition incorporates the latest developments in both the fundamental science and practical applications of polymers while maintaining the clear format of the previous editions and the expertise of the editors and world-renowned contributors.\u003cbr\u003e\u003cbr\u003eThe first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind p-conjugated materials and electron-lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.\u003cbr\u003e\u003cbr\u003ePicking up where the first volume left off, the second book concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators. \u003cbr\u003e\u003cbr\u003eAs the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eRetains the expertise of the world-renowned editors and contributors as well as the clear format from previous editions\u003c\/li\u003e\n\u003cli\u003eDescribes in detail the structure-property relationships of redox, interfacial, electrical, and optical phenomena unique to conducting polymers\u003c\/li\u003e\n\u003cli\u003eHighlights conducting and semiconducting polymers in light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators\u003c\/li\u003e\n\u003cli\u003eFeatures the most active and visible researchers in the field of conjugated and conducting polymers\u003c\/li\u003e\n\u003cli\u003eIncludes numerous equations, tables, and both black and white and color figures\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:40-04:00","created_at":"2017-06-22T21:14:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","actuators","biosensors","book","conducting","electrical","electrochromic panels","field effect","interfacial","optical","p-applications","polymer","polymers","redox","semiconducting polymers in light-emitting displays","solar cells","transistors"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432452,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Conducting Polymers, 3rd Ed. 2 Vol. Set","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781574446654","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880","options":["Title"],"media":[{"alt":null,"id":354810265693,"position":1,"preview_image":{"aspect_ratio":0.659,"height":499,"width":329,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880"},"aspect_ratio":0.659,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781574446654.jpg?v=1499387880","width":329}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T. A. Skotheim, J. Reynolds \u003cbr\u003eISBN 9781574446654 \u003cbr\u003e\u003cbr\u003epages 1680\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAs the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two volumes, this third edition incorporates the latest developments in both the fundamental science and practical applications of polymers while maintaining the clear format of the previous editions and the expertise of the editors and world-renowned contributors.\u003cbr\u003e\u003cbr\u003eThe first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind p-conjugated materials and electron-lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.\u003cbr\u003e\u003cbr\u003ePicking up where the first volume left off, the second book concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators. \u003cbr\u003e\u003cbr\u003eAs the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eRetains the expertise of the world-renowned editors and contributors as well as the clear format from previous editions\u003c\/li\u003e\n\u003cli\u003eDescribes in detail the structure-property relationships of redox, interfacial, electrical, and optical phenomena unique to conducting polymers\u003c\/li\u003e\n\u003cli\u003eHighlights conducting and semiconducting polymers in light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators\u003c\/li\u003e\n\u003cli\u003eFeatures the most active and visible researchers in the field of conjugated and conducting polymers\u003c\/li\u003e\n\u003cli\u003eIncludes numerous equations, tables, and both black and white and color figures\u003c\/li\u003e\n\u003c\/ul\u003e"}
Handbook of Curatives ...
$285.00
{"id":2059084922973,"title":"Handbook of Curatives and Crosslinkers","handle":"handbook-of-curatives-and-crosslinkers","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-927885-47-5 \u003cbr\u003e\u003cbr\u003ePublished Jan 2019\u003cbr\u003ePages: 258+vi\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains information on additives which convert soluble monomer, prepolymer, or polymer to the insoluble polymer network popularly known as thermosetting polymer. The additives which cause these changes include crosslinkers and curatives. Both types of additives are discussed in separate chapters of the book because they substantially differ in substrates which they convert. Curatives usually react with low molecular monomers, prepolymers, or oligomers whereas crosslinkers are frequently used to convert polymers. Both sections of the book have similar structure in which effect of additives is presented, including evaluation of chemical and physical properties of curatives or crosslinkers, selection of crosslinkers and curatives for specific polymers, the mechanisms of their action, parameters of crosslinking or curing process, and their effect on the properties of the converted polymers. Crosslinker chapter contains information on 57 polymers and curative chapter on 13 polymers.\u003c\/p\u003e\n\u003cp\u003eThere is a substantial difference in application of both types of additives. Curatives are in common use in many industrial products manufactured on a large scale, such as for example adhesives, sealants, coatings, inks, explosives, propellants, or foams. They are also used in some emerging products such as optoelectronics, shape-memory applications, light-emitting diodes, liquid crystal displays, self-healing materials, etc. \u003c\/p\u003e\n\u003cp\u003eCrosslinkers are also used in the typical industrial processing methods including encapsulation of solar cells, vulcanization, adhesives, foams, roofing, etc. But their strength and future are more focused on emerging applications such as drug release, artificial muscles in microdevices, autonomous shape-memory actuators, hygienic textiles, membranes, scaffolds, recycling, sensors, tissue adhesives or wound dressing, just to mention some.\u003c\/p\u003e\n\u003cp\u003eBoth groups of additives are very important in industrial application and we are hoping that this volume will find broad readership, especially considering that it is the first book ever published on this subject in English literature.\u003c\/p\u003e\n\u003cp\u003eReaders of this book may find interesting that \u003cstrong\u003eDatabook of Curatives and Crosslinkers\u003c\/strong\u003e is published at the same time to provide information on both commercial and generic chemical products used as curatives and crosslinkers. The two books offer comprehensive information on the subject not found in any other source.\u003c\/p\u003e\n\u003cp\u003eThe table of contents includes details of coverage.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents \u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Crosslinkers\u003c\/strong\u003e\u003cbr\u003e2.1 Chemical Composition and Properties\u003cbr\u003e2.2 Polymers and Their Crosslinkers\u003cbr\u003e2.2.1 Acrylamide\u003cbr\u003e2.2.2 Acrylics\u003cbr\u003e2.2.3 Acrylonitrile-butadiene rubber, NBR\u003cbr\u003e2.2.4 Agar\u003cbr\u003e2.2.5 Alkyd resin\u003cbr\u003e2.2.6 Biopolymers\u003cbr\u003e2.2.7 Bromobutyl rubber\u003cbr\u003e2.2.8 Butyl rubber\u003cbr\u003e2.2.9 Cellulose acetate butyrate\u003cbr\u003e2.2.10 Cellulose acetate propionate\u003cbr\u003e2.2.11 Chitosan\u003cbr\u003e2.2.12 Chlorinated polyethylene\u003cbr\u003e2.2.13 Chloroprene\u003cbr\u003e2.2.14 Cyanoacrylate\u003cbr\u003e2.2.15 Epoxidized natural rubber\u003cbr\u003e2.2.16 Ethylene-propylene diene terpolymer, EPDM\u003cbr\u003e2.2.17 Epoxy resin\u003cbr\u003e2.2.18 Ethylene-vinyl acetate copolymer\u003cbr\u003e2.2.19 Fluoroelastomer\u003cbr\u003e2.2.20 Gelatin\u003cbr\u003e2.2.21 Guar gum\u003cbr\u003e2.2.22 Hydrogenated nitrile rubber\u003cbr\u003e2.2.23 Hyperbranched polymer\u003cbr\u003e2.2.24 N-isopropylacrylamide\u003cbr\u003e2.2.25 Liquid crystalline elastomers \u003cbr\u003e2.2.26 Natural rubber\u003cbr\u003e2.2.27 Phenolic resin \u003cbr\u003e2.2.28 Poly(2-oxazoline)\u003cbr\u003e2.2.29 Polyamide\u003cbr\u003e2.2.30 Polybenzimidazole\u003cbr\u003e2.2.31 Poly(butylene succinate-co-butylene fumarate)\u003cbr\u003e2.2.32 Poly(butylene terephthalate)\u003cbr\u003e2.2.33 Polycaprolactone\u003cbr\u003e2.2.34 Polycarbonate\u003cbr\u003e2.2.35 Polydimethylsiloxane\u003cbr\u003e2.2.36 Polyetheretherketone\u003cbr\u003e2.2.37 Polyetherketoneketone\u003cbr\u003e2.2.38 Polyetherimide\u003cbr\u003e2.2.39 Polyethylene\u003cbr\u003e2.2.40 Poly(hydroxyethyl methacrylate)\u003cbr\u003e2.2.41 Polyimide\u003cbr\u003e2.2.42 Polymethylmethacrylate\u003cbr\u003e2.2.43 Poly(methylmethacrylate-co-hydroxyethyl acrylate)\u003cbr\u003e2.2.44 Poly(N-isopropylacrylamide)\u003cbr\u003e2.2.45 Poly(phenylene sulfide)\u003cbr\u003e2.2.46 Polypropylene\u003cbr\u003e2.2.47 Polystyrene\u003cbr\u003e2.2.48 Polystyrene-co-poly(N-isopropylacrylamide)\u003cbr\u003e2.2.49 Poly(sulfobetaine methacrylate)\u003cbr\u003e2.2.50 Polysulfone\u003cbr\u003e2.2.51 Polyurethane\u003cbr\u003e2.2.52 Polyvinylalcohol\u003cbr\u003e2.2.53 Protein\u003cbr\u003e2.2.54 Silicone rubber\u003cbr\u003e2.2.55 Styrene-butadiene rubber\u003cbr\u003e2.2.56 Sulfonated polyetheretherketone\u003cbr\u003e2.2.57 Sulfonated polysulfone 106\u003cbr\u003e2.3 Parameters of Crosslinking\u003cbr\u003e2.3.1 Activation energy\u003cbr\u003e2.3.2 Concentration of crosslinker \u003cbr\u003e2.3.3 Conversion degree\u003cbr\u003e2.3.4 Glass transition temperature\u003cbr\u003e2.3.5 Melting temperature\u003cbr\u003e2.3.6 Radiation dose\u003cbr\u003e2.3.7 Temperature\u003cbr\u003e2.3.8 Thickness of a part \u003cbr\u003e2.3.9 Time\u003cbr\u003e2.3.10 Viscosity\u003cbr\u003e2.4 Effect of Crosslinkers on Properties\u003cbr\u003e2.4.1 Adhesion\u003cbr\u003e2.4.2 Antibacterial properties\u003cbr\u003e2.4.3 Biocompatibility\u003cbr\u003e2.4.4 Cell size\u003cbr\u003e2.4.5 Compression set \u003cbr\u003e2.4.6 Compressive strength\u003cbr\u003e2.4.7 Contact angle and surface energy\u003cbr\u003e2.4.8 Crosslink density\u003cbr\u003e2.4.9 Crosslinking kinetics\u003cbr\u003e2.4.10 Crystallization temperature\u003cbr\u003e2.4.11 Crystalline structure\u003cbr\u003e2.4.12 Crystallinity\u003cbr\u003e2.4.13 Cytotoxicity\u003cbr\u003e2.4.14 Foam morphology\u003cbr\u003e2.4.15 Friction\u003cbr\u003e2.4.16 Gel content\u003cbr\u003e2.4.17 Grafting\u003cbr\u003e2.4.18 Hardness\u003cbr\u003e2.4.19 Hydrophilicity\u003cbr\u003e2.4.20 Impact strength\u003cbr\u003e2.4.21 Miscibility\u003cbr\u003e2.4.22 Molecular weight\u003cbr\u003e2.4.23 Morphology\u003cbr\u003e2.4.24 Photo and thermal actuation\u003cbr\u003e2.4.25 Recycling\u003cbr\u003e2.4.26 Swelling\u003cbr\u003e2.4.27 Tear strength\u003cbr\u003e2.4.28 Tensile strength\u003cbr\u003e2.4.29 Thermal conductivity\u003cbr\u003e2.4.30 Thermal stability\u003cbr\u003e2.4.31 Vulcanization rate\u003cbr\u003e2.4.32 Water uptake\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Curatives\u003c\/strong\u003e\u003cbr\u003e3.1 Chemical Composition and Properties\u003cbr\u003e3.2 Polymers and Their Curatives\u003cbr\u003e3.2.1 Acrylics\u003cbr\u003e3.2.2 Alginates\u003cbr\u003e3.2.3 Bromobutyl rubber\u003cbr\u003e3.2.4 Cyanate resin\u003cbr\u003e3.2.5 Epoxy resins\u003cbr\u003e3.2.6 Epoxy-novolac\u003cbr\u003e3.2.7 Hydroxyl terminated azido polymer\u003cbr\u003e3.2.8 Nonisocyanate polyhydroxyurethane\u003cbr\u003e3.2.9 Phthalonitrile resin\u003cbr\u003e3.2.10 Polyimide\u003cbr\u003e3.2.11 Polysiloxane\u003cbr\u003e3.2.12 Polyurethane\u003cbr\u003e3.2.13 Resorcinol\u003cbr\u003e3.3 Parameters of Curing\u003cbr\u003e3.3.1 Activation energy\u003cbr\u003e3.3.2 Component ratio\u003cbr\u003e3.3.3 Conversion degree\u003cbr\u003e3.3.4 Glass transition temperature\u003cbr\u003e3.3.5 Melting point\u003cbr\u003e3.3.6 Temperature\u003cbr\u003e3.3.7 Thickness\u003cbr\u003e3.3.8 Time\u003cbr\u003e3.3.9 Viscosity\u003cbr\u003e3.4 Effect of Curatives on Properties\u003cbr\u003e3.4.1 Acid rain\u003cbr\u003e3.4.2 Adhesion\u003cbr\u003e3.4.3 Cell morphology\u003cbr\u003e3.4.4 Diffusion\u003cbr\u003e3.4.5 Electrical resistivity\u003cbr\u003e3.4.6 Flame retardancy\u003cbr\u003e3.4.7 Flexibility\u003cbr\u003e3.4.8 Flexural strength\u003cbr\u003e3.4.9 Fracture5\u003cbr\u003e3.4.10 Gel fraction and time\u003cbr\u003e3.4.11 Glass transition temperature\u003cbr\u003e3.4.12 Healing\u003cbr\u003e3.4.13 Impact strength\u003cbr\u003e3.4.14 Morphology\u003cbr\u003e3.4.15 Optical properties\u003cbr\u003e3.4.16 Reaction order and rate\u003cbr\u003e3.4.17 Shape memory\u003cbr\u003e3.4.18 Storage stability\u003cbr\u003e3.4.19 Stress relaxation\u003cbr\u003e3.4.20 Tensile strength\u003cbr\u003e3.4.21 Thermal conductivity\u003cbr\u003e3.4.22 Thermal stability\u003cbr\u003e3.4.23 Toughness\u003cbr\u003e3.4.24 Transparency\u003cbr\u003e3.4.25 Wettability\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003eIndex\u003c\/strong\u003e","published_at":"2019-03-18T15:00:00-04:00","created_at":"2019-03-18T14:35:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2019","book"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":20181893152861,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Curatives and Crosslinkers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-47-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-47-5.jpg?v=1552934503"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-47-5.jpg?v=1552934503","options":["Title"],"media":[{"alt":null,"id":1423160934493,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-47-5.jpg?v=1552934503"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-47-5.jpg?v=1552934503","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-927885-47-5 \u003cbr\u003e\u003cbr\u003ePublished Jan 2019\u003cbr\u003ePages: 258+vi\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains information on additives which convert soluble monomer, prepolymer, or polymer to the insoluble polymer network popularly known as thermosetting polymer. The additives which cause these changes include crosslinkers and curatives. Both types of additives are discussed in separate chapters of the book because they substantially differ in substrates which they convert. Curatives usually react with low molecular monomers, prepolymers, or oligomers whereas crosslinkers are frequently used to convert polymers. Both sections of the book have similar structure in which effect of additives is presented, including evaluation of chemical and physical properties of curatives or crosslinkers, selection of crosslinkers and curatives for specific polymers, the mechanisms of their action, parameters of crosslinking or curing process, and their effect on the properties of the converted polymers. Crosslinker chapter contains information on 57 polymers and curative chapter on 13 polymers.\u003c\/p\u003e\n\u003cp\u003eThere is a substantial difference in application of both types of additives. Curatives are in common use in many industrial products manufactured on a large scale, such as for example adhesives, sealants, coatings, inks, explosives, propellants, or foams. They are also used in some emerging products such as optoelectronics, shape-memory applications, light-emitting diodes, liquid crystal displays, self-healing materials, etc. \u003c\/p\u003e\n\u003cp\u003eCrosslinkers are also used in the typical industrial processing methods including encapsulation of solar cells, vulcanization, adhesives, foams, roofing, etc. But their strength and future are more focused on emerging applications such as drug release, artificial muscles in microdevices, autonomous shape-memory actuators, hygienic textiles, membranes, scaffolds, recycling, sensors, tissue adhesives or wound dressing, just to mention some.\u003c\/p\u003e\n\u003cp\u003eBoth groups of additives are very important in industrial application and we are hoping that this volume will find broad readership, especially considering that it is the first book ever published on this subject in English literature.\u003c\/p\u003e\n\u003cp\u003eReaders of this book may find interesting that \u003cstrong\u003eDatabook of Curatives and Crosslinkers\u003c\/strong\u003e is published at the same time to provide information on both commercial and generic chemical products used as curatives and crosslinkers. The two books offer comprehensive information on the subject not found in any other source.\u003c\/p\u003e\n\u003cp\u003eThe table of contents includes details of coverage.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents \u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Crosslinkers\u003c\/strong\u003e\u003cbr\u003e2.1 Chemical Composition and Properties\u003cbr\u003e2.2 Polymers and Their Crosslinkers\u003cbr\u003e2.2.1 Acrylamide\u003cbr\u003e2.2.2 Acrylics\u003cbr\u003e2.2.3 Acrylonitrile-butadiene rubber, NBR\u003cbr\u003e2.2.4 Agar\u003cbr\u003e2.2.5 Alkyd resin\u003cbr\u003e2.2.6 Biopolymers\u003cbr\u003e2.2.7 Bromobutyl rubber\u003cbr\u003e2.2.8 Butyl rubber\u003cbr\u003e2.2.9 Cellulose acetate butyrate\u003cbr\u003e2.2.10 Cellulose acetate propionate\u003cbr\u003e2.2.11 Chitosan\u003cbr\u003e2.2.12 Chlorinated polyethylene\u003cbr\u003e2.2.13 Chloroprene\u003cbr\u003e2.2.14 Cyanoacrylate\u003cbr\u003e2.2.15 Epoxidized natural rubber\u003cbr\u003e2.2.16 Ethylene-propylene diene terpolymer, EPDM\u003cbr\u003e2.2.17 Epoxy resin\u003cbr\u003e2.2.18 Ethylene-vinyl acetate copolymer\u003cbr\u003e2.2.19 Fluoroelastomer\u003cbr\u003e2.2.20 Gelatin\u003cbr\u003e2.2.21 Guar gum\u003cbr\u003e2.2.22 Hydrogenated nitrile rubber\u003cbr\u003e2.2.23 Hyperbranched polymer\u003cbr\u003e2.2.24 N-isopropylacrylamide\u003cbr\u003e2.2.25 Liquid crystalline elastomers \u003cbr\u003e2.2.26 Natural rubber\u003cbr\u003e2.2.27 Phenolic resin \u003cbr\u003e2.2.28 Poly(2-oxazoline)\u003cbr\u003e2.2.29 Polyamide\u003cbr\u003e2.2.30 Polybenzimidazole\u003cbr\u003e2.2.31 Poly(butylene succinate-co-butylene fumarate)\u003cbr\u003e2.2.32 Poly(butylene terephthalate)\u003cbr\u003e2.2.33 Polycaprolactone\u003cbr\u003e2.2.34 Polycarbonate\u003cbr\u003e2.2.35 Polydimethylsiloxane\u003cbr\u003e2.2.36 Polyetheretherketone\u003cbr\u003e2.2.37 Polyetherketoneketone\u003cbr\u003e2.2.38 Polyetherimide\u003cbr\u003e2.2.39 Polyethylene\u003cbr\u003e2.2.40 Poly(hydroxyethyl methacrylate)\u003cbr\u003e2.2.41 Polyimide\u003cbr\u003e2.2.42 Polymethylmethacrylate\u003cbr\u003e2.2.43 Poly(methylmethacrylate-co-hydroxyethyl acrylate)\u003cbr\u003e2.2.44 Poly(N-isopropylacrylamide)\u003cbr\u003e2.2.45 Poly(phenylene sulfide)\u003cbr\u003e2.2.46 Polypropylene\u003cbr\u003e2.2.47 Polystyrene\u003cbr\u003e2.2.48 Polystyrene-co-poly(N-isopropylacrylamide)\u003cbr\u003e2.2.49 Poly(sulfobetaine methacrylate)\u003cbr\u003e2.2.50 Polysulfone\u003cbr\u003e2.2.51 Polyurethane\u003cbr\u003e2.2.52 Polyvinylalcohol\u003cbr\u003e2.2.53 Protein\u003cbr\u003e2.2.54 Silicone rubber\u003cbr\u003e2.2.55 Styrene-butadiene rubber\u003cbr\u003e2.2.56 Sulfonated polyetheretherketone\u003cbr\u003e2.2.57 Sulfonated polysulfone 106\u003cbr\u003e2.3 Parameters of Crosslinking\u003cbr\u003e2.3.1 Activation energy\u003cbr\u003e2.3.2 Concentration of crosslinker \u003cbr\u003e2.3.3 Conversion degree\u003cbr\u003e2.3.4 Glass transition temperature\u003cbr\u003e2.3.5 Melting temperature\u003cbr\u003e2.3.6 Radiation dose\u003cbr\u003e2.3.7 Temperature\u003cbr\u003e2.3.8 Thickness of a part \u003cbr\u003e2.3.9 Time\u003cbr\u003e2.3.10 Viscosity\u003cbr\u003e2.4 Effect of Crosslinkers on Properties\u003cbr\u003e2.4.1 Adhesion\u003cbr\u003e2.4.2 Antibacterial properties\u003cbr\u003e2.4.3 Biocompatibility\u003cbr\u003e2.4.4 Cell size\u003cbr\u003e2.4.5 Compression set \u003cbr\u003e2.4.6 Compressive strength\u003cbr\u003e2.4.7 Contact angle and surface energy\u003cbr\u003e2.4.8 Crosslink density\u003cbr\u003e2.4.9 Crosslinking kinetics\u003cbr\u003e2.4.10 Crystallization temperature\u003cbr\u003e2.4.11 Crystalline structure\u003cbr\u003e2.4.12 Crystallinity\u003cbr\u003e2.4.13 Cytotoxicity\u003cbr\u003e2.4.14 Foam morphology\u003cbr\u003e2.4.15 Friction\u003cbr\u003e2.4.16 Gel content\u003cbr\u003e2.4.17 Grafting\u003cbr\u003e2.4.18 Hardness\u003cbr\u003e2.4.19 Hydrophilicity\u003cbr\u003e2.4.20 Impact strength\u003cbr\u003e2.4.21 Miscibility\u003cbr\u003e2.4.22 Molecular weight\u003cbr\u003e2.4.23 Morphology\u003cbr\u003e2.4.24 Photo and thermal actuation\u003cbr\u003e2.4.25 Recycling\u003cbr\u003e2.4.26 Swelling\u003cbr\u003e2.4.27 Tear strength\u003cbr\u003e2.4.28 Tensile strength\u003cbr\u003e2.4.29 Thermal conductivity\u003cbr\u003e2.4.30 Thermal stability\u003cbr\u003e2.4.31 Vulcanization rate\u003cbr\u003e2.4.32 Water uptake\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Curatives\u003c\/strong\u003e\u003cbr\u003e3.1 Chemical Composition and Properties\u003cbr\u003e3.2 Polymers and Their Curatives\u003cbr\u003e3.2.1 Acrylics\u003cbr\u003e3.2.2 Alginates\u003cbr\u003e3.2.3 Bromobutyl rubber\u003cbr\u003e3.2.4 Cyanate resin\u003cbr\u003e3.2.5 Epoxy resins\u003cbr\u003e3.2.6 Epoxy-novolac\u003cbr\u003e3.2.7 Hydroxyl terminated azido polymer\u003cbr\u003e3.2.8 Nonisocyanate polyhydroxyurethane\u003cbr\u003e3.2.9 Phthalonitrile resin\u003cbr\u003e3.2.10 Polyimide\u003cbr\u003e3.2.11 Polysiloxane\u003cbr\u003e3.2.12 Polyurethane\u003cbr\u003e3.2.13 Resorcinol\u003cbr\u003e3.3 Parameters of Curing\u003cbr\u003e3.3.1 Activation energy\u003cbr\u003e3.3.2 Component ratio\u003cbr\u003e3.3.3 Conversion degree\u003cbr\u003e3.3.4 Glass transition temperature\u003cbr\u003e3.3.5 Melting point\u003cbr\u003e3.3.6 Temperature\u003cbr\u003e3.3.7 Thickness\u003cbr\u003e3.3.8 Time\u003cbr\u003e3.3.9 Viscosity\u003cbr\u003e3.4 Effect of Curatives on Properties\u003cbr\u003e3.4.1 Acid rain\u003cbr\u003e3.4.2 Adhesion\u003cbr\u003e3.4.3 Cell morphology\u003cbr\u003e3.4.4 Diffusion\u003cbr\u003e3.4.5 Electrical resistivity\u003cbr\u003e3.4.6 Flame retardancy\u003cbr\u003e3.4.7 Flexibility\u003cbr\u003e3.4.8 Flexural strength\u003cbr\u003e3.4.9 Fracture5\u003cbr\u003e3.4.10 Gel fraction and time\u003cbr\u003e3.4.11 Glass transition temperature\u003cbr\u003e3.4.12 Healing\u003cbr\u003e3.4.13 Impact strength\u003cbr\u003e3.4.14 Morphology\u003cbr\u003e3.4.15 Optical properties\u003cbr\u003e3.4.16 Reaction order and rate\u003cbr\u003e3.4.17 Shape memory\u003cbr\u003e3.4.18 Storage stability\u003cbr\u003e3.4.19 Stress relaxation\u003cbr\u003e3.4.20 Tensile strength\u003cbr\u003e3.4.21 Thermal conductivity\u003cbr\u003e3.4.22 Thermal stability\u003cbr\u003e3.4.23 Toughness\u003cbr\u003e3.4.24 Transparency\u003cbr\u003e3.4.25 Wettability\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003eIndex\u003c\/strong\u003e"}
Handbook of Deposition...
$250.00
{"id":11242209092,"title":"Handbook of Deposition Technologies for Films and Coatings","handle":"978-0-8155-2031-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peter M. Martin \u003cbr\u003eISBN 978-0-8155-2031-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e936 pages\u003c\/p\u003e\n\u003cp\u003e3rd Edition\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecent years have seen a rapid expansion in the applications of advanced thin film coatings in areas including photovoltaics, energy conversion, energy efficiency, biomedical engineering, telecommunications, pharmaceuticals and flat panel displays. In a tough economic climate, surface engineering remains a growth industry, because surface engineered products improve performance, increase energy efficiency, add functionality and reduce costs.\u003cbr\u003e\u003cbr\u003eThis fully updated edition of Handbook of Deposition Technologies for Films and Coatings explores these new applications, and the major advances in deposition processes and technologies that have made them possible.\u003cbr\u003e\u003cbr\u003eThe aim of this handbook is to provide scientists and engineers with detailed and practical information on:\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eDeposition processes for thin film coatings\u003c\/li\u003e\n\u003cli\u003eSurface engineering\u003c\/li\u003e\n\u003cli\u003eAdvanced thin film applications and structures\u003c\/li\u003e\n\u003cli\u003eRelationships between deposition process parameters and thin film microstructure\u003c\/li\u003e\n\u003cli\u003eNucleation and thin film growth processes\u003c\/li\u003e\n\u003cli\u003eSculpted thin films\u003c\/li\u003e\n\u003cli\u003eCharacterization of composition, bonding, and microstructure\u003c\/li\u003e\n\u003cli\u003eThe role of plasmas in thin film growth\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003cp\u003eIn this third edition, extensive new material has been added throughout the book, especially in the areas concerned with plasma assisted vapor deposition processes and metallurgical coating applications.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eKey Features\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eExplains in depth the many recent improvements in deposition technologies and applications\u003c\/li\u003e\n\u003cli\u003eThoroughly explains deposition technologies and their current applications\u003c\/li\u003e\n\u003cli\u003eDiscusses the numerous 'frontier areas' for the applications of the products of deposition technology\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nDeposition Technologies: An Overview (Peter M. Martin) \u003cbr\u003ePlasmas in Deposition Processes (Scott G. Walton and J.E. Greene) \u003cbr\u003eSurface Preparation for Film and Coating Deposition Processes (Donald M. Mattox) \u003cbr\u003eEvaporation: Processes, Bulk Microstructures and Mechanical Properties (S. Ismat Shah, G. Hassnain Jaffari, Emre Yassitepe and Bakhtyar Ali) \u003cbr\u003eSputter Deposition Processes (D. Depla, S. Mahieu and J.E. Greene) \u003cbr\u003eIon Plating (Donald M. Mattox) \u003cbr\u003eChemical Vapor Deposition (Jan-Otto Carlsson and Peter M. Martin)\u003cbr\u003eAtomic Layer Deposition (Arto Pakalla and Matti Putkonen) \u003cbr\u003ePlasma-Enhanced Chemical Vapor Deposition of Functional Coatings (L. Martinu, O. Zabeida and J.E. Klemberg-Sapieha) \u003cbr\u003eUnfiltered and Filtered Cathodic Arc Processes (Andre Anders) \u003cbr\u003eVacuum Polymer Deposition (Mark E. Gross and Peter M. Martin) \u003cbr\u003eThin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View (J.E. Greene) \u003cbr\u003eGlancing Angle Deposition (Michael T. Taschuk, Matthew M. Hawkeye and Michael J. Brett)\u003cbr\u003eNanocomposite Coatings for Severe Applications (Ali Erdemir and Andrey A. Voevodin)\u003cbr\u003eNon-Elemental Characterization of Films and Coatings (Donald M. Mattox) \u003cbr\u003eCharacterization of Films and Coatings (D.R. Baer and S. Thevuthasan)\u003cbr\u003eAtmospheric Pressure Plasma Sources and Processing (Hana Barankova and Ladislav Bardos)\u003cbr\u003eJet Vapor Deposition (Paul Komarenko, Michael Drago, Michael Gorski, Takashi Tamagawa and Bret Halpern)\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003ePeter M. Martin\u003c\/strong\u003e gained his PhD in Solid State Physics from Ohio State University and was a Post Doctoral Fellow at Carnegie-Mellon University. Dr Martin has been instrumental in developing patterned optical coatings for optical filtering, microwave shielding, and non-linear optical applications.","published_at":"2017-06-22T21:13:05-04:00","created_at":"2017-06-22T21:13:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","applications","book","coatings","microstructure","p-applications","poly","science","structures","technology","thin films"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378329348,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Deposition Technologies for Films and Coatings","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-2031-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-2031-3.jpg?v=1499387962"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-2031-3.jpg?v=1499387962","options":["Title"],"media":[{"alt":null,"id":354810331229,"position":1,"preview_image":{"aspect_ratio":0.814,"height":500,"width":407,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-2031-3.jpg?v=1499387962"},"aspect_ratio":0.814,"height":500,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-2031-3.jpg?v=1499387962","width":407}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Peter M. Martin \u003cbr\u003eISBN 978-0-8155-2031-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e936 pages\u003c\/p\u003e\n\u003cp\u003e3rd Edition\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecent years have seen a rapid expansion in the applications of advanced thin film coatings in areas including photovoltaics, energy conversion, energy efficiency, biomedical engineering, telecommunications, pharmaceuticals and flat panel displays. In a tough economic climate, surface engineering remains a growth industry, because surface engineered products improve performance, increase energy efficiency, add functionality and reduce costs.\u003cbr\u003e\u003cbr\u003eThis fully updated edition of Handbook of Deposition Technologies for Films and Coatings explores these new applications, and the major advances in deposition processes and technologies that have made them possible.\u003cbr\u003e\u003cbr\u003eThe aim of this handbook is to provide scientists and engineers with detailed and practical information on:\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eDeposition processes for thin film coatings\u003c\/li\u003e\n\u003cli\u003eSurface engineering\u003c\/li\u003e\n\u003cli\u003eAdvanced thin film applications and structures\u003c\/li\u003e\n\u003cli\u003eRelationships between deposition process parameters and thin film microstructure\u003c\/li\u003e\n\u003cli\u003eNucleation and thin film growth processes\u003c\/li\u003e\n\u003cli\u003eSculpted thin films\u003c\/li\u003e\n\u003cli\u003eCharacterization of composition, bonding, and microstructure\u003c\/li\u003e\n\u003cli\u003eThe role of plasmas in thin film growth\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003cp\u003eIn this third edition, extensive new material has been added throughout the book, especially in the areas concerned with plasma assisted vapor deposition processes and metallurgical coating applications.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eKey Features\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003eExplains in depth the many recent improvements in deposition technologies and applications\u003c\/li\u003e\n\u003cli\u003eThoroughly explains deposition technologies and their current applications\u003c\/li\u003e\n\u003cli\u003eDiscusses the numerous 'frontier areas' for the applications of the products of deposition technology\u003cbr\u003e\u003cbr\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nDeposition Technologies: An Overview (Peter M. Martin) \u003cbr\u003ePlasmas in Deposition Processes (Scott G. Walton and J.E. Greene) \u003cbr\u003eSurface Preparation for Film and Coating Deposition Processes (Donald M. Mattox) \u003cbr\u003eEvaporation: Processes, Bulk Microstructures and Mechanical Properties (S. Ismat Shah, G. Hassnain Jaffari, Emre Yassitepe and Bakhtyar Ali) \u003cbr\u003eSputter Deposition Processes (D. Depla, S. Mahieu and J.E. Greene) \u003cbr\u003eIon Plating (Donald M. Mattox) \u003cbr\u003eChemical Vapor Deposition (Jan-Otto Carlsson and Peter M. Martin)\u003cbr\u003eAtomic Layer Deposition (Arto Pakalla and Matti Putkonen) \u003cbr\u003ePlasma-Enhanced Chemical Vapor Deposition of Functional Coatings (L. Martinu, O. Zabeida and J.E. Klemberg-Sapieha) \u003cbr\u003eUnfiltered and Filtered Cathodic Arc Processes (Andre Anders) \u003cbr\u003eVacuum Polymer Deposition (Mark E. Gross and Peter M. Martin) \u003cbr\u003eThin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View (J.E. Greene) \u003cbr\u003eGlancing Angle Deposition (Michael T. Taschuk, Matthew M. Hawkeye and Michael J. Brett)\u003cbr\u003eNanocomposite Coatings for Severe Applications (Ali Erdemir and Andrey A. Voevodin)\u003cbr\u003eNon-Elemental Characterization of Films and Coatings (Donald M. Mattox) \u003cbr\u003eCharacterization of Films and Coatings (D.R. Baer and S. Thevuthasan)\u003cbr\u003eAtmospheric Pressure Plasma Sources and Processing (Hana Barankova and Ladislav Bardos)\u003cbr\u003eJet Vapor Deposition (Paul Komarenko, Michael Drago, Michael Gorski, Takashi Tamagawa and Bret Halpern)\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003ePeter M. Martin\u003c\/strong\u003e gained his PhD in Solid State Physics from Ohio State University and was a Post Doctoral Fellow at Carnegie-Mellon University. Dr Martin has been instrumental in developing patterned optical coatings for optical filtering, microwave shielding, and non-linear optical applications."}
Handbook of Environmen...
$250.00
{"id":11242224132,"title":"Handbook of Environmental Degradation of Materials, 2nd Edition","handle":"978-1-4377-3455-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Myer Kutz \u003cbr\u003eISBN 978-1-4377-3455-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e896 pages, Hardcover\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003eThe Handbook’s broad scope introduces the reader to the effects of environmental degradation on a wide range of materials, including metals, plastics, concrete, wood and textiles.\n\u003cli\u003eFor each type of material, the book describes the kind of degradation that effects it and how best to protect it.\u003c\/li\u003e\n\u003cli\u003eCase Studies show how organizations from small consulting firms to corporate giants design and manufacture products that are more resistant to environmental effects.\u003c\/li\u003e\nNothing stays the same for ever. The environmental degradation and corrosion of materials is inevitable and affects most aspects of life. In industrial settings, this inescapable fact has very significant financial, safety and environmental implications.\n\u003cp\u003eThe Handbook of Environmental Degradation of Materials explains how to measure, analyse, and control environmental degradation for a wide range of industrial materials including metals, polymers, ceramics, concrete, wood and textiles exposed to environmental factors such as weather, seawater, and fire. Divided into sections which deal with analysis, types of degradation, protection and surface engineering respectively, the reader is introduced to the wide variety of environmental effects and what can be done to control them. The expert contributors to this book provide a wealth of insider knowledge and engineering knowhow, complementing their explanations and advice with Case Studies from areas such as pipelines, tankers, packaging and chemical processing equipment ensures that the reader understands the practical measures that can be put in place to save money, lives and the environment.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers: Civil, Mechanical, Materials, Design, Maintenance, Chemical \u0026amp; Process \u003c\/p\u003e\n\u003cp\u003eIndustries: construction \/ civil engineering, automotive \/ aerospace \/ transportation, chemical processing, consumer packaging, paints and coatings, petrochemical, pipeline, plastics.\u003c\/p\u003e\n\u003cp\u003eLevel: Practicing engineers and technicians, students seeking real-world examples and applied techniques.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I: Analysis\u003cbr\u003e\u003cbr\u003e1) Analysis of Failures of Metallic Materials due to Environmental Factors\u003cbr\u003e\u003cbr\u003e2) Laboratory Assessment of Corrosion\u003cbr\u003e\u003cbr\u003e3) Modeling of Corrosion Processes\u003cbr\u003e\u003cbr\u003e4) Lifetime Predictions\u003cbr\u003e\u003cbr\u003ePart II: Types of Degradation\u003cbr\u003e\u003cbr\u003e5) Electrochemical Corrosion\u003cbr\u003e\u003cbr\u003e6) Localized Corrosion\u003cbr\u003e\u003cbr\u003e7) High-Temperature Oxidation\u003cbr\u003e\u003cbr\u003e8) Weathering of Plastics\u003cbr\u003e\u003cbr\u003e9) Chemical and Physical Aging of Polymers\u003cbr\u003e\u003cbr\u003e10) Thermal Degradation of Plastics\u003cbr\u003e\u003cbr\u003e11) Environmental Degradation of Reinforced Concrete\u003cbr\u003e\u003cbr\u003e12) Biofouling and prevention, and biodeterioration and biodegradation of materials\u003cbr\u003e\u003cbr\u003e(possibly split into two chapters, one on polymers, one on metals.)\u003cbr\u003e\u003cbr\u003e13) Material Flammability\u003cbr\u003e\u003cbr\u003e14) Fire Retardant Materials\u003cbr\u003e\u003cbr\u003ePart III: Protective Measures\u003cbr\u003e\u003cbr\u003e15) Cathodic Protection\u003cbr\u003e\u003cbr\u003e16) Thermal Protective Clothing\u003cbr\u003e\u003cbr\u003e17) Wood Protection\u003cbr\u003e\u003cbr\u003e18) Materials Selection for Environmental Degradation Prevention\u003cbr\u003e\u003cbr\u003ePart IV: Surface Engineering\u003cbr\u003e\u003cbr\u003e19) The Intersection of Design, Manufacturing, and Surface Engineering (updated to\u003cbr\u003e\u003cbr\u003einclude new coatings: (biomimetic, nanostructured and conductive polymers)\u003cbr\u003e\u003cbr\u003e20) Nanostructured Surfaces and Nanomaterial Coatings\u003cbr\u003e\u003cbr\u003e21) Protective Coatings for Aluminum Alloys\u003cbr\u003e\u003cbr\u003e22) Anti-Corrosion Paints\u003cbr\u003e\u003cbr\u003e23) Thermal and Environmental Barrier Coatings\u003cbr\u003e\u003cbr\u003e24) Thermay Spray Coatings\u003cbr\u003e\u003cbr\u003e25) Paint Weathering Tests\u003cbr\u003e\u003cbr\u003e26) Coatings for Concrete Surfaces: Testing and Modeling\u003cbr\u003e\u003cbr\u003e27) The importance of intrinsic defects in the protective behavior of coatings\u003cbr\u003e\u003cbr\u003e28) Plastics Additives for Environmental Stability\u003cbr\u003e\u003cbr\u003ePart V: Industrial Applications\u003cbr\u003e\u003cbr\u003e29) Degradation of Spacecraft Materials\u003cbr\u003e\u003cbr\u003e30) Cathodic Protection for Pipelines\u003cbr\u003e\u003cbr\u003e31) Tanker Corrosion\u003cbr\u003e\u003cbr\u003e32) Barrier Packaging Materials\u003cbr\u003e\u003cbr\u003e33) Corrosion prevention and control programs for chemical processing equipment\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nMyer Kutz, Myer Kutz Associates. Inc., Delmar, NY, USA","published_at":"2017-06-22T21:13:55-04:00","created_at":"2017-06-22T21:13:55-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","ceramics","degradation","environment","material","p-properties","polymer","polymers","textiles","wood"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378383044,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Environmental Degradation of Materials, 2nd Edition","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4377-3455-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3455-3.jpg?v=1499725620"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3455-3.jpg?v=1499725620","options":["Title"],"media":[{"alt":null,"id":354810495069,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3455-3.jpg?v=1499725620"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4377-3455-3.jpg?v=1499725620","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Myer Kutz \u003cbr\u003eISBN 978-1-4377-3455-3 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e896 pages, Hardcover\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003eThe Handbook’s broad scope introduces the reader to the effects of environmental degradation on a wide range of materials, including metals, plastics, concrete, wood and textiles.\n\u003cli\u003eFor each type of material, the book describes the kind of degradation that effects it and how best to protect it.\u003c\/li\u003e\n\u003cli\u003eCase Studies show how organizations from small consulting firms to corporate giants design and manufacture products that are more resistant to environmental effects.\u003c\/li\u003e\nNothing stays the same for ever. The environmental degradation and corrosion of materials is inevitable and affects most aspects of life. In industrial settings, this inescapable fact has very significant financial, safety and environmental implications.\n\u003cp\u003eThe Handbook of Environmental Degradation of Materials explains how to measure, analyse, and control environmental degradation for a wide range of industrial materials including metals, polymers, ceramics, concrete, wood and textiles exposed to environmental factors such as weather, seawater, and fire. Divided into sections which deal with analysis, types of degradation, protection and surface engineering respectively, the reader is introduced to the wide variety of environmental effects and what can be done to control them. The expert contributors to this book provide a wealth of insider knowledge and engineering knowhow, complementing their explanations and advice with Case Studies from areas such as pipelines, tankers, packaging and chemical processing equipment ensures that the reader understands the practical measures that can be put in place to save money, lives and the environment.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003c\/p\u003e\n\u003cp\u003eEngineers: Civil, Mechanical, Materials, Design, Maintenance, Chemical \u0026amp; Process \u003c\/p\u003e\n\u003cp\u003eIndustries: construction \/ civil engineering, automotive \/ aerospace \/ transportation, chemical processing, consumer packaging, paints and coatings, petrochemical, pipeline, plastics.\u003c\/p\u003e\n\u003cp\u003eLevel: Practicing engineers and technicians, students seeking real-world examples and applied techniques.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPart I: Analysis\u003cbr\u003e\u003cbr\u003e1) Analysis of Failures of Metallic Materials due to Environmental Factors\u003cbr\u003e\u003cbr\u003e2) Laboratory Assessment of Corrosion\u003cbr\u003e\u003cbr\u003e3) Modeling of Corrosion Processes\u003cbr\u003e\u003cbr\u003e4) Lifetime Predictions\u003cbr\u003e\u003cbr\u003ePart II: Types of Degradation\u003cbr\u003e\u003cbr\u003e5) Electrochemical Corrosion\u003cbr\u003e\u003cbr\u003e6) Localized Corrosion\u003cbr\u003e\u003cbr\u003e7) High-Temperature Oxidation\u003cbr\u003e\u003cbr\u003e8) Weathering of Plastics\u003cbr\u003e\u003cbr\u003e9) Chemical and Physical Aging of Polymers\u003cbr\u003e\u003cbr\u003e10) Thermal Degradation of Plastics\u003cbr\u003e\u003cbr\u003e11) Environmental Degradation of Reinforced Concrete\u003cbr\u003e\u003cbr\u003e12) Biofouling and prevention, and biodeterioration and biodegradation of materials\u003cbr\u003e\u003cbr\u003e(possibly split into two chapters, one on polymers, one on metals.)\u003cbr\u003e\u003cbr\u003e13) Material Flammability\u003cbr\u003e\u003cbr\u003e14) Fire Retardant Materials\u003cbr\u003e\u003cbr\u003ePart III: Protective Measures\u003cbr\u003e\u003cbr\u003e15) Cathodic Protection\u003cbr\u003e\u003cbr\u003e16) Thermal Protective Clothing\u003cbr\u003e\u003cbr\u003e17) Wood Protection\u003cbr\u003e\u003cbr\u003e18) Materials Selection for Environmental Degradation Prevention\u003cbr\u003e\u003cbr\u003ePart IV: Surface Engineering\u003cbr\u003e\u003cbr\u003e19) The Intersection of Design, Manufacturing, and Surface Engineering (updated to\u003cbr\u003e\u003cbr\u003einclude new coatings: (biomimetic, nanostructured and conductive polymers)\u003cbr\u003e\u003cbr\u003e20) Nanostructured Surfaces and Nanomaterial Coatings\u003cbr\u003e\u003cbr\u003e21) Protective Coatings for Aluminum Alloys\u003cbr\u003e\u003cbr\u003e22) Anti-Corrosion Paints\u003cbr\u003e\u003cbr\u003e23) Thermal and Environmental Barrier Coatings\u003cbr\u003e\u003cbr\u003e24) Thermay Spray Coatings\u003cbr\u003e\u003cbr\u003e25) Paint Weathering Tests\u003cbr\u003e\u003cbr\u003e26) Coatings for Concrete Surfaces: Testing and Modeling\u003cbr\u003e\u003cbr\u003e27) The importance of intrinsic defects in the protective behavior of coatings\u003cbr\u003e\u003cbr\u003e28) Plastics Additives for Environmental Stability\u003cbr\u003e\u003cbr\u003ePart V: Industrial Applications\u003cbr\u003e\u003cbr\u003e29) Degradation of Spacecraft Materials\u003cbr\u003e\u003cbr\u003e30) Cathodic Protection for Pipelines\u003cbr\u003e\u003cbr\u003e31) Tanker Corrosion\u003cbr\u003e\u003cbr\u003e32) Barrier Packaging Materials\u003cbr\u003e\u003cbr\u003e33) Corrosion prevention and control programs for chemical processing equipment\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nMyer Kutz, Myer Kutz Associates. Inc., Delmar, NY, USA"}
Handbook of Fillers
$285.00
{"id":11242220868,"title":"Handbook of Fillers","handle":"978-1-895198-41-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-41-6 \u003cbr\u003e\u003cbr\u003eFigures: 578\u003cbr\u003eTables: 190\u003cbr\u003ePages: 774\u003cbr\u003eThird Edition\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003eOver 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. \u003cbr\u003e Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.\u003cbr\u003e The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. \u003cbr\u003e This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. \u003cbr\u003e To summarize, major features of this handbook are:\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1.1 Expectations from fillers\u003cbr\u003e1.2 Typical filler properties\u003cbr\u003e1.3 Definitions\u003cbr\u003e1.4 Classification\u003cbr\u003e1.5 Markets and trends\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders\u003cbr\u003e2.1.2 Aluminum borate whiskers\u003cbr\u003e2.1.3 Aluminum oxide \u003cbr\u003e2.1.4 Aluminum trihydroxide\u003cbr\u003e2.1.5 Anthracite\u003cbr\u003e2.1.6 Antimonate of sodium\u003cbr\u003e2.1.7 Antimony pentoxide\u003cbr\u003e2.1.8 Antimony trioxide\u003cbr\u003e2.1.9 Ammonium octamolybdate\u003cbr\u003e2.1.10 Apatite\u003cbr\u003e2.1.11 Ash, fly\u003cbr\u003e2.1.12 Attapulgite\u003cbr\u003e2.1.13 Barium metaborate\u003cbr\u003e2.1.14 Barium sulfate\u003cbr\u003e2.1.15 Barium \u0026amp; strontium sulfates\u003cbr\u003e2.1.16 Barium titanate\u003cbr\u003e2.1.17 Bentonite\u003cbr\u003e2.1.18 Beryllium oxide\u003cbr\u003e2.1.19 Boron nitride\u003cbr\u003e2.1.20 Calcium carbonate\u003cbr\u003e2.1.21 Calcium hydroxide\u003cbr\u003e2.1.22 Calcium sulfate\u003cbr\u003e2.1.23 Carbon black \u003cbr\u003e2.1.24 Ceramic beads\u003cbr\u003e2.1.25 Clay\u003cbr\u003e2.1.26 Copper\u003cbr\u003e2.1.27 Cobalt powder\u003cbr\u003e2.1.28 Cristobalite\u003cbr\u003e2.1.29 Diatomaceous earth\u003cbr\u003e2.1.30 Dolomite\u003cbr\u003e2.1.31 Ferrites\u003cbr\u003e2.1.32 Feldspar\u003cbr\u003e2.1.33 Glass beads\u003cbr\u003e2.1.34 Gold\u003cbr\u003e2.1.35 Graphite\u003cbr\u003e2.1.36 Hydrous calcium silicate\u003cbr\u003e2.1.37 Iron oxide \u003cbr\u003e2.1.38 Kaolin \u003cbr\u003e2.1.39 Lithopone \u003cbr\u003e2.1.40 Magnesium oxide \u003cbr\u003e2.1.41 Magnesium hydroxide \u003cbr\u003e2.1.42 Metal-containing conductive materials\u003cbr\u003e2.1.43 Mica\u003cbr\u003e2.1.44 Molybdenum\u003cbr\u003e2.1.45 Molybdenum disulfide\u003cbr\u003e2.1.46 Molybdic oxide\u003cbr\u003e2.1.47 Nanofillers\u003cbr\u003e2.1.48 Nickel\u003cbr\u003e2.1.49 Nickel oxide\u003cbr\u003e2.1.50 Nickel zinc ferrite\u003cbr\u003e2.1.51 Perlite\u003cbr\u003e2.1.52 Polymeric fillers\u003cbr\u003e2.1.53 Potassium hexatitanate whiskers\u003cbr\u003e2.1.54 Pumice\u003cbr\u003e2.1.55 Pyrophyllite\u003cbr\u003e2.1.56 Rubber particles\u003cbr\u003e2.1.57 Sepiolite\u003cbr\u003e2.1.58 Silica \u003cbr\u003e2.1.58.1 Fumed silica\u003cbr\u003e2.1.58.2 Fused silica \u003cbr\u003e2.1.58.3 Precipitated silica\u003cbr\u003e2.1.58.4 Nanosilica\u003cbr\u003e2.1.58.5 Quartz (Tripoli) \u003cbr\u003e2.1.58.6 Sand \u003cbr\u003e2.1.58.7 Silica gel\u003cbr\u003e2.1.59 Silicon carbide\u003cbr\u003e2.1.60 Silicon nitride\u003cbr\u003e2.1.61 Silver powder and flakes\u003cbr\u003e2.1.62 Slate flour \u003cbr\u003e2.1.63 Talc \u003cbr\u003e2.1.64 Titanium dioxide\u003cbr\u003e2.1.65 Tungsten \u003cbr\u003e2.1.66 Vermiculite \u003cbr\u003e2.1.67 Wollastonite \u003cbr\u003e2.1.68 Wood flour and similar materials\u003cbr\u003e2.1.69 Zeolites \u003cbr\u003e2.1.70 Zinc borate \u003cbr\u003e2.1.71 Zinc oxide \u003cbr\u003e2.1.72 Zinc stannate \u003cbr\u003e2.1.73 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers\u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Cellulose fibers \u003cbr\u003e2.2.4 Glass fibers \u003cbr\u003e2.2.5 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e3.1 Filler packaging\u003cbr\u003e3.2 External transportation\u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems\u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 QUALITY CONTROL OF FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e4.1 Absorption coefficient\u003cbr\u003e4.2 Acidity or alkalinity of water extract\u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles\u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area\u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties\u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments\u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties\u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light\u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue\u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area\u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5.1 Density\u003cbr\u003e5.2 Particle size\u003cbr\u003e5.3 Particle size distribution\u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness\u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing\u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure\u003cbr\u003e5.11 Flocculation and sedimentation\u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH\u003cbr\u003e5.15 Zeta-potential\u003cbr\u003e5.16 Surface energy\u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling\u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties\u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties\u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient\u003cbr\u003e5.29 Melting temperature \u003cbr\u003e5.30 Electrical properties \u003cbr\u003e5.31 Magnetic properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e6.1 Reactivity\u003cbr\u003e6.2 Chemical groups on the filler surface\u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties\u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence\u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1 Particle distribution in matrix\u003cbr\u003e7.2 Orientation of filler particles in a matrix\u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction\u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization\u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e8.1 Tensile strength and elongation\u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Elastic modulus \u003cbr\u003e8.4 Flexural strength and modulus \u003cbr\u003e8.5 Impact resistance \u003cbr\u003e8.6 Hardness \u003cbr\u003e8.7 Tear strength\u003cbr\u003e8.8 Compressive strength\u003cbr\u003e8.9 Fracture resistance \u003cbr\u003e8.10 Wear \u003cbr\u003e8.11 Friction \u003cbr\u003e8.12 Abrasion \u003cbr\u003e8.13 Scratch resistance\u003cbr\u003e8.14 Fatigue \u003cbr\u003e8.15 Failure \u003cbr\u003e8.16 Adhesion \u003cbr\u003e8.17 Thermal deformation\u003cbr\u003e8.18 Shrinkage \u003cbr\u003e8.19 Warpage \u003cbr\u003e8.20 Compression set\u003cbr\u003e8.21 Load transfer \u003cbr\u003e8.22 Residual stress \u003cbr\u003e8.23 Creep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e9.1 Viscosity\u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation\u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity\u003cbr\u003e9.6 Dynamic mechanical behavior\u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity\u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e10.1 Crystallinity\u003cbr\u003e10.2 Crystallization behavior\u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity\u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e11.1 Irradiation\u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors\u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 FLAMMABILITY OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e12.1 Definitions\u003cbr\u003e12.2 Limiting oxygen index\u003cbr\u003e12.3 Ignition and flame spread rate\u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion\u003cbr\u003e12.6 Emission of gaseous components\u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e13.1 Adhesion promoters\u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers\u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents\u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e14.1 Physical methods\u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement\u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis\u003cbr\u003e14.1.11 Electric constants determination\u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test\u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index\u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy\u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area\u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis\u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis\u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy\u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy\u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 FILLERS IN COMMERCIAL POLYMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e15.1 Acrylics\u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer\u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Elastomers \u003cbr\u003e15.7 Epoxy resins \u003cbr\u003e15.8 Ethylene vinyl acetate copolymers \u003cbr\u003e15.9 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.10 Ethylene-propylene copolymers \u003cbr\u003e15.11 Ionomers \u003cbr\u003e15.12 Liquid crystalline polymers\u003cbr\u003e15.13 Perfluoroalkoxy resin \u003cbr\u003e15.14 Phenolic resins \u003cbr\u003e15.15 Poly(acrylic acid) \u003cbr\u003e15.16 Polyamides \u003cbr\u003e15.17 Polyamideimide \u003cbr\u003e15.18 Polyamines \u003cbr\u003e15.19 Polyaniline \u003cbr\u003e15.20 Polyaryletherketone\u003cbr\u003e15.21 Poly(butylene terephthalate) \u003cbr\u003e15.22 Polycarbonate \u003cbr\u003e15.23 Polyetheretherketone\u003cbr\u003e15.24 Polyetherimide \u003cbr\u003e15.25 Polyether sulfone \u003cbr\u003e15.26 Polyethylene \u003cbr\u003e15.27 Polyethylene, chlorinated \u003cbr\u003e15.28 Polyethylene, chlorosulfonated \u003cbr\u003e15.29 Poly(ethylene oxide) \u003cbr\u003e15.30 Poly(ethylene terephthalate)\u003cbr\u003e15.31 Polyimide \u003cbr\u003e15.32 Polymethylmethacrylate\u003cbr\u003e15.33 Polyoxymethylene \u003cbr\u003e15.34 Poly(phenylene ether)\u003cbr\u003e15.35 Poly(phenylene sulfide) \u003cbr\u003e15.36 Polypropylene \u003cbr\u003e15.37 Polypyrrole \u003cbr\u003e15.38 Polystyrene \u0026amp; high impact \u003cbr\u003e15.39 Polysulfides \u003cbr\u003e15.40 Polysulfone \u003cbr\u003e15.41 Polytetrafluoroethylene\u003cbr\u003e15.42 Polyurethanes \u003cbr\u003e15.43 Poly(vinyl acetate)\u003cbr\u003e15.44 Poly(vinyl alcohol)\u003cbr\u003e15.45 Poly(vinyl butyral) \u003cbr\u003e15.46 Poly(vinyl chloride) \u003cbr\u003e15.47 Rubbers \u003cbr\u003e15.47.1 Natural rubber\u003cbr\u003e15.47.2 Nitrile rubber \u003cbr\u003e15.47.3 Polybutadiene rubber \u003cbr\u003e15.47.4 Polybutyl rubber \u003cbr\u003e15.47.5 Polychloroprene \u003cbr\u003e15.47.6 Polyisobutylene \u003cbr\u003e15.47.7 Polyisoprene \u003cbr\u003e15.47.8 Styrene-butadiene rubber\u003cbr\u003e15.48 Silicones \u003cbr\u003e15.49 Styrene-acrylonitrile copolymer\u003cbr\u003e15.50 Tetrafluoroethylene-perfluoropropylene\u003cbr\u003e15.51 Unsaturated polyesters \u003cbr\u003e15.52 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 FILLER IN MATERIALS COMBINATIONS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e16.1 Blends, alloys and interpenetrating networks\u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 FORMULATION WITH FILLERS\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e18.1 Blow molding\u003cbr\u003e18.2 Calendering and hot-melt coating\u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding\u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding\u003cbr\u003e18.13 Rotational molding \u003cbr\u003e18.14 Sheet molding \u003cbr\u003e18.15 Thermoforming \u003cbr\u003e18.16 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace\u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints\u003cbr\u003e19.12 Cosmetics and pharmaceutical products\u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed\u003cbr\u003e19.20 Friction materials\u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields\u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication\u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 HAZARDS IN FILLER USE\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:50:53-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","additives for plastics","book","calcium carbon","compounding of rubber","fillers additives","fillers and environment","flame retardanst for plastics","graphite","magnesium","mica","nanofillers","p-additives","particular fillers","physical properties","polymer","polymers","quality control","silica"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372804,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Fillers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-41-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-41-6.jpg?v=1499441992"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-41-6.jpg?v=1499441992","options":["Title"],"media":[{"alt":null,"id":355724558429,"position":1,"preview_image":{"aspect_ratio":0.667,"height":499,"width":333,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-41-6.jpg?v=1499441992"},"aspect_ratio":0.667,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-41-6.jpg?v=1499441992","width":333}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-41-6 \u003cbr\u003e\u003cbr\u003eFigures: 578\u003cbr\u003eTables: 190\u003cbr\u003ePages: 774\u003cbr\u003eThird Edition\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003eOver 3,000 research papers, mostly published from 1994 to 2009 (over 1500 new papers in this edition), technical data from over 160 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e The book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous edition, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers. \u003cbr\u003e Fillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e The book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e One third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by 154 SEM TEM, AFM micrographs.\u003cbr\u003e The second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e The last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. \u003cbr\u003e This book is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace. The previous edition was very popular among environmental engineers, patent and litigation lawyers, and employees of various governmental agencies. \u003cbr\u003e To summarize, major features of this handbook are:\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e1.1 Expectations from fillers\u003cbr\u003e1.2 Typical filler properties\u003cbr\u003e1.3 Definitions\u003cbr\u003e1.4 Classification\u003cbr\u003e1.5 Markets and trends\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders\u003cbr\u003e2.1.2 Aluminum borate whiskers\u003cbr\u003e2.1.3 Aluminum oxide \u003cbr\u003e2.1.4 Aluminum trihydroxide\u003cbr\u003e2.1.5 Anthracite\u003cbr\u003e2.1.6 Antimonate of sodium\u003cbr\u003e2.1.7 Antimony pentoxide\u003cbr\u003e2.1.8 Antimony trioxide\u003cbr\u003e2.1.9 Ammonium octamolybdate\u003cbr\u003e2.1.10 Apatite\u003cbr\u003e2.1.11 Ash, fly\u003cbr\u003e2.1.12 Attapulgite\u003cbr\u003e2.1.13 Barium metaborate\u003cbr\u003e2.1.14 Barium sulfate\u003cbr\u003e2.1.15 Barium \u0026amp; strontium sulfates\u003cbr\u003e2.1.16 Barium titanate\u003cbr\u003e2.1.17 Bentonite\u003cbr\u003e2.1.18 Beryllium oxide\u003cbr\u003e2.1.19 Boron nitride\u003cbr\u003e2.1.20 Calcium carbonate\u003cbr\u003e2.1.21 Calcium hydroxide\u003cbr\u003e2.1.22 Calcium sulfate\u003cbr\u003e2.1.23 Carbon black \u003cbr\u003e2.1.24 Ceramic beads\u003cbr\u003e2.1.25 Clay\u003cbr\u003e2.1.26 Copper\u003cbr\u003e2.1.27 Cobalt powder\u003cbr\u003e2.1.28 Cristobalite\u003cbr\u003e2.1.29 Diatomaceous earth\u003cbr\u003e2.1.30 Dolomite\u003cbr\u003e2.1.31 Ferrites\u003cbr\u003e2.1.32 Feldspar\u003cbr\u003e2.1.33 Glass beads\u003cbr\u003e2.1.34 Gold\u003cbr\u003e2.1.35 Graphite\u003cbr\u003e2.1.36 Hydrous calcium silicate\u003cbr\u003e2.1.37 Iron oxide \u003cbr\u003e2.1.38 Kaolin \u003cbr\u003e2.1.39 Lithopone \u003cbr\u003e2.1.40 Magnesium oxide \u003cbr\u003e2.1.41 Magnesium hydroxide \u003cbr\u003e2.1.42 Metal-containing conductive materials\u003cbr\u003e2.1.43 Mica\u003cbr\u003e2.1.44 Molybdenum\u003cbr\u003e2.1.45 Molybdenum disulfide\u003cbr\u003e2.1.46 Molybdic oxide\u003cbr\u003e2.1.47 Nanofillers\u003cbr\u003e2.1.48 Nickel\u003cbr\u003e2.1.49 Nickel oxide\u003cbr\u003e2.1.50 Nickel zinc ferrite\u003cbr\u003e2.1.51 Perlite\u003cbr\u003e2.1.52 Polymeric fillers\u003cbr\u003e2.1.53 Potassium hexatitanate whiskers\u003cbr\u003e2.1.54 Pumice\u003cbr\u003e2.1.55 Pyrophyllite\u003cbr\u003e2.1.56 Rubber particles\u003cbr\u003e2.1.57 Sepiolite\u003cbr\u003e2.1.58 Silica \u003cbr\u003e2.1.58.1 Fumed silica\u003cbr\u003e2.1.58.2 Fused silica \u003cbr\u003e2.1.58.3 Precipitated silica\u003cbr\u003e2.1.58.4 Nanosilica\u003cbr\u003e2.1.58.5 Quartz (Tripoli) \u003cbr\u003e2.1.58.6 Sand \u003cbr\u003e2.1.58.7 Silica gel\u003cbr\u003e2.1.59 Silicon carbide\u003cbr\u003e2.1.60 Silicon nitride\u003cbr\u003e2.1.61 Silver powder and flakes\u003cbr\u003e2.1.62 Slate flour \u003cbr\u003e2.1.63 Talc \u003cbr\u003e2.1.64 Titanium dioxide\u003cbr\u003e2.1.65 Tungsten \u003cbr\u003e2.1.66 Vermiculite \u003cbr\u003e2.1.67 Wollastonite \u003cbr\u003e2.1.68 Wood flour and similar materials\u003cbr\u003e2.1.69 Zeolites \u003cbr\u003e2.1.70 Zinc borate \u003cbr\u003e2.1.71 Zinc oxide \u003cbr\u003e2.1.72 Zinc stannate \u003cbr\u003e2.1.73 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers\u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Cellulose fibers \u003cbr\u003e2.2.4 Glass fibers \u003cbr\u003e2.2.5 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e3.1 Filler packaging\u003cbr\u003e3.2 External transportation\u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems\u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 QUALITY CONTROL OF FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e4.1 Absorption coefficient\u003cbr\u003e4.2 Acidity or alkalinity of water extract\u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles\u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area\u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties\u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments\u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties\u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light\u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue\u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area\u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e5.1 Density\u003cbr\u003e5.2 Particle size\u003cbr\u003e5.3 Particle size distribution\u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness\u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing\u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure\u003cbr\u003e5.11 Flocculation and sedimentation\u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH\u003cbr\u003e5.15 Zeta-potential\u003cbr\u003e5.16 Surface energy\u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling\u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties\u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties\u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient\u003cbr\u003e5.29 Melting temperature \u003cbr\u003e5.30 Electrical properties \u003cbr\u003e5.31 Magnetic properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e6.1 Reactivity\u003cbr\u003e6.2 Chemical groups on the filler surface\u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties\u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence\u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e7.1 Particle distribution in matrix\u003cbr\u003e7.2 Orientation of filler particles in a matrix\u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction\u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization\u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e8.1 Tensile strength and elongation\u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Elastic modulus \u003cbr\u003e8.4 Flexural strength and modulus \u003cbr\u003e8.5 Impact resistance \u003cbr\u003e8.6 Hardness \u003cbr\u003e8.7 Tear strength\u003cbr\u003e8.8 Compressive strength\u003cbr\u003e8.9 Fracture resistance \u003cbr\u003e8.10 Wear \u003cbr\u003e8.11 Friction \u003cbr\u003e8.12 Abrasion \u003cbr\u003e8.13 Scratch resistance\u003cbr\u003e8.14 Fatigue \u003cbr\u003e8.15 Failure \u003cbr\u003e8.16 Adhesion \u003cbr\u003e8.17 Thermal deformation\u003cbr\u003e8.18 Shrinkage \u003cbr\u003e8.19 Warpage \u003cbr\u003e8.20 Compression set\u003cbr\u003e8.21 Load transfer \u003cbr\u003e8.22 Residual stress \u003cbr\u003e8.23 Creep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e9.1 Viscosity\u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation\u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity\u003cbr\u003e9.6 Dynamic mechanical behavior\u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity\u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e10.1 Crystallinity\u003cbr\u003e10.2 Crystallization behavior\u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity\u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e11.1 Irradiation\u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors\u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 FLAMMABILITY OF FILLED MATERIALS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e12.1 Definitions\u003cbr\u003e12.2 Limiting oxygen index\u003cbr\u003e12.3 Ignition and flame spread rate\u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion\u003cbr\u003e12.6 Emission of gaseous components\u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e13.1 Adhesion promoters\u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers\u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents\u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e14.1 Physical methods\u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement\u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis\u003cbr\u003e14.1.11 Electric constants determination\u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test\u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index\u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy\u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area\u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis\u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis\u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy\u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy\u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 FILLERS IN COMMERCIAL POLYMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e15.1 Acrylics\u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer\u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Elastomers \u003cbr\u003e15.7 Epoxy resins \u003cbr\u003e15.8 Ethylene vinyl acetate copolymers \u003cbr\u003e15.9 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.10 Ethylene-propylene copolymers \u003cbr\u003e15.11 Ionomers \u003cbr\u003e15.12 Liquid crystalline polymers\u003cbr\u003e15.13 Perfluoroalkoxy resin \u003cbr\u003e15.14 Phenolic resins \u003cbr\u003e15.15 Poly(acrylic acid) \u003cbr\u003e15.16 Polyamides \u003cbr\u003e15.17 Polyamideimide \u003cbr\u003e15.18 Polyamines \u003cbr\u003e15.19 Polyaniline \u003cbr\u003e15.20 Polyaryletherketone\u003cbr\u003e15.21 Poly(butylene terephthalate) \u003cbr\u003e15.22 Polycarbonate \u003cbr\u003e15.23 Polyetheretherketone\u003cbr\u003e15.24 Polyetherimide \u003cbr\u003e15.25 Polyether sulfone \u003cbr\u003e15.26 Polyethylene \u003cbr\u003e15.27 Polyethylene, chlorinated \u003cbr\u003e15.28 Polyethylene, chlorosulfonated \u003cbr\u003e15.29 Poly(ethylene oxide) \u003cbr\u003e15.30 Poly(ethylene terephthalate)\u003cbr\u003e15.31 Polyimide \u003cbr\u003e15.32 Polymethylmethacrylate\u003cbr\u003e15.33 Polyoxymethylene \u003cbr\u003e15.34 Poly(phenylene ether)\u003cbr\u003e15.35 Poly(phenylene sulfide) \u003cbr\u003e15.36 Polypropylene \u003cbr\u003e15.37 Polypyrrole \u003cbr\u003e15.38 Polystyrene \u0026amp; high impact \u003cbr\u003e15.39 Polysulfides \u003cbr\u003e15.40 Polysulfone \u003cbr\u003e15.41 Polytetrafluoroethylene\u003cbr\u003e15.42 Polyurethanes \u003cbr\u003e15.43 Poly(vinyl acetate)\u003cbr\u003e15.44 Poly(vinyl alcohol)\u003cbr\u003e15.45 Poly(vinyl butyral) \u003cbr\u003e15.46 Poly(vinyl chloride) \u003cbr\u003e15.47 Rubbers \u003cbr\u003e15.47.1 Natural rubber\u003cbr\u003e15.47.2 Nitrile rubber \u003cbr\u003e15.47.3 Polybutadiene rubber \u003cbr\u003e15.47.4 Polybutyl rubber \u003cbr\u003e15.47.5 Polychloroprene \u003cbr\u003e15.47.6 Polyisobutylene \u003cbr\u003e15.47.7 Polyisoprene \u003cbr\u003e15.47.8 Styrene-butadiene rubber\u003cbr\u003e15.48 Silicones \u003cbr\u003e15.49 Styrene-acrylonitrile copolymer\u003cbr\u003e15.50 Tetrafluoroethylene-perfluoropropylene\u003cbr\u003e15.51 Unsaturated polyesters \u003cbr\u003e15.52 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 FILLER IN MATERIALS COMBINATIONS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e16.1 Blends, alloys and interpenetrating networks\u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 FORMULATION WITH FILLERS\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e18.1 Blow molding\u003cbr\u003e18.2 Calendering and hot-melt coating\u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding\u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding\u003cbr\u003e18.13 Rotational molding \u003cbr\u003e18.14 Sheet molding \u003cbr\u003e18.15 Thermoforming \u003cbr\u003e18.16 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace\u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints\u003cbr\u003e19.12 Cosmetics and pharmaceutical products\u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed\u003cbr\u003e19.20 Friction materials\u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields\u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication\u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 HAZARDS IN FILLER USE\u003c\/strong\u003e \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Fillers, 4...
$350.00
{"id":11242221188,"title":"Handbook of Fillers, 4th Edition","handle":"978-1-895198-91-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-91-1 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003eFigures: 615\u003c\/div\u003e\n\u003cdiv\u003eTables: 190\u003c\/div\u003e\n\u003cdiv\u003ePages: 922\u003c\/div\u003e\n\u003cdiv\u003eFourth Edition\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003e\u003cbr\u003eOver 4,000 research papers, mostly published from 1994 to 2015 (over 1000 new papers in this edition), technical data from over 200 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e\u003cbr\u003eThe book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous editions, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers, graphene and other novelty products. \u003cbr\u003e\u003cbr\u003eFillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e\u003cbr\u003eThe book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e\u003cbr\u003eOne third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by over 200 SEM TEM, AFM micrographs.\u003cbr\u003e\u003cbr\u003eThe second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e\u003cbr\u003eThe last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. This part is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace.\u003cbr\u003e\u003cbr\u003eTo summarize, major features of this handbook are:\u003cbr\u003e\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Expectations from fillers \u003cbr\u003e1.2 Typical filler properties \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e1.5 Markets and trends \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders \u003cbr\u003e2.1.2 Aluminum borate whiskers \u003cbr\u003e2.1.3 Aluminum nitride \u003cbr\u003e2.1.4 Aluminum oxide \u003cbr\u003e2.1.5 Aluminum trihydroxide \u003cbr\u003e2.1.6 Anthracite \u003cbr\u003e2.1.7 Antimonate of sodium \u003cbr\u003e2.1.8 Antimony pentoxide \u003cbr\u003e2.1.8 Antimony trioxide \u003cbr\u003e2.1.10 Ammonium octamolybdate \u003cbr\u003e2.1.11 Apatite \u003cbr\u003e2.1.12 Ash, fly \u003cbr\u003e2.1.13 Attapulgite \u003cbr\u003e2.1.14 Barium metaborate \u003cbr\u003e2.1.15 Barium sulfate \u003cbr\u003e2.1.16 Barium \u0026amp; strontium sulfates \u003cbr\u003e2.1.17 Barium titanate \u003cbr\u003e2.1.18 Bentonite \u003cbr\u003e2.1.19 Beryllium oxide \u003cbr\u003e2.1.20 Boron nitride \u003cbr\u003e2.1.21 Calcium carbonate \u003cbr\u003e2.1.22 Calcium fluoride \u003cbr\u003e2.1.23 Calcium hydroxide \u003cbr\u003e2.1.24 Calcium phosphate \u003cbr\u003e2.1.25 Calcium silicate \u003cbr\u003e2.1.26 Calcium sulfate \u003cbr\u003e2.1.27 Carbon black \u003cbr\u003e2.1.28 Carbonyl iron powder \u003cbr\u003e2.1.29 Cellulose particles \u003cbr\u003e2.1.30 Ceramic beads \u003cbr\u003e2.1.31 Chitosan \u003cbr\u003e2.1.32 Clamshell powder \u003cbr\u003e2.1.33 Clay \u003cbr\u003e2.1.34 Cobalt powder \u003cbr\u003e2.1.35 Copper \u003cbr\u003e2.1.36 Corn cob powder \u003cbr\u003e2.1.37 Cristobalite \u003cbr\u003e2.1.38 Diatomaceous earth \u003cbr\u003e2.1.39 Dolomite \u003cbr\u003e2.1.40 Eggshell filler \u003cbr\u003e2.1.41 Ferrites \u003cbr\u003e2.1.42 Feldspar \u003cbr\u003e2.1.43 Gandolinium oxide \u003cbr\u003e2.1.44 Glass beads \u003cbr\u003e2.1.45 Gold \u003cbr\u003e2.1.46 Graphene \u003cbr\u003e2.1.47 Graphene oxide \u003cbr\u003e2.1.48 Graphite \u003cbr\u003e2.1.49 Ground tire powder \u003cbr\u003e2.1.50 Halloysite \u003cbr\u003e2.1.51 Huntite \u003cbr\u003e2.1.52 Hydrous calcium silicate \u003cbr\u003e2.1.53 Illite \u003cbr\u003e2.1.54 Iron \u003cbr\u003e2.1.55 Iron oxide \u003cbr\u003e2.1.56 Kaolin \u003cbr\u003e2.1.57 Lead oxide \u003cbr\u003e2.1.58 Lithopone \u003cbr\u003e2.1.59 Magnesium oxide \u003cbr\u003e2.1.60 Magnesium hydroxide \u003cbr\u003e2.1.61 Magnetite \u003cbr\u003e2.1.62 Metal-containing conductive materials \u003cbr\u003e2.1.63 Mica \u003cbr\u003e2.1.64 Molybdenum \u003cbr\u003e2.1.65 Molybdenum disulfide \u003cbr\u003e2.1.66 Molybdic oxide \u003cbr\u003e2.1.67 Nanofillers \u003cbr\u003e2.1.68 Nickel \u003cbr\u003e2.1.69 Nickel oxide \u003cbr\u003e2.1.70 Nickel zinc ferrite \u003cbr\u003e2.1.71 Nutshell powder \u003cbr\u003e2.1.72 Perlite \u003cbr\u003e2.1.73 Polymeric fillers \u003cbr\u003e2.1.74 Potassium hexatitanate whiskers \u003cbr\u003e2.1.75 Pumice \u003cbr\u003e2.1.76 Pyrophyllite \u003cbr\u003e2.1.77 Rubber particles \u003cbr\u003e2.1.78 Sepiolite \u003cbr\u003e2.1.79 Silica \u003cbr\u003e2.1.79.1 Fumed silica \u003cbr\u003e2.1.79.2 Fused silica \u003cbr\u003e2.1.79.3 Precipitated silica \u003cbr\u003e2.1.79.4 Quartz (Tripoli) \u003cbr\u003e2.1.79.5 Sand \u003cbr\u003e2.1.79.6 Silica gel \u003cbr\u003e2.1.80 Silicon carbide \u003cbr\u003e2.1.81 Silicon nitride \u003cbr\u003e2.1.82 Silver powder and flakes \u003cbr\u003e2.1.83 Slate flour \u003cbr\u003e2.1.84 Talc \u003cbr\u003e2.1.85 Titanium dioxide \u003cbr\u003e2.1.86 Tungsten \u003cbr\u003e2.1.87 Vermiculite \u003cbr\u003e2.1.88 Wollastonite \u003cbr\u003e2.1.89 Wood flour and similar materials \u003cbr\u003e2.1.90 Zeolites \u003cbr\u003e2.1.91 Zinc borate \u003cbr\u003e2.1.92 Zinc oxide \u003cbr\u003e2.1.93 Zinc stannate \u003cbr\u003e2.1.94 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers \u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Carbon nanotubes \u003cbr\u003e2.2.4 Cellulose fibers \u003cbr\u003e2.2.5 Glass fibers \u003cbr\u003e2.2.6 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING \u003cbr\u003e3.1 Filler packaging \u003cbr\u003e3.2 External transportation \u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems \u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 QUALITY CONTROL OF FILLERS \u003cbr\u003e4.1 Absorption coefficient \u003cbr\u003e4.2 Acidity or alkalinity of water extract \u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles \u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area \u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties \u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments \u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties \u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light \u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue \u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area \u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e5.1 Density \u003cbr\u003e5.2 Particle size \u003cbr\u003e5.3 Particle size distribution \u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness \u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing \u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure \u003cbr\u003e5.11 Flocculation and sedimentation \u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH \u003cbr\u003e5.15 Zeta-potential \u003cbr\u003e5.16 Surface energy \u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling \u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties \u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties \u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient \u003cbr\u003e5.29 Thermal degradation \u003cbr\u003e5.30 Melting temperature \u003cbr\u003e5.31 Glass transition temperature \u003cbr\u003e5.32 Electrical properties \u003cbr\u003e5.33 Relative permittivity \u003cbr\u003e5.34 Electrical percolation \u003cbr\u003e5.35 EMI shielding \u003cbr\u003e5.36 Magnetic properties \u003cbr\u003e5.37 Shape memory \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e6.1 Reactivity \u003cbr\u003e6.2 Chemical groups on the filler surface \u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties \u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence \u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003cbr\u003e7.1 Particle distribution in matrix \u003cbr\u003e7.2 Orientation of filler particles in a matrix \u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction \u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization \u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e8.1 Tensile strength and elongation \u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Mullins’ effect \u003cbr\u003e8.4 Elastic modulus \u003cbr\u003e8.5 Flexural strength and modulus \u003cbr\u003e8.6 Impact resistance \u003cbr\u003e8.7 Hardness \u003cbr\u003e8.8 Tear strength \u003cbr\u003e8.9 Compressive strength \u003cbr\u003e8.10 Fracture resistance \u003cbr\u003e8.11 Wear \u003cbr\u003e8.12 Friction \u003cbr\u003e8.13 Abrasion \u003cbr\u003e8.14 Scratch resistance \u003cbr\u003e8.15 Fatigue \u003cbr\u003e8.16 Failure \u003cbr\u003e8.17 Adhesion \u003cbr\u003e8.18 Thermal deformation \u003cbr\u003e8.19 Shrinkage \u003cbr\u003e8.20 Warpage \u003cbr\u003e8.21 Compression set \u003cbr\u003e8.22 Load transfer \u003cbr\u003e8.23 Residual stress \u003cbr\u003e8.24 \u003cbr\u003eCreep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e9.1 Viscosity \u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation \u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity \u003cbr\u003e9.6 Dynamic mechanical behavior \u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity \u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003cbr\u003e10.1 Crystallinity \u003cbr\u003e10.2 Crystallization behavior \u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity \u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS \u003cbr\u003e11.1 Irradiation \u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors \u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 FLAMMABILITY OF FILLED MATERIALS \u003cbr\u003e12.1 Definitions \u003cbr\u003e12.2 Limiting oxygen index \u003cbr\u003e12.3 Ignition and flame spread rate \u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion \u003cbr\u003e12.6 Emission of gaseous components \u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003cbr\u003e13.1 Adhesion promoters \u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers \u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents \u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003cbr\u003e14.1 Physical methods \u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement \u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis \u003cbr\u003e14.1.11 Electric constants determination \u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test \u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index \u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy \u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area \u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis \u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis \u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy \u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy \u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 FILLERS IN COMMERCIAL POLYMERS \u003cbr\u003e15.1 Acrylics \u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer \u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Bismaleimide \u003cbr\u003e15.7 Cellulose acetate \u003cbr\u003e15.8 Chitosan \u003cbr\u003e15.9 Elastomers \u003cbr\u003e15.10 Epoxy resins \u003cbr\u003e15.11 Ethylene vinyl acetate copolymer \u003cbr\u003e15.12 Ethylene vinyl alcohol copolymer \u003cbr\u003e15.13 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.14 Ethylene-propylene copolymers \u003cbr\u003e15.15 Ionomers \u003cbr\u003e15.16 Liquid crystalline polymers \u003cbr\u003e15.17 Perfluoroalkoxy resin \u003cbr\u003e15.18 Phenolic resins \u003cbr\u003e15.19 Poly(acrylic acid) \u003cbr\u003e15.20 Polyacrylonitrile \u003cbr\u003e15.21 Polyamides \u003cbr\u003e15.22 Polyamideimide \u003cbr\u003e15.23 Polyamines \u003cbr\u003e15.24 Polyaniline \u003cbr\u003e15.25 Polyaryletherketone \u003cbr\u003e15.26 Poly(butylene succinate) \u003cbr\u003e15.27 Poly(butylene terephthalate) \u003cbr\u003e15.28 Polycaprolactone \u003cbr\u003e15.29 Polycarbonate \u003cbr\u003e15.30 Polydicyclopentadiene \u003cbr\u003e15.31 Polyetheretherketone \u003cbr\u003e15.32 Polyetherimide \u003cbr\u003e15.33 Polyether sulfone \u003cbr\u003e15.34 Polyethylene \u003cbr\u003e15.35 Polyethylene, chlorinated \u003cbr\u003e15.36 Polyethylene, chlorosulfonated \u003cbr\u003e15.37 Poly(ethylene oxide) \u003cbr\u003e15.38 Poly(ethylene terephthalate) \u003cbr\u003e15.39 Polyimide \u003cbr\u003e15.41 Polymethylmethacrylate \u003cbr\u003e15.42 Polyoxymethylene \u003cbr\u003e15.43 Poly(phenylene ether) \u003cbr\u003e15.44 Poly(phenylene sulfide) \u003cbr\u003e15.45 Polypropylene \u003cbr\u003e15.46 Polypyrrole \u003cbr\u003e15.47 Polystyrene \u0026amp; high impact \u003cbr\u003e15.48 Polysulfide \u003cbr\u003e15.49 Polysulfone \u003cbr\u003e15.50 Polytetrafluoroethylene \u003cbr\u003e15.51 Polyurethanes \u003cbr\u003e15.52 Poly(vinyl acetate) \u003cbr\u003e15.53 Poly(vinyl alcohol) \u003cbr\u003e15.54 Poly(vinyl butyral) \u003cbr\u003e15.55 Poly(vinyl chloride) \u003cbr\u003e15.56 Rubbers \u003cbr\u003e15.56.1 Natural rubber \u003cbr\u003e15.56.2 Nitrile rubber \u003cbr\u003e15.56.3 Polybutadiene rubber \u003cbr\u003e15.56.4 Polybutyl rubber \u003cbr\u003e15.56.5 Polychloroprene \u003cbr\u003e15.56.6 Polyisobutylene \u003cbr\u003e15.56.7 Polyisoprene \u003cbr\u003e15.56.8 Styrene-butadiene rubber \u003cbr\u003e15.57 Silicones \u003cbr\u003e15.58 Styrene-acrylonitrile copolymer \u003cbr\u003e15.59 Tetrafluoroethylene-perfluoropropylene \u003cbr\u003e15.60 Unsaturated polyesters \u003cbr\u003e15.61 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 FILLER IN MATERIALS COMBINATIONS \u003cbr\u003e16.1 Blends, alloys and interpenetrating networks \u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 FORMULATION WITH FILLERS \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS \u003cbr\u003e18.1 Blow molding \u003cbr\u003e18.2 Calendering and hot-melt coating \u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding \u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding \u003cbr\u003e18.13 Resin transfer molding \u003cbr\u003e18.14 Rotational molding \u003cbr\u003e18.15 Sheet molding \u003cbr\u003e18.16 Spinning \u003cbr\u003e18.17 Thermoforming \u003cbr\u003e18.18 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace \u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints \u003cbr\u003e19.12 Cosmetics and pharmaceutical products \u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed \u003cbr\u003e19.20 Friction materials \u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields \u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication \u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 HAZARDS IN FILLER USE \u003cbr\u003eReferences \u003cbr\u003eINDEX\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:46-04:00","created_at":"2017-06-22T21:13:46-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","additives for plastics","best","book","calcium carbon","compounding of rubber","fillers additives","fillers and environment","flame retardanst for plastics","graphite","magnesium","mica","nanofillers","p-additives","particular fillers","physical properties","polymer","quality control","silica"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374020,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Fillers, 4th Edition","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-91-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-91-1.jpg?v=1499719932"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-91-1.jpg?v=1499719932","options":["Title"],"media":[{"alt":null,"id":355725115485,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-91-1.jpg?v=1499719932"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-91-1.jpg?v=1499719932","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-91-1 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003eFigures: 615\u003c\/div\u003e\n\u003cdiv\u003eTables: 190\u003c\/div\u003e\n\u003cdiv\u003ePages: 922\u003c\/div\u003e\n\u003cdiv\u003eFourth Edition\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis handbook gives direct comparison of general purpose fillers (micron-size fillers) and nanofillers.\u003cbr\u003e\u003cbr\u003eOver 4,000 research papers, mostly published from 1994 to 2015 (over 1000 new papers in this edition), technical data from over 200 filler and equipment manufacturing companies, and patent literature were reviewed for this comprehensive handbook. \u003cbr\u003e\u003cbr\u003eThe book is designed to be single source of information for an experienced practitioner as well as a reference text for students and those new to the fields where fillers are used. The previous editions, used by very large number of readers, does not contain essential developments of extensive research on fillers in the last 10 years, especially related to nanofillers, graphene and other novelty products. \u003cbr\u003e\u003cbr\u003eFillers, in most applications, are no longer used as cost-saving additives but they add value to final products, and many products cannot be successfully designed without them. This reference book is a powerful tool for today’s challenges, which can only be met by those equipped with extensive information. \u003cbr\u003e\u003cbr\u003eThe book provides the information on three groups of relevant topics: available fillers and their properties, their effect on filled materials, and their use in practical applications. \u003cbr\u003e\u003cbr\u003eOne third of the book covers the grades of fillers available in the world market. Fillers are divided into 83 groups and their properties are analyzed to pinpoint properties, applications, and sources. The technical information is a synthesis of information on several thousand grades of fillers manufactured today. The morphology of fillers, in addition to the numerical and other data, is illustrated by over 200 SEM TEM, AFM micrographs.\u003cbr\u003e\u003cbr\u003eThe second part of the handbook discusses the effects of filler incorporation. Ten chapters cover the mechanical properties of compounded materials, the effect of the filler on material rheology, the morphology of the filled system, the material durability, flammability and recycling, the structure of interphase, chemical interactions, interaction with and effect on other additives, fillers use in material combinations, and the analytical methods of testing fillers and filled materials.\u003cbr\u003e\u003cbr\u003eThe last part of the book is concerned with application of fillers on an industrial scale. Several chapters discuss filler transportation, storage, processing and equipment used for these purposes. Others deal with the quality control of fillers, formulation with fillers, different processing methods, groups of products, and health and safety issues. This part is designed to assist industrial engineers to evaluate advances in the processing technology. It is also invaluable for chemists who design formulations for industrial processes and students in chemical engineering who must learn how modern industry operates in practical applications. The handbook is invaluable for sales and marketing because it gives possibility of direct comparison of fillers and their potential use and contains all required information to position them in the marketplace.\u003cbr\u003e\u003cbr\u003eTo summarize, major features of this handbook are:\u003cbr\u003e\u003cbr\u003e• Comprehensive review of literature\u003cbr\u003e• The most current information\u003cbr\u003e• Information required by scientists, engineers, marketing, sales, and students given in one source\u003cbr\u003e• All aspects of filler properties, effects, and application thoroughly reviewed\u003cbr\u003e• Contains all available information to make decision on what can be done by traditional fillers and where nanotechnology excels\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Expectations from fillers \u003cbr\u003e1.2 Typical filler properties \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e1.5 Markets and trends \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 SOURCES OF FILLERS, THEIR CHEMICAL COMPOSITION, PROPERTIES, AND MORPHOLOGY \u003cbr\u003e2.1 Particulate Fillers \u003cbr\u003e2.1.1 Aluminum flakes and powders \u003cbr\u003e2.1.2 Aluminum borate whiskers \u003cbr\u003e2.1.3 Aluminum nitride \u003cbr\u003e2.1.4 Aluminum oxide \u003cbr\u003e2.1.5 Aluminum trihydroxide \u003cbr\u003e2.1.6 Anthracite \u003cbr\u003e2.1.7 Antimonate of sodium \u003cbr\u003e2.1.8 Antimony pentoxide \u003cbr\u003e2.1.8 Antimony trioxide \u003cbr\u003e2.1.10 Ammonium octamolybdate \u003cbr\u003e2.1.11 Apatite \u003cbr\u003e2.1.12 Ash, fly \u003cbr\u003e2.1.13 Attapulgite \u003cbr\u003e2.1.14 Barium metaborate \u003cbr\u003e2.1.15 Barium sulfate \u003cbr\u003e2.1.16 Barium \u0026amp; strontium sulfates \u003cbr\u003e2.1.17 Barium titanate \u003cbr\u003e2.1.18 Bentonite \u003cbr\u003e2.1.19 Beryllium oxide \u003cbr\u003e2.1.20 Boron nitride \u003cbr\u003e2.1.21 Calcium carbonate \u003cbr\u003e2.1.22 Calcium fluoride \u003cbr\u003e2.1.23 Calcium hydroxide \u003cbr\u003e2.1.24 Calcium phosphate \u003cbr\u003e2.1.25 Calcium silicate \u003cbr\u003e2.1.26 Calcium sulfate \u003cbr\u003e2.1.27 Carbon black \u003cbr\u003e2.1.28 Carbonyl iron powder \u003cbr\u003e2.1.29 Cellulose particles \u003cbr\u003e2.1.30 Ceramic beads \u003cbr\u003e2.1.31 Chitosan \u003cbr\u003e2.1.32 Clamshell powder \u003cbr\u003e2.1.33 Clay \u003cbr\u003e2.1.34 Cobalt powder \u003cbr\u003e2.1.35 Copper \u003cbr\u003e2.1.36 Corn cob powder \u003cbr\u003e2.1.37 Cristobalite \u003cbr\u003e2.1.38 Diatomaceous earth \u003cbr\u003e2.1.39 Dolomite \u003cbr\u003e2.1.40 Eggshell filler \u003cbr\u003e2.1.41 Ferrites \u003cbr\u003e2.1.42 Feldspar \u003cbr\u003e2.1.43 Gandolinium oxide \u003cbr\u003e2.1.44 Glass beads \u003cbr\u003e2.1.45 Gold \u003cbr\u003e2.1.46 Graphene \u003cbr\u003e2.1.47 Graphene oxide \u003cbr\u003e2.1.48 Graphite \u003cbr\u003e2.1.49 Ground tire powder \u003cbr\u003e2.1.50 Halloysite \u003cbr\u003e2.1.51 Huntite \u003cbr\u003e2.1.52 Hydrous calcium silicate \u003cbr\u003e2.1.53 Illite \u003cbr\u003e2.1.54 Iron \u003cbr\u003e2.1.55 Iron oxide \u003cbr\u003e2.1.56 Kaolin \u003cbr\u003e2.1.57 Lead oxide \u003cbr\u003e2.1.58 Lithopone \u003cbr\u003e2.1.59 Magnesium oxide \u003cbr\u003e2.1.60 Magnesium hydroxide \u003cbr\u003e2.1.61 Magnetite \u003cbr\u003e2.1.62 Metal-containing conductive materials \u003cbr\u003e2.1.63 Mica \u003cbr\u003e2.1.64 Molybdenum \u003cbr\u003e2.1.65 Molybdenum disulfide \u003cbr\u003e2.1.66 Molybdic oxide \u003cbr\u003e2.1.67 Nanofillers \u003cbr\u003e2.1.68 Nickel \u003cbr\u003e2.1.69 Nickel oxide \u003cbr\u003e2.1.70 Nickel zinc ferrite \u003cbr\u003e2.1.71 Nutshell powder \u003cbr\u003e2.1.72 Perlite \u003cbr\u003e2.1.73 Polymeric fillers \u003cbr\u003e2.1.74 Potassium hexatitanate whiskers \u003cbr\u003e2.1.75 Pumice \u003cbr\u003e2.1.76 Pyrophyllite \u003cbr\u003e2.1.77 Rubber particles \u003cbr\u003e2.1.78 Sepiolite \u003cbr\u003e2.1.79 Silica \u003cbr\u003e2.1.79.1 Fumed silica \u003cbr\u003e2.1.79.2 Fused silica \u003cbr\u003e2.1.79.3 Precipitated silica \u003cbr\u003e2.1.79.4 Quartz (Tripoli) \u003cbr\u003e2.1.79.5 Sand \u003cbr\u003e2.1.79.6 Silica gel \u003cbr\u003e2.1.80 Silicon carbide \u003cbr\u003e2.1.81 Silicon nitride \u003cbr\u003e2.1.82 Silver powder and flakes \u003cbr\u003e2.1.83 Slate flour \u003cbr\u003e2.1.84 Talc \u003cbr\u003e2.1.85 Titanium dioxide \u003cbr\u003e2.1.86 Tungsten \u003cbr\u003e2.1.87 Vermiculite \u003cbr\u003e2.1.88 Wollastonite \u003cbr\u003e2.1.89 Wood flour and similar materials \u003cbr\u003e2.1.90 Zeolites \u003cbr\u003e2.1.91 Zinc borate \u003cbr\u003e2.1.92 Zinc oxide \u003cbr\u003e2.1.93 Zinc stannate \u003cbr\u003e2.1.94 Zinc sulfide \u003cbr\u003e2.2 Fibers \u003cbr\u003e2.2.1 Aramid fibers \u003cbr\u003e2.2.2 Carbon fibers \u003cbr\u003e2.2.3 Carbon nanotubes \u003cbr\u003e2.2.4 Cellulose fibers \u003cbr\u003e2.2.5 Glass fibers \u003cbr\u003e2.2.6 Other fibers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 FILLERS TRANSPORTATION, STORAGE, AND PROCESSING \u003cbr\u003e3.1 Filler packaging \u003cbr\u003e3.2 External transportation \u003cbr\u003e3.3 Filler receiving \u003cbr\u003e3.4 Storage \u003cbr\u003e3.5 In-plant conveying \u003cbr\u003e3.6 Semi-bulk unloading systems \u003cbr\u003e3.7 Bag handling equipment \u003cbr\u003e3.8 Blending \u003cbr\u003e3.9 Feeding \u003cbr\u003e3.10 Drying \u003cbr\u003e3.11 Dispersion \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 QUALITY CONTROL OF FILLERS \u003cbr\u003e4.1 Absorption coefficient \u003cbr\u003e4.2 Acidity or alkalinity of water extract \u003cbr\u003e4.3 Ash content \u003cbr\u003e4.4 Brightness \u003cbr\u003e4.5 Coarse particles \u003cbr\u003e4.6 Color \u003cbr\u003e4.7 CTAB surface area \u003cbr\u003e4.8 Density \u003cbr\u003e4.9 Electrical properties \u003cbr\u003e4.10 Extractables \u003cbr\u003e4.11 Fines content \u003cbr\u003e4.12 Heating loss \u003cbr\u003e4.13 Heat stability \u003cbr\u003e4.14 Hegman fineness \u003cbr\u003e4.15 Hiding power \u003cbr\u003e4.16 Iodine absorption number \u003cbr\u003e4.17 Lightening power of white pigments \u003cbr\u003e4.18 Loss on ignition \u003cbr\u003e4.19 Mechanical and related properties \u003cbr\u003e4.20 Oil absorption \u003cbr\u003e4.21 Particle size \u003cbr\u003e4.22 Pellet strength \u003cbr\u003e4.23 pH \u003cbr\u003e4.24 Resistance to light \u003cbr\u003e4.25 Resistivity of aqueous extract \u003cbr\u003e4.26 Sieve residue \u003cbr\u003e4.27 Soluble matter \u003cbr\u003e4.28 Specific surface area \u003cbr\u003e4.29 Sulfur content \u003cbr\u003e4.30 Tamped volume \u003cbr\u003e4.31 Tinting strength \u003cbr\u003e4.32 Volatile matter \u003cbr\u003e4.33 Water content \u003cbr\u003e4.34 Water-soluble sulfates, chlorides and nitrates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 PHYSICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e5.1 Density \u003cbr\u003e5.2 Particle size \u003cbr\u003e5.3 Particle size distribution \u003cbr\u003e5.4 Particle shape \u003cbr\u003e5.5 Particle surface morphology and roughness \u003cbr\u003e5.6 Specific surface area \u003cbr\u003e5.7 Porosity \u003cbr\u003e5.8 Particle-particle interaction and spacing \u003cbr\u003e5.9 Agglomerates \u003cbr\u003e5.10 Aggregates and structure \u003cbr\u003e5.11 Flocculation and sedimentation \u003cbr\u003e5.12 Aspect ratio \u003cbr\u003e5.13 Packing volume \u003cbr\u003e5.14 pH \u003cbr\u003e5.15 Zeta-potential \u003cbr\u003e5.16 Surface energy \u003cbr\u003e5.17 Moisture \u003cbr\u003e5.18 Absorption of liquids and swelling \u003cbr\u003e5.19 Permeability and barrier properties \u003cbr\u003e5.20 Oil absorption \u003cbr\u003e5.21 Hydrophilic\/hydrophobic properties \u003cbr\u003e5.22 Optical properties \u003cbr\u003e5.23 Refractive index \u003cbr\u003e5.24 Friction properties \u003cbr\u003e5.25 Hardness \u003cbr\u003e5.26 Intumescent properties \u003cbr\u003e5.27 Thermal conductivity \u003cbr\u003e5.28 Thermal expansion coefficient \u003cbr\u003e5.29 Thermal degradation \u003cbr\u003e5.30 Melting temperature \u003cbr\u003e5.31 Glass transition temperature \u003cbr\u003e5.32 Electrical properties \u003cbr\u003e5.33 Relative permittivity \u003cbr\u003e5.34 Electrical percolation \u003cbr\u003e5.35 EMI shielding \u003cbr\u003e5.36 Magnetic properties \u003cbr\u003e5.37 Shape memory \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 CHEMICAL PROPERTIES OF FILLERS AND FILLED MATERIALS \u003cbr\u003e6.1 Reactivity \u003cbr\u003e6.2 Chemical groups on the filler surface \u003cbr\u003e6.3 Filler surface modification \u003cbr\u003e6.4 Filler modification and material properties \u003cbr\u003e6.5 Resistance to various chemicals \u003cbr\u003e6.6 Cure in fillers presence \u003cbr\u003e6.7 Polymerization in fillers presence \u003cbr\u003e6.8 Grafting \u003cbr\u003e6.9 Crosslink density \u003cbr\u003e6.10 Reaction kinetics \u003cbr\u003e6.11 Molecular mobility \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 ORGANIZATION OF INTERFACE AND MATRIX CONTAINING FILLERS \u003cbr\u003e7.1 Particle distribution in matrix \u003cbr\u003e7.2 Orientation of filler particles in a matrix \u003cbr\u003e7.3 Voids \u003cbr\u003e7.4 Matrix-filler interaction \u003cbr\u003e7.5 Chemical interactions \u003cbr\u003e7.6 Other interactions \u003cbr\u003e7.7 Interphase organization \u003cbr\u003e7.8 Interfacial adhesion \u003cbr\u003e7.9 Interphase thickness \u003cbr\u003e7.10 Filler-chain links \u003cbr\u003e7.11 Chain dynamics \u003cbr\u003e7.12 Bound rubber \u003cbr\u003e7.13 Debonding \u003cbr\u003e7.14 Mechanisms of reinforcement \u003cbr\u003e7.15 Benefits of organization on molecular level \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 THE EFFECT OF FILLERS ON THE MECHANICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e8.1 Tensile strength and elongation \u003cbr\u003e8.2 Tensile yield stress \u003cbr\u003e8.3 Mullins’ effect \u003cbr\u003e8.4 Elastic modulus \u003cbr\u003e8.5 Flexural strength and modulus \u003cbr\u003e8.6 Impact resistance \u003cbr\u003e8.7 Hardness \u003cbr\u003e8.8 Tear strength \u003cbr\u003e8.9 Compressive strength \u003cbr\u003e8.10 Fracture resistance \u003cbr\u003e8.11 Wear \u003cbr\u003e8.12 Friction \u003cbr\u003e8.13 Abrasion \u003cbr\u003e8.14 Scratch resistance \u003cbr\u003e8.15 Fatigue \u003cbr\u003e8.16 Failure \u003cbr\u003e8.17 Adhesion \u003cbr\u003e8.18 Thermal deformation \u003cbr\u003e8.19 Shrinkage \u003cbr\u003e8.20 Warpage \u003cbr\u003e8.21 Compression set \u003cbr\u003e8.22 Load transfer \u003cbr\u003e8.23 Residual stress \u003cbr\u003e8.24 \u003cbr\u003eCreep \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 THE EFFECT OF FILLERS ON RHEOLOGICAL PROPERTIES OF FILLED MATERIALS \u003cbr\u003e9.1 Viscosity \u003cbr\u003e9.2 Flow \u003cbr\u003e9.3 Flow induced filler particle orientation \u003cbr\u003e9.4 Torque \u003cbr\u003e9.5 Viscoelasticity \u003cbr\u003e9.6 Dynamic mechanical behavior \u003cbr\u003e9.7 Complex viscosity \u003cbr\u003e9.8 Shear viscosity \u003cbr\u003e9.9 Elongational viscosity \u003cbr\u003e9.10 Melt rheology \u003cbr\u003e9.11 Yield value \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 MORPHOLOGY OF FILLED SYSTEMS \u003cbr\u003e10.1 Crystallinity \u003cbr\u003e10.2 Crystallization behavior \u003cbr\u003e10.3 Nucleation \u003cbr\u003e10.4 Crystal size \u003cbr\u003e10.5 Spherulites \u003cbr\u003e10.6 Transcrystallinity \u003cbr\u003e10.7 Orientation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e11 EFFECT OF FILLERS ON EPOSURE TO DIFFERENT ENVIRONMENTS \u003cbr\u003e11.1 Irradiation \u003cbr\u003e11.2 UV radiation \u003cbr\u003e11.3 Temperature \u003cbr\u003e11.4 Liquids and vapors \u003cbr\u003e11.5 Stabilization \u003cbr\u003e11.6 Degradable materials \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e12 FLAMMABILITY OF FILLED MATERIALS \u003cbr\u003e12.1 Definitions \u003cbr\u003e12.2 Limiting oxygen index \u003cbr\u003e12.3 Ignition and flame spread rate \u003cbr\u003e12.4 Heat transmission rate \u003cbr\u003e12.5 Decomposition and combustion \u003cbr\u003e12.6 Emission of gaseous components \u003cbr\u003e12.7 Smoke \u003cbr\u003e12.8 Char \u003cbr\u003e12.9 Recycling \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e13 INFLUENCE OF FILLERS ON PERFORMANCE OF OTHER ADDITIVES AND VICE VERSA \u003cbr\u003e13.1 Adhesion promoters \u003cbr\u003e13.2 Antistatics \u003cbr\u003e13.3 Blowing agents \u003cbr\u003e13.4 Catalysts \u003cbr\u003e13.5 Compatibilizers \u003cbr\u003e13.6 Coupling agents \u003cbr\u003e13.7 Dispersing agents and surface active agents \u003cbr\u003e13.8 Flame retardants \u003cbr\u003e13.9 Impact modifiers \u003cbr\u003e13.10 UV stabilizers \u003cbr\u003e13.11 Other additives \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e14 TESTING METHODS IN FILLED SYSTEMS \u003cbr\u003e14.1 Physical methods \u003cbr\u003e14.1.1 Atomic force microscopy \u003cbr\u003e14.1.2 Autoignition test \u003cbr\u003e14.1.3 Bound rubber \u003cbr\u003e14.1.4 Char formation \u003cbr\u003e14.1.5 Cone calorimetry \u003cbr\u003e14.1.6 Contact angle \u003cbr\u003e14.1.7 Dispersing agent requirement \u003cbr\u003e14.1.8 Dispersion tests \u003cbr\u003e14.1.9 Dripping test \u003cbr\u003e14.1.10 Dynamic mechanical analysis \u003cbr\u003e14.1.11 Electric constants determination \u003cbr\u003e14.1.12 Electron microscopy \u003cbr\u003e14.1.13 Fiber orientation \u003cbr\u003e14.1.14 Flame propagation test \u003cbr\u003e14.1.15 Glow wire test \u003cbr\u003e14.1.16 Image analysis \u003cbr\u003e14.1.17 Limiting oxygen index \u003cbr\u003e14.1.18 Magnetic properties \u003cbr\u003e14.1.19 Optical microscopy \u003cbr\u003e14.1.20 Particle size analysis \u003cbr\u003e14.1.21 Radiant panel test \u003cbr\u003e14.1.22 Rate of combustion \u003cbr\u003e14.1.23 Scanning acoustic microscopy \u003cbr\u003e14.1.24 Smoke chamber \u003cbr\u003e14.1.25 Sonic methods \u003cbr\u003e14.1.26 Specific surface area \u003cbr\u003e14.1.27 Thermal analysis \u003cbr\u003e14.2 Chemical and instrumental analysis \u003cbr\u003e14.2.1 Electron spin resonance \u003cbr\u003e14.2.2 Electron spectroscopy for chemical analysis \u003cbr\u003e14.2.3 Inverse gas chromatography \u003cbr\u003e14.2.4 Gas chromatography \u003cbr\u003e14.2.5 Gel content \u003cbr\u003e14.2.6 Infrared and Raman spectroscopy \u003cbr\u003e14.2.7 Nuclear magnetic resonance spectroscopy \u003cbr\u003e14.2.8 UV and visible spectophotometry \u003cbr\u003e14.2.9 X-ray analysis \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e15 FILLERS IN COMMERCIAL POLYMERS \u003cbr\u003e15.1 Acrylics \u003cbr\u003e15.2 Acrylonitrile-butadiene-styrene copolymer \u003cbr\u003e15.3 Acrylonitrile-styrene-acrylate \u003cbr\u003e15.4 Aliphatic polyketone \u003cbr\u003e15.5 Alkyd resins \u003cbr\u003e15.6 Bismaleimide \u003cbr\u003e15.7 Cellulose acetate \u003cbr\u003e15.8 Chitosan \u003cbr\u003e15.9 Elastomers \u003cbr\u003e15.10 Epoxy resins \u003cbr\u003e15.11 Ethylene vinyl acetate copolymer \u003cbr\u003e15.12 Ethylene vinyl alcohol copolymer \u003cbr\u003e15.13 Ethylene-ethyl acetate copolymer \u003cbr\u003e15.14 Ethylene-propylene copolymers \u003cbr\u003e15.15 Ionomers \u003cbr\u003e15.16 Liquid crystalline polymers \u003cbr\u003e15.17 Perfluoroalkoxy resin \u003cbr\u003e15.18 Phenolic resins \u003cbr\u003e15.19 Poly(acrylic acid) \u003cbr\u003e15.20 Polyacrylonitrile \u003cbr\u003e15.21 Polyamides \u003cbr\u003e15.22 Polyamideimide \u003cbr\u003e15.23 Polyamines \u003cbr\u003e15.24 Polyaniline \u003cbr\u003e15.25 Polyaryletherketone \u003cbr\u003e15.26 Poly(butylene succinate) \u003cbr\u003e15.27 Poly(butylene terephthalate) \u003cbr\u003e15.28 Polycaprolactone \u003cbr\u003e15.29 Polycarbonate \u003cbr\u003e15.30 Polydicyclopentadiene \u003cbr\u003e15.31 Polyetheretherketone \u003cbr\u003e15.32 Polyetherimide \u003cbr\u003e15.33 Polyether sulfone \u003cbr\u003e15.34 Polyethylene \u003cbr\u003e15.35 Polyethylene, chlorinated \u003cbr\u003e15.36 Polyethylene, chlorosulfonated \u003cbr\u003e15.37 Poly(ethylene oxide) \u003cbr\u003e15.38 Poly(ethylene terephthalate) \u003cbr\u003e15.39 Polyimide \u003cbr\u003e15.41 Polymethylmethacrylate \u003cbr\u003e15.42 Polyoxymethylene \u003cbr\u003e15.43 Poly(phenylene ether) \u003cbr\u003e15.44 Poly(phenylene sulfide) \u003cbr\u003e15.45 Polypropylene \u003cbr\u003e15.46 Polypyrrole \u003cbr\u003e15.47 Polystyrene \u0026amp; high impact \u003cbr\u003e15.48 Polysulfide \u003cbr\u003e15.49 Polysulfone \u003cbr\u003e15.50 Polytetrafluoroethylene \u003cbr\u003e15.51 Polyurethanes \u003cbr\u003e15.52 Poly(vinyl acetate) \u003cbr\u003e15.53 Poly(vinyl alcohol) \u003cbr\u003e15.54 Poly(vinyl butyral) \u003cbr\u003e15.55 Poly(vinyl chloride) \u003cbr\u003e15.56 Rubbers \u003cbr\u003e15.56.1 Natural rubber \u003cbr\u003e15.56.2 Nitrile rubber \u003cbr\u003e15.56.3 Polybutadiene rubber \u003cbr\u003e15.56.4 Polybutyl rubber \u003cbr\u003e15.56.5 Polychloroprene \u003cbr\u003e15.56.6 Polyisobutylene \u003cbr\u003e15.56.7 Polyisoprene \u003cbr\u003e15.56.8 Styrene-butadiene rubber \u003cbr\u003e15.57 Silicones \u003cbr\u003e15.58 Styrene-acrylonitrile copolymer \u003cbr\u003e15.59 Tetrafluoroethylene-perfluoropropylene \u003cbr\u003e15.60 Unsaturated polyesters \u003cbr\u003e15.61 Vinylidene-fluoride terpolymers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e16 FILLER IN MATERIALS COMBINATIONS \u003cbr\u003e16.1 Blends, alloys and interpenetrating networks \u003cbr\u003e16.2 Composites \u003cbr\u003e16.3 Nanocomposites \u003cbr\u003e16.4 Laminates \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e17 FORMULATION WITH FILLERS \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e18 FILLERS IN DIFFERENT PROCESSING METHODS \u003cbr\u003e18.1 Blow molding \u003cbr\u003e18.2 Calendering and hot-melt coating \u003cbr\u003e18.3 Compression molding \u003cbr\u003e18.4 Dip coating \u003cbr\u003e18.5 Dispersion \u003cbr\u003e18.6 Extrusion \u003cbr\u003e18.7 Foaming \u003cbr\u003e18.8 Injection molding \u003cbr\u003e18.9 Knife coating \u003cbr\u003e18.10 Mixing \u003cbr\u003e18.11 Pultrusion \u003cbr\u003e18.12 Reaction injection molding \u003cbr\u003e18.13 Resin transfer molding \u003cbr\u003e18.14 Rotational molding \u003cbr\u003e18.15 Sheet molding \u003cbr\u003e18.16 Spinning \u003cbr\u003e18.17 Thermoforming \u003cbr\u003e18.18 Welding and machining \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e19 FILLERS IN DIFFERENT PRODUCTS \u003cbr\u003e19.1 Adhesives \u003cbr\u003e19.2 Agriculture \u003cbr\u003e19.3 Aerospace \u003cbr\u003e19.4 Appliances \u003cbr\u003e19.5 Automotive materials \u003cbr\u003e19.6 Bottles and containers \u003cbr\u003e19.7 Building components \u003cbr\u003e19.8 Business machines \u003cbr\u003e19.9 Cable and wire \u003cbr\u003e19.10 Coated fabrics \u003cbr\u003e19.11 Coatings and paints \u003cbr\u003e19.12 Cosmetics and pharmaceutical products \u003cbr\u003e19.13 Dental restorative composites \u003cbr\u003e19.14 Electrical and electronic materials \u003cbr\u003e19.15 Electromagnetic interference shielding \u003cbr\u003e19.16 Fibers \u003cbr\u003e19.17 Film \u003cbr\u003e19.18 Foam \u003cbr\u003e19.19 Food and feed \u003cbr\u003e19.20 Friction materials \u003cbr\u003e19.21 Geosynthetics \u003cbr\u003e19.22 Hoses and pipes \u003cbr\u003e19.23 Magnetic devices \u003cbr\u003e19.24 Medical applications \u003cbr\u003e19.25 Membranes \u003cbr\u003e19.26 Noise damping \u003cbr\u003e19.27 Optical devices \u003cbr\u003e19.28 Paper \u003cbr\u003e19.29 Radiation shields \u003cbr\u003e19.30 Railway transportation \u003cbr\u003e19.31 Roofing \u003cbr\u003e19.32 Telecommunication \u003cbr\u003e19.33 Tires \u003cbr\u003e19.34 Sealants \u003cbr\u003e19.35 Siding \u003cbr\u003e19.36 Sports equipment \u003cbr\u003e19.37 Waterproofing \u003cbr\u003e19.38 Windows \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e20 HAZARDS IN FILLER USE \u003cbr\u003eReferences \u003cbr\u003eINDEX\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Foaming an...
$285.00
{"id":11427190148,"title":"Handbook of Foaming and Blowing Agents","handle":"handbook-of-foaming-and-blowing-agents","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003c\/p\u003e\n\u003cp\u003eISBN 978-1-895198-99-7 (hard copy)\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2017\u003c\/span\u003e\u003cbr\u003ePages 250+viii\u003cbr\u003eTables 38\u003cbr\u003eFigures 145\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, including type, amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other.\u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on mechanisms of action of blowing agents and foaming mechanisms, as well as dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology which has been discussed in fourteen chapters each devoted to a different aspect of the foaming process.\u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. In the tabulated form, the typical range of technical performance is given for each group of foaming agents, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses mechanisms of foaming with the use of solid blowing agents which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by diagrams placed close to the text of discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is a subject of Chapter 4 with special emphasis on uniformity of foam produced and parameters of the foaming process. Evaluation of importance of parameters of foaming, included in chapter 5, contains influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume.\u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain uniform structure of a foam and reinforce cell walls. Seven different foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating are discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eSelection of foaming agents, their quantity and technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, health and safety and environmental impacts of foaming processes are discussed.\u003cbr\u003e \u003cbr\u003eThis book has also companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information which is repeated in both books. They do complement each other giving reader comprehensive information on the subject never published before with such a breadth.\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction\u003cbr\u003e2 Chemical origin of blowing agents\u003cbr\u003e3 Mechanisms of action of blowing agents\u003cbr\u003e4 Dispersion and solubility of foaming agents\u003cbr\u003e5 Parameters of foaming\u003cbr\u003e6 Foam stabilization\u003cbr\u003e7 Foaming efficiency measures\u003cbr\u003e8 Morphology of foams\u003cbr\u003e9 Foaming in different processing methods\u003cbr\u003e10 Selection of blowing agents for different polymers\u003cbr\u003e11 Additives\u003cbr\u003e12 Effect of foaming on physical-mechanical properties of foams\u003cbr\u003e13 Analytical techniques useful in foaming\u003cbr\u003e14 Health and safety and environmental impact of foaming processes\u003cbr\u003eIndex\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-07-13T16:58:01-04:00","created_at":"2017-07-13T16:58:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","additive","blowing","book","expansion","foam","foaming","kicker","polymer","rubber","technology"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45224136068,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Foaming and Blowing Agents","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-895198-99-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-99-7.jpg?v=1499979724"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-99-7.jpg?v=1499979724","options":["Title"],"media":[{"alt":null,"id":362540400733,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-99-7.jpg?v=1499979724"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-99-7.jpg?v=1499979724","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003c\/p\u003e\n\u003cp\u003eISBN 978-1-895198-99-7 (hard copy)\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2017\u003c\/span\u003e\u003cbr\u003ePages 250+viii\u003cbr\u003eTables 38\u003cbr\u003eFigures 145\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, including type, amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other.\u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on mechanisms of action of blowing agents and foaming mechanisms, as well as dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology which has been discussed in fourteen chapters each devoted to a different aspect of the foaming process.\u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. In the tabulated form, the typical range of technical performance is given for each group of foaming agents, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses mechanisms of foaming with the use of solid blowing agents which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by diagrams placed close to the text of discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is a subject of Chapter 4 with special emphasis on uniformity of foam produced and parameters of the foaming process. Evaluation of importance of parameters of foaming, included in chapter 5, contains influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume.\u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain uniform structure of a foam and reinforce cell walls. Seven different foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating are discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eSelection of foaming agents, their quantity and technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, health and safety and environmental impacts of foaming processes are discussed.\u003cbr\u003e \u003cbr\u003eThis book has also companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information which is repeated in both books. They do complement each other giving reader comprehensive information on the subject never published before with such a breadth.\u003c\/p\u003e\n\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction\u003cbr\u003e2 Chemical origin of blowing agents\u003cbr\u003e3 Mechanisms of action of blowing agents\u003cbr\u003e4 Dispersion and solubility of foaming agents\u003cbr\u003e5 Parameters of foaming\u003cbr\u003e6 Foam stabilization\u003cbr\u003e7 Foaming efficiency measures\u003cbr\u003e8 Morphology of foams\u003cbr\u003e9 Foaming in different processing methods\u003cbr\u003e10 Selection of blowing agents for different polymers\u003cbr\u003e11 Additives\u003cbr\u003e12 Effect of foaming on physical-mechanical properties of foams\u003cbr\u003e13 Analytical techniques useful in foaming\u003cbr\u003e14 Health and safety and environmental impact of foaming processes\u003cbr\u003eIndex\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Foaming an...
$315.00
{"id":7336368570525,"title":"Handbook of Foaming and Blowing Agents, 2nd Edition","handle":"handbook-of-foaming-and-blowing-agents-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-77467-000-2 \u003cbr\u003ePages 300+viii\u003cbr data-mce-fragment=\"1\"\u003eTables 38\u003cbr data-mce-fragment=\"1\"\u003eFigures 194\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe second edition of the \u003cstrong\u003eHandbook of Foaming and Blowing Agents\u003c\/strong\u003e includes the most current information on these additives, which has been published between 2017 and 2021 in the open literature, scientific papers, and patents to complement already included information in the previous edition.\u003c\/p\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, such as the type and amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, the viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other diverse factors. \u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on the mechanisms of action of blowing agents and foaming mechanisms, as well as the dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology, which has been discussed in fourteen chapters, each devoted to a different aspect of foaming processes.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. The typical range of technical performance is given for each group of foaming agents in the tabulated form, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers. This information was compiled based on data for over 300 commercial additives. Here, average values for each group were included, unlike in the \u003cstrong\u003eDatabook\u003c\/strong\u003e \u003cstrong\u003eof Blowing and Auxiliary Agents, \u003c\/strong\u003ewhere full information for individual additives is presented.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by chemical reactions and diagrams placed close to the text of the discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is the subject of Chapter 4, emphasizing the uniformity of foam produced and the foaming process's parameters. Evaluation of the importance of parameters of foaming, included in chapter 5, contains the influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume. \u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain the uniform structure of the foam and reinforce cell walls. Seven different, most frequently used foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including the production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in the production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating is discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eThe selection of foaming agents, their quantity, and the technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, the health and safety, and environmental impacts of foaming processes are discussed. \u003c\/p\u003e\n\u003cp\u003eThis book also has a companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e, which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information, which is repeated in both books. They do compliment each other giving readers comprehensive information on the subject never published before with such breadth.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e1 Introduction\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e2 Chemical origin of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e3 Mechanisms of action of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e4 Dispersion and solubility of foaming agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e5 Parameters of foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e6 Foam stabilization\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e7 Foaming efficiency measures\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e8 Morphology of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e9 Foaming in different processing methods\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e10 Selection of blowing agents for different polymers\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e11 Additives\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e12 Effect of foaming on physical-mechanical properties of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e13 Analytical techniques useful in foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e14 Health and safety and environmental impact of foaming processes\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003eIndex\u003c\/p\u003e\n\u003cbr\u003e","published_at":"2022-03-31T20:41:59-04:00","created_at":"2022-03-31T20:38:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","foam","foaming","foaming agents","foams"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165706555549,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Foaming and Blowing Agents, 2nd Edition","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-000-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670002-Case.png?v=1648773883"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670002-Case.png?v=1648773883","options":["Title"],"media":[{"alt":null,"id":24734443438237,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670002-Case.png?v=1648773883"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670002-Case.png?v=1648773883","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eAnna Wypych \u0026amp; George Wypych\u003cbr\u003e\u003c\/span\u003eISBN 978-1-77467-000-2 \u003cbr\u003ePages 300+viii\u003cbr data-mce-fragment=\"1\"\u003eTables 38\u003cbr data-mce-fragment=\"1\"\u003eFigures 194\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe second edition of the \u003cstrong\u003eHandbook of Foaming and Blowing Agents\u003c\/strong\u003e includes the most current information on these additives, which has been published between 2017 and 2021 in the open literature, scientific papers, and patents to complement already included information in the previous edition.\u003c\/p\u003e\n\u003cp\u003eFoaming processes can be controlled by many parameters, such as the type and amount of foaming agent, additives, saturation pressure, desorption time, die pressure, die temperature, feed ratio, gas contents, its flow rate and injection location, internal pressure after foaming, mold pressure, mold temperature, the viscosity of composition under processing conditions, surface tension, time-temperature regime, and many other diverse factors. \u003c\/p\u003e\n\u003cp\u003eThe selection of formulation depends on the mechanisms of action of blowing agents and foaming mechanisms, as well as the dispersion and solubility of foaming agents and foam stabilization requirements.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eThis book contains information on foaming technology, which has been discussed in fourteen chapters, each devoted to a different aspect of foaming processes.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003eProperties of 23 groups of blowing agents have been discussed in Chapter 2. The typical range of technical performance is given for each group of foaming agents in the tabulated form, including general properties, physical-chemical properties, health and safety, environmental impact, and application in different products and polymers. This information was compiled based on data for over 300 commercial additives. Here, average values for each group were included, unlike in the \u003cstrong\u003eDatabook\u003c\/strong\u003e \u003cstrong\u003eof Blowing and Auxiliary Agents, \u003c\/strong\u003ewhere full information for individual additives is presented.\u003c\/p\u003e\n\u003cp\u003eChapter 3 discusses foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gasses and evaporating liquids. All information is illustrated by chemical reactions and diagrams placed close to the text of the discussion.\u003c\/p\u003e\n\u003cp\u003eDispersion of solid foaming agents and solubility of liquid and gaseous products is the subject of Chapter 4, emphasizing the uniformity of foam produced and the foaming process's parameters. Evaluation of the importance of parameters of foaming, included in chapter 5, contains the influence of the amount of blowing agent, clamping pressure, delay time, desorption time, die pressure, die temperature, gas content, gas flow rate, gas injection location, gas sorption and desorption rates, internal pressure after foaming, mold pressure, mold temperature, operational window, plastisol viscosity, saturation pressure, saturation temperature, screw revolution speed, surface tension, time, temperature, and void volume. \u003c\/p\u003e\n\u003cp\u003eFoam stabilization methods for different blowing agents are included in Chapter 6. These methods help to obtain the uniform structure of the foam and reinforce cell walls. Seven different, most frequently used foam efficiency measures are presented in Chapter 7. Morphology of foams is discussed in Chapter 8, including the production of bimodal foams, cell density, cell morphology, cell size, cell wall thickness, closed and open cell formation and frequency, core and skin thickness, and morphological features.\u003c\/p\u003e\n\u003cp\u003eProduction of foam by different methods of plastic processing, such as blown film extrusion, calendering, clay exfoliation in the production of reinforced composites, compression molding, depressurization, extrusion, free foaming, injection molding, microwave heating, rotational molding, solid-state foaming, supercritical fluid-laden pellet injection molding foaming, thermoforming, UV laser, vacuum drying, and wire coating is discussed in Chapter 9.\u003c\/p\u003e\n\u003cp\u003eThe selection of foaming agents, their quantity, and the technology of processing for 44 polymers are included in Chapter 10. Chapter 11 discusses the influence of 15 groups of additives on the foaming outcome. Chapter 12 gives information on the effect of foaming on 24 parameters of physical-mechanical properties of foams, setting the standard of achievable performance. Some important and exclusive analytical techniques useful in foaming are discussed in Chapter 13. In the last chapter, the health and safety, and environmental impacts of foaming processes are discussed. \u003c\/p\u003e\n\u003cp\u003eThis book also has a companion \u003cstrong\u003eDatabook of Blowing and Auxiliary Agents\u003c\/strong\u003e, which contains data for these diverse chemical components of formulations of foamed materials and reveals their roles in foaming processes. There is no information, which is repeated in both books. They do compliment each other giving readers comprehensive information on the subject never published before with such breadth.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp data-mce-fragment=\"1\"\u003e1 Introduction\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e2 Chemical origin of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e3 Mechanisms of action of blowing agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e4 Dispersion and solubility of foaming agents\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e5 Parameters of foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e6 Foam stabilization\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e7 Foaming efficiency measures\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e8 Morphology of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e9 Foaming in different processing methods\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e10 Selection of blowing agents for different polymers\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e11 Additives\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e12 Effect of foaming on physical-mechanical properties of foams\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e13 Analytical techniques useful in foaming\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003e14 Health and safety and environmental impact of foaming processes\u003c\/p\u003e\n\u003cp data-mce-fragment=\"1\"\u003eIndex\u003c\/p\u003e\n\u003cbr\u003e"}
Handbook of Impact Mod...
$285.00
{"id":7336384692381,"title":"Handbook of Impact Modifiers","handle":"handbook-of-impact-modifiers","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 77467-004-0\u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 254+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Impact Modifiers provides information on how to modify structure and morphology, improve mechanical performance, and prevent changes during the use of polymeric products by proper selection of impact modifiers. Handbook of Impact Modifiers brings analyses of important publications found in open and patent literature. Special attention is given to the last five years' findings, which brought many new essential developments. \u003cbr\u003e\u003cbr\u003eThe book begins with an analysis of the chemical origin and related properties of impact modifiers, which are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in the companion Databook of Impact Modifiers, which has been published as a separate book to help select products available in the commercial markets and analyze different products. The information included in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe Handbook contains the essential theoretical knowledge required for proper selection and use of impact modifiers, including their morphological structure and distribution in a polymer matrix, the effect on polymer crystallization in the presence and without impact modifiers, important influences on impact modification, mechanisms of modification, and effective methods of incorporation of impact modifiers. \u003cbr\u003e\u003cbr\u003eDetails on selection and performance in different polymers, products, and processing methods are included in three major chapters. Here extensive use is being made of patent literature and research papers available for different applications. \u003cbr\u003e\u003cbr\u003eThe final three chapters discuss the effects of impact modifiers on physical and mechanical properties of materials, essential analytical techniques used to analyze systems containing impact modifiers, and the health and safety and environmental impact of impact modifiers.\u003cbr\u003e\u003cbr\u003eThe only monographic source on the application of impact modifiers was published in 1991. Later published information included chapters on their application in various branches of polymers and their processing. The most recent publication is a marketing report with a world outlook in 2021-2025 that predicts a rapid increase in consumption of impact modifiers. This lack of fundamental information and data requires current specialized publication, the aim which these two books expect to provide. \u003cbr\u003e\u003cbr\u003eIntroduction\u003cbr\u003eMain groups of impact modifiers\u003cbr\u003eGeneral laws describing impact resistance rate of impact, temperature during impact (glass transition temperature of material), and relative humidity (amount of absorbed moisture by the product)\u003cbr\u003eImpact modification mechanisms\u003cbr\u003eCrystallinity and morphology (homogeneity, crystallinity, degradation, internal stress, material form, presence of imperfections on the surface and within the bulk of a material)\u003cbr\u003eEffect of material composition (binder, fillers (their type, hardness, shape, and particle size distribution), interaction of matrix and fillers, crosslink density, plasticizers, impact modifiers, foaming agents, residual solvents), concentrations of additives\u003cbr\u003ePolymer blends (components of the blend and compatibilizers)\u003cbr\u003eEffect of processing on impact strength\u003cbr\u003eSelection of impact modifiers for different polymers\u003cbr\u003eSelection of impact modifiers for different end-products\u003cbr\u003eDurability of impact modification\u003cbr\u003e\u003cbr\u003eGroups of products, which consume most impact modifiers\u003cbr\u003eAdhesive, sealant, hotmelt, pressure-sensitive, bookbinding\u003cbr\u003eAerospace aviation\u003cbr\u003eAutomotive – body panel, accessories, under-the-hood, bumper, motor hosing\u003cbr\u003eBottles\u003cbr\u003eCoatings, paints\u003cbr\u003eCosmetics – fragrance caps, packaging\u003cbr\u003eElectrical – connectors, computer housing, conduit, switch, insulation, TV, monitor, phone\u003cbr\u003eEngineering plastics\u003cbr\u003eFilm\u003cbr\u003eFoam\u003cbr\u003eFootware\u003cbr\u003eFurniture also garden\u003cbr\u003eGeomembrane\u003cbr\u003eGolf balls\u003cbr\u003eHealthcare – medical gloves, medical device, drapery, intravenous bag, respiratory\u003cbr\u003eHouseware – household dinnerware, cabinets, small appliance, flowerpot, refrigerator\u003cbr\u003eInk\u003cbr\u003eMolded parts – containers, handle, grip\u003cbr\u003ePackaging - meat casing, trays, meat, pouches, stretch, milk, tape, cling\u003cbr\u003ePharmaceutical – drug delivery, packaging\u003cbr\u003ePipes and tubes, hose, fitting, fuel line\u003cbr\u003ePlayground running track\u003cbr\u003eProfiles - Windows and doors, fence, deck, rail\u003cbr\u003eRoads, pavement, asphalt modification\u003cbr\u003eRoofing roof sheet, roof covering, corrugated sheet, membrane\u003cbr\u003eSeals gaskets\u003cbr\u003eSheet\u003cbr\u003eSiding\u003cbr\u003eSporting – ski booth\u003cbr\u003eToys\u003cbr\u003eWire and cable\u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T20:52:45-04:00","created_at":"2022-03-31T20:45:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","impact modifiers","modifiers"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165743026333,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Impact Modifiers","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 77467-004-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670040-Case.png?v=1648774608"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670040-Case.png?v=1648774608","options":["Title"],"media":[{"alt":null,"id":24734578540701,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670040-Case.png?v=1648774608"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670040-Case.png?v=1648774608","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 77467-004-0\u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 254+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Impact Modifiers provides information on how to modify structure and morphology, improve mechanical performance, and prevent changes during the use of polymeric products by proper selection of impact modifiers. Handbook of Impact Modifiers brings analyses of important publications found in open and patent literature. Special attention is given to the last five years' findings, which brought many new essential developments. \u003cbr\u003e\u003cbr\u003eThe book begins with an analysis of the chemical origin and related properties of impact modifiers, which are analyzed in general terms to highlight the differences in their properties. The specific agents are discussed in the companion Databook of Impact Modifiers, which has been published as a separate book to help select products available in the commercial markets and analyze different products. The information included in Databook and Handbook is totally different without any repetition. \u003cbr\u003e\u003cbr\u003eThe Handbook contains the essential theoretical knowledge required for proper selection and use of impact modifiers, including their morphological structure and distribution in a polymer matrix, the effect on polymer crystallization in the presence and without impact modifiers, important influences on impact modification, mechanisms of modification, and effective methods of incorporation of impact modifiers. \u003cbr\u003e\u003cbr\u003eDetails on selection and performance in different polymers, products, and processing methods are included in three major chapters. Here extensive use is being made of patent literature and research papers available for different applications. \u003cbr\u003e\u003cbr\u003eThe final three chapters discuss the effects of impact modifiers on physical and mechanical properties of materials, essential analytical techniques used to analyze systems containing impact modifiers, and the health and safety and environmental impact of impact modifiers.\u003cbr\u003e\u003cbr\u003eThe only monographic source on the application of impact modifiers was published in 1991. Later published information included chapters on their application in various branches of polymers and their processing. The most recent publication is a marketing report with a world outlook in 2021-2025 that predicts a rapid increase in consumption of impact modifiers. This lack of fundamental information and data requires current specialized publication, the aim which these two books expect to provide. \u003cbr\u003e\u003cbr\u003eIntroduction\u003cbr\u003eMain groups of impact modifiers\u003cbr\u003eGeneral laws describing impact resistance rate of impact, temperature during impact (glass transition temperature of material), and relative humidity (amount of absorbed moisture by the product)\u003cbr\u003eImpact modification mechanisms\u003cbr\u003eCrystallinity and morphology (homogeneity, crystallinity, degradation, internal stress, material form, presence of imperfections on the surface and within the bulk of a material)\u003cbr\u003eEffect of material composition (binder, fillers (their type, hardness, shape, and particle size distribution), interaction of matrix and fillers, crosslink density, plasticizers, impact modifiers, foaming agents, residual solvents), concentrations of additives\u003cbr\u003ePolymer blends (components of the blend and compatibilizers)\u003cbr\u003eEffect of processing on impact strength\u003cbr\u003eSelection of impact modifiers for different polymers\u003cbr\u003eSelection of impact modifiers for different end-products\u003cbr\u003eDurability of impact modification\u003cbr\u003e\u003cbr\u003eGroups of products, which consume most impact modifiers\u003cbr\u003eAdhesive, sealant, hotmelt, pressure-sensitive, bookbinding\u003cbr\u003eAerospace aviation\u003cbr\u003eAutomotive – body panel, accessories, under-the-hood, bumper, motor hosing\u003cbr\u003eBottles\u003cbr\u003eCoatings, paints\u003cbr\u003eCosmetics – fragrance caps, packaging\u003cbr\u003eElectrical – connectors, computer housing, conduit, switch, insulation, TV, monitor, phone\u003cbr\u003eEngineering plastics\u003cbr\u003eFilm\u003cbr\u003eFoam\u003cbr\u003eFootware\u003cbr\u003eFurniture also garden\u003cbr\u003eGeomembrane\u003cbr\u003eGolf balls\u003cbr\u003eHealthcare – medical gloves, medical device, drapery, intravenous bag, respiratory\u003cbr\u003eHouseware – household dinnerware, cabinets, small appliance, flowerpot, refrigerator\u003cbr\u003eInk\u003cbr\u003eMolded parts – containers, handle, grip\u003cbr\u003ePackaging - meat casing, trays, meat, pouches, stretch, milk, tape, cling\u003cbr\u003ePharmaceutical – drug delivery, packaging\u003cbr\u003ePipes and tubes, hose, fitting, fuel line\u003cbr\u003ePlayground running track\u003cbr\u003eProfiles - Windows and doors, fence, deck, rail\u003cbr\u003eRoads, pavement, asphalt modification\u003cbr\u003eRoofing roof sheet, roof covering, corrugated sheet, membrane\u003cbr\u003eSeals gaskets\u003cbr\u003eSheet\u003cbr\u003eSiding\u003cbr\u003eSporting – ski booth\u003cbr\u003eToys\u003cbr\u003eWire and cable\u003cbr\u003e\u003c\/p\u003e"}
Handbook of Material B...
$265.00
{"id":11242208644,"title":"Handbook of Material Biodegradation, Biodeterioration, and Biostabilization","handle":"978-1-895198-44-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Falkiewicz-Dulik, M; Janda, K; Wypych, G \u003cbr\u003eISBN 978-1-895198-44-7 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages: 368\u003cbr\u003eFigures: 63\u003cbr\u003eTables: 188\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is about protection of materials and products against colonization and subsequent degradation of their properties. The book contains 9 chapters each devoted to essential aspects related to biodegradation and biostabilization.\u003cbr\u003eThe introductory chapter gives historical note on chronological developments in the field, presents classification of biocidal products, and defines essential terms which are frequently used in the subject of the book.\u003cbr\u003e\u003cbr\u003eMicroorganisms involved in biodegradation and biodeterioration of materials are presented within the framework of their classification, based on the most recent developments and agreements. Information on 13 groups of bacteria 7 groups of fungi, and 4 groups of protozoa are discussed in Chapter 2, which also contains discussion of major mechanisms of biodegradation and biodeterioration, including biofilm formation and its effects on biostabilization of materials.\u003cbr\u003e\u003cbr\u003eChapter 3 is devoted to industrial biocides. It begins with discussion of mechanisms of biostabilization followed by discussion of types of biostabilizers. In this discussion, biocides are divided into 19 groups and properties of stabilizers for each group are given in the tabular form. Only stabilizers permitted for use in European Union and the USA are included in the discussion. The selection is based on the current in 2010 lists of approved substances.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on biodegradation, biodeterioration and biostabilization of industrial products. For each group of products, relevant microorganisms, essential product components, mechanisms of biodegradation and biodeterioration, results of biodeterioration, biostabilization, and used formulations are given. Twenty two groups of industrial products are included in evaluation. Also, 24 groups of polymers are discussed here in separate sections.\u003cbr\u003e\u003cbr\u003eChapter 5 contains information on standard and other frequently used analytical methods in the field of the book. Chapter 6 contains evaluation of health and safety aspects of biocide application. Chapter 7 contains the most current information on environmental fate of biostabilizers, including their concentrations, toxicity, and the rates of decay. Discussion is based on the most current data (current decade) to give real picture of current situation.\u003cbr\u003e\u003cbr\u003eChapter 8 contains information on regulations developed in European Union, by world organizations, and in the USA to give a comprehensive background of legislative measures. The last chapter is on protection of workers who use biocides in their work.\u003cbr\u003eThis comprehensive source of fundamental information and data is based on thousands of papers, patents, and information from biocide manufacturers. The above contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.\u003cbr\u003e\u003cbr\u003eVery drastic changes in biocides which can be used according to regulations make most of the very informative books published in past misleading because regulations eliminated many products, which they discuss. This book only looks to future applications, giving ideas on how to protect materials in today’s environment.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction \u003c\/strong\u003e\u003cbr\u003e1.1 Short historical note\u003cbr\u003e1.2 Classification\u003cbr\u003e1.3 Definitions\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2 Microorganism involved in biodegradation of materials \u003c\/strong\u003e\u003c\/p\u003e\n2.1 General classifications of living things\u003cbr\u003e2.2 Bacteria\u003cbr\u003e2.2.1 Actinobacteria\u003cbr\u003e2.2.2 Bacteroidetes\/Chlorobi\u003cbr\u003e2.2.3 Chlamydiae\/Verrucomicrobiae\u003cbr\u003e2.2.4 Chloroflexi\u003cbr\u003e2.2.5 Cyanobacteria\u003cbr\u003e2.2.6 Fibrobacteres\/Acidobacteria\u003cbr\u003e2.2.7 Firmicutes\u003cbr\u003e2.2.8 Fusobacteria\u003cbr\u003e2.2.9 Nitrospirae\u003cbr\u003e2.2.10 Planctomycetes\u003cbr\u003e2.2.11 Proteobacteria\u003cbr\u003e2.2.12 Thermodesulfobacteria\u003cbr\u003e2.2.13 Thermotogae\u003cbr\u003e2.3 Fungi\u003cbr\u003e2.3.1 Ascomycota\u003cbr\u003e2.3.2 Basidiomycota\u003cbr\u003e2.3.3 Blastocladiomycota\u003cbr\u003e2.3.4 Chytridiomycota\u003cbr\u003e2.3.5 Glomeromycota\u003cbr\u003e2.3.6 Microsporidia\u003cbr\u003e2.3.7 Neocallimastigomycota\u003cbr\u003e2.4 Protozoa\u003cbr\u003e2.5 Biodegradation \u0026amp; biodeterioration mechanisms\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e3 Industrial biocides\u003c\/strong\u003e\u003c\/p\u003e\n3.1 General mechanisms of biostabilization\u003cbr\u003e3.2 Chemical types of biostabilizers\u003cbr\u003e3.2.1 Acetal aldehyde-releasing compounds\u003cbr\u003e3.2.2 Acid esters\u003cbr\u003e3.2.3 Acids\u003cbr\u003e3.2.4 Active halogen products\u003cbr\u003e3.2.5 Alcohols\u003cbr\u003e3.2.6 Aldehydes\u003cbr\u003e3.2.7 Amides\u003cbr\u003e3.2.8 Azoles\u003cbr\u003e3.2.9 Carbamates\u003cbr\u003e3.2.10 Formaldehyde-releasing compounds\u003cbr\u003e3.2.11 Haloalkylthio compounds\u003cbr\u003e3.2.12 Heterocyclic N,S-compounds\u003cbr\u003e3.2.13 Metal-containing products\u003cbr\u003e3.2.14 Oxidizing agents\u003cbr\u003e3.2.15 Phenolics\u003cbr\u003e3.2.16 Polymeric materials\u003cbr\u003e3.2.17 Pyridine derivatives\u003cbr\u003e3.2.18 Quaternary ammonium compounds and other surface active agents\u003cbr\u003e3.2.19 Other (not included) products\u003cbr\u003e3.3 Principles of selection of biostabilizers\u003cbr\u003e3.4 Longevity of biostabilized materials\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e4 Biodegradation, biodeterioration, and biostabilization of industrial products\u003c\/strong\u003e\u003c\/p\u003e\n4.1 Building products \u003cbr\u003e4.2 Coatings and paints \u003cbr\u003e4.3 Cultural heritage excluding stone building and monuments\u003cbr\u003e4.4 Dental materials\u003cbr\u003e4.5 Electrical and electronic products \u003cbr\u003e4.6 Fibers and textiles \u003cbr\u003e4.7 Leather and leather products \u003cbr\u003e4.8 Marine transport\u003cbr\u003e4.9 Medical applications\u003cbr\u003e4.10 Metals\u003cbr\u003e4.11 Mineral dispersions\u003cbr\u003e4.12 Petroleum products (fuels and lubricants)\u003cbr\u003e4.13 Pharmaceuticals, cosmetics, and toiletries \u003cbr\u003e4.14 Polymers\u003cbr\u003e4.15 Pulp and paper \u003cbr\u003e4.16 Roofing materials\u003cbr\u003e4.17 Rubber\u003cbr\u003e4.18 Sealants and adhesives\u003cbr\u003e4.19 Stones and other building materials\u003cbr\u003e4.21 Swimming pools\u003cbr\u003e4.22 Water\u003cbr\u003e4.23 Wood\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Analytical methods in biodegradation, biodeterioration, and biostabilization \u003c\/strong\u003e\u003cbr\u003e5.1 Standards\u003cbr\u003e5.1.1 Adhesives and sealants\u003cbr\u003e5.1.2 Antifouling coatings\u003cbr\u003e5.1.3 Antiseptic drugs and handwash\u003cbr\u003e5.1.4 Chemical materials in general\u003cbr\u003e5.1.5 Coatings and paints\u003cbr\u003e5.1.6 Cooling water systems\u003cbr\u003e5.1.7 Detergents\u003cbr\u003e5.1.8 Fuels and fuels systems\u003cbr\u003e5.1.9 Geomembranes and geotextiles\u003cbr\u003e5.1.10 Hydraulic fluids\u003cbr\u003e5.1.11 Lubricants\u003cbr\u003e5.1.12 Lumber, pallets, and wood boxes\u003cbr\u003e5.1.13 Metalworking fluids\u003cbr\u003e5.1.14 Oilfield and refinery\u003cbr\u003e5.1.15 Oil spill response\u003cbr\u003e5.1.16 Packaging\u003cbr\u003e5.1.17 Paper\u003cbr\u003e5.1.18 Plastics and polymers\u003cbr\u003e5.1.19 Stone consolidants\u003cbr\u003e5.1.20 Surgical implants and medical devices\u003cbr\u003e5.1.21 Water systems\u003cbr\u003e5.2 Non-conventional analysis\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e6 Biostabilizers - health \u0026amp; safety \u003c\/strong\u003e\u003cbr\u003e6.1 Toxic substance control\u003cbr\u003e6.2 Carcinogenic effects\u003cbr\u003e6.3 Workplace exposure limits\u003cbr\u003e6.4 Food regulatory acts\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e7 Environmental fates of biostabilizers \u003c\/strong\u003e\u003c\/p\u003e\n7.1 Concentration\u003cbr\u003e7.2 Toxicity\u003cbr\u003e7.3 Decay\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e8 Legislation \u003c\/strong\u003e\u003c\/p\u003e\n8.1 European Union\u003cbr\u003e8.2 International\u003cbr\u003e8.3 USA\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9 Personal protection \u003c\/strong\u003e\u003c\/p\u003e\n9.1 Clothing\u003cbr\u003e9.2 Gloves\u003cbr\u003e9.3 Eye protection\u003cbr\u003e9.4 Respiratory protection\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMichalina Falkiewicz-Dulik\u003c\/strong\u003e has a M.Sc. degree in experimental physics and thirty years of experience in leather products manufacture with special reference to research, development, and technology implementation on industrial scale. She coauthored 2 books: Microbiology of materials (Technical University of Łódź Press) and Light industry - management and organization of production, materials science, technology and design, (Kazimierz Pułaski Technical University of Radom Press). She has published 24 scientific papers, 3 know-how manuals, 87 articles and reports in: Medical Mycology, Advances in Dermatology and Allergology, Przegląd Skórzany, Przegląd Włókienniczy WOS, Ochrona Przed Korozją. She has been awarded four prizes by Polish Federation of Engineering Associations NOT for technologies of manufacturing synthetic materials and one prize by National Fund for Environmental Protection and Water Management for the project “Recycling Technology – Technology Recycling”. She is also forensic expert in the area of leather and leather goods, raw materials, plastic and rubber, and leather processing and footwear as well as an auditor of Quality Management System according to ISO 9001.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003eDr. Eng. Katarzyna Janda\u003c\/strong\u003e is an associate professor at the Faculty of Environmental Management and Agriculture in West Pomeranian University of Technology in Szczecin. She has been teaching in the area of preservation, storage, processing, and evaluation of commodity plant materials. Dr. Janda conducts research on enzymatic activity and effects of fungi, especially those colonizing plant materials, on storage stability of various materials. She has published 47 research papers and coauthored a book entitled Microbiology of Materials published by the Technical University of Lodz Press, with contribution on biodeterioration of petroleum products.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003ehas a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 15 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:04-04:00","created_at":"2017-06-22T21:13:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","biodegradable plastics","Biodegradation","Biodeterioration","biopolymers","Biostabilization","biostabilizers","book","industrial biocides","mechanism of biodegradation"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378328580,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Material Biodegradation, Biodeterioration, and Biostabilization","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-44-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-44-7.jpg?v=1499887695"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-44-7.jpg?v=1499887695","options":["Title"],"media":[{"alt":null,"id":355726131293,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-44-7.jpg?v=1499887695"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-44-7.jpg?v=1499887695","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Falkiewicz-Dulik, M; Janda, K; Wypych, G \u003cbr\u003eISBN 978-1-895198-44-7 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages: 368\u003cbr\u003eFigures: 63\u003cbr\u003eTables: 188\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book is about protection of materials and products against colonization and subsequent degradation of their properties. The book contains 9 chapters each devoted to essential aspects related to biodegradation and biostabilization.\u003cbr\u003eThe introductory chapter gives historical note on chronological developments in the field, presents classification of biocidal products, and defines essential terms which are frequently used in the subject of the book.\u003cbr\u003e\u003cbr\u003eMicroorganisms involved in biodegradation and biodeterioration of materials are presented within the framework of their classification, based on the most recent developments and agreements. Information on 13 groups of bacteria 7 groups of fungi, and 4 groups of protozoa are discussed in Chapter 2, which also contains discussion of major mechanisms of biodegradation and biodeterioration, including biofilm formation and its effects on biostabilization of materials.\u003cbr\u003e\u003cbr\u003eChapter 3 is devoted to industrial biocides. It begins with discussion of mechanisms of biostabilization followed by discussion of types of biostabilizers. In this discussion, biocides are divided into 19 groups and properties of stabilizers for each group are given in the tabular form. Only stabilizers permitted for use in European Union and the USA are included in the discussion. The selection is based on the current in 2010 lists of approved substances.\u003cbr\u003e\u003cbr\u003eChapter 4 contains information on biodegradation, biodeterioration and biostabilization of industrial products. For each group of products, relevant microorganisms, essential product components, mechanisms of biodegradation and biodeterioration, results of biodeterioration, biostabilization, and used formulations are given. Twenty two groups of industrial products are included in evaluation. Also, 24 groups of polymers are discussed here in separate sections.\u003cbr\u003e\u003cbr\u003eChapter 5 contains information on standard and other frequently used analytical methods in the field of the book. Chapter 6 contains evaluation of health and safety aspects of biocide application. Chapter 7 contains the most current information on environmental fate of biostabilizers, including their concentrations, toxicity, and the rates of decay. Discussion is based on the most current data (current decade) to give real picture of current situation.\u003cbr\u003e\u003cbr\u003eChapter 8 contains information on regulations developed in European Union, by world organizations, and in the USA to give a comprehensive background of legislative measures. The last chapter is on protection of workers who use biocides in their work.\u003cbr\u003eThis comprehensive source of fundamental information and data is based on thousands of papers, patents, and information from biocide manufacturers. The above contents and the most-up-to-date information make this book essential for almost all the fields of applied chemistry.\u003cbr\u003e\u003cbr\u003eVery drastic changes in biocides which can be used according to regulations make most of the very informative books published in past misleading because regulations eliminated many products, which they discuss. This book only looks to future applications, giving ideas on how to protect materials in today’s environment.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction \u003c\/strong\u003e\u003cbr\u003e1.1 Short historical note\u003cbr\u003e1.2 Classification\u003cbr\u003e1.3 Definitions\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2 Microorganism involved in biodegradation of materials \u003c\/strong\u003e\u003c\/p\u003e\n2.1 General classifications of living things\u003cbr\u003e2.2 Bacteria\u003cbr\u003e2.2.1 Actinobacteria\u003cbr\u003e2.2.2 Bacteroidetes\/Chlorobi\u003cbr\u003e2.2.3 Chlamydiae\/Verrucomicrobiae\u003cbr\u003e2.2.4 Chloroflexi\u003cbr\u003e2.2.5 Cyanobacteria\u003cbr\u003e2.2.6 Fibrobacteres\/Acidobacteria\u003cbr\u003e2.2.7 Firmicutes\u003cbr\u003e2.2.8 Fusobacteria\u003cbr\u003e2.2.9 Nitrospirae\u003cbr\u003e2.2.10 Planctomycetes\u003cbr\u003e2.2.11 Proteobacteria\u003cbr\u003e2.2.12 Thermodesulfobacteria\u003cbr\u003e2.2.13 Thermotogae\u003cbr\u003e2.3 Fungi\u003cbr\u003e2.3.1 Ascomycota\u003cbr\u003e2.3.2 Basidiomycota\u003cbr\u003e2.3.3 Blastocladiomycota\u003cbr\u003e2.3.4 Chytridiomycota\u003cbr\u003e2.3.5 Glomeromycota\u003cbr\u003e2.3.6 Microsporidia\u003cbr\u003e2.3.7 Neocallimastigomycota\u003cbr\u003e2.4 Protozoa\u003cbr\u003e2.5 Biodegradation \u0026amp; biodeterioration mechanisms\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e3 Industrial biocides\u003c\/strong\u003e\u003c\/p\u003e\n3.1 General mechanisms of biostabilization\u003cbr\u003e3.2 Chemical types of biostabilizers\u003cbr\u003e3.2.1 Acetal aldehyde-releasing compounds\u003cbr\u003e3.2.2 Acid esters\u003cbr\u003e3.2.3 Acids\u003cbr\u003e3.2.4 Active halogen products\u003cbr\u003e3.2.5 Alcohols\u003cbr\u003e3.2.6 Aldehydes\u003cbr\u003e3.2.7 Amides\u003cbr\u003e3.2.8 Azoles\u003cbr\u003e3.2.9 Carbamates\u003cbr\u003e3.2.10 Formaldehyde-releasing compounds\u003cbr\u003e3.2.11 Haloalkylthio compounds\u003cbr\u003e3.2.12 Heterocyclic N,S-compounds\u003cbr\u003e3.2.13 Metal-containing products\u003cbr\u003e3.2.14 Oxidizing agents\u003cbr\u003e3.2.15 Phenolics\u003cbr\u003e3.2.16 Polymeric materials\u003cbr\u003e3.2.17 Pyridine derivatives\u003cbr\u003e3.2.18 Quaternary ammonium compounds and other surface active agents\u003cbr\u003e3.2.19 Other (not included) products\u003cbr\u003e3.3 Principles of selection of biostabilizers\u003cbr\u003e3.4 Longevity of biostabilized materials\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e4 Biodegradation, biodeterioration, and biostabilization of industrial products\u003c\/strong\u003e\u003c\/p\u003e\n4.1 Building products \u003cbr\u003e4.2 Coatings and paints \u003cbr\u003e4.3 Cultural heritage excluding stone building and monuments\u003cbr\u003e4.4 Dental materials\u003cbr\u003e4.5 Electrical and electronic products \u003cbr\u003e4.6 Fibers and textiles \u003cbr\u003e4.7 Leather and leather products \u003cbr\u003e4.8 Marine transport\u003cbr\u003e4.9 Medical applications\u003cbr\u003e4.10 Metals\u003cbr\u003e4.11 Mineral dispersions\u003cbr\u003e4.12 Petroleum products (fuels and lubricants)\u003cbr\u003e4.13 Pharmaceuticals, cosmetics, and toiletries \u003cbr\u003e4.14 Polymers\u003cbr\u003e4.15 Pulp and paper \u003cbr\u003e4.16 Roofing materials\u003cbr\u003e4.17 Rubber\u003cbr\u003e4.18 Sealants and adhesives\u003cbr\u003e4.19 Stones and other building materials\u003cbr\u003e4.21 Swimming pools\u003cbr\u003e4.22 Water\u003cbr\u003e4.23 Wood\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Analytical methods in biodegradation, biodeterioration, and biostabilization \u003c\/strong\u003e\u003cbr\u003e5.1 Standards\u003cbr\u003e5.1.1 Adhesives and sealants\u003cbr\u003e5.1.2 Antifouling coatings\u003cbr\u003e5.1.3 Antiseptic drugs and handwash\u003cbr\u003e5.1.4 Chemical materials in general\u003cbr\u003e5.1.5 Coatings and paints\u003cbr\u003e5.1.6 Cooling water systems\u003cbr\u003e5.1.7 Detergents\u003cbr\u003e5.1.8 Fuels and fuels systems\u003cbr\u003e5.1.9 Geomembranes and geotextiles\u003cbr\u003e5.1.10 Hydraulic fluids\u003cbr\u003e5.1.11 Lubricants\u003cbr\u003e5.1.12 Lumber, pallets, and wood boxes\u003cbr\u003e5.1.13 Metalworking fluids\u003cbr\u003e5.1.14 Oilfield and refinery\u003cbr\u003e5.1.15 Oil spill response\u003cbr\u003e5.1.16 Packaging\u003cbr\u003e5.1.17 Paper\u003cbr\u003e5.1.18 Plastics and polymers\u003cbr\u003e5.1.19 Stone consolidants\u003cbr\u003e5.1.20 Surgical implants and medical devices\u003cbr\u003e5.1.21 Water systems\u003cbr\u003e5.2 Non-conventional analysis\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e6 Biostabilizers - health \u0026amp; safety \u003c\/strong\u003e\u003cbr\u003e6.1 Toxic substance control\u003cbr\u003e6.2 Carcinogenic effects\u003cbr\u003e6.3 Workplace exposure limits\u003cbr\u003e6.4 Food regulatory acts\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e7 Environmental fates of biostabilizers \u003c\/strong\u003e\u003c\/p\u003e\n7.1 Concentration\u003cbr\u003e7.2 Toxicity\u003cbr\u003e7.3 Decay\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e8 Legislation \u003c\/strong\u003e\u003c\/p\u003e\n8.1 European Union\u003cbr\u003e8.2 International\u003cbr\u003e8.3 USA\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e9 Personal protection \u003c\/strong\u003e\u003c\/p\u003e\n9.1 Clothing\u003cbr\u003e9.2 Gloves\u003cbr\u003e9.3 Eye protection\u003cbr\u003e9.4 Respiratory protection\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eMichalina Falkiewicz-Dulik\u003c\/strong\u003e has a M.Sc. degree in experimental physics and thirty years of experience in leather products manufacture with special reference to research, development, and technology implementation on industrial scale. She coauthored 2 books: Microbiology of materials (Technical University of Łódź Press) and Light industry - management and organization of production, materials science, technology and design, (Kazimierz Pułaski Technical University of Radom Press). She has published 24 scientific papers, 3 know-how manuals, 87 articles and reports in: Medical Mycology, Advances in Dermatology and Allergology, Przegląd Skórzany, Przegląd Włókienniczy WOS, Ochrona Przed Korozją. She has been awarded four prizes by Polish Federation of Engineering Associations NOT for technologies of manufacturing synthetic materials and one prize by National Fund for Environmental Protection and Water Management for the project “Recycling Technology – Technology Recycling”. She is also forensic expert in the area of leather and leather goods, raw materials, plastic and rubber, and leather processing and footwear as well as an auditor of Quality Management System according to ISO 9001.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003eDr. Eng. Katarzyna Janda\u003c\/strong\u003e is an associate professor at the Faculty of Environmental Management and Agriculture in West Pomeranian University of Technology in Szczecin. She has been teaching in the area of preservation, storage, processing, and evaluation of commodity plant materials. Dr. Janda conducts research on enzymatic activity and effects of fungi, especially those colonizing plant materials, on storage stability of various materials. She has published 47 research papers and coauthored a book entitled Microbiology of Materials published by the Technical University of Lodz Press, with contribution on biodeterioration of petroleum products.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cstrong\u003eGeorge Wypych\u003c\/strong\u003ehas a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 15 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary, Handbook of Biodegradation, Biodeterioration , and Biostabilization (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003cbr\u003e\u003cbr\u003e"}