- Grid List
Filter
Handbook of Photochemi...
$150.00
{"id":11242224836,"title":"Handbook of Photochemistry and Photophysics of Polymeric Materials","handle":"978-0-470-13796-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. S. Allen \u003cbr\u003eISBN 978-0-470-13796-3 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e689 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCovering materials, mechanisms, processes, properties, developments, and applications of photochemistry and photophysics in polymers, Handbook of Photochemistry and Photophysics of Polymeric Materials provides the fundamentals and applications of polymer photochemistry and photophysics in one accessible source. For each category, the fundamentals of the materials are presented alongside important developments and particular applications in the field. This book is a useful and practical resource for all researchers and graduate students working on polymeric materials either prepared by or involved in photochemistry and photophysics.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNorman S. Allen, PhD, DSc, is Professor and Chair of Applied Chemistry at Manchester Metropolitan University. Professor Allen has published some 600 papers, articles, books, and book chapters. He is the founder and a member of the editorial board of the journal Dyes and Pigments. He is also founder of the journal Polymer Photochemistry and is on the editorial board of Journal of Vinyl and Additive Technology and Polymer Degradation and Stability. Professor Allen is also Editor in Chief of the Open Materials Science Journal. From 1978–2007 he was the specialist reporter for the section on \"Polymer Photochemistry\" in the Royal Society of Chemistry's Photochemistry series.","published_at":"2017-06-22T21:13:57-04:00","created_at":"2017-06-22T21:13:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","degradation","material","Photochemistry","polymeric materials","polymers","stabilization"],"price":15000,"price_min":15000,"price_max":15000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378390148,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Photochemistry and Photophysics of Polymeric Materials","public_title":null,"options":["Default Title"],"price":15000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-13796-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-13796-3.jpg?v=1499442520"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-13796-3.jpg?v=1499442520","options":["Title"],"media":[{"alt":null,"id":355731669085,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-13796-3.jpg?v=1499442520"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-13796-3.jpg?v=1499442520","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. S. Allen \u003cbr\u003eISBN 978-0-470-13796-3 \u003cbr\u003e\u003cbr\u003eHardcover\u003cbr\u003e689 pages\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nCovering materials, mechanisms, processes, properties, developments, and applications of photochemistry and photophysics in polymers, Handbook of Photochemistry and Photophysics of Polymeric Materials provides the fundamentals and applications of polymer photochemistry and photophysics in one accessible source. For each category, the fundamentals of the materials are presented alongside important developments and particular applications in the field. This book is a useful and practical resource for all researchers and graduate students working on polymeric materials either prepared by or involved in photochemistry and photophysics.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNorman S. Allen, PhD, DSc, is Professor and Chair of Applied Chemistry at Manchester Metropolitan University. Professor Allen has published some 600 papers, articles, books, and book chapters. He is the founder and a member of the editorial board of the journal Dyes and Pigments. He is also founder of the journal Polymer Photochemistry and is on the editorial board of Journal of Vinyl and Additive Technology and Polymer Degradation and Stability. Professor Allen is also Editor in Chief of the Open Materials Science Journal. From 1978–2007 he was the specialist reporter for the section on \"Polymer Photochemistry\" in the Royal Society of Chemistry's Photochemistry series."}
Handbook of Plastic Films
$190.00
{"id":11242219076,"title":"Handbook of Plastic Films","handle":"978-1-85957-338-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. E. Abdel-Bary \u003cbr\u003eISBN 978-1-85957-338-9 \u003cbr\u003e\u003cbr\u003epages 404\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastic films are high-performance materials which play an essential part in modern life. Plastic films are mostly used in packaging applications but as will be seen from this book they are also used in the agricultural, medical and engineering fields. The plastics films industry uses state-of-the-art manufacturing processes and is continuously seeking out new technologies to improve its performance. \u003cbr\u003e\u003cbr\u003eThe understanding of the nature of plastic films, their production techniques, applications and their characterisation is essential for producing new types of plastic films. This handbook has been written to discuss the production and main uses of plastic films. \u003cbr\u003e\u003cbr\u003eChapter 1: Technology of Polyolefin Film Production, deals with the various types of polyolefins and their suitability for film manufacture. \u003cbr\u003e\u003cbr\u003eChapter 2: Processing of Polyethylene Films, the main parameters influencing resin basic properties are described. \u003cbr\u003e\u003cbr\u003eChapter 3: Processing Conditions and Durability of Polypropylene Films, details the structure, synthesis and film processing of polypropylene. \u003cbr\u003e\u003cbr\u003eChapter 4: Solubility of Additives in Polymers, deals with different aspects of additives solubility in polymers in relation to the polymer degradation and stabilisation. \u003cbr\u003e\u003cbr\u003eChapter 5: Polyvinyl Chloride: Degradation and Stabilisation, covers the stability of polyvinyl chloride (PVC) films during procesing and service. \u003cbr\u003e\u003cbr\u003eChapter 6: Ecological Issues of Polymer Flame Retardancy, discusses flame retardants, which as special additives have an important role in saving lives. These flame retardant system basically inhibit or even suppress the combustion process by chemical or physical action in the gas or condensed phase.\u003cbr\u003e\u003cbr\u003eChapter 7: Interaction of Polymers with Nitrogen Oxides in Polluted Atmospheres, covers thermal and photochemical oxidation of polymers under the influence of the aggressive, polluting atmospheric gases.\u003cbr\u003e\u003cbr\u003eChapter 8: Modifications of Plastic Films, discusses the modifications of plastic films required to improve their mechanical or physical properties to meet the requirements of certain applications. \u003cbr\u003e\u003cbr\u003eChapter 9: Applications of Plastic Films in Packaging, deals with applications of plastic films in packaging. \u003cbr\u003e\u003cbr\u003eChapter 10: Applications of Plastic Films in Agriculture, deals with the application of plastic films in agriculture. \u003cbr\u003e\u003cbr\u003eChapter 11: Physicochemical Criteria for Estimating the Efficiency of Burn Dressings, deals with the principal medical treatment of burns using dressings made with a polymeric layer or layers. \u003cbr\u003e\u003cbr\u003eChapter 12: Testing of Plastic Films, covers the most common test methods generally used for plastic films. The requirements necessary for the test methods are summarised. \u003cbr\u003e\u003cbr\u003eChapter 13: Recycling of Plastic Waste, covers the problem of plastic films recycling Different types of recycling are discussed and recycling of some selected types of films are discussed. This book will be invaluable to anyone who is already working with plastic films or to anyone who is considering working with them in the future.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Technology of Polyolefin Film Production\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Structures of the Polyolefins\u003cbr\u003e1.2.1 Low-Density Polyethylene (LDPE\u003cbr\u003e1.2.2 High-Density Polyethylene (HDPE,MDPE,UHMWPE\u003cbr\u003e1.2.3 Linear Low-Density Polyethylene (LLDPE\u003cbr\u003e1.2.4 Very-and Ultra-Low-Density Polyethylene (VLDPE,ULDPE\u003cbr\u003e1.2.5 Polypropylene (PP\u003cbr\u003e1.2.6 Polypropylene Copolymers\u003cbr\u003e1.3 Morphology of Polyolefin Films\u003cbr\u003e1.4 Rheological Characterisation of the Polyolefins\u003cbr\u003e1.4.1 High-Density Polyethylene\u003cbr\u003e1.4.2 Linear Low-Density Polyethylene\u003cbr\u003e1.4.3 Very-and Ultra-Low-Density Polyethylene\u003cbr\u003e1.4.4 Low-Density Polyethylene,Long Branches\u003cbr\u003e1.4.5 Polypropylene\u003cbr\u003e1.5 Blown Film Production (Tubular Extrusion\u003cbr\u003e1.5.1 Extruder Characteristics\u003cbr\u003e1.5.2 Screw Design\u003cbr\u003e1.5.3 Frost-line and Blow Ratio\u003cbr\u003e1.6 Cast Film Production\u003cbr\u003e1.6.1 Extrusion Conditions\u003cbr\u003e1.6.2 Calendering Finishing\u003cbr\u003e1.6.3 Extrusion Coating\u003cbr\u003e1.7 Orientation of the Film\u003cbr\u003e1.7.1 Orientation During Blowing\u003cbr\u003e1.7.2 Orientation by Drawing\u003cbr\u003e1.7.3 Biaxial Orientation (Biaxially Oriented PP,BOPP)\u003cbr\u003e1.8 Surface Properties\u003cbr\u003e1.8.1 Gloss\u003cbr\u003e1.8.2 Haze\u003cbr\u003e1.8.3 Surface Energy\u003cbr\u003e1.8.4 Slip\u003cbr\u003e1.8.5 Blocking\u003cbr\u003e1.9 Surface Modification\u003cbr\u003e1.9.1 Corona Discharge\u003cbr\u003e1.9.2 Antiblocking\u003cbr\u003e1.9.3 Slip Additives\u003cbr\u003e1.9.4 Lubricants\u003cbr\u003e1.9.5 Antistatic Agents\u003cbr\u003e1.10 Internal Additives\u003cbr\u003e1.10.1 Antioxidants\u003cbr\u003e1.10.2 Ultraviolet Absorbers\u003cbr\u003e1.11 Mechanical Properties\u003cbr\u003e1.11.1 Tensile Properties\u003cbr\u003e1.11.2 Impact Properties\u003cbr\u003e1.11.3 Dynamic Mechanical Properties\u003cbr\u003e1.11.4 Dielectric Properties\u003cbr\u003e1.12 Microscopic Examination\u003cbr\u003e1.12.1 Optical – Polarised Light Effect with Strain\u003cbr\u003e1.12.2 Scanning Electron Microscopy (SEM)– Etching\u003cbr\u003e1.12.3 Atomic Force Microscopy (AFM)\u003cbr\u003e1.13 Thermal Analysis\u003cbr\u003e1.13.1 Differential Scanning Calorimetry (DSC)\u003cbr\u003e1.13.2 Temperature-Modulated DSC (TMDSC)\u003cbr\u003e1.14 Infrared Spectroscopy\u003cbr\u003e1.14.1 Characterisation\u003cbr\u003e1.14.2 Composition Analysis of Blends and Laminates\u003cbr\u003e1.14.3 Surface Analysis\u003cbr\u003e1.14.4 Other Properties\u003cbr\u003e1.15 Applications\u003cbr\u003e1.15.1 Packaging\u003cbr\u003e1.15.2 Laminated Films\u003cbr\u003e1.15.3 Coextruded Films\u003cbr\u003e1.15.4 Heat Sealing\u003cbr\u003e1.15.5 Agriculture\u003cbr\u003e1.16 Conclusion \u003cbr\u003e\u003cbr\u003e2. Processing of Polyethylene Films\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Parameters Influencing Resin Basic Properties\u003cbr\u003e2.2.1 Molecular Weight (Molar Mass)and Dispersity Index\u003cbr\u003e2.2.2 Melt Index (Flow Properties\u003cbr\u003e2.2.3 Density\u003cbr\u003e2.2.4 Chain Branching\u003cbr\u003e2.2.5 Intrinsic Viscosity\u003cbr\u003e2.2.6 Melting Point and Heat of Fusion\u003cbr\u003e2.2.7 Melt Properties – Rheology\u003cbr\u003e2.2.8 Elongational Viscosity\u003cbr\u003e2.2.9 Elasticity\u003cbr\u003e2.3 Blown Film Extrusion (Tubular Film\u003cbr\u003e2.3.1 Introduction\u003cbr\u003e2.3.2 Description of the Blown Film Process\u003cbr\u003e2.3.3 Various Ways of Cooling the Film\u003cbr\u003e2.3.4 Extruder Size\u003cbr\u003e2.3.5 Horsepower\u003cbr\u003e2.3.6 Selection of Extrusion Equipment\u003cbr\u003e2.4 Cast Film Extrusion\u003cbr\u003e2.4.1 Description of the Cast Film Process\u003cbr\u003e2.4.2 Effects of Extrusion Variables on Film Characteristics\u003cbr\u003e2.4.3 Effect of Blow-up Ratio on Film Properties\u003cbr\u003e2.5 Processing Troubleshooting Guidelines\u003cbr\u003e2.6 Shrink Film\u003cbr\u003e2.6.1 Shrink Film Types\u003cbr\u003e2.6.2 Shrink Film Properties\u003cbr\u003e2.6.3 The Manufacture of Shrink Film\u003cbr\u003e2.6.4 Shrink Tunnels and Ovens \u003cbr\u003e\u003cbr\u003e3. Processing Conditions and Durability of Polypropylene Films\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Structures and Synthesis\u003cbr\u003e3.3 Film Processing\u003cbr\u003e3.4 Additives\u003cbr\u003e3.5 Ultraviolet Degradation of Polypropylene\u003cbr\u003e3.5.1 UV Degradation Mechanisms\u003cbr\u003e3.5.2 Effect of UV Degradation on Molecular Structure and Properties of PP\u003cbr\u003e3.5.3 Stabilisation of PP by Additives\u003cbr\u003e3.6 Case Studies\u003cbr\u003e3.6.1 Materials and Experimental Procedures\u003cbr\u003e3.6.2 Durability-Microstructure Relationship\u003cbr\u003e3.6.3 Durability-Processing Condition Relationship\u003cbr\u003e3.6.4 Durability-Additive Property Relationship\u003cbr\u003e3.7 Concluding Remarks \u003cbr\u003e\u003cbr\u003e4. Solubility of Additives in Polymers\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Nonuniform Polymer Structure\u003cbr\u003e4.3 Additive Sorption\u003cbr\u003e4.4 Quantitative Data on Additive Solubility in Polymers\u003cbr\u003e4.5 Factors Affecting Additive Solubility\u003cbr\u003e4.5.1 Crystallinity and Supermolecular Structure\u003cbr\u003e4.5.2 Effect of Polymer Orientation\u003cbr\u003e4.5.3 Role of Polymer Polar Groups\u003cbr\u003e4.5.4 Effect of the Second Compound\u003cbr\u003e4.5.5 Features of Dissolution of High Molecular Weight Additives\u003cbr\u003e4.5.6 Effect of Polymer Oxidation\u003cbr\u003e4.6 Solubility of Additives and Their Loss \u003cbr\u003e\u003cbr\u003e5. Polyvinyl Chloride:Degradation and Stabilisation\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Some Factors Affecting the Low Stability of PVC\u003cbr\u003e5.3 Identification of Carbonylallyl Groups\u003cbr\u003e5.4 Principal Ways to Stabilise PVC\u003cbr\u003e5.5 Light Stabilisation of PVC\u003cbr\u003e5.6 Effect of Plasticisers on PVC Degradation in Solution\u003cbr\u003e5.7 ‘Echo ’ Stabilisation of PVC\u003cbr\u003e5.8 Tasks for the Future \u003cbr\u003e\u003cbr\u003e6. Ecological Issues of Polymer Flame Retardants\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Mechanisms of Action\u003cbr\u003e6.3 Halogenated Diphenyl Ethers – Dioxins\u003cbr\u003e6.4 Flame Retardant Systems\u003cbr\u003e6.5 Intumescent Additives\u003cbr\u003e6.6 Polymer Organic Char-Former\u003cbr\u003e6.7 Polymer Nanocomposites \u003cbr\u003e\u003cbr\u003e7. Interaction of Polymers with the Nitrogen Oxides in Polluted Atmospheres\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Interaction of Nitrogen Dioxide with Polymers\u003cbr\u003e7.2.1 Vinyl Polymers:PE,PP,PS,PMMA,PAN,PVC and PVF\u003cbr\u003e7.2.2 Non-Saturated Polymers\u003cbr\u003e7.2.3 Polyamides,Polyurethanes,Polyamidoimides\u003cbr\u003e7.3 Reaction of Nitric Oxide with Polymers\u003cbr\u003e7.4 Conclusion \u003cbr\u003e\u003cbr\u003e8. Modifications of Plastic Films\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Modification of Mechanical Properties\u003cbr\u003e8.2.1 Orientation\u003cbr\u003e8.2.2 Crystallisation\u003cbr\u003e8.2.3 Crosslinking\u003cbr\u003e8.3 Chemical Modifications\u003cbr\u003e8.3.1 Fluorination\u003cbr\u003e8.3.2 Chlorination\u003cbr\u003e8.3.3 Bromination\u003cbr\u003e8.3.4 Sulfonation\u003cbr\u003e8.3.5 Chemical Etching\u003cbr\u003e8.3.6 Grafting\u003cbr\u003e8.4 Physical Methods Used for Surface Modification\u003cbr\u003e8.4.1 Plasma Treatment\u003cbr\u003e8.4.2 Corona Treatment\u003cbr\u003e8.5 Characterisation\u003cbr\u003e8.5.1 Gravimetric Method\u003cbr\u003e8.5.2 Thermal Analyses\u003cbr\u003e8.5.3 Scanning Electron Microscopy\u003cbr\u003e8.5.4 Swelling Measurements\u003cbr\u003e8.5.5 Molecular Weight and Molecular Weight Distribution\u003cbr\u003e8.5.6 Dielectric Relaxation\u003cbr\u003e8.5.7 Surface Properties\u003cbr\u003e8.5.8 Spectroscopic Analysis\u003cbr\u003e8.5.9 Electron Spectroscopy for Chemical Analysis (ESCA) or X-Ray Photoelectron Spectroscopy (XPS)\u003cbr\u003e8.6 Applications \u003cbr\u003e\u003cbr\u003e9.Applications of Plastic Films in Packaging\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Packaging Functions\u003cbr\u003e9.3 Flexible Package Forms\u003cbr\u003e9.3.1 Wraps\u003cbr\u003e9.3.2 Bags,Sacks and Pouches\u003cbr\u003e9.3.3 Pouch Production\u003cbr\u003e9.3.4 Dispensing and Reclosure Features\u003cbr\u003e9.4 Heat-Sealing\u003cbr\u003e9.5 Other Uses of Packaging Films\u003cbr\u003e9.6 Major Packaging Films\u003cbr\u003e9.6.1 Low-Density Polyethylene (LDPE)and Linear Low-Density Polyethylene (LLDPE)\u003cbr\u003e9.6.2 High-Density Polyethylene (HDPE)\u003cbr\u003e9.6.3 Polypropylene (PP)\u003cbr\u003e9.6.4 Polyvinyl Chloride (PVC)\u003cbr\u003e9.6.5 Polyethylene Terephthalate (PET)\u003cbr\u003e9.6.6 Polyvinylidene Chloride (PVDC)\u003cbr\u003e9.6.7 Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e9.6.8 Polyvinyl Alcohol (PVOH)\u003cbr\u003e9.6.9 Ethylene-Vinyl Alcohol (EVOH)\u003cbr\u003e9.6.10 Polyamide (Nylon)\u003cbr\u003e9.6.11 Ethylene-Vinyl Acetate (EVA)and Acid Copolymer Films\u003cbr\u003e9.6.12 Ionomers\u003cbr\u003e9.6.13 Other Plastics\u003cbr\u003e9.7 Multilayer Plastic Films\u003cbr\u003e9.7.1 Coating\u003cbr\u003e9.7.2 Lamination\u003cbr\u003e9.7.3 Coextrusion\u003cbr\u003e9.7.4 Metallisation\u003cbr\u003e9.7.5 Silicon Oxide Coating\u003cbr\u003e9.7.6 Other Inorganic Barrier Coatings\u003cbr\u003e9.8 Surface Treatment\u003cbr\u003e9.9 Static Discharge\u003cbr\u003e9.10 Printing\u003cbr\u003e9.11 Barriers and Permeation\u003cbr\u003e9.12 Environmental Issues \u003cbr\u003e\u003cbr\u003e10. Applications of Plastic Films in Agriculture\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Production of Plastic Films\u003cbr\u003e10.3 Characteristics of Plastic Films Used in Agriculture\u003cbr\u003e10.4 Stability of Greenhouse Films to Solar Irradiation\u003cbr\u003e10.4.1 Ultraviolet Stabilisers\u003cbr\u003e10.4.2 Requirements for Stabiliser Efficiency\u003cbr\u003e10.4.3 Evaluation of Laboratory and Outdoor Photooxidation\u003cbr\u003e10.5 Other Factors Affecting the Stability of Greenhouse Films\u003cbr\u003e10.5.1 Temperature\u003cbr\u003e10.5.2 Humidity\u003cbr\u003e10.5.3 Wind\u003cbr\u003e10.5.4 Fog Formation\u003cbr\u003e10.5.5 Environmental Pollution\u003cbr\u003e10.5.6 Effects of Pesticides\u003cbr\u003e10.6 Ageing Resistance of Greenhouse Films\u003cbr\u003e10.6.1 Measurement of Ageing Factors\u003cbr\u003e10.6.2 Changes in Chemical Structure\u003cbr\u003e10.7 Recycling of Plastic Films in Agriculture\u003cbr\u003e10.7.1 Introduction\u003cbr\u003e10.7.2 Contamination by the Environment \u003cbr\u003e\u003cbr\u003e11. Physicochemical Criteria for Estimating the Efficiency of Burn Dressings\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Modern Surgical Burn Dressings\u003cbr\u003e11.2.1 Dressings Based on Materials of Animal Origin\u003cbr\u003e11.2.2 Dressings Based on Synthetic Materials\u003cbr\u003e11.2.3 Dressings Based on Materials of Vegetable Origin\u003cbr\u003e11.3 Selection of the Properties of Tested Burn Dressings\u003cbr\u003e11.3.1 Sorption-Diffusion Properties\u003cbr\u003e11.3.2 Adhesive Properties\u003cbr\u003e11.3.3 Mechanical Properties\u003cbr\u003e11.4 Methods of Investigation of Physicochemical Properties of Burn Dressings\u003cbr\u003e11.4.1 Determination of Material Porosity\u003cbr\u003e11.4.2 Determination of Size and Number of Pores\u003cbr\u003e11.4.3 Estimation of Surface Energy at Material-Medium Interface\u003cbr\u003e11.4.4 Determination of Sorptional Ability of Materials\u003cbr\u003e11.4.5 Determination of Air Penetrability of Burn Dressings\u003cbr\u003e11.4.6 Determination of Adhesion of Burn Dressings\u003cbr\u003e11.4.7 Determination of Vapour Penetrability of Burn Dressings\u003cbr\u003e11.5 Results and Discussion\u003cbr\u003e11.5.1 Determination of Sorption Ability of Burn Dressings\u003cbr\u003e11.5.2 Kinetics of the Sorption of Liquid Media by Burn Dressings\u003cbr\u003e11.5.3 Determination of Vapour Penetrability of Burn Dressings\u003cbr\u003e11.5.4 Determination of the Air Penetrability of Burn Dressings\u003cbr\u003e11.5.5 Determination of Adhesion of Burn Dressings\u003cbr\u003e11.6 The Model of Action of a Burn Dressing\u003cbr\u003e11.6.1 Evaporation of Water from the Dressing Surface\u003cbr\u003e11.6.2 Sorption of Fluid by Burn Dressing from Bulk Containing a Definite Amount of Fluid\u003cbr\u003e11.6.3 Mass Transfer of Water from Wound to Surroundings\u003cbr\u003e11.7 Criteria for the Efficiency of First-Aid Burn Dressings\u003cbr\u003e11.7.1 Requirements of a First-Aid Burn Dressing\u003cbr\u003e11.7.2 Characteristics of First-Aid Burn Dressings\u003cbr\u003e11.8 Conclusion P\u003cbr\u003e\u003cbr\u003e12. Testing of Plastic Films\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 Requirements for Test Methods\u003cbr\u003e12.2.1 List of Requirements\u003cbr\u003e12.2.2 Interpretation of Test Results\u003cbr\u003e12.3 Some Properties of Plastic Films\u003cbr\u003e12.3.1 Dimensions\u003cbr\u003e12.3.2 Conditioning the Samples\u003cbr\u003e12.4 Mechanical Tests\u003cbr\u003e12.4.1 Tensile Testing (Static)\u003cbr\u003e12.4.2 Impact Resistance\u003cbr\u003e12.4.3 Tear Resistance\u003cbr\u003e12.4.4 Bending Stiffness (Flexural Modulus\u003cbr\u003e12.4.5 Dynamic Mechanical Properties\u003cbr\u003e12.5.2 Indices of Refraction and Yellowness\u003cbr\u003e12.5 Some Physical,Chemical and Physicochemical Tests\u003cbr\u003e12.5.1 Density of Plastics\u003cbr\u003e12.5.3 Transparency\u003cbr\u003e12.5.4 Resistance to Chemicals\u003cbr\u003e12.5.5 Haze and Luminous Transmittance\u003cbr\u003e12.5.6 Ignition,Rate of Burning Characteristics and Oxygen Index (OI)\u003cbr\u003e12.5.7 Static and Kinetic Coefficients of Friction\u003cbr\u003e12.5.8 Specular Gloss of Plastic Films and Solid Plastics\u003cbr\u003e12.5.9 Wetting Tension of PE and PP Films\u003cbr\u003e12.5.10 Unrestrained Linear Thermal Shrinkage of Plastic Films\u003cbr\u003e12.5.11 Shrink Tension and Orientation Release Stress\u003cbr\u003e12.5.12 Rigidity\u003cbr\u003e12.5.13 Blocking Load by Parallel-Plate Method\u003cbr\u003e12.5.14 Determination of LLDPE Composition by 13C NMR\u003cbr\u003e12.5.15 Creep and Creep Rupture\u003cbr\u003e12.5.16 Outdoor Weathering\/Weatherability\u003cbr\u003e12.5.17 Abrasion Resistance\u003cbr\u003e12.5.18 Mar Resistance\u003cbr\u003e12.5.19 Environmental Stress Cracking\u003cbr\u003e12.5.20 Water Vapour Permeability\u003cbr\u003e12.5.21 Oxygen Gas Transmission\u003cbr\u003e12.6 Standard Specifications for Some Plastic Films\u003cbr\u003e12.6.1 Standard Specification for PET Films\u003cbr\u003e12.6.2 Standard Specification for LDPE Films (for General Use and Packaging Applications)\u003cbr\u003e12.6.3 Standard Specification for MDPE and General Grade PE Films (for General Use and Packaging Applications)\u003cbr\u003e12.6.4 Standard Specification for OPP Films\u003cbr\u003e12.6.5 Standard Specification for Crosslinkable Ethylene Plastics \u003cbr\u003e\u003cbr\u003e13. Recycling of Plastic Waste\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Main Approaches to Plastic Recycling\u003cbr\u003e13.2.1 Primary Recycling\u003cbr\u003e13.2.2 Secondary Recycling\u003cbr\u003e13.2.3 Tertiary Recycling\u003cbr\u003e13.2.4 Quaternary Recycling\u003cbr\u003e13.2.5 Conclusion\u003cbr\u003e13.3 Collection and Sorting\u003cbr\u003e13.3.1 Resin Identification\u003cbr\u003e13.3.2 General Aspects of Resin Separation\u003cbr\u003e13.3.3 Resin Separation Based on Density\u003cbr\u003e13.3.4 Resin Separation Based on Colour\u003cbr\u003e13.3.5 Resin Separation Based on Physicochemical Properties\u003cbr\u003e13.4 Recycling of Separated PET Waste\u003cbr\u003e13.5 Recycling of Separated PVC Waste\u003cbr\u003e13.5.1 Chemical Recycling of Mixed Plastic Waste\u003cbr\u003e13.5.2 Chemical Recycling of PVC-Rich Waste\u003cbr\u003e13.6 Recycling of Separated PE Waste\u003cbr\u003e13.6.1 Contamination of PE Waste by Additives\u003cbr\u003e13.6.2 Contamination of PE Waste by Reprocessing\u003cbr\u003e13.7 Recycling of HDPE\u003cbr\u003e13.7.1 Applications for Recycled HDPE\u003cbr\u003e13.7.2 Rubber-Modified Products\u003cbr\u003e13.8 Recycling Using Radiation Technology\u003cbr\u003e13.9 Biodegradable Polymers\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nElsayed Abdel-Bary took his first degree at Cairo University and studied for his PhD at the Institute of Fine Chemical Technology in Moscow. He became a Professor in the Faculty of Science at Mansoura University in 1979 and subsequently founded the University’s Polymer Research Centre. He has published widely on the subject of polymer science, to date he has over 100 papers\/book chapters credited to him. Elsayed is the Editor-in-Chief of Packplast International and Interplas International, the Vice-President of the Egyptian Chemical Society and a member of the IUPAC Academy of Scientific Research and Technology.","published_at":"2017-06-22T21:13:38-04:00","created_at":"2017-06-22T21:13:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","additives","agriculture","antiblocking","antistatics","book","degradation","dressings medical","extrusion","films","flame retardant","HDPE","infrared spectroscopy ","injection moulding","LDPE","lubricants","MDPE","p-applications","packaging","plastic","polyethylene","polypropylene","polyvinyl chloride","PP","properties","PVC","recycling","slip agents","testing","thermal analysis","UHMWPE"," stabilisation"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378369540,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plastic Films","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-338-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-338-9.jpg?v=1499724562"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-338-9.jpg?v=1499724562","options":["Title"],"media":[{"alt":null,"id":355731701853,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-338-9.jpg?v=1499724562"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-338-9.jpg?v=1499724562","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. E. Abdel-Bary \u003cbr\u003eISBN 978-1-85957-338-9 \u003cbr\u003e\u003cbr\u003epages 404\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPlastic films are high-performance materials which play an essential part in modern life. Plastic films are mostly used in packaging applications but as will be seen from this book they are also used in the agricultural, medical and engineering fields. The plastics films industry uses state-of-the-art manufacturing processes and is continuously seeking out new technologies to improve its performance. \u003cbr\u003e\u003cbr\u003eThe understanding of the nature of plastic films, their production techniques, applications and their characterisation is essential for producing new types of plastic films. This handbook has been written to discuss the production and main uses of plastic films. \u003cbr\u003e\u003cbr\u003eChapter 1: Technology of Polyolefin Film Production, deals with the various types of polyolefins and their suitability for film manufacture. \u003cbr\u003e\u003cbr\u003eChapter 2: Processing of Polyethylene Films, the main parameters influencing resin basic properties are described. \u003cbr\u003e\u003cbr\u003eChapter 3: Processing Conditions and Durability of Polypropylene Films, details the structure, synthesis and film processing of polypropylene. \u003cbr\u003e\u003cbr\u003eChapter 4: Solubility of Additives in Polymers, deals with different aspects of additives solubility in polymers in relation to the polymer degradation and stabilisation. \u003cbr\u003e\u003cbr\u003eChapter 5: Polyvinyl Chloride: Degradation and Stabilisation, covers the stability of polyvinyl chloride (PVC) films during procesing and service. \u003cbr\u003e\u003cbr\u003eChapter 6: Ecological Issues of Polymer Flame Retardancy, discusses flame retardants, which as special additives have an important role in saving lives. These flame retardant system basically inhibit or even suppress the combustion process by chemical or physical action in the gas or condensed phase.\u003cbr\u003e\u003cbr\u003eChapter 7: Interaction of Polymers with Nitrogen Oxides in Polluted Atmospheres, covers thermal and photochemical oxidation of polymers under the influence of the aggressive, polluting atmospheric gases.\u003cbr\u003e\u003cbr\u003eChapter 8: Modifications of Plastic Films, discusses the modifications of plastic films required to improve their mechanical or physical properties to meet the requirements of certain applications. \u003cbr\u003e\u003cbr\u003eChapter 9: Applications of Plastic Films in Packaging, deals with applications of plastic films in packaging. \u003cbr\u003e\u003cbr\u003eChapter 10: Applications of Plastic Films in Agriculture, deals with the application of plastic films in agriculture. \u003cbr\u003e\u003cbr\u003eChapter 11: Physicochemical Criteria for Estimating the Efficiency of Burn Dressings, deals with the principal medical treatment of burns using dressings made with a polymeric layer or layers. \u003cbr\u003e\u003cbr\u003eChapter 12: Testing of Plastic Films, covers the most common test methods generally used for plastic films. The requirements necessary for the test methods are summarised. \u003cbr\u003e\u003cbr\u003eChapter 13: Recycling of Plastic Waste, covers the problem of plastic films recycling Different types of recycling are discussed and recycling of some selected types of films are discussed. This book will be invaluable to anyone who is already working with plastic films or to anyone who is considering working with them in the future.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Technology of Polyolefin Film Production\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Structures of the Polyolefins\u003cbr\u003e1.2.1 Low-Density Polyethylene (LDPE\u003cbr\u003e1.2.2 High-Density Polyethylene (HDPE,MDPE,UHMWPE\u003cbr\u003e1.2.3 Linear Low-Density Polyethylene (LLDPE\u003cbr\u003e1.2.4 Very-and Ultra-Low-Density Polyethylene (VLDPE,ULDPE\u003cbr\u003e1.2.5 Polypropylene (PP\u003cbr\u003e1.2.6 Polypropylene Copolymers\u003cbr\u003e1.3 Morphology of Polyolefin Films\u003cbr\u003e1.4 Rheological Characterisation of the Polyolefins\u003cbr\u003e1.4.1 High-Density Polyethylene\u003cbr\u003e1.4.2 Linear Low-Density Polyethylene\u003cbr\u003e1.4.3 Very-and Ultra-Low-Density Polyethylene\u003cbr\u003e1.4.4 Low-Density Polyethylene,Long Branches\u003cbr\u003e1.4.5 Polypropylene\u003cbr\u003e1.5 Blown Film Production (Tubular Extrusion\u003cbr\u003e1.5.1 Extruder Characteristics\u003cbr\u003e1.5.2 Screw Design\u003cbr\u003e1.5.3 Frost-line and Blow Ratio\u003cbr\u003e1.6 Cast Film Production\u003cbr\u003e1.6.1 Extrusion Conditions\u003cbr\u003e1.6.2 Calendering Finishing\u003cbr\u003e1.6.3 Extrusion Coating\u003cbr\u003e1.7 Orientation of the Film\u003cbr\u003e1.7.1 Orientation During Blowing\u003cbr\u003e1.7.2 Orientation by Drawing\u003cbr\u003e1.7.3 Biaxial Orientation (Biaxially Oriented PP,BOPP)\u003cbr\u003e1.8 Surface Properties\u003cbr\u003e1.8.1 Gloss\u003cbr\u003e1.8.2 Haze\u003cbr\u003e1.8.3 Surface Energy\u003cbr\u003e1.8.4 Slip\u003cbr\u003e1.8.5 Blocking\u003cbr\u003e1.9 Surface Modification\u003cbr\u003e1.9.1 Corona Discharge\u003cbr\u003e1.9.2 Antiblocking\u003cbr\u003e1.9.3 Slip Additives\u003cbr\u003e1.9.4 Lubricants\u003cbr\u003e1.9.5 Antistatic Agents\u003cbr\u003e1.10 Internal Additives\u003cbr\u003e1.10.1 Antioxidants\u003cbr\u003e1.10.2 Ultraviolet Absorbers\u003cbr\u003e1.11 Mechanical Properties\u003cbr\u003e1.11.1 Tensile Properties\u003cbr\u003e1.11.2 Impact Properties\u003cbr\u003e1.11.3 Dynamic Mechanical Properties\u003cbr\u003e1.11.4 Dielectric Properties\u003cbr\u003e1.12 Microscopic Examination\u003cbr\u003e1.12.1 Optical – Polarised Light Effect with Strain\u003cbr\u003e1.12.2 Scanning Electron Microscopy (SEM)– Etching\u003cbr\u003e1.12.3 Atomic Force Microscopy (AFM)\u003cbr\u003e1.13 Thermal Analysis\u003cbr\u003e1.13.1 Differential Scanning Calorimetry (DSC)\u003cbr\u003e1.13.2 Temperature-Modulated DSC (TMDSC)\u003cbr\u003e1.14 Infrared Spectroscopy\u003cbr\u003e1.14.1 Characterisation\u003cbr\u003e1.14.2 Composition Analysis of Blends and Laminates\u003cbr\u003e1.14.3 Surface Analysis\u003cbr\u003e1.14.4 Other Properties\u003cbr\u003e1.15 Applications\u003cbr\u003e1.15.1 Packaging\u003cbr\u003e1.15.2 Laminated Films\u003cbr\u003e1.15.3 Coextruded Films\u003cbr\u003e1.15.4 Heat Sealing\u003cbr\u003e1.15.5 Agriculture\u003cbr\u003e1.16 Conclusion \u003cbr\u003e\u003cbr\u003e2. Processing of Polyethylene Films\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Parameters Influencing Resin Basic Properties\u003cbr\u003e2.2.1 Molecular Weight (Molar Mass)and Dispersity Index\u003cbr\u003e2.2.2 Melt Index (Flow Properties\u003cbr\u003e2.2.3 Density\u003cbr\u003e2.2.4 Chain Branching\u003cbr\u003e2.2.5 Intrinsic Viscosity\u003cbr\u003e2.2.6 Melting Point and Heat of Fusion\u003cbr\u003e2.2.7 Melt Properties – Rheology\u003cbr\u003e2.2.8 Elongational Viscosity\u003cbr\u003e2.2.9 Elasticity\u003cbr\u003e2.3 Blown Film Extrusion (Tubular Film\u003cbr\u003e2.3.1 Introduction\u003cbr\u003e2.3.2 Description of the Blown Film Process\u003cbr\u003e2.3.3 Various Ways of Cooling the Film\u003cbr\u003e2.3.4 Extruder Size\u003cbr\u003e2.3.5 Horsepower\u003cbr\u003e2.3.6 Selection of Extrusion Equipment\u003cbr\u003e2.4 Cast Film Extrusion\u003cbr\u003e2.4.1 Description of the Cast Film Process\u003cbr\u003e2.4.2 Effects of Extrusion Variables on Film Characteristics\u003cbr\u003e2.4.3 Effect of Blow-up Ratio on Film Properties\u003cbr\u003e2.5 Processing Troubleshooting Guidelines\u003cbr\u003e2.6 Shrink Film\u003cbr\u003e2.6.1 Shrink Film Types\u003cbr\u003e2.6.2 Shrink Film Properties\u003cbr\u003e2.6.3 The Manufacture of Shrink Film\u003cbr\u003e2.6.4 Shrink Tunnels and Ovens \u003cbr\u003e\u003cbr\u003e3. Processing Conditions and Durability of Polypropylene Films\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Structures and Synthesis\u003cbr\u003e3.3 Film Processing\u003cbr\u003e3.4 Additives\u003cbr\u003e3.5 Ultraviolet Degradation of Polypropylene\u003cbr\u003e3.5.1 UV Degradation Mechanisms\u003cbr\u003e3.5.2 Effect of UV Degradation on Molecular Structure and Properties of PP\u003cbr\u003e3.5.3 Stabilisation of PP by Additives\u003cbr\u003e3.6 Case Studies\u003cbr\u003e3.6.1 Materials and Experimental Procedures\u003cbr\u003e3.6.2 Durability-Microstructure Relationship\u003cbr\u003e3.6.3 Durability-Processing Condition Relationship\u003cbr\u003e3.6.4 Durability-Additive Property Relationship\u003cbr\u003e3.7 Concluding Remarks \u003cbr\u003e\u003cbr\u003e4. Solubility of Additives in Polymers\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Nonuniform Polymer Structure\u003cbr\u003e4.3 Additive Sorption\u003cbr\u003e4.4 Quantitative Data on Additive Solubility in Polymers\u003cbr\u003e4.5 Factors Affecting Additive Solubility\u003cbr\u003e4.5.1 Crystallinity and Supermolecular Structure\u003cbr\u003e4.5.2 Effect of Polymer Orientation\u003cbr\u003e4.5.3 Role of Polymer Polar Groups\u003cbr\u003e4.5.4 Effect of the Second Compound\u003cbr\u003e4.5.5 Features of Dissolution of High Molecular Weight Additives\u003cbr\u003e4.5.6 Effect of Polymer Oxidation\u003cbr\u003e4.6 Solubility of Additives and Their Loss \u003cbr\u003e\u003cbr\u003e5. Polyvinyl Chloride:Degradation and Stabilisation\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Some Factors Affecting the Low Stability of PVC\u003cbr\u003e5.3 Identification of Carbonylallyl Groups\u003cbr\u003e5.4 Principal Ways to Stabilise PVC\u003cbr\u003e5.5 Light Stabilisation of PVC\u003cbr\u003e5.6 Effect of Plasticisers on PVC Degradation in Solution\u003cbr\u003e5.7 ‘Echo ’ Stabilisation of PVC\u003cbr\u003e5.8 Tasks for the Future \u003cbr\u003e\u003cbr\u003e6. Ecological Issues of Polymer Flame Retardants\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Mechanisms of Action\u003cbr\u003e6.3 Halogenated Diphenyl Ethers – Dioxins\u003cbr\u003e6.4 Flame Retardant Systems\u003cbr\u003e6.5 Intumescent Additives\u003cbr\u003e6.6 Polymer Organic Char-Former\u003cbr\u003e6.7 Polymer Nanocomposites \u003cbr\u003e\u003cbr\u003e7. Interaction of Polymers with the Nitrogen Oxides in Polluted Atmospheres\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Interaction of Nitrogen Dioxide with Polymers\u003cbr\u003e7.2.1 Vinyl Polymers:PE,PP,PS,PMMA,PAN,PVC and PVF\u003cbr\u003e7.2.2 Non-Saturated Polymers\u003cbr\u003e7.2.3 Polyamides,Polyurethanes,Polyamidoimides\u003cbr\u003e7.3 Reaction of Nitric Oxide with Polymers\u003cbr\u003e7.4 Conclusion \u003cbr\u003e\u003cbr\u003e8. Modifications of Plastic Films\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Modification of Mechanical Properties\u003cbr\u003e8.2.1 Orientation\u003cbr\u003e8.2.2 Crystallisation\u003cbr\u003e8.2.3 Crosslinking\u003cbr\u003e8.3 Chemical Modifications\u003cbr\u003e8.3.1 Fluorination\u003cbr\u003e8.3.2 Chlorination\u003cbr\u003e8.3.3 Bromination\u003cbr\u003e8.3.4 Sulfonation\u003cbr\u003e8.3.5 Chemical Etching\u003cbr\u003e8.3.6 Grafting\u003cbr\u003e8.4 Physical Methods Used for Surface Modification\u003cbr\u003e8.4.1 Plasma Treatment\u003cbr\u003e8.4.2 Corona Treatment\u003cbr\u003e8.5 Characterisation\u003cbr\u003e8.5.1 Gravimetric Method\u003cbr\u003e8.5.2 Thermal Analyses\u003cbr\u003e8.5.3 Scanning Electron Microscopy\u003cbr\u003e8.5.4 Swelling Measurements\u003cbr\u003e8.5.5 Molecular Weight and Molecular Weight Distribution\u003cbr\u003e8.5.6 Dielectric Relaxation\u003cbr\u003e8.5.7 Surface Properties\u003cbr\u003e8.5.8 Spectroscopic Analysis\u003cbr\u003e8.5.9 Electron Spectroscopy for Chemical Analysis (ESCA) or X-Ray Photoelectron Spectroscopy (XPS)\u003cbr\u003e8.6 Applications \u003cbr\u003e\u003cbr\u003e9.Applications of Plastic Films in Packaging\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Packaging Functions\u003cbr\u003e9.3 Flexible Package Forms\u003cbr\u003e9.3.1 Wraps\u003cbr\u003e9.3.2 Bags,Sacks and Pouches\u003cbr\u003e9.3.3 Pouch Production\u003cbr\u003e9.3.4 Dispensing and Reclosure Features\u003cbr\u003e9.4 Heat-Sealing\u003cbr\u003e9.5 Other Uses of Packaging Films\u003cbr\u003e9.6 Major Packaging Films\u003cbr\u003e9.6.1 Low-Density Polyethylene (LDPE)and Linear Low-Density Polyethylene (LLDPE)\u003cbr\u003e9.6.2 High-Density Polyethylene (HDPE)\u003cbr\u003e9.6.3 Polypropylene (PP)\u003cbr\u003e9.6.4 Polyvinyl Chloride (PVC)\u003cbr\u003e9.6.5 Polyethylene Terephthalate (PET)\u003cbr\u003e9.6.6 Polyvinylidene Chloride (PVDC)\u003cbr\u003e9.6.7 Polychlorotrifluoroethylene (PCTFE)\u003cbr\u003e9.6.8 Polyvinyl Alcohol (PVOH)\u003cbr\u003e9.6.9 Ethylene-Vinyl Alcohol (EVOH)\u003cbr\u003e9.6.10 Polyamide (Nylon)\u003cbr\u003e9.6.11 Ethylene-Vinyl Acetate (EVA)and Acid Copolymer Films\u003cbr\u003e9.6.12 Ionomers\u003cbr\u003e9.6.13 Other Plastics\u003cbr\u003e9.7 Multilayer Plastic Films\u003cbr\u003e9.7.1 Coating\u003cbr\u003e9.7.2 Lamination\u003cbr\u003e9.7.3 Coextrusion\u003cbr\u003e9.7.4 Metallisation\u003cbr\u003e9.7.5 Silicon Oxide Coating\u003cbr\u003e9.7.6 Other Inorganic Barrier Coatings\u003cbr\u003e9.8 Surface Treatment\u003cbr\u003e9.9 Static Discharge\u003cbr\u003e9.10 Printing\u003cbr\u003e9.11 Barriers and Permeation\u003cbr\u003e9.12 Environmental Issues \u003cbr\u003e\u003cbr\u003e10. Applications of Plastic Films in Agriculture\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Production of Plastic Films\u003cbr\u003e10.3 Characteristics of Plastic Films Used in Agriculture\u003cbr\u003e10.4 Stability of Greenhouse Films to Solar Irradiation\u003cbr\u003e10.4.1 Ultraviolet Stabilisers\u003cbr\u003e10.4.2 Requirements for Stabiliser Efficiency\u003cbr\u003e10.4.3 Evaluation of Laboratory and Outdoor Photooxidation\u003cbr\u003e10.5 Other Factors Affecting the Stability of Greenhouse Films\u003cbr\u003e10.5.1 Temperature\u003cbr\u003e10.5.2 Humidity\u003cbr\u003e10.5.3 Wind\u003cbr\u003e10.5.4 Fog Formation\u003cbr\u003e10.5.5 Environmental Pollution\u003cbr\u003e10.5.6 Effects of Pesticides\u003cbr\u003e10.6 Ageing Resistance of Greenhouse Films\u003cbr\u003e10.6.1 Measurement of Ageing Factors\u003cbr\u003e10.6.2 Changes in Chemical Structure\u003cbr\u003e10.7 Recycling of Plastic Films in Agriculture\u003cbr\u003e10.7.1 Introduction\u003cbr\u003e10.7.2 Contamination by the Environment \u003cbr\u003e\u003cbr\u003e11. Physicochemical Criteria for Estimating the Efficiency of Burn Dressings\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Modern Surgical Burn Dressings\u003cbr\u003e11.2.1 Dressings Based on Materials of Animal Origin\u003cbr\u003e11.2.2 Dressings Based on Synthetic Materials\u003cbr\u003e11.2.3 Dressings Based on Materials of Vegetable Origin\u003cbr\u003e11.3 Selection of the Properties of Tested Burn Dressings\u003cbr\u003e11.3.1 Sorption-Diffusion Properties\u003cbr\u003e11.3.2 Adhesive Properties\u003cbr\u003e11.3.3 Mechanical Properties\u003cbr\u003e11.4 Methods of Investigation of Physicochemical Properties of Burn Dressings\u003cbr\u003e11.4.1 Determination of Material Porosity\u003cbr\u003e11.4.2 Determination of Size and Number of Pores\u003cbr\u003e11.4.3 Estimation of Surface Energy at Material-Medium Interface\u003cbr\u003e11.4.4 Determination of Sorptional Ability of Materials\u003cbr\u003e11.4.5 Determination of Air Penetrability of Burn Dressings\u003cbr\u003e11.4.6 Determination of Adhesion of Burn Dressings\u003cbr\u003e11.4.7 Determination of Vapour Penetrability of Burn Dressings\u003cbr\u003e11.5 Results and Discussion\u003cbr\u003e11.5.1 Determination of Sorption Ability of Burn Dressings\u003cbr\u003e11.5.2 Kinetics of the Sorption of Liquid Media by Burn Dressings\u003cbr\u003e11.5.3 Determination of Vapour Penetrability of Burn Dressings\u003cbr\u003e11.5.4 Determination of the Air Penetrability of Burn Dressings\u003cbr\u003e11.5.5 Determination of Adhesion of Burn Dressings\u003cbr\u003e11.6 The Model of Action of a Burn Dressing\u003cbr\u003e11.6.1 Evaporation of Water from the Dressing Surface\u003cbr\u003e11.6.2 Sorption of Fluid by Burn Dressing from Bulk Containing a Definite Amount of Fluid\u003cbr\u003e11.6.3 Mass Transfer of Water from Wound to Surroundings\u003cbr\u003e11.7 Criteria for the Efficiency of First-Aid Burn Dressings\u003cbr\u003e11.7.1 Requirements of a First-Aid Burn Dressing\u003cbr\u003e11.7.2 Characteristics of First-Aid Burn Dressings\u003cbr\u003e11.8 Conclusion P\u003cbr\u003e\u003cbr\u003e12. Testing of Plastic Films\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 Requirements for Test Methods\u003cbr\u003e12.2.1 List of Requirements\u003cbr\u003e12.2.2 Interpretation of Test Results\u003cbr\u003e12.3 Some Properties of Plastic Films\u003cbr\u003e12.3.1 Dimensions\u003cbr\u003e12.3.2 Conditioning the Samples\u003cbr\u003e12.4 Mechanical Tests\u003cbr\u003e12.4.1 Tensile Testing (Static)\u003cbr\u003e12.4.2 Impact Resistance\u003cbr\u003e12.4.3 Tear Resistance\u003cbr\u003e12.4.4 Bending Stiffness (Flexural Modulus\u003cbr\u003e12.4.5 Dynamic Mechanical Properties\u003cbr\u003e12.5.2 Indices of Refraction and Yellowness\u003cbr\u003e12.5 Some Physical,Chemical and Physicochemical Tests\u003cbr\u003e12.5.1 Density of Plastics\u003cbr\u003e12.5.3 Transparency\u003cbr\u003e12.5.4 Resistance to Chemicals\u003cbr\u003e12.5.5 Haze and Luminous Transmittance\u003cbr\u003e12.5.6 Ignition,Rate of Burning Characteristics and Oxygen Index (OI)\u003cbr\u003e12.5.7 Static and Kinetic Coefficients of Friction\u003cbr\u003e12.5.8 Specular Gloss of Plastic Films and Solid Plastics\u003cbr\u003e12.5.9 Wetting Tension of PE and PP Films\u003cbr\u003e12.5.10 Unrestrained Linear Thermal Shrinkage of Plastic Films\u003cbr\u003e12.5.11 Shrink Tension and Orientation Release Stress\u003cbr\u003e12.5.12 Rigidity\u003cbr\u003e12.5.13 Blocking Load by Parallel-Plate Method\u003cbr\u003e12.5.14 Determination of LLDPE Composition by 13C NMR\u003cbr\u003e12.5.15 Creep and Creep Rupture\u003cbr\u003e12.5.16 Outdoor Weathering\/Weatherability\u003cbr\u003e12.5.17 Abrasion Resistance\u003cbr\u003e12.5.18 Mar Resistance\u003cbr\u003e12.5.19 Environmental Stress Cracking\u003cbr\u003e12.5.20 Water Vapour Permeability\u003cbr\u003e12.5.21 Oxygen Gas Transmission\u003cbr\u003e12.6 Standard Specifications for Some Plastic Films\u003cbr\u003e12.6.1 Standard Specification for PET Films\u003cbr\u003e12.6.2 Standard Specification for LDPE Films (for General Use and Packaging Applications)\u003cbr\u003e12.6.3 Standard Specification for MDPE and General Grade PE Films (for General Use and Packaging Applications)\u003cbr\u003e12.6.4 Standard Specification for OPP Films\u003cbr\u003e12.6.5 Standard Specification for Crosslinkable Ethylene Plastics \u003cbr\u003e\u003cbr\u003e13. Recycling of Plastic Waste\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Main Approaches to Plastic Recycling\u003cbr\u003e13.2.1 Primary Recycling\u003cbr\u003e13.2.2 Secondary Recycling\u003cbr\u003e13.2.3 Tertiary Recycling\u003cbr\u003e13.2.4 Quaternary Recycling\u003cbr\u003e13.2.5 Conclusion\u003cbr\u003e13.3 Collection and Sorting\u003cbr\u003e13.3.1 Resin Identification\u003cbr\u003e13.3.2 General Aspects of Resin Separation\u003cbr\u003e13.3.3 Resin Separation Based on Density\u003cbr\u003e13.3.4 Resin Separation Based on Colour\u003cbr\u003e13.3.5 Resin Separation Based on Physicochemical Properties\u003cbr\u003e13.4 Recycling of Separated PET Waste\u003cbr\u003e13.5 Recycling of Separated PVC Waste\u003cbr\u003e13.5.1 Chemical Recycling of Mixed Plastic Waste\u003cbr\u003e13.5.2 Chemical Recycling of PVC-Rich Waste\u003cbr\u003e13.6 Recycling of Separated PE Waste\u003cbr\u003e13.6.1 Contamination of PE Waste by Additives\u003cbr\u003e13.6.2 Contamination of PE Waste by Reprocessing\u003cbr\u003e13.7 Recycling of HDPE\u003cbr\u003e13.7.1 Applications for Recycled HDPE\u003cbr\u003e13.7.2 Rubber-Modified Products\u003cbr\u003e13.8 Recycling Using Radiation Technology\u003cbr\u003e13.9 Biodegradable Polymers\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nElsayed Abdel-Bary took his first degree at Cairo University and studied for his PhD at the Institute of Fine Chemical Technology in Moscow. He became a Professor in the Faculty of Science at Mansoura University in 1979 and subsequently founded the University’s Polymer Research Centre. He has published widely on the subject of polymer science, to date he has over 100 papers\/book chapters credited to him. Elsayed is the Editor-in-Chief of Packplast International and Interplas International, the Vice-President of the Egyptian Chemical Society and a member of the IUPAC Academy of Scientific Research and Technology."}
Handbook of Plastic Jo...
$290.00
{"id":11242232708,"title":"Handbook of Plastic Joining 2nd Edition","handle":"978-0-815515814","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: \u003cbr\u003eISBN 978-0-815515814 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e591 Pages, 480 Illustrations, Hardbound\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis practical guide to plastic joining processes is composed of two parts: processes and materials. The processing part is divided into 15 chapters each discussing different joining technique. The joining methods discussed include: heated tool, hot gas, vibration, spin, ultrasonic, induction, radio frequency, microwave, resistance, extrusion, electrofusion, infrared, and laser welding techniques, mechanical fastening and chemical bonding. \u003cbr\u003e\u003cbr\u003eSystematic approach was taken to discuss each method. Typically, the following subjects are discussed for each method: process, processing parameters, materials, weld microstructure, effects of aging on weld strength, equipment, advantages and disadvantages, and applications. This gives concise but thorough evaluation of the potentials of each method and includes required knowledge to use this information for practical purposes. \u003cbr\u003e\u003cbr\u003eNumerous illustrations provide visual assistance in understanding the method and required equipment. Many practical observations are included under application and advantages and disadvantages which assist in method and parameters selection for the successful operation and process. \u003cbr\u003e\u003cbr\u003eThe second part of the book is divided according to the generic names of polymers used in joining techniques. This part includes 25 generic names of polymers, each containing information on one or more polymers or polymer mixtures. The polymers involved are grouped within thermoplastics, thermoplastic elastomers, thermosets, and rubbers. In total, there are 84 chapters devoted to the individual polymers. \u003cbr\u003e\u003cbr\u003eEach chapter on a particular polymer contains information organized according to different joining methods used for this polymer and typical commercial materials which belong to this polymer group. \u003cbr\u003e\u003cbr\u003eInformation given for each material covers available test data, observations from practical use of different methods, for a chosen commercial material, and a general research information on process and product. Suitable surface treatment methods and cleaners are also discussed. If technical drawings may assist users in understanding the details of the processes, they are provided. \u003cbr\u003e\u003cbr\u003eThe book contains, in addition, a glossary of important terms, references, figures, subject indices as well as supplier's directory. \u003cbr\u003e\u003cbr\u003eIt is safe to conclude that the book contains data and know-how information required for successful process application. Both current users and those who consider to enter the field of plastics joining will find this book invaluable in their practice. Considering that most of the plastics must be processed by one of these methods to produce the final goods, this book is needed for all who work in polymer industry, regardless of the focus of their activities. Production of a good final product requires concerted effort of polymer research chemist, plastic designer and compounder, part designer, manufacturing engineers and they all will benefit from frequent consulting this comprehensive resource.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJoining Methods Include:\u003c\/strong\u003e\u003cbr\u003e Adhesive Bonding\u003cbr\u003e Electrofusion Bonding\u003cbr\u003e Friction Welding\u003cbr\u003e Heated Tool Welding\u003cbr\u003e High Frequency Welding\u003cbr\u003e Hot Gas Welding\u003cbr\u003e Induction Welding\u003cbr\u003e Infrared Welding\u003cbr\u003e Laser Welding\u003cbr\u003e Mechanical Fastening\u003cbr\u003eOther Features Include\u003cbr\u003e Joint Process Selection\u003cbr\u003e Applications\u003cbr\u003e Joint Design\u003cbr\u003e Welding Process Optimization\u003cbr\u003e Mistakes to Avoid\u003cbr\u003eGlossary of Terms\u003cbr\u003eSource Documentation\u003cbr\u003eIndices\u003c\/p\u003e","published_at":"2017-06-22T21:14:21-04:00","created_at":"2017-06-22T21:14:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","chemical bonding","electrofusion","extrusion","heated tool","hot gas","induction","infrared","laser welding techniques","mechanical fastening","microwave","p-applications","polymer","radio frequency","resistance","spin","ultrasonic","vibration"],"price":29000,"price_min":29000,"price_max":29000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412996,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plastic Joining 2nd Edition","public_title":null,"options":["Default Title"],"price":29000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-815515814","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-815515814.jpg?v=1499442793"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-815515814.jpg?v=1499442793","options":["Title"],"media":[{"alt":null,"id":355733438557,"position":1,"preview_image":{"aspect_ratio":0.774,"height":499,"width":386,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-815515814.jpg?v=1499442793"},"aspect_ratio":0.774,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-815515814.jpg?v=1499442793","width":386}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: \u003cbr\u003eISBN 978-0-815515814 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e591 Pages, 480 Illustrations, Hardbound\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis practical guide to plastic joining processes is composed of two parts: processes and materials. The processing part is divided into 15 chapters each discussing different joining technique. The joining methods discussed include: heated tool, hot gas, vibration, spin, ultrasonic, induction, radio frequency, microwave, resistance, extrusion, electrofusion, infrared, and laser welding techniques, mechanical fastening and chemical bonding. \u003cbr\u003e\u003cbr\u003eSystematic approach was taken to discuss each method. Typically, the following subjects are discussed for each method: process, processing parameters, materials, weld microstructure, effects of aging on weld strength, equipment, advantages and disadvantages, and applications. This gives concise but thorough evaluation of the potentials of each method and includes required knowledge to use this information for practical purposes. \u003cbr\u003e\u003cbr\u003eNumerous illustrations provide visual assistance in understanding the method and required equipment. Many practical observations are included under application and advantages and disadvantages which assist in method and parameters selection for the successful operation and process. \u003cbr\u003e\u003cbr\u003eThe second part of the book is divided according to the generic names of polymers used in joining techniques. This part includes 25 generic names of polymers, each containing information on one or more polymers or polymer mixtures. The polymers involved are grouped within thermoplastics, thermoplastic elastomers, thermosets, and rubbers. In total, there are 84 chapters devoted to the individual polymers. \u003cbr\u003e\u003cbr\u003eEach chapter on a particular polymer contains information organized according to different joining methods used for this polymer and typical commercial materials which belong to this polymer group. \u003cbr\u003e\u003cbr\u003eInformation given for each material covers available test data, observations from practical use of different methods, for a chosen commercial material, and a general research information on process and product. Suitable surface treatment methods and cleaners are also discussed. If technical drawings may assist users in understanding the details of the processes, they are provided. \u003cbr\u003e\u003cbr\u003eThe book contains, in addition, a glossary of important terms, references, figures, subject indices as well as supplier's directory. \u003cbr\u003e\u003cbr\u003eIt is safe to conclude that the book contains data and know-how information required for successful process application. Both current users and those who consider to enter the field of plastics joining will find this book invaluable in their practice. Considering that most of the plastics must be processed by one of these methods to produce the final goods, this book is needed for all who work in polymer industry, regardless of the focus of their activities. Production of a good final product requires concerted effort of polymer research chemist, plastic designer and compounder, part designer, manufacturing engineers and they all will benefit from frequent consulting this comprehensive resource.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eJoining Methods Include:\u003c\/strong\u003e\u003cbr\u003e Adhesive Bonding\u003cbr\u003e Electrofusion Bonding\u003cbr\u003e Friction Welding\u003cbr\u003e Heated Tool Welding\u003cbr\u003e High Frequency Welding\u003cbr\u003e Hot Gas Welding\u003cbr\u003e Induction Welding\u003cbr\u003e Infrared Welding\u003cbr\u003e Laser Welding\u003cbr\u003e Mechanical Fastening\u003cbr\u003eOther Features Include\u003cbr\u003e Joint Process Selection\u003cbr\u003e Applications\u003cbr\u003e Joint Design\u003cbr\u003e Welding Process Optimization\u003cbr\u003e Mistakes to Avoid\u003cbr\u003eGlossary of Terms\u003cbr\u003eSource Documentation\u003cbr\u003eIndices\u003c\/p\u003e"}
Handbook of Plastic Pr...
$180.00
{"id":11242212612,"title":"Handbook of Plastic Processes","handle":"978-0-471-66255-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Charles A. Harper \u003cbr\u003eISBN 978-0-471-66255-6 \u003cbr\u003e\u003cbr\u003epages 763, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn outstanding and thorough presentation of the complete field of plastics processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHandbook of Plastic Processes\u003c\/strong\u003e is the only comprehensive reference covering not just one, but all major processes used to produce plastic products-helping designers and manufacturers in selecting the best process for a given product while enabling users to better understand the performance characteristics of each process. \u003cbr\u003e\u003cbr\u003eThe authors, all experts in their fields, explain in clear, concise, and practical terms the advantages, uses, and limitations of each process, as well as the most modern and up-to-date technologies available in their application. \u003cbr\u003e\u003cbr\u003eCoverage includes chapters on: \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eInjection molding\u003c\/li\u003e\n\u003cli\u003eCompression and transfer molding\u003c\/li\u003e\n\u003cli\u003eSheet extrusion\u003c\/li\u003e\n\u003cli\u003eBlow molding\u003c\/li\u003e\n\u003cli\u003eCalendering\u003c\/li\u003e\n\u003cli\u003eFoam processing\u003c\/li\u003e\n\u003cli\u003eReinforced plastics processing\u003c\/li\u003e\n\u003cli\u003eLiquid resin processing\u003c\/li\u003e\n\u003cli\u003eRotational molding\u003c\/li\u003e\n\u003cli\u003eThermoforming\u003c\/li\u003e\n\u003cli\u003eReaction injection molding\u003c\/li\u003e\n\u003cli\u003eCompounding, mixing, and blending\u003c\/li\u003e\n\u003cli\u003eMachining and mechanical fabrication\u003c\/li\u003e\n\u003cli\u003eAssembly, finishing, and decorating\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eEach chapter details a particular process, its variations, the equipment used, the range of materials utilized in the process, and its advantages and limitations. \u003cbr\u003e\u003cbr\u003eBecause of its increasing impact on the industry, the editor has also added a chapter on nanotechnology in plastics processing.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003e\u003cbr\u003e1. Injection Molding (Peter F. Grelle) \u003cbr\u003e\u003cbr\u003e2. Assisted Injection Molding (Steve Ham) \u003cbr\u003e\u003cbr\u003e3. Sheet Extrusion (Dana R. Hanson) \u003cbr\u003e\u003cbr\u003e4. Thermoforming (Scott Macdonald) \u003cbr\u003e\u003cbr\u003e5. Blow Molding (Norman C. Lee) \u003cbr\u003e\u003cbr\u003e6. Rotational Molding (Paul Nugent) \u003cbr\u003e\u003cbr\u003e7. Compression and Transfer Molding (John L. Hull) \u003cbr\u003e\u003cbr\u003e8. Composite Processes (Dale A. Grove) \u003cbr\u003e\u003cbr\u003e9. Liquid Resin Processes (John L. Hull and Steven J. Adamson) \u003cbr\u003e\u003cbr\u003e10. Assembly (Edward M. Petrie). \u003cbr\u003e\u003cbr\u003e11. Decorating and Finishing (Edward M. Petrie and John L. Hull). \u003cbr\u003e\u003cbr\u003e12. Polymer Nanocomposite Processing (Nandika Anne D'Souza, Jo Ann Ratto, Ajit Ranade, Will Strauss and Laxmi Sahu). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCHARLES A. HARPER is President of Technology Seminars, Inc., an organization that has provided educational seminars to the industry for over twenty years. An engineering graduate of The Johns Hopkins University, where he has also served as an adjunct professor, Mr. Harper has held leadership roles in many professional societies and organizations and is a Fellow of the Society for the Advancement of Materials and Process Engineering. He is the author or editor of numerous books in the plastics and materials fields.","published_at":"2017-06-22T21:13:16-04:00","created_at":"2017-06-22T21:13:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","and blending Machining and mechanical fabrication Assembly","and decorating Each chapter details a particular process","and its advantages and limitations. Because of its increasing impact on the industry","blending Thermoforming Reaction injection molding Compounding","blow molding","book","calendering","compounding","compression","extrusion","finishing","foam","injection molding","its variations","liquid resin","mixing","moulding","p-processing","polymer","reinforced plastics","rotational molding","sheet","the editor has also added a chapter on nanotechnology in plastics processing.","the equipment used","the range of materials utilized in the process","transfer molding"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378342980,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plastic Processes","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":-5,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-471-66255-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-66255-6.jpg?v=1499470842"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-66255-6.jpg?v=1499470842","options":["Title"],"media":[{"alt":null,"id":356334207069,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-66255-6.jpg?v=1499470842"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-471-66255-6.jpg?v=1499470842","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Charles A. Harper \u003cbr\u003eISBN 978-0-471-66255-6 \u003cbr\u003e\u003cbr\u003epages 763, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAn outstanding and thorough presentation of the complete field of plastics processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHandbook of Plastic Processes\u003c\/strong\u003e is the only comprehensive reference covering not just one, but all major processes used to produce plastic products-helping designers and manufacturers in selecting the best process for a given product while enabling users to better understand the performance characteristics of each process. \u003cbr\u003e\u003cbr\u003eThe authors, all experts in their fields, explain in clear, concise, and practical terms the advantages, uses, and limitations of each process, as well as the most modern and up-to-date technologies available in their application. \u003cbr\u003e\u003cbr\u003eCoverage includes chapters on: \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eInjection molding\u003c\/li\u003e\n\u003cli\u003eCompression and transfer molding\u003c\/li\u003e\n\u003cli\u003eSheet extrusion\u003c\/li\u003e\n\u003cli\u003eBlow molding\u003c\/li\u003e\n\u003cli\u003eCalendering\u003c\/li\u003e\n\u003cli\u003eFoam processing\u003c\/li\u003e\n\u003cli\u003eReinforced plastics processing\u003c\/li\u003e\n\u003cli\u003eLiquid resin processing\u003c\/li\u003e\n\u003cli\u003eRotational molding\u003c\/li\u003e\n\u003cli\u003eThermoforming\u003c\/li\u003e\n\u003cli\u003eReaction injection molding\u003c\/li\u003e\n\u003cli\u003eCompounding, mixing, and blending\u003c\/li\u003e\n\u003cli\u003eMachining and mechanical fabrication\u003c\/li\u003e\n\u003cli\u003eAssembly, finishing, and decorating\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003eEach chapter details a particular process, its variations, the equipment used, the range of materials utilized in the process, and its advantages and limitations. \u003cbr\u003e\u003cbr\u003eBecause of its increasing impact on the industry, the editor has also added a chapter on nanotechnology in plastics processing.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface. \u003cbr\u003e\u003cbr\u003e1. Injection Molding (Peter F. Grelle) \u003cbr\u003e\u003cbr\u003e2. Assisted Injection Molding (Steve Ham) \u003cbr\u003e\u003cbr\u003e3. Sheet Extrusion (Dana R. Hanson) \u003cbr\u003e\u003cbr\u003e4. Thermoforming (Scott Macdonald) \u003cbr\u003e\u003cbr\u003e5. Blow Molding (Norman C. Lee) \u003cbr\u003e\u003cbr\u003e6. Rotational Molding (Paul Nugent) \u003cbr\u003e\u003cbr\u003e7. Compression and Transfer Molding (John L. Hull) \u003cbr\u003e\u003cbr\u003e8. Composite Processes (Dale A. Grove) \u003cbr\u003e\u003cbr\u003e9. Liquid Resin Processes (John L. Hull and Steven J. Adamson) \u003cbr\u003e\u003cbr\u003e10. Assembly (Edward M. Petrie). \u003cbr\u003e\u003cbr\u003e11. Decorating and Finishing (Edward M. Petrie and John L. Hull). \u003cbr\u003e\u003cbr\u003e12. Polymer Nanocomposite Processing (Nandika Anne D'Souza, Jo Ann Ratto, Ajit Ranade, Will Strauss and Laxmi Sahu). \u003cbr\u003e\u003cbr\u003eIndex.\u003cbr\u003e\u003cbr\u003e \n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCHARLES A. HARPER is President of Technology Seminars, Inc., an organization that has provided educational seminars to the industry for over twenty years. An engineering graduate of The Johns Hopkins University, where he has also served as an adjunct professor, Mr. Harper has held leadership roles in many professional societies and organizations and is a Fellow of the Society for the Advancement of Materials and Process Engineering. He is the author or editor of numerous books in the plastics and materials fields."}
Handbook of Plasticize...
$285.00
{"id":11242200196,"title":"Handbook of Plasticizers, 2nd Edition","handle":"978-1-895198-50-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych Editor \u003cbr\u003eISBN 978-1-895198-50-8 \u003cbr\u003e\u003cbr\u003ePages 748, Tables 114, Figures 416, References 3876\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains the comprehensive review of information available in open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous edition. \u003cbr\u003e\u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing the variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e\u003cbr\u003eAll numerical data are in the form of database (see information on Plasticizer Database which is a separate publication), whereas the theoretical component of information is given in the traditional form of a printed book.\u003cbr\u003e\u003cbr\u003eTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the groups and also to give ranges of expected properties for a given group.\u003cbr\u003e\u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty five Sections of Chapter 10 discuss plasticizers effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation. \u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 34 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003e\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with Plasticizer Database which gives information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 PLASTICIZER TYPES \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003eMax Kron \u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 TRANSPORTATION AND STORAGE\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003cbr\u003eA. Marcilla and M. Beltrán \u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 THEORIES OF COMPATIBILITY\u003cbr\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e\u003cbr\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution of materials in contact \u003cbr\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e9 PLASTICIZATION STEPS \u003cbr\u003eA. Marcilla, J. C. García, and M. Beltrán \u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova \u003cbr\u003e10.21 Self-healing \u003cbr\u003e10.22 Shrinkage\u003cbr\u003e10.23 Soiling \u003cbr\u003e10.24 Free volume \u003cbr\u003e10.25 Effect of plasticizers on other properties \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 es \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003eA. Marcilla\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJ.C. García","published_at":"2017-06-22T21:12:37-04:00","created_at":"2017-06-22T21:12:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","abiotic","adipates","adsorption","alkyl sulfonates","azelates","benzoates","biodegradation","book","chlorinated paraffins","citrates","coated fabrics","cosmetics","database","degradation","dental materials","electrical","electronics","energetic plasticizers","environment","epoxides","eye protection","fibers","film","flooring","foams","food","footwear","gaskets","gloves","inks","medical applications","membranes","p-additives","paints","pharmaceutical products","plasticisers","plasticizers additives","polymer","releases","solubility","varnishes","volatilization","water"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378305028,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plasticizers, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-50-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-50-8.jpg?v=1499470955"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-50-8.jpg?v=1499470955","options":["Title"],"media":[{"alt":null,"id":356335190109,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-50-8.jpg?v=1499470955"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-50-8.jpg?v=1499470955","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych Editor \u003cbr\u003eISBN 978-1-895198-50-8 \u003cbr\u003e\u003cbr\u003ePages 748, Tables 114, Figures 416, References 3876\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book contains the comprehensive review of information available in open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous edition. \u003cbr\u003e\u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing the variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e\u003cbr\u003eAll numerical data are in the form of database (see information on Plasticizer Database which is a separate publication), whereas the theoretical component of information is given in the traditional form of a printed book.\u003cbr\u003e\u003cbr\u003eTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the groups and also to give ranges of expected properties for a given group.\u003cbr\u003e\u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty five Sections of Chapter 10 discuss plasticizers effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation. \u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 34 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003e\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with Plasticizer Database which gives information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION \u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 PLASTICIZER TYPES \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003eMax Kron \u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 TRANSPORTATION AND STORAGE\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003cbr\u003eA. Marcilla and M. Beltrán \u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 THEORIES OF COMPATIBILITY\u003cbr\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e\u003cbr\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution of materials in contact \u003cbr\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e9 PLASTICIZATION STEPS \u003cbr\u003eA. Marcilla, J. C. García, and M. Beltrán \u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova \u003cbr\u003e10.21 Self-healing \u003cbr\u003e10.22 Shrinkage\u003cbr\u003e10.23 Soiling \u003cbr\u003e10.24 Free volume \u003cbr\u003e10.25 Effect of plasticizers on other properties \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 es \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003eA. Marcilla\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nJ.C. García"}
Handbook of Plasticize...
$350.00
{"id":11427318148,"title":"Handbook of Plasticizers, 3rd Edition","handle":"handbook-of-plasticizers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1-895198-97-3 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: March 2017 \u003cbr\u003ePages 858+xii\u003cbr\u003eTables 122, Figures 373\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous editions. \u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used for the production of plasticizers is becoming one of the issues in the selection of plasticizers. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e \u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e \u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of a printed book, entitled \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e.\u003c\/p\u003e\nTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e \u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e \u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e \u003cbr\u003eTwenty-eight sections of Chapter 10 discuss plasticizers’ effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation.\n\u003cp\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e \u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e \u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e \u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with \u003cstrong\u003ePlasticizer Database\u003c\/strong\u003e and\/or \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e which gives information on the present status and properties of industrial and research plasticizers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eEditor\u003c\/strong\u003e\u003cbr\u003eGeorge Wypych studied chemical engineering and obtained Ph. D. in chemical engineering. The professional expertise includes both university teaching (full professor) and research \u0026amp;development. He has published 25 books (PVC Plastisols, University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, and 4th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, 1st and 2nd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st and 2nd Editions, ChemTec Publishing, The PVC Formulary, 1st and 2nd Editions, ChemTec Publishing), Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of Polymers, 1st and 2nd Editions, ChemTec Publishing, Atlas of Material Damage, 1st and 2nd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st and 2nd Editions, ChemTec Publishing), Databook of Solvents, ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents, ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing, 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability and the development of sealants and coatings. He is included in Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eRelated Publications\u003c\/strong\u003e\u003cbr\u003eDatabook of Plasticizers\u003cbr\u003ePVC Degradation and Stabilization\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003e1 \u003c\/em\u003e\u003cem\u003eINTRODUCTION \u003c\/em\u003e\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PLASTICIZER TYPES \u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e \u003cem\u003eMax Kron \u003c\/em\u003e\u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla and M. Beltrán \u003c\/em\u003e\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models\u003c\/p\u003e\n\u003cp\u003e6 \u003cstrong\u003eTHEORIES OF COMPATIBILITY\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003c\/em\u003e\u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution in materials in contact \u003cbr\u003e \u003cem\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003c\/em\u003e\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla, J. C. García and M. Beltrán \u003c\/em\u003e\u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e \u003cem\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003c\/em\u003e\u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003e \u003cem\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003c\/em\u003e\u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003c\/em\u003e\u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003c\/em\u003e\u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova\u003c\/em\u003e\u003cbr\u003e10.21 Stability of physico-mechanical properties of plasticized polyetherurethane in a humid medium\u003cbr\u003eM. A. Makarova, V. V. Tereshatov, A. I .Slobodinyuk, V. Yu. Senichev, Zh. A. Vnutskikh\u003cbr\u003e10.22 Fusible diurethane plasticizers for thermoplastic polyurethane composites\u003cbr\u003eV. V. Tereshatov, V. Yu. Senichev\u003cbr\u003e10.23 Determination of osmotic pressure of plasticizer in polymer\u003cbr\u003eV. V. Tereshatov, Zh. A. Vnutskikh, V. Yu. Senichev, A. I. Slobodinyuk\u003cbr\u003e10.24 Self-healing\u003cbr\u003e10.25 Shrinkage\u003cbr\u003e10.26 Soiling \u003cbr\u003e10.27 Free volume \u003cbr\u003e10.28 Effect of plasticizers on other properties\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003e \u003cem\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003c\/em\u003e\u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003c\/strong\u003e\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 Pipes \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003e \u003cem\u003eA. Marcilla, J.C. García, and M. Beltran \u003c\/em\u003e\u003cbr\u003e13.32 Tubing \u003cbr\u003e13.33 Wire and cable\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS \u003c\/strong\u003e\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e \u003cem\u003eM. Beltrán, J. C. Garcia, and A. Marcilla \u003c\/em\u003e\u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e16 MATHEMATICAL MODELLING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation\u003cbr\u003e16.3 Migration\u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED MATERIALS \u003c\/strong\u003e\u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e \u003cem\u003eSøren Thor Larsen\u003c\/em\u003e\u003cbr\u003e17.1.1 Introduction\u003cbr\u003e17.1.2 Airway allergy\u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers? \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers: basic biology and human \u003cbr\u003eextrapolation\u003cbr\u003e \u003cem\u003eClaire Sadler, Ann-Marie Bergholm, Nicola Powles-Glover, and Ruth A Roberts\u003c\/em\u003e\u003cbr\u003e17.2.1 Introduction\u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression\u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPARa \u003cbr\u003e17.2.4 Species differences in response to PPS \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e \u003cem\u003eJanet Y. Uriu-Adams and Carl L. Keen\u003c\/em\u003e\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP\u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal and conceptus nutrient metabolism \u003cbr\u003e17.3.4 Concluding comments\u003cbr\u003e17.3.5 Acknowledgements \u003cbr\u003e17.4 Public health implications of phthalates: A review of findings from the U.S. National Toxicology Program's Expert Panel Reports\u003cbr\u003e \u003cem\u003eStephanie R. Miles-Richardson\u003c\/em\u003e\u003cbr\u003e17.4.1 Introduction\u003cbr\u003e17.4.2 Exposure to adults in the general population \u003cbr\u003e17.4.3 Exposure of vulnerable sub-populations \u003cbr\u003e17.4.4 Health effects of phthalate exposure \u003cbr\u003e17.4.5 US NTP expert panel conclusions\u003cbr\u003e17.4.6 Public health implications\u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e \u003cem\u003eWerner Butte\u003c\/em\u003e\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.5 Summary \u003cbr\u003eAddendum \u003cbr\u003e \u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eWilliam R. Roy\u003c\/em\u003e\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment\u003cbr\u003e18.1.2 Levels in the environment\u003cbr\u003e18.2 Plasticizers in water\u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water\u003cbr\u003e18.2.5 Adsorption from water\u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003eSummary and concluding remarks\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e19 REGULATIONS AND DATA \u003c\/strong\u003e\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect\u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e20 PERSONAL PROTECTION \u003c\/strong\u003e\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-07-13T17:08:39-04:00","created_at":"2017-07-13T17:11:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","abiotic","adipates","adsorption","alkyl sulfonates","azelates","benzoates","biodegradation","book","chlorinated paraffins","citrates","coated fabrics","cosmetics","database","degradation","dental materials","electrical","electronics","energetic plasticizers","environment","epoxides","eye protection","fibers","film","flooring","foams","food","footwear","gaskets","gloves","inks","medical applications","membranes","p-additives","paints","pharmaceutical products","plasticisers","plasticizers additives","polymer","releases","solubility","varnishes","volatilization","water"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45225353156,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plasticizers, 3rd Edition","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-895198-97-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-97-3.jpg?v=1503344003"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-97-3.jpg?v=1503344003","options":["Title"],"media":[{"alt":null,"id":407379804253,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-97-3.jpg?v=1503344003"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-97-3.jpg?v=1503344003","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1-895198-97-3 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: March 2017 \u003cbr\u003ePages 858+xii\u003cbr\u003eTables 122, Figures 373\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The book contains information from the most recent sources and updated information from the previous editions. \u003cbr\u003eThe information available today permits to use plasticizers more effectively and to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used for the production of plasticizers is becoming one of the issues in the selection of plasticizers. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials which may have different reactions to the presence of plasticizers. Plasticizer's choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e \u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database should provide data and a broad background of theoretical information in the condensed form easy to search. \u003cbr\u003e \u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of a printed book, entitled \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e.\u003c\/p\u003e\nTwenty one chapters are included in Handbook of Plasticizers. Full Table of Contents is also available for review. Only some chapters are discussed here to add more information which may not be obvious from the table of contents.\u003cbr\u003e \u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers which belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e \u003cbr\u003eChapters 5, 6 and 7 contain new and historical approaches, which explain mechanisms of plasticizers action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies which help in understanding these steps and parameters which may control them.\u003cbr\u003e \u003cbr\u003eTwenty-eight sections of Chapter 10 discuss plasticizers’ effect on physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and principles of their formulation.\n\u003cp\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives and Typical formulations. Use of such consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e \u003cbr\u003eSimilar, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizers use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e \u003cbr\u003eIn Chapter 14 attempts are being made to discuss the following topics: Effect of plasticizers on process conditions, Processing defects formation and elimination with use of plasticizers, Influence of rheological changes on the process, Equipment maintenance, and Energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer effect on health, safety, and environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers effect on health and safety. Chapter 18 contains information on plasticizers persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e \u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. Especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide right answers. This book should be used in conjunction with \u003cstrong\u003ePlasticizer Database\u003c\/strong\u003e and\/or \u003cstrong\u003eDatabook of Plasticizers\u003c\/strong\u003e which gives information on the present status and properties of industrial and research plasticizers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eEditor\u003c\/strong\u003e\u003cbr\u003eGeorge Wypych studied chemical engineering and obtained Ph. D. in chemical engineering. The professional expertise includes both university teaching (full professor) and research \u0026amp;development. He has published 25 books (PVC Plastisols, University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, and 4th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, 1st and 2nd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st and 2nd Editions, ChemTec Publishing, The PVC Formulary, 1st and 2nd Editions, ChemTec Publishing), Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of Polymers, 1st and 2nd Editions, ChemTec Publishing, Atlas of Material Damage, 1st and 2nd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st and 2nd Editions, ChemTec Publishing), Databook of Solvents, ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents, ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing, 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability and the development of sealants and coatings. He is included in Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eRelated Publications\u003c\/strong\u003e\u003cbr\u003eDatabook of Plasticizers\u003cbr\u003ePVC Degradation and Stabilization\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003e1 \u003c\/em\u003e\u003cem\u003eINTRODUCTION \u003c\/em\u003e\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers\u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PLASTICIZER TYPES \u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates\u003cbr\u003e2.2.6 Benzoates\u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cycloxehane dicarboxylate \u003cbr\u003e2.2.12 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e \u003cem\u003eMax Kron \u003c\/em\u003e\u003cbr\u003e2.2.13 Energetic plasticizers\u003cbr\u003e2.2.14 Epoxides\u003cbr\u003e2.2.15 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.16 Ether-ester plasticizers \u003cbr\u003e2.2.17 Glutarates\u003cbr\u003e2.2.18 Hydrocarbon oils \u003cbr\u003e2.2.19 Isobutyrates\u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Sulfonamides \u003cbr\u003e2.2.30 Superplasticizers and plasticizers for concrete\u003cbr\u003e2.2.31 Tri- and pyromellitates \u003cbr\u003e2.2.32 Other plasticizers \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers\u003cbr\u003e2.4 Reactive plasticizers and internal\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary\u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging\u003cbr\u003e3.16 Fusion\u003cbr\u003e3.17 Gas chromatography\u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology\u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Poly(vinyl chloride) – standard specification \u003cbr\u003e3.25 Powder-mix time\u003cbr\u003e3.26 Purity\u003cbr\u003e3.27 Refractive index\u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value\u003cbr\u003e3.31 Saybolt viscosity\u003cbr\u003e3.32 Sorption of plasticizer\u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification\u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness\u003cbr\u003e3.37 Tensile properties\u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration\u003cbr\u003e3.42 Weight\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e\u003cbr\u003e4.1 Transportation\u003cbr\u003e4.2 Storage\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla and M. Beltrán \u003c\/em\u003e\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory\u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models\u003c\/p\u003e\n\u003cp\u003e6 \u003cstrong\u003eTHEORIES OF COMPATIBILITY\u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eValery Yu. Senichev and Vasiliy V. Tereshatov \u003c\/em\u003e\u003cbr\u003e6.1 Compatibility concepts \u003cbr\u003e6.1.1 Thermodynamic treatment \u003cbr\u003e6.1.2 Interaction parameter\u003cbr\u003e6.1.3 Effect of chemical structure of plasticizers and matrix \u003cbr\u003e6.2 Solubility parameter and the cohesive energy density \u003cbr\u003e6.2.1 Solubility parameter concept \u003cbr\u003e6.2.2 Experimental evaluation of solubility parameters of plasticizers \u003cbr\u003e6.2.3 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e6.2.4 The methods of calculation of solubility parameters \u003cbr\u003e6.2.5 Multi-dimensional approaches \u003cbr\u003e6.3 Methods of plasticizer selection based on principles of compatibility\u003cbr\u003e6.3.1 How much plasticizer is necessary for a polymer composition? \u003cbr\u003e6.3.2 Initial experimental estimation of compatibility \u003cbr\u003e6.3.3 Thermodynamic compatibility \u003cbr\u003e6.4 Practical approaches in using theory of compatibility for plasticizers selection \u003cbr\u003e6.5 Experimental data illustrating effect of compatibility on plasticized systems \u003cbr\u003e6.5.1 Influence of compatibility on the physical stability of the plasticized polymer\u003cbr\u003e6.5.2 Influence of compatibility on viscosity of the plasticized composition\u003cbr\u003e6.5.3 Influence of compatibility on mechanical properties and physical properties of plasticized polymer\u003cbr\u003e \u003cbr\u003e \u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study\u003cbr\u003e7.2 Plasticizer motion and distribution in matrix \u003cbr\u003e7.3 Plasticizer migration\u003cbr\u003e7.4 Plasticizer distribution in materials in contact \u003cbr\u003e \u003cem\u003eVasiliy V Tereshatov and Valery Yu Senichev\u003c\/em\u003e\u003cbr\u003e7.5 Antiplasticization \u003cbr\u003e7.6 Effect of diffusion and mobility of plasticizers on their\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eA. Marcilla, J. C. García and M. Beltrán \u003c\/em\u003e\u003cbr\u003e9.1 Plasticization steps\u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by scanning electron microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS\u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e10.1 Mechanical properties\u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation\u003cbr\u003e10.1.3 Hardness\u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e \u003cem\u003eJuan Carlos Garcia, and Antonio Francisco Marcilla \u003c\/em\u003e\u003cbr\u003e10.6.1 Torque measurement in mixers \u003cbr\u003e10.6.2 Capillary viscometers \u003cbr\u003e10.6.3 Dynamic experiments \u003cbr\u003e10.6.4 Rheology of PVC plastisols \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Influence of plasticizers on the glass transition temperature of polymers \u003cbr\u003e \u003cem\u003eValery Yu Senichev and Vasiliy V Tereshatov \u003c\/em\u003e\u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizer \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation\u003cbr\u003e10.11.4 Loss of plasticizer from material due to the chemical decomposition reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of material \u003cbr\u003e10.12 Effect of UV and ionized radiation on plasticized materials\u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology\u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling of crosslinked elastomers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev \u003c\/em\u003e\u003cbr\u003e10.18.1 Change of elastic properties of elastomers on swelling in liquids of different polarity \u003cbr\u003e10.18.2 Influence of swelling on viscoelastic properties of crosslinked amorphous elastomers\u003cbr\u003e10.18.3 Influence of swelling on tensile strength and critical strain of elastic materials \u003cbr\u003e10.19 The swelling of nano-heterogenous coatings in plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V.Tereshatov, Valery Yu. Senichev, Marina A. Makarova \u003c\/em\u003e\u003cbr\u003e10.20 Peculiarities of plasticization of polyurethanes by binary plasticizers \u003cbr\u003e \u003cem\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Vladimir N. Strel'nikov, \u003cbr\u003eElsa N. Tereshatova, Marina A. Makarova\u003c\/em\u003e\u003cbr\u003e10.21 Stability of physico-mechanical properties of plasticized polyetherurethane in a humid medium\u003cbr\u003eM. A. Makarova, V. V. Tereshatov, A. I .Slobodinyuk, V. Yu. Senichev, Zh. A. Vnutskikh\u003cbr\u003e10.22 Fusible diurethane plasticizers for thermoplastic polyurethane composites\u003cbr\u003eV. V. Tereshatov, V. Yu. Senichev\u003cbr\u003e10.23 Determination of osmotic pressure of plasticizer in polymer\u003cbr\u003eV. V. Tereshatov, Zh. A. Vnutskikh, V. Yu. Senichev, A. I. Slobodinyuk\u003cbr\u003e10.24 Self-healing\u003cbr\u003e10.25 Shrinkage\u003cbr\u003e10.26 Soiling \u003cbr\u003e10.27 Free volume \u003cbr\u003e10.28 Effect of plasticizers on other properties\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e\u003cbr\u003e11.1 ABS \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.4 Butyl terpolymer\u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.6 Cellulose butyrates and propionates \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.8 Chitosan\u003cbr\u003e11.9 Chlorinated polyvinyl chloride \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.13 Ethylcellulose\u003cbr\u003e11.14 Ethylene-propylene-diene copolymer, EPDM \u003cbr\u003e11.15 Epoxy resin \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer, EVA \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.18 Nitrile rubber\u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile\u003cbr\u003e11.21 Polyamide\u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene\u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.26 Poly(butyl methacrylate)\u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.34 Polyisobutylene\u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.37 Polylactide\u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes\u003cbr\u003e \u003cem\u003eVasiliy Tereshatov V., Valery Senichev Yu., Elsa Tereshatova N., Marina Makarova A. \u003c\/em\u003e\u003cbr\u003e11.49 Polyvinylacetate\u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.53 Polyvinyl fluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.57 Rubber, natural\u003cbr\u003e11.58 Silicone\u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.61 Starch\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS \u003c\/strong\u003e\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive applications \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.7 Composites \u003cbr\u003e13.8 Cosmetics\u003cbr\u003e13.9 Cultural heritage\u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.12 Fibers\u003cbr\u003e13.13 Film \u003cbr\u003e13.14 Food \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.16 Foams\u003cbr\u003e13.17 Footwear \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.19 Gaskets\u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.27 Photographic materials\u003cbr\u003e13.28 Pipes \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.30 Tires\u003cbr\u003e13.31 Toys \u003cbr\u003e \u003cem\u003eA. Marcilla, J.C. García, and M. Beltran \u003c\/em\u003e\u003cbr\u003e13.32 Tubing \u003cbr\u003e13.33 Wire and cable\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS \u003c\/strong\u003e\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e \u003cem\u003eM. Beltrán, J. C. Garcia, and A. Marcilla \u003c\/em\u003e\u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e16 MATHEMATICAL MODELLING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation\u003cbr\u003e16.3 Migration\u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED MATERIALS \u003c\/strong\u003e\u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e \u003cem\u003eSøren Thor Larsen\u003c\/em\u003e\u003cbr\u003e17.1.1 Introduction\u003cbr\u003e17.1.2 Airway allergy\u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers? \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers: basic biology and human \u003cbr\u003eextrapolation\u003cbr\u003e \u003cem\u003eClaire Sadler, Ann-Marie Bergholm, Nicola Powles-Glover, and Ruth A Roberts\u003c\/em\u003e\u003cbr\u003e17.2.1 Introduction\u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression\u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPARa \u003cbr\u003e17.2.4 Species differences in response to PPS \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e \u003cem\u003eJanet Y. Uriu-Adams and Carl L. Keen\u003c\/em\u003e\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP\u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal and conceptus nutrient metabolism \u003cbr\u003e17.3.4 Concluding comments\u003cbr\u003e17.3.5 Acknowledgements \u003cbr\u003e17.4 Public health implications of phthalates: A review of findings from the U.S. National Toxicology Program's Expert Panel Reports\u003cbr\u003e \u003cem\u003eStephanie R. Miles-Richardson\u003c\/em\u003e\u003cbr\u003e17.4.1 Introduction\u003cbr\u003e17.4.2 Exposure to adults in the general population \u003cbr\u003e17.4.3 Exposure of vulnerable sub-populations \u003cbr\u003e17.4.4 Health effects of phthalate exposure \u003cbr\u003e17.4.5 US NTP expert panel conclusions\u003cbr\u003e17.4.6 Public health implications\u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e \u003cem\u003eWerner Butte\u003c\/em\u003e\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.5 Summary \u003cbr\u003eAddendum \u003cbr\u003e \u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS \u003c\/strong\u003e\u003cbr\u003e \u003cem\u003eWilliam R. Roy\u003c\/em\u003e\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment\u003cbr\u003e18.1.2 Levels in the environment\u003cbr\u003e18.2 Plasticizers in water\u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water\u003cbr\u003e18.2.5 Adsorption from water\u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003eSummary and concluding remarks\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e19 REGULATIONS AND DATA \u003c\/strong\u003e\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect\u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e20 PERSONAL PROTECTION \u003c\/strong\u003e\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Plasticize...
$390.00
{"id":7703557439645,"title":"Handbook of Plasticizers, 4th Edition","handle":"handbook-of-plasticizers-4th-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1- 77467-022-4 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: Jan. 2023 \u003cbr data-mce-fragment=\"1\"\u003ePages 894+xxii\u003cbr data-mce-fragment=\"1\"\u003eTables 115, Figures 360\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Plasticizers brings together in one place all that is known about this vital and rapidly expanding field. The book serves both as a basic reference source for researchers, engineers, and others involved in plastics processing, research and development as well as a source of ideas regarding future developments.\u003cbr\u003e\u003cbr\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The information from the most recent sources was used to update information from previous editions. \u003cbr\u003eThe information available today permits the use of plasticizers more effectively and helps to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used to produce plasticizers is becoming one of the issues in their selection. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials that may have different reactions to the presence of plasticizers. Plasticizer choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database, should provide data and a broad background of theoretical information in a condensed form easy to search. \u003cbr\u003e\u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of the printed book entitled Databook of Plasticizers. \u003cbr\u003eTwenty-one chapters are included in the Handbook of Plasticizers. The full Table of Contents is given below. Only some chapters are discussed here to add more information that may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers that belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e\u003cbr\u003eChapters 5, 6, and 7 contain new and historical approaches, which explain the mechanisms of plasticizers’ action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies, which help in understanding these steps and the parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty-nine sections of Chapter 10 discuss plasticizers’ effect on the physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and the principles of their formulation. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. The use of such a consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilarly, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown, including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizer use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14, attempts are being made to discuss the following topics: The effect of plasticizers on process conditions, Processing defects formation and elimination with the use of plasticizers, In the fluence of rheological changes on the process, Equipment maintenance, and energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer’s effect on health, safety, and the environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers’ effect on health and safety. Chapter 18 contains information on plasticizers’ persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers, especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide the right answers. This book is best used in conjunction with the Plasticizer Database and\/or Databook of Plasticizers which give information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 PLASTICIZER TYPES\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates \u003cbr\u003e2.2.6 Benzoates \u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins, \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e2.2.12 Energetic plasticizers \u003cbr\u003e2.2.13 Epoxides \u003cbr\u003e2.2.14 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.15 Ether-ester plasticizers \u003cbr\u003e2.2.16 Glutarates \u003cbr\u003e2.2.17 Hydrocarbon oils \u003cbr\u003e2.2.18 Hydrocarbon resins \u003cbr\u003e2.2.19 Isobutyrates \u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.26.1 Esters \u003cbr\u003e2.2.26.2 Polybutenes \u003cbr\u003e2.26.3 Others \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Succinates \u003cbr\u003e2.2.30 Sulfonamides \u003cbr\u003e2.2.31 Superplasticizers and plasticizers for concrete \u003cbr\u003e2.2.32 Tri- and pyromellitates \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers \u003cbr\u003e2.4 Reactive plasticizers and internal plasticization \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging \u003cbr\u003e3.16 Fusion \u003cbr\u003e3.17 Gas chromatography \u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology \u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Polyvinylchloride standard specification \u003cbr\u003e3.25 Powder-mix time \u003cbr\u003e3.26 Purity \u003cbr\u003e3.27 Refractive index \u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value \u003cbr\u003e3.31 Saybolt viscosity \u003cbr\u003e3.32 Sorption of plasticizer \u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification \u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness \u003cbr\u003e3.37 Tensile properties \u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration \u003cbr\u003e3.42 Weight loss \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e \u003cbr\u003e A. Marcilla and M. Beltrán\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory \u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 COMPATIBILITY OF PLASTICIZERS 159\u003c\/strong\u003e\u003cbr\u003e George Wypych\u003cbr\u003e6.1 Prediction methods of plasticizer compatibility \u003cbr\u003e6.1.1 Flory-Huggins interaction parameter \u003cbr\u003e6.1.2 Prediction of Gibbs free energy of mixing UNIFAC-FV \u003cbr\u003e6.1.3 Molar volume \u003cbr\u003e6.1.4 Polarity \u003cbr\u003e6.1.5 Hansen solubility parameters \u003cbr\u003e6.1.6 Hoy solubility parameters and other methods based on solubility\u003cbr\u003e parameters \u003cbr\u003e6.1.7 Hildebrand solubility parameter \u003cbr\u003e6.1.8 Molecule charge density using COSMO \u003cbr\u003e6.1.9 Mesoscale simulation using DPD \u003cbr\u003e6.1.10 Ap\/Po ratio \u003cbr\u003e6.2 Validation methods \u003cbr\u003e6.2.1 DSC analysis \u003cbr\u003e6.2.2 Inverse gas chromatography \u003cbr\u003e6.2.3 Solid-gel transition temperature \u003cbr\u003e6.3 Effect of plasticizer structure and conditions of incorporation on\u003cbr\u003e compatibility \u003cbr\u003e6.3.1 Effect of plasticizer structure \u003cbr\u003e6.3.1.1 Aromaticity \u003cbr\u003e6.3.1.2 Branching \u003cbr\u003e6.3.1.3 Chain length \u003cbr\u003e6.3.1.4 Molecular weight \u003cbr\u003e6.3.1.5 Polarity \u003cbr\u003e6.3.2 Conditions of incorporation \u003cbr\u003e6.3.2.1 Amount (concentration) \u003cbr\u003e6.3.2.2 Method of processing \u003cbr\u003e6.3.2.3 Temperature \u003cbr\u003e6.4 Effect of plasticizer type on properties of plasticized material \u003cbr\u003e6.4.1 Crystallinity \u003cbr\u003e6.4.2 Exudation \u003cbr\u003e6.4.3 Permanence \u003cbr\u003e6.4.4 Thermal degradation \u003cbr\u003e6.4.5 Volatility \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study \u003cbr\u003e7.2 Plasticizer motion and distribution in the matrix \u003cbr\u003e7.3 Plasticizer migration \u003cbr\u003e7.4 Antiplasticization \u003cbr\u003e7.5 Effect of diffusion and mobility of plasticizers on their suitability \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of\u003cbr\u003e plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS\u003c\/strong\u003e \u003cbr\u003e A. Marcilla, J.C. García and M. Beltrán\u003cbr\u003e9.1 Plasticization steps \u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by Scanning Electron Microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS \u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by TG \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e George Wypych\u003cbr\u003e10.1 Mechanical properties \u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation \u003cbr\u003e10.1.3 Hardness \u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Glass transition temperature \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizers \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation \u003cbr\u003e10.11.4 Loss of plasticizer from the material due to chemical decomposition\u003cbr\u003e reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of materials \u003cbr\u003e10.12 Effect of UV and ionizing radiation on plasticized materials \u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology \u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling \u003cbr\u003e10.19 Fogging \u003cbr\u003e10.20 Hydrophobic\/hydrophilic properties \u003cbr\u003e10.21 Osmotic pressure of plasticizer in polymer \u003cbr\u003e10.22 Self-healing \u003cbr\u003e10.23 Shrinkage \u003cbr\u003e10.24 Soiling \u003cbr\u003e10.25 Free volume \u003cbr\u003e10.26 Dissolution \u003cbr\u003e10.27 Foaming \u003cbr\u003e10.28 Permeability \u003cbr\u003e10.29 Sorption \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e11.1 ABS \u003cbr\u003e11.1.1 Frequently used plasticizers \u003cbr\u003e11.1.2 Practical concentrations \u003cbr\u003e11.1.3 Main functions performed by plasticizers \u003cbr\u003e11.1.4 Mechanism of plasticizer action \u003cbr\u003e11.1.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.1.6 Typical formulations \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.2.1 Frequently used plasticizers \u003cbr\u003e11.2.2 Practical concentrations \u003cbr\u003e11.2.3 Main functions performed by plasticizers \u003cbr\u003e11.2.4 Mechanism of plasticizer action \u003cbr\u003e11.2.5 Typical formulations \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.3.1 Frequently used plasticizers \u003cbr\u003e11.3.2 Practical concentrations \u003cbr\u003e11.3.3 Main functions performed by plasticizers \u003cbr\u003e11.3.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.4 Butyl terpolymer \u003cbr\u003e11.4.1 Frequently used plasticizers \u003cbr\u003e11.4.2 Practical concentrations \u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.5.1 Frequently used plasticizers \u003cbr\u003e11.5.2 Practical concentrations \u003cbr\u003e11.5.3 Main functions performed by plasticizers \u003cbr\u003e11.5.4 Mechanism of plasticizer action \u003cbr\u003e11.5.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.6 Cellulose butyrate and propionate \u003cbr\u003e11.6.1 Frequently used plasticizers \u003cbr\u003e11.6.2 Practical concentrations \u003cbr\u003e11.6.3 Main functions performed by plasticizers \u003cbr\u003e11.6.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.7.1 Frequently used plasticizers \u003cbr\u003e11.7.2 Practical concentrations \u003cbr\u003e11.7.3 Main functions performed by plasticizers \u003cbr\u003e11.7.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.7.5 Typical formulations \u003cbr\u003e11.8 Chitosan \u003cbr\u003e11.8.1 Frequently used plasticizers \u003cbr\u003e11.8.2 Practical concentrations \u003cbr\u003e11.8.3 Main functions performed by plasticizers \u003cbr\u003e11.8.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.9 Chlorinated polyvinylchloride \u003cbr\u003e11.9.1 Frequently used plasticizers \u003cbr\u003e11.9.2 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.10.1 Frequently used plasticizers \u003cbr\u003e11.10.2 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.11.1 Frequently used plasticizers \u003cbr\u003e11.11.2 Practical concentrations \u003cbr\u003e11.11.3 Main functions performed by plasticizers \u003cbr\u003e11.11.4 Mechanism of plasticizer action \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.12.1 Frequently used plasticizers \u003cbr\u003e11.12.2 Practical concentrations \u003cbr\u003e11.12.3 Main functions performed by plasticizers \u003cbr\u003e11.12.4 Effect of plasticizer on polymer and other additives \u003cbr\u003e11.13 Ethylcellulose \u003cbr\u003e11.13.1 Frequently used plasticizers \u003cbr\u003e11.13.2 Practical concentrations \u003cbr\u003e11.13.3 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.14.1 Frequently used plasticizers \u003cbr\u003e11.14.2 Practical concentrations \u003cbr\u003e11.14.3 Main functions performed by plasticizers \u003cbr\u003e11.14.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.15 Ethylene-propylene-diene copolymer \u003cbr\u003e11.15.1 Frequently used plasticizers \u003cbr\u003e11.15.2 Practical concentrations \u003cbr\u003e11.15.3 Main functions performed by plasticizers \u003cbr\u003e11.15.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.15.5 Typical formulations \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.17.1 Frequently used plasticizers \u003cbr\u003e11.17.2 Practical concentrations \u003cbr\u003e11.17.3 Main functions performed by plasticizers \u003cbr\u003e11.17.4 Mechanism of plasticizer action \u003cbr\u003e11.17.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.18 Nitrile rubber \u003cbr\u003e11.18.1 Frequently used plasticizers \u003cbr\u003e11.18.2 Practical concentrations \u003cbr\u003e11.18.3 Main functions performed by plasticizers \u003cbr\u003e11.18.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.18.5 Typical formulations \u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile \u003cbr\u003e11.20.1 Frequently used plasticizers \u003cbr\u003e11.20.2 Practical concentrations \u003cbr\u003e11.20.3 Main functions performed by plasticizers \u003cbr\u003e11.20.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.21 Polyamide \u003cbr\u003e11.21.1 Frequently used plasticizers \u003cbr\u003e11.21.2 Practical concentrations \u003cbr\u003e11.21.3 Main functions performed by plasticizers \u003cbr\u003e11.21.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene \u003cbr\u003e11.24.1 Frequently used plasticizers \u003cbr\u003e11.24.2 Practical concentrations \u003cbr\u003e11.24.3 Main functions performed by plasticizers \u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.25.1 Frequently used plasticizers \u003cbr\u003e11.25.2 Practical concentrations \u003cbr\u003e11.25.3 Main functions performed by plasticizers \u003cbr\u003e11.26 Poly(butyl methacrylate) \u003cbr\u003e11.26.1 Frequently used plasticizers \u003cbr\u003e11.26.2 Practical concentrations \u003cbr\u003e11.26.3 Main functions performed by plasticizers \u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.27.1 Frequently used plasticizers \u003cbr\u003e11.27.2 Practical concentrations \u003cbr\u003e11.27.3 Main functions performed by plasticizers \u003cbr\u003e11.27.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.28.1 Frequently used plasticizers \u003cbr\u003e11.28.2 Practical concentrations \u003cbr\u003e11.28.3 Main functions performed by plasticizers \u003cbr\u003e11.28.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.28.5 Typical formulations \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.31.1 Frequently used plasticizers \u003cbr\u003e11.31.2 Practical concentrations \u003cbr\u003e11.31.3 Main functions performed by plasticizers \u003cbr\u003e11.31.4 Mechanism of plasticizer action \u003cbr\u003e11.31.5 Typical formulations \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.32.1 Frequently used plasticizers \u003cbr\u003e11.32.2 Practical concentrations \u003cbr\u003e11.32.3 Main functions performed by plasticizers \u003cbr\u003e11.32.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.33.1 Frequently used plasticizers \u003cbr\u003e11.33.2 Practical concentrations \u003cbr\u003e11.33.3 Main functions performed by plasticizers \u003cbr\u003e11.34 Polyisobutylene \u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.35.1 Frequently used plasticizers \u003cbr\u003e11.35.2 Practical concentrations \u003cbr\u003e11.35.3 Main functions performed by plasticizers \u003cbr\u003e11.35.4 Typical formulations \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.36.1 Frequently used plasticizers \u003cbr\u003e11.36.2 Practical concentrations \u003cbr\u003e11.36.3 Main functions performed by plasticizers \u003cbr\u003e11.36.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.37 Polylactide \u003cbr\u003e11.37.1 Frequently used plasticizers \u003cbr\u003e11.37.2 Practical concentrations \u003cbr\u003e11.37.3 Main functions performed by plasticizers \u003cbr\u003e11.37.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.38.1 Frequently used plasticizers \u003cbr\u003e11.38.2 Practical concentrations \u003cbr\u003e11.38.3 Main functions performed by plasticizers \u003cbr\u003e11.38.4 Mechanism of plasticizer action \u003cbr\u003e11.38.5 Typical formulations \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.39.1 Frequently used plasticizers \u003cbr\u003e11.39.2 Practical concentrations \u003cbr\u003e11.39.3 Main functions performed by plasticizers \u003cbr\u003e11.39.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.40.1 Frequently used plasticizers \u003cbr\u003e11.40.2 Practical concentrations \u003cbr\u003e11.40.3 Main functions performed by plasticizers \u003cbr\u003e11.40.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.42.1 Frequently used plasticizers \u003cbr\u003e11.42.2 Practical concentrations \u003cbr\u003e11.42.3 Main functions performed by plasticizers \u003cbr\u003e11.42.4 Mechanism of plasticizer action \u003cbr\u003e11.42.5 Typical formulations \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.43.1 Frequently used plasticizers \u003cbr\u003e11.43.2 Practical concentrations \u003cbr\u003e11.43.3 Main functions performed by plasticizers \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.45.1 Frequently used plasticizers \u003cbr\u003e11.45.2 Practical concentrations \u003cbr\u003e11.45.3 Main functions performed by plasticizers \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.46.1 Frequently used plasticizers \u003cbr\u003e11.46.2 Practical concentrations \u003cbr\u003e11.46.3 Main functions performed by plasticizers \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes \u003cbr\u003e11.48.1 Frequently used plasticizers \u003cbr\u003e11.48.2 Practical concentrations \u003cbr\u003e11.48.3 Main functions performed by plasticizers \u003cbr\u003e11.48.4 Mechanism of plasticizers action \u003cbr\u003e11.48.5 Effect of plasticizers on polymers and other additives \u003cbr\u003e11.48.6 Typical formulations \u003cbr\u003e11.49 Polyvinylacetate \u003cbr\u003e11.49.1 Frequently used plasticizers \u003cbr\u003e11.49.2 Practical concentrations \u003cbr\u003e11.49.3 Main functions performed by plasticizers \u003cbr\u003e11.49.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.50.1 Frequently used plasticizers \u003cbr\u003e11.50.2 Practical concentrations \u003cbr\u003e11.50.3 Main functions performed by plasticizers \u003cbr\u003e11.50.4 Mechanism of plasticizer action \u003cbr\u003e11.50.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.50.6 Typical formulations \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.51.1 Frequently used plasticizers \u003cbr\u003e11.51.2 Practical concentrations \u003cbr\u003e11.51.3 Main functions performed by plasticizers \u003cbr\u003e11.51.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.52.1 Frequently used plasticizers \u003cbr\u003e11.52.2 Practical concentrations \u003cbr\u003e11.52.3 Main functions performed by plasticizers \u003cbr\u003e11.52.4 Mechanism of plasticizer action \u003cbr\u003e11.52.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.52.6 Typical formulations \u003cbr\u003e11.53 Polyvinylfluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.54.1 Frequently used plasticizers \u003cbr\u003e11.54.2 Practical concentrations \u003cbr\u003e11.54.3 Main functions performed by plasticizers \u003cbr\u003e11.54.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.56.1 Frequently used plasticizers \u003cbr\u003e11.56.2 Practical concentrations \u003cbr\u003e11.56.3 Main functions performed by plasticizers \u003cbr\u003e11.56.4 Mechanism of plasticizer action \u003cbr\u003e11.56.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.57 Rubber, natural \u003cbr\u003e11.57.1 Frequently used plasticizers \u003cbr\u003e11.57.2 Practical concentrations \u003cbr\u003e11.57.3 Main functions performed by plasticizers \u003cbr\u003e11.57.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.57.5 Typical formulations \u003cbr\u003e11.58 Silicone \u003cbr\u003e11.58.1 Frequently used plasticizers \u003cbr\u003e11.58.2 Practical concentrations \u003cbr\u003e11.58.3 Main functions performed by plasticizers \u003cbr\u003e11.58.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.58.5 Typical formulations \u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.59.1 Frequently used plasticizers \u003cbr\u003e11.59.2 Practical concentrations \u003cbr\u003e11.59.3 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.59.4 Typical formulations \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.60.1 Frequently used plasticizers \u003cbr\u003e11.60.2 Practical concentrations \u003cbr\u003e11.60.3 Main functions performed by plasticizers \u003cbr\u003e11.60.4 Effect of plasticizer on polymer and other additives \u003cbr\u003e11.61 Starch \u003cbr\u003e11.61.1 Frequently used plasticizers \u003cbr\u003e11.61.2 Practical concentrations \u003cbr\u003e11.61.3 Main functions performed by plasticizers \u003cbr\u003e11.61.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.61.5 Typical formulations\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.1.1 Plasticizer types \u003cbr\u003e13.1.2 Plasticizer concentration \u003cbr\u003e13.1.3 Reasons for plasticizer use \u003cbr\u003e13.1.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.1.5 Effect of plasticizers on product properties \u003cbr\u003e13.1.6 Examples of formulations \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive \u003cbr\u003e13.4.1 Plasticizer types \u003cbr\u003e13.4.2 Plasticizer concentration \u003cbr\u003e13.4.3 Reasons for plasticizer use \u003cbr\u003e13.4.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.4.5 Effect of plasticizers on product properties \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.5.1 Plasticizer types \u003cbr\u003e13.5.2 Plasticizer concentration \u003cbr\u003e13.5.3 Reasons for plasticizer use \u003cbr\u003e13.5.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.5.5 Effect of plasticizers on product properties \u003cbr\u003e13.5.6 Examples of formulations \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.6.1 Plasticizer types \u003cbr\u003e13.6.2 Plasticizer concentration \u003cbr\u003e13.6.3 Reasons for plasticizer use \u003cbr\u003e13.6.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.6.5 Effect of plasticizers on product properties \u003cbr\u003e13.6.6 Examples of formulations \u003cbr\u003e13.7 Composites \u003cbr\u003e13.7.1 Plasticizer types \u003cbr\u003e13.7.2 Plasticizer concentrations \u003cbr\u003e13.7.3 Reasons for addition \u003cbr\u003e13.7.4 Effect of plasticizers on product properties \u003cbr\u003e13.8 Cosmetics \u003cbr\u003e13.8.1 Plasticizer types \u003cbr\u003e13.8.2 Plasticizer concentration \u003cbr\u003e13.8.3 Reasons for plasticizer use \u003cbr\u003e13.8.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.8.5 Effect of plasticizers on product properties \u003cbr\u003e13.8.6 Examples of formulations \u003cbr\u003e13.9 Cultural heritage \u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.10.1 Plasticizer types \u003cbr\u003e13.10.2 Plasticizer concentration \u003cbr\u003e13.10.3 Reasons for plasticizer use \u003cbr\u003e13.10.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.11.1 Plasticizer types \u003cbr\u003e13.11.2 Plasticizer concentration \u003cbr\u003e13.11.3 Reasons for plasticizer use \u003cbr\u003e13.11.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.11.5 Effect of plasticizers on product properties \u003cbr\u003e13.12 Fibers \u003cbr\u003e13.12.1 Plasticizer types \u003cbr\u003e13.12.2 Plasticizer concentration \u003cbr\u003e13.12.3 Reasons for plasticizer use \u003cbr\u003e13.12.4 Effect of plasticizers on product properties \u003cbr\u003e13.13 Film \u003cbr\u003e13.13.1 Plasticizer types \u003cbr\u003e13.13.2 Plasticizer concentration \u003cbr\u003e13.13.3 Reasons for plasticizer use \u003cbr\u003e13.13.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.13.5 Effect of plasticizers on product properties \u003cbr\u003e13.14 Food \u003cbr\u003e13.14.1 Plasticizer types \u003cbr\u003e13.14.2 Plasticizer concentration \u003cbr\u003e13.14.3 Reasons for plasticizer use \u003cbr\u003e13.14.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.14.5 Effect of plasticizers on product properties \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.15.1 Plasticizer types \u003cbr\u003e13.15.2 Plasticizer concentration \u003cbr\u003e13.15.3 Reasons for plasticizer use \u003cbr\u003e13.15.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.15.5 Effect of plasticizers on product properties \u003cbr\u003e13.15.6 Examples of formulations \u003cbr\u003e13.16 Foams \u003cbr\u003e13.16.1 Plasticizer types \u003cbr\u003e13.16.2 Plasticizer concentration \u003cbr\u003e13.16.3 Reasons for plasticizer use \u003cbr\u003e13.16.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.16.5 Effect of plasticizers on product properties \u003cbr\u003e13.16.6 Examples of formulations \u003cbr\u003e13.17 Footwear \u003cbr\u003e13.17.1 Plasticizer types \u003cbr\u003e13.17.2 Plasticizer concentration \u003cbr\u003e13.17.3 Reasons for plasticizer use \u003cbr\u003e13.17.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.17.5 Example of formulation \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.18.1 Plasticizer types \u003cbr\u003e13.18.2 Plasticizer concentration \u003cbr\u003e13.18.3 Reasons for plasticizer use \u003cbr\u003e13.19 Gaskets \u003cbr\u003e13.19.1 Plasticizer types \u003cbr\u003e13.19.2 Plasticizer concentration \u003cbr\u003e13.19.3 Reasons for plasticizer use \u003cbr\u003e13.19.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.19.5 Examples of formulations \u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.21.1 Plasticizer types \u003cbr\u003e13.21.2 Plasticizer concentration \u003cbr\u003e13.21.3 Reasons for plasticizer use \u003cbr\u003e13.21.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.21.5 Effect of plasticizers on product properties \u003cbr\u003e13.21.6 Examples of formulations \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.22.1 Plasticizer types \u003cbr\u003e13.22.2 Plasticizer concentration \u003cbr\u003e13.22.3 Reasons for plasticizer use \u003cbr\u003e13.22.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.22.5 Effect of plasticizers on product properties \u003cbr\u003e13.22.6 Examples of formulations \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.23.1 Plasticizer types \u003cbr\u003e13.23.2 Plasticizer concentration \u003cbr\u003e13.23.3 Reasons for plasticizer use \u003cbr\u003e13.23.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.24.1 Plasticizer types \u003cbr\u003e13.24.2 Plasticizer concentration \u003cbr\u003e13.24.3 Reasons for plasticizer use \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.25.1 Plasticizer types \u003cbr\u003e13.25.2 Plasticizer concentration \u003cbr\u003e13.25.3 Reasons for plasticizer use \u003cbr\u003e13.25.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.25.5 Effect of plasticizers on product properties \u003cbr\u003e13.25.6 Examples of formulations \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.26.1 Plasticizer types \u003cbr\u003e13.26.2 Plasticizer concentration \u003cbr\u003e13.26.3 Reasons for plasticizer use \u003cbr\u003e13.26.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.26.5 Effect of plasticizers on product properties \u003cbr\u003e13.26.6 Examples of formulations \u003cbr\u003e13.27 Photographic materials \u003cbr\u003e13.27.1 Plasticizer types \u003cbr\u003e13.27.2 Plasticizer concentration \u003cbr\u003e13.27.3 Reasons for plasticizer use \u003cbr\u003e13.27.4 Effect of plasticizers on product properties \u003cbr\u003e13.28 Pipes \u003cbr\u003e13.28.1 Plasticizer types \u003cbr\u003e13.28.2 Plasticizer concentration \u003cbr\u003e13.28.3 Reasons for plasticizer use \u003cbr\u003e13.28.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.28.5 Effect of plasticizers on product properties \u003cbr\u003e13.28.6 Examples of formulations \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.29.1 Plasticizer types \u003cbr\u003e13.29.2 Plasticizer concentration \u003cbr\u003e13.29.3 Reasons for plasticizer use \u003cbr\u003e13.29.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.29.5 Effect of plasticizers on product properties \u003cbr\u003e13.29.6 Examples of formulations \u003cbr\u003e13.30 Tires \u003cbr\u003e13.30.1 Plasticizer types \u003cbr\u003e13.30.2 Plasticizer concentration \u003cbr\u003e13.30.3 Reasons for plasticizer use \u003cbr\u003e13.30.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.30.5 Effect of plasticizers on product properties \u003cbr\u003e13.30.6 Examples of formulations \u003cbr\u003e13.31 Toys \u003cbr\u003e13.31.1 Plasticizer types \u003cbr\u003e13.31.2 Plasticizer concentration \u003cbr\u003e13.31.3 Reasons for plasticizer use \u003cbr\u003e13.31.4 Effect of plasticizers on product properties \u003cbr\u003e13.32 Tubing \u003cbr\u003e13.32.1 Plasticizer types \u003cbr\u003e13.32.2 Plasticizer concentration \u003cbr\u003e13.32.3 Reasons for plasticizer use \u003cbr\u003e13.32.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.32.5 Effect of plasticizers on product properties \u003cbr\u003e13.32.6 Examples of formulations \u003cbr\u003e13.33 Wire and cable \u003cbr\u003e13.33.1 Plasticizer types \u003cbr\u003e13.33.2 Plasticizer concentration \u003cbr\u003e13.33.3 Reasons for plasticizer use \u003cbr\u003e13.33.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.33.5 Effect of plasticizers on product properties \u003cbr\u003e13.33.6 Examples of formulations \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 MATHEMATICAL MODELING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation \u003cbr\u003e16.3 Migration \u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition \u003cbr\u003e16.7 Potential health risk of exposure to DEHP from glove \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e MATERIALS\u003c\/strong\u003e \u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e Søren Thor Larsen \u003cbr\u003e17.1.1 Introduction \u003cbr\u003e17.1.2 Airway allergy \u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers \u003cbr\u003e 17.1.4.1 Epidemiological studies \u003cbr\u003e17.1.4.2 In vivo (animal) studies \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers\u003cbr\u003e : basic biology and human extrapolation \u003cbr\u003e Abigail L Walker and Ruth A Roberts\u003cbr\u003e17.2.1 Introduction \u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression \u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Developing areas of interest in hepatocarcinogenesis \u003cbr\u003e17.2.2.4 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic\u003cbr\u003e hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPAR \u003cbr\u003e17.2.4 Species differences in response to peroxisome proliferators \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.5.1 Challenges in alternative models \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e Janet Y. Uriu-Adams1 and Carl L. Keen\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP \u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal \u003cbr\u003e17.3.4 Concluding comments \u003cbr\u003e17.3.5 Recent findings \u003cbr\u003e17.3.6 Acknowledgments \u003cbr\u003e17.4 Public health implications of phthalates: A review of U.S. actions\u003cbr\u003e to protect those most vulnerable \u003cbr\u003e Stephanie R. Miles-Richardson and Dhara Richardson\u003cbr\u003e17.4.1 Introduction \u003cbr\u003e17.4.2 Implications of the COVID-19 pandemic on phthalate exposure \u003cbr\u003e17.4.3 The U.S. response to phthalate exposure \u003cbr\u003e17.4.3 Some U.S. State-level actions \u003cbr\u003e17.4.4 2008 Consumer Product Safety Improvement Act \u003cbr\u003e17.4.5 Food and Drug Administration (FDA) petition, lawsuit, and final ruling \u003cbr\u003e17.4.6 Preventing Harmful Exposure to Phthalates Act 117th Congress\u003cbr\u003e (2021-2022) \u003cbr\u003e17.4.7 Other U.S. Federal Agencies \u003cbr\u003e17.4.8 Conclusion \u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e Werner Butte\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.3.1 Indoor air \u003cbr\u003e17.5.3.2 House dust \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.4.1 Indoor plasticizers and health \u003cbr\u003e17.5.4.2 Human exposure assessment for plasticizers in the indoor\u003cbr\u003e environment \u003cbr\u003e17.5.4.3 Reference and guideline values of plasticizers to assess indoor\u003cbr\u003e quality \u003cbr\u003e17.5.5 Summary \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e William R. Roy\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment \u003cbr\u003e18.1.2 Levels in the environment \u003cbr\u003e18.2 Plasticizers in water \u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water. \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water \u003cbr\u003e18.2.5 Adsorption from water \u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003e Summary and concluding remarks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 REGULATIONS AND DATA\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect \u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 PERSONAL PROTECTION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.","published_at":"2023-02-24T14:06:20-05:00","created_at":"2023-02-24T13:56:07-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["abiotic","adipates","adsorption","alkyl sulfonates","azelates","benzoates","biodegradation","book","chlorinated paraffins","citrates","coated fabrics","cosmetics","database","degradation","dental materials","electrical","electronics","energetic plasticizers","environment","epoxides","eye protection","fibers","film","flooring","foams","food","footwear","gaskets","gloves","inks","medical applications","membranes","p-additives","paints","pharmaceutical products","plasticisers","plasticizers additives","polymer","releases","solubility","varnishes","volatilization","water"],"price":39000,"price_min":39000,"price_max":39000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393978663069,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Plasticizers, 4th Edition","public_title":null,"options":["Default Title"],"price":39000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-77467-022-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670224-Case.png?v=1677265546"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670224-Case.png?v=1677265546","options":["Title"],"media":[{"alt":null,"id":27340016779421,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670224-Case.png?v=1677265546"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670224-Case.png?v=1677265546","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eEditor: George Wypych \u003cbr\u003eISBN 978-1- 77467-022-4 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: Jan. 2023 \u003cbr data-mce-fragment=\"1\"\u003ePages 894+xxii\u003cbr data-mce-fragment=\"1\"\u003eTables 115, Figures 360\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eHandbook of Plasticizers brings together in one place all that is known about this vital and rapidly expanding field. The book serves both as a basic reference source for researchers, engineers, and others involved in plastics processing, research and development as well as a source of ideas regarding future developments.\u003cbr\u003e\u003cbr\u003eThis book contains a comprehensive review of information available in the open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. The information from the most recent sources was used to update information from previous editions. \u003cbr\u003eThe information available today permits the use of plasticizers more effectively and helps to avoid certain plasticizers in applications where they may cause health or material durability problems. The source of raw materials used to produce plasticizers is becoming one of the issues in their selection. The book contains information on plasticizers obtained from renewable resources. Plasticizer incorporation demands a broad background of information because plasticizers are now added to complex mixtures containing a variety of materials that may have different reactions to the presence of plasticizers. Plasticizer choice is also not simple because there is a large selection of commercial plasticizers and various environmental issues dictating preferred solutions.\u003cbr\u003e\u003cbr\u003eBoth aspects considered indicate the need for a comprehensive source which, using currently available means of the computerized database, should provide data and a broad background of theoretical information in a condensed form easy to search. \u003cbr\u003e\u003cbr\u003eNumerical data on the most important plasticizers are provided in the tabular form of the printed book entitled Databook of Plasticizers. \u003cbr\u003eTwenty-one chapters are included in the Handbook of Plasticizers. The full Table of Contents is given below. Only some chapters are discussed here to add more information that may not be obvious from the table of contents.\u003cbr\u003e\u003cbr\u003eData are available for a large number of commercial plasticizers. This data is used in Chapter 2 to specify typical properties of plasticizers that belong to one of the thirty-one groups. The ranges of expected properties for a given group are also given.\u003cbr\u003e\u003cbr\u003eChapters 5, 6, and 7 contain new and historical approaches, which explain the mechanisms of plasticizers’ action and their behavior in plasticized systems. This theoretical background helps to understand practical observations and provides guidance to the methods of material improvement. Chapter 9 shows plasticization steps and results of various analytical studies, which help in understanding these steps and the parameters which may control them.\u003cbr\u003e\u003cbr\u003eTwenty-nine sections of Chapter 10 discuss plasticizers’ effect on the physical and mechanical properties of plasticized materials. These sections are essential for understanding the behavior of materials and the principles of their formulation. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 11 contains data on the use of plasticizers in 61 groups of polymers. The information is grouped under the following sections – Frequently used plasticizers, Practical concentrations, Main functions performed by plasticizers, Mechanism of plasticizer action, Effect of plasticizers on polymer and other additives, and Typical formulations. The use of such a consistent method of data presentation helps to find information quickly and to compare data from various sources and applications. \u003cbr\u003e\u003cbr\u003eSimilarly, Chapter 13 discusses the use of plasticizers in 33 groups of products according to a similar breakdown, including Plasticizer types, Plasticizer concentration, Reasons for plasticizer use, Advantages and disadvantages of plasticizer use, Effect of plasticizers on product properties, and Examples of formulations. Both chapters make use of a large number of patents and information in open literature discussing the most current findings and trends.\u003cbr\u003e\u003cbr\u003eIn Chapter 14, attempts are being made to discuss the following topics: The effect of plasticizers on process conditions, Processing defects formation and elimination with the use of plasticizers, In the fluence of rheological changes on the process, Equipment maintenance, and energy consumption. This chapter discusses 15 methods of polymer and rubber processing.\u003cbr\u003eSeveral chapters which follow discuss various aspects of plasticizer’s effect on health, safety, and the environment. Chapter 17 contains opinions of renowned experts on various aspects of plasticizers’ effect on health and safety. Chapter 18 contains information on plasticizers’ persistence in soil and water. Plasticizers releases and their presence in the environment are discussed for many important commercial plasticizers.\u003cbr\u003e\u003cbr\u003eThis short review and the Table of Contents show that this book is the most comprehensive source of current information on plasticizers. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers, especially considering that so many aspects of application plasticizers have recently changed that older books cannot provide the right answers. This book is best used in conjunction with the Plasticizer Database and\/or Databook of Plasticizers which give information on the present status and properties of industrial and research plasticizers.\u003cbr\u003e\u003c\/p\u003e\n\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e1 INTRODUCTION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e1.1 Historical developments \u003cbr\u003e1.2 Expectations from plasticizers \u003cbr\u003e1.3 Definitions \u003cbr\u003e1.4 Classification \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 PLASTICIZER TYPES\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Characteristic properties of industrial plasticizers \u003cbr\u003e2.2.1 Abietates \u003cbr\u003e2.2.2 Adipates \u003cbr\u003e2.2.3 Alkyl sulfonates \u003cbr\u003e2.2.4 Amides and amines \u003cbr\u003e2.2.5 Azelates \u003cbr\u003e2.2.6 Benzoates \u003cbr\u003e2.2.7 Bioplasticizers \u003cbr\u003e2.2.8 Biodegradable plasticizers \u003cbr\u003e2.2.9 Chlorinated paraffins, \u003cbr\u003e2.2.10 Citrates \u003cbr\u003e2.2.11 Cyclohexane dicarboxylic acid, diisononyl ester \u003cbr\u003e2.2.12 Energetic plasticizers \u003cbr\u003e2.2.13 Epoxides \u003cbr\u003e2.2.14 Esters of C10-30 dicarboxylic acids \u003cbr\u003e2.2.15 Ether-ester plasticizers \u003cbr\u003e2.2.16 Glutarates \u003cbr\u003e2.2.17 Hydrocarbon oils \u003cbr\u003e2.2.18 Hydrocarbon resins \u003cbr\u003e2.2.19 Isobutyrates \u003cbr\u003e2.2.20 Maleates \u003cbr\u003e2.2.21 Oleates \u003cbr\u003e2.2.22 Pentaerythritol derivatives \u003cbr\u003e2.2.23 Phosphates \u003cbr\u003e2.2.24 Phthalate-free plasticizers \u003cbr\u003e2.2.25 Phthalates \u003cbr\u003e2.2.26 Polymeric plasticizers \u003cbr\u003e2.2.26.1 Esters \u003cbr\u003e2.2.26.2 Polybutenes \u003cbr\u003e2.26.3 Others \u003cbr\u003e2.2.27 Ricinoleates \u003cbr\u003e2.2.28 Sebacates \u003cbr\u003e2.2.29 Succinates \u003cbr\u003e2.2.30 Sulfonamides \u003cbr\u003e2.2.31 Superplasticizers and plasticizers for concrete \u003cbr\u003e2.2.32 Tri- and pyromellitates \u003cbr\u003e2.3 Methods of synthesis and their effect on properties of plasticizers \u003cbr\u003e2.4 Reactive plasticizers and internal plasticization \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 TYPICAL METHODS OF QUALITY CONTROL OF PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e3.1 Abbreviations, terminology, and vocabulary \u003cbr\u003e3.2 Acid number \u003cbr\u003e3.3 Aging studies \u003cbr\u003e3.4 Ash \u003cbr\u003e3.5 Brittleness temperature \u003cbr\u003e3.6 Brookfield viscosity \u003cbr\u003e3.7 Chemical resistance \u003cbr\u003e3.8 Color \u003cbr\u003e3.9 Compatibility \u003cbr\u003e3.10 Compression set \u003cbr\u003e3.11 Concrete additives \u003cbr\u003e3.12 Electrical properties \u003cbr\u003e3.13 Extractable matter \u003cbr\u003e3.14 Flash and fire point \u003cbr\u003e3.15 Fogging \u003cbr\u003e3.16 Fusion \u003cbr\u003e3.17 Gas chromatography \u003cbr\u003e3.18 Hardness \u003cbr\u003e3.19 Infrared analysis of plasticizers \u003cbr\u003e3.20 Kinematic viscosity \u003cbr\u003e3.21 Marking (classification) \u003cbr\u003e3.22 Melt rheology \u003cbr\u003e3.23 Migration \u003cbr\u003e3.24 Polyvinylchloride standard specification \u003cbr\u003e3.25 Powder-mix time \u003cbr\u003e3.26 Purity \u003cbr\u003e3.27 Refractive index \u003cbr\u003e3.28 Residual contamination \u003cbr\u003e3.29 Sampling \u003cbr\u003e3.30 Saponification value \u003cbr\u003e3.31 Saybolt viscosity \u003cbr\u003e3.32 Sorption of plasticizer \u003cbr\u003e3.33 Specific gravity \u003cbr\u003e3.34 Specification \u003cbr\u003e3.35 Staining \u003cbr\u003e3.36 Stiffness \u003cbr\u003e3.37 Tensile properties \u003cbr\u003e3.38 Thermal expansion coefficient \u003cbr\u003e3.39 Unsaponifiable contents \u003cbr\u003e3.40 Viscosity of plastisols and organosols \u003cbr\u003e3.41 Water concentration \u003cbr\u003e3.42 Weight loss \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 TRANSPORTATION AND STORAGE\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e4.1 Transportation \u003cbr\u003e4.2 Storage \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 MECHANISMS OF PLASTICIZERS ACTION\u003c\/strong\u003e \u003cbr\u003e A. Marcilla and M. Beltrán\u003cbr\u003e5.1 Classical theories \u003cbr\u003e5.1.1 The lubricity theory \u003cbr\u003e5.1.2 The gel theory \u003cbr\u003e5.1.3 Moorshead's empirical approach \u003cbr\u003e5.2 The free volume theory \u003cbr\u003e5.2.1 Mathematical models \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 COMPATIBILITY OF PLASTICIZERS 159\u003c\/strong\u003e\u003cbr\u003e George Wypych\u003cbr\u003e6.1 Prediction methods of plasticizer compatibility \u003cbr\u003e6.1.1 Flory-Huggins interaction parameter \u003cbr\u003e6.1.2 Prediction of Gibbs free energy of mixing UNIFAC-FV \u003cbr\u003e6.1.3 Molar volume \u003cbr\u003e6.1.4 Polarity \u003cbr\u003e6.1.5 Hansen solubility parameters \u003cbr\u003e6.1.6 Hoy solubility parameters and other methods based on solubility\u003cbr\u003e parameters \u003cbr\u003e6.1.7 Hildebrand solubility parameter \u003cbr\u003e6.1.8 Molecule charge density using COSMO \u003cbr\u003e6.1.9 Mesoscale simulation using DPD \u003cbr\u003e6.1.10 Ap\/Po ratio \u003cbr\u003e6.2 Validation methods \u003cbr\u003e6.2.1 DSC analysis \u003cbr\u003e6.2.2 Inverse gas chromatography \u003cbr\u003e6.2.3 Solid-gel transition temperature \u003cbr\u003e6.3 Effect of plasticizer structure and conditions of incorporation on\u003cbr\u003e compatibility \u003cbr\u003e6.3.1 Effect of plasticizer structure \u003cbr\u003e6.3.1.1 Aromaticity \u003cbr\u003e6.3.1.2 Branching \u003cbr\u003e6.3.1.3 Chain length \u003cbr\u003e6.3.1.4 Molecular weight \u003cbr\u003e6.3.1.5 Polarity \u003cbr\u003e6.3.2 Conditions of incorporation \u003cbr\u003e6.3.2.1 Amount (concentration) \u003cbr\u003e6.3.2.2 Method of processing \u003cbr\u003e6.3.2.3 Temperature \u003cbr\u003e6.4 Effect of plasticizer type on properties of plasticized material \u003cbr\u003e6.4.1 Crystallinity \u003cbr\u003e6.4.2 Exudation \u003cbr\u003e6.4.3 Permanence \u003cbr\u003e6.4.4 Thermal degradation \u003cbr\u003e6.4.5 Volatility \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 PLASTICIZER MOTION AND DIFFUSION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e7.1 Plasticizer diffusion rate and the methods of study \u003cbr\u003e7.2 Plasticizer motion and distribution in the matrix \u003cbr\u003e7.3 Plasticizer migration \u003cbr\u003e7.4 Antiplasticization \u003cbr\u003e7.5 Effect of diffusion and mobility of plasticizers on their suitability \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 EFFECT OF PLASTICIZERS ON OTHER COMPONENTS OF FORMULATION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e8.1 Plasticizer consumption by fillers \u003cbr\u003e8.2 Solubility of additives in plasticizers \u003cbr\u003e8.3 Additive molecular mobility and transport in the presence of\u003cbr\u003e plasticizers \u003cbr\u003e8.4 Effect of plasticizers on polymerization and curing reactions \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 PLASTICIZATION STEPS\u003c\/strong\u003e \u003cbr\u003e A. Marcilla, J.C. García and M. Beltrán\u003cbr\u003e9.1 Plasticization steps \u003cbr\u003e9.2 Studies of plastisol's behavior during gelation and fusion \u003cbr\u003e9.2.1 Rheological characterization \u003cbr\u003e9.2.2 Studies by Scanning Electron Microscopy \u003cbr\u003e9.2.3 Study of polymer-plasticizer interactions by DSC \u003cbr\u003e9.2.4 Study of polymer-plasticizer interactions by SALS \u003cbr\u003e9.2.5 Study of polymer-plasticizer interactions by FTIR \u003cbr\u003e9.2.6 Study of polymer-plasticizer interactions by TG \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 EFFECT OF PLASTICIZERS ON PROPERTIES OF PLASTICIZED MATERIALS\u003c\/strong\u003e\u003cbr\u003e George Wypych\u003cbr\u003e10.1 Mechanical properties \u003cbr\u003e10.1.1 Tensile strength \u003cbr\u003e10.1.2 Elongation \u003cbr\u003e10.1.3 Hardness \u003cbr\u003e10.1.4 Toughness, stiffness, ductility, modulus \u003cbr\u003e10.1.5 Other mechanical properties \u003cbr\u003e10.2 Optical properties \u003cbr\u003e10.3 Spectral properties \u003cbr\u003e10.4 Gloss \u003cbr\u003e10.5 Sound \u003cbr\u003e10.6 Rheological properties \u003cbr\u003e10.7 Magnetorheological properties \u003cbr\u003e10.8 Electrical properties \u003cbr\u003e10.9 Glass transition temperature \u003cbr\u003e10.10 Flammability and smoke formation in the presence of plasticizers \u003cbr\u003e10.11 Thermal degradation \u003cbr\u003e10.11.1 Thermal degradation of plasticizers \u003cbr\u003e10.11.2 Effect of polymer degradation products on plasticizers \u003cbr\u003e10.11.3 Effect of plasticizer degradation products on polymer degradation \u003cbr\u003e10.11.4 Loss of plasticizer from the material due to chemical decomposition\u003cbr\u003e reactions and evaporation \u003cbr\u003e10.11.5 Effect of plasticizers on the thermal degradation of materials \u003cbr\u003e10.12 Effect of UV and ionizing radiation on plasticized materials \u003cbr\u003e10.13 Hydrolysis \u003cbr\u003e10.14 Biodegradation in the presence of plasticizers \u003cbr\u003e10.15 Crystallization, structure, and orientation of macromolecules \u003cbr\u003e10.16 Morphology \u003cbr\u003e10.17 Plasticizer effect on contact with other materials \u003cbr\u003e10.18 Influence of plasticizers on swelling \u003cbr\u003e10.19 Fogging \u003cbr\u003e10.20 Hydrophobic\/hydrophilic properties \u003cbr\u003e10.21 Osmotic pressure of plasticizer in polymer \u003cbr\u003e10.22 Self-healing \u003cbr\u003e10.23 Shrinkage \u003cbr\u003e10.24 Soiling \u003cbr\u003e10.25 Free volume \u003cbr\u003e10.26 Dissolution \u003cbr\u003e10.27 Foaming \u003cbr\u003e10.28 Permeability \u003cbr\u003e10.29 Sorption \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 PLASTICIZERS USE AND SELECTION FOR SPECIFIC POLYMERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e11.1 ABS \u003cbr\u003e11.1.1 Frequently used plasticizers \u003cbr\u003e11.1.2 Practical concentrations \u003cbr\u003e11.1.3 Main functions performed by plasticizers \u003cbr\u003e11.1.4 Mechanism of plasticizer action \u003cbr\u003e11.1.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.1.6 Typical formulations \u003cbr\u003e11.2 Acrylics \u003cbr\u003e11.2.1 Frequently used plasticizers \u003cbr\u003e11.2.2 Practical concentrations \u003cbr\u003e11.2.3 Main functions performed by plasticizers \u003cbr\u003e11.2.4 Mechanism of plasticizer action \u003cbr\u003e11.2.5 Typical formulations \u003cbr\u003e11.3 Bromobutyl rubber \u003cbr\u003e11.3.1 Frequently used plasticizers \u003cbr\u003e11.3.2 Practical concentrations \u003cbr\u003e11.3.3 Main functions performed by plasticizers \u003cbr\u003e11.3.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.4 Butyl terpolymer \u003cbr\u003e11.4.1 Frequently used plasticizers \u003cbr\u003e11.4.2 Practical concentrations \u003cbr\u003e11.5 Cellulose acetate \u003cbr\u003e11.5.1 Frequently used plasticizers \u003cbr\u003e11.5.2 Practical concentrations \u003cbr\u003e11.5.3 Main functions performed by plasticizers \u003cbr\u003e11.5.4 Mechanism of plasticizer action \u003cbr\u003e11.5.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.6 Cellulose butyrate and propionate \u003cbr\u003e11.6.1 Frequently used plasticizers \u003cbr\u003e11.6.2 Practical concentrations \u003cbr\u003e11.6.3 Main functions performed by plasticizers \u003cbr\u003e11.6.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.7 Cellulose nitrate \u003cbr\u003e11.7.1 Frequently used plasticizers \u003cbr\u003e11.7.2 Practical concentrations \u003cbr\u003e11.7.3 Main functions performed by plasticizers \u003cbr\u003e11.7.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.7.5 Typical formulations \u003cbr\u003e11.8 Chitosan \u003cbr\u003e11.8.1 Frequently used plasticizers \u003cbr\u003e11.8.2 Practical concentrations \u003cbr\u003e11.8.3 Main functions performed by plasticizers \u003cbr\u003e11.8.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.9 Chlorinated polyvinylchloride \u003cbr\u003e11.9.1 Frequently used plasticizers \u003cbr\u003e11.9.2 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.10 Chlorosulfonated polyethylene \u003cbr\u003e11.10.1 Frequently used plasticizers \u003cbr\u003e11.10.2 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.11 Copolymers \u003cbr\u003e11.11.1 Frequently used plasticizers \u003cbr\u003e11.11.2 Practical concentrations \u003cbr\u003e11.11.3 Main functions performed by plasticizers \u003cbr\u003e11.11.4 Mechanism of plasticizer action \u003cbr\u003e11.12 Cyanoacrylates \u003cbr\u003e11.12.1 Frequently used plasticizers \u003cbr\u003e11.12.2 Practical concentrations \u003cbr\u003e11.12.3 Main functions performed by plasticizers \u003cbr\u003e11.12.4 Effect of plasticizer on polymer and other additives \u003cbr\u003e11.13 Ethylcellulose \u003cbr\u003e11.13.1 Frequently used plasticizers \u003cbr\u003e11.13.2 Practical concentrations \u003cbr\u003e11.13.3 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.14 Epoxy resin \u003cbr\u003e11.14.1 Frequently used plasticizers \u003cbr\u003e11.14.2 Practical concentrations \u003cbr\u003e11.14.3 Main functions performed by plasticizers \u003cbr\u003e11.14.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.15 Ethylene-propylene-diene copolymer \u003cbr\u003e11.15.1 Frequently used plasticizers \u003cbr\u003e11.15.2 Practical concentrations \u003cbr\u003e11.15.3 Main functions performed by plasticizers \u003cbr\u003e11.15.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.15.5 Typical formulations \u003cbr\u003e11.16 Ethylene-vinyl acetate copolymer \u003cbr\u003e11.17 Ionomers \u003cbr\u003e11.17.1 Frequently used plasticizers \u003cbr\u003e11.17.2 Practical concentrations \u003cbr\u003e11.17.3 Main functions performed by plasticizers \u003cbr\u003e11.17.4 Mechanism of plasticizer action \u003cbr\u003e11.17.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.18 Nitrile rubber \u003cbr\u003e11.18.1 Frequently used plasticizers \u003cbr\u003e11.18.2 Practical concentrations \u003cbr\u003e11.18.3 Main functions performed by plasticizers \u003cbr\u003e11.18.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.18.5 Typical formulations \u003cbr\u003e11.19 Perfluoropolymers \u003cbr\u003e11.20 Polyacrylonitrile \u003cbr\u003e11.20.1 Frequently used plasticizers \u003cbr\u003e11.20.2 Practical concentrations \u003cbr\u003e11.20.3 Main functions performed by plasticizers \u003cbr\u003e11.20.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.21 Polyamide \u003cbr\u003e11.21.1 Frequently used plasticizers \u003cbr\u003e11.21.2 Practical concentrations \u003cbr\u003e11.21.3 Main functions performed by plasticizers \u003cbr\u003e11.21.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.22 Polyamine \u003cbr\u003e11.23 Polyaniline \u003cbr\u003e11.24 Polybutadiene \u003cbr\u003e11.24.1 Frequently used plasticizers \u003cbr\u003e11.24.2 Practical concentrations \u003cbr\u003e11.24.3 Main functions performed by plasticizers \u003cbr\u003e11.25 Polybutylene \u003cbr\u003e11.25.1 Frequently used plasticizers \u003cbr\u003e11.25.2 Practical concentrations \u003cbr\u003e11.25.3 Main functions performed by plasticizers \u003cbr\u003e11.26 Poly(butyl methacrylate) \u003cbr\u003e11.26.1 Frequently used plasticizers \u003cbr\u003e11.26.2 Practical concentrations \u003cbr\u003e11.26.3 Main functions performed by plasticizers \u003cbr\u003e11.27 Polycarbonate \u003cbr\u003e11.27.1 Frequently used plasticizers \u003cbr\u003e11.27.2 Practical concentrations \u003cbr\u003e11.27.3 Main functions performed by plasticizers \u003cbr\u003e11.27.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.28 Polyester \u003cbr\u003e11.28.1 Frequently used plasticizers \u003cbr\u003e11.28.2 Practical concentrations \u003cbr\u003e11.28.3 Main functions performed by plasticizers \u003cbr\u003e11.28.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.28.5 Typical formulations \u003cbr\u003e11.29 Polyetherimide \u003cbr\u003e11.30 Polyethylacrylate \u003cbr\u003e11.31 Polyethylene \u003cbr\u003e11.31.1 Frequently used plasticizers \u003cbr\u003e11.31.2 Practical concentrations \u003cbr\u003e11.31.3 Main functions performed by plasticizers \u003cbr\u003e11.31.4 Mechanism of plasticizer action \u003cbr\u003e11.31.5 Typical formulations \u003cbr\u003e11.32 Poly(ethylene oxide) \u003cbr\u003e11.32.1 Frequently used plasticizers \u003cbr\u003e11.32.2 Practical concentrations \u003cbr\u003e11.32.3 Main functions performed by plasticizers \u003cbr\u003e11.32.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.33 Poly(3-hydroxybutyrate) \u003cbr\u003e11.33.1 Frequently used plasticizers \u003cbr\u003e11.33.2 Practical concentrations \u003cbr\u003e11.33.3 Main functions performed by plasticizers \u003cbr\u003e11.34 Polyisobutylene \u003cbr\u003e11.35 Polyisoprene \u003cbr\u003e11.35.1 Frequently used plasticizers \u003cbr\u003e11.35.2 Practical concentrations \u003cbr\u003e11.35.3 Main functions performed by plasticizers \u003cbr\u003e11.35.4 Typical formulations \u003cbr\u003e11.36 Polyimide \u003cbr\u003e11.36.1 Frequently used plasticizers \u003cbr\u003e11.36.2 Practical concentrations \u003cbr\u003e11.36.3 Main functions performed by plasticizers \u003cbr\u003e11.36.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.37 Polylactide \u003cbr\u003e11.37.1 Frequently used plasticizers \u003cbr\u003e11.37.2 Practical concentrations \u003cbr\u003e11.37.3 Main functions performed by plasticizers \u003cbr\u003e11.37.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.38 Polymethylmethacrylate \u003cbr\u003e11.38.1 Frequently used plasticizers \u003cbr\u003e11.38.2 Practical concentrations \u003cbr\u003e11.38.3 Main functions performed by plasticizers \u003cbr\u003e11.38.4 Mechanism of plasticizer action \u003cbr\u003e11.38.5 Typical formulations \u003cbr\u003e11.39 Polypropylene \u003cbr\u003e11.39.1 Frequently used plasticizers \u003cbr\u003e11.39.2 Practical concentrations \u003cbr\u003e11.39.3 Main functions performed by plasticizers \u003cbr\u003e11.39.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.40 Poly(propylene carbonate) \u003cbr\u003e11.40.1 Frequently used plasticizers \u003cbr\u003e11.40.2 Practical concentrations \u003cbr\u003e11.40.3 Main functions performed by plasticizers \u003cbr\u003e11.40.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.41 Poly(N-vinylcarbazole) \u003cbr\u003e11.42 Poly(N-vinylpyrrolidone) \u003cbr\u003e11.42.1 Frequently used plasticizers \u003cbr\u003e11.42.2 Practical concentrations \u003cbr\u003e11.42.3 Main functions performed by plasticizers \u003cbr\u003e11.42.4 Mechanism of plasticizer action \u003cbr\u003e11.42.5 Typical formulations \u003cbr\u003e11.43 Poly(phenylene ether) \u003cbr\u003e11.43.1 Frequently used plasticizers \u003cbr\u003e11.43.2 Practical concentrations \u003cbr\u003e11.43.3 Main functions performed by plasticizers \u003cbr\u003e11.44 Poly(phenylene sulfide) \u003cbr\u003e11.45 Polystyrene \u003cbr\u003e11.45.1 Frequently used plasticizers \u003cbr\u003e11.45.2 Practical concentrations \u003cbr\u003e11.45.3 Main functions performed by plasticizers \u003cbr\u003e11.46 Polysulfide \u003cbr\u003e11.46.1 Frequently used plasticizers \u003cbr\u003e11.46.2 Practical concentrations \u003cbr\u003e11.46.3 Main functions performed by plasticizers \u003cbr\u003e11.47 Polysulfone \u003cbr\u003e11.48 Polyurethanes \u003cbr\u003e11.48.1 Frequently used plasticizers \u003cbr\u003e11.48.2 Practical concentrations \u003cbr\u003e11.48.3 Main functions performed by plasticizers \u003cbr\u003e11.48.4 Mechanism of plasticizers action \u003cbr\u003e11.48.5 Effect of plasticizers on polymers and other additives \u003cbr\u003e11.48.6 Typical formulations \u003cbr\u003e11.49 Polyvinylacetate \u003cbr\u003e11.49.1 Frequently used plasticizers \u003cbr\u003e11.49.2 Practical concentrations \u003cbr\u003e11.49.3 Main functions performed by plasticizers \u003cbr\u003e11.49.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.50 Polyvinylalcohol \u003cbr\u003e11.50.1 Frequently used plasticizers \u003cbr\u003e11.50.2 Practical concentrations \u003cbr\u003e11.50.3 Main functions performed by plasticizers \u003cbr\u003e11.50.4 Mechanism of plasticizer action \u003cbr\u003e11.50.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.50.6 Typical formulations \u003cbr\u003e11.51 Polyvinylbutyral \u003cbr\u003e11.51.1 Frequently used plasticizers \u003cbr\u003e11.51.2 Practical concentrations \u003cbr\u003e11.51.3 Main functions performed by plasticizers \u003cbr\u003e11.51.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.52 Polyvinylchloride \u003cbr\u003e11.52.1 Frequently used plasticizers \u003cbr\u003e11.52.2 Practical concentrations \u003cbr\u003e11.52.3 Main functions performed by plasticizers \u003cbr\u003e11.52.4 Mechanism of plasticizer action \u003cbr\u003e11.52.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.52.6 Typical formulations \u003cbr\u003e11.53 Polyvinylfluoride \u003cbr\u003e11.54 Polyvinylidenefluoride \u003cbr\u003e11.54.1 Frequently used plasticizers \u003cbr\u003e11.54.2 Practical concentrations \u003cbr\u003e11.54.3 Main functions performed by plasticizers \u003cbr\u003e11.54.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.55 Polyvinylidenechloride \u003cbr\u003e11.56 Proteins \u003cbr\u003e11.56.1 Frequently used plasticizers \u003cbr\u003e11.56.2 Practical concentrations \u003cbr\u003e11.56.3 Main functions performed by plasticizers \u003cbr\u003e11.56.4 Mechanism of plasticizer action \u003cbr\u003e11.56.5 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.57 Rubber, natural \u003cbr\u003e11.57.1 Frequently used plasticizers \u003cbr\u003e11.57.2 Practical concentrations \u003cbr\u003e11.57.3 Main functions performed by plasticizers \u003cbr\u003e11.57.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.57.5 Typical formulations \u003cbr\u003e11.58 Silicone \u003cbr\u003e11.58.1 Frequently used plasticizers \u003cbr\u003e11.58.2 Practical concentrations \u003cbr\u003e11.58.3 Main functions performed by plasticizers \u003cbr\u003e11.58.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.58.5 Typical formulations \u003cbr\u003e11.59 Styrene-butadiene rubber \u003cbr\u003e11.59.1 Frequently used plasticizers \u003cbr\u003e11.59.2 Practical concentrations \u003cbr\u003e11.59.3 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.59.4 Typical formulations \u003cbr\u003e11.60 Styrene-butadiene-styrene rubber \u003cbr\u003e11.60.1 Frequently used plasticizers \u003cbr\u003e11.60.2 Practical concentrations \u003cbr\u003e11.60.3 Main functions performed by plasticizers \u003cbr\u003e11.60.4 Effect of plasticizer on polymer and other additives \u003cbr\u003e11.61 Starch \u003cbr\u003e11.61.1 Frequently used plasticizers \u003cbr\u003e11.61.2 Practical concentrations \u003cbr\u003e11.61.3 Main functions performed by plasticizers \u003cbr\u003e11.61.4 Effect of plasticizers on polymer and other additives \u003cbr\u003e11.61.5 Typical formulations\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e12 PLASTICIZERS IN POLYMER BLENDS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e12.1 Plasticizer partition between component polymers \u003cbr\u003e12.2 Interaction of plasticizers with blend components \u003cbr\u003e12.3 Effect of plasticizers on blend properties \u003cbr\u003e12.4 Blending to reduce or to replace plasticizers \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 PLASTICIZERS IN VARIOUS INDUSTRIAL PRODUCTS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e13.1 Adhesives and sealants \u003cbr\u003e13.1.1 Plasticizer types \u003cbr\u003e13.1.2 Plasticizer concentration \u003cbr\u003e13.1.3 Reasons for plasticizer use \u003cbr\u003e13.1.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.1.5 Effect of plasticizers on product properties \u003cbr\u003e13.1.6 Examples of formulations \u003cbr\u003e13.2 Aerospace \u003cbr\u003e13.3 Agriculture \u003cbr\u003e13.4 Automotive \u003cbr\u003e13.4.1 Plasticizer types \u003cbr\u003e13.4.2 Plasticizer concentration \u003cbr\u003e13.4.3 Reasons for plasticizer use \u003cbr\u003e13.4.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.4.5 Effect of plasticizers on product properties \u003cbr\u003e13.5 Cementitious materials \u003cbr\u003e13.5.1 Plasticizer types \u003cbr\u003e13.5.2 Plasticizer concentration \u003cbr\u003e13.5.3 Reasons for plasticizer use \u003cbr\u003e13.5.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.5.5 Effect of plasticizers on product properties \u003cbr\u003e13.5.6 Examples of formulations \u003cbr\u003e13.6 Coated fabrics \u003cbr\u003e13.6.1 Plasticizer types \u003cbr\u003e13.6.2 Plasticizer concentration \u003cbr\u003e13.6.3 Reasons for plasticizer use \u003cbr\u003e13.6.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.6.5 Effect of plasticizers on product properties \u003cbr\u003e13.6.6 Examples of formulations \u003cbr\u003e13.7 Composites \u003cbr\u003e13.7.1 Plasticizer types \u003cbr\u003e13.7.2 Plasticizer concentrations \u003cbr\u003e13.7.3 Reasons for addition \u003cbr\u003e13.7.4 Effect of plasticizers on product properties \u003cbr\u003e13.8 Cosmetics \u003cbr\u003e13.8.1 Plasticizer types \u003cbr\u003e13.8.2 Plasticizer concentration \u003cbr\u003e13.8.3 Reasons for plasticizer use \u003cbr\u003e13.8.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.8.5 Effect of plasticizers on product properties \u003cbr\u003e13.8.6 Examples of formulations \u003cbr\u003e13.9 Cultural heritage \u003cbr\u003e13.10 Dental materials \u003cbr\u003e13.10.1 Plasticizer types \u003cbr\u003e13.10.2 Plasticizer concentration \u003cbr\u003e13.10.3 Reasons for plasticizer use \u003cbr\u003e13.10.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.11 Electrical and electronics \u003cbr\u003e13.11.1 Plasticizer types \u003cbr\u003e13.11.2 Plasticizer concentration \u003cbr\u003e13.11.3 Reasons for plasticizer use \u003cbr\u003e13.11.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.11.5 Effect of plasticizers on product properties \u003cbr\u003e13.12 Fibers \u003cbr\u003e13.12.1 Plasticizer types \u003cbr\u003e13.12.2 Plasticizer concentration \u003cbr\u003e13.12.3 Reasons for plasticizer use \u003cbr\u003e13.12.4 Effect of plasticizers on product properties \u003cbr\u003e13.13 Film \u003cbr\u003e13.13.1 Plasticizer types \u003cbr\u003e13.13.2 Plasticizer concentration \u003cbr\u003e13.13.3 Reasons for plasticizer use \u003cbr\u003e13.13.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.13.5 Effect of plasticizers on product properties \u003cbr\u003e13.14 Food \u003cbr\u003e13.14.1 Plasticizer types \u003cbr\u003e13.14.2 Plasticizer concentration \u003cbr\u003e13.14.3 Reasons for plasticizer use \u003cbr\u003e13.14.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.14.5 Effect of plasticizers on product properties \u003cbr\u003e13.15 Flooring \u003cbr\u003e13.15.1 Plasticizer types \u003cbr\u003e13.15.2 Plasticizer concentration \u003cbr\u003e13.15.3 Reasons for plasticizer use \u003cbr\u003e13.15.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.15.5 Effect of plasticizers on product properties \u003cbr\u003e13.15.6 Examples of formulations \u003cbr\u003e13.16 Foams \u003cbr\u003e13.16.1 Plasticizer types \u003cbr\u003e13.16.2 Plasticizer concentration \u003cbr\u003e13.16.3 Reasons for plasticizer use \u003cbr\u003e13.16.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.16.5 Effect of plasticizers on product properties \u003cbr\u003e13.16.6 Examples of formulations \u003cbr\u003e13.17 Footwear \u003cbr\u003e13.17.1 Plasticizer types \u003cbr\u003e13.17.2 Plasticizer concentration \u003cbr\u003e13.17.3 Reasons for plasticizer use \u003cbr\u003e13.17.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.17.5 Example of formulation \u003cbr\u003e13.18 Fuel cells \u003cbr\u003e13.18.1 Plasticizer types \u003cbr\u003e13.18.2 Plasticizer concentration \u003cbr\u003e13.18.3 Reasons for plasticizer use \u003cbr\u003e13.19 Gaskets \u003cbr\u003e13.19.1 Plasticizer types \u003cbr\u003e13.19.2 Plasticizer concentration \u003cbr\u003e13.19.3 Reasons for plasticizer use \u003cbr\u003e13.19.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.19.5 Examples of formulations \u003cbr\u003e13.20 Household products \u003cbr\u003e13.21 Inks, varnishes, and lacquers \u003cbr\u003e13.21.1 Plasticizer types \u003cbr\u003e13.21.2 Plasticizer concentration \u003cbr\u003e13.21.3 Reasons for plasticizer use \u003cbr\u003e13.21.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.21.5 Effect of plasticizers on product properties \u003cbr\u003e13.21.6 Examples of formulations \u003cbr\u003e13.22 Medical applications \u003cbr\u003e13.22.1 Plasticizer types \u003cbr\u003e13.22.2 Plasticizer concentration \u003cbr\u003e13.22.3 Reasons for plasticizer use \u003cbr\u003e13.22.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.22.5 Effect of plasticizers on product properties \u003cbr\u003e13.22.6 Examples of formulations \u003cbr\u003e13.23 Membranes \u003cbr\u003e13.23.1 Plasticizer types \u003cbr\u003e13.23.2 Plasticizer concentration \u003cbr\u003e13.23.3 Reasons for plasticizer use \u003cbr\u003e13.23.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.24 Microspheres \u003cbr\u003e13.24.1 Plasticizer types \u003cbr\u003e13.24.2 Plasticizer concentration \u003cbr\u003e13.24.3 Reasons for plasticizer use \u003cbr\u003e13.25 Paints and coatings \u003cbr\u003e13.25.1 Plasticizer types \u003cbr\u003e13.25.2 Plasticizer concentration \u003cbr\u003e13.25.3 Reasons for plasticizer use \u003cbr\u003e13.25.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.25.5 Effect of plasticizers on product properties \u003cbr\u003e13.25.6 Examples of formulations \u003cbr\u003e13.26 Pharmaceutical products \u003cbr\u003e13.26.1 Plasticizer types \u003cbr\u003e13.26.2 Plasticizer concentration \u003cbr\u003e13.26.3 Reasons for plasticizer use \u003cbr\u003e13.26.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.26.5 Effect of plasticizers on product properties \u003cbr\u003e13.26.6 Examples of formulations \u003cbr\u003e13.27 Photographic materials \u003cbr\u003e13.27.1 Plasticizer types \u003cbr\u003e13.27.2 Plasticizer concentration \u003cbr\u003e13.27.3 Reasons for plasticizer use \u003cbr\u003e13.27.4 Effect of plasticizers on product properties \u003cbr\u003e13.28 Pipes \u003cbr\u003e13.28.1 Plasticizer types \u003cbr\u003e13.28.2 Plasticizer concentration \u003cbr\u003e13.28.3 Reasons for plasticizer use \u003cbr\u003e13.28.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.28.5 Effect of plasticizers on product properties \u003cbr\u003e13.28.6 Examples of formulations \u003cbr\u003e13.29 Roofing materials \u003cbr\u003e13.29.1 Plasticizer types \u003cbr\u003e13.29.2 Plasticizer concentration \u003cbr\u003e13.29.3 Reasons for plasticizer use \u003cbr\u003e13.29.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.29.5 Effect of plasticizers on product properties \u003cbr\u003e13.29.6 Examples of formulations \u003cbr\u003e13.30 Tires \u003cbr\u003e13.30.1 Plasticizer types \u003cbr\u003e13.30.2 Plasticizer concentration \u003cbr\u003e13.30.3 Reasons for plasticizer use \u003cbr\u003e13.30.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.30.5 Effect of plasticizers on product properties \u003cbr\u003e13.30.6 Examples of formulations \u003cbr\u003e13.31 Toys \u003cbr\u003e13.31.1 Plasticizer types \u003cbr\u003e13.31.2 Plasticizer concentration \u003cbr\u003e13.31.3 Reasons for plasticizer use \u003cbr\u003e13.31.4 Effect of plasticizers on product properties \u003cbr\u003e13.32 Tubing \u003cbr\u003e13.32.1 Plasticizer types \u003cbr\u003e13.32.2 Plasticizer concentration \u003cbr\u003e13.32.3 Reasons for plasticizer use \u003cbr\u003e13.32.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.32.5 Effect of plasticizers on product properties \u003cbr\u003e13.32.6 Examples of formulations \u003cbr\u003e13.33 Wire and cable \u003cbr\u003e13.33.1 Plasticizer types \u003cbr\u003e13.33.2 Plasticizer concentration \u003cbr\u003e13.33.3 Reasons for plasticizer use \u003cbr\u003e13.33.4 Advantages and disadvantages of plasticizers use \u003cbr\u003e13.33.5 Effect of plasticizers on product properties \u003cbr\u003e13.33.6 Examples of formulations \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 PLASTICIZERS IN VARIOUS PROCESSING METHODS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e14.1 Blow molding \u003cbr\u003e14.2 Calendering \u003cbr\u003e14.3 Coil coating \u003cbr\u003e14.4 Compression molding \u003cbr\u003e14.5 Compounding (mixing) \u003cbr\u003e14.6 Dip coating \u003cbr\u003e14.7 Dry blending \u003cbr\u003e14.8 Extrusion \u003cbr\u003e14.9 Injection molding \u003cbr\u003e14.10 Polymer synthesis \u003cbr\u003e14.11 Rotational molding \u003cbr\u003e14.12 Rubber processing \u003cbr\u003e14.13 Thermoforming \u003cbr\u003e14.14 Web coating \u003cbr\u003e14.15 Wire coating \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 SPECIALIZED ANALYTICAL METHODS IN PLASTICIZER TESTING\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e15.1 Plasticizer identification \u003cbr\u003e15.2 Methods of determination of plasticizer concentration \u003cbr\u003e15.3 Determination of volatility, molecular motion, diffusion, and migration \u003cbr\u003e15.4 Methods of study of plasticized materials \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 MATHEMATICAL MODELING IN APPLICATION TO PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e16.1 PVC-plasticizer interaction model \u003cbr\u003e16.2 Gas permeation \u003cbr\u003e16.3 Migration \u003cbr\u003e16.4 Dry-blending time \u003cbr\u003e16.5 Gelation and fusion \u003cbr\u003e16.6 Thermal decomposition \u003cbr\u003e16.7 Potential health risk of exposure to DEHP from glove \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 HEALTH AND SAFETY ISSUES WITH PLASTICIZERS AND PLASTICIZED\u003c\/strong\u003e\u003cbr\u003e\u003cstrong\u003e MATERIALS\u003c\/strong\u003e \u003cbr\u003e17.1 Adjuvant effect of plasticizers \u003cbr\u003e Søren Thor Larsen \u003cbr\u003e17.1.1 Introduction \u003cbr\u003e17.1.2 Airway allergy \u003cbr\u003e17.1.3 Adjuvant effect \u003cbr\u003e17.1.4 Adjuvant effect of phthalate plasticizers \u003cbr\u003e 17.1.4.1 Epidemiological studies \u003cbr\u003e17.1.4.2 In vivo (animal) studies \u003cbr\u003e17.1.5 Conclusions \u003cbr\u003e17.2 The rodent hepatocarcinogenic response to phthalate plasticizers\u003cbr\u003e : basic biology and human extrapolation \u003cbr\u003e Abigail L Walker and Ruth A Roberts\u003cbr\u003e17.2.1 Introduction \u003cbr\u003e17.2.2 Gene expression and cancer toxicology \u003cbr\u003e17.2.2.1 Gene expression \u003cbr\u003e17.2.2.2 Cancer biology: some basic considerations \u003cbr\u003e17.2.2.3 Developing areas of interest in hepatocarcinogenesis \u003cbr\u003e17.2.2.4 Chemical carcinogenesis \u003cbr\u003e17.2.3 Peroxisome proliferators and rodent nongenotoxic\u003cbr\u003e hepatocarcinogenesis \u003cbr\u003e17.2.3.1 The peroxisome proliferators \u003cbr\u003e17.2.3.2 PPAR \u003cbr\u003e17.2.4 Species differences in response to peroxisome proliferators \u003cbr\u003e17.2.5 Chemical regulation \u003cbr\u003e17.2.5.1 Challenges in alternative models \u003cbr\u003e17.2.6 Summary \u003cbr\u003e17.3 The influence of maternal nutrition on phthalate teratogenicity \u003cbr\u003e Janet Y. Uriu-Adams1 and Carl L. Keen\u003cbr\u003e17.3.1 Introduction \u003cbr\u003e17.3.2 Reproductive toxicity of BBP and DEHP \u003cbr\u003e17.3.3 Acute phase response-induced alterations in maternal \u003cbr\u003e17.3.4 Concluding comments \u003cbr\u003e17.3.5 Recent findings \u003cbr\u003e17.3.6 Acknowledgments \u003cbr\u003e17.4 Public health implications of phthalates: A review of U.S. actions\u003cbr\u003e to protect those most vulnerable \u003cbr\u003e Stephanie R. Miles-Richardson and Dhara Richardson\u003cbr\u003e17.4.1 Introduction \u003cbr\u003e17.4.2 Implications of the COVID-19 pandemic on phthalate exposure \u003cbr\u003e17.4.3 The U.S. response to phthalate exposure \u003cbr\u003e17.4.3 Some U.S. State-level actions \u003cbr\u003e17.4.4 2008 Consumer Product Safety Improvement Act \u003cbr\u003e17.4.5 Food and Drug Administration (FDA) petition, lawsuit, and final ruling \u003cbr\u003e17.4.6 Preventing Harmful Exposure to Phthalates Act 117th Congress\u003cbr\u003e (2021-2022) \u003cbr\u003e17.4.7 Other U.S. Federal Agencies \u003cbr\u003e17.4.8 Conclusion \u003cbr\u003e17.5 Plasticizers in the indoor environment \u003cbr\u003e Werner Butte\u003cbr\u003e17.5.1 Introduction \u003cbr\u003e17.5.2 Sources of indoor plasticizers \u003cbr\u003e17.5.3 Occurrence of plasticizers indoors \u003cbr\u003e17.5.3.1 Indoor air \u003cbr\u003e17.5.3.2 House dust \u003cbr\u003e17.5.4 Impact of plasticizers in the indoor environment \u003cbr\u003e17.5.4.1 Indoor plasticizers and health \u003cbr\u003e17.5.4.2 Human exposure assessment for plasticizers in the indoor\u003cbr\u003e environment \u003cbr\u003e17.5.4.3 Reference and guideline values of plasticizers to assess indoor\u003cbr\u003e quality \u003cbr\u003e17.5.5 Summary \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e18 THE ENVIRONMENTAL FATE OF PLASTICIZERS\u003c\/strong\u003e \u003cbr\u003e William R. Roy\u003cbr\u003e18.1 Introduction \u003cbr\u003e18.1.1 Releases to the environment \u003cbr\u003e18.1.2 Levels in the environment \u003cbr\u003e18.2 Plasticizers in water \u003cbr\u003e18.2.1 Solubility \u003cbr\u003e18.2.2 Volatilization from water. \u003cbr\u003e18.2.3 Abiotic degradation in water \u003cbr\u003e18.2.4 Biodegradation in water \u003cbr\u003e18.2.5 Adsorption from water \u003cbr\u003e18.3 Soil and sediment \u003cbr\u003e18.3.1 Volatilization \u003cbr\u003e18.3.2 Biodegradation in soil \u003cbr\u003e18.4 Organisms \u003cbr\u003e18.5 Air \u003cbr\u003e Summary and concluding remarks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e19 REGULATIONS AND DATA\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e19.1 Toxic substance control \u003cbr\u003e19.2. Carcinogenic effect \u003cbr\u003e19.3 Teratogenic and mutagenic effect \u003cbr\u003e19.4 Workplace exposure limits \u003cbr\u003e19.5 Exposure from consumer products \u003cbr\u003e19.6 Plasticizers in drinking water \u003cbr\u003e19.7 Food regulatory acts \u003cbr\u003e19.8 Medical and other applications \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e20 PERSONAL PROTECTION\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e20.1 Clothing \u003cbr\u003e20.2 Gloves \u003cbr\u003e20.3 Eye protection \u003cbr\u003e20.4 Respiratory protection \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e21 PLASTICIZER RECOVERY \u0026amp; RECYCLING\u003c\/strong\u003e \u003cbr\u003e George Wypych\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003eINDEX\u003c\/strong\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp; Sons, PVC Degradation \u0026amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education."}
Handbook of Polymer Bl...
$270.00
{"id":11242210372,"title":"Handbook of Polymer Blends and Composites , Volume 1","handle":"978-1-85957-249-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by C. Vasile and A.K. Kulshreshtha \u003cbr\u003eISBN 978-1-85957-249-8 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cstrong\u003eVolume One\u003c\/strong\u003e \u003cbr\u003eThis is the first volume of a four volume set to be published in the next six months. This handbook is intended to provide an overview of the theory and practice of polymer blends and composites. It is a collection of monographs on the subject of polymer blends and composites but much remains to be done and understood. The subject is huge and the number of pages is limited. The first two volumes are concerned with the state-of-the-art in composites development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composite manufacture and their applications. The other two volumes are dedicated to polymer blends. \u003cbr\u003e\u003cbr\u003ePractical and theoretical investigations are presented, which are aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems. \u003cbr\u003e\u003cbr\u003eThis book will be useful to students, researchers, academics, and workers in the industry, who have an interest in polymer blends and composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. History of Composites \u003cbr\u003e2. Particulate Fillers and Fibre Reinforcements \u003cbr\u003e3. Composites in Asia \u003cbr\u003e4. Advances in Wood-based Composites in China \u003cbr\u003e5. Overview of the Use of Composites Worldwide \u003cbr\u003e6. The Interface in Polymer Composites \u003cbr\u003e7. Novel Multifunctional Epoxy Resins \u003cbr\u003e8. Flame Retardant Polyester Resins \u003cbr\u003e9. Cure Kinetics of Vinyl Ester Resins \u003cbr\u003e10. Cure Monitoring \u003cbr\u003e11. Curing and Bonding of Composites using Electron Beam Processing \u003cbr\u003e12 composites at the Turn of the Century\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnand Kumar Kulshreshtha joined the Ahmedabad Textile Industry's Research Association (ATIRA) as a Senior Scientific Officer in 1970, where he worked on the morphology and properties of natural fibres (cellulose). In 1975 he became a United Nations Fellow at the then Polytechnic Institute of New York with Professors E.M.Pearce and G.C.Tesoro. In 1978-1979 he worked as a postdoc at the University of Massachusetts, Amherst. From 1979-1980, he was an NRC Resident Research Associate at the Wright-Patterson Air Force Base, Ohio. Currently, he is Senior Manager (R\u0026amp;D) and Leader for Polymer and Information Groups at the Indian Petrochemicals Corporation Ltd., Vadodara. He is on the editorial board of the journal, 'Popular Plastics \u0026amp; Packaging' and author of about 200 research papers, articles and book chapters. \u003cbr\u003e\u003cbr\u003eCornelia Vasile is a senior researcher at the Romanian Academy, 'P.Poni' Institute of Macromolecular Chemistry, Iasi, Romania and Associate Professor at Laval University-Quebec Canada, 'Gh. Asachi' Technical University of Iasi and 'Al.I.Cuza' University of Iasi. She received her Ph.D. degree in the physical chemistry of macromolecules from 'Al.I.Cuza' University of Iasi, Romania. Cornelia is the author or co-author of seven books, 250 scientific articles, and 75 technical reports, as well as the holder of 38 patents. She is a member of the IUPAC, the Romanian Associations of Romanian Scientists and for Basic Research, the Commissions of the Romanian Academy for Thermal Analysis and Calorimetry, and of Environmental Protection.","published_at":"2017-06-22T21:13:08-04:00","created_at":"2017-06-22T21:13:08-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","fibre reinforcement","fillers reinforcements","p-chemistry","polymer","polymer blends","polymer composites","polymer reinforcements","wood-based composite"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378332356,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Blends and Composites , Volume 1","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-249-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-249-8.jpg?v=1499471195"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-249-8.jpg?v=1499471195","options":["Title"],"media":[{"alt":null,"id":356335845469,"position":1,"preview_image":{"aspect_ratio":0.722,"height":335,"width":242,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-249-8.jpg?v=1499471195"},"aspect_ratio":0.722,"height":335,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-249-8.jpg?v=1499471195","width":242}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by C. Vasile and A.K. Kulshreshtha \u003cbr\u003eISBN 978-1-85957-249-8 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cstrong\u003eVolume One\u003c\/strong\u003e \u003cbr\u003eThis is the first volume of a four volume set to be published in the next six months. This handbook is intended to provide an overview of the theory and practice of polymer blends and composites. It is a collection of monographs on the subject of polymer blends and composites but much remains to be done and understood. The subject is huge and the number of pages is limited. The first two volumes are concerned with the state-of-the-art in composites development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composite manufacture and their applications. The other two volumes are dedicated to polymer blends. \u003cbr\u003e\u003cbr\u003ePractical and theoretical investigations are presented, which are aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems. \u003cbr\u003e\u003cbr\u003eThis book will be useful to students, researchers, academics, and workers in the industry, who have an interest in polymer blends and composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. History of Composites \u003cbr\u003e2. Particulate Fillers and Fibre Reinforcements \u003cbr\u003e3. Composites in Asia \u003cbr\u003e4. Advances in Wood-based Composites in China \u003cbr\u003e5. Overview of the Use of Composites Worldwide \u003cbr\u003e6. The Interface in Polymer Composites \u003cbr\u003e7. Novel Multifunctional Epoxy Resins \u003cbr\u003e8. Flame Retardant Polyester Resins \u003cbr\u003e9. Cure Kinetics of Vinyl Ester Resins \u003cbr\u003e10. Cure Monitoring \u003cbr\u003e11. Curing and Bonding of Composites using Electron Beam Processing \u003cbr\u003e12 composites at the Turn of the Century\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnand Kumar Kulshreshtha joined the Ahmedabad Textile Industry's Research Association (ATIRA) as a Senior Scientific Officer in 1970, where he worked on the morphology and properties of natural fibres (cellulose). In 1975 he became a United Nations Fellow at the then Polytechnic Institute of New York with Professors E.M.Pearce and G.C.Tesoro. In 1978-1979 he worked as a postdoc at the University of Massachusetts, Amherst. From 1979-1980, he was an NRC Resident Research Associate at the Wright-Patterson Air Force Base, Ohio. Currently, he is Senior Manager (R\u0026amp;D) and Leader for Polymer and Information Groups at the Indian Petrochemicals Corporation Ltd., Vadodara. He is on the editorial board of the journal, 'Popular Plastics \u0026amp; Packaging' and author of about 200 research papers, articles and book chapters. \u003cbr\u003e\u003cbr\u003eCornelia Vasile is a senior researcher at the Romanian Academy, 'P.Poni' Institute of Macromolecular Chemistry, Iasi, Romania and Associate Professor at Laval University-Quebec Canada, 'Gh. Asachi' Technical University of Iasi and 'Al.I.Cuza' University of Iasi. She received her Ph.D. degree in the physical chemistry of macromolecules from 'Al.I.Cuza' University of Iasi, Romania. Cornelia is the author or co-author of seven books, 250 scientific articles, and 75 technical reports, as well as the holder of 38 patents. She is a member of the IUPAC, the Romanian Associations of Romanian Scientists and for Basic Research, the Commissions of the Romanian Academy for Thermal Analysis and Calorimetry, and of Environmental Protection."}
Handbook of Polymer Bl...
$270.00
{"id":11242210244,"title":"Handbook of Polymer Blends and Composites, Volume 2","handle":"978-1-85957-278-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by C. Vasile and A.K. Kulshreshtha \u003cbr\u003eISBN 978-1-85957-278-8 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe extraordinary growth in the use of plastics in the last century is in response to a growing world population, with its increasing demands for more food, better health care, improved housing and numerous cheaper and abundant consumer products. What is expected of the chemical industry in the 21st century is to produce plastics while being aware of the environment, by reducing waste production, reducing the consumption of materials, reducing the demand for energy, reducing the use of non-renewable resources, and reducing risks, hazards and costs. The topics of this handbook try to answer these questions in a specific way by using simple rules of mixing. Polymer blending is a very useful and versatile strategy for the polymer chemist for designing new materials that potentially fulfill these new 'green' requirements. \u003cbr\u003e\u003cbr\u003eThis four volume handbook, Handbook of Polymer Blends and Composites is intended to provide an overview of the theory and application of polymer blends and composites. The first two volumes (of which this is the second) are concerned with the state-of-the-art of composites' development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composites manufacture and their applications. The other two volumes are dedicated to polymer blends. \u003cbr\u003e\u003cbr\u003ePractical and theoretical investigations are presented, which are aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems. \u003cbr\u003e\u003cbr\u003eThis book will be useful to students, researchers, academics, and workers in the industry, who have an interest in polymer blends and composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. An Overview of Composite Fabrication, Design and Cost \u003cbr\u003e2. Liquid Moulding Processes \u003cbr\u003e3. Use of Advanced Composite Materials in the Construction of Suspension Push-Rods for A Formula One Racing Car \u003cbr\u003e4. Corrosion Resistance of Polymers, Polymer Blends, and Composites in Liquid Environments \u003cbr\u003e5. New Approaches to Reduce Plastic Combustibility \u003cbr\u003e6. Fibre Reinforced Plastic Composites for Biomedical Applications \u003cbr\u003e7. Composite Materials in the Nuclear and Space Industries: Specific Applications \u003cbr\u003e8. Advanced Composites for Offshore Developments \u003cbr\u003e9. Functional Polymer Composites \u003cbr\u003e10. Conducting Polymer Composites \u003cbr\u003e11. Recycling of Automotive Composites\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnand Kumar Kulshreshtha joined the Ahmedabad Textile Industry's Research Association (ATIRA) as a Senior Scientific Officer in 1970, where he worked on the morphology and properties of natural fibres (cellulose). In 1975 he became a United Nations Fellow at the then Polytechnic Institute of New York with Professors E.M.Pearce and G.C.Tesoro. In 1978-1979 he worked as a postdoc at the University of Massachusetts, Amherst. From 1979-1980, he was an NRC Resident Research Associate at the Wright-Patterson Air Force Base, Ohio. Currently, he is Senior Manager (R\u0026amp;D) and Leader for Polymer and Information Groups at the Indian Petrochemicals Corporation Ltd., Vadodara. He is on the editorial board of the journal, 'Popular Plastics \u0026amp; Packaging' and author of about 200 research papers, articles and book chapters. \u003cbr\u003e\u003cbr\u003eCornelia Vasile is the senior researcher at the Romanian Academy, 'P.Poni' Institute of Macromolecular Chemistry, Iasi, Romania and Associate Professor at Laval University-Quebec Canada, 'Gh. Asachi' Technical University of Iasi and 'Al.I.Cuza' University of Iasi. She received her Ph.D. degree in the physical chemistry of macromolecules from 'Al.I.Cuza' University of Iasi, Romania. Cornelia is the author or co-author of seven books, 250 scientific articles, and 75 technical reports, as well as the holder of 38 patents. She is a member of the IUPAC, the Romanian Associations of Romanian Scientists and for Basic Research, the Commissions of the Romanian Academy for Thermal Analysis and Calorimetry, and of Environmental Protection.","published_at":"2017-06-22T21:13:08-04:00","created_at":"2017-06-22T21:13:08-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","advanced composite materials","book","composite materials in space","p-chemistry","polymer","polymer blends","polymer composites","recycling of composite materials"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378332036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Blends and Composites, Volume 2","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-278-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-278-8.jpg?v=1499471302"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-278-8.jpg?v=1499471302","options":["Title"],"media":[{"alt":null,"id":356335878237,"position":1,"preview_image":{"aspect_ratio":0.721,"height":499,"width":360,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-278-8.jpg?v=1499471302"},"aspect_ratio":0.721,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-278-8.jpg?v=1499471302","width":360}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by C. Vasile and A.K. Kulshreshtha \u003cbr\u003eISBN 978-1-85957-278-8 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe extraordinary growth in the use of plastics in the last century is in response to a growing world population, with its increasing demands for more food, better health care, improved housing and numerous cheaper and abundant consumer products. What is expected of the chemical industry in the 21st century is to produce plastics while being aware of the environment, by reducing waste production, reducing the consumption of materials, reducing the demand for energy, reducing the use of non-renewable resources, and reducing risks, hazards and costs. The topics of this handbook try to answer these questions in a specific way by using simple rules of mixing. Polymer blending is a very useful and versatile strategy for the polymer chemist for designing new materials that potentially fulfill these new 'green' requirements. \u003cbr\u003e\u003cbr\u003eThis four volume handbook, Handbook of Polymer Blends and Composites is intended to provide an overview of the theory and application of polymer blends and composites. The first two volumes (of which this is the second) are concerned with the state-of-the-art of composites' development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composites manufacture and their applications. The other two volumes are dedicated to polymer blends. \u003cbr\u003e\u003cbr\u003ePractical and theoretical investigations are presented, which are aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems. \u003cbr\u003e\u003cbr\u003eThis book will be useful to students, researchers, academics, and workers in the industry, who have an interest in polymer blends and composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. An Overview of Composite Fabrication, Design and Cost \u003cbr\u003e2. Liquid Moulding Processes \u003cbr\u003e3. Use of Advanced Composite Materials in the Construction of Suspension Push-Rods for A Formula One Racing Car \u003cbr\u003e4. Corrosion Resistance of Polymers, Polymer Blends, and Composites in Liquid Environments \u003cbr\u003e5. New Approaches to Reduce Plastic Combustibility \u003cbr\u003e6. Fibre Reinforced Plastic Composites for Biomedical Applications \u003cbr\u003e7. Composite Materials in the Nuclear and Space Industries: Specific Applications \u003cbr\u003e8. Advanced Composites for Offshore Developments \u003cbr\u003e9. Functional Polymer Composites \u003cbr\u003e10. Conducting Polymer Composites \u003cbr\u003e11. Recycling of Automotive Composites\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnand Kumar Kulshreshtha joined the Ahmedabad Textile Industry's Research Association (ATIRA) as a Senior Scientific Officer in 1970, where he worked on the morphology and properties of natural fibres (cellulose). In 1975 he became a United Nations Fellow at the then Polytechnic Institute of New York with Professors E.M.Pearce and G.C.Tesoro. In 1978-1979 he worked as a postdoc at the University of Massachusetts, Amherst. From 1979-1980, he was an NRC Resident Research Associate at the Wright-Patterson Air Force Base, Ohio. Currently, he is Senior Manager (R\u0026amp;D) and Leader for Polymer and Information Groups at the Indian Petrochemicals Corporation Ltd., Vadodara. He is on the editorial board of the journal, 'Popular Plastics \u0026amp; Packaging' and author of about 200 research papers, articles and book chapters. \u003cbr\u003e\u003cbr\u003eCornelia Vasile is the senior researcher at the Romanian Academy, 'P.Poni' Institute of Macromolecular Chemistry, Iasi, Romania and Associate Professor at Laval University-Quebec Canada, 'Gh. Asachi' Technical University of Iasi and 'Al.I.Cuza' University of Iasi. She received her Ph.D. degree in the physical chemistry of macromolecules from 'Al.I.Cuza' University of Iasi, Romania. Cornelia is the author or co-author of seven books, 250 scientific articles, and 75 technical reports, as well as the holder of 38 patents. She is a member of the IUPAC, the Romanian Associations of Romanian Scientists and for Basic Research, the Commissions of the Romanian Academy for Thermal Analysis and Calorimetry, and of Environmental Protection."}
Handbook of Polymer Bl...
$270.00
{"id":11242229700,"title":"Handbook of Polymer Blends and Composites, Volume 3","handle":"1-85957-303-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by C. Vasile and A.K. Kulshreshtha \u003cbr\u003eISBN 1-85957-303-7 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe extraordinary growth in the use of plastics in the last century is in response to a growing world population, with its increasing demands for more food, better health care, improved housing and numerous cheaper and abundant consumer products. What is expected of the chemical industry in the 21st century is to produce plastics while being aware of the environment, by reducing waste production, reducing the consumption of materials, reducing the demand for energy, reducing the use of non-renewable resources, and reducing risks, hazards and costs. The topics of this handbook try to answer these questions in a specific way by using simple rules of mixing. Polymer blending is a very useful and versatile strategy for the polymer chemist for designing new materials that potentially fulfill these new 'green' requirements. \u003cbr\u003e\u003cbr\u003eThis four volume handbook, Handbook of Polymer Blends and Composites is intended to provide an overview of the theory and application of polymer blends and composites. The first two volumes are concerned with the state-of-the-art of composites' development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composites manufacture and their applications. The other two volumes are dedicated to polymer blends. \u003cbr\u003e\u003cbr\u003ePractical and theoretical investigations are presented, which are aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems. \u003cbr\u003e\u003cbr\u003eThis book will be useful to students, researchers, academics, and workers in the industry, who have an interest in polymer blends and composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nTerminology, Thermodynamics of Multicomponent Polymer Systems, Phase Behaviour, Interface (Interphase) in Demixed Polymer Systems, Water Soluble Polymer Blends - Phase Behaviour and Complex Formation, Water Soluble Polymer Blends - Applications, Reactive Polymer Blending, Inter-Penetrating Networks, Heterofibres, Glass Transition in Polymer Blends, Crystallization in Polymer Blends, Effect of Radiation on Polymer Blends, Polymer Blend Ageing, Degradation Behaviour of Polymer Blends and Thermal Methods for Plastics Waste Treatment, Singular Thermal Behavior of Polystyrene\/Polydimethylsiloxane Blends.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nThe first two volumes (of which this is the second) are concerned with the state-of-the-art of composites' development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composites manufacture and their applications.","published_at":"2017-06-22T21:14:12-04:00","created_at":"2017-06-22T21:14:12-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","degradation of polymer blends","p-chemistry","polymer","polymer blends","polymer composites","properties of polymer blends and composites"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378399236,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Blends and Composites, Volume 3","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-85957-303-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-85957-303-7.jpg?v=1499471369"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-85957-303-7.jpg?v=1499471369","options":["Title"],"media":[{"alt":null,"id":356335911005,"position":1,"preview_image":{"aspect_ratio":0.691,"height":499,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-85957-303-7.jpg?v=1499471369"},"aspect_ratio":0.691,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-85957-303-7.jpg?v=1499471369","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by C. Vasile and A.K. Kulshreshtha \u003cbr\u003eISBN 1-85957-303-7 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe extraordinary growth in the use of plastics in the last century is in response to a growing world population, with its increasing demands for more food, better health care, improved housing and numerous cheaper and abundant consumer products. What is expected of the chemical industry in the 21st century is to produce plastics while being aware of the environment, by reducing waste production, reducing the consumption of materials, reducing the demand for energy, reducing the use of non-renewable resources, and reducing risks, hazards and costs. The topics of this handbook try to answer these questions in a specific way by using simple rules of mixing. Polymer blending is a very useful and versatile strategy for the polymer chemist for designing new materials that potentially fulfill these new 'green' requirements. \u003cbr\u003e\u003cbr\u003eThis four volume handbook, Handbook of Polymer Blends and Composites is intended to provide an overview of the theory and application of polymer blends and composites. The first two volumes are concerned with the state-of-the-art of composites' development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composites manufacture and their applications. The other two volumes are dedicated to polymer blends. \u003cbr\u003e\u003cbr\u003ePractical and theoretical investigations are presented, which are aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems. \u003cbr\u003e\u003cbr\u003eThis book will be useful to students, researchers, academics, and workers in the industry, who have an interest in polymer blends and composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nTerminology, Thermodynamics of Multicomponent Polymer Systems, Phase Behaviour, Interface (Interphase) in Demixed Polymer Systems, Water Soluble Polymer Blends - Phase Behaviour and Complex Formation, Water Soluble Polymer Blends - Applications, Reactive Polymer Blending, Inter-Penetrating Networks, Heterofibres, Glass Transition in Polymer Blends, Crystallization in Polymer Blends, Effect of Radiation on Polymer Blends, Polymer Blend Ageing, Degradation Behaviour of Polymer Blends and Thermal Methods for Plastics Waste Treatment, Singular Thermal Behavior of Polystyrene\/Polydimethylsiloxane Blends.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nThe first two volumes (of which this is the second) are concerned with the state-of-the-art of composites' development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composites manufacture and their applications."}
Handbook of Polymer Bl...
$270.00
{"id":11242210436,"title":"Handbook of Polymer Blends and Composites, Volume 4","handle":"978-1-85957-304-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by C. Vasile and A.K. Kulshreshtha \u003cbr\u003eISBN 978-1-85957-304-4 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe extraordinary growth in the use of plastics in the last century is in response to a growing world population, with its increasing demands for more food, better health care, improved housing and numerous cheaper and abundant consumer products. What is expected of the chemical industry in the 21st century is to produce plastics while being aware of the environment, by reducing waste production, reducing the consumption of materials, reducing the demand for energy, reducing the use of non-renewable resources, and reducing risks, hazards and costs. The topics of this handbook try to answer these questions in a specific way by using simple rules of mixing. Polymer blending is a very useful and versatile strategy for the polymer chemist for designing new materials that potentially fulfill these new 'green' requirements. \u003cbr\u003e\u003cbr\u003eThis four volume handbook, Handbook of Polymer Blends and Composites is intended to provide an overview of the theory and application of polymer blends and composites. The first two volumes are concerned with the state-of-the-art of composites' development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composites manufacture and their applications. The other two volumes are dedicated to polymer blends. \u003cbr\u003e\u003cbr\u003ePractical and theoretical investigations are presented, which are aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems. \u003cbr\u003e\u003cbr\u003eThis book will be useful to students, researchers, academics, and workers in the industry, who have an interest in polymer blends and composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nContents include: Polyolefin Blends, Metallocene Polyolefin Blends, PVC-based Blends, PS and Styrene-Copolymer-based Blends, Ionomer Blends, Polyamides, Polyesters, Polyvinyl Alcohol, Polyacrylates, Rubber Toughened Epoxies\/Thermosets, Blends Containing Thermostable Polymers, Polyurethane-based Blends, Silicones, Cellulosics or Lignocellulosics, Eco-Friendly Blends, Liquid Crystalline Polymers in Polymer Blends.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnand Kumar Kulshreshtha joined the Ahmedabad Textile Industry's Research Association (ATIRA) as a Senior Scientific Officer in 1970, where he worked on the morphology and properties of natural fibres (cellulose). In 1975 he became a United Nations Fellow at the then Polytechnic Institute of New York with Professors E.M.Pearce and G.C.Tesoro. In 1978-1979 he worked as a postdoc at the University of Massachusetts, Amherst. From 1979-1980, he was an NRC Resident Research Associate at the Wright-Patterson Air Force Base, Ohio. Currently, he is Senior Manager (R\u0026amp;D) and Leader for Polymer and Information Groups at the Indian Petrochemicals Corporation Ltd., Vadodara. He is on the editorial board of the journal, 'Popular Plastics \u0026amp; Packaging' and author of about 200 research papers, articles and book chapters. \u003cbr\u003e\u003cbr\u003eCornelia Vasile is a senior researcher at the Romanian Academy, 'P.Poni' Institute of Macromolecular Chemistry, Iasi, Romania and Associate Professor at Laval University-Quebec Canada, 'Gh. Asachi' Technical University of Iasi and 'Al.I.Cuza' University of Iasi. She received her Ph.D. degree in the physical chemistry of macromolecules from 'Al.I.Cuza' University of Iasi, Romania. Cornelia is the author or co-author of seven books, 250 scientific articles, and 75 technical reports, as well as the holder of 38 patents. She is a member of the IUPAC, the Romanian Associations of Romanian Scientists and for Basic Research, the Commissions of the Romanian Academy for Thermal Analysis and Calorimetry, and of Environmental Protection.","published_at":"2017-06-22T21:13:09-04:00","created_at":"2017-06-22T21:13:09-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","application polymer blends and composite","book","multi-component systems","p-chemistry","polymer","polymer blends","polymer composites"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378332484,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Blends and Composites, Volume 4","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-304-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-304-4.jpg?v=1499471436"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-304-4.jpg?v=1499471436","options":["Title"],"media":[{"alt":null,"id":356335943773,"position":1,"preview_image":{"aspect_ratio":0.707,"height":499,"width":353,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-304-4.jpg?v=1499471436"},"aspect_ratio":0.707,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-304-4.jpg?v=1499471436","width":353}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by C. Vasile and A.K. Kulshreshtha \u003cbr\u003eISBN 978-1-85957-304-4 \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe extraordinary growth in the use of plastics in the last century is in response to a growing world population, with its increasing demands for more food, better health care, improved housing and numerous cheaper and abundant consumer products. What is expected of the chemical industry in the 21st century is to produce plastics while being aware of the environment, by reducing waste production, reducing the consumption of materials, reducing the demand for energy, reducing the use of non-renewable resources, and reducing risks, hazards and costs. The topics of this handbook try to answer these questions in a specific way by using simple rules of mixing. Polymer blending is a very useful and versatile strategy for the polymer chemist for designing new materials that potentially fulfill these new 'green' requirements. \u003cbr\u003e\u003cbr\u003eThis four volume handbook, Handbook of Polymer Blends and Composites is intended to provide an overview of the theory and application of polymer blends and composites. The first two volumes are concerned with the state-of-the-art of composites' development, characteristics of particulate fillers and fibre reinforcements and interface characteristics, main procedures of composites manufacture and their applications. The other two volumes are dedicated to polymer blends. \u003cbr\u003e\u003cbr\u003ePractical and theoretical investigations are presented, which are aimed at generating an understanding of the fundamental nature of polymer mixtures and composites and describing progress in the thermodynamics of mixing (both in solution and solid state) of binary and multi-component systems. \u003cbr\u003e\u003cbr\u003eThis book will be useful to students, researchers, academics, and workers in the industry, who have an interest in polymer blends and composites.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nContents include: Polyolefin Blends, Metallocene Polyolefin Blends, PVC-based Blends, PS and Styrene-Copolymer-based Blends, Ionomer Blends, Polyamides, Polyesters, Polyvinyl Alcohol, Polyacrylates, Rubber Toughened Epoxies\/Thermosets, Blends Containing Thermostable Polymers, Polyurethane-based Blends, Silicones, Cellulosics or Lignocellulosics, Eco-Friendly Blends, Liquid Crystalline Polymers in Polymer Blends.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nAnand Kumar Kulshreshtha joined the Ahmedabad Textile Industry's Research Association (ATIRA) as a Senior Scientific Officer in 1970, where he worked on the morphology and properties of natural fibres (cellulose). In 1975 he became a United Nations Fellow at the then Polytechnic Institute of New York with Professors E.M.Pearce and G.C.Tesoro. In 1978-1979 he worked as a postdoc at the University of Massachusetts, Amherst. From 1979-1980, he was an NRC Resident Research Associate at the Wright-Patterson Air Force Base, Ohio. Currently, he is Senior Manager (R\u0026amp;D) and Leader for Polymer and Information Groups at the Indian Petrochemicals Corporation Ltd., Vadodara. He is on the editorial board of the journal, 'Popular Plastics \u0026amp; Packaging' and author of about 200 research papers, articles and book chapters. \u003cbr\u003e\u003cbr\u003eCornelia Vasile is a senior researcher at the Romanian Academy, 'P.Poni' Institute of Macromolecular Chemistry, Iasi, Romania and Associate Professor at Laval University-Quebec Canada, 'Gh. Asachi' Technical University of Iasi and 'Al.I.Cuza' University of Iasi. She received her Ph.D. degree in the physical chemistry of macromolecules from 'Al.I.Cuza' University of Iasi, Romania. Cornelia is the author or co-author of seven books, 250 scientific articles, and 75 technical reports, as well as the holder of 38 patents. She is a member of the IUPAC, the Romanian Associations of Romanian Scientists and for Basic Research, the Commissions of the Romanian Academy for Thermal Analysis and Calorimetry, and of Environmental Protection."}
Handbook of Polymer Foams
$190.00
{"id":11242213380,"title":"Handbook of Polymer Foams","handle":"978-1-85957-388-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Eaves \u003cbr\u003eISBN 978-1-85957-388-6 \u003cbr\u003e\u003cbr\u003epages 274\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymer foams is extremely widespread. Indeed, it is hard to think of any industries where polymer foams do not have a part to play. They can be found for example in sports and leisure products, in military applications, in vehicles, in aircraft, and in the home. Most people will encounter polymer foams every day in one form or another, whether it be in furniture, in packaging, in their car, in refrigerator insulation, or in some other common application. \u003cbr\u003e\u003cbr\u003eAlthough naturally occurring polymer foams have been known for a long time, (e.g., sponges, cork), synthetic polymer foams have only been introduced to the market over the last fifty years or so. The development of a new polymer has usually been quickly followed by its production in an expanded or foam form owing to the unique and useful properties, which can be realised in the expanded state. \u003cbr\u003e\u003cbr\u003eThis Handbook reviews the chemistry, manufacturing methods, properties and applications of the synthetic polymer foams used in most applications. In addition, a chapter is included on the fundamental principles, which apply to all polymer foams. There is also a chapter on the blowing agents used to expand polymers, blowing agents having undergone considerable change and development in recent years in order to meet the requirements of the Montreal Protocol in relation to the reduction and elimination of chloroflurocarbons (CFC) and other ozone depleting agents. A chapter is also included on microcellular foams - a relatively new development where applications are still being explored. Most chapters have references to facilitate further exploration of the topics. The chapters are all written by experts in the field. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to those just embarking upon an exploration of the subject of foams, whether in industry or academia. But this will be equally useful to those already working in the field, who need to know about different types of foam.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Foam Fundamentals (David Eaves, Independent Consultant)\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Foam Structure\u003cbr\u003e1.3 Foam Properties\u003cbr\u003e1.3.1 Compression Properties\u003cbr\u003e1.3.2 Energy Absorption Properties\u003cbr\u003e1.3.3 Thermal Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Blowing Agents (Sachida Singh, Huntsman Polyurethanes)\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Physical Blowing Agents\u003cbr\u003e2.2.1 Selection Criteria for Physical Blowing Agents\u003cbr\u003e2.2.2 Halogenated Hydrocarbons\u003cbr\u003e2.2.3 Hydrocarbons (HC)\u003cbr\u003e2.2.4 Inert Gases\u003cbr\u003e2.2.5 Other Physical Blowing Agents\u003cbr\u003e2.2.6 Blends of Physical Blowing Agents\u003cbr\u003e2.2.7 Encapsulated Physical Blowing Agents\u003cbr\u003e2.2.8 Physical Blowing Agent by Foam Type and Application\u003cbr\u003e2.3 Chemical Blowing Agents\u003cbr\u003e2.3.1 Selection Criteria for Chemical Blowing Agent\u003cbr\u003e2.3.2 Exothermic CBA\u003cbr\u003e2.3.3 Endothermic CBA\u003cbr\u003e2.3.4 Endo\/Exo Blends\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 Expanded Polystyrene: Development, Processing, Applications and Key Issues (Andrew Barnetson, BPF)\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.1.1 Development of Expanded Polystyrene (EPS)\u003cbr\u003e3.2 Manufacture of Expanded Polystyrene Mouldings\u003cbr\u003e3.3 Applications for Expanded Polystyrene Packaging\u003cbr\u003e3.3.1 Packaging\u003cbr\u003e3.3.2 Construction\u003cbr\u003e3.3.3 Other Applications\u003cbr\u003e3.3.4 Novel Applications\u003cbr\u003e3.4 Properties of EPS\u003cbr\u003e3.4.1 Mechanical Performance\u003cbr\u003e3.4.2 Thermal Insulation\u003cbr\u003e3.4.3 Chemical Properties\u003cbr\u003e3.4.4 Recent Research on Properties of EPS: Value for Fruit and Vegetables\u003cbr\u003e3.5 Global Structure of Markets and Companies\u003cbr\u003e3.5.1 Europe\u003cbr\u003e3.5.2 Asia\u003cbr\u003e3.5.3 USA\u003cbr\u003e3.6 Key Issues Facing the EPS Industry\u003cbr\u003e3.6.1 Fire\u003cbr\u003e3.6.2 Recycling\u003cbr\u003e3.6.2 Alternatives to Mechanical Recycling\u003cbr\u003eFurther Information \u003cbr\u003e\u003cbr\u003e4 Rigid Polyurethane Foams (David Eaves, Independent Consultant)\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Materials\u003cbr\u003e4.2.1 Polyols\u003cbr\u003e4.2.2 Isocyanates\u003cbr\u003e4.2.3 Blowing Agents\u003cbr\u003e4.2.4 Other Additives\u003cbr\u003e4.3 Manufacturing Processes for Rigid Polyurethane Foam\u003cbr\u003e4.4 Recycling Processes for Rigid Polyurethane Foam\u003cbr\u003e4.5 Properties of Rigid Polyurethane Foams\u003cbr\u003e4.6 Applications\u003cbr\u003e4.6.1 Applications in Construction\u003cbr\u003e4.6.2 Applications in the Appliance Industry\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Flexible Polyurethane Foam (Tyler Housel, Inolex Chemical Company)\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Chemistry\u003cbr\u003e5.3 Starting Materials\u003cbr\u003e5.3.1 Isocyanate\u003cbr\u003e5.3.2 Polyol\u003cbr\u003e5.3.3 Water\u003cbr\u003e5.3.4 Surfactant\u003cbr\u003e5.3.5 Catalyst\u003cbr\u003e5.3.6 Colorants\u003cbr\u003e5.3.7 Antioxidants\u003cbr\u003e5.3.8 Light Stabilisers\u003cbr\u003e5.3.9 Flame Retardants\u003cbr\u003e5.3.10 Adhesion Promoters\u003cbr\u003e5.3.11 Other Additives\u003cbr\u003e5.4 The Foaming Process\u003cbr\u003e5.4.1 Raw Material Conditioning\u003cbr\u003e5.4.2 Mixing\u003cbr\u003e5.4.3 Growth\u003cbr\u003e5.4.4 Cell Opening\u003cbr\u003e5.4.5 Cure\u003cbr\u003e5.5 Manufacturing Equipment\u003cbr\u003e5.5.1 Storage and Delivery\u003cbr\u003e5.5.2 Mixing\u003cbr\u003e5.5.3 Foam Rise and Cure\u003cbr\u003e5.5.4 Innovations\u003cbr\u003e5.6 Foam Characterisation\u003cbr\u003e5.6.1 Density\u003cbr\u003e5.6.2 Hardness\u003cbr\u003e5.6.3 Resilience\u003cbr\u003e5.6.4 Porosity\u003cbr\u003e5.6.5 Strength Properties\u003cbr\u003e5.6.6 Cell Structure\u003cbr\u003e5.6.7 Environmental Stability\u003cbr\u003e5.6.8 Fatigue\u003cbr\u003e5.6.9 Compression Set\u003cbr\u003e5.6.10 Flammability\u003cbr\u003e5.7 FPF Markets\u003cbr\u003e5.7.1 Transportation\u003cbr\u003e5.7.2 Comfort\u003cbr\u003e5.7.3 Carpet Cushion\u003cbr\u003e5.7.4 Packaging\u003cbr\u003e5.7.5 Specialty Applications\u003cbr\u003e5.8 Environmental Issues\u003cbr\u003e5.9 Organisations\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Rigid PVC Foam (Noreen Thomas, University of Loughborough)\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Foam Extrusion\u003cbr\u003e6.2.1 Basic Principles\u003cbr\u003e6.2.2 Extrusion Processes\u003cbr\u003e6.2.3 Effect of Processing Conditions\u003cbr\u003e6.3 Foam Formulation Technology\u003cbr\u003e6.3.1 Blowing Agents\u003cbr\u003e6.3.2 Processing Aids\u003cbr\u003e6.3.3 Type of PVC\u003cbr\u003e6.3.4 Stabilisers\u003cbr\u003e6.3.5 Lubricants\u003cbr\u003e6.3.6 Typical Formulations\u003cbr\u003e6.4 Properties\u003cbr\u003e6.5 Novel Processes and Applications\u003cbr\u003e6.5.1 Recycling\u003cbr\u003e6.5.2 Microcellular Foam\u003cbr\u003e6.5.3 Foamed Composites\u003cbr\u003e6.6 Summary\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Flexible PVC Foams (Chris Howick, EVC)\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Flexible Foam Types and PVC Types\u003cbr\u003e7.2.1 Flexible Foams Based on Suspension PVC\u003cbr\u003e7.2.2 Flexible Foams Based on Dispersion or Paste Resins\u003cbr\u003e7.2.3 Chemically Blown Foams from PVC Plastisols: Fundamentals\u003cbr\u003e7.2.4 PVC Resins used in Plastisol Foam Formation\u003cbr\u003e7.2.5 Mineral Fillers\u003cbr\u003e7.2.6 Pigments\u003cbr\u003e7.2.7 Liquid Plasticiser\u003cbr\u003e7.2.8 Blowing Agent Type and Level\u003cbr\u003e7.3 Products Utilising Foamed Plastisols\u003cbr\u003e7.3.1 Floorings and Carpet Backings\u003cbr\u003e7.3.2 Wallcoverings\u003cbr\u003e7.3.3 Synthetic Leather\u003cbr\u003e7.3.4 General Foams\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Polyolefin Foams (David Eaves, Independent Consultant)\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Manufacturing Processes and Materials\u003cbr\u003e8.2.1 Extruded Non-Crosslinked Foam\u003cbr\u003e8.2.2 Expanded (Non-Crosslinked) Polyolefin Beads\u003cbr\u003e8.2.3 Extruded Crosslinked Foam - Processes\u003cbr\u003e8.2.4 Press Moulded Crosslinked Foam Process\u003cbr\u003e8.2.5 Injection Moulded Foam Process\u003cbr\u003e8.2.6 The Nitrogen Autoclave Process\u003cbr\u003e8.2.7 Recycling Processes\u003cbr\u003e8.2.8 Post Manufacturing Operations\u003cbr\u003e8.3 Properties of Polyolefin Foams\u003cbr\u003e8.4 Applications\u003cbr\u003e8.5 Foam Specifications\u003cbr\u003e8.5.1 Packaging\u003cbr\u003e8.5.2 Automotive\u003cbr\u003e8.5.3 Furnishings\u003cbr\u003e8.5.4 Buoyancy\u003cbr\u003e8.5.5 Aerospace\u003cbr\u003e8.5.6 Construction\u003cbr\u003e8.5.7 Toys\u003cbr\u003e8.5.8 Food contact\u003cbr\u003e8.6 Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Latex Foam (Rani Joseph, Cochin University)\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Dunlop Process\u003cbr\u003e9.2.1 Batch Process\u003cbr\u003e9.2.2 Selecting a Formulation for Latex Compounds\u003cbr\u003e9.2.3 Selection of Other Compounding Ingredients\u003cbr\u003e9.2.4 Continuous Process for Latex Foam Production\u003cbr\u003e9.3 Talalay Process\u003cbr\u003e9.4 Trouble Shooting in Latex Foam Manufacture\u003cbr\u003e9.5 Testing\u003cbr\u003e9.5.1 Compression Set\u003cbr\u003e9.5.2 Indentation Hardness\u003cbr\u003e9.5.3 Flexing Resistance\u003cbr\u003e9.5.4 Density\u003cbr\u003e9.5.5 Metallic Impurities\u003cbr\u003e9.6 Important Uses of Latex Foam\u003cbr\u003e9.6.1 Transportation\u003cbr\u003e9.6.2 Furniture\u003cbr\u003e9.6.3 Special Uses\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Microcellular Foams (Vipin Kumar, University of Washington \u0026amp; Krishna Nadella, University of Washington)\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Processing of Microcellular Foams\u003cbr\u003e10.2.1 The Solid-State Batch Process\u003cbr\u003e10.2.2 The Semi-Continuous Process\u003cbr\u003e10.2.3 Extrusion and other Processing Methods\u003cbr\u003e10.3 Properties of Microcellular Foams\u003cbr\u003e10.4 Current Research Directions\u003cbr\u003e10.4.1 Microcellular Materials for Construction\u003cbr\u003e11.4.2 Open-Cell (Porous) Microcellular Foams\u003cbr\u003e10.4.3 Sub-Micron Foams and Nanofoams\u003cbr\u003e10.5 Commercial Opportunities\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Eaves studied polymer chemistry at the University in Birmingham and completed his doctorate in 1958. He then joined Dunlop in their Central Research and Development Laboratories in Birmingham, later going out to Ireland (Cork) and Japan (Kobe) to establish and manage overseas satellite research centres. In 1984 he left Dunlop and joined BP Chemicals' polyethylene foam operation in Croydon as Technical Manager. He was part of the management buy-out team in 1992 when the company was renamed 'Zotefoams', and retired in 1998 as Technical Director. He has published many papers on aspects of polymer and polymer foam technology and is the author of the Rapra report 'Polymer Foams: Trends in Use and Technology.","published_at":"2017-06-22T21:13:18-04:00","created_at":"2017-06-22T21:13:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","aerospace","automotive","blends","blowing agents","book","construction","fire","foams","food","furnishing","hydrocarbons","inert gases","insulation","molding","moulding","p-structural","packaging","polymer","polymers","polystyrene","properties","recycling","structure","toys"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350212,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Foams","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-388-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663","options":["Title"],"media":[{"alt":null,"id":355732226141,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Eaves \u003cbr\u003eISBN 978-1-85957-388-6 \u003cbr\u003e\u003cbr\u003epages 274\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymer foams is extremely widespread. Indeed, it is hard to think of any industries where polymer foams do not have a part to play. They can be found for example in sports and leisure products, in military applications, in vehicles, in aircraft, and in the home. Most people will encounter polymer foams every day in one form or another, whether it be in furniture, in packaging, in their car, in refrigerator insulation, or in some other common application. \u003cbr\u003e\u003cbr\u003eAlthough naturally occurring polymer foams have been known for a long time, (e.g., sponges, cork), synthetic polymer foams have only been introduced to the market over the last fifty years or so. The development of a new polymer has usually been quickly followed by its production in an expanded or foam form owing to the unique and useful properties, which can be realised in the expanded state. \u003cbr\u003e\u003cbr\u003eThis Handbook reviews the chemistry, manufacturing methods, properties and applications of the synthetic polymer foams used in most applications. In addition, a chapter is included on the fundamental principles, which apply to all polymer foams. There is also a chapter on the blowing agents used to expand polymers, blowing agents having undergone considerable change and development in recent years in order to meet the requirements of the Montreal Protocol in relation to the reduction and elimination of chloroflurocarbons (CFC) and other ozone depleting agents. A chapter is also included on microcellular foams - a relatively new development where applications are still being explored. Most chapters have references to facilitate further exploration of the topics. The chapters are all written by experts in the field. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to those just embarking upon an exploration of the subject of foams, whether in industry or academia. But this will be equally useful to those already working in the field, who need to know about different types of foam.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Foam Fundamentals (David Eaves, Independent Consultant)\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Foam Structure\u003cbr\u003e1.3 Foam Properties\u003cbr\u003e1.3.1 Compression Properties\u003cbr\u003e1.3.2 Energy Absorption Properties\u003cbr\u003e1.3.3 Thermal Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Blowing Agents (Sachida Singh, Huntsman Polyurethanes)\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Physical Blowing Agents\u003cbr\u003e2.2.1 Selection Criteria for Physical Blowing Agents\u003cbr\u003e2.2.2 Halogenated Hydrocarbons\u003cbr\u003e2.2.3 Hydrocarbons (HC)\u003cbr\u003e2.2.4 Inert Gases\u003cbr\u003e2.2.5 Other Physical Blowing Agents\u003cbr\u003e2.2.6 Blends of Physical Blowing Agents\u003cbr\u003e2.2.7 Encapsulated Physical Blowing Agents\u003cbr\u003e2.2.8 Physical Blowing Agent by Foam Type and Application\u003cbr\u003e2.3 Chemical Blowing Agents\u003cbr\u003e2.3.1 Selection Criteria for Chemical Blowing Agent\u003cbr\u003e2.3.2 Exothermic CBA\u003cbr\u003e2.3.3 Endothermic CBA\u003cbr\u003e2.3.4 Endo\/Exo Blends\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 Expanded Polystyrene: Development, Processing, Applications and Key Issues (Andrew Barnetson, BPF)\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.1.1 Development of Expanded Polystyrene (EPS)\u003cbr\u003e3.2 Manufacture of Expanded Polystyrene Mouldings\u003cbr\u003e3.3 Applications for Expanded Polystyrene Packaging\u003cbr\u003e3.3.1 Packaging\u003cbr\u003e3.3.2 Construction\u003cbr\u003e3.3.3 Other Applications\u003cbr\u003e3.3.4 Novel Applications\u003cbr\u003e3.4 Properties of EPS\u003cbr\u003e3.4.1 Mechanical Performance\u003cbr\u003e3.4.2 Thermal Insulation\u003cbr\u003e3.4.3 Chemical Properties\u003cbr\u003e3.4.4 Recent Research on Properties of EPS: Value for Fruit and Vegetables\u003cbr\u003e3.5 Global Structure of Markets and Companies\u003cbr\u003e3.5.1 Europe\u003cbr\u003e3.5.2 Asia\u003cbr\u003e3.5.3 USA\u003cbr\u003e3.6 Key Issues Facing the EPS Industry\u003cbr\u003e3.6.1 Fire\u003cbr\u003e3.6.2 Recycling\u003cbr\u003e3.6.2 Alternatives to Mechanical Recycling\u003cbr\u003eFurther Information \u003cbr\u003e\u003cbr\u003e4 Rigid Polyurethane Foams (David Eaves, Independent Consultant)\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Materials\u003cbr\u003e4.2.1 Polyols\u003cbr\u003e4.2.2 Isocyanates\u003cbr\u003e4.2.3 Blowing Agents\u003cbr\u003e4.2.4 Other Additives\u003cbr\u003e4.3 Manufacturing Processes for Rigid Polyurethane Foam\u003cbr\u003e4.4 Recycling Processes for Rigid Polyurethane Foam\u003cbr\u003e4.5 Properties of Rigid Polyurethane Foams\u003cbr\u003e4.6 Applications\u003cbr\u003e4.6.1 Applications in Construction\u003cbr\u003e4.6.2 Applications in the Appliance Industry\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Flexible Polyurethane Foam (Tyler Housel, Inolex Chemical Company)\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Chemistry\u003cbr\u003e5.3 Starting Materials\u003cbr\u003e5.3.1 Isocyanate\u003cbr\u003e5.3.2 Polyol\u003cbr\u003e5.3.3 Water\u003cbr\u003e5.3.4 Surfactant\u003cbr\u003e5.3.5 Catalyst\u003cbr\u003e5.3.6 Colorants\u003cbr\u003e5.3.7 Antioxidants\u003cbr\u003e5.3.8 Light Stabilisers\u003cbr\u003e5.3.9 Flame Retardants\u003cbr\u003e5.3.10 Adhesion Promoters\u003cbr\u003e5.3.11 Other Additives\u003cbr\u003e5.4 The Foaming Process\u003cbr\u003e5.4.1 Raw Material Conditioning\u003cbr\u003e5.4.2 Mixing\u003cbr\u003e5.4.3 Growth\u003cbr\u003e5.4.4 Cell Opening\u003cbr\u003e5.4.5 Cure\u003cbr\u003e5.5 Manufacturing Equipment\u003cbr\u003e5.5.1 Storage and Delivery\u003cbr\u003e5.5.2 Mixing\u003cbr\u003e5.5.3 Foam Rise and Cure\u003cbr\u003e5.5.4 Innovations\u003cbr\u003e5.6 Foam Characterisation\u003cbr\u003e5.6.1 Density\u003cbr\u003e5.6.2 Hardness\u003cbr\u003e5.6.3 Resilience\u003cbr\u003e5.6.4 Porosity\u003cbr\u003e5.6.5 Strength Properties\u003cbr\u003e5.6.6 Cell Structure\u003cbr\u003e5.6.7 Environmental Stability\u003cbr\u003e5.6.8 Fatigue\u003cbr\u003e5.6.9 Compression Set\u003cbr\u003e5.6.10 Flammability\u003cbr\u003e5.7 FPF Markets\u003cbr\u003e5.7.1 Transportation\u003cbr\u003e5.7.2 Comfort\u003cbr\u003e5.7.3 Carpet Cushion\u003cbr\u003e5.7.4 Packaging\u003cbr\u003e5.7.5 Specialty Applications\u003cbr\u003e5.8 Environmental Issues\u003cbr\u003e5.9 Organisations\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Rigid PVC Foam (Noreen Thomas, University of Loughborough)\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Foam Extrusion\u003cbr\u003e6.2.1 Basic Principles\u003cbr\u003e6.2.2 Extrusion Processes\u003cbr\u003e6.2.3 Effect of Processing Conditions\u003cbr\u003e6.3 Foam Formulation Technology\u003cbr\u003e6.3.1 Blowing Agents\u003cbr\u003e6.3.2 Processing Aids\u003cbr\u003e6.3.3 Type of PVC\u003cbr\u003e6.3.4 Stabilisers\u003cbr\u003e6.3.5 Lubricants\u003cbr\u003e6.3.6 Typical Formulations\u003cbr\u003e6.4 Properties\u003cbr\u003e6.5 Novel Processes and Applications\u003cbr\u003e6.5.1 Recycling\u003cbr\u003e6.5.2 Microcellular Foam\u003cbr\u003e6.5.3 Foamed Composites\u003cbr\u003e6.6 Summary\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Flexible PVC Foams (Chris Howick, EVC)\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Flexible Foam Types and PVC Types\u003cbr\u003e7.2.1 Flexible Foams Based on Suspension PVC\u003cbr\u003e7.2.2 Flexible Foams Based on Dispersion or Paste Resins\u003cbr\u003e7.2.3 Chemically Blown Foams from PVC Plastisols: Fundamentals\u003cbr\u003e7.2.4 PVC Resins used in Plastisol Foam Formation\u003cbr\u003e7.2.5 Mineral Fillers\u003cbr\u003e7.2.6 Pigments\u003cbr\u003e7.2.7 Liquid Plasticiser\u003cbr\u003e7.2.8 Blowing Agent Type and Level\u003cbr\u003e7.3 Products Utilising Foamed Plastisols\u003cbr\u003e7.3.1 Floorings and Carpet Backings\u003cbr\u003e7.3.2 Wallcoverings\u003cbr\u003e7.3.3 Synthetic Leather\u003cbr\u003e7.3.4 General Foams\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Polyolefin Foams (David Eaves, Independent Consultant)\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Manufacturing Processes and Materials\u003cbr\u003e8.2.1 Extruded Non-Crosslinked Foam\u003cbr\u003e8.2.2 Expanded (Non-Crosslinked) Polyolefin Beads\u003cbr\u003e8.2.3 Extruded Crosslinked Foam - Processes\u003cbr\u003e8.2.4 Press Moulded Crosslinked Foam Process\u003cbr\u003e8.2.5 Injection Moulded Foam Process\u003cbr\u003e8.2.6 The Nitrogen Autoclave Process\u003cbr\u003e8.2.7 Recycling Processes\u003cbr\u003e8.2.8 Post Manufacturing Operations\u003cbr\u003e8.3 Properties of Polyolefin Foams\u003cbr\u003e8.4 Applications\u003cbr\u003e8.5 Foam Specifications\u003cbr\u003e8.5.1 Packaging\u003cbr\u003e8.5.2 Automotive\u003cbr\u003e8.5.3 Furnishings\u003cbr\u003e8.5.4 Buoyancy\u003cbr\u003e8.5.5 Aerospace\u003cbr\u003e8.5.6 Construction\u003cbr\u003e8.5.7 Toys\u003cbr\u003e8.5.8 Food contact\u003cbr\u003e8.6 Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Latex Foam (Rani Joseph, Cochin University)\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Dunlop Process\u003cbr\u003e9.2.1 Batch Process\u003cbr\u003e9.2.2 Selecting a Formulation for Latex Compounds\u003cbr\u003e9.2.3 Selection of Other Compounding Ingredients\u003cbr\u003e9.2.4 Continuous Process for Latex Foam Production\u003cbr\u003e9.3 Talalay Process\u003cbr\u003e9.4 Trouble Shooting in Latex Foam Manufacture\u003cbr\u003e9.5 Testing\u003cbr\u003e9.5.1 Compression Set\u003cbr\u003e9.5.2 Indentation Hardness\u003cbr\u003e9.5.3 Flexing Resistance\u003cbr\u003e9.5.4 Density\u003cbr\u003e9.5.5 Metallic Impurities\u003cbr\u003e9.6 Important Uses of Latex Foam\u003cbr\u003e9.6.1 Transportation\u003cbr\u003e9.6.2 Furniture\u003cbr\u003e9.6.3 Special Uses\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Microcellular Foams (Vipin Kumar, University of Washington \u0026amp; Krishna Nadella, University of Washington)\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Processing of Microcellular Foams\u003cbr\u003e10.2.1 The Solid-State Batch Process\u003cbr\u003e10.2.2 The Semi-Continuous Process\u003cbr\u003e10.2.3 Extrusion and other Processing Methods\u003cbr\u003e10.3 Properties of Microcellular Foams\u003cbr\u003e10.4 Current Research Directions\u003cbr\u003e10.4.1 Microcellular Materials for Construction\u003cbr\u003e11.4.2 Open-Cell (Porous) Microcellular Foams\u003cbr\u003e10.4.3 Sub-Micron Foams and Nanofoams\u003cbr\u003e10.5 Commercial Opportunities\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Eaves studied polymer chemistry at the University in Birmingham and completed his doctorate in 1958. He then joined Dunlop in their Central Research and Development Laboratories in Birmingham, later going out to Ireland (Cork) and Japan (Kobe) to establish and manage overseas satellite research centres. In 1984 he left Dunlop and joined BP Chemicals' polyethylene foam operation in Croydon as Technical Manager. He was part of the management buy-out team in 1992 when the company was renamed 'Zotefoams', and retired in 1998 as Technical Director. He has published many papers on aspects of polymer and polymer foam technology and is the author of the Rapra report 'Polymer Foams: Trends in Use and Technology."}
Handbook of Polymer Pr...
$295.00
{"id":7703524278429,"title":"Handbook of Polymer Processing Additives","handle":"handbook-of-polymer-processing-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-77467-010-1 \u003cbr\u003e\u003cbr\u003eEdition: 1st\u003cbr data-mce-fragment=\"1\"\u003ePublished Jan. 2023\u003cbr data-mce-fragment=\"1\"\u003ePages: 120+iv\u003cbr data-mce-fragment=\"1\"\u003eTables 12\u003cbr data-mce-fragment=\"1\"\u003eFigures 36\u003cbr data-mce-fragment=\"1\"\u003eHardcover\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe handbook and the databook series include separate books on many commonly used additives, such as Antiblocking Agents, Antioxidants, Biocides, Flame Retardants, Nucleating Agents, Plasticizers, Solvents, UV Stabilizers, and many others. This Handbook contains a selection of minor additives used in the processing of polymeric and other materials, such as acid scavengers, air release, anticaking, antifoaming, antifreezing, antigassing, antigelling, defoaming, antisettling additives, hydrolysis stabilizers, moisture scavengers, and reprocessing aids. They are all very important additives, although less documented in the literature. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eInformation on the use of these additives in various products is divided into the following sections: Methods and mechanisms of additives use, Types and concentrations, Application data that emphasize reasons for their use, advantages and disadvantages of additive use, effect on product properties, and properties of final products.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above-listed additives are most frequently used in PVC resins, including rigid, flexible, and paste resin, PVC copolymers, other vinyl resins, and mixtures with other polymers, polyolefins (PE and PP), and their copolymers (e.g., EVA, EPDM), polystyrene and various styrene copolymers, epichlorohydrin rubber, fluoroelastomers, fluorinated rubbers, and fluoropolymers, polyesters (PBT, PET, PLA, PBAT, unsaturated polyesters, and TPE), polyamides, polyurethanes, acrylates, and their various copolymers, alkyds, polyoxymethylene, epoxy, melamine, and phenolic resins, cellulosic polymers (e.g., nitrocellulose, cellulose acetate butyrate), rubbers (butyl, chlorinated rubber, styrene-butadiene, chlorobutyl, chlorosulfonated polyethylene, nitrile, silicone, and polychloroprene), starch-based resins, and many others not mentioned by name.\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003eMany products and industries require these additives, including construction, automotive, aeronautic, electronic industries, glass coating, insulating glass manufacture, mineral wool insulation, adhesives, sealants and gaskets, cable and wire industry, paints, primers, and coatings, wind turbines, 3D printing, shoe industry, pneumatic pipe, film, conveyor belts, elevator wheel, home appliances, building decorative boards, shopping bags, agricultural film, food containers, toys and stationery, membranes, leather and coated fabrics, roof coatings, asphaltic felt, modified bitumen and single plies, printing with gravure and flexo on paper and vinyl wall coverings, foams, cast parts, cleaners, printing inks and toners, agrochemicals, cosmetics, and many others not mentioned by name. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above (incomplete) list of polymers and products, which use discussed in this book additives, shows how important they are for polymer processing and the production of many other products. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eA complete analysis of literature and patents is included in this book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and the environment. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHandbook of Polymer Processing Additives is a highly practical resource, covering the use and application of many processing additives. It assists engineers and scientists in the polymer industry in their applications and provides a reference book for those involved in research and development support. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThis book is an excellent companion to the Databook of Polymer Processing Additives because the data in the Handbook of Polymer Processing Additives do not repeat information, but Handbook gives a broader background for the selection of the additives, their performance mechanisms, and many essential application properties.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe combination of data and comprehensive analysis of the performance of these materials form a particularly important source of information for industry, research, academia, and legislature. These two books should be considered by any industrial, university, governmental, and public library because of the widespread applications of these additives in industry and everyday life.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2023-02-24T13:51:24-05:00","created_at":"2023-02-24T12:52:56-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","biodegradation","blends","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","monomers","physical properties","polymeric materials","polymerization","processing","processing methods","structure","structures","synthesis","toxicity","weather stability"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393827995805,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Processing Additives","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569","options":["Title"],"media":[{"alt":null,"id":27339963367581,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-77467-010-1 \u003cbr\u003e\u003cbr\u003eEdition: 1st\u003cbr data-mce-fragment=\"1\"\u003ePublished Jan. 2023\u003cbr data-mce-fragment=\"1\"\u003ePages: 120+iv\u003cbr data-mce-fragment=\"1\"\u003eTables 12\u003cbr data-mce-fragment=\"1\"\u003eFigures 36\u003cbr data-mce-fragment=\"1\"\u003eHardcover\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe handbook and the databook series include separate books on many commonly used additives, such as Antiblocking Agents, Antioxidants, Biocides, Flame Retardants, Nucleating Agents, Plasticizers, Solvents, UV Stabilizers, and many others. This Handbook contains a selection of minor additives used in the processing of polymeric and other materials, such as acid scavengers, air release, anticaking, antifoaming, antifreezing, antigassing, antigelling, defoaming, antisettling additives, hydrolysis stabilizers, moisture scavengers, and reprocessing aids. They are all very important additives, although less documented in the literature. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eInformation on the use of these additives in various products is divided into the following sections: Methods and mechanisms of additives use, Types and concentrations, Application data that emphasize reasons for their use, advantages and disadvantages of additive use, effect on product properties, and properties of final products.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above-listed additives are most frequently used in PVC resins, including rigid, flexible, and paste resin, PVC copolymers, other vinyl resins, and mixtures with other polymers, polyolefins (PE and PP), and their copolymers (e.g., EVA, EPDM), polystyrene and various styrene copolymers, epichlorohydrin rubber, fluoroelastomers, fluorinated rubbers, and fluoropolymers, polyesters (PBT, PET, PLA, PBAT, unsaturated polyesters, and TPE), polyamides, polyurethanes, acrylates, and their various copolymers, alkyds, polyoxymethylene, epoxy, melamine, and phenolic resins, cellulosic polymers (e.g., nitrocellulose, cellulose acetate butyrate), rubbers (butyl, chlorinated rubber, styrene-butadiene, chlorobutyl, chlorosulfonated polyethylene, nitrile, silicone, and polychloroprene), starch-based resins, and many others not mentioned by name.\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003eMany products and industries require these additives, including construction, automotive, aeronautic, electronic industries, glass coating, insulating glass manufacture, mineral wool insulation, adhesives, sealants and gaskets, cable and wire industry, paints, primers, and coatings, wind turbines, 3D printing, shoe industry, pneumatic pipe, film, conveyor belts, elevator wheel, home appliances, building decorative boards, shopping bags, agricultural film, food containers, toys and stationery, membranes, leather and coated fabrics, roof coatings, asphaltic felt, modified bitumen and single plies, printing with gravure and flexo on paper and vinyl wall coverings, foams, cast parts, cleaners, printing inks and toners, agrochemicals, cosmetics, and many others not mentioned by name. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above (incomplete) list of polymers and products, which use discussed in this book additives, shows how important they are for polymer processing and the production of many other products. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eA complete analysis of literature and patents is included in this book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and the environment. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHandbook of Polymer Processing Additives is a highly practical resource, covering the use and application of many processing additives. It assists engineers and scientists in the polymer industry in their applications and provides a reference book for those involved in research and development support. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThis book is an excellent companion to the Databook of Polymer Processing Additives because the data in the Handbook of Polymer Processing Additives do not repeat information, but Handbook gives a broader background for the selection of the additives, their performance mechanisms, and many essential application properties.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe combination of data and comprehensive analysis of the performance of these materials form a particularly important source of information for industry, research, academia, and legislature. These two books should be considered by any industrial, university, governmental, and public library because of the widespread applications of these additives in industry and everyday life.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Polymer Te...
$144.00
{"id":11242227204,"title":"Handbook of Polymer Testing - Short-Term Mechanical Tests","handle":"978-1-85957-324-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R. Brown \u003cbr\u003eISBN 978-1-85957-324-2 \u003cbr\u003e\u003cbr\u003epages 208\n\u003ch5\u003eSummary\u003c\/h5\u003e\nKnowledge of the properties of plastics is essential for designing products, specifying the material to be used, carrying out quality control on finished products, failure analysis and for understanding the structure and behaviour of new materials. \u003cbr\u003e\u003cbr\u003eEach class of materials has its own specific test procedures, which have developed as the material has evolved. This book concentrates on one area of testing – short-term mechanical tests. These are defined as tests of mechanical properties where the effects of long periods of time and cycling are ignored. This group of tests includes hardness, tensile, compression, shear, flexing, impact, and tear and in this book, it is also taken to include density and dimensional measurement together with test piece preparation and conditioning.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThe topics covered in this book, include:\u003c\/strong\u003e \u003cbr\u003e1. Introduction\u003cbr\u003eReasons for Testing, Source, and Condition of Test Pieces, Test Conditions, Limitations of Results, Sampling, Standards, Quality Control of Testing, Test Equipment, Product Testing, and Modes of Stressing. \u003cbr\u003e2. Test Piece Preparation\u003cbr\u003eMixing, Moulding, Stamping from Sheet or Film, and Machining. \u003cbr\u003e3. Conditioning\u003cbr\u003eStorage, Conditioning, Heat Treatment, Mechanical Conditioning, Test Conditions, and Apparatus for Conditioning. \u003cbr\u003e4. Mass, Density, and Dimensions\u003cbr\u003eMeasurement of Mass, of Density, and of Dimensions. \u003cbr\u003e5. Hardness\u003cbr\u003eRelationships, Standard Methods, and Other Methods. \u003cbr\u003e6. Tensile Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e7. Compression Stress-Strain\u003cbr\u003eTest Apparatus, Standard, and Other Tests. \u003cbr\u003e8. Shear Properties\u003cbr\u003eStandard, and Other Tests. \u003cbr\u003e9. Flexural Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e10. Impact Strength\u003cbr\u003eGeneral, and Specific Tests. \u003cbr\u003e11. Tear Properties\u003cbr\u003eTest Piece Geometry, Standard, and Other Tests \u003cbr\u003e12. Fracture Toughness\u003cbr\u003eStandard, and Other Methods. \u003cbr\u003eThis book will be useful to all those who are already involved in the testing of polymers and it is an ideal guide to those just starting out in the field, whether in academia or industry.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e1 Introduction \u003cbr\u003e1.1 Scope \u003cbr\u003e1.2 Reasons for Testing \u003cbr\u003e1.3 Source and Condition of Test Pieces \u003cbr\u003e1.3 Test Conditions \u003cbr\u003e1.4 Limitations of Results \u003cbr\u003e1.6 Sampling \u003cbr\u003e1.7 Standards \u003cbr\u003e1.8 Quality Control of Testing 1.9 Test Equipment \u003cbr\u003e1.10 Product Testing \u003cbr\u003e1.11 Modes of Stressing References \u003cbr\u003e\u003cbr\u003e2 Test Piece Preparation \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Mixing \u003cbr\u003e2.3 Moulding \u003cbr\u003e2.4 Stamping from Sheet or Film \u003cbr\u003e2.5 Machining References \u003cbr\u003e\u003cbr\u003e3 Conditioning \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Storage \u003cbr\u003e3.3 Conditioning \u003cbr\u003e3.4 Heat Treatment 3.5 Mechanical Conditioning \u003cbr\u003e3.5.1 Test Conditions \u003cbr\u003e3.6 Apparatus for Conditioning \u003cbr\u003e3.6.1 Air-Conditioned Rooms \u003cbr\u003e3.6.2 Enclosures\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e3.6.3 Hygrometers \u003cbr\u003e3.6.4 Thermometers \u003cbr\u003e3.6.5 Apparatus for Elevated and Sub-Ambient Temperature References Appendix A – Tables of Thermal Equilibrium Times \u003cbr\u003e\u003cbr\u003e4 Mass, Density, and Dimensions \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Measurement of Mass \u003cbr\u003e4.3 Measurement of Density \u003cbr\u003e4.4 Measurement of Dimensions \u003cbr\u003e4.4.1 General \u003cbr\u003e4.4.2 ‘Standard’ Laboratory Procedures \u003cbr\u003e4.4.3 Other Procedures \u003cbr\u003e4.4.4 Surface Roughness \u003cbr\u003e4.4.5 Extensometry \u003cbr\u003e4.4.6 Dimensional Stability \u003cbr\u003e4.4.7 Dispersion References \u003cbr\u003e\u003cbr\u003e5 Hardness \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Relationships \u003cbr\u003e5.3 Standard Methods \u003cbr\u003e5.3.1 Shore Durometer \u003cbr\u003e5.3.2 Ball Indentation \u003cbr\u003e5.3.3 Rockwell \u003cbr\u003e5.3.4 Softness 5.3.5 Barcol Hardness \u003cbr\u003e5.4 Other Methods References \u003cbr\u003e\u003cbr\u003e6 Tensile Stress-Strain \u003cbr\u003e6.1 General Considerations \u003cbr\u003e6.1.1 Tough Materials with a Yield Stress Greater than the Failure Stress \u003cbr\u003e6.1.2 Tough Materials with a Yield Stress Lower than the Failure Stress \u003cbr\u003e6.1.3 Tough Materials with the same Yield and Failure Stress\u003cbr\u003e6.1.4 Brittle Materials \u003cbr\u003e6.2 Test Methods \u003cbr\u003e6.2.1 Standard Methods \u003cbr\u003e6.2.2 Test Apparatus \u003cbr\u003e6.2.3 Test Pieces \u003cbr\u003e6.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e7 Compression Stress-Strain \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Test Apparatus \u003cbr\u003e7.3 Standard Tests \u003cbr\u003e7.3 Other Tests References \u003cbr\u003e\u003cbr\u003e8 Shear Properties \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Standard Tests \u003cbr\u003e8.3 Other Tests References \u003cbr\u003e\u003cbr\u003e9 Flexural Stress-Strain \u003cbr\u003e9.1 General Considerations \u003cbr\u003e9.2 Test Methods \u003cbr\u003e9.2.1 Standard Methods \u003cbr\u003e9.2.2 Test Apparatus \u003cbr\u003e9.2.3 Test Pieces \u003cbr\u003e9.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e10 Impact Strength \u003cbr\u003e10.1 General Considerations \u003cbr\u003e10.1.1 Introduction \u003cbr\u003e10.1.2 Modes of Failure\u003cbr\u003e10.1.3 Factors Affecting the Impact Strength \u003cbr\u003e10.2 Specific Tests \u003cbr\u003e10.2.1 Pendulum Methods \u003cbr\u003e10.2.2 Drop Methods References \u003cbr\u003e\u003cbr\u003e11 Tear Properties \u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Test Piece Geometry \u003cbr\u003e11.3 Standard Tests \u003cbr\u003e11.4 Other Tests References \u003cbr\u003e\u003cbr\u003e12 Fracture Toughness \u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Standard Methods \u003cbr\u003e12.3 Other Methods References\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.","published_at":"2017-06-22T21:14:04-04:00","created_at":"2017-06-22T21:14:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","compression","density","flexing","hardness","impact","mass","mixing","molding","moulding","p-testing","plastics","poly","properties","quality control","shear","stamping","stress-strain","tear","tensile","testing"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394372,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Testing - Short-Term Mechanical Tests","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-324-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522","options":["Title"],"media":[{"alt":null,"id":356335976541,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R. Brown \u003cbr\u003eISBN 978-1-85957-324-2 \u003cbr\u003e\u003cbr\u003epages 208\n\u003ch5\u003eSummary\u003c\/h5\u003e\nKnowledge of the properties of plastics is essential for designing products, specifying the material to be used, carrying out quality control on finished products, failure analysis and for understanding the structure and behaviour of new materials. \u003cbr\u003e\u003cbr\u003eEach class of materials has its own specific test procedures, which have developed as the material has evolved. This book concentrates on one area of testing – short-term mechanical tests. These are defined as tests of mechanical properties where the effects of long periods of time and cycling are ignored. This group of tests includes hardness, tensile, compression, shear, flexing, impact, and tear and in this book, it is also taken to include density and dimensional measurement together with test piece preparation and conditioning.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThe topics covered in this book, include:\u003c\/strong\u003e \u003cbr\u003e1. Introduction\u003cbr\u003eReasons for Testing, Source, and Condition of Test Pieces, Test Conditions, Limitations of Results, Sampling, Standards, Quality Control of Testing, Test Equipment, Product Testing, and Modes of Stressing. \u003cbr\u003e2. Test Piece Preparation\u003cbr\u003eMixing, Moulding, Stamping from Sheet or Film, and Machining. \u003cbr\u003e3. Conditioning\u003cbr\u003eStorage, Conditioning, Heat Treatment, Mechanical Conditioning, Test Conditions, and Apparatus for Conditioning. \u003cbr\u003e4. Mass, Density, and Dimensions\u003cbr\u003eMeasurement of Mass, of Density, and of Dimensions. \u003cbr\u003e5. Hardness\u003cbr\u003eRelationships, Standard Methods, and Other Methods. \u003cbr\u003e6. Tensile Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e7. Compression Stress-Strain\u003cbr\u003eTest Apparatus, Standard, and Other Tests. \u003cbr\u003e8. Shear Properties\u003cbr\u003eStandard, and Other Tests. \u003cbr\u003e9. Flexural Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e10. Impact Strength\u003cbr\u003eGeneral, and Specific Tests. \u003cbr\u003e11. Tear Properties\u003cbr\u003eTest Piece Geometry, Standard, and Other Tests \u003cbr\u003e12. Fracture Toughness\u003cbr\u003eStandard, and Other Methods. \u003cbr\u003eThis book will be useful to all those who are already involved in the testing of polymers and it is an ideal guide to those just starting out in the field, whether in academia or industry.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e1 Introduction \u003cbr\u003e1.1 Scope \u003cbr\u003e1.2 Reasons for Testing \u003cbr\u003e1.3 Source and Condition of Test Pieces \u003cbr\u003e1.3 Test Conditions \u003cbr\u003e1.4 Limitations of Results \u003cbr\u003e1.6 Sampling \u003cbr\u003e1.7 Standards \u003cbr\u003e1.8 Quality Control of Testing 1.9 Test Equipment \u003cbr\u003e1.10 Product Testing \u003cbr\u003e1.11 Modes of Stressing References \u003cbr\u003e\u003cbr\u003e2 Test Piece Preparation \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Mixing \u003cbr\u003e2.3 Moulding \u003cbr\u003e2.4 Stamping from Sheet or Film \u003cbr\u003e2.5 Machining References \u003cbr\u003e\u003cbr\u003e3 Conditioning \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Storage \u003cbr\u003e3.3 Conditioning \u003cbr\u003e3.4 Heat Treatment 3.5 Mechanical Conditioning \u003cbr\u003e3.5.1 Test Conditions \u003cbr\u003e3.6 Apparatus for Conditioning \u003cbr\u003e3.6.1 Air-Conditioned Rooms \u003cbr\u003e3.6.2 Enclosures\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e3.6.3 Hygrometers \u003cbr\u003e3.6.4 Thermometers \u003cbr\u003e3.6.5 Apparatus for Elevated and Sub-Ambient Temperature References Appendix A – Tables of Thermal Equilibrium Times \u003cbr\u003e\u003cbr\u003e4 Mass, Density, and Dimensions \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Measurement of Mass \u003cbr\u003e4.3 Measurement of Density \u003cbr\u003e4.4 Measurement of Dimensions \u003cbr\u003e4.4.1 General \u003cbr\u003e4.4.2 ‘Standard’ Laboratory Procedures \u003cbr\u003e4.4.3 Other Procedures \u003cbr\u003e4.4.4 Surface Roughness \u003cbr\u003e4.4.5 Extensometry \u003cbr\u003e4.4.6 Dimensional Stability \u003cbr\u003e4.4.7 Dispersion References \u003cbr\u003e\u003cbr\u003e5 Hardness \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Relationships \u003cbr\u003e5.3 Standard Methods \u003cbr\u003e5.3.1 Shore Durometer \u003cbr\u003e5.3.2 Ball Indentation \u003cbr\u003e5.3.3 Rockwell \u003cbr\u003e5.3.4 Softness 5.3.5 Barcol Hardness \u003cbr\u003e5.4 Other Methods References \u003cbr\u003e\u003cbr\u003e6 Tensile Stress-Strain \u003cbr\u003e6.1 General Considerations \u003cbr\u003e6.1.1 Tough Materials with a Yield Stress Greater than the Failure Stress \u003cbr\u003e6.1.2 Tough Materials with a Yield Stress Lower than the Failure Stress \u003cbr\u003e6.1.3 Tough Materials with the same Yield and Failure Stress\u003cbr\u003e6.1.4 Brittle Materials \u003cbr\u003e6.2 Test Methods \u003cbr\u003e6.2.1 Standard Methods \u003cbr\u003e6.2.2 Test Apparatus \u003cbr\u003e6.2.3 Test Pieces \u003cbr\u003e6.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e7 Compression Stress-Strain \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Test Apparatus \u003cbr\u003e7.3 Standard Tests \u003cbr\u003e7.3 Other Tests References \u003cbr\u003e\u003cbr\u003e8 Shear Properties \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Standard Tests \u003cbr\u003e8.3 Other Tests References \u003cbr\u003e\u003cbr\u003e9 Flexural Stress-Strain \u003cbr\u003e9.1 General Considerations \u003cbr\u003e9.2 Test Methods \u003cbr\u003e9.2.1 Standard Methods \u003cbr\u003e9.2.2 Test Apparatus \u003cbr\u003e9.2.3 Test Pieces \u003cbr\u003e9.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e10 Impact Strength \u003cbr\u003e10.1 General Considerations \u003cbr\u003e10.1.1 Introduction \u003cbr\u003e10.1.2 Modes of Failure\u003cbr\u003e10.1.3 Factors Affecting the Impact Strength \u003cbr\u003e10.2 Specific Tests \u003cbr\u003e10.2.1 Pendulum Methods \u003cbr\u003e10.2.2 Drop Methods References \u003cbr\u003e\u003cbr\u003e11 Tear Properties \u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Test Piece Geometry \u003cbr\u003e11.3 Standard Tests \u003cbr\u003e11.4 Other Tests References \u003cbr\u003e\u003cbr\u003e12 Fracture Toughness \u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Standard Methods \u003cbr\u003e12.3 Other Methods References\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees."}
Handbook of Polymers
$395.00
{"id":11242220932,"title":"Handbook of Polymers","handle":"978-1-895198-47-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:44:36-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","physical properties","polymeric materials","processing","structure","synthesis","toxicity","weather stability"],"price":39500,"price_min":39500,"price_max":39500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372932,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers","public_title":null,"options":["Default Title"],"price":39500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-47-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588","options":["Title"],"media":[{"alt":null,"id":356336173149,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymers i...
$270.00
{"id":11242211716,"title":"Handbook of Polymers in Electronics","handle":"978-1-85957-286-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: B.D. Malhotra \u003cbr\u003eISBN 978-1-85957-286-3 \u003cbr\u003e\u003cbr\u003epages: 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the continuing drive for higher circuit density and very high-speed data processing, the search for new polymeric materials to use in microelectronics has intensified. The development of polymers for electronics applications is an open field wherein polymers may be used as insulating materials or tailored for desired electronic properties for specific applications. Conjugated polymers have been projected to have numerous applications and are presently at centre-stage of R\u0026amp;D. \u003cbr\u003e\u003cbr\u003eThe Handbook of Polymers in Electronics has been designed to discuss the novel ways in which polymers can be used in the rapidly growing electronics industry. It provides a discussion of the preparation and characterisation of suitable polymeric materials and their current and potential applications coupled with the fundamentals of electrical, optical and photophysical properties. It will thus serve the needs of those already active in the electronics field as well as new entrants to the industry. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Charge Transport in Conjugated Polymers \u003cbr\u003e2. Electrical Properties of Doped Conjugated Polymers \u003cbr\u003e3. Non Linear Optical Properties of Polymers for Electronics \u003cbr\u003e4. Luminescence Studies of Polymers \u003cbr\u003e5. Polymers for Light Emitting Diodes \u003cbr\u003e6. Photopolymers and Photoresists for Electronics \u003cbr\u003e7. Polymer Batteries for Electronics \u003cbr\u003e8. Polymer Microactuators \u003cbr\u003e9. Membranes for Electronics \u003cbr\u003e10. Conducting Polymer-Based Biosensors \u003cbr\u003e11. Nanoparticle-Dispersed Semiconducting Polymers for Electronics \u003cbr\u003e12. Polymers for Electronics \u003cbr\u003e13. Conducting Polymers in Molecular Electronics\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nBansi Dhar Malhotra is Scientist-in-Charge at the Biomolecular Electronics \u0026amp; Conducting Research Group, National Physical Laboratory, New Delhi, India. He is presently engaged in an R\u0026amp;D programme on conducting polymers, biosensors, Langmuir Blodgett films and molecular electronics. He is the author of more than 50 research papers and has been invited to speak at many international conferences.","published_at":"2017-06-22T21:13:13-04:00","created_at":"2017-06-22T21:13:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","batteries","biosensors","book","charge transport","electrical properties","light-emitting diodes","luminescence","membranes","microactuators","molecular electronics","non-linear optical properties","optical properties","p-applications","photo resists","polymer","polymers","semiconducting"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378337348,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers in Electronics","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-286-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-286-3.jpg?v=1499471738"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-286-3.jpg?v=1499471738","options":["Title"],"media":[{"alt":null,"id":356336336989,"position":1,"preview_image":{"aspect_ratio":0.769,"height":182,"width":140,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-286-3.jpg?v=1499471738"},"aspect_ratio":0.769,"height":182,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-286-3.jpg?v=1499471738","width":140}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: B.D. Malhotra \u003cbr\u003eISBN 978-1-85957-286-3 \u003cbr\u003e\u003cbr\u003epages: 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the continuing drive for higher circuit density and very high-speed data processing, the search for new polymeric materials to use in microelectronics has intensified. The development of polymers for electronics applications is an open field wherein polymers may be used as insulating materials or tailored for desired electronic properties for specific applications. Conjugated polymers have been projected to have numerous applications and are presently at centre-stage of R\u0026amp;D. \u003cbr\u003e\u003cbr\u003eThe Handbook of Polymers in Electronics has been designed to discuss the novel ways in which polymers can be used in the rapidly growing electronics industry. It provides a discussion of the preparation and characterisation of suitable polymeric materials and their current and potential applications coupled with the fundamentals of electrical, optical and photophysical properties. It will thus serve the needs of those already active in the electronics field as well as new entrants to the industry. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Charge Transport in Conjugated Polymers \u003cbr\u003e2. Electrical Properties of Doped Conjugated Polymers \u003cbr\u003e3. Non Linear Optical Properties of Polymers for Electronics \u003cbr\u003e4. Luminescence Studies of Polymers \u003cbr\u003e5. Polymers for Light Emitting Diodes \u003cbr\u003e6. Photopolymers and Photoresists for Electronics \u003cbr\u003e7. Polymer Batteries for Electronics \u003cbr\u003e8. Polymer Microactuators \u003cbr\u003e9. Membranes for Electronics \u003cbr\u003e10. Conducting Polymer-Based Biosensors \u003cbr\u003e11. Nanoparticle-Dispersed Semiconducting Polymers for Electronics \u003cbr\u003e12. Polymers for Electronics \u003cbr\u003e13. Conducting Polymers in Molecular Electronics\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nBansi Dhar Malhotra is Scientist-in-Charge at the Biomolecular Electronics \u0026amp; Conducting Research Group, National Physical Laboratory, New Delhi, India. He is presently engaged in an R\u0026amp;D programme on conducting polymers, biosensors, Langmuir Blodgett films and molecular electronics. He is the author of more than 50 research papers and has been invited to speak at many international conferences."}
Handbook of Polymers, ...
$425.00
{"id":11242222020,"title":"Handbook of Polymers, 2nd Edition","handle":"978-1-895198-92-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-92-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003ePages: 705\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2016. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical \u003cbr\u003e\u003cbr\u003eproblems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003ePresentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, \u003cbr\u003e\u003cbr\u003eFree enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, \u003cbr\u003e\u003cbr\u003eVan der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photooxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book or the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:48-04:00","created_at":"2017-06-22T21:13:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","biodegradation","blends","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","monomers","physical properties","polymeric materials","polymerization","processing","processing methods","structure","structures","synthesis","toxicity","weather stability"],"price":42500,"price_min":42500,"price_max":42500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378375172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers, 2nd Edition","public_title":null,"options":["Default Title"],"price":42500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-92-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966","options":["Title"],"media":[{"alt":null,"id":356336369757,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-92-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003ePages: 705\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2016. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical \u003cbr\u003e\u003cbr\u003eproblems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003ePresentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, \u003cbr\u003e\u003cbr\u003eFree enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, \u003cbr\u003e\u003cbr\u003eVan der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photooxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book or the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymers, ...
$455.00
{"id":7336409235613,"title":"Handbook of Polymers, 3rd Edition","handle":"handbook-of-polymers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T21:01:23-04:00","created_at":"2022-03-31T20:57:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","best","book","material","Materials","polymer","polymers"],"price":45500,"price_min":45500,"price_max":45500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165789098141,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Polymers, 3rd Edition","public_title":null,"options":["Default Title"],"price":45500,"weight":1000,"compare_at_price":null,"inventory_quantity":-3,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-95-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870","options":["Title"],"media":[{"alt":null,"id":24734620844189,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e"}
Handbook of Polyuretha...
$350.00
{"id":8694779642013,"title":"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates","handle":"handbook-of-polyurethanes-polyureas-and-polyisocyanurates","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-092-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublished: May 2026\u003c\/span\u003e\u003cbr\u003ePages: 530\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 80\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe \u003cb\u003eHandbook of Polyurethanes, Polyureas, and Polyisocyanurates\u003c\/b\u003e begins with an \u003cb\u003eintroduction\u003c\/b\u003e defining key terms for understanding these versatile materials' chemistry and applications. Following this, a \u003cb\u003ehistorical timeline\u003c\/b\u003e provides context by tracing the development of polyurethanes from their inception to present-day innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook focuses heavily on the \u003cb\u003eraw materials for polyurethane synthesis\u003c\/b\u003e. It explores various \u003cb\u003eisocyanates\u003c\/b\u003e and \u003cb\u003epolyols\u003c\/b\u003e, detailing their chemical properties and roles in creating diverse polymer structures. The section also discusses \u003cb\u003eamines, solvents, catalysts,\u003c\/b\u003e and \u003cb\u003eadditives\u003c\/b\u003e that enhance the synthesis process, including \u003cb\u003eprepolymers\u003c\/b\u003e, which serve as intermediates in production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe text delves into \u003cb\u003etypical methods of synthesis\u003c\/b\u003e, examining the \u003cb\u003emechanisms of catalysis\u003c\/b\u003e that speed up reactions, factors affecting \u003cb\u003ereaction rates\u003c\/b\u003e, and potential \u003cb\u003eside reactions\u003c\/b\u003e that can occur during polymerization. This leads to a discussion on the \u003cb\u003estructures of linear and crosslinked polyurethanes\u003c\/b\u003e, highlighting how these configurations influence the physical and chemical properties of the final products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eUnderstanding polyurethanes' domain morphology and crystalline structure is crucial, as these factors play a significant role in phase separation and hydrogen bonding, which impact material performance. The handbook also details \u003cb\u003etypical methods for analyzing polyurethanes\u003c\/b\u003e, allowing for assessment of their characteristics and qualities.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe following is a comprehensive review of the physical-mechanical properties of polyurethanes, addressing attributes such as elasticity, tensile strength, and thermal stability. The interactions between polyurethanes and various \u003cb\u003esubstrates\u003c\/b\u003e are also explored, highlighting their compatibility in different applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eDegradation mechanisms, including thermal, UV, and chemical degradation, and strategies for polyurethane stabilization to enhance durability are critically examined.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook discusses the creation of \u003cb\u003epolyurethane blends\u003c\/b\u003e and \u003cb\u003einterpenetrating networks\u003c\/b\u003e, which can combine different material properties for improved performance.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eAn extensive section on \u003cb\u003eadditives\u003c\/b\u003e used with polyurethanes covers a wide range of substances, such as \u003cb\u003eplasticizers\u003c\/b\u003e, \u003cb\u003epigments\u003c\/b\u003e, \u003cb\u003eflame retardants\u003c\/b\u003e, and many others, each contributing to specific attributes in the final product.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe chapter on \u003cb\u003epolyurethane processing\u003c\/b\u003e outlines essential techniques, including \u003cb\u003emetering, mixing,\u003c\/b\u003e and \u003cb\u003estorage\u003c\/b\u003e, which are vital for efficient production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eIn terms of applications, the handbook provides a thorough overview of the myriad uses of polyurethanes, from \u003cb\u003eautomotive parts\u003c\/b\u003e and \u003cb\u003ebedding\u003c\/b\u003e to \u003cb\u003emedical devices\u003c\/b\u003e and \u003cb\u003epackaging\u003c\/b\u003e, emphasizing the properties and formulations unique to each application.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook underscores the importance of health and safety by offering guidelines for safely handling and using polyurethane materials. Finally, it addresses \u003cb\u003ewaste disposal, processing,\u003c\/b\u003e and \u003cb\u003erecycling\u003c\/b\u003e strategies, promoting environmentally responsible practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThis summary encapsulates the core themes and topics of the handbook, providing an overview of what readers can expect from each section. The table of contents also includes concise information about the contents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eHere are some suggestions for potential users of the \"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates\":\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e1. Researchers and Academics\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To gain comprehensive knowledge of polyurethane synthesis, properties, and applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a reference for literature reviews, experimental designs, and foundational understanding in materials science.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e2. Chemists and Material Scientists\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To explore polyurethanes' chemical and physical properties and their raw materials.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidance on material selection, synthesis techniques, and formulation development.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e3. Industrial Engineers and Process Designers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the processing methods and operational parameters for manufacturing polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a resource for optimizing production processes and enhancing product quality.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e4. Product Development Teams\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To develop new polyurethane-based products across various industries (e.g., automotive, construction, medical).\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights on additives, formulation strategies, and application-specific properties.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e5. Quality Control and Assurance Professionals\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To ensure the quality and performance of polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a guide for analytical methods and testing protocols.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e6. Environmental Scientists and Sustainability Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the environmental impact of polyurethane production and disposal.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For strategies on waste management, recycling, and sustainable practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e7. Health and Safety Officers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To establish safety protocols and ensure compliance with regulations when handling polyurethanes.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidelines on safe practices and material safety data.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e8. Students and Educators\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To learn about polymer science and materials engineering.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a textbook or supplementary resource for coursework and research projects.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e9. Consultants and Industry Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To provide informed advice to companies on polyurethane applications and innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a comprehensive source for current knowledge and trends in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e10. Manufacturers of Polyurethane Products\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To stay updated on the latest developments and best practices in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights into formulation, processing, and application methods.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1. Introduction – definition of terms\u003cbr\u003e2. Historical timeline\u003cbr\u003e3. Raw materials for polyurethane synthesis\u003cbr\u003ea. Isocyanates\u003cbr\u003eb. Polyols\u003cbr\u003ec. Amines\u003cbr\u003ed. Non-isocyanate synthesis components (cyclic carbonates and amines)\u003cbr\u003ee. Solvents\u003cbr\u003ef. Catalysts\u003cbr\u003eg. Blocking agents\u003cbr\u003eh. Other additives\u003cbr\u003e4. Typical methods of synthesis\u003cbr\u003ea. Mechanisms of catalysis\u003cbr\u003eb. Reaction rates\u003cbr\u003ec. Side reactions (allophanates, biurets, carbodiimides, and dimers)\u003cbr\u003e5. Structures of linear and crosslinked polyurethanes \u003cbr\u003e6. Domain morphology\u003cbr\u003e7. Crystalline structure, phase separation, and hydrogen bonding\u003cbr\u003e8. Typical methods of polyurethane analysis\u003cbr\u003e9. Physical-mechanical properties of polyurethanes\u003cbr\u003e10. Interaction with other materials (substrates\u003cbr\u003e11. Polyurethane degradation\u003cbr\u003ea. Thermal\u003cbr\u003eb. UV\u003cbr\u003ec. Chemical\u003cbr\u003e12. Polyurethane stabilization\u003cbr\u003e13. Polyurethane blends and interpenetrating networks\u003cbr\u003e14. Additives used with polyurethanes \u003cbr\u003ea. Plasticizers \u003cbr\u003eb. Pigments \u003cbr\u003ec. Blowing agents\u003cbr\u003ed. Surfactants \u003cbr\u003ee. Adhesion promoters\u003cbr\u003ef. Rheological additives\u003cbr\u003eg. Fillers and nanofillers \u003cbr\u003eh. Flame retardants\u003cbr\u003ei. Antibacterial additives\u003cbr\u003e15. Polyurethane processing\u003cbr\u003ea. Prepolymers processing\u003cbr\u003eb. Storage \u003cbr\u003ec. Metering\u003cbr\u003ed. Mixing \u003cbr\u003e16. Applications, properties, and formulations\u003cbr\u003ea. 3D printing\u003cbr\u003eb. Adhesives and sealants\u003cbr\u003ec. Appliances\u003cbr\u003ed. Artificial leather\u003cbr\u003ee. Automotive\u003cbr\u003ef. Bedding \u003cbr\u003eg. Building and construction\u003cbr\u003eh. Carpet underlay\u003cbr\u003ei. Coatings and paints\u003cbr\u003ej. Composite wood\u003cbr\u003ek. Electrical and electronics\u003cbr\u003el. Fiber and textiles\u003cbr\u003em. Flooring\u003cbr\u003en. Foams \u003cbr\u003eo. Footwear \u003cbr\u003ep. Furniture\u003cbr\u003eq. Marine\u003cbr\u003er. Roofing\u003cbr\u003es. Medical\u003cbr\u003et. Packaging\u003cbr\u003eu. Pharmaceutical \u003cbr\u003ev. Reaction injection molding\u003cbr\u003ew. Seals and gaskets\u003cbr\u003ex. Shape memory\u003cbr\u003ey. Sporting equipment\u003cbr\u003ez. Straps \u003cbr\u003eaa. Tires\u003cbr\u003ebb. Waterproofing\u003cbr\u003e17. Health and safety\u003cbr\u003e18. Waste disposal, processing, and recycling\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp;amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp;amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp;amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp;amp; Sons, PVC Degradation \u0026amp;amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003cbr\u003e\u003c\/p\u003e","published_at":"2025-11-14T09:38:00-05:00","created_at":"2025-08-27T11:55:11-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2026","book","electronics","new","nucleating agent","nucleating agents"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":47159612407965,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":null,"requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-092-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068","options":["Title"],"media":[{"alt":null,"id":32417817723037,"position":1,"preview_image":{"aspect_ratio":0.656,"height":450,"width":295,"src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068"},"aspect_ratio":0.656,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/files\/9781774670927-Case.jpg?v=1763131068","width":295}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: George Wypych\u003cbr\u003eISBN 978-1-77467-092-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePublished: May 2026\u003c\/span\u003e\u003cbr\u003ePages: 530\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 80\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe \u003cb\u003eHandbook of Polyurethanes, Polyureas, and Polyisocyanurates\u003c\/b\u003e begins with an \u003cb\u003eintroduction\u003c\/b\u003e defining key terms for understanding these versatile materials' chemistry and applications. Following this, a \u003cb\u003ehistorical timeline\u003c\/b\u003e provides context by tracing the development of polyurethanes from their inception to present-day innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook focuses heavily on the \u003cb\u003eraw materials for polyurethane synthesis\u003c\/b\u003e. It explores various \u003cb\u003eisocyanates\u003c\/b\u003e and \u003cb\u003epolyols\u003c\/b\u003e, detailing their chemical properties and roles in creating diverse polymer structures. The section also discusses \u003cb\u003eamines, solvents, catalysts,\u003c\/b\u003e and \u003cb\u003eadditives\u003c\/b\u003e that enhance the synthesis process, including \u003cb\u003eprepolymers\u003c\/b\u003e, which serve as intermediates in production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe text delves into \u003cb\u003etypical methods of synthesis\u003c\/b\u003e, examining the \u003cb\u003emechanisms of catalysis\u003c\/b\u003e that speed up reactions, factors affecting \u003cb\u003ereaction rates\u003c\/b\u003e, and potential \u003cb\u003eside reactions\u003c\/b\u003e that can occur during polymerization. This leads to a discussion on the \u003cb\u003estructures of linear and crosslinked polyurethanes\u003c\/b\u003e, highlighting how these configurations influence the physical and chemical properties of the final products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eUnderstanding polyurethanes' domain morphology and crystalline structure is crucial, as these factors play a significant role in phase separation and hydrogen bonding, which impact material performance. The handbook also details \u003cb\u003etypical methods for analyzing polyurethanes\u003c\/b\u003e, allowing for assessment of their characteristics and qualities.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe following is a comprehensive review of the physical-mechanical properties of polyurethanes, addressing attributes such as elasticity, tensile strength, and thermal stability. The interactions between polyurethanes and various \u003cb\u003esubstrates\u003c\/b\u003e are also explored, highlighting their compatibility in different applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eDegradation mechanisms, including thermal, UV, and chemical degradation, and strategies for polyurethane stabilization to enhance durability are critically examined.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook discusses the creation of \u003cb\u003epolyurethane blends\u003c\/b\u003e and \u003cb\u003einterpenetrating networks\u003c\/b\u003e, which can combine different material properties for improved performance.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eAn extensive section on \u003cb\u003eadditives\u003c\/b\u003e used with polyurethanes covers a wide range of substances, such as \u003cb\u003eplasticizers\u003c\/b\u003e, \u003cb\u003epigments\u003c\/b\u003e, \u003cb\u003eflame retardants\u003c\/b\u003e, and many others, each contributing to specific attributes in the final product.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe chapter on \u003cb\u003epolyurethane processing\u003c\/b\u003e outlines essential techniques, including \u003cb\u003emetering, mixing,\u003c\/b\u003e and \u003cb\u003estorage\u003c\/b\u003e, which are vital for efficient production.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eIn terms of applications, the handbook provides a thorough overview of the myriad uses of polyurethanes, from \u003cb\u003eautomotive parts\u003c\/b\u003e and \u003cb\u003ebedding\u003c\/b\u003e to \u003cb\u003emedical devices\u003c\/b\u003e and \u003cb\u003epackaging\u003c\/b\u003e, emphasizing the properties and formulations unique to each application.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThe handbook underscores the importance of health and safety by offering guidelines for safely handling and using polyurethane materials. Finally, it addresses \u003cb\u003ewaste disposal, processing,\u003c\/b\u003e and \u003cb\u003erecycling\u003c\/b\u003e strategies, promoting environmentally responsible practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eThis summary encapsulates the core themes and topics of the handbook, providing an overview of what readers can expect from each section. The table of contents also includes concise information about the contents.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003eHere are some suggestions for potential users of the \"Handbook of Polyurethanes, Polyureas, and Polyisocyanurates\":\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e1. Researchers and Academics\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To gain comprehensive knowledge of polyurethane synthesis, properties, and applications.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l0 level1 lfo1; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a reference for literature reviews, experimental designs, and foundational understanding in materials science.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e2. Chemists and Material Scientists\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To explore polyurethanes' chemical and physical properties and their raw materials.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l1 level1 lfo2; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidance on material selection, synthesis techniques, and formulation development.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e3. Industrial Engineers and Process Designers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the processing methods and operational parameters for manufacturing polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l3 level1 lfo3; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a resource for optimizing production processes and enhancing product quality.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e4. Product Development Teams\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To develop new polyurethane-based products across various industries (e.g., automotive, construction, medical).\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l9 level1 lfo4; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights on additives, formulation strategies, and application-specific properties.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e5. Quality Control and Assurance Professionals\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To ensure the quality and performance of polyurethane products.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l2 level1 lfo5; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a guide for analytical methods and testing protocols.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e6. Environmental Scientists and Sustainability Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To understand the environmental impact of polyurethane production and disposal.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l5 level1 lfo6; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For strategies on waste management, recycling, and sustainable practices in the industry.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e7. Health and Safety Officers\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To establish safety protocols and ensure compliance with regulations when handling polyurethanes.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l4 level1 lfo7; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For guidelines on safe practices and material safety data.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e8. Students and Educators\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To learn about polymer science and materials engineering.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l8 level1 lfo8; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a textbook or supplementary resource for coursework and research projects.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e9. Consultants and Industry Experts\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To provide informed advice to companies on polyurethane applications and innovations.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l6 level1 lfo9; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: As a comprehensive source for current knowledge and trends in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e\u003cb\u003e10. Manufacturers of Polyurethane Products\u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003ePurpose\u003c\/b\u003e: To stay updated on the latest developments and best practices in polyurethane technology.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\" style=\"margin-left: .5in; text-indent: -.25in; mso-list: l7 level1 lfo10; tab-stops: list .5in;\"\u003e\u003c!-- [if !supportLists]--\u003e\u003cspan style=\"font-size: 10.0pt; mso-bidi-font-size: 12.0pt; font-family: Symbol; mso-fareast-font-family: Symbol; mso-bidi-font-family: Symbol;\"\u003e\u003cspan style=\"mso-list: Ignore;\"\u003e·\u003cspan style=\"font: 7.0pt 'Times New Roman';\"\u003e \u003c\/span\u003e\u003c\/span\u003e\u003c\/span\u003e\u003c!--[endif]--\u003e\u003cb\u003eUse\u003c\/b\u003e: For insights into formulation, processing, and application methods.\u003c\/p\u003e\n\u003cp class=\"MsoNoSpacing\"\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1. Introduction – definition of terms\u003cbr\u003e2. Historical timeline\u003cbr\u003e3. Raw materials for polyurethane synthesis\u003cbr\u003ea. Isocyanates\u003cbr\u003eb. Polyols\u003cbr\u003ec. Amines\u003cbr\u003ed. Non-isocyanate synthesis components (cyclic carbonates and amines)\u003cbr\u003ee. Solvents\u003cbr\u003ef. Catalysts\u003cbr\u003eg. Blocking agents\u003cbr\u003eh. Other additives\u003cbr\u003e4. Typical methods of synthesis\u003cbr\u003ea. Mechanisms of catalysis\u003cbr\u003eb. Reaction rates\u003cbr\u003ec. Side reactions (allophanates, biurets, carbodiimides, and dimers)\u003cbr\u003e5. Structures of linear and crosslinked polyurethanes \u003cbr\u003e6. Domain morphology\u003cbr\u003e7. Crystalline structure, phase separation, and hydrogen bonding\u003cbr\u003e8. Typical methods of polyurethane analysis\u003cbr\u003e9. Physical-mechanical properties of polyurethanes\u003cbr\u003e10. Interaction with other materials (substrates\u003cbr\u003e11. Polyurethane degradation\u003cbr\u003ea. Thermal\u003cbr\u003eb. UV\u003cbr\u003ec. Chemical\u003cbr\u003e12. Polyurethane stabilization\u003cbr\u003e13. Polyurethane blends and interpenetrating networks\u003cbr\u003e14. Additives used with polyurethanes \u003cbr\u003ea. Plasticizers \u003cbr\u003eb. Pigments \u003cbr\u003ec. Blowing agents\u003cbr\u003ed. Surfactants \u003cbr\u003ee. Adhesion promoters\u003cbr\u003ef. Rheological additives\u003cbr\u003eg. Fillers and nanofillers \u003cbr\u003eh. Flame retardants\u003cbr\u003ei. Antibacterial additives\u003cbr\u003e15. Polyurethane processing\u003cbr\u003ea. Prepolymers processing\u003cbr\u003eb. Storage \u003cbr\u003ec. Metering\u003cbr\u003ed. Mixing \u003cbr\u003e16. Applications, properties, and formulations\u003cbr\u003ea. 3D printing\u003cbr\u003eb. Adhesives and sealants\u003cbr\u003ec. Appliances\u003cbr\u003ed. Artificial leather\u003cbr\u003ee. Automotive\u003cbr\u003ef. Bedding \u003cbr\u003eg. Building and construction\u003cbr\u003eh. Carpet underlay\u003cbr\u003ei. Coatings and paints\u003cbr\u003ej. Composite wood\u003cbr\u003ek. Electrical and electronics\u003cbr\u003el. Fiber and textiles\u003cbr\u003em. Flooring\u003cbr\u003en. Foams \u003cbr\u003eo. Footwear \u003cbr\u003ep. Furniture\u003cbr\u003eq. Marine\u003cbr\u003er. Roofing\u003cbr\u003es. Medical\u003cbr\u003et. Packaging\u003cbr\u003eu. Pharmaceutical \u003cbr\u003ev. Reaction injection molding\u003cbr\u003ew. Seals and gaskets\u003cbr\u003ex. Shape memory\u003cbr\u003ey. Sporting equipment\u003cbr\u003ez. Straps \u003cbr\u003eaa. Tires\u003cbr\u003ebb. Waterproofing\u003cbr\u003e17. Health and safety\u003cbr\u003e18. Waste disposal, processing, and recycling\u003cbr\u003e\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has PhD Eng. The professional expertise includes university teaching (full professor) and research \u0026amp;amp; development (university and corporate). He has published 48 books (PVC Plastisols, Wroclaw University Press; Polyvinylchloride Degradation, Elsevier; Polyvinylchloride Stabilization, Elsevier; Polymer Modified Textile Materials, Wiley \u0026amp;amp; Sons; Handbook of Material Weathering, 1st, 2nd, 3rd, 4th, 5th, 6th Edition, ChemTec Publishing; Handbook of Fillers, 1st, 2nd, 3rd, 4th, and 5th Edition, ChemTec Publishing; Recycling of PVC, ChemTec Publishing; Weathering of Plastics. Testing to Mirror Real Life Performance, Plastics Design Library, Handbook of Solvents, Vol. 1. Properties 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Solvents, Vol. 2. Health \u0026amp;amp; Environment 1st, 2nd, and 3rd Edition, ChemTec Publishing, Handbook of Plasticizers, 1st, 2nd, 3rd, 4th Edition, ChemTec Publishing, Handbook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Databook of Antistatics, 1st and 2nd Edition, ChemTec Publishing, Handbook of Antiblocking, Release and Slip Additives, 1st , 2nd and 3rd Edition, ChemTec Publishing, Industrial Solvents in Kirk-Othmer Encyclopedia of Chemical Technology (two editions), John Wiley \u0026amp;amp; Sons, PVC Degradation \u0026amp;amp; Stabilization, 1st, 2nd, 3rd, and 4th Editions, ChemTec Publishing, The PVC Formulary, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Material Biodegradation, Biodeterioration, and Biostabilization, 1st and 2nd Editions, ChemTec Publishing, Handbook of UV Degradation and Stabilization, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Polymers, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Atlas of Material Damage, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Handbook of Odors in Plastic Materials, 1st, 2nd, and 3rd Editions, ChemTec Publishing, Databook of Solvents (two editions), ChemTec Publishing, Databook of Blowing and Auxiliary Agents, ChemTec Publishing, Handbook of Foaming and Blowing Agents (two editions), ChemTec Publishing, Databook of Green Solvents, ChemTec Publishing (two editions), Self-healing Products (two editions), ChemTec Publishing, Handbook of Adhesion Promoters (two editions), ChemTec Publishing, Databook of Surface Modification Additives (two editions), ChemTec Publishing, Handbook of Surface Improvement and Modification (two editions), ChemTec Publishing, Graphene – Important Results and Applications, ChemTec Publishing, Handbook of Curatives and Crosslinkers, ChemTec Publishing, Chain Mobility and Progress in Medicine, Pharmaceutical, Polymer Science and Technology, Impact of Award, ChemTec Publishing, Databook of Antioxidants, ChemTec Publishing, Handbook of Antioxidants, ChemTec Publishing, Databook of UV Stabilizers (two Editions), ChemTec Publishing, Databook of Flame Retardants, ChemTec Publishing, Databook of Nucleating Agents, ChemTec Publishing, Handbook of Flame Retardants, ChemTec Publishing, Handbook of Nucleating Agents, ChemTec Publishing, Handbook of Polymers in Electronics, ChemTec Publishing, Databook of Impact Modifiers, ChemTec Publishing, Databook of Rheological Additives, ChemTec Publishing, Handbook of Impact Modifiers, ChemTec Publishing, Handbook of Rheological Additives, ChemTec Publishing, Databook of Polymer Processing Additives, ChemTec Publishing, Handbook of Polymer Processing Additives, ChemTec Publishing, Functional Fillers (two editions), 2 databases (Solvents Database, 1st, 2nd, 3rd Edition and Database of Antistatics 1st and 2nd Edition, both by ChemTec Publishing), and 42 scientific papers and obtained 16 patents. He specializes in PVC, polymer additives, material durability, and the development of sealants and coatings. He was included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, and Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition of services to education.\u003cbr\u003e\u003c\/p\u003e"}
Handbook of Recycling,...
$140.00
{"id":11242247044,"title":"Handbook of Recycling, 1st Edition","handle":"9780123964595","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Worrell and Reuter \u003cbr\u003eISBN 9780123964595 \u003cbr\u003e\u003cbr\u003eState-of-the-art for practitioners, analysts, and scientists\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Portrays recent and emerging technologies in metal recycling, by-product utilization, and management of post-consumer waste\u003cbr\u003e\u003cbr\u003e- Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes\u003cbr\u003e\u003cbr\u003e- Uses examples from current professional and industrial practice, with policy implications and economics, to present a real-world portrait useful to engineers and professionals as well as academics\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn concept, this book is an Encyclopedia-style authoritative description of the various aspects of material reuse and recycling (including technology, policy, economics) by leading authors from around the globe.\u003cbr\u003e\u003cbr\u003eThis book resolves the problem of there currently (nor published in the past decade) being no single book that provides an authoritative review of the state-of-the-art in recycling. This book should resolve that, by providing a state-of-the-art review of all aspects of recycling.\u003cbr\u003e\u003cbr\u003eThe author's intention in writing this book was to provide the market with a basic textbook on recycling that could be used by students, scholars, and decision makers, as well as stakeholders in the recycling industry, for the next few years.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors\u003cbr\u003ePart I: Recycling in Context\u003cbr\u003eChapter 1. Recycling: A Key Factor for Resource Efficiency\u003cbr\u003eAbstract\u003cbr\u003eReferences\u003cbr\u003eChapter 2. Definitions and Terminology\u003cbr\u003eAbstract\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Defining Recycling\u003cbr\u003e2.3 Materials and Products\u003cbr\u003e2.4 Applying the Product-Centric Approach—Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 3. Recycling in Context\u003cbr\u003eAbstract\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Metal Recycling Considerations and Technologies\u003cbr\u003e3.3 Defining Recycling Statistics\u003cbr\u003e3.4 Process Efficiencies and Recycling Rate Constraints\u003cbr\u003e3.5 Perspectives on Current Recycling Statistics\u003cbr\u003e3.6 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 4. Recycling Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Indium\u003cbr\u003e4.3 Other Examples of Rare Metals\u003cbr\u003e4.4 The Distant Future: Georgescu's Last Laugh?\u003cbr\u003eReferences\u003cbr\u003eChapter 5. Theory and Tools of Physical Separation\/Recycling\u003cbr\u003eAbstract\u003cbr\u003e5.1 Recycling Process\u003cbr\u003e5.2 Particle Size\u003cbr\u003e5.3 Pulp Rheology\u003cbr\u003e5.4 Properties and Property Spaces\u003cbr\u003e5.5 Sampling\u003cbr\u003e5.6 Mass Balances and Process Dynamics\u003cbr\u003e5.7 Material Balancing\u003cbr\u003e5.8 Liberation\u003cbr\u003e5.9 Grade-Recovery Curves\u003cbr\u003eReferences\u003cbr\u003ePart II: Recycling - Application \u0026amp; Technology\u003cbr\u003eChapter 6. Recycling of Steel\u003cbr\u003eAbstract\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Scrap Processing and Material Streams from Scrap Processing\u003cbr\u003e6.3 The Processes Used for Smelting Steel Scrap\u003cbr\u003e6.4 Trends in Quality of the Scrap Available for Steel Production\u003cbr\u003e6.5 Hindrances for Recycling—Tramp Elements\u003cbr\u003e6.6 Purification of Scrap\u003cbr\u003e6.7 To Live with Impurities\u003cbr\u003e6.8 Measures to Secure Sustainable Recycling of Steel\u003cbr\u003eReferences\u003cbr\u003eChapter 7. Copper Recycling\u003cbr\u003eAbstract\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Raw Material for Copper Recycling\u003cbr\u003e7.3 Processes for Recycling\u003cbr\u003e7.4 Challenges in Copper Recycling\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 8. Lead Recycling\u003cbr\u003eAbstract\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 The Lead-Acid Battery\u003cbr\u003e8.3 Battery Preprocessing\u003cbr\u003e8.4 Smelting\u003cbr\u003e8.5 Alternative Approaches\u003cbr\u003e8.6 Refining\u003cbr\u003e8.7 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eChapter 9. Zinc and Residue Recycling\u003cbr\u003eAbstract\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Zinc Oxide Production from Drosses\u003cbr\u003e9.3 Electric Arc Furnace Dust and Other Pb, Zn, Cu-containing Residues\u003cbr\u003e9.4 Zinc Recycling from Copper Industry Dusts\u003cbr\u003e9.5 Fuming of Slags from Lead Metallurgy\u003cbr\u003eReferences\u003cbr\u003eChapter 10. Recycling of Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e10.1 Precious Metals\u003cbr\u003e10.2 Rare Earth Metals\u003cbr\u003e10.3 Electronic Metals\u003cbr\u003e10.4 Refractory Metals (Ferro-alloys Metals, Specialty Metals)\u003cbr\u003e10.5 Other Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 11. Recycling of Lumber\u003cbr\u003eAbstract\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Background\u003cbr\u003e11.3 Key Issues in Post-use Management of Wood\u003cbr\u003e11.4 Case Study Scenarios\u003cbr\u003e11.5 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 12. Paper Recycling\u003cbr\u003eAbstract\u003cbr\u003e12.1 Important Facts about Paper Recycling\u003cbr\u003e12.2 Stock Preparation for Paper Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 13. Plastic Recycling\u003cbr\u003eAbstract\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Use of Plastics\u003cbr\u003e13.3 Plastic Recycling\u003cbr\u003e13.4 Mechanical Recycling\u003cbr\u003e13.5 Impact of Recycling\u003cbr\u003e13.6 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 14. Glass Recycling\u003cbr\u003eAbstract\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Types of Glass\u003cbr\u003e14.3 Glass Manufacture\u003cbr\u003e14.4 Glass Recovery for Reuse and Recycling\u003cbr\u003e14.5 Reuse of Glass\u003cbr\u003e14.6 Closed-Loop Recycling of Glass\u003cbr\u003e14.7 Environmental Benefits of Closed-Loop Recycling of Glass\u003cbr\u003e14.8 The Growth of Glass Recycling\u003cbr\u003e14.9 Open-Loop Glass Recycling\u003cbr\u003e14.10 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 15. Textile Recycling\u003cbr\u003eAbstract\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 The Recycling Effort\u003cbr\u003e15.3 Export of Secondhand Clothing\u003cbr\u003e15.4 Conversion to New Products\u003cbr\u003e15.5 Conversion of Mattresses\u003cbr\u003e15.6 Conversion of Carpet\u003cbr\u003e15.7 Wipers\u003cbr\u003e15.8 Landfill and Incineration\u003cbr\u003e15.9 Diamonds\u003cbr\u003e15.10 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 16. Cementitious Binders Incorporating Residues\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e16.1 Introduction\u003cbr\u003e16.2 Clinker Production: Process Flow, Alternative Fuels and Alternative Raw Materials\u003cbr\u003e16.3 From Clinker to Cement: Residues in Blended Cements\u003cbr\u003e16.4 Alternative Cements for the Future: Reducing the CO2 Footprint while Incorporating Residues\u003cbr\u003e16.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 17. Industrial By-products\u003cbr\u003eAbstract\u003cbr\u003e17.1 What is a By-product?\u003cbr\u003e17.2 Major By-products and Their Generic Properties\u003cbr\u003e17.3 Where and How to Use By-products\u003cbr\u003e17.4 Technical and Environmental Requirements\u003cbr\u003e17.5 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eChapter 18. Recovery of Metals from Different Secondary Resources (Waste)\u003cbr\u003eAbstract\u003cbr\u003e18.1 Introduction\u003cbr\u003e18.2 Production of Ferroalloys from Waste\u003cbr\u003e18.3 Recycling Concepts for Rare Earth Containing Magnets\u003cbr\u003eReferences\u003cbr\u003eChapter 19. Recycling of Carbon Fibers\u003cbr\u003eAbstract\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Carbon Fiber Recycling Processes\u003cbr\u003e19.3 Composites Remanufacturing\u003cbr\u003e19.4 Applications for Recycled Carbon Fibers and Composites\u003cbr\u003e19.5 Life-Cycle Analysis of Carbon Fiber Reinforced Polymers\u003cbr\u003e19.6 Further Challenges\u003cbr\u003e19.7 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 20. Recycling of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e20.1 Introduction\u003cbr\u003e20.2 The Existing Low-Cost Housing Technologies\u003cbr\u003e20.3 Earth\/Mud Building\u003cbr\u003e20.4 Prefabrication Method\u003cbr\u003e20.5 Lightweight Foamed or Cellular Concrete Technology\u003cbr\u003e20.6 Stabilized Earth Brick Technology\u003cbr\u003e20.7 Case Study\u003cbr\u003e20.8 Cost-Effectiveness of Using Low-Cost Housing Technologies\u003cbr\u003e20.9 Recycling Technologies and Practice\u003cbr\u003e20.10 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 21. Recycling of Packaging\u003cbr\u003eAbstract\u003cbr\u003e21.1 Introduction\u003cbr\u003e21.2 Packaging Waste\u003cbr\u003e21.3 Composition\u003cbr\u003e21.4 Recovery and Recycling\u003cbr\u003e21.5 Recovery and Collection Schemes\u003cbr\u003e21.6 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 22. Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules\u003cbr\u003eAbstract\u003cbr\u003e22.1 Introduction\u003cbr\u003e22.2 Material-Centric Recycling: Aluminum and Copper\u003cbr\u003e22.3 Product-Centric Recycling: Complex Sustainability Enabling and Consumer Products\u003cbr\u003e22.4 Recycling Complex Multimaterial Consumer Goods: A Product-Centric Approach\u003cbr\u003e22.5 Automotive Recycling\/Recycling of ELVs Including Automotive Battery Recycling\u003cbr\u003e22.6 Recycling of Waste Electrical and Electronic Equipment\u003cbr\u003e22.7 Recycling of Lighting\u003cbr\u003e22.8 Technology for Recycling of Batteries and Catalysts\u003cbr\u003e22.9 Design for Recycling and Resource Efficiency\u003cbr\u003eReferences\u003cbr\u003eChapter 23. Separation of Large Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e23.1 Introduction\u003cbr\u003e23.2 The Circular Process for Large Municipal Solid Waste\u003cbr\u003e23.3 The Preconditions for Sorting Large Municipal Solid Waste\u003cbr\u003e23.4 Collection System of Large Municipal Solid Waste\u003cbr\u003e23.5 Sorting of Large Municipal Solid Waste\u003cbr\u003e23.6 Sorting Installation\u003cbr\u003e23.7 Sorting Process\u003cbr\u003e23.8 Recycling Efficiency\u003cbr\u003e23.9 The Future\u003cbr\u003eReference\u003cbr\u003eChapter 24. Recovery of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e24.1 Introduction\u003cbr\u003e24.2 Existing Recycled Aggregate Concrete Applications\u003cbr\u003e24.3 Existing Concrete Recycling Methods\u003cbr\u003e24.4 Cost and Benefit Analysis\u003cbr\u003e24.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 25. Waste Electrical and Electronic Equipment Management\u003cbr\u003eAbstract\u003cbr\u003e25.1 Introduction\u003cbr\u003e25.2 Objectives of WEEE Management\u003cbr\u003e25.3 WEEE Take-Back Schemes\u003cbr\u003e25.4 Long-term Trends\u003cbr\u003eReferences\u003cbr\u003eChapter 26. Developments in Collection of Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e26.1 Introduction\u003cbr\u003e26.2 Definition of Municipal Solid Waste\u003cbr\u003e26.3 Quantities of Municipal Solid Waste\u003cbr\u003e26.4 Quality of Municipal Solid Waste\u003cbr\u003e26.5 Management of Municipal Solid Waste\u003cbr\u003eReferences\u003cbr\u003ePart III: Strategy and Policy\u003cbr\u003eChapter 27. From Recycling to Eco-design\u003cbr\u003eAbstract\u003cbr\u003e27.1 Introduction\u003cbr\u003e27.2 Principle of Material Design for Recycling\u003cbr\u003e27.3 Eco-design Strategies for Recycling\u003cbr\u003e27.4 Is Recycling Really Less Impactful on the Environment?\u003cbr\u003e27.5 Current Limits for Eco-design for Recycling Strategies\u003cbr\u003e27.6 Market Demand\u003cbr\u003e27.7 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 28. Recycling and Labeling\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e28.1 Introduction\u003cbr\u003e28.2 Functional Needs Analysis\u003cbr\u003e28.3 Bibliographical Research on the Polymer Labeling Processes\u003cbr\u003e28.4 First Results of Detection Tests with Polypropylene Samples\u003cbr\u003e28.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 29. Informal Waste Recycling in Developing Countries\u003cbr\u003eAbstract\u003cbr\u003e29.1 Introduction\u003cbr\u003e29.2 Defining the Informal Sector\u003cbr\u003e29.3 Informal Solid Waste Management\u003cbr\u003e29.4 Informal e-Waste Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 30. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e30.1 Is a Circular Economy Possible or Desirable?\u003cbr\u003e30.2 Hierarchies of Material Conservation\u003cbr\u003e30.3 When is Recycling Not the Answer?\u003cbr\u003e30.4 Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 31. The Economics of Recycling\u003cbr\u003eAbstract\u003cbr\u003e31.1 Introduction\u003cbr\u003e31.2 Economic Trends and Drivers\u003cbr\u003e31.3 Environmental and Social Costs and Benefits\u003cbr\u003e31.4 Economic Instruments\u003cbr\u003e31.5 Conclusions and Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 32. Geopolitics of Resources and Recycling\u003cbr\u003eAbstract\u003cbr\u003e32.1 Introduction\u003cbr\u003e32.2 Resources, Scarcity and Geopolitics\u003cbr\u003e32.3 Recycling in the Geopolitical Context\u003cbr\u003eReferences\u003cbr\u003eChapter 33. Recycling in Waste Management Policy\u003cbr\u003eAbstract\u003cbr\u003e33.1 Introduction\u003cbr\u003e33.2 A Brief History of Waste Management\u003cbr\u003e33.3 Integrating Recycling in Waste Management Policy Design\u003cbr\u003eReferences\u003cbr\u003eChapter 34. Voluntary and Negotiated Agreements\u003cbr\u003eAbstract\u003cbr\u003e34.1 Introduction\u003cbr\u003e34.2 Experiences in Recycling Policy\u003cbr\u003e34.3 Lessons Learned\u003cbr\u003eReferences\u003cbr\u003eChapter 35. Economic Instruments\u003cbr\u003eAbstract\u003cbr\u003e35.1 Introduction\u003cbr\u003e35.2 Criteria to Compare Policy Instruments\u003cbr\u003e35.3 Basic Environmental Policy Instruments Aimed at Stimulating Recycling\u003cbr\u003e35.4 Incentives for Upstream Green Product Design\u003cbr\u003e35.5 Multiproduct and Mixed Waste Streams\u003cbr\u003e35.6 EPR and Recycling Certificates\u003cbr\u003e35.7 Durable Goods\u003cbr\u003e35.8 Imperfect Competition in Product and Recycling Markets\u003cbr\u003e35.9 Policy Instruments in an International Market for Waste and Materials\u003cbr\u003e35.10 Recycling and Nonrenewable Resources in a Macro Economic Perspective\u003cbr\u003e35.11 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 36. Information Instruments\u003cbr\u003eAbstract\u003cbr\u003e36.1 Introduction\u003cbr\u003e36.2 Target Groups\/Audience\u003cbr\u003e36.3 Communication Tools\u003cbr\u003e36.4 Messaging: Information and Communication\u003cbr\u003e36.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 37. Regulatory Instruments: Sustainable Materials Management, Recycling, and the Law\u003cbr\u003eAbstract\u003cbr\u003e37.1 Introduction\u003cbr\u003e37.2 Resource Efficiency and Waste Strategy—The Blurb\u003cbr\u003e37.3 The EU Framework Directive on Waste, and Its View on Recovery and Recycling\u003cbr\u003eAppendix 1. Physical Separation 101\u003cbr\u003eA1.1 Breakage\u003cbr\u003eA1.2 Size Classification\u003cbr\u003eA1.3 Screens\u003cbr\u003eA1.4 Dynamic Separators\u003cbr\u003eA1.5 Gravity Separations\u003cbr\u003eA1.6 Water Media Separations\u003cbr\u003eA1.7 Dense Media Separations\u003cbr\u003eA1.8 Flotation\u003cbr\u003eA1.9 Magnetic Separations\u003cbr\u003eA1.10 Eddy Current Separation\u003cbr\u003eA1.11 Electrostatic Separations\u003cbr\u003eA1.12 Sorting\u003cbr\u003eReference\u003cbr\u003eAppendix 2. Thermodynamics 101\u003cbr\u003eA2.1 On the Consumption and Availability of Metals\u003cbr\u003eA2.2 Recycling and Extractive Metallurgy: An Energy Issue\u003cbr\u003eA2.3 The Second Law of Thermodynamics Devil: An Entropy Issue\u003cbr\u003eA2.4 Chemical Thermodynamics and Reaction Equilibrium\u003cbr\u003eA2.5 On the Stability of Oxides and Other Metal-Containing Minerals\u003cbr\u003eA2.6 The Carbon Tragedy\u003cbr\u003eA2.7 H2 is an Alternative Reductor\u003cbr\u003eA2.8 Very Stable Oxides\u003cbr\u003eA2.9 About Solutions and Desired Purity Levels\u003cbr\u003eA2.10 Some Conclusions\u003cbr\u003eReference\u003cbr\u003eAppendix 3. Life-Cycle Assessment\u003cbr\u003eA3.1 Life-Cycle Assessment\u003cbr\u003eA3.2 Life-Cycle Assessment in the Mining and Metallurgy\u003cbr\u003eA3.3 LCA and Multimetal Output\u003cbr\u003eA3.4 End-of-Life Treatment in the LCA Context\u003cbr\u003eA3.5 Case Studies on LCA Results for Multimetal Outputs\u003cbr\u003eA3.6 Summary and Outlook\u003cbr\u003eReference\u003cbr\u003eIndex","published_at":"2017-06-22T21:15:05-04:00","created_at":"2017-06-22T21:15:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","automotive recycling","batteries","book","composite recycling","metal recycling","plastics recycling","recycling","textiles"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378460548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Recycling, 1st Edition","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780123964595","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882","options":["Title"],"media":[{"alt":null,"id":356338073693,"position":1,"preview_image":{"aspect_ratio":0.671,"height":499,"width":335,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882"},"aspect_ratio":0.671,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882","width":335}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Worrell and Reuter \u003cbr\u003eISBN 9780123964595 \u003cbr\u003e\u003cbr\u003eState-of-the-art for practitioners, analysts, and scientists\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Portrays recent and emerging technologies in metal recycling, by-product utilization, and management of post-consumer waste\u003cbr\u003e\u003cbr\u003e- Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes\u003cbr\u003e\u003cbr\u003e- Uses examples from current professional and industrial practice, with policy implications and economics, to present a real-world portrait useful to engineers and professionals as well as academics\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn concept, this book is an Encyclopedia-style authoritative description of the various aspects of material reuse and recycling (including technology, policy, economics) by leading authors from around the globe.\u003cbr\u003e\u003cbr\u003eThis book resolves the problem of there currently (nor published in the past decade) being no single book that provides an authoritative review of the state-of-the-art in recycling. This book should resolve that, by providing a state-of-the-art review of all aspects of recycling.\u003cbr\u003e\u003cbr\u003eThe author's intention in writing this book was to provide the market with a basic textbook on recycling that could be used by students, scholars, and decision makers, as well as stakeholders in the recycling industry, for the next few years.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors\u003cbr\u003ePart I: Recycling in Context\u003cbr\u003eChapter 1. Recycling: A Key Factor for Resource Efficiency\u003cbr\u003eAbstract\u003cbr\u003eReferences\u003cbr\u003eChapter 2. Definitions and Terminology\u003cbr\u003eAbstract\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Defining Recycling\u003cbr\u003e2.3 Materials and Products\u003cbr\u003e2.4 Applying the Product-Centric Approach—Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 3. Recycling in Context\u003cbr\u003eAbstract\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Metal Recycling Considerations and Technologies\u003cbr\u003e3.3 Defining Recycling Statistics\u003cbr\u003e3.4 Process Efficiencies and Recycling Rate Constraints\u003cbr\u003e3.5 Perspectives on Current Recycling Statistics\u003cbr\u003e3.6 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 4. Recycling Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Indium\u003cbr\u003e4.3 Other Examples of Rare Metals\u003cbr\u003e4.4 The Distant Future: Georgescu's Last Laugh?\u003cbr\u003eReferences\u003cbr\u003eChapter 5. Theory and Tools of Physical Separation\/Recycling\u003cbr\u003eAbstract\u003cbr\u003e5.1 Recycling Process\u003cbr\u003e5.2 Particle Size\u003cbr\u003e5.3 Pulp Rheology\u003cbr\u003e5.4 Properties and Property Spaces\u003cbr\u003e5.5 Sampling\u003cbr\u003e5.6 Mass Balances and Process Dynamics\u003cbr\u003e5.7 Material Balancing\u003cbr\u003e5.8 Liberation\u003cbr\u003e5.9 Grade-Recovery Curves\u003cbr\u003eReferences\u003cbr\u003ePart II: Recycling - Application \u0026amp; Technology\u003cbr\u003eChapter 6. Recycling of Steel\u003cbr\u003eAbstract\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Scrap Processing and Material Streams from Scrap Processing\u003cbr\u003e6.3 The Processes Used for Smelting Steel Scrap\u003cbr\u003e6.4 Trends in Quality of the Scrap Available for Steel Production\u003cbr\u003e6.5 Hindrances for Recycling—Tramp Elements\u003cbr\u003e6.6 Purification of Scrap\u003cbr\u003e6.7 To Live with Impurities\u003cbr\u003e6.8 Measures to Secure Sustainable Recycling of Steel\u003cbr\u003eReferences\u003cbr\u003eChapter 7. Copper Recycling\u003cbr\u003eAbstract\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Raw Material for Copper Recycling\u003cbr\u003e7.3 Processes for Recycling\u003cbr\u003e7.4 Challenges in Copper Recycling\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 8. Lead Recycling\u003cbr\u003eAbstract\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 The Lead-Acid Battery\u003cbr\u003e8.3 Battery Preprocessing\u003cbr\u003e8.4 Smelting\u003cbr\u003e8.5 Alternative Approaches\u003cbr\u003e8.6 Refining\u003cbr\u003e8.7 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eChapter 9. Zinc and Residue Recycling\u003cbr\u003eAbstract\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Zinc Oxide Production from Drosses\u003cbr\u003e9.3 Electric Arc Furnace Dust and Other Pb, Zn, Cu-containing Residues\u003cbr\u003e9.4 Zinc Recycling from Copper Industry Dusts\u003cbr\u003e9.5 Fuming of Slags from Lead Metallurgy\u003cbr\u003eReferences\u003cbr\u003eChapter 10. Recycling of Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e10.1 Precious Metals\u003cbr\u003e10.2 Rare Earth Metals\u003cbr\u003e10.3 Electronic Metals\u003cbr\u003e10.4 Refractory Metals (Ferro-alloys Metals, Specialty Metals)\u003cbr\u003e10.5 Other Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 11. Recycling of Lumber\u003cbr\u003eAbstract\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Background\u003cbr\u003e11.3 Key Issues in Post-use Management of Wood\u003cbr\u003e11.4 Case Study Scenarios\u003cbr\u003e11.5 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 12. Paper Recycling\u003cbr\u003eAbstract\u003cbr\u003e12.1 Important Facts about Paper Recycling\u003cbr\u003e12.2 Stock Preparation for Paper Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 13. Plastic Recycling\u003cbr\u003eAbstract\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Use of Plastics\u003cbr\u003e13.3 Plastic Recycling\u003cbr\u003e13.4 Mechanical Recycling\u003cbr\u003e13.5 Impact of Recycling\u003cbr\u003e13.6 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 14. Glass Recycling\u003cbr\u003eAbstract\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Types of Glass\u003cbr\u003e14.3 Glass Manufacture\u003cbr\u003e14.4 Glass Recovery for Reuse and Recycling\u003cbr\u003e14.5 Reuse of Glass\u003cbr\u003e14.6 Closed-Loop Recycling of Glass\u003cbr\u003e14.7 Environmental Benefits of Closed-Loop Recycling of Glass\u003cbr\u003e14.8 The Growth of Glass Recycling\u003cbr\u003e14.9 Open-Loop Glass Recycling\u003cbr\u003e14.10 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 15. Textile Recycling\u003cbr\u003eAbstract\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 The Recycling Effort\u003cbr\u003e15.3 Export of Secondhand Clothing\u003cbr\u003e15.4 Conversion to New Products\u003cbr\u003e15.5 Conversion of Mattresses\u003cbr\u003e15.6 Conversion of Carpet\u003cbr\u003e15.7 Wipers\u003cbr\u003e15.8 Landfill and Incineration\u003cbr\u003e15.9 Diamonds\u003cbr\u003e15.10 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 16. Cementitious Binders Incorporating Residues\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e16.1 Introduction\u003cbr\u003e16.2 Clinker Production: Process Flow, Alternative Fuels and Alternative Raw Materials\u003cbr\u003e16.3 From Clinker to Cement: Residues in Blended Cements\u003cbr\u003e16.4 Alternative Cements for the Future: Reducing the CO2 Footprint while Incorporating Residues\u003cbr\u003e16.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 17. Industrial By-products\u003cbr\u003eAbstract\u003cbr\u003e17.1 What is a By-product?\u003cbr\u003e17.2 Major By-products and Their Generic Properties\u003cbr\u003e17.3 Where and How to Use By-products\u003cbr\u003e17.4 Technical and Environmental Requirements\u003cbr\u003e17.5 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eChapter 18. Recovery of Metals from Different Secondary Resources (Waste)\u003cbr\u003eAbstract\u003cbr\u003e18.1 Introduction\u003cbr\u003e18.2 Production of Ferroalloys from Waste\u003cbr\u003e18.3 Recycling Concepts for Rare Earth Containing Magnets\u003cbr\u003eReferences\u003cbr\u003eChapter 19. Recycling of Carbon Fibers\u003cbr\u003eAbstract\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Carbon Fiber Recycling Processes\u003cbr\u003e19.3 Composites Remanufacturing\u003cbr\u003e19.4 Applications for Recycled Carbon Fibers and Composites\u003cbr\u003e19.5 Life-Cycle Analysis of Carbon Fiber Reinforced Polymers\u003cbr\u003e19.6 Further Challenges\u003cbr\u003e19.7 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 20. Recycling of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e20.1 Introduction\u003cbr\u003e20.2 The Existing Low-Cost Housing Technologies\u003cbr\u003e20.3 Earth\/Mud Building\u003cbr\u003e20.4 Prefabrication Method\u003cbr\u003e20.5 Lightweight Foamed or Cellular Concrete Technology\u003cbr\u003e20.6 Stabilized Earth Brick Technology\u003cbr\u003e20.7 Case Study\u003cbr\u003e20.8 Cost-Effectiveness of Using Low-Cost Housing Technologies\u003cbr\u003e20.9 Recycling Technologies and Practice\u003cbr\u003e20.10 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 21. Recycling of Packaging\u003cbr\u003eAbstract\u003cbr\u003e21.1 Introduction\u003cbr\u003e21.2 Packaging Waste\u003cbr\u003e21.3 Composition\u003cbr\u003e21.4 Recovery and Recycling\u003cbr\u003e21.5 Recovery and Collection Schemes\u003cbr\u003e21.6 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 22. Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules\u003cbr\u003eAbstract\u003cbr\u003e22.1 Introduction\u003cbr\u003e22.2 Material-Centric Recycling: Aluminum and Copper\u003cbr\u003e22.3 Product-Centric Recycling: Complex Sustainability Enabling and Consumer Products\u003cbr\u003e22.4 Recycling Complex Multimaterial Consumer Goods: A Product-Centric Approach\u003cbr\u003e22.5 Automotive Recycling\/Recycling of ELVs Including Automotive Battery Recycling\u003cbr\u003e22.6 Recycling of Waste Electrical and Electronic Equipment\u003cbr\u003e22.7 Recycling of Lighting\u003cbr\u003e22.8 Technology for Recycling of Batteries and Catalysts\u003cbr\u003e22.9 Design for Recycling and Resource Efficiency\u003cbr\u003eReferences\u003cbr\u003eChapter 23. Separation of Large Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e23.1 Introduction\u003cbr\u003e23.2 The Circular Process for Large Municipal Solid Waste\u003cbr\u003e23.3 The Preconditions for Sorting Large Municipal Solid Waste\u003cbr\u003e23.4 Collection System of Large Municipal Solid Waste\u003cbr\u003e23.5 Sorting of Large Municipal Solid Waste\u003cbr\u003e23.6 Sorting Installation\u003cbr\u003e23.7 Sorting Process\u003cbr\u003e23.8 Recycling Efficiency\u003cbr\u003e23.9 The Future\u003cbr\u003eReference\u003cbr\u003eChapter 24. Recovery of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e24.1 Introduction\u003cbr\u003e24.2 Existing Recycled Aggregate Concrete Applications\u003cbr\u003e24.3 Existing Concrete Recycling Methods\u003cbr\u003e24.4 Cost and Benefit Analysis\u003cbr\u003e24.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 25. Waste Electrical and Electronic Equipment Management\u003cbr\u003eAbstract\u003cbr\u003e25.1 Introduction\u003cbr\u003e25.2 Objectives of WEEE Management\u003cbr\u003e25.3 WEEE Take-Back Schemes\u003cbr\u003e25.4 Long-term Trends\u003cbr\u003eReferences\u003cbr\u003eChapter 26. Developments in Collection of Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e26.1 Introduction\u003cbr\u003e26.2 Definition of Municipal Solid Waste\u003cbr\u003e26.3 Quantities of Municipal Solid Waste\u003cbr\u003e26.4 Quality of Municipal Solid Waste\u003cbr\u003e26.5 Management of Municipal Solid Waste\u003cbr\u003eReferences\u003cbr\u003ePart III: Strategy and Policy\u003cbr\u003eChapter 27. From Recycling to Eco-design\u003cbr\u003eAbstract\u003cbr\u003e27.1 Introduction\u003cbr\u003e27.2 Principle of Material Design for Recycling\u003cbr\u003e27.3 Eco-design Strategies for Recycling\u003cbr\u003e27.4 Is Recycling Really Less Impactful on the Environment?\u003cbr\u003e27.5 Current Limits for Eco-design for Recycling Strategies\u003cbr\u003e27.6 Market Demand\u003cbr\u003e27.7 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 28. Recycling and Labeling\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e28.1 Introduction\u003cbr\u003e28.2 Functional Needs Analysis\u003cbr\u003e28.3 Bibliographical Research on the Polymer Labeling Processes\u003cbr\u003e28.4 First Results of Detection Tests with Polypropylene Samples\u003cbr\u003e28.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 29. Informal Waste Recycling in Developing Countries\u003cbr\u003eAbstract\u003cbr\u003e29.1 Introduction\u003cbr\u003e29.2 Defining the Informal Sector\u003cbr\u003e29.3 Informal Solid Waste Management\u003cbr\u003e29.4 Informal e-Waste Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 30. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e30.1 Is a Circular Economy Possible or Desirable?\u003cbr\u003e30.2 Hierarchies of Material Conservation\u003cbr\u003e30.3 When is Recycling Not the Answer?\u003cbr\u003e30.4 Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 31. The Economics of Recycling\u003cbr\u003eAbstract\u003cbr\u003e31.1 Introduction\u003cbr\u003e31.2 Economic Trends and Drivers\u003cbr\u003e31.3 Environmental and Social Costs and Benefits\u003cbr\u003e31.4 Economic Instruments\u003cbr\u003e31.5 Conclusions and Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 32. Geopolitics of Resources and Recycling\u003cbr\u003eAbstract\u003cbr\u003e32.1 Introduction\u003cbr\u003e32.2 Resources, Scarcity and Geopolitics\u003cbr\u003e32.3 Recycling in the Geopolitical Context\u003cbr\u003eReferences\u003cbr\u003eChapter 33. Recycling in Waste Management Policy\u003cbr\u003eAbstract\u003cbr\u003e33.1 Introduction\u003cbr\u003e33.2 A Brief History of Waste Management\u003cbr\u003e33.3 Integrating Recycling in Waste Management Policy Design\u003cbr\u003eReferences\u003cbr\u003eChapter 34. Voluntary and Negotiated Agreements\u003cbr\u003eAbstract\u003cbr\u003e34.1 Introduction\u003cbr\u003e34.2 Experiences in Recycling Policy\u003cbr\u003e34.3 Lessons Learned\u003cbr\u003eReferences\u003cbr\u003eChapter 35. Economic Instruments\u003cbr\u003eAbstract\u003cbr\u003e35.1 Introduction\u003cbr\u003e35.2 Criteria to Compare Policy Instruments\u003cbr\u003e35.3 Basic Environmental Policy Instruments Aimed at Stimulating Recycling\u003cbr\u003e35.4 Incentives for Upstream Green Product Design\u003cbr\u003e35.5 Multiproduct and Mixed Waste Streams\u003cbr\u003e35.6 EPR and Recycling Certificates\u003cbr\u003e35.7 Durable Goods\u003cbr\u003e35.8 Imperfect Competition in Product and Recycling Markets\u003cbr\u003e35.9 Policy Instruments in an International Market for Waste and Materials\u003cbr\u003e35.10 Recycling and Nonrenewable Resources in a Macro Economic Perspective\u003cbr\u003e35.11 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 36. Information Instruments\u003cbr\u003eAbstract\u003cbr\u003e36.1 Introduction\u003cbr\u003e36.2 Target Groups\/Audience\u003cbr\u003e36.3 Communication Tools\u003cbr\u003e36.4 Messaging: Information and Communication\u003cbr\u003e36.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 37. Regulatory Instruments: Sustainable Materials Management, Recycling, and the Law\u003cbr\u003eAbstract\u003cbr\u003e37.1 Introduction\u003cbr\u003e37.2 Resource Efficiency and Waste Strategy—The Blurb\u003cbr\u003e37.3 The EU Framework Directive on Waste, and Its View on Recovery and Recycling\u003cbr\u003eAppendix 1. Physical Separation 101\u003cbr\u003eA1.1 Breakage\u003cbr\u003eA1.2 Size Classification\u003cbr\u003eA1.3 Screens\u003cbr\u003eA1.4 Dynamic Separators\u003cbr\u003eA1.5 Gravity Separations\u003cbr\u003eA1.6 Water Media Separations\u003cbr\u003eA1.7 Dense Media Separations\u003cbr\u003eA1.8 Flotation\u003cbr\u003eA1.9 Magnetic Separations\u003cbr\u003eA1.10 Eddy Current Separation\u003cbr\u003eA1.11 Electrostatic Separations\u003cbr\u003eA1.12 Sorting\u003cbr\u003eReference\u003cbr\u003eAppendix 2. Thermodynamics 101\u003cbr\u003eA2.1 On the Consumption and Availability of Metals\u003cbr\u003eA2.2 Recycling and Extractive Metallurgy: An Energy Issue\u003cbr\u003eA2.3 The Second Law of Thermodynamics Devil: An Entropy Issue\u003cbr\u003eA2.4 Chemical Thermodynamics and Reaction Equilibrium\u003cbr\u003eA2.5 On the Stability of Oxides and Other Metal-Containing Minerals\u003cbr\u003eA2.6 The Carbon Tragedy\u003cbr\u003eA2.7 H2 is an Alternative Reductor\u003cbr\u003eA2.8 Very Stable Oxides\u003cbr\u003eA2.9 About Solutions and Desired Purity Levels\u003cbr\u003eA2.10 Some Conclusions\u003cbr\u003eReference\u003cbr\u003eAppendix 3. Life-Cycle Assessment\u003cbr\u003eA3.1 Life-Cycle Assessment\u003cbr\u003eA3.2 Life-Cycle Assessment in the Mining and Metallurgy\u003cbr\u003eA3.3 LCA and Multimetal Output\u003cbr\u003eA3.4 End-of-Life Treatment in the LCA Context\u003cbr\u003eA3.5 Case Studies on LCA Results for Multimetal Outputs\u003cbr\u003eA3.6 Summary and Outlook\u003cbr\u003eReference\u003cbr\u003eIndex"}