- Grid List
Filter
Handbook of Polymer Foams
$190.00
{"id":11242213380,"title":"Handbook of Polymer Foams","handle":"978-1-85957-388-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Eaves \u003cbr\u003eISBN 978-1-85957-388-6 \u003cbr\u003e\u003cbr\u003epages 274\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymer foams is extremely widespread. Indeed, it is hard to think of any industries where polymer foams do not have a part to play. They can be found for example in sports and leisure products, in military applications, in vehicles, in aircraft, and in the home. Most people will encounter polymer foams every day in one form or another, whether it be in furniture, in packaging, in their car, in refrigerator insulation, or in some other common application. \u003cbr\u003e\u003cbr\u003eAlthough naturally occurring polymer foams have been known for a long time, (e.g., sponges, cork), synthetic polymer foams have only been introduced to the market over the last fifty years or so. The development of a new polymer has usually been quickly followed by its production in an expanded or foam form owing to the unique and useful properties, which can be realised in the expanded state. \u003cbr\u003e\u003cbr\u003eThis Handbook reviews the chemistry, manufacturing methods, properties and applications of the synthetic polymer foams used in most applications. In addition, a chapter is included on the fundamental principles, which apply to all polymer foams. There is also a chapter on the blowing agents used to expand polymers, blowing agents having undergone considerable change and development in recent years in order to meet the requirements of the Montreal Protocol in relation to the reduction and elimination of chloroflurocarbons (CFC) and other ozone depleting agents. A chapter is also included on microcellular foams - a relatively new development where applications are still being explored. Most chapters have references to facilitate further exploration of the topics. The chapters are all written by experts in the field. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to those just embarking upon an exploration of the subject of foams, whether in industry or academia. But this will be equally useful to those already working in the field, who need to know about different types of foam.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Foam Fundamentals (David Eaves, Independent Consultant)\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Foam Structure\u003cbr\u003e1.3 Foam Properties\u003cbr\u003e1.3.1 Compression Properties\u003cbr\u003e1.3.2 Energy Absorption Properties\u003cbr\u003e1.3.3 Thermal Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Blowing Agents (Sachida Singh, Huntsman Polyurethanes)\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Physical Blowing Agents\u003cbr\u003e2.2.1 Selection Criteria for Physical Blowing Agents\u003cbr\u003e2.2.2 Halogenated Hydrocarbons\u003cbr\u003e2.2.3 Hydrocarbons (HC)\u003cbr\u003e2.2.4 Inert Gases\u003cbr\u003e2.2.5 Other Physical Blowing Agents\u003cbr\u003e2.2.6 Blends of Physical Blowing Agents\u003cbr\u003e2.2.7 Encapsulated Physical Blowing Agents\u003cbr\u003e2.2.8 Physical Blowing Agent by Foam Type and Application\u003cbr\u003e2.3 Chemical Blowing Agents\u003cbr\u003e2.3.1 Selection Criteria for Chemical Blowing Agent\u003cbr\u003e2.3.2 Exothermic CBA\u003cbr\u003e2.3.3 Endothermic CBA\u003cbr\u003e2.3.4 Endo\/Exo Blends\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 Expanded Polystyrene: Development, Processing, Applications and Key Issues (Andrew Barnetson, BPF)\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.1.1 Development of Expanded Polystyrene (EPS)\u003cbr\u003e3.2 Manufacture of Expanded Polystyrene Mouldings\u003cbr\u003e3.3 Applications for Expanded Polystyrene Packaging\u003cbr\u003e3.3.1 Packaging\u003cbr\u003e3.3.2 Construction\u003cbr\u003e3.3.3 Other Applications\u003cbr\u003e3.3.4 Novel Applications\u003cbr\u003e3.4 Properties of EPS\u003cbr\u003e3.4.1 Mechanical Performance\u003cbr\u003e3.4.2 Thermal Insulation\u003cbr\u003e3.4.3 Chemical Properties\u003cbr\u003e3.4.4 Recent Research on Properties of EPS: Value for Fruit and Vegetables\u003cbr\u003e3.5 Global Structure of Markets and Companies\u003cbr\u003e3.5.1 Europe\u003cbr\u003e3.5.2 Asia\u003cbr\u003e3.5.3 USA\u003cbr\u003e3.6 Key Issues Facing the EPS Industry\u003cbr\u003e3.6.1 Fire\u003cbr\u003e3.6.2 Recycling\u003cbr\u003e3.6.2 Alternatives to Mechanical Recycling\u003cbr\u003eFurther Information \u003cbr\u003e\u003cbr\u003e4 Rigid Polyurethane Foams (David Eaves, Independent Consultant)\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Materials\u003cbr\u003e4.2.1 Polyols\u003cbr\u003e4.2.2 Isocyanates\u003cbr\u003e4.2.3 Blowing Agents\u003cbr\u003e4.2.4 Other Additives\u003cbr\u003e4.3 Manufacturing Processes for Rigid Polyurethane Foam\u003cbr\u003e4.4 Recycling Processes for Rigid Polyurethane Foam\u003cbr\u003e4.5 Properties of Rigid Polyurethane Foams\u003cbr\u003e4.6 Applications\u003cbr\u003e4.6.1 Applications in Construction\u003cbr\u003e4.6.2 Applications in the Appliance Industry\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Flexible Polyurethane Foam (Tyler Housel, Inolex Chemical Company)\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Chemistry\u003cbr\u003e5.3 Starting Materials\u003cbr\u003e5.3.1 Isocyanate\u003cbr\u003e5.3.2 Polyol\u003cbr\u003e5.3.3 Water\u003cbr\u003e5.3.4 Surfactant\u003cbr\u003e5.3.5 Catalyst\u003cbr\u003e5.3.6 Colorants\u003cbr\u003e5.3.7 Antioxidants\u003cbr\u003e5.3.8 Light Stabilisers\u003cbr\u003e5.3.9 Flame Retardants\u003cbr\u003e5.3.10 Adhesion Promoters\u003cbr\u003e5.3.11 Other Additives\u003cbr\u003e5.4 The Foaming Process\u003cbr\u003e5.4.1 Raw Material Conditioning\u003cbr\u003e5.4.2 Mixing\u003cbr\u003e5.4.3 Growth\u003cbr\u003e5.4.4 Cell Opening\u003cbr\u003e5.4.5 Cure\u003cbr\u003e5.5 Manufacturing Equipment\u003cbr\u003e5.5.1 Storage and Delivery\u003cbr\u003e5.5.2 Mixing\u003cbr\u003e5.5.3 Foam Rise and Cure\u003cbr\u003e5.5.4 Innovations\u003cbr\u003e5.6 Foam Characterisation\u003cbr\u003e5.6.1 Density\u003cbr\u003e5.6.2 Hardness\u003cbr\u003e5.6.3 Resilience\u003cbr\u003e5.6.4 Porosity\u003cbr\u003e5.6.5 Strength Properties\u003cbr\u003e5.6.6 Cell Structure\u003cbr\u003e5.6.7 Environmental Stability\u003cbr\u003e5.6.8 Fatigue\u003cbr\u003e5.6.9 Compression Set\u003cbr\u003e5.6.10 Flammability\u003cbr\u003e5.7 FPF Markets\u003cbr\u003e5.7.1 Transportation\u003cbr\u003e5.7.2 Comfort\u003cbr\u003e5.7.3 Carpet Cushion\u003cbr\u003e5.7.4 Packaging\u003cbr\u003e5.7.5 Specialty Applications\u003cbr\u003e5.8 Environmental Issues\u003cbr\u003e5.9 Organisations\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Rigid PVC Foam (Noreen Thomas, University of Loughborough)\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Foam Extrusion\u003cbr\u003e6.2.1 Basic Principles\u003cbr\u003e6.2.2 Extrusion Processes\u003cbr\u003e6.2.3 Effect of Processing Conditions\u003cbr\u003e6.3 Foam Formulation Technology\u003cbr\u003e6.3.1 Blowing Agents\u003cbr\u003e6.3.2 Processing Aids\u003cbr\u003e6.3.3 Type of PVC\u003cbr\u003e6.3.4 Stabilisers\u003cbr\u003e6.3.5 Lubricants\u003cbr\u003e6.3.6 Typical Formulations\u003cbr\u003e6.4 Properties\u003cbr\u003e6.5 Novel Processes and Applications\u003cbr\u003e6.5.1 Recycling\u003cbr\u003e6.5.2 Microcellular Foam\u003cbr\u003e6.5.3 Foamed Composites\u003cbr\u003e6.6 Summary\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Flexible PVC Foams (Chris Howick, EVC)\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Flexible Foam Types and PVC Types\u003cbr\u003e7.2.1 Flexible Foams Based on Suspension PVC\u003cbr\u003e7.2.2 Flexible Foams Based on Dispersion or Paste Resins\u003cbr\u003e7.2.3 Chemically Blown Foams from PVC Plastisols: Fundamentals\u003cbr\u003e7.2.4 PVC Resins used in Plastisol Foam Formation\u003cbr\u003e7.2.5 Mineral Fillers\u003cbr\u003e7.2.6 Pigments\u003cbr\u003e7.2.7 Liquid Plasticiser\u003cbr\u003e7.2.8 Blowing Agent Type and Level\u003cbr\u003e7.3 Products Utilising Foamed Plastisols\u003cbr\u003e7.3.1 Floorings and Carpet Backings\u003cbr\u003e7.3.2 Wallcoverings\u003cbr\u003e7.3.3 Synthetic Leather\u003cbr\u003e7.3.4 General Foams\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Polyolefin Foams (David Eaves, Independent Consultant)\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Manufacturing Processes and Materials\u003cbr\u003e8.2.1 Extruded Non-Crosslinked Foam\u003cbr\u003e8.2.2 Expanded (Non-Crosslinked) Polyolefin Beads\u003cbr\u003e8.2.3 Extruded Crosslinked Foam - Processes\u003cbr\u003e8.2.4 Press Moulded Crosslinked Foam Process\u003cbr\u003e8.2.5 Injection Moulded Foam Process\u003cbr\u003e8.2.6 The Nitrogen Autoclave Process\u003cbr\u003e8.2.7 Recycling Processes\u003cbr\u003e8.2.8 Post Manufacturing Operations\u003cbr\u003e8.3 Properties of Polyolefin Foams\u003cbr\u003e8.4 Applications\u003cbr\u003e8.5 Foam Specifications\u003cbr\u003e8.5.1 Packaging\u003cbr\u003e8.5.2 Automotive\u003cbr\u003e8.5.3 Furnishings\u003cbr\u003e8.5.4 Buoyancy\u003cbr\u003e8.5.5 Aerospace\u003cbr\u003e8.5.6 Construction\u003cbr\u003e8.5.7 Toys\u003cbr\u003e8.5.8 Food contact\u003cbr\u003e8.6 Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Latex Foam (Rani Joseph, Cochin University)\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Dunlop Process\u003cbr\u003e9.2.1 Batch Process\u003cbr\u003e9.2.2 Selecting a Formulation for Latex Compounds\u003cbr\u003e9.2.3 Selection of Other Compounding Ingredients\u003cbr\u003e9.2.4 Continuous Process for Latex Foam Production\u003cbr\u003e9.3 Talalay Process\u003cbr\u003e9.4 Trouble Shooting in Latex Foam Manufacture\u003cbr\u003e9.5 Testing\u003cbr\u003e9.5.1 Compression Set\u003cbr\u003e9.5.2 Indentation Hardness\u003cbr\u003e9.5.3 Flexing Resistance\u003cbr\u003e9.5.4 Density\u003cbr\u003e9.5.5 Metallic Impurities\u003cbr\u003e9.6 Important Uses of Latex Foam\u003cbr\u003e9.6.1 Transportation\u003cbr\u003e9.6.2 Furniture\u003cbr\u003e9.6.3 Special Uses\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Microcellular Foams (Vipin Kumar, University of Washington \u0026amp; Krishna Nadella, University of Washington)\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Processing of Microcellular Foams\u003cbr\u003e10.2.1 The Solid-State Batch Process\u003cbr\u003e10.2.2 The Semi-Continuous Process\u003cbr\u003e10.2.3 Extrusion and other Processing Methods\u003cbr\u003e10.3 Properties of Microcellular Foams\u003cbr\u003e10.4 Current Research Directions\u003cbr\u003e10.4.1 Microcellular Materials for Construction\u003cbr\u003e11.4.2 Open-Cell (Porous) Microcellular Foams\u003cbr\u003e10.4.3 Sub-Micron Foams and Nanofoams\u003cbr\u003e10.5 Commercial Opportunities\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Eaves studied polymer chemistry at the University in Birmingham and completed his doctorate in 1958. He then joined Dunlop in their Central Research and Development Laboratories in Birmingham, later going out to Ireland (Cork) and Japan (Kobe) to establish and manage overseas satellite research centres. In 1984 he left Dunlop and joined BP Chemicals' polyethylene foam operation in Croydon as Technical Manager. He was part of the management buy-out team in 1992 when the company was renamed 'Zotefoams', and retired in 1998 as Technical Director. He has published many papers on aspects of polymer and polymer foam technology and is the author of the Rapra report 'Polymer Foams: Trends in Use and Technology.","published_at":"2017-06-22T21:13:18-04:00","created_at":"2017-06-22T21:13:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","aerospace","automotive","blends","blowing agents","book","construction","fire","foams","food","furnishing","hydrocarbons","inert gases","insulation","molding","moulding","p-structural","packaging","polymer","polymers","polystyrene","properties","recycling","structure","toys"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350212,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Foams","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-388-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663","options":["Title"],"media":[{"alt":null,"id":355732226141,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Eaves \u003cbr\u003eISBN 978-1-85957-388-6 \u003cbr\u003e\u003cbr\u003epages 274\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymer foams is extremely widespread. Indeed, it is hard to think of any industries where polymer foams do not have a part to play. They can be found for example in sports and leisure products, in military applications, in vehicles, in aircraft, and in the home. Most people will encounter polymer foams every day in one form or another, whether it be in furniture, in packaging, in their car, in refrigerator insulation, or in some other common application. \u003cbr\u003e\u003cbr\u003eAlthough naturally occurring polymer foams have been known for a long time, (e.g., sponges, cork), synthetic polymer foams have only been introduced to the market over the last fifty years or so. The development of a new polymer has usually been quickly followed by its production in an expanded or foam form owing to the unique and useful properties, which can be realised in the expanded state. \u003cbr\u003e\u003cbr\u003eThis Handbook reviews the chemistry, manufacturing methods, properties and applications of the synthetic polymer foams used in most applications. In addition, a chapter is included on the fundamental principles, which apply to all polymer foams. There is also a chapter on the blowing agents used to expand polymers, blowing agents having undergone considerable change and development in recent years in order to meet the requirements of the Montreal Protocol in relation to the reduction and elimination of chloroflurocarbons (CFC) and other ozone depleting agents. A chapter is also included on microcellular foams - a relatively new development where applications are still being explored. Most chapters have references to facilitate further exploration of the topics. The chapters are all written by experts in the field. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to those just embarking upon an exploration of the subject of foams, whether in industry or academia. But this will be equally useful to those already working in the field, who need to know about different types of foam.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Foam Fundamentals (David Eaves, Independent Consultant)\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Foam Structure\u003cbr\u003e1.3 Foam Properties\u003cbr\u003e1.3.1 Compression Properties\u003cbr\u003e1.3.2 Energy Absorption Properties\u003cbr\u003e1.3.3 Thermal Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Blowing Agents (Sachida Singh, Huntsman Polyurethanes)\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Physical Blowing Agents\u003cbr\u003e2.2.1 Selection Criteria for Physical Blowing Agents\u003cbr\u003e2.2.2 Halogenated Hydrocarbons\u003cbr\u003e2.2.3 Hydrocarbons (HC)\u003cbr\u003e2.2.4 Inert Gases\u003cbr\u003e2.2.5 Other Physical Blowing Agents\u003cbr\u003e2.2.6 Blends of Physical Blowing Agents\u003cbr\u003e2.2.7 Encapsulated Physical Blowing Agents\u003cbr\u003e2.2.8 Physical Blowing Agent by Foam Type and Application\u003cbr\u003e2.3 Chemical Blowing Agents\u003cbr\u003e2.3.1 Selection Criteria for Chemical Blowing Agent\u003cbr\u003e2.3.2 Exothermic CBA\u003cbr\u003e2.3.3 Endothermic CBA\u003cbr\u003e2.3.4 Endo\/Exo Blends\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 Expanded Polystyrene: Development, Processing, Applications and Key Issues (Andrew Barnetson, BPF)\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.1.1 Development of Expanded Polystyrene (EPS)\u003cbr\u003e3.2 Manufacture of Expanded Polystyrene Mouldings\u003cbr\u003e3.3 Applications for Expanded Polystyrene Packaging\u003cbr\u003e3.3.1 Packaging\u003cbr\u003e3.3.2 Construction\u003cbr\u003e3.3.3 Other Applications\u003cbr\u003e3.3.4 Novel Applications\u003cbr\u003e3.4 Properties of EPS\u003cbr\u003e3.4.1 Mechanical Performance\u003cbr\u003e3.4.2 Thermal Insulation\u003cbr\u003e3.4.3 Chemical Properties\u003cbr\u003e3.4.4 Recent Research on Properties of EPS: Value for Fruit and Vegetables\u003cbr\u003e3.5 Global Structure of Markets and Companies\u003cbr\u003e3.5.1 Europe\u003cbr\u003e3.5.2 Asia\u003cbr\u003e3.5.3 USA\u003cbr\u003e3.6 Key Issues Facing the EPS Industry\u003cbr\u003e3.6.1 Fire\u003cbr\u003e3.6.2 Recycling\u003cbr\u003e3.6.2 Alternatives to Mechanical Recycling\u003cbr\u003eFurther Information \u003cbr\u003e\u003cbr\u003e4 Rigid Polyurethane Foams (David Eaves, Independent Consultant)\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Materials\u003cbr\u003e4.2.1 Polyols\u003cbr\u003e4.2.2 Isocyanates\u003cbr\u003e4.2.3 Blowing Agents\u003cbr\u003e4.2.4 Other Additives\u003cbr\u003e4.3 Manufacturing Processes for Rigid Polyurethane Foam\u003cbr\u003e4.4 Recycling Processes for Rigid Polyurethane Foam\u003cbr\u003e4.5 Properties of Rigid Polyurethane Foams\u003cbr\u003e4.6 Applications\u003cbr\u003e4.6.1 Applications in Construction\u003cbr\u003e4.6.2 Applications in the Appliance Industry\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Flexible Polyurethane Foam (Tyler Housel, Inolex Chemical Company)\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Chemistry\u003cbr\u003e5.3 Starting Materials\u003cbr\u003e5.3.1 Isocyanate\u003cbr\u003e5.3.2 Polyol\u003cbr\u003e5.3.3 Water\u003cbr\u003e5.3.4 Surfactant\u003cbr\u003e5.3.5 Catalyst\u003cbr\u003e5.3.6 Colorants\u003cbr\u003e5.3.7 Antioxidants\u003cbr\u003e5.3.8 Light Stabilisers\u003cbr\u003e5.3.9 Flame Retardants\u003cbr\u003e5.3.10 Adhesion Promoters\u003cbr\u003e5.3.11 Other Additives\u003cbr\u003e5.4 The Foaming Process\u003cbr\u003e5.4.1 Raw Material Conditioning\u003cbr\u003e5.4.2 Mixing\u003cbr\u003e5.4.3 Growth\u003cbr\u003e5.4.4 Cell Opening\u003cbr\u003e5.4.5 Cure\u003cbr\u003e5.5 Manufacturing Equipment\u003cbr\u003e5.5.1 Storage and Delivery\u003cbr\u003e5.5.2 Mixing\u003cbr\u003e5.5.3 Foam Rise and Cure\u003cbr\u003e5.5.4 Innovations\u003cbr\u003e5.6 Foam Characterisation\u003cbr\u003e5.6.1 Density\u003cbr\u003e5.6.2 Hardness\u003cbr\u003e5.6.3 Resilience\u003cbr\u003e5.6.4 Porosity\u003cbr\u003e5.6.5 Strength Properties\u003cbr\u003e5.6.6 Cell Structure\u003cbr\u003e5.6.7 Environmental Stability\u003cbr\u003e5.6.8 Fatigue\u003cbr\u003e5.6.9 Compression Set\u003cbr\u003e5.6.10 Flammability\u003cbr\u003e5.7 FPF Markets\u003cbr\u003e5.7.1 Transportation\u003cbr\u003e5.7.2 Comfort\u003cbr\u003e5.7.3 Carpet Cushion\u003cbr\u003e5.7.4 Packaging\u003cbr\u003e5.7.5 Specialty Applications\u003cbr\u003e5.8 Environmental Issues\u003cbr\u003e5.9 Organisations\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Rigid PVC Foam (Noreen Thomas, University of Loughborough)\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Foam Extrusion\u003cbr\u003e6.2.1 Basic Principles\u003cbr\u003e6.2.2 Extrusion Processes\u003cbr\u003e6.2.3 Effect of Processing Conditions\u003cbr\u003e6.3 Foam Formulation Technology\u003cbr\u003e6.3.1 Blowing Agents\u003cbr\u003e6.3.2 Processing Aids\u003cbr\u003e6.3.3 Type of PVC\u003cbr\u003e6.3.4 Stabilisers\u003cbr\u003e6.3.5 Lubricants\u003cbr\u003e6.3.6 Typical Formulations\u003cbr\u003e6.4 Properties\u003cbr\u003e6.5 Novel Processes and Applications\u003cbr\u003e6.5.1 Recycling\u003cbr\u003e6.5.2 Microcellular Foam\u003cbr\u003e6.5.3 Foamed Composites\u003cbr\u003e6.6 Summary\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Flexible PVC Foams (Chris Howick, EVC)\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Flexible Foam Types and PVC Types\u003cbr\u003e7.2.1 Flexible Foams Based on Suspension PVC\u003cbr\u003e7.2.2 Flexible Foams Based on Dispersion or Paste Resins\u003cbr\u003e7.2.3 Chemically Blown Foams from PVC Plastisols: Fundamentals\u003cbr\u003e7.2.4 PVC Resins used in Plastisol Foam Formation\u003cbr\u003e7.2.5 Mineral Fillers\u003cbr\u003e7.2.6 Pigments\u003cbr\u003e7.2.7 Liquid Plasticiser\u003cbr\u003e7.2.8 Blowing Agent Type and Level\u003cbr\u003e7.3 Products Utilising Foamed Plastisols\u003cbr\u003e7.3.1 Floorings and Carpet Backings\u003cbr\u003e7.3.2 Wallcoverings\u003cbr\u003e7.3.3 Synthetic Leather\u003cbr\u003e7.3.4 General Foams\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Polyolefin Foams (David Eaves, Independent Consultant)\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Manufacturing Processes and Materials\u003cbr\u003e8.2.1 Extruded Non-Crosslinked Foam\u003cbr\u003e8.2.2 Expanded (Non-Crosslinked) Polyolefin Beads\u003cbr\u003e8.2.3 Extruded Crosslinked Foam - Processes\u003cbr\u003e8.2.4 Press Moulded Crosslinked Foam Process\u003cbr\u003e8.2.5 Injection Moulded Foam Process\u003cbr\u003e8.2.6 The Nitrogen Autoclave Process\u003cbr\u003e8.2.7 Recycling Processes\u003cbr\u003e8.2.8 Post Manufacturing Operations\u003cbr\u003e8.3 Properties of Polyolefin Foams\u003cbr\u003e8.4 Applications\u003cbr\u003e8.5 Foam Specifications\u003cbr\u003e8.5.1 Packaging\u003cbr\u003e8.5.2 Automotive\u003cbr\u003e8.5.3 Furnishings\u003cbr\u003e8.5.4 Buoyancy\u003cbr\u003e8.5.5 Aerospace\u003cbr\u003e8.5.6 Construction\u003cbr\u003e8.5.7 Toys\u003cbr\u003e8.5.8 Food contact\u003cbr\u003e8.6 Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Latex Foam (Rani Joseph, Cochin University)\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Dunlop Process\u003cbr\u003e9.2.1 Batch Process\u003cbr\u003e9.2.2 Selecting a Formulation for Latex Compounds\u003cbr\u003e9.2.3 Selection of Other Compounding Ingredients\u003cbr\u003e9.2.4 Continuous Process for Latex Foam Production\u003cbr\u003e9.3 Talalay Process\u003cbr\u003e9.4 Trouble Shooting in Latex Foam Manufacture\u003cbr\u003e9.5 Testing\u003cbr\u003e9.5.1 Compression Set\u003cbr\u003e9.5.2 Indentation Hardness\u003cbr\u003e9.5.3 Flexing Resistance\u003cbr\u003e9.5.4 Density\u003cbr\u003e9.5.5 Metallic Impurities\u003cbr\u003e9.6 Important Uses of Latex Foam\u003cbr\u003e9.6.1 Transportation\u003cbr\u003e9.6.2 Furniture\u003cbr\u003e9.6.3 Special Uses\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Microcellular Foams (Vipin Kumar, University of Washington \u0026amp; Krishna Nadella, University of Washington)\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Processing of Microcellular Foams\u003cbr\u003e10.2.1 The Solid-State Batch Process\u003cbr\u003e10.2.2 The Semi-Continuous Process\u003cbr\u003e10.2.3 Extrusion and other Processing Methods\u003cbr\u003e10.3 Properties of Microcellular Foams\u003cbr\u003e10.4 Current Research Directions\u003cbr\u003e10.4.1 Microcellular Materials for Construction\u003cbr\u003e11.4.2 Open-Cell (Porous) Microcellular Foams\u003cbr\u003e10.4.3 Sub-Micron Foams and Nanofoams\u003cbr\u003e10.5 Commercial Opportunities\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Eaves studied polymer chemistry at the University in Birmingham and completed his doctorate in 1958. He then joined Dunlop in their Central Research and Development Laboratories in Birmingham, later going out to Ireland (Cork) and Japan (Kobe) to establish and manage overseas satellite research centres. In 1984 he left Dunlop and joined BP Chemicals' polyethylene foam operation in Croydon as Technical Manager. He was part of the management buy-out team in 1992 when the company was renamed 'Zotefoams', and retired in 1998 as Technical Director. He has published many papers on aspects of polymer and polymer foam technology and is the author of the Rapra report 'Polymer Foams: Trends in Use and Technology."}
Handbook of Polymer Pr...
$295.00
{"id":7703524278429,"title":"Handbook of Polymer Processing Additives","handle":"handbook-of-polymer-processing-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-77467-010-1 \u003cbr\u003e\u003cbr\u003eEdition: 1st\u003cbr data-mce-fragment=\"1\"\u003ePublished Jan. 2023\u003cbr data-mce-fragment=\"1\"\u003ePages: 120+iv\u003cbr data-mce-fragment=\"1\"\u003eTables 12\u003cbr data-mce-fragment=\"1\"\u003eFigures 36\u003cbr data-mce-fragment=\"1\"\u003eHardcover\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe handbook and the databook series include separate books on many commonly used additives, such as Antiblocking Agents, Antioxidants, Biocides, Flame Retardants, Nucleating Agents, Plasticizers, Solvents, UV Stabilizers, and many others. This Handbook contains a selection of minor additives used in the processing of polymeric and other materials, such as acid scavengers, air release, anticaking, antifoaming, antifreezing, antigassing, antigelling, defoaming, antisettling additives, hydrolysis stabilizers, moisture scavengers, and reprocessing aids. They are all very important additives, although less documented in the literature. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eInformation on the use of these additives in various products is divided into the following sections: Methods and mechanisms of additives use, Types and concentrations, Application data that emphasize reasons for their use, advantages and disadvantages of additive use, effect on product properties, and properties of final products.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above-listed additives are most frequently used in PVC resins, including rigid, flexible, and paste resin, PVC copolymers, other vinyl resins, and mixtures with other polymers, polyolefins (PE and PP), and their copolymers (e.g., EVA, EPDM), polystyrene and various styrene copolymers, epichlorohydrin rubber, fluoroelastomers, fluorinated rubbers, and fluoropolymers, polyesters (PBT, PET, PLA, PBAT, unsaturated polyesters, and TPE), polyamides, polyurethanes, acrylates, and their various copolymers, alkyds, polyoxymethylene, epoxy, melamine, and phenolic resins, cellulosic polymers (e.g., nitrocellulose, cellulose acetate butyrate), rubbers (butyl, chlorinated rubber, styrene-butadiene, chlorobutyl, chlorosulfonated polyethylene, nitrile, silicone, and polychloroprene), starch-based resins, and many others not mentioned by name.\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003eMany products and industries require these additives, including construction, automotive, aeronautic, electronic industries, glass coating, insulating glass manufacture, mineral wool insulation, adhesives, sealants and gaskets, cable and wire industry, paints, primers, and coatings, wind turbines, 3D printing, shoe industry, pneumatic pipe, film, conveyor belts, elevator wheel, home appliances, building decorative boards, shopping bags, agricultural film, food containers, toys and stationery, membranes, leather and coated fabrics, roof coatings, asphaltic felt, modified bitumen and single plies, printing with gravure and flexo on paper and vinyl wall coverings, foams, cast parts, cleaners, printing inks and toners, agrochemicals, cosmetics, and many others not mentioned by name. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above (incomplete) list of polymers and products, which use discussed in this book additives, shows how important they are for polymer processing and the production of many other products. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eA complete analysis of literature and patents is included in this book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and the environment. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHandbook of Polymer Processing Additives is a highly practical resource, covering the use and application of many processing additives. It assists engineers and scientists in the polymer industry in their applications and provides a reference book for those involved in research and development support. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThis book is an excellent companion to the Databook of Polymer Processing Additives because the data in the Handbook of Polymer Processing Additives do not repeat information, but Handbook gives a broader background for the selection of the additives, their performance mechanisms, and many essential application properties.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe combination of data and comprehensive analysis of the performance of these materials form a particularly important source of information for industry, research, academia, and legislature. These two books should be considered by any industrial, university, governmental, and public library because of the widespread applications of these additives in industry and everyday life.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2023-02-24T13:51:24-05:00","created_at":"2023-02-24T12:52:56-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","biodegradation","blends","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","monomers","physical properties","polymeric materials","polymerization","processing","processing methods","structure","structures","synthesis","toxicity","weather stability"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393827995805,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Processing Additives","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569","options":["Title"],"media":[{"alt":null,"id":27339963367581,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670101-Case.png?v=1677264569","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-77467-010-1 \u003cbr\u003e\u003cbr\u003eEdition: 1st\u003cbr data-mce-fragment=\"1\"\u003ePublished Jan. 2023\u003cbr data-mce-fragment=\"1\"\u003ePages: 120+iv\u003cbr data-mce-fragment=\"1\"\u003eTables 12\u003cbr data-mce-fragment=\"1\"\u003eFigures 36\u003cbr data-mce-fragment=\"1\"\u003eHardcover\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe handbook and the databook series include separate books on many commonly used additives, such as Antiblocking Agents, Antioxidants, Biocides, Flame Retardants, Nucleating Agents, Plasticizers, Solvents, UV Stabilizers, and many others. This Handbook contains a selection of minor additives used in the processing of polymeric and other materials, such as acid scavengers, air release, anticaking, antifoaming, antifreezing, antigassing, antigelling, defoaming, antisettling additives, hydrolysis stabilizers, moisture scavengers, and reprocessing aids. They are all very important additives, although less documented in the literature. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eInformation on the use of these additives in various products is divided into the following sections: Methods and mechanisms of additives use, Types and concentrations, Application data that emphasize reasons for their use, advantages and disadvantages of additive use, effect on product properties, and properties of final products.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above-listed additives are most frequently used in PVC resins, including rigid, flexible, and paste resin, PVC copolymers, other vinyl resins, and mixtures with other polymers, polyolefins (PE and PP), and their copolymers (e.g., EVA, EPDM), polystyrene and various styrene copolymers, epichlorohydrin rubber, fluoroelastomers, fluorinated rubbers, and fluoropolymers, polyesters (PBT, PET, PLA, PBAT, unsaturated polyesters, and TPE), polyamides, polyurethanes, acrylates, and their various copolymers, alkyds, polyoxymethylene, epoxy, melamine, and phenolic resins, cellulosic polymers (e.g., nitrocellulose, cellulose acetate butyrate), rubbers (butyl, chlorinated rubber, styrene-butadiene, chlorobutyl, chlorosulfonated polyethylene, nitrile, silicone, and polychloroprene), starch-based resins, and many others not mentioned by name.\u003cbr data-mce-fragment=\"1\"\u003e \u003cbr data-mce-fragment=\"1\"\u003eMany products and industries require these additives, including construction, automotive, aeronautic, electronic industries, glass coating, insulating glass manufacture, mineral wool insulation, adhesives, sealants and gaskets, cable and wire industry, paints, primers, and coatings, wind turbines, 3D printing, shoe industry, pneumatic pipe, film, conveyor belts, elevator wheel, home appliances, building decorative boards, shopping bags, agricultural film, food containers, toys and stationery, membranes, leather and coated fabrics, roof coatings, asphaltic felt, modified bitumen and single plies, printing with gravure and flexo on paper and vinyl wall coverings, foams, cast parts, cleaners, printing inks and toners, agrochemicals, cosmetics, and many others not mentioned by name. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe above (incomplete) list of polymers and products, which use discussed in this book additives, shows how important they are for polymer processing and the production of many other products. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eA complete analysis of literature and patents is included in this book. The book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and the environment. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eHandbook of Polymer Processing Additives is a highly practical resource, covering the use and application of many processing additives. It assists engineers and scientists in the polymer industry in their applications and provides a reference book for those involved in research and development support. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThis book is an excellent companion to the Databook of Polymer Processing Additives because the data in the Handbook of Polymer Processing Additives do not repeat information, but Handbook gives a broader background for the selection of the additives, their performance mechanisms, and many essential application properties.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe combination of data and comprehensive analysis of the performance of these materials form a particularly important source of information for industry, research, academia, and legislature. These two books should be considered by any industrial, university, governmental, and public library because of the widespread applications of these additives in industry and everyday life.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Polymer Te...
$144.00
{"id":11242227204,"title":"Handbook of Polymer Testing - Short-Term Mechanical Tests","handle":"978-1-85957-324-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R. Brown \u003cbr\u003eISBN 978-1-85957-324-2 \u003cbr\u003e\u003cbr\u003epages 208\n\u003ch5\u003eSummary\u003c\/h5\u003e\nKnowledge of the properties of plastics is essential for designing products, specifying the material to be used, carrying out quality control on finished products, failure analysis and for understanding the structure and behaviour of new materials. \u003cbr\u003e\u003cbr\u003eEach class of materials has its own specific test procedures, which have developed as the material has evolved. This book concentrates on one area of testing – short-term mechanical tests. These are defined as tests of mechanical properties where the effects of long periods of time and cycling are ignored. This group of tests includes hardness, tensile, compression, shear, flexing, impact, and tear and in this book, it is also taken to include density and dimensional measurement together with test piece preparation and conditioning.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThe topics covered in this book, include:\u003c\/strong\u003e \u003cbr\u003e1. Introduction\u003cbr\u003eReasons for Testing, Source, and Condition of Test Pieces, Test Conditions, Limitations of Results, Sampling, Standards, Quality Control of Testing, Test Equipment, Product Testing, and Modes of Stressing. \u003cbr\u003e2. Test Piece Preparation\u003cbr\u003eMixing, Moulding, Stamping from Sheet or Film, and Machining. \u003cbr\u003e3. Conditioning\u003cbr\u003eStorage, Conditioning, Heat Treatment, Mechanical Conditioning, Test Conditions, and Apparatus for Conditioning. \u003cbr\u003e4. Mass, Density, and Dimensions\u003cbr\u003eMeasurement of Mass, of Density, and of Dimensions. \u003cbr\u003e5. Hardness\u003cbr\u003eRelationships, Standard Methods, and Other Methods. \u003cbr\u003e6. Tensile Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e7. Compression Stress-Strain\u003cbr\u003eTest Apparatus, Standard, and Other Tests. \u003cbr\u003e8. Shear Properties\u003cbr\u003eStandard, and Other Tests. \u003cbr\u003e9. Flexural Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e10. Impact Strength\u003cbr\u003eGeneral, and Specific Tests. \u003cbr\u003e11. Tear Properties\u003cbr\u003eTest Piece Geometry, Standard, and Other Tests \u003cbr\u003e12. Fracture Toughness\u003cbr\u003eStandard, and Other Methods. \u003cbr\u003eThis book will be useful to all those who are already involved in the testing of polymers and it is an ideal guide to those just starting out in the field, whether in academia or industry.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e1 Introduction \u003cbr\u003e1.1 Scope \u003cbr\u003e1.2 Reasons for Testing \u003cbr\u003e1.3 Source and Condition of Test Pieces \u003cbr\u003e1.3 Test Conditions \u003cbr\u003e1.4 Limitations of Results \u003cbr\u003e1.6 Sampling \u003cbr\u003e1.7 Standards \u003cbr\u003e1.8 Quality Control of Testing 1.9 Test Equipment \u003cbr\u003e1.10 Product Testing \u003cbr\u003e1.11 Modes of Stressing References \u003cbr\u003e\u003cbr\u003e2 Test Piece Preparation \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Mixing \u003cbr\u003e2.3 Moulding \u003cbr\u003e2.4 Stamping from Sheet or Film \u003cbr\u003e2.5 Machining References \u003cbr\u003e\u003cbr\u003e3 Conditioning \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Storage \u003cbr\u003e3.3 Conditioning \u003cbr\u003e3.4 Heat Treatment 3.5 Mechanical Conditioning \u003cbr\u003e3.5.1 Test Conditions \u003cbr\u003e3.6 Apparatus for Conditioning \u003cbr\u003e3.6.1 Air-Conditioned Rooms \u003cbr\u003e3.6.2 Enclosures\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e3.6.3 Hygrometers \u003cbr\u003e3.6.4 Thermometers \u003cbr\u003e3.6.5 Apparatus for Elevated and Sub-Ambient Temperature References Appendix A – Tables of Thermal Equilibrium Times \u003cbr\u003e\u003cbr\u003e4 Mass, Density, and Dimensions \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Measurement of Mass \u003cbr\u003e4.3 Measurement of Density \u003cbr\u003e4.4 Measurement of Dimensions \u003cbr\u003e4.4.1 General \u003cbr\u003e4.4.2 ‘Standard’ Laboratory Procedures \u003cbr\u003e4.4.3 Other Procedures \u003cbr\u003e4.4.4 Surface Roughness \u003cbr\u003e4.4.5 Extensometry \u003cbr\u003e4.4.6 Dimensional Stability \u003cbr\u003e4.4.7 Dispersion References \u003cbr\u003e\u003cbr\u003e5 Hardness \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Relationships \u003cbr\u003e5.3 Standard Methods \u003cbr\u003e5.3.1 Shore Durometer \u003cbr\u003e5.3.2 Ball Indentation \u003cbr\u003e5.3.3 Rockwell \u003cbr\u003e5.3.4 Softness 5.3.5 Barcol Hardness \u003cbr\u003e5.4 Other Methods References \u003cbr\u003e\u003cbr\u003e6 Tensile Stress-Strain \u003cbr\u003e6.1 General Considerations \u003cbr\u003e6.1.1 Tough Materials with a Yield Stress Greater than the Failure Stress \u003cbr\u003e6.1.2 Tough Materials with a Yield Stress Lower than the Failure Stress \u003cbr\u003e6.1.3 Tough Materials with the same Yield and Failure Stress\u003cbr\u003e6.1.4 Brittle Materials \u003cbr\u003e6.2 Test Methods \u003cbr\u003e6.2.1 Standard Methods \u003cbr\u003e6.2.2 Test Apparatus \u003cbr\u003e6.2.3 Test Pieces \u003cbr\u003e6.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e7 Compression Stress-Strain \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Test Apparatus \u003cbr\u003e7.3 Standard Tests \u003cbr\u003e7.3 Other Tests References \u003cbr\u003e\u003cbr\u003e8 Shear Properties \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Standard Tests \u003cbr\u003e8.3 Other Tests References \u003cbr\u003e\u003cbr\u003e9 Flexural Stress-Strain \u003cbr\u003e9.1 General Considerations \u003cbr\u003e9.2 Test Methods \u003cbr\u003e9.2.1 Standard Methods \u003cbr\u003e9.2.2 Test Apparatus \u003cbr\u003e9.2.3 Test Pieces \u003cbr\u003e9.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e10 Impact Strength \u003cbr\u003e10.1 General Considerations \u003cbr\u003e10.1.1 Introduction \u003cbr\u003e10.1.2 Modes of Failure\u003cbr\u003e10.1.3 Factors Affecting the Impact Strength \u003cbr\u003e10.2 Specific Tests \u003cbr\u003e10.2.1 Pendulum Methods \u003cbr\u003e10.2.2 Drop Methods References \u003cbr\u003e\u003cbr\u003e11 Tear Properties \u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Test Piece Geometry \u003cbr\u003e11.3 Standard Tests \u003cbr\u003e11.4 Other Tests References \u003cbr\u003e\u003cbr\u003e12 Fracture Toughness \u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Standard Methods \u003cbr\u003e12.3 Other Methods References\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.","published_at":"2017-06-22T21:14:04-04:00","created_at":"2017-06-22T21:14:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","compression","density","flexing","hardness","impact","mass","mixing","molding","moulding","p-testing","plastics","poly","properties","quality control","shear","stamping","stress-strain","tear","tensile","testing"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394372,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Testing - Short-Term Mechanical Tests","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-324-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522","options":["Title"],"media":[{"alt":null,"id":356335976541,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-324-2.jpg?v=1499471522","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R. Brown \u003cbr\u003eISBN 978-1-85957-324-2 \u003cbr\u003e\u003cbr\u003epages 208\n\u003ch5\u003eSummary\u003c\/h5\u003e\nKnowledge of the properties of plastics is essential for designing products, specifying the material to be used, carrying out quality control on finished products, failure analysis and for understanding the structure and behaviour of new materials. \u003cbr\u003e\u003cbr\u003eEach class of materials has its own specific test procedures, which have developed as the material has evolved. This book concentrates on one area of testing – short-term mechanical tests. These are defined as tests of mechanical properties where the effects of long periods of time and cycling are ignored. This group of tests includes hardness, tensile, compression, shear, flexing, impact, and tear and in this book, it is also taken to include density and dimensional measurement together with test piece preparation and conditioning.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eThe topics covered in this book, include:\u003c\/strong\u003e \u003cbr\u003e1. Introduction\u003cbr\u003eReasons for Testing, Source, and Condition of Test Pieces, Test Conditions, Limitations of Results, Sampling, Standards, Quality Control of Testing, Test Equipment, Product Testing, and Modes of Stressing. \u003cbr\u003e2. Test Piece Preparation\u003cbr\u003eMixing, Moulding, Stamping from Sheet or Film, and Machining. \u003cbr\u003e3. Conditioning\u003cbr\u003eStorage, Conditioning, Heat Treatment, Mechanical Conditioning, Test Conditions, and Apparatus for Conditioning. \u003cbr\u003e4. Mass, Density, and Dimensions\u003cbr\u003eMeasurement of Mass, of Density, and of Dimensions. \u003cbr\u003e5. Hardness\u003cbr\u003eRelationships, Standard Methods, and Other Methods. \u003cbr\u003e6. Tensile Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e7. Compression Stress-Strain\u003cbr\u003eTest Apparatus, Standard, and Other Tests. \u003cbr\u003e8. Shear Properties\u003cbr\u003eStandard, and Other Tests. \u003cbr\u003e9. Flexural Stress-Strain\u003cbr\u003eGeneral, and Test Methods. \u003cbr\u003e10. Impact Strength\u003cbr\u003eGeneral, and Specific Tests. \u003cbr\u003e11. Tear Properties\u003cbr\u003eTest Piece Geometry, Standard, and Other Tests \u003cbr\u003e12. Fracture Toughness\u003cbr\u003eStandard, and Other Methods. \u003cbr\u003eThis book will be useful to all those who are already involved in the testing of polymers and it is an ideal guide to those just starting out in the field, whether in academia or industry.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e1 Introduction \u003cbr\u003e1.1 Scope \u003cbr\u003e1.2 Reasons for Testing \u003cbr\u003e1.3 Source and Condition of Test Pieces \u003cbr\u003e1.3 Test Conditions \u003cbr\u003e1.4 Limitations of Results \u003cbr\u003e1.6 Sampling \u003cbr\u003e1.7 Standards \u003cbr\u003e1.8 Quality Control of Testing 1.9 Test Equipment \u003cbr\u003e1.10 Product Testing \u003cbr\u003e1.11 Modes of Stressing References \u003cbr\u003e\u003cbr\u003e2 Test Piece Preparation \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Mixing \u003cbr\u003e2.3 Moulding \u003cbr\u003e2.4 Stamping from Sheet or Film \u003cbr\u003e2.5 Machining References \u003cbr\u003e\u003cbr\u003e3 Conditioning \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Storage \u003cbr\u003e3.3 Conditioning \u003cbr\u003e3.4 Heat Treatment 3.5 Mechanical Conditioning \u003cbr\u003e3.5.1 Test Conditions \u003cbr\u003e3.6 Apparatus for Conditioning \u003cbr\u003e3.6.1 Air-Conditioned Rooms \u003cbr\u003e3.6.2 Enclosures\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003e3.6.3 Hygrometers \u003cbr\u003e3.6.4 Thermometers \u003cbr\u003e3.6.5 Apparatus for Elevated and Sub-Ambient Temperature References Appendix A – Tables of Thermal Equilibrium Times \u003cbr\u003e\u003cbr\u003e4 Mass, Density, and Dimensions \u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Measurement of Mass \u003cbr\u003e4.3 Measurement of Density \u003cbr\u003e4.4 Measurement of Dimensions \u003cbr\u003e4.4.1 General \u003cbr\u003e4.4.2 ‘Standard’ Laboratory Procedures \u003cbr\u003e4.4.3 Other Procedures \u003cbr\u003e4.4.4 Surface Roughness \u003cbr\u003e4.4.5 Extensometry \u003cbr\u003e4.4.6 Dimensional Stability \u003cbr\u003e4.4.7 Dispersion References \u003cbr\u003e\u003cbr\u003e5 Hardness \u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Relationships \u003cbr\u003e5.3 Standard Methods \u003cbr\u003e5.3.1 Shore Durometer \u003cbr\u003e5.3.2 Ball Indentation \u003cbr\u003e5.3.3 Rockwell \u003cbr\u003e5.3.4 Softness 5.3.5 Barcol Hardness \u003cbr\u003e5.4 Other Methods References \u003cbr\u003e\u003cbr\u003e6 Tensile Stress-Strain \u003cbr\u003e6.1 General Considerations \u003cbr\u003e6.1.1 Tough Materials with a Yield Stress Greater than the Failure Stress \u003cbr\u003e6.1.2 Tough Materials with a Yield Stress Lower than the Failure Stress \u003cbr\u003e6.1.3 Tough Materials with the same Yield and Failure Stress\u003cbr\u003e6.1.4 Brittle Materials \u003cbr\u003e6.2 Test Methods \u003cbr\u003e6.2.1 Standard Methods \u003cbr\u003e6.2.2 Test Apparatus \u003cbr\u003e6.2.3 Test Pieces \u003cbr\u003e6.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e7 Compression Stress-Strain \u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Test Apparatus \u003cbr\u003e7.3 Standard Tests \u003cbr\u003e7.3 Other Tests References \u003cbr\u003e\u003cbr\u003e8 Shear Properties \u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Standard Tests \u003cbr\u003e8.3 Other Tests References \u003cbr\u003e\u003cbr\u003e9 Flexural Stress-Strain \u003cbr\u003e9.1 General Considerations \u003cbr\u003e9.2 Test Methods \u003cbr\u003e9.2.1 Standard Methods \u003cbr\u003e9.2.2 Test Apparatus \u003cbr\u003e9.2.3 Test Pieces \u003cbr\u003e9.2.4 Procedure References \u003cbr\u003e\u003cbr\u003e10 Impact Strength \u003cbr\u003e10.1 General Considerations \u003cbr\u003e10.1.1 Introduction \u003cbr\u003e10.1.2 Modes of Failure\u003cbr\u003e10.1.3 Factors Affecting the Impact Strength \u003cbr\u003e10.2 Specific Tests \u003cbr\u003e10.2.1 Pendulum Methods \u003cbr\u003e10.2.2 Drop Methods References \u003cbr\u003e\u003cbr\u003e11 Tear Properties \u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Test Piece Geometry \u003cbr\u003e11.3 Standard Tests \u003cbr\u003e11.4 Other Tests References \u003cbr\u003e\u003cbr\u003e12 Fracture Toughness \u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Standard Methods \u003cbr\u003e12.3 Other Methods References\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees."}
Handbook of Polymers
$395.00
{"id":11242220932,"title":"Handbook of Polymers","handle":"978-1-895198-47-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:44:36-05:00","created_at":"2017-06-22T21:13:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","physical properties","polymeric materials","processing","structure","synthesis","toxicity","weather stability"],"price":39500,"price_min":39500,"price_max":39500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372932,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers","public_title":null,"options":["Default Title"],"price":39500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-47-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588","options":["Title"],"media":[{"alt":null,"id":356336173149,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-47-8.jpg?v=1499471588","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-47-8 \u003cbr\u003e\u003cbr\u003eFirst Edition\u003cbr\u003ePages 680\u003cbr\u003eFormat: 8.5 x 11 inches\u003cbr\u003eHardcover\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003e Frequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003e Presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003e\u003cb\u003eThe data are organized into the following sections:\u003c\/b\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003e It can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003e We hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book for the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003e The contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data give the book which should be found on the desk of anyone working with polymeric materials.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003ctable border=\"0\" cellspacing=\"0\" cellpadding=\"0\"\u003e\n\u003ctbody\u003e\n\u003ctr\u003e\n\u003ctd height=\"15\" width=\"61\"\u003e\u003c\/td\u003e\n\u003ctd width=\"527\"\u003eIntroduction\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eABS\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eAK\u003c\/td\u003e\n\u003ctd\u003ealkyd resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eASA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylonitrile-co-styrene-co-acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBIIR\u003c\/td\u003e\n\u003ctd\u003ebromobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBMI\u003c\/td\u003e\n\u003ctd\u003epolybismaleimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eBZ\u003c\/td\u003e\n\u003ctd\u003epolybenzoxazine\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eC\u003c\/td\u003e\n\u003ctd\u003ecellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCA\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAB\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAP\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate propionate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAPh\u003c\/td\u003e\n\u003ctd\u003ecellulose acetate phthalate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCAR\u003c\/td\u003e\n\u003ctd\u003ecarrageenan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCB\u003c\/td\u003e\n\u003ctd\u003ecellulose butyrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCEC\u003c\/td\u003e\n\u003ctd\u003ecarboxylated ethylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCHI\u003c\/td\u003e\n\u003ctd\u003echitosan\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCIIR\u003c\/td\u003e\n\u003ctd\u003echlorobutyl rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCMC\u003c\/td\u003e\n\u003ctd\u003ecarboxymethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCN\u003c\/td\u003e\n\u003ctd\u003ecellulose nitrate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCOC\u003c\/td\u003e\n\u003ctd\u003ecyclic olefin copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPE\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCPVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride), chlorinated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCR\u003c\/td\u003e\n\u003ctd\u003epolychloroprene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCSP\u003c\/td\u003e\n\u003ctd\u003epolyethylene, chlorosulfonated\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCTA\u003c\/td\u003e\n\u003ctd\u003ecellulose triacetate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eCY\u003c\/td\u003e\n\u003ctd\u003ecyanoacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eDAP\u003c\/td\u003e\n\u003ctd\u003epoly(diallyl phthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eE-RLPO\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate-co-triammonioethyl methacrylate chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEAMM\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEBCO\u003c\/td\u003e\n\u003ctd\u003eethylene-n-butyl acrylate-carbon monoxide terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEC\u003c\/td\u003e\n\u003ctd\u003eethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eECTFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-chlorotrifluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEEAC\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEMA-AA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methyl acrylate-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eENBA\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-n-butyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEP\u003c\/td\u003e\n\u003ctd\u003eepoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPDM\u003c\/td\u003e\n\u003ctd\u003eethylene-propylene diene terpolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEPR\u003c\/td\u003e\n\u003ctd\u003eethylene propylene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eETFE\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-tetrafluoroethylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVAC\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl acetate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eEVOH\u003c\/td\u003e\n\u003ctd\u003eethylene-vinyl alcohol copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFEP\u003c\/td\u003e\n\u003ctd\u003efluorinated ethylene-propylene copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eFR\u003c\/td\u003e\n\u003ctd\u003efuran resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGEL\u003c\/td\u003e\n\u003ctd\u003egelatin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eGT\u003c\/td\u003e\n\u003ctd\u003egum tragacanth\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHCP\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHDPE\u003c\/td\u003e\n\u003ctd\u003ehigh density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHEC\u003c\/td\u003e\n\u003ctd\u003ehydroxyethyl cellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMC\u003c\/td\u003e\n\u003ctd\u003ehydroxypropyl methylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eHPMM\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eIIR\u003c\/td\u003e\n\u003ctd\u003eisobutylene-isoprene rubber\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLCP\u003c\/td\u003e\n\u003ctd\u003eliquid crystalline polymers\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLDPE\u003c\/td\u003e\n\u003ctd\u003elow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eLLDPE\u003c\/td\u003e\n\u003ctd\u003elinear low density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMABS\u003c\/td\u003e\n\u003ctd\u003epoly(methyl methacrylate-co-acrylonitrile-co-butadiene-co-styrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMBS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene-co-methyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMC\u003c\/td\u003e\n\u003ctd\u003emethylcellulose\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMF\u003c\/td\u003e\n\u003ctd\u003emelamine-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eMP\u003c\/td\u003e\n\u003ctd\u003emelamine-phenolic resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eNBR\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene elastomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-3\u003c\/td\u003e\n\u003ctd\u003epolyamide-3\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-4,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-4,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,6\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,10\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,10\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,12\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6,66\u003c\/td\u003e\n\u003ctd\u003epolyamide-6,66\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-6I\/6T\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-11\u003c\/td\u003e\n\u003ctd\u003epolyamide-11\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePA-12\u003c\/td\u003e\n\u003ctd\u003epolyamide-12\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAA\u003c\/td\u003e\n\u003ctd\u003epoly(acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAAm\u003c\/td\u003e\n\u003ctd\u003epolyacrylamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAC\u003c\/td\u003e\n\u003ctd\u003epolyacetylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAEK\u003c\/td\u003e\n\u003ctd\u003eacrylonitrile-butadiene-acrylate copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAH\u003c\/td\u003e\n\u003ctd\u003epolyanhydride\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAI\u003c\/td\u003e\n\u003ctd\u003epoly(amide imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePalg\u003c\/td\u003e\n\u003ctd\u003ealginic acid\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAN\u003c\/td\u003e\n\u003ctd\u003epolyacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePANI\u003c\/td\u003e\n\u003ctd\u003epolyaniline\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePAR\u003c\/td\u003e\n\u003ctd\u003epolyarylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePARA\u003c\/td\u003e\n\u003ctd\u003epolyamide MXD6\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePB\u003c\/td\u003e\n\u003ctd\u003e1,2-polybutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBA\u003c\/td\u003e\n\u003ctd\u003epoly(p-benzamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBAN\u003c\/td\u003e\n\u003ctd\u003epoly(butadiene-co-acrylonitrile-co-acrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-1,4-polybutadiene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBD,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBI\u003c\/td\u003e\n\u003ctd\u003epolybenzimidazole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBMA\u003c\/td\u003e\n\u003ctd\u003epolybutylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBN\u003c\/td\u003e\n\u003ctd\u003epoly(butylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePBT\u003c\/td\u003e\n\u003ctd\u003epoly(butylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePC\u003c\/td\u003e\n\u003ctd\u003epolycarbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCL\u003c\/td\u003e\n\u003ctd\u003epoly(e-caprolactone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCT\u003c\/td\u003e\n\u003ctd\u003epoly(cyclohexylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTFE\u003c\/td\u003e\n\u003ctd\u003epolychlorotrifluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePCTG\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-1,4-cyclohexylenedimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDMS\u003c\/td\u003e\n\u003ctd\u003epolydimethylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePDS\u003c\/td\u003e\n\u003ctd\u003epolydioxanone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePE\u003c\/td\u003e\n\u003ctd\u003epolyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEA\u003c\/td\u003e\n\u003ctd\u003epoly(ethyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEC\u003c\/td\u003e\n\u003ctd\u003epoly(ester carbonate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEDOT\u003c\/td\u003e\n\u003ctd\u003epoly(3,4-ethylenedioxythiophene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEEK\u003c\/td\u003e\n\u003ctd\u003epolyetheretherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEI\u003c\/td\u003e\n\u003ctd\u003epoly(ether imide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEK\u003c\/td\u003e\n\u003ctd\u003epolyetherketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEKK\u003c\/td\u003e\n\u003ctd\u003epolyetherketoneketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEM\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene-co-methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEN\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene 2,6-naphthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEO\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePES\u003c\/td\u003e\n\u003ctd\u003epoly(ether sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePET\u003c\/td\u003e\n\u003ctd\u003epoly(ethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePEX\u003c\/td\u003e\n\u003ctd\u003esilane-crosslinkable polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePF\u003c\/td\u003e\n\u003ctd\u003ephenol-formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFA\u003c\/td\u003e\n\u003ctd\u003eperfluoroalkoxy resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFI\u003c\/td\u003e\n\u003ctd\u003eperfluorinated ionomer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePFPE\u003c\/td\u003e\n\u003ctd\u003eperfluoropolyether\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePGA\u003c\/td\u003e\n\u003ctd\u003epoly(glycolic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHEMA\u003c\/td\u003e\n\u003ctd\u003epoly(2-hydroxyethyl methacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHB\u003c\/td\u003e\n\u003ctd\u003epoly(3-hydroxybutyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePHSQ\u003c\/td\u003e\n\u003ctd\u003epolyhydridosilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePI\u003c\/td\u003e\n\u003ctd\u003epolyimide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIB\u003c\/td\u003e\n\u003ctd\u003epolyisobutylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,cis\u003c\/td\u003e\n\u003ctd\u003ecis\u003cspan class=\"font5\"\u003e-polyisoprene\u003c\/span\u003e\n\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePIP,trans\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePK\u003c\/td\u003e\n\u003ctd\u003epolyketone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePLA\u003c\/td\u003e\n\u003ctd\u003epoly(lactic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMA\u003c\/td\u003e\n\u003ctd\u003epoly(methyl acrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAA\u003c\/td\u003e\n\u003ctd\u003epoly(methacrylic acid)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMAN\u003c\/td\u003e\n\u003ctd\u003epolymethacrylonitrile\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMFS\u003c\/td\u003e\n\u003ctd\u003epolymethyltrifluoropropylsiloxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMMA\u003c\/td\u003e\n\u003ctd\u003epolymethylmethacrylate\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMP\u003c\/td\u003e\n\u003ctd\u003epolymethylpentene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMPS\u003c\/td\u003e\n\u003ctd\u003epolymethylphenylsilylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMS\u003c\/td\u003e\n\u003ctd\u003epoly(p-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePMSQ\u003c\/td\u003e\n\u003ctd\u003epolymethylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePN\u003c\/td\u003e\n\u003ctd\u003epolynorbornene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOE\u003c\/td\u003e\n\u003ctd\u003every highly branched polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePOM\u003c\/td\u003e\n\u003ctd\u003epolyoxymethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP\u003c\/td\u003e\n\u003ctd\u003epolypropylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,iso\u003c\/td\u003e\n\u003ctd\u003epolypropylene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePP,syndio\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPA\u003c\/td\u003e\n\u003ctd\u003epolyphthalamide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPG\u003c\/td\u003e\n\u003ctd\u003epolypropylene glycol\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPMA\u003c\/td\u003e\n\u003ctd\u003epolypropylene, maleic anhydride modified\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPO\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene oxide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPP\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPS\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene sulfide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSQ\u003c\/td\u003e\n\u003ctd\u003epolyphenylsilsesquioxane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPSU\u003c\/td\u003e\n\u003ctd\u003epoly(phenylene sulfone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPT\u003c\/td\u003e\n\u003ctd\u003epoly(propylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTA\u003c\/td\u003e\n\u003ctd\u003epoly(p-phenylene terephthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPTI\u003c\/td\u003e\n\u003ctd\u003epoly(m-phenylene isophthalamide)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPV\u003c\/td\u003e\n\u003ctd\u003epoly(1,4-phenylene vinylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPX\u003c\/td\u003e\n\u003ctd\u003epoly(p-xylylene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePPy\u003c\/td\u003e\n\u003ctd\u003epolypyrrole\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePR\u003c\/td\u003e\n\u003ctd\u003eproteins\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS\u003c\/td\u003e\n\u003ctd\u003epolystyrene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,iso\u003c\/td\u003e\n\u003ctd\u003epolystyrene, isotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePS,trans\u003c\/td\u003e\n\u003ctd\u003epolystyrene, syndiotactic\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSM\u003c\/td\u003e\n\u003ctd\u003epolysilylenemethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSMS\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-a-methylstyrene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSR\u003c\/td\u003e\n\u003ctd\u003epolysulfide\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePSU\u003c\/td\u003e\n\u003ctd\u003epolysulfone\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE\u003c\/td\u003e\n\u003ctd\u003epolytetrafluoroethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTFE-AF\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTMG\u003c\/td\u003e\n\u003ctd\u003epoly(tetramethylene glycol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePTT\u003c\/td\u003e\n\u003ctd\u003epoly(trimethylene terephthalate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePU\u003c\/td\u003e\n\u003ctd\u003epolyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVAC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVB\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl butyrate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVC\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVCA\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl chloride-co-vinyl acetate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDC\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene chloride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF\u003c\/td\u003e\n\u003ctd\u003epoly(vinylidene fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVDF-HFP\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVF\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl fluoride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVK\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl carbazole)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVME\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl methyl ether)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVOH\u003c\/td\u003e\n\u003ctd\u003epoly(vinyl alcohol)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePVP\u003c\/td\u003e\n\u003ctd\u003epoly(N-vinyl pyrrolidone)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003ePZ\u003c\/td\u003e\n\u003ctd\u003epolyphosphazene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSAN\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-acrylonitrile)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBC\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBR\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-butadiene)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSBS\u003c\/td\u003e\n\u003ctd\u003estyrene-butadiene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSEBS\u003c\/td\u003e\n\u003ctd\u003estyrene-ethylene-butylene-styrene triblock copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSIS\u003c\/td\u003e\n\u003ctd\u003estyrene-isoprene-styrene block copolymer\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-maleic anhydride)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eSMAA\u003c\/td\u003e\n\u003ctd\u003epoly(styrene-co-methylmethacrylate)\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eST\u003c\/td\u003e\n\u003ctd\u003estarch\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eTPU\u003c\/td\u003e\n\u003ctd\u003ethermoplastic polyurethane\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUF\u003c\/td\u003e\n\u003ctd\u003eurea formaldehyde resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUHMWPE\u003c\/td\u003e\n\u003ctd\u003e\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eULDPE\u003c\/td\u003e\n\u003ctd\u003eultralow density polyethylene\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eUP\u003c\/td\u003e\n\u003ctd\u003eunsaturated polyester\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eVE\u003c\/td\u003e\n\u003ctd\u003evinyl ester resin\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003ctr\u003e\n\u003ctd\u003eXG\u003c\/td\u003e\n\u003ctd\u003exanthan gum\u003c\/td\u003e\n\u003c\/tr\u003e\n\u003c\/tbody\u003e\n\u003c\/table\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymers i...
$270.00
{"id":11242211716,"title":"Handbook of Polymers in Electronics","handle":"978-1-85957-286-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: B.D. Malhotra \u003cbr\u003eISBN 978-1-85957-286-3 \u003cbr\u003e\u003cbr\u003epages: 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the continuing drive for higher circuit density and very high-speed data processing, the search for new polymeric materials to use in microelectronics has intensified. The development of polymers for electronics applications is an open field wherein polymers may be used as insulating materials or tailored for desired electronic properties for specific applications. Conjugated polymers have been projected to have numerous applications and are presently at centre-stage of R\u0026amp;D. \u003cbr\u003e\u003cbr\u003eThe Handbook of Polymers in Electronics has been designed to discuss the novel ways in which polymers can be used in the rapidly growing electronics industry. It provides a discussion of the preparation and characterisation of suitable polymeric materials and their current and potential applications coupled with the fundamentals of electrical, optical and photophysical properties. It will thus serve the needs of those already active in the electronics field as well as new entrants to the industry. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Charge Transport in Conjugated Polymers \u003cbr\u003e2. Electrical Properties of Doped Conjugated Polymers \u003cbr\u003e3. Non Linear Optical Properties of Polymers for Electronics \u003cbr\u003e4. Luminescence Studies of Polymers \u003cbr\u003e5. Polymers for Light Emitting Diodes \u003cbr\u003e6. Photopolymers and Photoresists for Electronics \u003cbr\u003e7. Polymer Batteries for Electronics \u003cbr\u003e8. Polymer Microactuators \u003cbr\u003e9. Membranes for Electronics \u003cbr\u003e10. Conducting Polymer-Based Biosensors \u003cbr\u003e11. Nanoparticle-Dispersed Semiconducting Polymers for Electronics \u003cbr\u003e12. Polymers for Electronics \u003cbr\u003e13. Conducting Polymers in Molecular Electronics\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nBansi Dhar Malhotra is Scientist-in-Charge at the Biomolecular Electronics \u0026amp; Conducting Research Group, National Physical Laboratory, New Delhi, India. He is presently engaged in an R\u0026amp;D programme on conducting polymers, biosensors, Langmuir Blodgett films and molecular electronics. He is the author of more than 50 research papers and has been invited to speak at many international conferences.","published_at":"2017-06-22T21:13:13-04:00","created_at":"2017-06-22T21:13:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","batteries","biosensors","book","charge transport","electrical properties","light-emitting diodes","luminescence","membranes","microactuators","molecular electronics","non-linear optical properties","optical properties","p-applications","photo resists","polymer","polymers","semiconducting"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378337348,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers in Electronics","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-286-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-286-3.jpg?v=1499471738"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-286-3.jpg?v=1499471738","options":["Title"],"media":[{"alt":null,"id":356336336989,"position":1,"preview_image":{"aspect_ratio":0.769,"height":182,"width":140,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-286-3.jpg?v=1499471738"},"aspect_ratio":0.769,"height":182,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-286-3.jpg?v=1499471738","width":140}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: B.D. Malhotra \u003cbr\u003eISBN 978-1-85957-286-3 \u003cbr\u003e\u003cbr\u003epages: 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the continuing drive for higher circuit density and very high-speed data processing, the search for new polymeric materials to use in microelectronics has intensified. The development of polymers for electronics applications is an open field wherein polymers may be used as insulating materials or tailored for desired electronic properties for specific applications. Conjugated polymers have been projected to have numerous applications and are presently at centre-stage of R\u0026amp;D. \u003cbr\u003e\u003cbr\u003eThe Handbook of Polymers in Electronics has been designed to discuss the novel ways in which polymers can be used in the rapidly growing electronics industry. It provides a discussion of the preparation and characterisation of suitable polymeric materials and their current and potential applications coupled with the fundamentals of electrical, optical and photophysical properties. It will thus serve the needs of those already active in the electronics field as well as new entrants to the industry. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Charge Transport in Conjugated Polymers \u003cbr\u003e2. Electrical Properties of Doped Conjugated Polymers \u003cbr\u003e3. Non Linear Optical Properties of Polymers for Electronics \u003cbr\u003e4. Luminescence Studies of Polymers \u003cbr\u003e5. Polymers for Light Emitting Diodes \u003cbr\u003e6. Photopolymers and Photoresists for Electronics \u003cbr\u003e7. Polymer Batteries for Electronics \u003cbr\u003e8. Polymer Microactuators \u003cbr\u003e9. Membranes for Electronics \u003cbr\u003e10. Conducting Polymer-Based Biosensors \u003cbr\u003e11. Nanoparticle-Dispersed Semiconducting Polymers for Electronics \u003cbr\u003e12. Polymers for Electronics \u003cbr\u003e13. Conducting Polymers in Molecular Electronics\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nBansi Dhar Malhotra is Scientist-in-Charge at the Biomolecular Electronics \u0026amp; Conducting Research Group, National Physical Laboratory, New Delhi, India. He is presently engaged in an R\u0026amp;D programme on conducting polymers, biosensors, Langmuir Blodgett films and molecular electronics. He is the author of more than 50 research papers and has been invited to speak at many international conferences."}
Handbook of Polymers, ...
$425.00
{"id":11242222020,"title":"Handbook of Polymers, 2nd Edition","handle":"978-1-895198-92-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-92-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003ePages: 705\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2016. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical \u003cbr\u003e\u003cbr\u003eproblems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003ePresentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, \u003cbr\u003e\u003cbr\u003eFree enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, \u003cbr\u003e\u003cbr\u003eVan der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photooxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book or the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:48-04:00","created_at":"2017-06-22T21:13:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2016","biodegradation","blends","book","chemical resistance","commercial polymers","environmental impact","flammability","material","mechanical and rheological properties","monomers","physical properties","polymeric materials","polymerization","processing","processing methods","structure","structures","synthesis","toxicity","weather stability"],"price":42500,"price_min":42500,"price_max":42500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378375172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymers, 2nd Edition","public_title":null,"options":["Default Title"],"price":42500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-92-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966","options":["Title"],"media":[{"alt":null,"id":356336369757,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-92-8.jpg?v=1499719966","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-92-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2016\u003cbr\u003e\u003c\/span\u003ePages: 705\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers selected for this edition of the Handbook of Polymers include all major polymeric materials used by the plastics and other branches of the chemical industry as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2016. This underscores one of the major goals of this undertaking, which is to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information which is characteristic of currently available products, focusing on the potential use of data in solving practical \u003cbr\u003e\u003cbr\u003eproblems. In this process of verification, many older data were rejected unless they have been confirmed by recently conducted studies.\u003cbr\u003e\u003cbr\u003ePresentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields which contain actual values are included for each individual polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RETECS number, Linear formula)\u003cbr\u003e\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, \u003cbr\u003e\u003cbr\u003eFree enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at melting point, \u003cbr\u003e\u003cbr\u003eVan der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photooxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize the performance of specialty polymers in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that the results of our thorough search will be useful and that the data will be skillfully applied by users of this book or the benefit of their research and applications. \u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Polymers, ...
$455.00
{"id":7336409235613,"title":"Handbook of Polymers, 3rd Edition","handle":"handbook-of-polymers-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e","published_at":"2022-03-31T21:01:23-04:00","created_at":"2022-03-31T20:57:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","best","book","material","Materials","polymer","polymers"],"price":45500,"price_min":45500,"price_max":45500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165789098141,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Polymers, 3rd Edition","public_title":null,"options":["Default Title"],"price":45500,"weight":1000,"compare_at_price":null,"inventory_quantity":-2,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-95-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870","options":["Title"],"media":[{"alt":null,"id":24734620844189,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885956-Case.png?v=1648774870","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-95-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 744+vi\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003ePolymers selected for this edition of the Handbook of Polymers include all primary polymeric materials used by the plastics and other branches of the chemical industry and specialty polymers used in the electronics, pharmaceutical, medical, and space fields. Extensive information is included on biopolymers.\u003cbr\u003e\u003cbr\u003eThe data included in the Handbook of Polymers come from open literature (published articles, conference papers, and books), literature available from manufacturers of various grades of polymers, plastics, and finished products, and patent literature. The above sources were searched, including the most recent literature. It can be seen from the references that a large portion of the data comes from information published in 2011-2021. This underscores one of this undertaking's significant goals: to provide readers with the most up-to-date information.\u003cbr\u003e\u003cbr\u003eFrequently, data from different sources vary in a broad range, and they have to be reconciled. In such cases, values closest to their average and values based on testing of the most current grades of materials are selected to provide readers with information that is characteristic of currently available products, focusing on the potential use of data in solving practical problems. In this process of verification, many older data were rejected unless recently conducted studies have confirmed them.\u003cbr\u003e\u003cbr\u003eThe presentation of data for all polymers is based on a consistent pattern of data arrangement, although, depending on data availability, only data fields that contain actual values are included for each polymer. The entire scope of the data is divided into sections to make data comparison and search easy. \u003cbr\u003e\u003cbr\u003eThe data are organized into the following sections:\u003cbr\u003e• General (Common name, IUPAC name, ACS name, Acronym, CAS number, EC number, RTECS number, Linear formula)\u003cbr\u003e• History (Person to discover, Date, Details)\u003cbr\u003e• Synthesis (Monomer(s) structure, Monomer(s) CAS number(s), Monomer(s) molecular weight(s), Monomer(s) expected purity(ies), Monomer ratio, Degree of substitution, Formulation example, Method of synthesis, Temperature of polymerization, Time of polymerization, Pressure of polymerization, Catalyst, Yield, Activation energy of polymerization, Free enthalpy of formation, Heat of polymerization, Initiation rate constant, Propagation rate constant, Termination rate constant, Chain transfer rate constant, Inhibition rate constant, Polymerization rate constant, Method of polymer separation, Typical impurities, Typical concentration of residual monomer, Number average molecular weight, Mn, Mass average molecular weight, Mw, Polydispersity, Mw\/Mn, Polymerization degree, Molar volume at 298K, Molar volume at the melting point, Van der Waals volume, Radius of gyration, End-to-end distance of unperturbed polymer chain, Degree of branching, Type of branching, Chain-end groups)\u003cbr\u003e• Structure (Crystallinity, Crystalline structure, Cell type (lattice), Cell dimensions, Unit cell angles, Number of chains per unit cell, Crystallite size, Spacing between crystallites, Polymorphs, Tacticity, Cis content, Chain conformation, Entanglement molecular weight, Lamellae thickness, Heat of crystallization, Rapid crystallization temperature, Avrami constants, k\/n)\u003cbr\u003e• Commercial polymers (Some manufacturers, Trade names, Composition information)\u003cbr\u003e• Physical properties (Density, Bulk density, Color, Refractive index, Birefringence, Molar polarizability, Transmittance, Haze, Gloss, Odor, Melting temperature, Softening point, Decomposition temperature, Fusion temperature, Thermal expansion coefficient, Thermal conductivity, Glass transition temperature, Specific heat capacity, Heat of fusion, Calorific value, Maximum service temperature, Long term service temperature, Temperature index (50% tensile strength loss after 20,000 h\/5000 h), Heat deflection temperature at 0.45 MPa, Heat deflection temperature at 1.8 MPa, Vicat temperature VST\/A\/50, Vicat temperature VST\/B\/50, Start of thermal degradation, Enthalpy, Acceptor number, Donor number, Hansen solubility parameters, dD, dP, dH, Molar volume, Hildebrand solubility parameter, Surface tension, Dielectric constant at 100 Hz\/1 MHz, Dielectric loss factor at 1 kHz, Relative permittivity at 100 Hz, Relative permittivity at 1 MHz, Dissipation factor at 100 Hz, Dissipation factor at 1 MHz, Volume resistivity, Surface resistivity, Electric strength K20\/P50, d=0.60.8 mm, Comparative tracking index, CTI, test liquid A, Comparative tracking index, CTIM, test liquid B, Arc resistance, Power factor, Coefficient of friction, Permeability to nitrogen, Permeability to oxygen, Permeability to water vapor, Diffusion coefficient of nitrogen, Diffusion coefficient of oxygen, Diffusion coefficient of water vapor, Contact angle of water, Surface free energy, Speed of sound, Acoustic impedance, Attenuation)\u003cbr\u003e• Mechanical properties (Tensile strength, Tensile modulus, Tensile stress at yield, Tensile creep modulus, 1000 h, elongation 0.5 max, Elongation, Tensile yield strain, Flexural strength, Flexural modulus, Elastic modulus, Compressive strength, Young's modulus, Tear strength, Charpy impact strength, Charpy impact strength, notched, Izod impact strength, Izod impact strength, notched, Shear strength, Tenacity, Abrasion resistance, Adhesive bond strength, Poisson's ratio, Compression set, Shore A hardness, Shore D hardness, Rockwell hardness, Ball indention hardness at 358 N\/30 S, Shrinkage, Brittleness temperature, Viscosity number, Intrinsic viscosity, Mooney viscosity, Melt viscosity, shear rate=1000 s-1, Melt volume flow rate, Melt index, Water absorption, Moisture absorption)\u003cbr\u003e• Chemical resistance (Acid dilute\/concentrated, Alcohols, Alkalis, Aliphatic hydrocarbons, Aromatic hydrocarbons, Esters, Greases \u0026amp; oils, Halogenated hydrocarbons, Ketones, Theta solvent, Good solvent, Non-solvent)\u003cbr\u003e• Flammability (Flammability according to UL-standard; thickness 1.6\/0.8 mm, Ignition temperature, Autoignition temperature, Limiting oxygen index, Heat release, NBS smoke chamber, Burning rate (Flame spread rate), Char, Heat of combustion, Volatile products of combustion)\u003cbr\u003e• Weather stability (Spectral sensitivity, Activation wavelengths, Excitation wavelengths, Emission wavelengths, Activation energy of photoxidation, Depth of UV penetration, Important initiators and accelerators, Products of degradation, Stabilizers)\u003cbr\u003e• Biodegradation (Typical biodegradants, Stabilizers)\u003cbr\u003e• Toxicity (NFPA: Health, Flammability, Reactivity rating, Carcinogenic effect, Mutagenic effect, Teratogenic effect, Reproductive toxicity, TLV, ACGIH, NIOSH, MAK\/TRK, OSHA, Acceptable daily intake, Oral rat, LD50, Skin rabbit, LD50)\u003cbr\u003e• Environmental impact (Aquatic toxicity, Daphnia magna, LC50, 48 h, Aquatic toxicity, Bluegill sunfish, LC50, 48 h, Aquatic toxicity, Fathead minnow, LC50, 48 h, Aquatic toxicity, Rainbow trout, LC50, 48 h, Mean degradation half-life, Toxic products of degradation, Biological oxygen demand, BOD5, Chemical oxygen demand, Theoretical oxygen demand, Cradle to grave non-renewable energy use)\u003cbr\u003e• Processing (Typical processing methods, Preprocess drying: temperature\/time\/residual moisture, Processing temperature, Processing pressure, Process time, Additives used in final products, Applications, Outstanding properties)\u003cbr\u003e• Blends (Suitable polymers, Compatibilizers)\u003cbr\u003e• Analysis (FTIR (wavenumber-assignment), Raman (wavenumber-assignment), NMR (chemical shifts), x-ray diffraction peaks)\u003cbr\u003e\u003cbr\u003eIt can be anticipated from the above breakdown of information that the Handbook of Polymers contains information on all essential data used in practical applications, research, and legislation, providing that such data are available for a particular material. In total, over 230 different types of data were searched for each individual polymer. The last number does not include special fields that might be added to characterize specialty polymers' performance in their applications.\u003cbr\u003e\u003cbr\u003eWe hope that our thorough search of data will be useful and that users of this book will skillfully apply the data to benefit their research and applications.\u003cbr\u003e\u003cbr\u003eThe contents, scope, treatment of the data (comparison of data from different sources and their qualification), and novelty of the data qualifies the book to be found on the desk of anyone working with polymeric materials.\u003cbr\u003ePolymeric materials used in electronics require special sets of data for various applications. These materials are the most frequently compounded plastics, containing suitable additives to achieve the required set of properties. Those who are interested in these materials should also consider the recently published Handbook of Polymers in Electronics. \u003cbr\u003e\u003c\/p\u003e"}
Handbook of Recycling,...
$140.00
{"id":11242247044,"title":"Handbook of Recycling, 1st Edition","handle":"9780123964595","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Worrell and Reuter \u003cbr\u003eISBN 9780123964595 \u003cbr\u003e\u003cbr\u003eState-of-the-art for practitioners, analysts, and scientists\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Portrays recent and emerging technologies in metal recycling, by-product utilization, and management of post-consumer waste\u003cbr\u003e\u003cbr\u003e- Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes\u003cbr\u003e\u003cbr\u003e- Uses examples from current professional and industrial practice, with policy implications and economics, to present a real-world portrait useful to engineers and professionals as well as academics\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn concept, this book is an Encyclopedia-style authoritative description of the various aspects of material reuse and recycling (including technology, policy, economics) by leading authors from around the globe.\u003cbr\u003e\u003cbr\u003eThis book resolves the problem of there currently (nor published in the past decade) being no single book that provides an authoritative review of the state-of-the-art in recycling. This book should resolve that, by providing a state-of-the-art review of all aspects of recycling.\u003cbr\u003e\u003cbr\u003eThe author's intention in writing this book was to provide the market with a basic textbook on recycling that could be used by students, scholars, and decision makers, as well as stakeholders in the recycling industry, for the next few years.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors\u003cbr\u003ePart I: Recycling in Context\u003cbr\u003eChapter 1. Recycling: A Key Factor for Resource Efficiency\u003cbr\u003eAbstract\u003cbr\u003eReferences\u003cbr\u003eChapter 2. Definitions and Terminology\u003cbr\u003eAbstract\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Defining Recycling\u003cbr\u003e2.3 Materials and Products\u003cbr\u003e2.4 Applying the Product-Centric Approach—Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 3. Recycling in Context\u003cbr\u003eAbstract\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Metal Recycling Considerations and Technologies\u003cbr\u003e3.3 Defining Recycling Statistics\u003cbr\u003e3.4 Process Efficiencies and Recycling Rate Constraints\u003cbr\u003e3.5 Perspectives on Current Recycling Statistics\u003cbr\u003e3.6 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 4. Recycling Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Indium\u003cbr\u003e4.3 Other Examples of Rare Metals\u003cbr\u003e4.4 The Distant Future: Georgescu's Last Laugh?\u003cbr\u003eReferences\u003cbr\u003eChapter 5. Theory and Tools of Physical Separation\/Recycling\u003cbr\u003eAbstract\u003cbr\u003e5.1 Recycling Process\u003cbr\u003e5.2 Particle Size\u003cbr\u003e5.3 Pulp Rheology\u003cbr\u003e5.4 Properties and Property Spaces\u003cbr\u003e5.5 Sampling\u003cbr\u003e5.6 Mass Balances and Process Dynamics\u003cbr\u003e5.7 Material Balancing\u003cbr\u003e5.8 Liberation\u003cbr\u003e5.9 Grade-Recovery Curves\u003cbr\u003eReferences\u003cbr\u003ePart II: Recycling - Application \u0026amp; Technology\u003cbr\u003eChapter 6. Recycling of Steel\u003cbr\u003eAbstract\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Scrap Processing and Material Streams from Scrap Processing\u003cbr\u003e6.3 The Processes Used for Smelting Steel Scrap\u003cbr\u003e6.4 Trends in Quality of the Scrap Available for Steel Production\u003cbr\u003e6.5 Hindrances for Recycling—Tramp Elements\u003cbr\u003e6.6 Purification of Scrap\u003cbr\u003e6.7 To Live with Impurities\u003cbr\u003e6.8 Measures to Secure Sustainable Recycling of Steel\u003cbr\u003eReferences\u003cbr\u003eChapter 7. Copper Recycling\u003cbr\u003eAbstract\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Raw Material for Copper Recycling\u003cbr\u003e7.3 Processes for Recycling\u003cbr\u003e7.4 Challenges in Copper Recycling\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 8. Lead Recycling\u003cbr\u003eAbstract\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 The Lead-Acid Battery\u003cbr\u003e8.3 Battery Preprocessing\u003cbr\u003e8.4 Smelting\u003cbr\u003e8.5 Alternative Approaches\u003cbr\u003e8.6 Refining\u003cbr\u003e8.7 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eChapter 9. Zinc and Residue Recycling\u003cbr\u003eAbstract\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Zinc Oxide Production from Drosses\u003cbr\u003e9.3 Electric Arc Furnace Dust and Other Pb, Zn, Cu-containing Residues\u003cbr\u003e9.4 Zinc Recycling from Copper Industry Dusts\u003cbr\u003e9.5 Fuming of Slags from Lead Metallurgy\u003cbr\u003eReferences\u003cbr\u003eChapter 10. Recycling of Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e10.1 Precious Metals\u003cbr\u003e10.2 Rare Earth Metals\u003cbr\u003e10.3 Electronic Metals\u003cbr\u003e10.4 Refractory Metals (Ferro-alloys Metals, Specialty Metals)\u003cbr\u003e10.5 Other Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 11. Recycling of Lumber\u003cbr\u003eAbstract\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Background\u003cbr\u003e11.3 Key Issues in Post-use Management of Wood\u003cbr\u003e11.4 Case Study Scenarios\u003cbr\u003e11.5 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 12. Paper Recycling\u003cbr\u003eAbstract\u003cbr\u003e12.1 Important Facts about Paper Recycling\u003cbr\u003e12.2 Stock Preparation for Paper Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 13. Plastic Recycling\u003cbr\u003eAbstract\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Use of Plastics\u003cbr\u003e13.3 Plastic Recycling\u003cbr\u003e13.4 Mechanical Recycling\u003cbr\u003e13.5 Impact of Recycling\u003cbr\u003e13.6 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 14. Glass Recycling\u003cbr\u003eAbstract\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Types of Glass\u003cbr\u003e14.3 Glass Manufacture\u003cbr\u003e14.4 Glass Recovery for Reuse and Recycling\u003cbr\u003e14.5 Reuse of Glass\u003cbr\u003e14.6 Closed-Loop Recycling of Glass\u003cbr\u003e14.7 Environmental Benefits of Closed-Loop Recycling of Glass\u003cbr\u003e14.8 The Growth of Glass Recycling\u003cbr\u003e14.9 Open-Loop Glass Recycling\u003cbr\u003e14.10 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 15. Textile Recycling\u003cbr\u003eAbstract\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 The Recycling Effort\u003cbr\u003e15.3 Export of Secondhand Clothing\u003cbr\u003e15.4 Conversion to New Products\u003cbr\u003e15.5 Conversion of Mattresses\u003cbr\u003e15.6 Conversion of Carpet\u003cbr\u003e15.7 Wipers\u003cbr\u003e15.8 Landfill and Incineration\u003cbr\u003e15.9 Diamonds\u003cbr\u003e15.10 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 16. Cementitious Binders Incorporating Residues\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e16.1 Introduction\u003cbr\u003e16.2 Clinker Production: Process Flow, Alternative Fuels and Alternative Raw Materials\u003cbr\u003e16.3 From Clinker to Cement: Residues in Blended Cements\u003cbr\u003e16.4 Alternative Cements for the Future: Reducing the CO2 Footprint while Incorporating Residues\u003cbr\u003e16.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 17. Industrial By-products\u003cbr\u003eAbstract\u003cbr\u003e17.1 What is a By-product?\u003cbr\u003e17.2 Major By-products and Their Generic Properties\u003cbr\u003e17.3 Where and How to Use By-products\u003cbr\u003e17.4 Technical and Environmental Requirements\u003cbr\u003e17.5 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eChapter 18. Recovery of Metals from Different Secondary Resources (Waste)\u003cbr\u003eAbstract\u003cbr\u003e18.1 Introduction\u003cbr\u003e18.2 Production of Ferroalloys from Waste\u003cbr\u003e18.3 Recycling Concepts for Rare Earth Containing Magnets\u003cbr\u003eReferences\u003cbr\u003eChapter 19. Recycling of Carbon Fibers\u003cbr\u003eAbstract\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Carbon Fiber Recycling Processes\u003cbr\u003e19.3 Composites Remanufacturing\u003cbr\u003e19.4 Applications for Recycled Carbon Fibers and Composites\u003cbr\u003e19.5 Life-Cycle Analysis of Carbon Fiber Reinforced Polymers\u003cbr\u003e19.6 Further Challenges\u003cbr\u003e19.7 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 20. Recycling of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e20.1 Introduction\u003cbr\u003e20.2 The Existing Low-Cost Housing Technologies\u003cbr\u003e20.3 Earth\/Mud Building\u003cbr\u003e20.4 Prefabrication Method\u003cbr\u003e20.5 Lightweight Foamed or Cellular Concrete Technology\u003cbr\u003e20.6 Stabilized Earth Brick Technology\u003cbr\u003e20.7 Case Study\u003cbr\u003e20.8 Cost-Effectiveness of Using Low-Cost Housing Technologies\u003cbr\u003e20.9 Recycling Technologies and Practice\u003cbr\u003e20.10 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 21. Recycling of Packaging\u003cbr\u003eAbstract\u003cbr\u003e21.1 Introduction\u003cbr\u003e21.2 Packaging Waste\u003cbr\u003e21.3 Composition\u003cbr\u003e21.4 Recovery and Recycling\u003cbr\u003e21.5 Recovery and Collection Schemes\u003cbr\u003e21.6 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 22. Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules\u003cbr\u003eAbstract\u003cbr\u003e22.1 Introduction\u003cbr\u003e22.2 Material-Centric Recycling: Aluminum and Copper\u003cbr\u003e22.3 Product-Centric Recycling: Complex Sustainability Enabling and Consumer Products\u003cbr\u003e22.4 Recycling Complex Multimaterial Consumer Goods: A Product-Centric Approach\u003cbr\u003e22.5 Automotive Recycling\/Recycling of ELVs Including Automotive Battery Recycling\u003cbr\u003e22.6 Recycling of Waste Electrical and Electronic Equipment\u003cbr\u003e22.7 Recycling of Lighting\u003cbr\u003e22.8 Technology for Recycling of Batteries and Catalysts\u003cbr\u003e22.9 Design for Recycling and Resource Efficiency\u003cbr\u003eReferences\u003cbr\u003eChapter 23. Separation of Large Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e23.1 Introduction\u003cbr\u003e23.2 The Circular Process for Large Municipal Solid Waste\u003cbr\u003e23.3 The Preconditions for Sorting Large Municipal Solid Waste\u003cbr\u003e23.4 Collection System of Large Municipal Solid Waste\u003cbr\u003e23.5 Sorting of Large Municipal Solid Waste\u003cbr\u003e23.6 Sorting Installation\u003cbr\u003e23.7 Sorting Process\u003cbr\u003e23.8 Recycling Efficiency\u003cbr\u003e23.9 The Future\u003cbr\u003eReference\u003cbr\u003eChapter 24. Recovery of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e24.1 Introduction\u003cbr\u003e24.2 Existing Recycled Aggregate Concrete Applications\u003cbr\u003e24.3 Existing Concrete Recycling Methods\u003cbr\u003e24.4 Cost and Benefit Analysis\u003cbr\u003e24.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 25. Waste Electrical and Electronic Equipment Management\u003cbr\u003eAbstract\u003cbr\u003e25.1 Introduction\u003cbr\u003e25.2 Objectives of WEEE Management\u003cbr\u003e25.3 WEEE Take-Back Schemes\u003cbr\u003e25.4 Long-term Trends\u003cbr\u003eReferences\u003cbr\u003eChapter 26. Developments in Collection of Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e26.1 Introduction\u003cbr\u003e26.2 Definition of Municipal Solid Waste\u003cbr\u003e26.3 Quantities of Municipal Solid Waste\u003cbr\u003e26.4 Quality of Municipal Solid Waste\u003cbr\u003e26.5 Management of Municipal Solid Waste\u003cbr\u003eReferences\u003cbr\u003ePart III: Strategy and Policy\u003cbr\u003eChapter 27. From Recycling to Eco-design\u003cbr\u003eAbstract\u003cbr\u003e27.1 Introduction\u003cbr\u003e27.2 Principle of Material Design for Recycling\u003cbr\u003e27.3 Eco-design Strategies for Recycling\u003cbr\u003e27.4 Is Recycling Really Less Impactful on the Environment?\u003cbr\u003e27.5 Current Limits for Eco-design for Recycling Strategies\u003cbr\u003e27.6 Market Demand\u003cbr\u003e27.7 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 28. Recycling and Labeling\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e28.1 Introduction\u003cbr\u003e28.2 Functional Needs Analysis\u003cbr\u003e28.3 Bibliographical Research on the Polymer Labeling Processes\u003cbr\u003e28.4 First Results of Detection Tests with Polypropylene Samples\u003cbr\u003e28.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 29. Informal Waste Recycling in Developing Countries\u003cbr\u003eAbstract\u003cbr\u003e29.1 Introduction\u003cbr\u003e29.2 Defining the Informal Sector\u003cbr\u003e29.3 Informal Solid Waste Management\u003cbr\u003e29.4 Informal e-Waste Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 30. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e30.1 Is a Circular Economy Possible or Desirable?\u003cbr\u003e30.2 Hierarchies of Material Conservation\u003cbr\u003e30.3 When is Recycling Not the Answer?\u003cbr\u003e30.4 Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 31. The Economics of Recycling\u003cbr\u003eAbstract\u003cbr\u003e31.1 Introduction\u003cbr\u003e31.2 Economic Trends and Drivers\u003cbr\u003e31.3 Environmental and Social Costs and Benefits\u003cbr\u003e31.4 Economic Instruments\u003cbr\u003e31.5 Conclusions and Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 32. Geopolitics of Resources and Recycling\u003cbr\u003eAbstract\u003cbr\u003e32.1 Introduction\u003cbr\u003e32.2 Resources, Scarcity and Geopolitics\u003cbr\u003e32.3 Recycling in the Geopolitical Context\u003cbr\u003eReferences\u003cbr\u003eChapter 33. Recycling in Waste Management Policy\u003cbr\u003eAbstract\u003cbr\u003e33.1 Introduction\u003cbr\u003e33.2 A Brief History of Waste Management\u003cbr\u003e33.3 Integrating Recycling in Waste Management Policy Design\u003cbr\u003eReferences\u003cbr\u003eChapter 34. Voluntary and Negotiated Agreements\u003cbr\u003eAbstract\u003cbr\u003e34.1 Introduction\u003cbr\u003e34.2 Experiences in Recycling Policy\u003cbr\u003e34.3 Lessons Learned\u003cbr\u003eReferences\u003cbr\u003eChapter 35. Economic Instruments\u003cbr\u003eAbstract\u003cbr\u003e35.1 Introduction\u003cbr\u003e35.2 Criteria to Compare Policy Instruments\u003cbr\u003e35.3 Basic Environmental Policy Instruments Aimed at Stimulating Recycling\u003cbr\u003e35.4 Incentives for Upstream Green Product Design\u003cbr\u003e35.5 Multiproduct and Mixed Waste Streams\u003cbr\u003e35.6 EPR and Recycling Certificates\u003cbr\u003e35.7 Durable Goods\u003cbr\u003e35.8 Imperfect Competition in Product and Recycling Markets\u003cbr\u003e35.9 Policy Instruments in an International Market for Waste and Materials\u003cbr\u003e35.10 Recycling and Nonrenewable Resources in a Macro Economic Perspective\u003cbr\u003e35.11 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 36. Information Instruments\u003cbr\u003eAbstract\u003cbr\u003e36.1 Introduction\u003cbr\u003e36.2 Target Groups\/Audience\u003cbr\u003e36.3 Communication Tools\u003cbr\u003e36.4 Messaging: Information and Communication\u003cbr\u003e36.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 37. Regulatory Instruments: Sustainable Materials Management, Recycling, and the Law\u003cbr\u003eAbstract\u003cbr\u003e37.1 Introduction\u003cbr\u003e37.2 Resource Efficiency and Waste Strategy—The Blurb\u003cbr\u003e37.3 The EU Framework Directive on Waste, and Its View on Recovery and Recycling\u003cbr\u003eAppendix 1. Physical Separation 101\u003cbr\u003eA1.1 Breakage\u003cbr\u003eA1.2 Size Classification\u003cbr\u003eA1.3 Screens\u003cbr\u003eA1.4 Dynamic Separators\u003cbr\u003eA1.5 Gravity Separations\u003cbr\u003eA1.6 Water Media Separations\u003cbr\u003eA1.7 Dense Media Separations\u003cbr\u003eA1.8 Flotation\u003cbr\u003eA1.9 Magnetic Separations\u003cbr\u003eA1.10 Eddy Current Separation\u003cbr\u003eA1.11 Electrostatic Separations\u003cbr\u003eA1.12 Sorting\u003cbr\u003eReference\u003cbr\u003eAppendix 2. Thermodynamics 101\u003cbr\u003eA2.1 On the Consumption and Availability of Metals\u003cbr\u003eA2.2 Recycling and Extractive Metallurgy: An Energy Issue\u003cbr\u003eA2.3 The Second Law of Thermodynamics Devil: An Entropy Issue\u003cbr\u003eA2.4 Chemical Thermodynamics and Reaction Equilibrium\u003cbr\u003eA2.5 On the Stability of Oxides and Other Metal-Containing Minerals\u003cbr\u003eA2.6 The Carbon Tragedy\u003cbr\u003eA2.7 H2 is an Alternative Reductor\u003cbr\u003eA2.8 Very Stable Oxides\u003cbr\u003eA2.9 About Solutions and Desired Purity Levels\u003cbr\u003eA2.10 Some Conclusions\u003cbr\u003eReference\u003cbr\u003eAppendix 3. Life-Cycle Assessment\u003cbr\u003eA3.1 Life-Cycle Assessment\u003cbr\u003eA3.2 Life-Cycle Assessment in the Mining and Metallurgy\u003cbr\u003eA3.3 LCA and Multimetal Output\u003cbr\u003eA3.4 End-of-Life Treatment in the LCA Context\u003cbr\u003eA3.5 Case Studies on LCA Results for Multimetal Outputs\u003cbr\u003eA3.6 Summary and Outlook\u003cbr\u003eReference\u003cbr\u003eIndex","published_at":"2017-06-22T21:15:05-04:00","created_at":"2017-06-22T21:15:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","automotive recycling","batteries","book","composite recycling","metal recycling","plastics recycling","recycling","textiles"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378460548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Recycling, 1st Edition","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780123964595","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882","options":["Title"],"media":[{"alt":null,"id":356338073693,"position":1,"preview_image":{"aspect_ratio":0.671,"height":499,"width":335,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882"},"aspect_ratio":0.671,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882","width":335}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Worrell and Reuter \u003cbr\u003eISBN 9780123964595 \u003cbr\u003e\u003cbr\u003eState-of-the-art for practitioners, analysts, and scientists\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Portrays recent and emerging technologies in metal recycling, by-product utilization, and management of post-consumer waste\u003cbr\u003e\u003cbr\u003e- Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes\u003cbr\u003e\u003cbr\u003e- Uses examples from current professional and industrial practice, with policy implications and economics, to present a real-world portrait useful to engineers and professionals as well as academics\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn concept, this book is an Encyclopedia-style authoritative description of the various aspects of material reuse and recycling (including technology, policy, economics) by leading authors from around the globe.\u003cbr\u003e\u003cbr\u003eThis book resolves the problem of there currently (nor published in the past decade) being no single book that provides an authoritative review of the state-of-the-art in recycling. This book should resolve that, by providing a state-of-the-art review of all aspects of recycling.\u003cbr\u003e\u003cbr\u003eThe author's intention in writing this book was to provide the market with a basic textbook on recycling that could be used by students, scholars, and decision makers, as well as stakeholders in the recycling industry, for the next few years.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors\u003cbr\u003ePart I: Recycling in Context\u003cbr\u003eChapter 1. Recycling: A Key Factor for Resource Efficiency\u003cbr\u003eAbstract\u003cbr\u003eReferences\u003cbr\u003eChapter 2. Definitions and Terminology\u003cbr\u003eAbstract\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Defining Recycling\u003cbr\u003e2.3 Materials and Products\u003cbr\u003e2.4 Applying the Product-Centric Approach—Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 3. Recycling in Context\u003cbr\u003eAbstract\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Metal Recycling Considerations and Technologies\u003cbr\u003e3.3 Defining Recycling Statistics\u003cbr\u003e3.4 Process Efficiencies and Recycling Rate Constraints\u003cbr\u003e3.5 Perspectives on Current Recycling Statistics\u003cbr\u003e3.6 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 4. Recycling Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Indium\u003cbr\u003e4.3 Other Examples of Rare Metals\u003cbr\u003e4.4 The Distant Future: Georgescu's Last Laugh?\u003cbr\u003eReferences\u003cbr\u003eChapter 5. Theory and Tools of Physical Separation\/Recycling\u003cbr\u003eAbstract\u003cbr\u003e5.1 Recycling Process\u003cbr\u003e5.2 Particle Size\u003cbr\u003e5.3 Pulp Rheology\u003cbr\u003e5.4 Properties and Property Spaces\u003cbr\u003e5.5 Sampling\u003cbr\u003e5.6 Mass Balances and Process Dynamics\u003cbr\u003e5.7 Material Balancing\u003cbr\u003e5.8 Liberation\u003cbr\u003e5.9 Grade-Recovery Curves\u003cbr\u003eReferences\u003cbr\u003ePart II: Recycling - Application \u0026amp; Technology\u003cbr\u003eChapter 6. Recycling of Steel\u003cbr\u003eAbstract\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Scrap Processing and Material Streams from Scrap Processing\u003cbr\u003e6.3 The Processes Used for Smelting Steel Scrap\u003cbr\u003e6.4 Trends in Quality of the Scrap Available for Steel Production\u003cbr\u003e6.5 Hindrances for Recycling—Tramp Elements\u003cbr\u003e6.6 Purification of Scrap\u003cbr\u003e6.7 To Live with Impurities\u003cbr\u003e6.8 Measures to Secure Sustainable Recycling of Steel\u003cbr\u003eReferences\u003cbr\u003eChapter 7. Copper Recycling\u003cbr\u003eAbstract\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Raw Material for Copper Recycling\u003cbr\u003e7.3 Processes for Recycling\u003cbr\u003e7.4 Challenges in Copper Recycling\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 8. Lead Recycling\u003cbr\u003eAbstract\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 The Lead-Acid Battery\u003cbr\u003e8.3 Battery Preprocessing\u003cbr\u003e8.4 Smelting\u003cbr\u003e8.5 Alternative Approaches\u003cbr\u003e8.6 Refining\u003cbr\u003e8.7 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eChapter 9. Zinc and Residue Recycling\u003cbr\u003eAbstract\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Zinc Oxide Production from Drosses\u003cbr\u003e9.3 Electric Arc Furnace Dust and Other Pb, Zn, Cu-containing Residues\u003cbr\u003e9.4 Zinc Recycling from Copper Industry Dusts\u003cbr\u003e9.5 Fuming of Slags from Lead Metallurgy\u003cbr\u003eReferences\u003cbr\u003eChapter 10. Recycling of Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e10.1 Precious Metals\u003cbr\u003e10.2 Rare Earth Metals\u003cbr\u003e10.3 Electronic Metals\u003cbr\u003e10.4 Refractory Metals (Ferro-alloys Metals, Specialty Metals)\u003cbr\u003e10.5 Other Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 11. Recycling of Lumber\u003cbr\u003eAbstract\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Background\u003cbr\u003e11.3 Key Issues in Post-use Management of Wood\u003cbr\u003e11.4 Case Study Scenarios\u003cbr\u003e11.5 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 12. Paper Recycling\u003cbr\u003eAbstract\u003cbr\u003e12.1 Important Facts about Paper Recycling\u003cbr\u003e12.2 Stock Preparation for Paper Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 13. Plastic Recycling\u003cbr\u003eAbstract\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Use of Plastics\u003cbr\u003e13.3 Plastic Recycling\u003cbr\u003e13.4 Mechanical Recycling\u003cbr\u003e13.5 Impact of Recycling\u003cbr\u003e13.6 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 14. Glass Recycling\u003cbr\u003eAbstract\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Types of Glass\u003cbr\u003e14.3 Glass Manufacture\u003cbr\u003e14.4 Glass Recovery for Reuse and Recycling\u003cbr\u003e14.5 Reuse of Glass\u003cbr\u003e14.6 Closed-Loop Recycling of Glass\u003cbr\u003e14.7 Environmental Benefits of Closed-Loop Recycling of Glass\u003cbr\u003e14.8 The Growth of Glass Recycling\u003cbr\u003e14.9 Open-Loop Glass Recycling\u003cbr\u003e14.10 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 15. Textile Recycling\u003cbr\u003eAbstract\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 The Recycling Effort\u003cbr\u003e15.3 Export of Secondhand Clothing\u003cbr\u003e15.4 Conversion to New Products\u003cbr\u003e15.5 Conversion of Mattresses\u003cbr\u003e15.6 Conversion of Carpet\u003cbr\u003e15.7 Wipers\u003cbr\u003e15.8 Landfill and Incineration\u003cbr\u003e15.9 Diamonds\u003cbr\u003e15.10 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 16. Cementitious Binders Incorporating Residues\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e16.1 Introduction\u003cbr\u003e16.2 Clinker Production: Process Flow, Alternative Fuels and Alternative Raw Materials\u003cbr\u003e16.3 From Clinker to Cement: Residues in Blended Cements\u003cbr\u003e16.4 Alternative Cements for the Future: Reducing the CO2 Footprint while Incorporating Residues\u003cbr\u003e16.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 17. Industrial By-products\u003cbr\u003eAbstract\u003cbr\u003e17.1 What is a By-product?\u003cbr\u003e17.2 Major By-products and Their Generic Properties\u003cbr\u003e17.3 Where and How to Use By-products\u003cbr\u003e17.4 Technical and Environmental Requirements\u003cbr\u003e17.5 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eChapter 18. Recovery of Metals from Different Secondary Resources (Waste)\u003cbr\u003eAbstract\u003cbr\u003e18.1 Introduction\u003cbr\u003e18.2 Production of Ferroalloys from Waste\u003cbr\u003e18.3 Recycling Concepts for Rare Earth Containing Magnets\u003cbr\u003eReferences\u003cbr\u003eChapter 19. Recycling of Carbon Fibers\u003cbr\u003eAbstract\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Carbon Fiber Recycling Processes\u003cbr\u003e19.3 Composites Remanufacturing\u003cbr\u003e19.4 Applications for Recycled Carbon Fibers and Composites\u003cbr\u003e19.5 Life-Cycle Analysis of Carbon Fiber Reinforced Polymers\u003cbr\u003e19.6 Further Challenges\u003cbr\u003e19.7 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 20. Recycling of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e20.1 Introduction\u003cbr\u003e20.2 The Existing Low-Cost Housing Technologies\u003cbr\u003e20.3 Earth\/Mud Building\u003cbr\u003e20.4 Prefabrication Method\u003cbr\u003e20.5 Lightweight Foamed or Cellular Concrete Technology\u003cbr\u003e20.6 Stabilized Earth Brick Technology\u003cbr\u003e20.7 Case Study\u003cbr\u003e20.8 Cost-Effectiveness of Using Low-Cost Housing Technologies\u003cbr\u003e20.9 Recycling Technologies and Practice\u003cbr\u003e20.10 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 21. Recycling of Packaging\u003cbr\u003eAbstract\u003cbr\u003e21.1 Introduction\u003cbr\u003e21.2 Packaging Waste\u003cbr\u003e21.3 Composition\u003cbr\u003e21.4 Recovery and Recycling\u003cbr\u003e21.5 Recovery and Collection Schemes\u003cbr\u003e21.6 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 22. Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules\u003cbr\u003eAbstract\u003cbr\u003e22.1 Introduction\u003cbr\u003e22.2 Material-Centric Recycling: Aluminum and Copper\u003cbr\u003e22.3 Product-Centric Recycling: Complex Sustainability Enabling and Consumer Products\u003cbr\u003e22.4 Recycling Complex Multimaterial Consumer Goods: A Product-Centric Approach\u003cbr\u003e22.5 Automotive Recycling\/Recycling of ELVs Including Automotive Battery Recycling\u003cbr\u003e22.6 Recycling of Waste Electrical and Electronic Equipment\u003cbr\u003e22.7 Recycling of Lighting\u003cbr\u003e22.8 Technology for Recycling of Batteries and Catalysts\u003cbr\u003e22.9 Design for Recycling and Resource Efficiency\u003cbr\u003eReferences\u003cbr\u003eChapter 23. Separation of Large Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e23.1 Introduction\u003cbr\u003e23.2 The Circular Process for Large Municipal Solid Waste\u003cbr\u003e23.3 The Preconditions for Sorting Large Municipal Solid Waste\u003cbr\u003e23.4 Collection System of Large Municipal Solid Waste\u003cbr\u003e23.5 Sorting of Large Municipal Solid Waste\u003cbr\u003e23.6 Sorting Installation\u003cbr\u003e23.7 Sorting Process\u003cbr\u003e23.8 Recycling Efficiency\u003cbr\u003e23.9 The Future\u003cbr\u003eReference\u003cbr\u003eChapter 24. Recovery of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e24.1 Introduction\u003cbr\u003e24.2 Existing Recycled Aggregate Concrete Applications\u003cbr\u003e24.3 Existing Concrete Recycling Methods\u003cbr\u003e24.4 Cost and Benefit Analysis\u003cbr\u003e24.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 25. Waste Electrical and Electronic Equipment Management\u003cbr\u003eAbstract\u003cbr\u003e25.1 Introduction\u003cbr\u003e25.2 Objectives of WEEE Management\u003cbr\u003e25.3 WEEE Take-Back Schemes\u003cbr\u003e25.4 Long-term Trends\u003cbr\u003eReferences\u003cbr\u003eChapter 26. Developments in Collection of Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e26.1 Introduction\u003cbr\u003e26.2 Definition of Municipal Solid Waste\u003cbr\u003e26.3 Quantities of Municipal Solid Waste\u003cbr\u003e26.4 Quality of Municipal Solid Waste\u003cbr\u003e26.5 Management of Municipal Solid Waste\u003cbr\u003eReferences\u003cbr\u003ePart III: Strategy and Policy\u003cbr\u003eChapter 27. From Recycling to Eco-design\u003cbr\u003eAbstract\u003cbr\u003e27.1 Introduction\u003cbr\u003e27.2 Principle of Material Design for Recycling\u003cbr\u003e27.3 Eco-design Strategies for Recycling\u003cbr\u003e27.4 Is Recycling Really Less Impactful on the Environment?\u003cbr\u003e27.5 Current Limits for Eco-design for Recycling Strategies\u003cbr\u003e27.6 Market Demand\u003cbr\u003e27.7 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 28. Recycling and Labeling\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e28.1 Introduction\u003cbr\u003e28.2 Functional Needs Analysis\u003cbr\u003e28.3 Bibliographical Research on the Polymer Labeling Processes\u003cbr\u003e28.4 First Results of Detection Tests with Polypropylene Samples\u003cbr\u003e28.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 29. Informal Waste Recycling in Developing Countries\u003cbr\u003eAbstract\u003cbr\u003e29.1 Introduction\u003cbr\u003e29.2 Defining the Informal Sector\u003cbr\u003e29.3 Informal Solid Waste Management\u003cbr\u003e29.4 Informal e-Waste Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 30. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e30.1 Is a Circular Economy Possible or Desirable?\u003cbr\u003e30.2 Hierarchies of Material Conservation\u003cbr\u003e30.3 When is Recycling Not the Answer?\u003cbr\u003e30.4 Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 31. The Economics of Recycling\u003cbr\u003eAbstract\u003cbr\u003e31.1 Introduction\u003cbr\u003e31.2 Economic Trends and Drivers\u003cbr\u003e31.3 Environmental and Social Costs and Benefits\u003cbr\u003e31.4 Economic Instruments\u003cbr\u003e31.5 Conclusions and Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 32. Geopolitics of Resources and Recycling\u003cbr\u003eAbstract\u003cbr\u003e32.1 Introduction\u003cbr\u003e32.2 Resources, Scarcity and Geopolitics\u003cbr\u003e32.3 Recycling in the Geopolitical Context\u003cbr\u003eReferences\u003cbr\u003eChapter 33. Recycling in Waste Management Policy\u003cbr\u003eAbstract\u003cbr\u003e33.1 Introduction\u003cbr\u003e33.2 A Brief History of Waste Management\u003cbr\u003e33.3 Integrating Recycling in Waste Management Policy Design\u003cbr\u003eReferences\u003cbr\u003eChapter 34. Voluntary and Negotiated Agreements\u003cbr\u003eAbstract\u003cbr\u003e34.1 Introduction\u003cbr\u003e34.2 Experiences in Recycling Policy\u003cbr\u003e34.3 Lessons Learned\u003cbr\u003eReferences\u003cbr\u003eChapter 35. Economic Instruments\u003cbr\u003eAbstract\u003cbr\u003e35.1 Introduction\u003cbr\u003e35.2 Criteria to Compare Policy Instruments\u003cbr\u003e35.3 Basic Environmental Policy Instruments Aimed at Stimulating Recycling\u003cbr\u003e35.4 Incentives for Upstream Green Product Design\u003cbr\u003e35.5 Multiproduct and Mixed Waste Streams\u003cbr\u003e35.6 EPR and Recycling Certificates\u003cbr\u003e35.7 Durable Goods\u003cbr\u003e35.8 Imperfect Competition in Product and Recycling Markets\u003cbr\u003e35.9 Policy Instruments in an International Market for Waste and Materials\u003cbr\u003e35.10 Recycling and Nonrenewable Resources in a Macro Economic Perspective\u003cbr\u003e35.11 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 36. Information Instruments\u003cbr\u003eAbstract\u003cbr\u003e36.1 Introduction\u003cbr\u003e36.2 Target Groups\/Audience\u003cbr\u003e36.3 Communication Tools\u003cbr\u003e36.4 Messaging: Information and Communication\u003cbr\u003e36.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 37. Regulatory Instruments: Sustainable Materials Management, Recycling, and the Law\u003cbr\u003eAbstract\u003cbr\u003e37.1 Introduction\u003cbr\u003e37.2 Resource Efficiency and Waste Strategy—The Blurb\u003cbr\u003e37.3 The EU Framework Directive on Waste, and Its View on Recovery and Recycling\u003cbr\u003eAppendix 1. Physical Separation 101\u003cbr\u003eA1.1 Breakage\u003cbr\u003eA1.2 Size Classification\u003cbr\u003eA1.3 Screens\u003cbr\u003eA1.4 Dynamic Separators\u003cbr\u003eA1.5 Gravity Separations\u003cbr\u003eA1.6 Water Media Separations\u003cbr\u003eA1.7 Dense Media Separations\u003cbr\u003eA1.8 Flotation\u003cbr\u003eA1.9 Magnetic Separations\u003cbr\u003eA1.10 Eddy Current Separation\u003cbr\u003eA1.11 Electrostatic Separations\u003cbr\u003eA1.12 Sorting\u003cbr\u003eReference\u003cbr\u003eAppendix 2. Thermodynamics 101\u003cbr\u003eA2.1 On the Consumption and Availability of Metals\u003cbr\u003eA2.2 Recycling and Extractive Metallurgy: An Energy Issue\u003cbr\u003eA2.3 The Second Law of Thermodynamics Devil: An Entropy Issue\u003cbr\u003eA2.4 Chemical Thermodynamics and Reaction Equilibrium\u003cbr\u003eA2.5 On the Stability of Oxides and Other Metal-Containing Minerals\u003cbr\u003eA2.6 The Carbon Tragedy\u003cbr\u003eA2.7 H2 is an Alternative Reductor\u003cbr\u003eA2.8 Very Stable Oxides\u003cbr\u003eA2.9 About Solutions and Desired Purity Levels\u003cbr\u003eA2.10 Some Conclusions\u003cbr\u003eReference\u003cbr\u003eAppendix 3. Life-Cycle Assessment\u003cbr\u003eA3.1 Life-Cycle Assessment\u003cbr\u003eA3.2 Life-Cycle Assessment in the Mining and Metallurgy\u003cbr\u003eA3.3 LCA and Multimetal Output\u003cbr\u003eA3.4 End-of-Life Treatment in the LCA Context\u003cbr\u003eA3.5 Case Studies on LCA Results for Multimetal Outputs\u003cbr\u003eA3.6 Summary and Outlook\u003cbr\u003eReference\u003cbr\u003eIndex"}
Handbook of Rheologica...
$285.00
{"id":7336415821981,"title":"Handbook of Rheological Additives","handle":"handbook-of-rheological-additives","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-97-0 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 240 + vi\u003cbr data-mce-fragment=\"1\"\u003eFigures: 38\u003cbr data-mce-fragment=\"1\"\u003eTables: 30\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eOnly a few books were ever published on rheological modifiers, with the last one published 20 years ago. This book contains all relevant research data on the subject available to date, and it is published together with the Databook of Rheological Additives, including data on commercial and generic additives used in the end-products available in the market.\u003cbr\u003eMore than 30 inorganic and organic groups of chemical compounds are in everyday use as rheological additives. These are characterized in tabular form in a special chapter designed for easy comparison of their main properties. \u003cbr\u003eThe following chapters of the Handbook discuss the essential theoretical knowledge required for proper selection and use of rheological additives. These include fundamental principles of rheology in relation to the application of rheological additives, the mechanisms of action of rheological additives, their effective methods of incorporation, and measuring techniques used in their assessment.\u003cbr\u003e\u003cbr\u003eApplication aspects and selection of additives are discussed in separate sub-chapters devoted to 45 different polymers and 36 different groups of products. Here extensive use is being made of patent literature and research papers available for various applications. Discussed are also polymer processing methods that require rheological agents. \u003cbr\u003e\u003cbr\u003eThe book was designed with the following industries in mind, including coatings \u0026amp; paints, adhesives \u0026amp; sealants, cosmetics (personal care), household products, pharmaceutical, mortars, agriculture, cementitious products, various polymer processing methods (e.g., knife coating, dip coating, injection molding extrusion, rotational molding, etc.), printing inks, greases, lubricants, drilling fluids, oil spills, foam stabilization of surfactant systems, explosives, paper coatings, wood finishes, leather coatings, textile sizing, rubber industry, food products.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n \u003c\/p\u003e\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\nIntroduction \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e2 Properties of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e2.1 Cellulose derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.2 Fat and oil derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.3 Inorganic \u003cbr data-mce-fragment=\"1\"\u003e2.4 Polymers \u003cbr data-mce-fragment=\"1\"\u003e2.5 Polysaccharides \u003cbr data-mce-fragment=\"1\"\u003e2.6 Protein \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e3 Some Rheology Principles \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e4 Mechanisms of Action of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e4.1 Gelling \u003cbr data-mce-fragment=\"1\"\u003e4.2 Egg-box model \u003cbr data-mce-fragment=\"1\"\u003e4.3 Domain model \u003cbr data-mce-fragment=\"1\"\u003e4.4 Fibril formation \u003cbr data-mce-fragment=\"1\"\u003e4.5 Adsorption mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.6 Network formation \u003cbr data-mce-fragment=\"1\"\u003e4.7 Thermogelation \u003cbr data-mce-fragment=\"1\"\u003e4.8 Hydration mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.9 Interaction \u003cbr data-mce-fragment=\"1\"\u003e4.10 Order-disorder and hydrocluster formation \u003cbr data-mce-fragment=\"1\"\u003e4.11 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e4.12 Effect of low temperature on the mechanism of action of rheological additives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e5 Effective Methods of Incorporation \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e6 Analytical Methods in Application to Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e6.1 Shear \u0026amp; oscillatory rheometry \u003cbr data-mce-fragment=\"1\"\u003e6.2 Extensional rheology \u003cbr data-mce-fragment=\"1\"\u003e6.3 Zeta potential \u003cbr data-mce-fragment=\"1\"\u003e6.4 Particle size analysis \u003cbr data-mce-fragment=\"1\"\u003e6.5 General methods \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e7 Rheological Additives in Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e7.1 Alkyd resins \u003cbr data-mce-fragment=\"1\"\u003e7.2 Cellulose acetate \u003cbr data-mce-fragment=\"1\"\u003e7.3 Chlorobutyl rubber \u003cbr data-mce-fragment=\"1\"\u003e7.4 Cyclic olefin copolymer \u003cbr data-mce-fragment=\"1\"\u003e7.5 Cyanoacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.6 Poly(ethylene-co-methyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e7.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e7.8 Ethylene-propylene-diene monomer \u003cbr data-mce-fragment=\"1\"\u003e7.9 Liquid crystalline polymers \u003cbr data-mce-fragment=\"1\"\u003e7.10 Polyamide \u003cbr data-mce-fragment=\"1\"\u003e7.11 Poly(acrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.12 Polyacrylamide \u003cbr data-mce-fragment=\"1\"\u003e7.13 Polyacrylonitrile \u003cbr data-mce-fragment=\"1\"\u003e7.14 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e7.15 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e7.16 Poly(butylene terephthalate) \u003cbr data-mce-fragment=\"1\"\u003e7.17 Polycarbonate \u003cbr data-mce-fragment=\"1\"\u003e7.18 Poly(-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e7.19 Polydicyclopentadiene \u003cbr data-mce-fragment=\"1\"\u003e7.20 Polylysine \u003cbr data-mce-fragment=\"1\"\u003e7.21 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e7.22 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e7.23 Poly(3,4-ethylenedioxythiophene) \u003cbr data-mce-fragment=\"1\"\u003e7.24 Polyetheretherketone \u003cbr data-mce-fragment=\"1\"\u003e7.25 Perfluoropolyether \u003cbr data-mce-fragment=\"1\"\u003e7.26 Polyhydroxybutyrate \u003cbr data-mce-fragment=\"1\"\u003e7.27 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.28 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.29 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e7.30 Polypropylene glycol \u003cbr data-mce-fragment=\"1\"\u003e7.31 Polyphenylsilsesquioxane \u003cbr data-mce-fragment=\"1\"\u003e7.32 Polyphenylenesulfone \u003cbr data-mce-fragment=\"1\"\u003e7.33 Poly(p-phenylene terephthalamide) \u003cbr data-mce-fragment=\"1\"\u003e7.34 Polypyrrole \u003cbr data-mce-fragment=\"1\"\u003e7.35 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e7.36 Polytetrafluoroethylene \u003cbr data-mce-fragment=\"1\"\u003e7.37 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e7.38 Polyvinylacetate \u003cbr data-mce-fragment=\"1\"\u003e7.39 Polyvinylalcohol \u003cbr data-mce-fragment=\"1\"\u003e7.40 Polyvinylchloride \u003cbr data-mce-fragment=\"1\"\u003e7.41 Poly(vinylidene fluoride) \u003cbr data-mce-fragment=\"1\"\u003e7.42 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e7.43 Poly(styrene-co-acrylonitrile) \u003cbr data-mce-fragment=\"1\"\u003e7.44 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e7.45 Unsaturated polyester \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e8 Use in Products \u003cbr data-mce-fragment=\"1\"\u003e8.1 Abrasives \u003cbr data-mce-fragment=\"1\"\u003e8.2 Adhesives \u0026amp; sealants \u003cbr data-mce-fragment=\"1\"\u003e8.3 Agricultural products \u003cbr data-mce-fragment=\"1\"\u003e8.4 Animal feed\u003cbr data-mce-fragment=\"1\"\u003e8.5 Automotive \u003cbr data-mce-fragment=\"1\"\u003e8.6 Binders \u003cbr data-mce-fragment=\"1\"\u003e8.7 Cables \u003cbr data-mce-fragment=\"1\"\u003e8.8 Casting \u003cbr data-mce-fragment=\"1\"\u003e8.9 Cementitious products \u003cbr data-mce-fragment=\"1\"\u003e8.10 Ceramics \u003cbr data-mce-fragment=\"1\"\u003e8.11 Coatings \u0026amp; paints \u003cbr data-mce-fragment=\"1\"\u003e8.12 Coil coating \u003cbr data-mce-fragment=\"1\"\u003e8.13 Composites \u003cbr data-mce-fragment=\"1\"\u003e8.14 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e8.15 Explosives \u003cbr data-mce-fragment=\"1\"\u003e8.16 Foams \u003cbr data-mce-fragment=\"1\"\u003e8.17 Food products \u003cbr data-mce-fragment=\"1\"\u003e8.18 Gels \u003cbr data-mce-fragment=\"1\"\u003e8.19 Grease \u003cbr data-mce-fragment=\"1\"\u003e8.20 Hand sanitizers \u003cbr data-mce-fragment=\"1\"\u003e8.21 Inks \u003cbr data-mce-fragment=\"1\"\u003e8.22 Leather coating \u003cbr data-mce-fragment=\"1\"\u003e8.23 Lubricants \u003cbr data-mce-fragment=\"1\"\u003e8.24 Medical \u003cbr data-mce-fragment=\"1\"\u003e8.25 Oil well drilling \u003cbr data-mce-fragment=\"1\"\u003e8.26 Papermaking \u003cbr data-mce-fragment=\"1\"\u003e8.27 Personal care products \u003cbr data-mce-fragment=\"1\"\u003e8.28 Pharmacological preparations \u003cbr data-mce-fragment=\"1\"\u003e8.29 Primers \u003cbr data-mce-fragment=\"1\"\u003e8.30 Roofing products \u003cbr data-mce-fragment=\"1\"\u003e8.31 Rubber industry \u003cbr data-mce-fragment=\"1\"\u003e8.32 Space \u003cbr data-mce-fragment=\"1\"\u003e8.33 Stucco \u003cbr data-mce-fragment=\"1\"\u003e8.34 Toners \u003cbr data-mce-fragment=\"1\"\u003e8.35 Water treatment \u003cbr data-mce-fragment=\"1\"\u003e8.36 Wood finishes and adhesives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e Index\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T21:05:56-04:00","created_at":"2022-03-31T21:01:43-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","additives","book","rheology"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165801222301,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Handbook of Rheological Additives","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1- 927885-97-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885970-Case.png?v=1648775267"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885970-Case.png?v=1648775267","options":["Title"],"media":[{"alt":null,"id":24734691197085,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885970-Case.png?v=1648775267"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885970-Case.png?v=1648775267","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1- 927885-97-0 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 240 + vi\u003cbr data-mce-fragment=\"1\"\u003eFigures: 38\u003cbr data-mce-fragment=\"1\"\u003eTables: 30\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eOnly a few books were ever published on rheological modifiers, with the last one published 20 years ago. This book contains all relevant research data on the subject available to date, and it is published together with the Databook of Rheological Additives, including data on commercial and generic additives used in the end-products available in the market.\u003cbr\u003eMore than 30 inorganic and organic groups of chemical compounds are in everyday use as rheological additives. These are characterized in tabular form in a special chapter designed for easy comparison of their main properties. \u003cbr\u003eThe following chapters of the Handbook discuss the essential theoretical knowledge required for proper selection and use of rheological additives. These include fundamental principles of rheology in relation to the application of rheological additives, the mechanisms of action of rheological additives, their effective methods of incorporation, and measuring techniques used in their assessment.\u003cbr\u003e\u003cbr\u003eApplication aspects and selection of additives are discussed in separate sub-chapters devoted to 45 different polymers and 36 different groups of products. Here extensive use is being made of patent literature and research papers available for various applications. Discussed are also polymer processing methods that require rheological agents. \u003cbr\u003e\u003cbr\u003eThe book was designed with the following industries in mind, including coatings \u0026amp; paints, adhesives \u0026amp; sealants, cosmetics (personal care), household products, pharmaceutical, mortars, agriculture, cementitious products, various polymer processing methods (e.g., knife coating, dip coating, injection molding extrusion, rotational molding, etc.), printing inks, greases, lubricants, drilling fluids, oil spills, foam stabilization of surfactant systems, explosives, paper coatings, wood finishes, leather coatings, textile sizing, rubber industry, food products.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n \u003c\/p\u003e\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\nIntroduction \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e2 Properties of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e2.1 Cellulose derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.2 Fat and oil derivatives \u003cbr data-mce-fragment=\"1\"\u003e2.3 Inorganic \u003cbr data-mce-fragment=\"1\"\u003e2.4 Polymers \u003cbr data-mce-fragment=\"1\"\u003e2.5 Polysaccharides \u003cbr data-mce-fragment=\"1\"\u003e2.6 Protein \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e3 Some Rheology Principles \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e4 Mechanisms of Action of Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e4.1 Gelling \u003cbr data-mce-fragment=\"1\"\u003e4.2 Egg-box model \u003cbr data-mce-fragment=\"1\"\u003e4.3 Domain model \u003cbr data-mce-fragment=\"1\"\u003e4.4 Fibril formation \u003cbr data-mce-fragment=\"1\"\u003e4.5 Adsorption mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.6 Network formation \u003cbr data-mce-fragment=\"1\"\u003e4.7 Thermogelation \u003cbr data-mce-fragment=\"1\"\u003e4.8 Hydration mechanism \u003cbr data-mce-fragment=\"1\"\u003e4.9 Interaction \u003cbr data-mce-fragment=\"1\"\u003e4.10 Order-disorder and hydrocluster formation \u003cbr data-mce-fragment=\"1\"\u003e4.11 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e4.12 Effect of low temperature on the mechanism of action of rheological additives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e5 Effective Methods of Incorporation \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e6 Analytical Methods in Application to Rheological Additives \u003cbr data-mce-fragment=\"1\"\u003e6.1 Shear \u0026amp; oscillatory rheometry \u003cbr data-mce-fragment=\"1\"\u003e6.2 Extensional rheology \u003cbr data-mce-fragment=\"1\"\u003e6.3 Zeta potential \u003cbr data-mce-fragment=\"1\"\u003e6.4 Particle size analysis \u003cbr data-mce-fragment=\"1\"\u003e6.5 General methods \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e7 Rheological Additives in Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e7.1 Alkyd resins \u003cbr data-mce-fragment=\"1\"\u003e7.2 Cellulose acetate \u003cbr data-mce-fragment=\"1\"\u003e7.3 Chlorobutyl rubber \u003cbr data-mce-fragment=\"1\"\u003e7.4 Cyclic olefin copolymer \u003cbr data-mce-fragment=\"1\"\u003e7.5 Cyanoacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.6 Poly(ethylene-co-methyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e7.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e7.8 Ethylene-propylene-diene monomer \u003cbr data-mce-fragment=\"1\"\u003e7.9 Liquid crystalline polymers \u003cbr data-mce-fragment=\"1\"\u003e7.10 Polyamide \u003cbr data-mce-fragment=\"1\"\u003e7.11 Poly(acrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.12 Polyacrylamide \u003cbr data-mce-fragment=\"1\"\u003e7.13 Polyacrylonitrile \u003cbr data-mce-fragment=\"1\"\u003e7.14 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e7.15 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e7.16 Poly(butylene terephthalate) \u003cbr data-mce-fragment=\"1\"\u003e7.17 Polycarbonate \u003cbr data-mce-fragment=\"1\"\u003e7.18 Poly(-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e7.19 Polydicyclopentadiene \u003cbr data-mce-fragment=\"1\"\u003e7.20 Polylysine \u003cbr data-mce-fragment=\"1\"\u003e7.21 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e7.22 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e7.23 Poly(3,4-ethylenedioxythiophene) \u003cbr data-mce-fragment=\"1\"\u003e7.24 Polyetheretherketone \u003cbr data-mce-fragment=\"1\"\u003e7.25 Perfluoropolyether \u003cbr data-mce-fragment=\"1\"\u003e7.26 Polyhydroxybutyrate \u003cbr data-mce-fragment=\"1\"\u003e7.27 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e7.28 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e7.29 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e7.30 Polypropylene glycol \u003cbr data-mce-fragment=\"1\"\u003e7.31 Polyphenylsilsesquioxane \u003cbr data-mce-fragment=\"1\"\u003e7.32 Polyphenylenesulfone \u003cbr data-mce-fragment=\"1\"\u003e7.33 Poly(p-phenylene terephthalamide) \u003cbr data-mce-fragment=\"1\"\u003e7.34 Polypyrrole \u003cbr data-mce-fragment=\"1\"\u003e7.35 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e7.36 Polytetrafluoroethylene \u003cbr data-mce-fragment=\"1\"\u003e7.37 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e7.38 Polyvinylacetate \u003cbr data-mce-fragment=\"1\"\u003e7.39 Polyvinylalcohol \u003cbr data-mce-fragment=\"1\"\u003e7.40 Polyvinylchloride \u003cbr data-mce-fragment=\"1\"\u003e7.41 Poly(vinylidene fluoride) \u003cbr data-mce-fragment=\"1\"\u003e7.42 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e7.43 Poly(styrene-co-acrylonitrile) \u003cbr data-mce-fragment=\"1\"\u003e7.44 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e7.45 Unsaturated polyester \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e8 Use in Products \u003cbr data-mce-fragment=\"1\"\u003e8.1 Abrasives \u003cbr data-mce-fragment=\"1\"\u003e8.2 Adhesives \u0026amp; sealants \u003cbr data-mce-fragment=\"1\"\u003e8.3 Agricultural products \u003cbr data-mce-fragment=\"1\"\u003e8.4 Animal feed\u003cbr data-mce-fragment=\"1\"\u003e8.5 Automotive \u003cbr data-mce-fragment=\"1\"\u003e8.6 Binders \u003cbr data-mce-fragment=\"1\"\u003e8.7 Cables \u003cbr data-mce-fragment=\"1\"\u003e8.8 Casting \u003cbr data-mce-fragment=\"1\"\u003e8.9 Cementitious products \u003cbr data-mce-fragment=\"1\"\u003e8.10 Ceramics \u003cbr data-mce-fragment=\"1\"\u003e8.11 Coatings \u0026amp; paints \u003cbr data-mce-fragment=\"1\"\u003e8.12 Coil coating \u003cbr data-mce-fragment=\"1\"\u003e8.13 Composites \u003cbr data-mce-fragment=\"1\"\u003e8.14 Cosmetics \u003cbr data-mce-fragment=\"1\"\u003e8.15 Explosives \u003cbr data-mce-fragment=\"1\"\u003e8.16 Foams \u003cbr data-mce-fragment=\"1\"\u003e8.17 Food products \u003cbr data-mce-fragment=\"1\"\u003e8.18 Gels \u003cbr data-mce-fragment=\"1\"\u003e8.19 Grease \u003cbr data-mce-fragment=\"1\"\u003e8.20 Hand sanitizers \u003cbr data-mce-fragment=\"1\"\u003e8.21 Inks \u003cbr data-mce-fragment=\"1\"\u003e8.22 Leather coating \u003cbr data-mce-fragment=\"1\"\u003e8.23 Lubricants \u003cbr data-mce-fragment=\"1\"\u003e8.24 Medical \u003cbr data-mce-fragment=\"1\"\u003e8.25 Oil well drilling \u003cbr data-mce-fragment=\"1\"\u003e8.26 Papermaking \u003cbr data-mce-fragment=\"1\"\u003e8.27 Personal care products \u003cbr data-mce-fragment=\"1\"\u003e8.28 Pharmacological preparations \u003cbr data-mce-fragment=\"1\"\u003e8.29 Primers \u003cbr data-mce-fragment=\"1\"\u003e8.30 Roofing products \u003cbr data-mce-fragment=\"1\"\u003e8.31 Rubber industry \u003cbr data-mce-fragment=\"1\"\u003e8.32 Space \u003cbr data-mce-fragment=\"1\"\u003e8.33 Stucco \u003cbr data-mce-fragment=\"1\"\u003e8.34 Toners \u003cbr data-mce-fragment=\"1\"\u003e8.35 Water treatment \u003cbr data-mce-fragment=\"1\"\u003e8.36 Wood finishes and adhesives \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e Index\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Handbook of Solvents
$285.00
{"id":11242248580,"title":"Handbook of Solvents","handle":"1-895198-24-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Dr. George Wypych \u003cbr\u003e10-ISBN 1-895198-24-0\u003c\/p\u003e\n\u003cp\u003e13-ISBN 978-1-895198-24-9\u003cbr\u003ePages 1675, Figures 568, Tables 380, References 5184\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAnnouncing the most comprehensive book on solvents \u003cbr\u003eThis book was written by a group of experts on various subjects of solvents' use, the fundamental principles governing their application, effect on health and environment, residual solvents in products, their concentration in industrial environments, current regulations, safer substitutes, non-emitting technologies of use, contamination cleanup, personal protection, and the most modern trends in future technology. The authors, who are the members of prestigious universities and industries from around the world, altogether have previously written 47 books and hundreds of papers on the subject and here they give a synthesis of their experiences and opinions on how best to change the global use of solvents in order to obtain benefits of technology and at the same time limit risk and health effects, and more. \u003cbr\u003e\u003cbr\u003eThe most up-to-date information \u003cbr\u003eAll 25 chapters of this book were written between summer of 1999 and spring of 2000 and contain over 5000 references to source literature, enabling the user to find specific information on any subject related to solvents. The text is illustrated by figures and tables which compare in number with multi-volume encyclopedias. \u003cbr\u003e\u003cbr\u003eNew concept of presentation and retrieval \u003cbr\u003eThe book contains a synthesis of a large sample of data and information to reveal fundamental principles which data helped to discover. The actual data on 1141 solvents are in the form of a searchable database on CD-ROM (see page 3 of this information). The database contains 110 categories of data (fields) and almost 40,000 single data entries, making it the largest extant database on solvents.\u003cbr\u003e\u003cbr\u003eA book for everybody who deals with chemical materials \u003cbr\u003eIn addition to the unquestionable value of the book for those who deal with solvents, the book is invaluable for a much larger audience because many theoretical principles governing complex materials, e.g., polymers, blends, drug delivery systems, etc. were developed on models of simple materials such as solvents. The book contains analysis of over 30 industries. The book also contains information on solvent effect on most parts of the human body, e.g, brain, nervous system, lungs, liver, kidneys, etc., workers, unborn babies, in-door inhabitants, etc. It gives ideas to improve hundreds of technological process and materials on the market. This book contains information useful for readers at any level of previous knowledge and experience because of its comprehensiveness and expertly written, easily understandable text. \u003cbr\u003e\u003cbr\u003eImpact changes \u003cbr\u003eThe authors of this book have rendered their expert and balanced opinions on how to make effective changes without losing benefits. This is an invaluable reference source which brings together in a single volume all fundamental aspects and the latest advances in solvent technology and products they are used for. This book should not be missed by these who deal with solvents and should be made available in reference sections of university, technical, and public libraries.\u003cbr\u003e\u003cbr\u003eThe book is divided into 25 chapters. The Introduction discusses the book's contents and the effective use of information. Chapters 2 to 13 contain information on various properties of solvents and solutions. Each chapter in this section of the book is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this part is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data to the database on CD-ROM which can handle a large amount of information with ease of retrieval. Chapter 14 discusses solvent use in 31 industries listed on the previous page. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. Chapter 15 contains information on all standard methods of solvent testing, with references to many national and international standards. In addition, several new specific methods involved in solvent testing are also discussed in-depth, such as breath monitoring, determination of toxicity, or application of gas chromatography to assess the influence of solvent and drying conditions on crystal texture of pharmaceutical products. Chapter 16 discusses residual solvents in pharmaceutical and other industrial products. Chapter 17 analyzes the environmental impact of solvents, such as their fate and movement in water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects. In chapter 18, concentration of solvents in more than 15 industries is discussed, based on results of studies conducted in the authors' extensive research practice, collectively spanning more than 2 decades. This results in a unique set of data, analysis of requirements, methods of testing and available remedies. Regulations legislating solvent use are discussed in detail in chapter 19, but other chapters have many specific references of importance for various industries. \u003cbr\u003e\u003cbr\u003eChapter 20 contains a set of analyses of solvent toxicology. This chapter was written by professors and scientists from major centers who study the effect of solvents on various aspects of human health, immediate reaction to solvent poisoning, and persistence of symptoms of solvent exposure. This is a very unique collection of observations which should be consulted by solvent users not only in industry but also those who inhale solvents emitted from products applied in in-door spaces. Chapter 21 deals with solvent substitution by safer materials. Here emphasis is placed on supercritical solvents, ionic liquids, ionic melts, and alternative dry-cleaning technologies. Solvent recycling, removal from contaminated air, and degradation are discussed by experts in these technologies with regard to research and industry manufacturing equipment for safe methods of processing with solvents in Chapter 22. Chapter 23 discusses details of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils. The book concludes with Chapter 24, which helps with the selection of gloves, suites and respirators for use with solvents, and Chapter 25, which discusses new trends in solvent use in various industries based on the most current patent literature. Overall, this book provides all the tools required to understand how to select solvents, use them with maximum benefits, and limit adverse effects on health and environment. In addition to specialists, who will be interested in this book, the benefit of this unique ensemble of information should be given to students who will determine the future of technology and the general public, who has right to know all aspects of health, safety and environmental impacts of various technologies today and who should understand as well the balance between the necessity of the proper application of solvents and possible options to limit their effect.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 INTRODUCTION \u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany \u003cbr\u003e2 FUNDAMENTAL \u003cbr\u003ePRINCIPLES GOVERNING SOLVENTS USE \u003cbr\u003e2.1 Solvent effects on chemical systems Estanislao Silla, Arturo Arnau and 2.1 Iñaki Tuñón, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain \u003cbr\u003e2.1.1 Historical outline \u003cbr\u003e2.1.2 Classification of solute-solvent interactions \u003cbr\u003e2.1.2.1 Electrostatic \u003cbr\u003e2.1.2.2 Polarization \u003cbr\u003e2.1.2.3 Dispersion \u003cbr\u003e2.1.2.4 Repulsion \u003cbr\u003e2.1.2.5 Specific interactions \u003cbr\u003e2.1.2.6 Hydrophobic interactions \u003cbr\u003e2.1.3 Modelling of solvent effects \u003cbr\u003e2.1.3.1 Computer simulations\u003cbr\u003e2.1.3.2 Continuum models \u003cbr\u003e2.1.3.3. Cavity surfaces \u003cbr\u003e2.1.3.4 Supermolecule models \u003cbr\u003e2.1.3.5 Application example: glycine in solution \u003cbr\u003e2.1.4 Thermodynamic and kinetic characteristics of chemical reactions in solution \u003cbr\u003e2.1.4.1 Solvent effects on chemical equilibria \u003cbr\u003e2.1.4.2 Solvent effects on the rate of chemical reactions \u003cbr\u003e2.1.4.3 Example of application: addition of azide anion to tetrafuranosides \u003cbr\u003e\u003cbr\u003e2.1.5 Solvent catalytic effects \u003cbr\u003e2.2 Molecular design of solvents Koichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan \u003cbr\u003e2.2.1 Molecular design and molecular ensemble design \u003cbr\u003e2.2.2 From prediction to design \u003cbr\u003e2.2.3 Improvement in prediction method \u003cbr\u003e2.2.4 Role of molecular simulation \u003cbr\u003e2.2.5 Model system and paradigm for design Appendix. Predictive equation for the diffusion coefficient in dilute solution \u003cbr\u003e2.3 Basic physical and chemical properties of solvents George Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e2.3.1 Molecular weight and molar volume \u003cbr\u003e2.3.2 Boiling and freezing points \u003cbr\u003e2.3.3 Specific gravity \u003cbr\u003e2.3.4 Refractive index \u003cbr\u003e2.3.5 Vapor density and pressure \u003cbr\u003e2.3.6 Solvent volatility \u003cbr\u003e2.3.7 Flash point \u003cbr\u003e2.3.8 Flammability limits \u003cbr\u003e2.3.9 Sources of ignition and autoignition temperature \u003cbr\u003e2.3.10 Heat of combustion (calorific value) \u003cbr\u003e2.3.11 Heat of fusion \u003cbr\u003e2.3.12 Electric conductivity \u003cbr\u003e2.3.13 Dielectric constant (relative permittivity) \u003cbr\u003e2.3.14 Occupational exposure indicators \u003cbr\u003e2.3.15 Odor threshold \u003cbr\u003e2.3.16 Toxicity indicators \u003cbr\u003e2.3.17 Ozone-depletion and creation potential \u003cbr\u003e2.3.18 Oxygen demand \u003cbr\u003e2.3.19 Solubility \u003cbr\u003e2.3.20 Other typical solvent properties and indicators\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS \u003cbr\u003e\u003cbr\u003e3.1 Definitions and solvent classification \u003cbr\u003e3.2 Overview of methods of solvent manufacture \u003cbr\u003e3.3 Solvent properties \u003cbr\u003e3.3.1 Hydrocarbons \u003cbr\u003e3.3.1.1 Aliphatic hydrocarbons \u003cbr\u003e3.3.1.2 Aromatic hydrocarbons \u003cbr\u003e3.3.2 Halogenated hydrocarbons \u003cbr\u003e3.3.3 Nitrogen-containing compounds (nitrates, nitriles) \u003cbr\u003e3.3.4 Organic sulfur compounds \u003cbr\u003e3.3.5 Monohydric alcohols \u003cbr\u003e3.3.6 Polyhydric alcohols \u003cbr\u003e3.3.7 Phenols \u003cbr\u003e3.3.8 Aldehydes \u003cbr\u003e3.3.9 Ethers \u003cbr\u003e3.3.10 Glycol ethers \u003cbr\u003e3.3.11 Ketones \u003cbr\u003e3.3.11 Acids \u003cbr\u003e3.3.12 Amines \u003cbr\u003e3.3.13 Esters \u003cbr\u003e3.3.14 Comparative analysis of all solvents \u003cbr\u003e3.4 Terpenes Tilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, University of Tuebingen, Tuebingen, Germany \u003cbr\u003e3.4.1 Definitions and nomenclature \u003cbr\u003e3.4.2 Occurrence \u003cbr\u003e3.4.3 General \u003cbr\u003e3.4.4 Toxicology \u003cbr\u003e3.4.5 Threshold limit values \u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS \u003cbr\u003e4.1 Simple solvent characteristics Valery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e4.1.1 Solvent power \u003cbr\u003e4.1.2 One-dimensional solubility parameter approach \u003cbr\u003e4.1.3 Multi-dimensional approaches \u003cbr\u003e4.1.4 Hansen's solubility \u003cbr\u003e4.1.5 Three-dimensional dualistic model \u003cbr\u003e4.1.6 Solubility criterion \u003cbr\u003e4.1.7 Solvent system design \u003cbr\u003e4.2 Effect of system variables on solubility Valery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e4.2.1 General considerations \u003cbr\u003e4.2.2 Chemical structure \u003cbr\u003e4.2.3 Flexibility of a polymer chain \u003cbr\u003e4.2.4 Crosslinking \u003cbr\u003e4.2.5 Temperature and pressure \u003cbr\u003e4.2.6 Methods of calculation of solubility based on thermodynamic principles \u003cbr\u003e\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations Abraham Nitzan, School of Chemistry,The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel \u003cbr\u003e4.3.1 Introduction \u003cbr\u003e4.3.2 Continuum dielectric theory of solvation dynamics \u003cbr\u003e4.3.3 Linear response theory of solvation dynamics \u003cbr\u003e4.3.4 Numerical simulations of solvation in simple polar solvents: The simulation model \u003cbr\u003e4.3.5 Numerical simulations of solvation in simple polar solvents: Results and discussion \u003cbr\u003e4.3.6 Solvation in complex solvents \u003cbr\u003e4.3.7 Conclusions \u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions Christian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany \u003cbr\u003e4.4.1 Introduction \u003cbr\u003e4.4.2 Necessary thermodynamic equations \u003cbr\u003e4.4.3 Experimental methods, equipment and data reduction \u003cbr\u003e4.4.3.1 Vapor-liquid equilibrium (VLE) measurements \u003cbr\u003e4.4.3.1.1 Experimental equipment and procedures for VLE-measurements \u003cbr\u003e4.4.3.1.2 Primary data reduction \u003cbr\u003e4.4.3.1.3 Comparison of experimental VLE-methods \u003cbr\u003e4.4.3.2 Other measurement methods \u003cbr\u003e4.4.3.2.1 Membrane osmometry \u003cbr\u003e4.4.3.2.2 Light scattering \u003cbr\u003e4.4.3.2.3 X-ray scattering \u003cbr\u003e4.4.3.2.4 Neutron scattering \u003cbr\u003e4.4.3.2.5 Ultracentrifuge \u003cbr\u003e4.4.3.2.6 Cryoscopy (freezing point depression of the solvent) \u003cbr\u003e4.4.3.2.7 Liquid-liquid equilibrium (LLE) \u003cbr\u003e4.4.3.2.8 Swelling equilibrium \u003cbr\u003e4.4.4 Thermodynamic models for the calculation of solvent activities of polymer solutions \u003cbr\u003e4.4.4.1 Models for residual chemical potential and activity coefficient in the liquid phase \u003cbr\u003e4.4.4.2 Fugacity coefficients from equations of state \u003cbr\u003e4.4.4.3 Comparison and conclusions \u003cbr\u003eAppendix 4.4A\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES \u003cbr\u003e\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data Valery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e5.1.1 Experimental evaluation of solubility parameters of liquids \u003cbr\u003e5.1.1.1 Direct methods of evaluation of the evaporation enthalpy \u003cbr\u003e5.1.1.2 Indirect methods of evaluation of evaporation enthalpy \u003cbr\u003e5.1.1.3 Static and quasi-static methods of evaluation of pair pressure \u003cbr\u003e5.1.1.4 Kinetic methods \u003cbr\u003e5.1.2 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e5.2 Prediction of solubility parameter Nobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan \u003cbr\u003e5.2.1 Solubility parameter of polymers \u003cbr\u003e5.2.2 Glass transition in polymers \u003cbr\u003e5.2.2.1 Glass transition enthalpy \u003cbr\u003e5.2.2.2 Cp jump at the glass transition \u003cbr\u003e5.2.3 Prediction from thermal transition enthalpies \u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers Valery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e5.4 Mixed solvents, a way to change the polymer solubility Ligia Gargallo and Deodato Radic, Facultad de Quimica Pontificia Universidad Católica de Chile, Santiago, Chile \u003cbr\u003e5.4.1 Introduction \u003cbr\u003e5.4.2 Solubility-cosolvency phenomenon \u003cbr\u003e5.4.3 New cosolvents effects. Solubility behavior \u003cbr\u003e5.4.4 Thermodynamical description of ternary systems. Association equilibria theory of preferential adsorption \u003cbr\u003e5.4.5 Polymer structure of the polymer dependence of preferential adsorption. polymer molecular weight and tacticity dependence of preferential adsorption \u003cbr\u003e5.5 The phenomenological theory of solvent effects in mixed solvent systems Kenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA \u003cbr\u003e5.5.1 Introduction \u003cbr\u003e5.5.2 Theory \u003cbr\u003e5.5.2.1 Principle \u003cbr\u003e5.5.2.2 The intersolute effect: solute-solute interactions \u003cbr\u003e5.5.2.3 The solvation effect: solute-solvent interaction \u003cbr\u003e5.5.2.4 The general medium effect: solvent-solvent interactions \u003cbr\u003e5.5.2.5 The total solvent effect \u003cbr\u003e5.5.3 Applications \u003cbr\u003e5.5.3.1 Solubility \u003cbr\u003e5.5.3.2 Surface tension \u003cbr\u003e5.5.3.3 Electronic absorption spectra \u003cbr\u003e5.5.3.4 Complex formation \u003cbr\u003e5.5.3.5 Chemical kinetics \u003cbr\u003e5.5.3.6 Liquid chromatography \u003cbr\u003e5.5.4 Interpretations \u003cbr\u003e5.5.4.1 Ambiguities and anomalies \u003cbr\u003e5.5.4.2 A modified derivation \u003cbr\u003e5.5.4.3 Interpretation of parameter estimates \u003cbr\u003e5.5.4.4 Confounding effects Solute-solute interactions Coupling of general medium and solvation effects The cavity surface area The role of interfacial tension \u003cbr\u003e5.5.5 Notes and References \u003cbr\u003e6 SWELLING \u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents E. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e6.1.1 Introduction \u003cbr\u003e6.1.2 Formulation of swelling for a plane elastomer layer \u003cbr\u003e6.1.3 Diffusion kinetics of plane layer swelling \u003cbr\u003e6.1.4 Experimental study of elastomer swelling kinetics \u003cbr\u003e6.2 Equilibrium swelling in binary solvents Vasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents Vasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e6.4 Influence of structure on equilibrium swelling Vasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA \u003cbr\u003e7.1 Introduction to diffusion, swelling, and drying George Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e7.1.1 Diffusion \u003cbr\u003e7.1.2 Swelling \u003cbr\u003e7.1.3 Drying References \u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions Semyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus \u003cbr\u003e7.2.1 Rheology of polymeric solutions and bubble dynamics \u003cbr\u003e7.2.1.1 Rheological characterization of solutions of polymers \u003cbr\u003e7.2.1.2 Dynamic interaction of bubbles with polymeric liquid \u003cbr\u003e7.2.2 Thermal growth of bubbles in superheated solutions of polymers \u003cbr\u003e7.2.3 Boiling of macromolecular liquids \u003cbr\u003e7.3 Drying of coated film Seung Su Kim, SKC Co., Ltd., Chon-an City, Korea; Jae Chun Hyun, Department of Chemical Engineering, Korea University, Seoul, Korea \u003cbr\u003e7.3.1 Introduction \u003cbr\u003e7.3.2 Theory for the drying \u003cbr\u003e7.3.2.1 Simultaneous heat and mass transfer \u003cbr\u003e7.3.2.2 Liquid-vapor equilibrium \u003cbr\u003e7.3.2.3 Heat and mass transfer coefficient \u003cbr\u003e7.3.2.4 Prediction of drying rate of coating \u003cbr\u003e7.3.2.5 Drying regimes: constant drying rate period (CDRP) and falling drying rate period (FDRP) \u003cbr\u003e7.3.3 Measurement of the drying rate of coated film \u003cbr\u003e7.3.3.1 Thermo-gravimetric analysis \u003cbr\u003e7.3.3.2 Rapid scanning FT-IR spectrometer analysis \u003cbr\u003e7.3.3.3 High-airflow drying experiment using flame ionization detector (FID) total hydrocarbon analyzer \u003cbr\u003e7.3.3.4 Measurement of drying rate in the production scale dryer \u003cbr\u003e7.3.4 Miscellaneous \u003cbr\u003e7.3.4.1 Drying of coated film with phase separation \u003cbr\u003e7.3.4.2 Drying defects \u003cbr\u003e7.3.4.2.1 Internal stress induced defects \u003cbr\u003e7.3.4.2.2 Surface tension driven defects \u003cbr\u003e7.3.4.2.3 Defects caused by air motion and others \u003cbr\u003e7.3.4.3 Control of lower explosive level (LEL) in a multiple zone dryer \u003cbr\u003e8 INTERACTIONS IN SOLVENTS AND SOLUTIONS \u003cbr\u003eJacopo Tomasi, Benedetta Mennucci, Chiara Cappelli, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Italy \u003cbr\u003e8.1 Solvents and solutions as assemblies of interacting molecules \u003cbr\u003e8.2 Basic simplifications of the quantum model \u003cbr\u003e8.3 Cluster expansion \u003cbr\u003e8.4 Two-body interaction energy: the dimer \u003cbr\u003e8.4.1 Decomposition of the interaction energy of a dimer: variational approach The electrostatic term The induction term The exchange term The charge transfer term The dispersion term The decomposition of the interaction energy through a variational approach: a summary \u003cbr\u003e8.4.2 Basis set superposition error and counterpoise corrections \u003cbr\u003e8.4.3 Perturbation theory approach \u003cbr\u003e8.4.4 Modeling of the separate components The electrostatic term The induction term The dispersion term The exchange (or repulsion) term The other terms A conclusive view \u003cbr\u003e8.4.5 The relaxation of the rigid monomer constraint\u003cbr\u003e8.5 Three- and many-body interactions Screening many-body effects Effective interaction potentials \u003cbr\u003e8.6 The variety of interaction potentials \u003cbr\u003e8.7 Theoretical and computing modeling of pure liquids and solutions \u003cbr\u003e8.7.1 Physical models \u003cbr\u003e8.7.1.1 Integral equation methods \u003cbr\u003e8.7.1.2 Perturbation theories \u003cbr\u003e8.7.2 Computer simulations \u003cbr\u003e8.7.2.1 Car-Parrinello direct QM simulation \u003cbr\u003e8.7.2.2 Semi-classical simulations Molecular dynamics Monte Carlo QM\/MM \u003cbr\u003e8.7.3 Continuum models \u003cbr\u003e8.7.3.1 QM-BE methods: the effective Hamiltonian \u003cbr\u003e8.8 Practical applications of modeling Dielectric constant Thermodynamical properties Compressibilities Relaxation times and diffusion coefficients Shear viscosity \u003cbr\u003e8.9 Liquid surfaces \u003cbr\u003e8.9.1 The basic types of liquid surfaces \u003cbr\u003e8.9.2 Systems with a large surface\/bulk ratio \u003cbr\u003e8.9.3 Studies on interfaces using interaction potentials\u003cbr\u003e\u003cbr\u003e9 MIXED SOLVENTS \u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine \u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Chemical interaction between components in mixed solvents \u003cbr\u003e9.2.1 Processes of homomolecular association \u003cbr\u003e9.2.2 Conformic and tautomeric equilibrium. Reactions of isomerization \u003cbr\u003e9.2.3 Heteromolecular association \u003cbr\u003e9.2.4 Heteromolecular associate ionization \u003cbr\u003e9.2.5 Electrolytic dissociation (ionic association) \u003cbr\u003e9.2.6 Reactions of composition \u003cbr\u003e9.2.7 Exchange interaction \u003cbr\u003e9.2.8 Amphoterism of mixed solvent components \u003cbr\u003e9.2.8.1 Amphoterism of hydrogen acids \u003cbr\u003e9.2.8.2 Amphoterism of L-acids \u003cbr\u003e9.2.8.3 Amphoterism in systems H-acid-L-acid \u003cbr\u003e9.2.8.4 Amphoterism in binary solutions amine-amine \u003cbr\u003e9.3 Physical properties of mixed solvents \u003cbr\u003e9.3.1 The methods of expression of mixed solvent compositions \u003cbr\u003e9.3.1.1 Permittivity \u003cbr\u003e9.3.1.2 Viscosity \u003cbr\u003e9.3.1.3 Density, molar volume \u003cbr\u003e9.3.1.4 Electrical conductivity \u003cbr\u003e9.3.2 Physical characteristics of the mixed solvents with chemical interaction between components \u003cbr\u003e9.3.2.1 Permittivity \u003cbr\u003e9.3.2.2 Viscosity \u003cbr\u003e9.3.2.3 Density, molar volume \u003cbr\u003e9.3.2.4 Conductivity \u003cbr\u003e9.3.3 Chemical properties of mixed solvents \u003cbr\u003e9.3.3.1 Autoprotolysis constants \u003cbr\u003e9.3.3.2 Solvating ability \u003cbr\u003e9.3.3.3 Donor-acceptor properties \u003cbr\u003e9.4 Mixed solvent influence on the chemical equilibrium \u003cbr\u003e9.4.1 General considerations \u003cbr\u003e9.4.2 Mixed solvent effect on the position of equilibrium of homomolecular association process \u003cbr\u003e9.4.3 Mixed solvent influence on the conformer equilibrium \u003cbr\u003e9.4.4 Solvent effect on the process of heteromolecular association \u003cbr\u003e9.4.4.1 Selective solvation. Resolvation \u003cbr\u003e9.4.5 Mixed solvent effect on the ion association process \u003cbr\u003e9.4.6 Solvent effect on exchange interaction processes Systems with non-associated reagents Systems with one associated participant of equilibrium Systems with two associated participants of equilibrium \u003cbr\u003e9.4.7 Mixed solvent effect on processes of complex formation \u003cbr\u003e9.5 The mixed solvent effect on the chemical equilibrium thermodynamics \u003cbr\u003e\u003cbr\u003e10 ACID-BASE INTERACTIONS \u003cbr\u003e10.1 General concept of acid-base interactions George Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e10.2 Effect of polymer\/solvent acid-base interactions: relevance to the aggregation of PMMA S. Bistac, M. Brogly, Institut de Chimie des Surfaces et Interfaces, ICSI - CNRS, Mulhouse, France \u003cbr\u003e10.2.1 Recent concepts in acid-base interactions \u003cbr\u003e10.2.1.1 The nature of acid-base molecular interactions \u003cbr\u003e10.2.1.1.1 The original Lewis definitions \u003cbr\u003e10.2.1.1.2 Molecular Orbital (MO) approach to acid-base reactions \u003cbr\u003e10.2.1.1.3 The case of hydrogen bonding \u003cbr\u003e10.2.1.2 Quantitative determination of acid-base interaction strength \u003cbr\u003e10.2.1.2.1 Perturbation theory \u003cbr\u003e10.2.1.2.2 Hard-Soft Acid-Base (HSAB) principle \u003cbr\u003e10.2.1.2.3 Density functional theory \u003cbr\u003e10.2.1.2.4 Effect of ionocity and covalency: Drago's concept \u003cbr\u003e10.2.1.2.5 Effect of amphotericity of acid-base interaction: Gutmann's numbers \u003cbr\u003e10.2.1.2.6 Spectroscopic measurements: Fowkes' approach \u003cbr\u003e10.2.2 Effect of polymer\/solvent interactions on aggregation of stereoregular PMMA \u003cbr\u003e10.2.2.1 Aggregation of stereoregular PMMA \u003cbr\u003e10.2.2.2 Relation between the complexing power of solvents and their acid-base properties \u003cbr\u003e10.2.3 Influence of the nature of the solvent on the and -relaxations of conventional PMMA \u003cbr\u003e10.2.3.1 Introduction \u003cbr\u003e10.2.3.2 Dielectric spectroscopy results \u003cbr\u003e10.2.4 Concluding remarks References10.3 Solvent effects based on pure solvent scales Javier Catalán, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain Introduction 10.3.1 The solvent effect and its dissection into general and specific contributions \u003cbr\u003e10.3.2 Characterization of a molecular environment with the aid of the probe\/homomorph model \u003cbr\u003e10.3.3 Single-parameter solvent scales: the Y, G, ET(30), , Z, R, , and S' scales \u003cbr\u003e10.3.3.1 The solvent ionizing power scale or Y scale \u003cbr\u003e10.3.3.2 The G values of Allerhand and Schleyer \u003cbr\u003e10.3.3.3 The ET(30) scale of Dimroth and Reichardt \u003cbr\u003e10.3.3.4 The Py scale of Dong and Winnick \u003cbr\u003e10.3.3.5 The Z scale of Kosower \u003cbr\u003e10.3.3.6 The R scale of Brooker \u003cbr\u003e10.3.3.7 The scale of Dubois and Bienvenue \u003cbr\u003e10.3.3.8 The S' scale of Drago \u003cbr\u003e10.3.4 Solvent polarity: the SPP scale \u003cbr\u003e10.3.5 Solvent basicity: the SB scale \u003cbr\u003e10.3.6 Solvent acidity: the SA scale \u003cbr\u003e10.3.7 Applications of the pure SPP, SA and SB scales \u003cbr\u003e10.3.7.1 Other reported solvents scales \u003cbr\u003e10.3.7.2 Treatment of the solvent effect \u003cbr\u003e10.3.7.2.1 Spectroscopy \u003cbr\u003e10.3.7.2.2 Kinetics \u003cbr\u003e10.3.7.2.3 Electrochemistry \u003cbr\u003e10.3.7.2.4 Thermodynamics \u003cbr\u003e10.3.7.3 Mixtures of solvents. Understanding the preferential solvation model \u003cbr\u003e10.4 Acid-base equilibria in ionic solvents (ionic melts) Victor Cherginets, Institute for Single Crystals, Kharkov, Ukraine \u003cbr\u003e10.4.1 Acid-base definitions used for the description of donor-acceptor interactions in ionic media \u003cbr\u003e10.4.1.1 The Lewis definition \u003cbr\u003e10.4.1.2 The Lux-Flood definition \u003cbr\u003e10.4.2 The features of ionic melts as media for acid-base interactions \u003cbr\u003e10.4.2.1 Oxygen-less media \u003cbr\u003e10.4.2.2 Oxygen-containing melts \u003cbr\u003e10.4.2.3 The effect of the ionic solvent composition on acid-base equilibria \u003cbr\u003e10.4.3 Methods for estimations of acidities of solutions based on ionic melts \u003cbr\u003e10.4.4 On studies of the homogeneous acid-base reactions in ionic melts \u003cbr\u003e10.4.4.1 Nitrate melts \u003cbr\u003e10.4.4.2 Sulphate melts \u003cbr\u003e10.4.4.3 Silicate melts \u003cbr\u003e10.4.4.4 The equimolar mixture KCl-NaCl \u003cbr\u003e10.4.4.5 Other alkaline halide melts \u003cbr\u003e10.4.5 Reactions of melts with gaseous acids and bases \u003cbr\u003e10.4.5.1 High-temperature hydrolysis of molten halides \u003cbr\u003e10.4.5.2 The processes of removal of oxide admixtures from melts\u003cbr\u003e\u003cbr\u003e11 ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS \u003cbr\u003e11.1 Theoretical treatment of solvent effects on electronic and vibrational spectra of compounds in condensed media \u003cbr\u003eMati Karelson, Department of Chemistry, University of Tartu, Tartu, Estonia \u003cbr\u003e11.1.1 Introduction \u003cbr\u003e11.1.2 Theoretical treatment of solvent cavity effects on electronic-vibrational spectra of molecules \u003cbr\u003e11.1.3 Theoretical treatment of solvent electrostatic polarization on electronic-vibrational spectra of molecules \u003cbr\u003e11.1.4 Theoretical treatment of solvent dispersion effects on electronic-vibrational spectra of molecules \u003cbr\u003e11.1.5 Supermolecule approach to the intermolecular interactions in condensed media \u003cbr\u003e11.2 Dielectric solvent effects on the intensity of light absorption and the radiative rate constant \u003cbr\u003eTai-ichi Shibuya, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan \u003cbr\u003e11.2.1 The Chako formula or the Lorentz-Lorenz correction \u003cbr\u003e11.2.2 The generalized local-field factor for the ellipsoidal cavity \u003cbr\u003e11.2.3 Dielectric solvent effect on the radiative rate constant \u003cbr\u003e12 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS \u003cbr\u003e12.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents \u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e12.1.1 Rheological properties \u003cbr\u003e12.1.2 Aggregation \u003cbr\u003e12.1.3 Permeability \u003cbr\u003e12.1.4 Molecular structure and crystallinity \u003cbr\u003e12.1.5 Other properties affected by solvents \u003cbr\u003e12.2 Chain conformations of polysaccharides in different solvents \u003cbr\u003eRanieri Urbani and Attilio Cesaro, Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Italy \u003cbr\u003e12.2.1 Introduction \u003cbr\u003e12.2.2 Structure and conformation of polysaccharides in solution \u003cbr\u003e12.2.2.1 Chemical structure \u003cbr\u003e12.2.2.2 Solution chain conformation \u003cbr\u003e12.2.3 Experimental evidence of solvent effect on oligosaccharide conformational equilibria \u003cbr\u003e12.2.4 Theoretical evaluation of solvent effect on conformational equilibria of sugars \u003cbr\u003e12.2.4.1 Classical molecular mechanics methods \u003cbr\u003e12.2.4.2 Molecular dynamic methods \u003cbr\u003e12.2.5 Solvent effect on chain dimensions and conformations of polysaccharides \u003cbr\u003e12.2.6 Solvent effect on charged polysaccharides and the polyelectrolyte model \u003cbr\u003e12.2.6.1 Experimental behavior of polysaccharides polyelectrolytes \u003cbr\u003e12.2.6.2 The Haug and Smidsrød parameter: description of the salt effect on the chain dimension \u003cbr\u003e12.2.6.3 The statistical thermodynamic counterion-condensation theory of Manning \u003cbr\u003e12.2.6.4 Conformational calculations of charged polysaccharides\u003cbr\u003e16 RESIDUAL SOLVENTS IN PRODUCTS \u003cbr\u003e16.1 Residual solvents in various products \u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e16.2 Residual solvents in pharmaceutical substances \u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthélémy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France \u003cbr\u003e16.2.1 Introduction \u003cbr\u003e16.2.2 Why should we look for RS? \u003cbr\u003e16.2.2.1 Modifying the acceptability of the drug product \u003cbr\u003e16.2.2.2 Modifying the physico-chemical properties of drug su","published_at":"2018-02-16T11:01:03-05:00","created_at":"2017-06-22T21:15:10-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378467780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-24-0.jpg?v=1499725657"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-24-0.jpg?v=1499725657","options":["Title"],"media":[{"alt":null,"id":356342923357,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-24-0.jpg?v=1499725657"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-24-0.jpg?v=1499725657","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Dr. George Wypych \u003cbr\u003e10-ISBN 1-895198-24-0\u003c\/p\u003e\n\u003cp\u003e13-ISBN 978-1-895198-24-9\u003cbr\u003ePages 1675, Figures 568, Tables 380, References 5184\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAnnouncing the most comprehensive book on solvents \u003cbr\u003eThis book was written by a group of experts on various subjects of solvents' use, the fundamental principles governing their application, effect on health and environment, residual solvents in products, their concentration in industrial environments, current regulations, safer substitutes, non-emitting technologies of use, contamination cleanup, personal protection, and the most modern trends in future technology. The authors, who are the members of prestigious universities and industries from around the world, altogether have previously written 47 books and hundreds of papers on the subject and here they give a synthesis of their experiences and opinions on how best to change the global use of solvents in order to obtain benefits of technology and at the same time limit risk and health effects, and more. \u003cbr\u003e\u003cbr\u003eThe most up-to-date information \u003cbr\u003eAll 25 chapters of this book were written between summer of 1999 and spring of 2000 and contain over 5000 references to source literature, enabling the user to find specific information on any subject related to solvents. The text is illustrated by figures and tables which compare in number with multi-volume encyclopedias. \u003cbr\u003e\u003cbr\u003eNew concept of presentation and retrieval \u003cbr\u003eThe book contains a synthesis of a large sample of data and information to reveal fundamental principles which data helped to discover. The actual data on 1141 solvents are in the form of a searchable database on CD-ROM (see page 3 of this information). The database contains 110 categories of data (fields) and almost 40,000 single data entries, making it the largest extant database on solvents.\u003cbr\u003e\u003cbr\u003eA book for everybody who deals with chemical materials \u003cbr\u003eIn addition to the unquestionable value of the book for those who deal with solvents, the book is invaluable for a much larger audience because many theoretical principles governing complex materials, e.g., polymers, blends, drug delivery systems, etc. were developed on models of simple materials such as solvents. The book contains analysis of over 30 industries. The book also contains information on solvent effect on most parts of the human body, e.g, brain, nervous system, lungs, liver, kidneys, etc., workers, unborn babies, in-door inhabitants, etc. It gives ideas to improve hundreds of technological process and materials on the market. This book contains information useful for readers at any level of previous knowledge and experience because of its comprehensiveness and expertly written, easily understandable text. \u003cbr\u003e\u003cbr\u003eImpact changes \u003cbr\u003eThe authors of this book have rendered their expert and balanced opinions on how to make effective changes without losing benefits. This is an invaluable reference source which brings together in a single volume all fundamental aspects and the latest advances in solvent technology and products they are used for. This book should not be missed by these who deal with solvents and should be made available in reference sections of university, technical, and public libraries.\u003cbr\u003e\u003cbr\u003eThe book is divided into 25 chapters. The Introduction discusses the book's contents and the effective use of information. Chapters 2 to 13 contain information on various properties of solvents and solutions. Each chapter in this section of the book is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this part is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data to the database on CD-ROM which can handle a large amount of information with ease of retrieval. Chapter 14 discusses solvent use in 31 industries listed on the previous page. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. Chapter 15 contains information on all standard methods of solvent testing, with references to many national and international standards. In addition, several new specific methods involved in solvent testing are also discussed in-depth, such as breath monitoring, determination of toxicity, or application of gas chromatography to assess the influence of solvent and drying conditions on crystal texture of pharmaceutical products. Chapter 16 discusses residual solvents in pharmaceutical and other industrial products. Chapter 17 analyzes the environmental impact of solvents, such as their fate and movement in water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects. In chapter 18, concentration of solvents in more than 15 industries is discussed, based on results of studies conducted in the authors' extensive research practice, collectively spanning more than 2 decades. This results in a unique set of data, analysis of requirements, methods of testing and available remedies. Regulations legislating solvent use are discussed in detail in chapter 19, but other chapters have many specific references of importance for various industries. \u003cbr\u003e\u003cbr\u003eChapter 20 contains a set of analyses of solvent toxicology. This chapter was written by professors and scientists from major centers who study the effect of solvents on various aspects of human health, immediate reaction to solvent poisoning, and persistence of symptoms of solvent exposure. This is a very unique collection of observations which should be consulted by solvent users not only in industry but also those who inhale solvents emitted from products applied in in-door spaces. Chapter 21 deals with solvent substitution by safer materials. Here emphasis is placed on supercritical solvents, ionic liquids, ionic melts, and alternative dry-cleaning technologies. Solvent recycling, removal from contaminated air, and degradation are discussed by experts in these technologies with regard to research and industry manufacturing equipment for safe methods of processing with solvents in Chapter 22. Chapter 23 discusses details of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils. The book concludes with Chapter 24, which helps with the selection of gloves, suites and respirators for use with solvents, and Chapter 25, which discusses new trends in solvent use in various industries based on the most current patent literature. Overall, this book provides all the tools required to understand how to select solvents, use them with maximum benefits, and limit adverse effects on health and environment. In addition to specialists, who will be interested in this book, the benefit of this unique ensemble of information should be given to students who will determine the future of technology and the general public, who has right to know all aspects of health, safety and environmental impacts of various technologies today and who should understand as well the balance between the necessity of the proper application of solvents and possible options to limit their effect.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 INTRODUCTION \u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany \u003cbr\u003e2 FUNDAMENTAL \u003cbr\u003ePRINCIPLES GOVERNING SOLVENTS USE \u003cbr\u003e2.1 Solvent effects on chemical systems Estanislao Silla, Arturo Arnau and 2.1 Iñaki Tuñón, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain \u003cbr\u003e2.1.1 Historical outline \u003cbr\u003e2.1.2 Classification of solute-solvent interactions \u003cbr\u003e2.1.2.1 Electrostatic \u003cbr\u003e2.1.2.2 Polarization \u003cbr\u003e2.1.2.3 Dispersion \u003cbr\u003e2.1.2.4 Repulsion \u003cbr\u003e2.1.2.5 Specific interactions \u003cbr\u003e2.1.2.6 Hydrophobic interactions \u003cbr\u003e2.1.3 Modelling of solvent effects \u003cbr\u003e2.1.3.1 Computer simulations\u003cbr\u003e2.1.3.2 Continuum models \u003cbr\u003e2.1.3.3. Cavity surfaces \u003cbr\u003e2.1.3.4 Supermolecule models \u003cbr\u003e2.1.3.5 Application example: glycine in solution \u003cbr\u003e2.1.4 Thermodynamic and kinetic characteristics of chemical reactions in solution \u003cbr\u003e2.1.4.1 Solvent effects on chemical equilibria \u003cbr\u003e2.1.4.2 Solvent effects on the rate of chemical reactions \u003cbr\u003e2.1.4.3 Example of application: addition of azide anion to tetrafuranosides \u003cbr\u003e\u003cbr\u003e2.1.5 Solvent catalytic effects \u003cbr\u003e2.2 Molecular design of solvents Koichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan \u003cbr\u003e2.2.1 Molecular design and molecular ensemble design \u003cbr\u003e2.2.2 From prediction to design \u003cbr\u003e2.2.3 Improvement in prediction method \u003cbr\u003e2.2.4 Role of molecular simulation \u003cbr\u003e2.2.5 Model system and paradigm for design Appendix. Predictive equation for the diffusion coefficient in dilute solution \u003cbr\u003e2.3 Basic physical and chemical properties of solvents George Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e2.3.1 Molecular weight and molar volume \u003cbr\u003e2.3.2 Boiling and freezing points \u003cbr\u003e2.3.3 Specific gravity \u003cbr\u003e2.3.4 Refractive index \u003cbr\u003e2.3.5 Vapor density and pressure \u003cbr\u003e2.3.6 Solvent volatility \u003cbr\u003e2.3.7 Flash point \u003cbr\u003e2.3.8 Flammability limits \u003cbr\u003e2.3.9 Sources of ignition and autoignition temperature \u003cbr\u003e2.3.10 Heat of combustion (calorific value) \u003cbr\u003e2.3.11 Heat of fusion \u003cbr\u003e2.3.12 Electric conductivity \u003cbr\u003e2.3.13 Dielectric constant (relative permittivity) \u003cbr\u003e2.3.14 Occupational exposure indicators \u003cbr\u003e2.3.15 Odor threshold \u003cbr\u003e2.3.16 Toxicity indicators \u003cbr\u003e2.3.17 Ozone-depletion and creation potential \u003cbr\u003e2.3.18 Oxygen demand \u003cbr\u003e2.3.19 Solubility \u003cbr\u003e2.3.20 Other typical solvent properties and indicators\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS \u003cbr\u003e\u003cbr\u003e3.1 Definitions and solvent classification \u003cbr\u003e3.2 Overview of methods of solvent manufacture \u003cbr\u003e3.3 Solvent properties \u003cbr\u003e3.3.1 Hydrocarbons \u003cbr\u003e3.3.1.1 Aliphatic hydrocarbons \u003cbr\u003e3.3.1.2 Aromatic hydrocarbons \u003cbr\u003e3.3.2 Halogenated hydrocarbons \u003cbr\u003e3.3.3 Nitrogen-containing compounds (nitrates, nitriles) \u003cbr\u003e3.3.4 Organic sulfur compounds \u003cbr\u003e3.3.5 Monohydric alcohols \u003cbr\u003e3.3.6 Polyhydric alcohols \u003cbr\u003e3.3.7 Phenols \u003cbr\u003e3.3.8 Aldehydes \u003cbr\u003e3.3.9 Ethers \u003cbr\u003e3.3.10 Glycol ethers \u003cbr\u003e3.3.11 Ketones \u003cbr\u003e3.3.11 Acids \u003cbr\u003e3.3.12 Amines \u003cbr\u003e3.3.13 Esters \u003cbr\u003e3.3.14 Comparative analysis of all solvents \u003cbr\u003e3.4 Terpenes Tilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, University of Tuebingen, Tuebingen, Germany \u003cbr\u003e3.4.1 Definitions and nomenclature \u003cbr\u003e3.4.2 Occurrence \u003cbr\u003e3.4.3 General \u003cbr\u003e3.4.4 Toxicology \u003cbr\u003e3.4.5 Threshold limit values \u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS \u003cbr\u003e4.1 Simple solvent characteristics Valery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e4.1.1 Solvent power \u003cbr\u003e4.1.2 One-dimensional solubility parameter approach \u003cbr\u003e4.1.3 Multi-dimensional approaches \u003cbr\u003e4.1.4 Hansen's solubility \u003cbr\u003e4.1.5 Three-dimensional dualistic model \u003cbr\u003e4.1.6 Solubility criterion \u003cbr\u003e4.1.7 Solvent system design \u003cbr\u003e4.2 Effect of system variables on solubility Valery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e4.2.1 General considerations \u003cbr\u003e4.2.2 Chemical structure \u003cbr\u003e4.2.3 Flexibility of a polymer chain \u003cbr\u003e4.2.4 Crosslinking \u003cbr\u003e4.2.5 Temperature and pressure \u003cbr\u003e4.2.6 Methods of calculation of solubility based on thermodynamic principles \u003cbr\u003e\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations Abraham Nitzan, School of Chemistry,The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel \u003cbr\u003e4.3.1 Introduction \u003cbr\u003e4.3.2 Continuum dielectric theory of solvation dynamics \u003cbr\u003e4.3.3 Linear response theory of solvation dynamics \u003cbr\u003e4.3.4 Numerical simulations of solvation in simple polar solvents: The simulation model \u003cbr\u003e4.3.5 Numerical simulations of solvation in simple polar solvents: Results and discussion \u003cbr\u003e4.3.6 Solvation in complex solvents \u003cbr\u003e4.3.7 Conclusions \u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions Christian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany \u003cbr\u003e4.4.1 Introduction \u003cbr\u003e4.4.2 Necessary thermodynamic equations \u003cbr\u003e4.4.3 Experimental methods, equipment and data reduction \u003cbr\u003e4.4.3.1 Vapor-liquid equilibrium (VLE) measurements \u003cbr\u003e4.4.3.1.1 Experimental equipment and procedures for VLE-measurements \u003cbr\u003e4.4.3.1.2 Primary data reduction \u003cbr\u003e4.4.3.1.3 Comparison of experimental VLE-methods \u003cbr\u003e4.4.3.2 Other measurement methods \u003cbr\u003e4.4.3.2.1 Membrane osmometry \u003cbr\u003e4.4.3.2.2 Light scattering \u003cbr\u003e4.4.3.2.3 X-ray scattering \u003cbr\u003e4.4.3.2.4 Neutron scattering \u003cbr\u003e4.4.3.2.5 Ultracentrifuge \u003cbr\u003e4.4.3.2.6 Cryoscopy (freezing point depression of the solvent) \u003cbr\u003e4.4.3.2.7 Liquid-liquid equilibrium (LLE) \u003cbr\u003e4.4.3.2.8 Swelling equilibrium \u003cbr\u003e4.4.4 Thermodynamic models for the calculation of solvent activities of polymer solutions \u003cbr\u003e4.4.4.1 Models for residual chemical potential and activity coefficient in the liquid phase \u003cbr\u003e4.4.4.2 Fugacity coefficients from equations of state \u003cbr\u003e4.4.4.3 Comparison and conclusions \u003cbr\u003eAppendix 4.4A\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES \u003cbr\u003e\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data Valery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e5.1.1 Experimental evaluation of solubility parameters of liquids \u003cbr\u003e5.1.1.1 Direct methods of evaluation of the evaporation enthalpy \u003cbr\u003e5.1.1.2 Indirect methods of evaluation of evaporation enthalpy \u003cbr\u003e5.1.1.3 Static and quasi-static methods of evaluation of pair pressure \u003cbr\u003e5.1.1.4 Kinetic methods \u003cbr\u003e5.1.2 Methods of experimental evaluation and calculation of solubility parameters of polymers \u003cbr\u003e5.2 Prediction of solubility parameter Nobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan \u003cbr\u003e5.2.1 Solubility parameter of polymers \u003cbr\u003e5.2.2 Glass transition in polymers \u003cbr\u003e5.2.2.1 Glass transition enthalpy \u003cbr\u003e5.2.2.2 Cp jump at the glass transition \u003cbr\u003e5.2.3 Prediction from thermal transition enthalpies \u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers Valery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e5.4 Mixed solvents, a way to change the polymer solubility Ligia Gargallo and Deodato Radic, Facultad de Quimica Pontificia Universidad Católica de Chile, Santiago, Chile \u003cbr\u003e5.4.1 Introduction \u003cbr\u003e5.4.2 Solubility-cosolvency phenomenon \u003cbr\u003e5.4.3 New cosolvents effects. Solubility behavior \u003cbr\u003e5.4.4 Thermodynamical description of ternary systems. Association equilibria theory of preferential adsorption \u003cbr\u003e5.4.5 Polymer structure of the polymer dependence of preferential adsorption. polymer molecular weight and tacticity dependence of preferential adsorption \u003cbr\u003e5.5 The phenomenological theory of solvent effects in mixed solvent systems Kenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA \u003cbr\u003e5.5.1 Introduction \u003cbr\u003e5.5.2 Theory \u003cbr\u003e5.5.2.1 Principle \u003cbr\u003e5.5.2.2 The intersolute effect: solute-solute interactions \u003cbr\u003e5.5.2.3 The solvation effect: solute-solvent interaction \u003cbr\u003e5.5.2.4 The general medium effect: solvent-solvent interactions \u003cbr\u003e5.5.2.5 The total solvent effect \u003cbr\u003e5.5.3 Applications \u003cbr\u003e5.5.3.1 Solubility \u003cbr\u003e5.5.3.2 Surface tension \u003cbr\u003e5.5.3.3 Electronic absorption spectra \u003cbr\u003e5.5.3.4 Complex formation \u003cbr\u003e5.5.3.5 Chemical kinetics \u003cbr\u003e5.5.3.6 Liquid chromatography \u003cbr\u003e5.5.4 Interpretations \u003cbr\u003e5.5.4.1 Ambiguities and anomalies \u003cbr\u003e5.5.4.2 A modified derivation \u003cbr\u003e5.5.4.3 Interpretation of parameter estimates \u003cbr\u003e5.5.4.4 Confounding effects Solute-solute interactions Coupling of general medium and solvation effects The cavity surface area The role of interfacial tension \u003cbr\u003e5.5.5 Notes and References \u003cbr\u003e6 SWELLING \u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents E. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e6.1.1 Introduction \u003cbr\u003e6.1.2 Formulation of swelling for a plane elastomer layer \u003cbr\u003e6.1.3 Diffusion kinetics of plane layer swelling \u003cbr\u003e6.1.4 Experimental study of elastomer swelling kinetics \u003cbr\u003e6.2 Equilibrium swelling in binary solvents Vasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents Vasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e6.4 Influence of structure on equilibrium swelling Vasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia \u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA \u003cbr\u003e7.1 Introduction to diffusion, swelling, and drying George Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e7.1.1 Diffusion \u003cbr\u003e7.1.2 Swelling \u003cbr\u003e7.1.3 Drying References \u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions Semyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus \u003cbr\u003e7.2.1 Rheology of polymeric solutions and bubble dynamics \u003cbr\u003e7.2.1.1 Rheological characterization of solutions of polymers \u003cbr\u003e7.2.1.2 Dynamic interaction of bubbles with polymeric liquid \u003cbr\u003e7.2.2 Thermal growth of bubbles in superheated solutions of polymers \u003cbr\u003e7.2.3 Boiling of macromolecular liquids \u003cbr\u003e7.3 Drying of coated film Seung Su Kim, SKC Co., Ltd., Chon-an City, Korea; Jae Chun Hyun, Department of Chemical Engineering, Korea University, Seoul, Korea \u003cbr\u003e7.3.1 Introduction \u003cbr\u003e7.3.2 Theory for the drying \u003cbr\u003e7.3.2.1 Simultaneous heat and mass transfer \u003cbr\u003e7.3.2.2 Liquid-vapor equilibrium \u003cbr\u003e7.3.2.3 Heat and mass transfer coefficient \u003cbr\u003e7.3.2.4 Prediction of drying rate of coating \u003cbr\u003e7.3.2.5 Drying regimes: constant drying rate period (CDRP) and falling drying rate period (FDRP) \u003cbr\u003e7.3.3 Measurement of the drying rate of coated film \u003cbr\u003e7.3.3.1 Thermo-gravimetric analysis \u003cbr\u003e7.3.3.2 Rapid scanning FT-IR spectrometer analysis \u003cbr\u003e7.3.3.3 High-airflow drying experiment using flame ionization detector (FID) total hydrocarbon analyzer \u003cbr\u003e7.3.3.4 Measurement of drying rate in the production scale dryer \u003cbr\u003e7.3.4 Miscellaneous \u003cbr\u003e7.3.4.1 Drying of coated film with phase separation \u003cbr\u003e7.3.4.2 Drying defects \u003cbr\u003e7.3.4.2.1 Internal stress induced defects \u003cbr\u003e7.3.4.2.2 Surface tension driven defects \u003cbr\u003e7.3.4.2.3 Defects caused by air motion and others \u003cbr\u003e7.3.4.3 Control of lower explosive level (LEL) in a multiple zone dryer \u003cbr\u003e8 INTERACTIONS IN SOLVENTS AND SOLUTIONS \u003cbr\u003eJacopo Tomasi, Benedetta Mennucci, Chiara Cappelli, Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Italy \u003cbr\u003e8.1 Solvents and solutions as assemblies of interacting molecules \u003cbr\u003e8.2 Basic simplifications of the quantum model \u003cbr\u003e8.3 Cluster expansion \u003cbr\u003e8.4 Two-body interaction energy: the dimer \u003cbr\u003e8.4.1 Decomposition of the interaction energy of a dimer: variational approach The electrostatic term The induction term The exchange term The charge transfer term The dispersion term The decomposition of the interaction energy through a variational approach: a summary \u003cbr\u003e8.4.2 Basis set superposition error and counterpoise corrections \u003cbr\u003e8.4.3 Perturbation theory approach \u003cbr\u003e8.4.4 Modeling of the separate components The electrostatic term The induction term The dispersion term The exchange (or repulsion) term The other terms A conclusive view \u003cbr\u003e8.4.5 The relaxation of the rigid monomer constraint\u003cbr\u003e8.5 Three- and many-body interactions Screening many-body effects Effective interaction potentials \u003cbr\u003e8.6 The variety of interaction potentials \u003cbr\u003e8.7 Theoretical and computing modeling of pure liquids and solutions \u003cbr\u003e8.7.1 Physical models \u003cbr\u003e8.7.1.1 Integral equation methods \u003cbr\u003e8.7.1.2 Perturbation theories \u003cbr\u003e8.7.2 Computer simulations \u003cbr\u003e8.7.2.1 Car-Parrinello direct QM simulation \u003cbr\u003e8.7.2.2 Semi-classical simulations Molecular dynamics Monte Carlo QM\/MM \u003cbr\u003e8.7.3 Continuum models \u003cbr\u003e8.7.3.1 QM-BE methods: the effective Hamiltonian \u003cbr\u003e8.8 Practical applications of modeling Dielectric constant Thermodynamical properties Compressibilities Relaxation times and diffusion coefficients Shear viscosity \u003cbr\u003e8.9 Liquid surfaces \u003cbr\u003e8.9.1 The basic types of liquid surfaces \u003cbr\u003e8.9.2 Systems with a large surface\/bulk ratio \u003cbr\u003e8.9.3 Studies on interfaces using interaction potentials\u003cbr\u003e\u003cbr\u003e9 MIXED SOLVENTS \u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine \u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Chemical interaction between components in mixed solvents \u003cbr\u003e9.2.1 Processes of homomolecular association \u003cbr\u003e9.2.2 Conformic and tautomeric equilibrium. Reactions of isomerization \u003cbr\u003e9.2.3 Heteromolecular association \u003cbr\u003e9.2.4 Heteromolecular associate ionization \u003cbr\u003e9.2.5 Electrolytic dissociation (ionic association) \u003cbr\u003e9.2.6 Reactions of composition \u003cbr\u003e9.2.7 Exchange interaction \u003cbr\u003e9.2.8 Amphoterism of mixed solvent components \u003cbr\u003e9.2.8.1 Amphoterism of hydrogen acids \u003cbr\u003e9.2.8.2 Amphoterism of L-acids \u003cbr\u003e9.2.8.3 Amphoterism in systems H-acid-L-acid \u003cbr\u003e9.2.8.4 Amphoterism in binary solutions amine-amine \u003cbr\u003e9.3 Physical properties of mixed solvents \u003cbr\u003e9.3.1 The methods of expression of mixed solvent compositions \u003cbr\u003e9.3.1.1 Permittivity \u003cbr\u003e9.3.1.2 Viscosity \u003cbr\u003e9.3.1.3 Density, molar volume \u003cbr\u003e9.3.1.4 Electrical conductivity \u003cbr\u003e9.3.2 Physical characteristics of the mixed solvents with chemical interaction between components \u003cbr\u003e9.3.2.1 Permittivity \u003cbr\u003e9.3.2.2 Viscosity \u003cbr\u003e9.3.2.3 Density, molar volume \u003cbr\u003e9.3.2.4 Conductivity \u003cbr\u003e9.3.3 Chemical properties of mixed solvents \u003cbr\u003e9.3.3.1 Autoprotolysis constants \u003cbr\u003e9.3.3.2 Solvating ability \u003cbr\u003e9.3.3.3 Donor-acceptor properties \u003cbr\u003e9.4 Mixed solvent influence on the chemical equilibrium \u003cbr\u003e9.4.1 General considerations \u003cbr\u003e9.4.2 Mixed solvent effect on the position of equilibrium of homomolecular association process \u003cbr\u003e9.4.3 Mixed solvent influence on the conformer equilibrium \u003cbr\u003e9.4.4 Solvent effect on the process of heteromolecular association \u003cbr\u003e9.4.4.1 Selective solvation. Resolvation \u003cbr\u003e9.4.5 Mixed solvent effect on the ion association process \u003cbr\u003e9.4.6 Solvent effect on exchange interaction processes Systems with non-associated reagents Systems with one associated participant of equilibrium Systems with two associated participants of equilibrium \u003cbr\u003e9.4.7 Mixed solvent effect on processes of complex formation \u003cbr\u003e9.5 The mixed solvent effect on the chemical equilibrium thermodynamics \u003cbr\u003e\u003cbr\u003e10 ACID-BASE INTERACTIONS \u003cbr\u003e10.1 General concept of acid-base interactions George Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e10.2 Effect of polymer\/solvent acid-base interactions: relevance to the aggregation of PMMA S. Bistac, M. Brogly, Institut de Chimie des Surfaces et Interfaces, ICSI - CNRS, Mulhouse, France \u003cbr\u003e10.2.1 Recent concepts in acid-base interactions \u003cbr\u003e10.2.1.1 The nature of acid-base molecular interactions \u003cbr\u003e10.2.1.1.1 The original Lewis definitions \u003cbr\u003e10.2.1.1.2 Molecular Orbital (MO) approach to acid-base reactions \u003cbr\u003e10.2.1.1.3 The case of hydrogen bonding \u003cbr\u003e10.2.1.2 Quantitative determination of acid-base interaction strength \u003cbr\u003e10.2.1.2.1 Perturbation theory \u003cbr\u003e10.2.1.2.2 Hard-Soft Acid-Base (HSAB) principle \u003cbr\u003e10.2.1.2.3 Density functional theory \u003cbr\u003e10.2.1.2.4 Effect of ionocity and covalency: Drago's concept \u003cbr\u003e10.2.1.2.5 Effect of amphotericity of acid-base interaction: Gutmann's numbers \u003cbr\u003e10.2.1.2.6 Spectroscopic measurements: Fowkes' approach \u003cbr\u003e10.2.2 Effect of polymer\/solvent interactions on aggregation of stereoregular PMMA \u003cbr\u003e10.2.2.1 Aggregation of stereoregular PMMA \u003cbr\u003e10.2.2.2 Relation between the complexing power of solvents and their acid-base properties \u003cbr\u003e10.2.3 Influence of the nature of the solvent on the and -relaxations of conventional PMMA \u003cbr\u003e10.2.3.1 Introduction \u003cbr\u003e10.2.3.2 Dielectric spectroscopy results \u003cbr\u003e10.2.4 Concluding remarks References10.3 Solvent effects based on pure solvent scales Javier Catalán, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain Introduction 10.3.1 The solvent effect and its dissection into general and specific contributions \u003cbr\u003e10.3.2 Characterization of a molecular environment with the aid of the probe\/homomorph model \u003cbr\u003e10.3.3 Single-parameter solvent scales: the Y, G, ET(30), , Z, R, , and S' scales \u003cbr\u003e10.3.3.1 The solvent ionizing power scale or Y scale \u003cbr\u003e10.3.3.2 The G values of Allerhand and Schleyer \u003cbr\u003e10.3.3.3 The ET(30) scale of Dimroth and Reichardt \u003cbr\u003e10.3.3.4 The Py scale of Dong and Winnick \u003cbr\u003e10.3.3.5 The Z scale of Kosower \u003cbr\u003e10.3.3.6 The R scale of Brooker \u003cbr\u003e10.3.3.7 The scale of Dubois and Bienvenue \u003cbr\u003e10.3.3.8 The S' scale of Drago \u003cbr\u003e10.3.4 Solvent polarity: the SPP scale \u003cbr\u003e10.3.5 Solvent basicity: the SB scale \u003cbr\u003e10.3.6 Solvent acidity: the SA scale \u003cbr\u003e10.3.7 Applications of the pure SPP, SA and SB scales \u003cbr\u003e10.3.7.1 Other reported solvents scales \u003cbr\u003e10.3.7.2 Treatment of the solvent effect \u003cbr\u003e10.3.7.2.1 Spectroscopy \u003cbr\u003e10.3.7.2.2 Kinetics \u003cbr\u003e10.3.7.2.3 Electrochemistry \u003cbr\u003e10.3.7.2.4 Thermodynamics \u003cbr\u003e10.3.7.3 Mixtures of solvents. Understanding the preferential solvation model \u003cbr\u003e10.4 Acid-base equilibria in ionic solvents (ionic melts) Victor Cherginets, Institute for Single Crystals, Kharkov, Ukraine \u003cbr\u003e10.4.1 Acid-base definitions used for the description of donor-acceptor interactions in ionic media \u003cbr\u003e10.4.1.1 The Lewis definition \u003cbr\u003e10.4.1.2 The Lux-Flood definition \u003cbr\u003e10.4.2 The features of ionic melts as media for acid-base interactions \u003cbr\u003e10.4.2.1 Oxygen-less media \u003cbr\u003e10.4.2.2 Oxygen-containing melts \u003cbr\u003e10.4.2.3 The effect of the ionic solvent composition on acid-base equilibria \u003cbr\u003e10.4.3 Methods for estimations of acidities of solutions based on ionic melts \u003cbr\u003e10.4.4 On studies of the homogeneous acid-base reactions in ionic melts \u003cbr\u003e10.4.4.1 Nitrate melts \u003cbr\u003e10.4.4.2 Sulphate melts \u003cbr\u003e10.4.4.3 Silicate melts \u003cbr\u003e10.4.4.4 The equimolar mixture KCl-NaCl \u003cbr\u003e10.4.4.5 Other alkaline halide melts \u003cbr\u003e10.4.5 Reactions of melts with gaseous acids and bases \u003cbr\u003e10.4.5.1 High-temperature hydrolysis of molten halides \u003cbr\u003e10.4.5.2 The processes of removal of oxide admixtures from melts\u003cbr\u003e\u003cbr\u003e11 ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS \u003cbr\u003e11.1 Theoretical treatment of solvent effects on electronic and vibrational spectra of compounds in condensed media \u003cbr\u003eMati Karelson, Department of Chemistry, University of Tartu, Tartu, Estonia \u003cbr\u003e11.1.1 Introduction \u003cbr\u003e11.1.2 Theoretical treatment of solvent cavity effects on electronic-vibrational spectra of molecules \u003cbr\u003e11.1.3 Theoretical treatment of solvent electrostatic polarization on electronic-vibrational spectra of molecules \u003cbr\u003e11.1.4 Theoretical treatment of solvent dispersion effects on electronic-vibrational spectra of molecules \u003cbr\u003e11.1.5 Supermolecule approach to the intermolecular interactions in condensed media \u003cbr\u003e11.2 Dielectric solvent effects on the intensity of light absorption and the radiative rate constant \u003cbr\u003eTai-ichi Shibuya, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan \u003cbr\u003e11.2.1 The Chako formula or the Lorentz-Lorenz correction \u003cbr\u003e11.2.2 The generalized local-field factor for the ellipsoidal cavity \u003cbr\u003e11.2.3 Dielectric solvent effect on the radiative rate constant \u003cbr\u003e12 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS \u003cbr\u003e12.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents \u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e12.1.1 Rheological properties \u003cbr\u003e12.1.2 Aggregation \u003cbr\u003e12.1.3 Permeability \u003cbr\u003e12.1.4 Molecular structure and crystallinity \u003cbr\u003e12.1.5 Other properties affected by solvents \u003cbr\u003e12.2 Chain conformations of polysaccharides in different solvents \u003cbr\u003eRanieri Urbani and Attilio Cesaro, Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Italy \u003cbr\u003e12.2.1 Introduction \u003cbr\u003e12.2.2 Structure and conformation of polysaccharides in solution \u003cbr\u003e12.2.2.1 Chemical structure \u003cbr\u003e12.2.2.2 Solution chain conformation \u003cbr\u003e12.2.3 Experimental evidence of solvent effect on oligosaccharide conformational equilibria \u003cbr\u003e12.2.4 Theoretical evaluation of solvent effect on conformational equilibria of sugars \u003cbr\u003e12.2.4.1 Classical molecular mechanics methods \u003cbr\u003e12.2.4.2 Molecular dynamic methods \u003cbr\u003e12.2.5 Solvent effect on chain dimensions and conformations of polysaccharides \u003cbr\u003e12.2.6 Solvent effect on charged polysaccharides and the polyelectrolyte model \u003cbr\u003e12.2.6.1 Experimental behavior of polysaccharides polyelectrolytes \u003cbr\u003e12.2.6.2 The Haug and Smidsrød parameter: description of the salt effect on the chain dimension \u003cbr\u003e12.2.6.3 The statistical thermodynamic counterion-condensation theory of Manning \u003cbr\u003e12.2.6.4 Conformational calculations of charged polysaccharides\u003cbr\u003e16 RESIDUAL SOLVENTS IN PRODUCTS \u003cbr\u003e16.1 Residual solvents in various products \u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Inc., Toronto, Canada \u003cbr\u003e16.2 Residual solvents in pharmaceutical substances \u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthélémy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France \u003cbr\u003e16.2.1 Introduction \u003cbr\u003e16.2.2 Why should we look for RS? \u003cbr\u003e16.2.2.1 Modifying the acceptability of the drug product \u003cbr\u003e16.2.2.2 Modifying the physico-chemical properties of drug su"}
Handbook of Solvents -...
$295.00
{"id":2059094556765,"title":"Handbook of Solvents - 3rd Edition, Volume 1, Properties","handle":"handbook-of-solvents-3rd-edition-volume-1-properties","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-38-3 \u003cbr\u003e\u003cbr\u003ePublished: March 2019\u003cbr\u003ePages 900+x\u003cbr\u003eFigures: 315\u003cbr\u003eTables: 130\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 2 Use, Health \u0026amp; Environment, Databook of Green Solvents, and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003eEach chapter in this volume is focused on a specific aspect of solvent properties which determine its selection, such as effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. The detailed breakdown of the book contents is given in Table of contents.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databooks containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Solvation dynamics: theory and experiments\u003cbr\u003eYogita Silori and Arijit K. De, Indian Institute of Science Education and Research, Knowledge City, India\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e8.2 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Tatyana Rebrova and Alexander Rebrov, Institute for Scintillation Materials, Kharkov, Ukraine\u003cbr\u003e9.3 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski, Boguslaw Pilarski, Augustin Asuero, Anna Michalowska-Kaczmarczyk, Technical University of Cracow, Cracow, Poland and University of Seville Seville, Spain\u003cbr\u003e10 ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS\u003cbr\u003e10.1 Solvent effects on electronic and vibrational spectra\u003cbr\u003eGeorge Wypych\u003cbr\u003e10.2 Dielectric solvent effects on the intensity of light absorption and the radiative rate constant\u003cbr\u003eTai-ichi Shibuya\u003cbr\u003e10.3 Solvatochromic behavior\u003cbr\u003eMalgorzata Wielgus and Wojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e11 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e11.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12 EFFECT OF SOLVENTS ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e12.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfganG Linert, Markus Holzweber, and Roland Schmid, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e12.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia","published_at":"2019-03-18T15:00:01-04:00","created_at":"2019-03-18T14:49:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2019","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","book","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","p-additives","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":20181960851549,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents - 3rd Edition, Volume 1, Properties","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-64-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-38-3.jpg?v=1552935229"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-38-3.jpg?v=1552935229","options":["Title"],"media":[{"alt":null,"id":1423177613405,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-38-3.jpg?v=1552935229"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-38-3.jpg?v=1552935229","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-38-3 \u003cbr\u003e\u003cbr\u003ePublished: March 2019\u003cbr\u003ePages 900+x\u003cbr\u003eFigures: 315\u003cbr\u003eTables: 130\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 2 Use, Health \u0026amp; Environment, Databook of Green Solvents, and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003eEach chapter in this volume is focused on a specific aspect of solvent properties which determine its selection, such as effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. The detailed breakdown of the book contents is given in Table of contents.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databooks containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Solvation dynamics: theory and experiments\u003cbr\u003eYogita Silori and Arijit K. De, Indian Institute of Science Education and Research, Knowledge City, India\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e8.2 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Tatyana Rebrova and Alexander Rebrov, Institute for Scintillation Materials, Kharkov, Ukraine\u003cbr\u003e9.3 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski, Boguslaw Pilarski, Augustin Asuero, Anna Michalowska-Kaczmarczyk, Technical University of Cracow, Cracow, Poland and University of Seville Seville, Spain\u003cbr\u003e10 ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS\u003cbr\u003e10.1 Solvent effects on electronic and vibrational spectra\u003cbr\u003eGeorge Wypych\u003cbr\u003e10.2 Dielectric solvent effects on the intensity of light absorption and the radiative rate constant\u003cbr\u003eTai-ichi Shibuya\u003cbr\u003e10.3 Solvatochromic behavior\u003cbr\u003eMalgorzata Wielgus and Wojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e11 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e11.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12 EFFECT OF SOLVENTS ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e12.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfganG Linert, Markus Holzweber, and Roland Schmid, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e12.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia"}
Handbook of Solvents -...
$295.00
{"id":2059099308125,"title":"Handbook of Solvents - 3rd Edition, Volume 2, Use, Health, and Environment","handle":"handbook-of-solvents-3rd-edition-volume-2-use-health-and-environment","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-41-3 \u003cbr\u003e\u003cbr\u003ePublication date: March 2019\u003cbr\u003eNumber of pages: 930+xii\u003cbr\u003eFigures: 240\u003cbr\u003eTables: 260\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 1 Properties; Databook of Green Solvents; and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003e\u003cbr\u003eThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on the available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. \u003cbr\u003e\u003cbr\u003eChapter 14 contains information on the methods of analysis of solvents and materials containing solvents. The chapter is divided into two sections containing standard and special methods of solvent analysis. This chapter is followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in chapter 16. The chapter also contains discussion of solvents impact on tropospheric air pollution.\u003cbr\u003e\u003cbr\u003eThe next two chapters are devoted to toxicology of solvents and regulations aiming to keep solvents toxicity under control. The analysis of concentration of solvents in more than 15 industries, specific issues related to paint industry, and characteristics of environment in automotive collision repair shops are followed by the thorough discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapters were written by professors and scientists from major centers who study the effects of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show some examples of solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, deep eutectic solvents, and agriculture-based products, such as ethyl lactate. Discussion of solvent recycling, removal, and degradation includes absorptive solvent recovery, comparison of results of recovery and incineration, and application of solar photocatalytic oxidation. \u003cbr\u003e\u003cbr\u003eThe book is concluded with evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils.\u003cbr\u003e\u003cbr\u003eThis comprehensive two volume book has no equal in depth and breadth to any other publication available today Also, Solvent database on CD-ROM is available which contains data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.9 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.10 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.11 Inorganic chemical industry\u003cbr\u003e13.12 Iron and steel industry\u003cbr\u003e13.13 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.14 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.15 Metal casting\u003cbr\u003e13.16 Motor vehicle assembly\u003cbr\u003e13.17 Organic chemical industry\u003cbr\u003e13.18 Paints and coatings\u003cbr\u003e13.18.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.18.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.19 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.20 Pharmaceutical industry\u003cbr\u003e13.20.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.20.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.21 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.22 Printing industry\u003cbr\u003e13.23 Pulp and paper\u003cbr\u003e13.24 Rubber and Plastics\u003cbr\u003e13.25 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.26 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.27 Textile industry\u003cbr\u003e13.28 Transportation equipment cleaning\u003cbr\u003e13.29 Water transportation\u003cbr\u003e13.30 Wood furniture\u003cbr\u003e13.31 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Bart Desmedt\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental chemistry of organic solvents\u003cbr\u003eWilliam R. Roy, USA\u003cbr\u003e16.2 The environmental chemistry of ionic liquids\u003cbr\u003eWilliam R. Roy, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Solvent levels in the vehicle collision repair industry\u003cbr\u003eSamuel Keer, Centre for Public Health Research, Wellington, New Zealand\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Solvent exposure in pregnancy\u003cbr\u003eSC Mitchell, Computational and Systems Medicine, Imperial College, London, UK and RH Waring\u003cbr\u003eSchool of Biosciences, University of Birmingham, UK \u003cbr\u003e19.3 Nephrotoxicity of industrial solvents\u003cbr\u003eNachman Brautbar and Michael P. Wu, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic malignancies among workers exposed to benzene including leukemia, lymphoma, and multiple myeloma\u003cbr\u003eNachman Brautbar, Michael P. Wu, Alexandra E. Rieders, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.5 Genotoxicity of benzene\u003cbr\u003eNachman Brautbar, Michael P. Wu, Alexandra E. Rieders, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.6 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.7 Hepatotoxicity of industrial solvents\u003cbr\u003eNachman Brautbar and Michael P. Wu, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.8 Toxicity of environmental solvent exposure for brain, lung and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney and Johan Jacquemin, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez, Universidad de Oviedo, Spain\u003cbr\u003e20.4 Novel applications of the bio-based solvent ethyl lactate in chemical technology\u003cbr\u003eDavid Villanueva-Bermejo, Department of Agricultural, Food and Nutritional Science, \u003cbr\u003eUniversity of Alberta, Edmonton, Alberta, Canada and Tiziana Fornari, Instituto de Investigación en Ciencias de la Alimentación, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Recovery versus incineration\u003cbr\u003eDanilo Alexander Figueroa Paredes and José Espinosa. INGAR, Avellaneda, Argentina and Antonio Amelio, Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Torino, Italy \u003cbr\u003e21.3 Solvent recovery, recycling, and incineration\u003cbr\u003eGeorge Wypych\u003cbr\u003eChemTec Laboratories, Toronto, Canada\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson,C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2019-03-18T15:00:01-04:00","created_at":"2019-03-18T14:55:10-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["book","degradation","detection","environment","health","lymphohematopoietic study","pharmaceutical","recycling","regulations","solvents","tesing","toxic effects"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":20181988212829,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents - 3rd Edition, Volume 2, Use, Health, and Environment","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-65-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-41-3.jpg?v=1552935531"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-41-3.jpg?v=1552935531","options":["Title"],"media":[{"alt":null,"id":1423181709405,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-41-3.jpg?v=1552935531"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-41-3.jpg?v=1552935531","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-41-3 \u003cbr\u003e\u003cbr\u003ePublication date: March 2019\u003cbr\u003eNumber of pages: 930+xii\u003cbr\u003eFigures: 240\u003cbr\u003eTables: 260\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 1 Properties; Databook of Green Solvents; and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003e\u003cbr\u003eThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on the available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. \u003cbr\u003e\u003cbr\u003eChapter 14 contains information on the methods of analysis of solvents and materials containing solvents. The chapter is divided into two sections containing standard and special methods of solvent analysis. This chapter is followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in chapter 16. The chapter also contains discussion of solvents impact on tropospheric air pollution.\u003cbr\u003e\u003cbr\u003eThe next two chapters are devoted to toxicology of solvents and regulations aiming to keep solvents toxicity under control. The analysis of concentration of solvents in more than 15 industries, specific issues related to paint industry, and characteristics of environment in automotive collision repair shops are followed by the thorough discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapters were written by professors and scientists from major centers who study the effects of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show some examples of solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, deep eutectic solvents, and agriculture-based products, such as ethyl lactate. Discussion of solvent recycling, removal, and degradation includes absorptive solvent recovery, comparison of results of recovery and incineration, and application of solar photocatalytic oxidation. \u003cbr\u003e\u003cbr\u003eThe book is concluded with evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils.\u003cbr\u003e\u003cbr\u003eThis comprehensive two volume book has no equal in depth and breadth to any other publication available today Also, Solvent database on CD-ROM is available which contains data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.9 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.10 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.11 Inorganic chemical industry\u003cbr\u003e13.12 Iron and steel industry\u003cbr\u003e13.13 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.14 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.15 Metal casting\u003cbr\u003e13.16 Motor vehicle assembly\u003cbr\u003e13.17 Organic chemical industry\u003cbr\u003e13.18 Paints and coatings\u003cbr\u003e13.18.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.18.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.19 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.20 Pharmaceutical industry\u003cbr\u003e13.20.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.20.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.21 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.22 Printing industry\u003cbr\u003e13.23 Pulp and paper\u003cbr\u003e13.24 Rubber and Plastics\u003cbr\u003e13.25 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.26 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.27 Textile industry\u003cbr\u003e13.28 Transportation equipment cleaning\u003cbr\u003e13.29 Water transportation\u003cbr\u003e13.30 Wood furniture\u003cbr\u003e13.31 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Bart Desmedt\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental chemistry of organic solvents\u003cbr\u003eWilliam R. Roy, USA\u003cbr\u003e16.2 The environmental chemistry of ionic liquids\u003cbr\u003eWilliam R. Roy, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Solvent levels in the vehicle collision repair industry\u003cbr\u003eSamuel Keer, Centre for Public Health Research, Wellington, New Zealand\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Solvent exposure in pregnancy\u003cbr\u003eSC Mitchell, Computational and Systems Medicine, Imperial College, London, UK and RH Waring\u003cbr\u003eSchool of Biosciences, University of Birmingham, UK \u003cbr\u003e19.3 Nephrotoxicity of industrial solvents\u003cbr\u003eNachman Brautbar and Michael P. Wu, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic malignancies among workers exposed to benzene including leukemia, lymphoma, and multiple myeloma\u003cbr\u003eNachman Brautbar, Michael P. Wu, Alexandra E. Rieders, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.5 Genotoxicity of benzene\u003cbr\u003eNachman Brautbar, Michael P. Wu, Alexandra E. Rieders, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.6 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.7 Hepatotoxicity of industrial solvents\u003cbr\u003eNachman Brautbar and Michael P. Wu, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.8 Toxicity of environmental solvent exposure for brain, lung and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney and Johan Jacquemin, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez, Universidad de Oviedo, Spain\u003cbr\u003e20.4 Novel applications of the bio-based solvent ethyl lactate in chemical technology\u003cbr\u003eDavid Villanueva-Bermejo, Department of Agricultural, Food and Nutritional Science, \u003cbr\u003eUniversity of Alberta, Edmonton, Alberta, Canada and Tiziana Fornari, Instituto de Investigación en Ciencias de la Alimentación, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Recovery versus incineration\u003cbr\u003eDanilo Alexander Figueroa Paredes and José Espinosa. INGAR, Avellaneda, Argentina and Antonio Amelio, Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Torino, Italy \u003cbr\u003e21.3 Solvent recovery, recycling, and incineration\u003cbr\u003eGeorge Wypych\u003cbr\u003eChemTec Laboratories, Toronto, Canada\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson,C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Handbook of Solvents, ...
$295.00
{"id":11242240516,"title":"Handbook of Solvents, Volume 1, Properties","handle":"978-1895198-64-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA","published_at":"2017-06-22T21:14:44-04:00","created_at":"2017-06-22T21:14:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","book","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","p-additives","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents, Volume 1, Properties","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-64-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259","options":["Title"],"media":[{"alt":null,"id":356342956125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA"}
Handbook of Solvents, ...
$295.00
{"id":11242243268,"title":"Handbook of Solvents, Volume 2, Use, Health, and Environment","handle":"978-1-895198-65-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-895198-65-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of pages: 978\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in a separate chapter. This is followed by the analysis of the concentration of solvents in more than 15 and discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapter was written by professors and scientists from major centers who study the effect of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show possibilities in solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, ionic melts, and agriculture-based products. Solvent recycling, removal from contaminated air, and degradation are discussed by experts in these technologies with regard to research and industry manufacturing equipment for safe methods of processing with solvents.\u003cbr\u003e\u003cbr\u003eThe book is concluded with an evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils, selection of gloves, Handbook of Silicon Based MEMS Materials and Technologies, and respirators, and new trends in solvent technology.\u003cbr\u003e\u003cbr\u003eThis comprehensive two-volume book has no equal in depth and breadth to any other publication available today. It contains the most recent finds and additional source data in a separate printed and digital publications, such as\u003cbr\u003eSolvent databook\u003cbr\u003eSolvent database on CD-ROM\u003cbr\u003eThese two publications contain data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\u003cbr\u003eThere are a few chemical companies, universities, research centers, which can conduct their activities without consulting this book.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Electronic industry - CFC-free alternatives for cleaning in electronic industry\u003cbr\u003eMartin Hanek, Norbert Loew, Dr. O. K. Wack Chemie, Ingolstadt, Germany; Andreas Muehlbauer, Zestron Corporation, Ashburn, VA, USA\u003cbr\u003e13.9 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.10 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.11 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.12 Inorganic chemical industry\u003cbr\u003e13.13 Iron and steel industry\u003cbr\u003e13.14 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.15 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.16 Metal casting\u003cbr\u003e13.17 Motor vehicle assembly\u003cbr\u003e13.18 Organic chemical industry\u003cbr\u003e13.19 Paints and coatings\u003cbr\u003e13.19.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.19.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.20 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.21 Pharmaceutical industry\u003cbr\u003e13.21.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.21.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.22 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.23 Printing industry\u003cbr\u003e13.24 Pulp and paper\u003cbr\u003e13.25 Rubber and Plastics\u003cbr\u003e13.26 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.27 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.28 Textile industry\u003cbr\u003e13.29 Transportation equipment cleaning\u003cbr\u003e13.30 Water transportation\u003cbr\u003e13.31 Wood furniture\u003cbr\u003e13.32 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e14.3 Simple test to determine toxicity of bacteria\u003cbr\u003eJames L. Botsford, New Mexico State University, Las Cruces, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Jaques O. De Beer\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental fate and movement of organic solvents in water, soil, and air\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.2 Fate-based management of organic solvent-containing wastes\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Indoor air pollution by solvents contained in paints and varnishes\u003cbr\u003eTilman Hahn, Konrad Botznhart, Fritz Schweinsberg, Gerhard Volland, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e17.4 Solvent uses with exposure risks\u003cbr\u003ePentti Kalliokoski, Kai Savolainen, Finnish Institute of Occupational Health, Helsinki, Finland\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in the US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Pregnancy outcome following maternal organic solvent exposure\u003cbr\u003eGideon Koren, The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada\u003cbr\u003e19.3 Industrial solvents and kidney disease\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic study of workers exposed to benzene including multiple myeloma, lymphoma, and chronic lymphatic leukemia\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.5 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.6 Hepatotoxicity\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.7 Toxicity of environmental solvent exposure for brain, lung, and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney, K.R. Seddon, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez\u003cbr\u003e20.4 Ethyl lactate: a biorenewable agrochemical solvent for food technology\u003cbr\u003eTiziana Fornari, David Villaneuva Bermejo, Guillermo Reglero, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Solvent recovery\u003cbr\u003eIsao Kimura, Kanken Techno Co., Ltd., Osaka, Japan\u003cbr\u003e21.3 Solvent treatment in a paints and coating plant\u003cbr\u003eDenis Kargol, OFRU Recycling GmbH \u0026amp; Co. KG, Babenhausen, Germany\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson, C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003e23 PROTECTION\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e22.1 Gloves\u003cbr\u003e22.2 Suit materials\u003cbr\u003e22.3 Respiratory protection\u003cbr\u003e\u003cbr\u003e24 NEW TRENDS BASED ON PATENT LITERATURE\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003eAcknowledgments\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:53-04:00","created_at":"2017-06-22T21:14:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","degradation","detection","environment","health","lymphohematopoietic study","pharmaceutical","recycling","regulations","solvents","tesing","toxic effects"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444612,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents, Volume 2, Use, Health, and Environment","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-65-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258","options":["Title"],"media":[{"alt":null,"id":356342988893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-895198-65-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of pages: 978\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in a separate chapter. This is followed by the analysis of the concentration of solvents in more than 15 and discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapter was written by professors and scientists from major centers who study the effect of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show possibilities in solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, ionic melts, and agriculture-based products. Solvent recycling, removal from contaminated air, and degradation are discussed by experts in these technologies with regard to research and industry manufacturing equipment for safe methods of processing with solvents.\u003cbr\u003e\u003cbr\u003eThe book is concluded with an evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils, selection of gloves, Handbook of Silicon Based MEMS Materials and Technologies, and respirators, and new trends in solvent technology.\u003cbr\u003e\u003cbr\u003eThis comprehensive two-volume book has no equal in depth and breadth to any other publication available today. It contains the most recent finds and additional source data in a separate printed and digital publications, such as\u003cbr\u003eSolvent databook\u003cbr\u003eSolvent database on CD-ROM\u003cbr\u003eThese two publications contain data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\u003cbr\u003eThere are a few chemical companies, universities, research centers, which can conduct their activities without consulting this book.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Electronic industry - CFC-free alternatives for cleaning in electronic industry\u003cbr\u003eMartin Hanek, Norbert Loew, Dr. O. K. Wack Chemie, Ingolstadt, Germany; Andreas Muehlbauer, Zestron Corporation, Ashburn, VA, USA\u003cbr\u003e13.9 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.10 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.11 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.12 Inorganic chemical industry\u003cbr\u003e13.13 Iron and steel industry\u003cbr\u003e13.14 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.15 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.16 Metal casting\u003cbr\u003e13.17 Motor vehicle assembly\u003cbr\u003e13.18 Organic chemical industry\u003cbr\u003e13.19 Paints and coatings\u003cbr\u003e13.19.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.19.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.20 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.21 Pharmaceutical industry\u003cbr\u003e13.21.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.21.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.22 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.23 Printing industry\u003cbr\u003e13.24 Pulp and paper\u003cbr\u003e13.25 Rubber and Plastics\u003cbr\u003e13.26 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.27 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.28 Textile industry\u003cbr\u003e13.29 Transportation equipment cleaning\u003cbr\u003e13.30 Water transportation\u003cbr\u003e13.31 Wood furniture\u003cbr\u003e13.32 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e14.3 Simple test to determine toxicity of bacteria\u003cbr\u003eJames L. Botsford, New Mexico State University, Las Cruces, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Jaques O. De Beer\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental fate and movement of organic solvents in water, soil, and air\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.2 Fate-based management of organic solvent-containing wastes\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Indoor air pollution by solvents contained in paints and varnishes\u003cbr\u003eTilman Hahn, Konrad Botznhart, Fritz Schweinsberg, Gerhard Volland, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e17.4 Solvent uses with exposure risks\u003cbr\u003ePentti Kalliokoski, Kai Savolainen, Finnish Institute of Occupational Health, Helsinki, Finland\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in the US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Pregnancy outcome following maternal organic solvent exposure\u003cbr\u003eGideon Koren, The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada\u003cbr\u003e19.3 Industrial solvents and kidney disease\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic study of workers exposed to benzene including multiple myeloma, lymphoma, and chronic lymphatic leukemia\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.5 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.6 Hepatotoxicity\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.7 Toxicity of environmental solvent exposure for brain, lung, and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney, K.R. Seddon, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez\u003cbr\u003e20.4 Ethyl lactate: a biorenewable agrochemical solvent for food technology\u003cbr\u003eTiziana Fornari, David Villaneuva Bermejo, Guillermo Reglero, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Solvent recovery\u003cbr\u003eIsao Kimura, Kanken Techno Co., Ltd., Osaka, Japan\u003cbr\u003e21.3 Solvent treatment in a paints and coating plant\u003cbr\u003eDenis Kargol, OFRU Recycling GmbH \u0026amp; Co. KG, Babenhausen, Germany\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson, C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003e23 PROTECTION\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e22.1 Gloves\u003cbr\u003e22.2 Suit materials\u003cbr\u003e22.3 Respiratory protection\u003cbr\u003e\u003cbr\u003e24 NEW TRENDS BASED ON PATENT LITERATURE\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003eAcknowledgments\u003cbr\u003eIndex"}
Handbook of Surface Im...
$320.00
{"id":7703518052509,"title":"Handbook of Surface Improvement and Modification, 2nd Edition","handle":"handbook-of-surface-improvement-and-modification-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003e\n\u003cp\u003e\u003cspan\u003eISBN 978-1- 77467-024-8 (hardcover)\u003c\/span\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: Jan 2023\u003cbr\u003e\u003c\/span\u003ePages 258+iv\u003cbr data-mce-fragment=\"1\"\u003eFigures 129\u003cbr data-mce-fragment=\"1\"\u003eTables 44\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book covers the comprehensive study of surface improvement and modification, including the introduction of a range of processing methods such as physical, chemical, and electrochemical treatments. The fundamentals of theory, design and application are thoroughly discussed. It offers an authoritative view on surface improvement technology to both researchers and practitioners in various industry fields.\u003cbr\u003e\u003cbr\u003eSurface appearance is one of the most important properties of many products. It must be tailored to the product needs, which are frequently very different in various applications.\u003cbr\u003e\u003cbr\u003eThis book is devoted to additives used for surface modification of materials a technology used in the production and processing of adhesives, appliances, automotive, bookbinding, building and construction, business machines, caulks, cellular phones, coatings, concrete, dental applications, electronics, flooring, footwear, furniture, graphic arts, hot-melt adhesives, hygiene, labels, lacquers, leather, lithographic inks, medicine, nanofluids, nonwovens, optical films, packaging, paints, paper, plastics, pressure-sensitive adhesives, printing inks, rubber, sealants, sporting goods, tapes, varnish, wire and cable, wood and many other materials. This book is the first known published book on this subject. The second edition brings, in addition to the verified content of the first edition, the discussion of the most recent findings and achievements in the field. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHandbook of Surface Improvement and Modification\u003c\/strong\u003e contains information on eleven groups of additives that are commercially available for the improvement and surface modification of manufactured materials. These include additives improving scratch and mar resistance, gloss, surface flattening, tack reduction, tack increase (tackifiers), surface tension reduction and wetting, surface cleaning, dirt pickup resistance, hydrophobization, anti-cratering, and leveling, and coefficient of static friction. They are discussed in separate chapters in the same order as above. \u003cbr\u003e\u003cbr\u003eThe highlights for each chapter are as follows.\u003cbr\u003eScratch and mar resistance: many important influences combined form mechanism of protection; scratch features (ironing, transition, stick-slip, tearing) determination; texture patterning and scratch visibility; self-healing; damage observation on nanoscale; violet laser scanning confocal microscope cross-section profile of scratch damage; silsesquioxanes\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGloss enhancement:\u003c\/strong\u003e magnetic resonance imaging measurements of human brain reactions; instrumental measurements; meso- and micro-scale roughness; hyperbranched resins; durability of gloss\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface matting:\u003c\/strong\u003e powder coatings; roughness formation; dull black coatings; curing rate and flattening; low-gloss soft-touch; anti-glare coatings\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTack-free:\u003c\/strong\u003e abhesion features; instrumental surface tack measurement; surface tension; nature-inspired; completeness of cure; dental applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTackifiers:\u003c\/strong\u003e balance of elastic and viscous properties; structure and origin of rosins; phase structure of tackifying system; compatibility; environmental solutions; pharmaceutical, cosmetics, and medical applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface tension and wetting:\u003c\/strong\u003e bottlebrush polymers; rigid-rod polymeric fiber; superhydrophobicity; superhydrophilicity; surface tension prediction; porosity and morphology; wettability surface gradient; surface free energy; bacterial adhesion; photo-induced hydrophilicity; orthopedic implants; high-speed printing; dry-erase inks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface cleaning and stain inhibition:\u003c\/strong\u003e in-source cleaner regeneration; the negative impact of perfluorinated acids; bio-inspired cleaning methods; hole generation and pollutant decomposition; photocatalytic self-cleaning; anti-graffiti coating, graffiti removal\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDirt pickup resistance:\u003c\/strong\u003e HDPE and carnauba waxes; mark and scuff resistance; decorative paints, wood stains, leather lacquers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWater-repelling:\u003c\/strong\u003e biomimetic solutions; superhydrophobic coatings; self-hydrophobization; superamphiphobic surfaces; chemical functionalization, microtextured surface; building structure protection; protection against ice formation\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAnti-cratering and leveling:\u003c\/strong\u003e thixotropic behavior; nanoparticles; leveling agents; superplasticizers; powder coatings; sag-leveling balance; pinhole prevention\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCoefficient of friction:\u003c\/strong\u003e tribometers; speed effect; dwell time effect; surface patterns and textured surfaces; elemental mapping; capillary bridge; human skin; dangling bonds; polymer brushes; lamellar tribofilm; microspheres, release agents; a film with a consistent coefficient of friction\u003cbr\u003e\u003cbr\u003eA companion book entitled \u003cstrong\u003eDatabook of Surface Modification Additives\u003c\/strong\u003e has also been published. It contains information and data on the additives commercially available to improve materials by the above-listed modifications. Both books do not repeat information. In this book, the focus is on the methods and mechanisms which are known to be responsible for the enhancement of material properties with the use of additives. The readers of these books may also be interested in a recently published book entitled \u003cstrong\u003eSelf-healing Materials\u003c\/strong\u003e. Principles \u0026amp; Technology that helps to understand available options in new technologies of surface self-repair. All three books provide the most comprehensive information on the subject of surface improvement available today.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Scratch and Mar Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e2.1 Methods and mechanisms of protection\u003cbr data-mce-fragment=\"1\"\u003e2.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e2.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Gloss Enhancement\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e3.1 Gloss perception\u003cbr data-mce-fragment=\"1\"\u003e3.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e3.3 Methods and mechanisms of gloss enhancement\u003cbr data-mce-fragment=\"1\"\u003e3.4 Durability of gloss\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Surface Matting (Flattening)\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e4.1 Methods and mechanisms of flattening\u003cbr data-mce-fragment=\"1\"\u003e4.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e4.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Tack-free Surface\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e5.1 Methods and mechanisms of tack reduction\u003cbr data-mce-fragment=\"1\"\u003e5.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e5.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e6 Tackifiers\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e6.1 Methods and mechanisms of tack enhancement\u003cbr data-mce-fragment=\"1\"\u003e6.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e6.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e7 Surface Tension and Wetting\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e7.1 Methods and mechanisms of surface tension reduction\u003cbr data-mce-fragment=\"1\"\u003e7.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e7.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e8 Easy Surface Cleaning and Stain Inhibition\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e8.1 Methods and mechanisms of surface cleaning\u003cbr data-mce-fragment=\"1\"\u003e8.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e8.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e9 Dirt Pickup Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e9.1 Methods and mechanisms of dirt pickup prevention\u003cbr data-mce-fragment=\"1\"\u003e9.2 Additives use\u003cbr data-mce-fragment=\"1\"\u003e9.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e10 Water Repelling (Hydrophobization)\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e10.1 Methods and mechanisms of hydrophobization\u003cbr data-mce-fragment=\"1\"\u003e10.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e10.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e11 Anti-cratering and Leveling\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e11.1 Methods and mechanisms of anti-cratering and leveling\u003cbr data-mce-fragment=\"1\"\u003e11.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e11.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e12 The Coefficient of Friction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e12.1 Methods and mechanisms of improvement of the coefficient of friction\u003cbr data-mce-fragment=\"1\"\u003e12.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e12.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2023-02-24T12:51:04-05:00","created_at":"2023-02-24T12:41:36-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2023","additive","additives","anti-cratering","book","cleaning","coefficient of friction","gloss","leveling and anti-cratering","matting","polymer","polymers","surface tension","tack-free surface","tackifiers","wetting"],"price":32000,"price_min":32000,"price_max":32000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43393801814173,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Surface Improvement and Modification, 2nd Edition","public_title":null,"options":["Default Title"],"price":32000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927","options":["Title"],"media":[{"alt":null,"id":27339983683741,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670248-Case_074d6bbf-a222-436c-9fcd-f6cf08276ed3.png?v=1677264927","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003e\n\u003cp\u003e\u003cspan\u003eISBN 978-1- 77467-024-8 (hardcover)\u003c\/span\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: Jan 2023\u003cbr\u003e\u003c\/span\u003ePages 258+iv\u003cbr data-mce-fragment=\"1\"\u003eFigures 129\u003cbr data-mce-fragment=\"1\"\u003eTables 44\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThis book covers the comprehensive study of surface improvement and modification, including the introduction of a range of processing methods such as physical, chemical, and electrochemical treatments. The fundamentals of theory, design and application are thoroughly discussed. It offers an authoritative view on surface improvement technology to both researchers and practitioners in various industry fields.\u003cbr\u003e\u003cbr\u003eSurface appearance is one of the most important properties of many products. It must be tailored to the product needs, which are frequently very different in various applications.\u003cbr\u003e\u003cbr\u003eThis book is devoted to additives used for surface modification of materials a technology used in the production and processing of adhesives, appliances, automotive, bookbinding, building and construction, business machines, caulks, cellular phones, coatings, concrete, dental applications, electronics, flooring, footwear, furniture, graphic arts, hot-melt adhesives, hygiene, labels, lacquers, leather, lithographic inks, medicine, nanofluids, nonwovens, optical films, packaging, paints, paper, plastics, pressure-sensitive adhesives, printing inks, rubber, sealants, sporting goods, tapes, varnish, wire and cable, wood and many other materials. This book is the first known published book on this subject. The second edition brings, in addition to the verified content of the first edition, the discussion of the most recent findings and achievements in the field. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eHandbook of Surface Improvement and Modification\u003c\/strong\u003e contains information on eleven groups of additives that are commercially available for the improvement and surface modification of manufactured materials. These include additives improving scratch and mar resistance, gloss, surface flattening, tack reduction, tack increase (tackifiers), surface tension reduction and wetting, surface cleaning, dirt pickup resistance, hydrophobization, anti-cratering, and leveling, and coefficient of static friction. They are discussed in separate chapters in the same order as above. \u003cbr\u003e\u003cbr\u003eThe highlights for each chapter are as follows.\u003cbr\u003eScratch and mar resistance: many important influences combined form mechanism of protection; scratch features (ironing, transition, stick-slip, tearing) determination; texture patterning and scratch visibility; self-healing; damage observation on nanoscale; violet laser scanning confocal microscope cross-section profile of scratch damage; silsesquioxanes\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eGloss enhancement:\u003c\/strong\u003e magnetic resonance imaging measurements of human brain reactions; instrumental measurements; meso- and micro-scale roughness; hyperbranched resins; durability of gloss\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface matting:\u003c\/strong\u003e powder coatings; roughness formation; dull black coatings; curing rate and flattening; low-gloss soft-touch; anti-glare coatings\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTack-free:\u003c\/strong\u003e abhesion features; instrumental surface tack measurement; surface tension; nature-inspired; completeness of cure; dental applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eTackifiers:\u003c\/strong\u003e balance of elastic and viscous properties; structure and origin of rosins; phase structure of tackifying system; compatibility; environmental solutions; pharmaceutical, cosmetics, and medical applications\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface tension and wetting:\u003c\/strong\u003e bottlebrush polymers; rigid-rod polymeric fiber; superhydrophobicity; superhydrophilicity; surface tension prediction; porosity and morphology; wettability surface gradient; surface free energy; bacterial adhesion; photo-induced hydrophilicity; orthopedic implants; high-speed printing; dry-erase inks \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSurface cleaning and stain inhibition:\u003c\/strong\u003e in-source cleaner regeneration; the negative impact of perfluorinated acids; bio-inspired cleaning methods; hole generation and pollutant decomposition; photocatalytic self-cleaning; anti-graffiti coating, graffiti removal\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDirt pickup resistance:\u003c\/strong\u003e HDPE and carnauba waxes; mark and scuff resistance; decorative paints, wood stains, leather lacquers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eWater-repelling:\u003c\/strong\u003e biomimetic solutions; superhydrophobic coatings; self-hydrophobization; superamphiphobic surfaces; chemical functionalization, microtextured surface; building structure protection; protection against ice formation\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eAnti-cratering and leveling:\u003c\/strong\u003e thixotropic behavior; nanoparticles; leveling agents; superplasticizers; powder coatings; sag-leveling balance; pinhole prevention\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eCoefficient of friction:\u003c\/strong\u003e tribometers; speed effect; dwell time effect; surface patterns and textured surfaces; elemental mapping; capillary bridge; human skin; dangling bonds; polymer brushes; lamellar tribofilm; microspheres, release agents; a film with a consistent coefficient of friction\u003cbr\u003e\u003cbr\u003eA companion book entitled \u003cstrong\u003eDatabook of Surface Modification Additives\u003c\/strong\u003e has also been published. It contains information and data on the additives commercially available to improve materials by the above-listed modifications. Both books do not repeat information. In this book, the focus is on the methods and mechanisms which are known to be responsible for the enhancement of material properties with the use of additives. The readers of these books may also be interested in a recently published book entitled \u003cstrong\u003eSelf-healing Materials\u003c\/strong\u003e. Principles \u0026amp; Technology that helps to understand available options in new technologies of surface self-repair. All three books provide the most comprehensive information on the subject of surface improvement available today.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e2 Scratch and Mar Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e2.1 Methods and mechanisms of protection\u003cbr data-mce-fragment=\"1\"\u003e2.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e2.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e3 Gloss Enhancement\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e3.1 Gloss perception\u003cbr data-mce-fragment=\"1\"\u003e3.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e3.3 Methods and mechanisms of gloss enhancement\u003cbr data-mce-fragment=\"1\"\u003e3.4 Durability of gloss\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e4 Surface Matting (Flattening)\u003c\/strong\u003e \u003cbr data-mce-fragment=\"1\"\u003e4.1 Methods and mechanisms of flattening\u003cbr data-mce-fragment=\"1\"\u003e4.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e4.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e5 Tack-free Surface\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e5.1 Methods and mechanisms of tack reduction\u003cbr data-mce-fragment=\"1\"\u003e5.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e5.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e6 Tackifiers\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e6.1 Methods and mechanisms of tack enhancement\u003cbr data-mce-fragment=\"1\"\u003e6.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e6.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e7 Surface Tension and Wetting\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e7.1 Methods and mechanisms of surface tension reduction\u003cbr data-mce-fragment=\"1\"\u003e7.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e7.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e8 Easy Surface Cleaning and Stain Inhibition\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e8.1 Methods and mechanisms of surface cleaning\u003cbr data-mce-fragment=\"1\"\u003e8.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e8.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e9 Dirt Pickup Resistance\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e9.1 Methods and mechanisms of dirt pickup prevention\u003cbr data-mce-fragment=\"1\"\u003e9.2 Additives use\u003cbr data-mce-fragment=\"1\"\u003e9.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e10 Water Repelling (Hydrophobization)\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e10.1 Methods and mechanisms of hydrophobization\u003cbr data-mce-fragment=\"1\"\u003e10.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e10.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e11 Anti-cratering and Leveling\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e11.1 Methods and mechanisms of anti-cratering and leveling\u003cbr data-mce-fragment=\"1\"\u003e11.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e11.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cstrong\u003e12 The Coefficient of Friction\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e12.1 Methods and mechanisms of improvement of the coefficient of friction\u003cbr data-mce-fragment=\"1\"\u003e12.2 Additives used\u003cbr data-mce-fragment=\"1\"\u003e12.3 Application data\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cmeta charset=\"utf-8\"\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Thermoplas...
$240.00
{"id":11242218116,"title":"Handbook of Thermoplastic Elastomers","handle":"978-08155-1549-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jiri George Drobny \u003cbr\u003eISBN 978-08155-1549-4 \u003cbr\u003e\u003cbr\u003ePages: 736 pp, Hardback, 315 Illustrations\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermoplastic elastomers are one of the most in-demand groups of materials today. Their most attractive feature is that they can be processed like plastics, yet they exhibit properties that are close to vulcanized rubber. Consequently, they can be produced in a highly cost-effective way, using short production cycles, with a considerably reduced energy consumption, and minimum production scrap. Moreover, because they are thermoplastics, production scrap as well as post-consumer scrap can be easily recycled.\u003cbr\u003e\u003cbr\u003eThis unique practical reference work compiles in one place the current working knowledge of chemistry, processing, physical and mechanical properties, as well as applications of thermoplastic elastomers. Because of the great number of thermoplastic elastomers and the variety of chemistries involved, the work is divided into chapters describing individual commercial groups. A significant part of this book is dedicated to processing methods, applications, and material data sheets. Chapters on processing methods and applications are enhanced with ample illustrations. Each chapter includes a comprehensive list of references for a more in-depth study. Other features are a list of current suppliers, ISO nomenclature, an extensive bibliography, a list of recent patents and a glossary of terms. The work is concluded by a chapter on newest developments and trends.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Elasticity and Elastomers \u003cbr\u003e1.2 Thermoplastic Elastomers \u003cbr\u003e\u003cstrong\u003e2 Brief History of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Additives\u003c\/strong\u003e\u003cbr\u003e3.1 Antioxidants \u003cbr\u003e3.2 Light Stabilizers \u003cbr\u003e3.3 Nucleating Agents \u003cbr\u003e3.4 Flame Retardants \u003cbr\u003e3.5 Colorants \u003cbr\u003e3.6 Antistatic Agents \u003cbr\u003e3.7 Slip Agents \u003cbr\u003e3.8 Antiblocking Agents \u003cbr\u003e3.9 Processing Aids \u003cbr\u003e3.10 Fillers and Reinforcements \u003cbr\u003e3.11 Plasticizers \u003cbr\u003e3.12 Other Additives \u003cbr\u003e3.13 Selection of Additives \u003cbr\u003e3.14 Health, Hygiene, and Safety \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4 Processing Methods Applicable to Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Mixing and Blending \u003cbr\u003e4.3 Extrusion \u003cbr\u003e4.4 Injection Molding \u003cbr\u003e4.5 Compression Molding \u003cbr\u003e4.6 Transfer Molding \u003cbr\u003e4.7 Blow Molding \u003cbr\u003e4.8 Rotational Molding \u003cbr\u003e4.9 Foaming of Thermoplastics \u003cbr\u003e4.10 Thermoforming \u003cbr\u003e4.11 Calendering \u003cbr\u003e4.12 Secondary Manufacturing Processes \u003cbr\u003e4.13 General Processing Technology of TPEs \u003cbr\u003e4.14 Process Simulation \u003cbr\u003e4.15 Product Development and Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Styrenic Block Copolymers\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Polystyrene– Polydiene Block Copolymers \u003cbr\u003e5.3 SBCs Synthesized by Carbocationic Polymerization \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Thermoplastic Elastomers Prepared by Dynamic Vulcanization\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 The Dynamic Vulcanization Process \u003cbr\u003e6.3 Properties of Blends Prepared by Dynamic Vulcanization \u003cbr\u003e6.4 Processing and Fabrication of TPVs \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e7 Polyolefin-Based Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Thermoplastic Polyolefin Blends \u003cbr\u003e7.3 Morphology \u003cbr\u003e7.4 Properties of TPOs \u003cbr\u003e7.5 Processing of TPOs \u003cbr\u003e7.6 Painting of TPOs\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Thermoplastic Elastomers Based on Halogen-Containing Polyolefins\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Blends of PVC with Nitrile Rubber (NBR) \u003cbr\u003e8.3 Blends of PVC with Other Elastomers \u003cbr\u003e8.4 Melt-Processable Rubber \u003cbr\u003e8.5 Thermoplastic Fluorocarbon Elastomer \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Thermoplastic Polyurethane Elastomers\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Synthesis of TPUs \u003cbr\u003e9.3 Morphology \u003cbr\u003e9.4 Thermal Transitions \u003cbr\u003e9.5 Properties \u003cbr\u003e9.6 Processing of TPUs \u003cbr\u003e9.7 Blends of TPU with Other Polymers \u003cbr\u003e9.8 Bonding and Welding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Thermoplastic Elastomers Based on Polyamides\u003c\/strong\u003e\u003cbr\u003e10.1 Introduction \u003cbr\u003e10.2 Synthesis \u003cbr\u003e10.3 Morphology \u003cbr\u003e10.4 Structure– Property Relationships \u003cbr\u003e10.5 Physical and Mechanical Properties \u003cbr\u003e10.6 Chemical and Solvent Resistance \u003cbr\u003e10.7 Electrical Properties \u003cbr\u003e10.8 Other Properties \u003cbr\u003e10.9 Compounding \u003cbr\u003e10.10 Processing \u003cbr\u003e10.11 Bonding and Welding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Thermoplastic Polyether Ester Elastomers\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Synthesis \u003cbr\u003e11.3 Morphology \u003cbr\u003e11.4 Properties of Commercial COPEs \u003cbr\u003e11.5 COPE Blends \u003cbr\u003e11.6 Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 Ionomeric Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Synthesis \u003cbr\u003e12.3 Morphology \u003cbr\u003e12.4 Properties and Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 Other Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e13.1 Elastomeric Star Block Copolymers \u003cbr\u003e13.2 TPEs Based on Interpenetrating Networks \u003cbr\u003e13.3 TPE Based on Polyacrylates \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 Thermoplastic Elastomers Based on Recycled Rubber and Plastics\u003c\/strong\u003e\u003cbr\u003e14.1 Introduction \u003cbr\u003e14.2 EPDM Scrap \u003cbr\u003e14.3 Butadiene-acrylonitrile Rubber (NBR) Scrap \u003cbr\u003e14.4 Recycled Rubber \u003cbr\u003e14.5 Waste Latex \u003cbr\u003e14.6 Waste Plastics \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 Applications of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e15.1 Introduction \u003cbr\u003e15.2 Applications for Styrenic TPEs \u003cbr\u003e15.3 Applications of Thermoplastic Vulcanizates (TPVs) and ETPVs \u003cbr\u003e15.4 Applications of Thermoplastic Polyolefin Elastomers (TPOs) \u003cbr\u003e15.5 Applications of Melt-Processable Rubber (MPR) \u003cbr\u003e15.6 Applications of PVC Blends \u003cbr\u003e15.7 Application of TPUs \u003cbr\u003e15.8 Application of Thermoplastic Polyether Ester Elastomers \u003cbr\u003e15.9 Applications of Polyamide TPEs \u003cbr\u003e15.10 Applications of Ionomeric TPEs \u003cbr\u003e15.11 Applications of Other TPEs \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 Recycling of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e16.1 Introduction \u003cbr\u003e16.2 Recycling Methods for Thermoplastic Elastomers (TPEs) \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 Recent Developments and Trends\u003c\/strong\u003e\u003cbr\u003e17.1 Current State \u003cbr\u003e17.2 Drivers for the Growth of TPEs \u003cbr\u003e17.3 Trends in Technical Development \u003cbr\u003e17.4 Other New Developments \u003cbr\u003eAppendix 1: Books, Conferences, Major Review Articles \u003cbr\u003eAppendix 2: Major Suppliers of Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 3: ISO Nomenclature for Thermoplastic Elastomers \u003cbr\u003eAppendix 4: Processing Data Sheets for Commercial Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 5: Technical Data Sheets for Commercial Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 6: Recent TPE Patents \u003cbr\u003eGlossary \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDrobny Polymer Associates, Inc.\u003cbr\u003eJiri George Drobny is a world renowned authority in the field of thermoplastic elastomers. His career spans over 40 years in the rubber and plastic processing industries in worldwide. He has been sought after for his multifaceted contributions to the field as an educator, lecturer, prolific author, and esteemed consultant.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:35-04:00","created_at":"2017-06-22T21:13:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additives","antiblocking","antioxidante","antistatics","book","calendering","compression","elasticity","elastomers","fillers","mixing extrusion","molding","moulding","NBR","p-chemistry","plasticizers","polymer","polyolefines blends","PVC blends","recycling","stabilizers","thermoplastics","TPE","TPU"],"price":24000,"price_min":24000,"price_max":24000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378361668,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thermoplastic Elastomers","public_title":null,"options":["Default Title"],"price":24000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-08155-1549-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-08155-1549-4.jpg?v=1499472490"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-08155-1549-4.jpg?v=1499472490","options":["Title"],"media":[{"alt":null,"id":356343119965,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-08155-1549-4.jpg?v=1499472490"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-08155-1549-4.jpg?v=1499472490","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jiri George Drobny \u003cbr\u003eISBN 978-08155-1549-4 \u003cbr\u003e\u003cbr\u003ePages: 736 pp, Hardback, 315 Illustrations\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermoplastic elastomers are one of the most in-demand groups of materials today. Their most attractive feature is that they can be processed like plastics, yet they exhibit properties that are close to vulcanized rubber. Consequently, they can be produced in a highly cost-effective way, using short production cycles, with a considerably reduced energy consumption, and minimum production scrap. Moreover, because they are thermoplastics, production scrap as well as post-consumer scrap can be easily recycled.\u003cbr\u003e\u003cbr\u003eThis unique practical reference work compiles in one place the current working knowledge of chemistry, processing, physical and mechanical properties, as well as applications of thermoplastic elastomers. Because of the great number of thermoplastic elastomers and the variety of chemistries involved, the work is divided into chapters describing individual commercial groups. A significant part of this book is dedicated to processing methods, applications, and material data sheets. Chapters on processing methods and applications are enhanced with ample illustrations. Each chapter includes a comprehensive list of references for a more in-depth study. Other features are a list of current suppliers, ISO nomenclature, an extensive bibliography, a list of recent patents and a glossary of terms. The work is concluded by a chapter on newest developments and trends.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e\u003cstrong\u003e1 Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Elasticity and Elastomers \u003cbr\u003e1.2 Thermoplastic Elastomers \u003cbr\u003e\u003cstrong\u003e2 Brief History of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Additives\u003c\/strong\u003e\u003cbr\u003e3.1 Antioxidants \u003cbr\u003e3.2 Light Stabilizers \u003cbr\u003e3.3 Nucleating Agents \u003cbr\u003e3.4 Flame Retardants \u003cbr\u003e3.5 Colorants \u003cbr\u003e3.6 Antistatic Agents \u003cbr\u003e3.7 Slip Agents \u003cbr\u003e3.8 Antiblocking Agents \u003cbr\u003e3.9 Processing Aids \u003cbr\u003e3.10 Fillers and Reinforcements \u003cbr\u003e3.11 Plasticizers \u003cbr\u003e3.12 Other Additives \u003cbr\u003e3.13 Selection of Additives \u003cbr\u003e3.14 Health, Hygiene, and Safety \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4 Processing Methods Applicable to Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Mixing and Blending \u003cbr\u003e4.3 Extrusion \u003cbr\u003e4.4 Injection Molding \u003cbr\u003e4.5 Compression Molding \u003cbr\u003e4.6 Transfer Molding \u003cbr\u003e4.7 Blow Molding \u003cbr\u003e4.8 Rotational Molding \u003cbr\u003e4.9 Foaming of Thermoplastics \u003cbr\u003e4.10 Thermoforming \u003cbr\u003e4.11 Calendering \u003cbr\u003e4.12 Secondary Manufacturing Processes \u003cbr\u003e4.13 General Processing Technology of TPEs \u003cbr\u003e4.14 Process Simulation \u003cbr\u003e4.15 Product Development and Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Styrenic Block Copolymers\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 Polystyrene– Polydiene Block Copolymers \u003cbr\u003e5.3 SBCs Synthesized by Carbocationic Polymerization \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Thermoplastic Elastomers Prepared by Dynamic Vulcanization\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 The Dynamic Vulcanization Process \u003cbr\u003e6.3 Properties of Blends Prepared by Dynamic Vulcanization \u003cbr\u003e6.4 Processing and Fabrication of TPVs \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e7 Polyolefin-Based Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction \u003cbr\u003e7.2 Thermoplastic Polyolefin Blends \u003cbr\u003e7.3 Morphology \u003cbr\u003e7.4 Properties of TPOs \u003cbr\u003e7.5 Processing of TPOs \u003cbr\u003e7.6 Painting of TPOs\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Thermoplastic Elastomers Based on Halogen-Containing Polyolefins\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction \u003cbr\u003e8.2 Blends of PVC with Nitrile Rubber (NBR) \u003cbr\u003e8.3 Blends of PVC with Other Elastomers \u003cbr\u003e8.4 Melt-Processable Rubber \u003cbr\u003e8.5 Thermoplastic Fluorocarbon Elastomer \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Thermoplastic Polyurethane Elastomers\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction \u003cbr\u003e9.2 Synthesis of TPUs \u003cbr\u003e9.3 Morphology \u003cbr\u003e9.4 Thermal Transitions \u003cbr\u003e9.5 Properties \u003cbr\u003e9.6 Processing of TPUs \u003cbr\u003e9.7 Blends of TPU with Other Polymers \u003cbr\u003e9.8 Bonding and Welding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Thermoplastic Elastomers Based on Polyamides\u003c\/strong\u003e\u003cbr\u003e10.1 Introduction \u003cbr\u003e10.2 Synthesis \u003cbr\u003e10.3 Morphology \u003cbr\u003e10.4 Structure– Property Relationships \u003cbr\u003e10.5 Physical and Mechanical Properties \u003cbr\u003e10.6 Chemical and Solvent Resistance \u003cbr\u003e10.7 Electrical Properties \u003cbr\u003e10.8 Other Properties \u003cbr\u003e10.9 Compounding \u003cbr\u003e10.10 Processing \u003cbr\u003e10.11 Bonding and Welding \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Thermoplastic Polyether Ester Elastomers\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction \u003cbr\u003e11.2 Synthesis \u003cbr\u003e11.3 Morphology \u003cbr\u003e11.4 Properties of Commercial COPEs \u003cbr\u003e11.5 COPE Blends \u003cbr\u003e11.6 Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e12 Ionomeric Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e12.1 Introduction \u003cbr\u003e12.2 Synthesis \u003cbr\u003e12.3 Morphology \u003cbr\u003e12.4 Properties and Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e13 Other Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e13.1 Elastomeric Star Block Copolymers \u003cbr\u003e13.2 TPEs Based on Interpenetrating Networks \u003cbr\u003e13.3 TPE Based on Polyacrylates \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e14 Thermoplastic Elastomers Based on Recycled Rubber and Plastics\u003c\/strong\u003e\u003cbr\u003e14.1 Introduction \u003cbr\u003e14.2 EPDM Scrap \u003cbr\u003e14.3 Butadiene-acrylonitrile Rubber (NBR) Scrap \u003cbr\u003e14.4 Recycled Rubber \u003cbr\u003e14.5 Waste Latex \u003cbr\u003e14.6 Waste Plastics \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e15 Applications of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e15.1 Introduction \u003cbr\u003e15.2 Applications for Styrenic TPEs \u003cbr\u003e15.3 Applications of Thermoplastic Vulcanizates (TPVs) and ETPVs \u003cbr\u003e15.4 Applications of Thermoplastic Polyolefin Elastomers (TPOs) \u003cbr\u003e15.5 Applications of Melt-Processable Rubber (MPR) \u003cbr\u003e15.6 Applications of PVC Blends \u003cbr\u003e15.7 Application of TPUs \u003cbr\u003e15.8 Application of Thermoplastic Polyether Ester Elastomers \u003cbr\u003e15.9 Applications of Polyamide TPEs \u003cbr\u003e15.10 Applications of Ionomeric TPEs \u003cbr\u003e15.11 Applications of Other TPEs \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e16 Recycling of Thermoplastic Elastomers\u003c\/strong\u003e\u003cbr\u003e16.1 Introduction \u003cbr\u003e16.2 Recycling Methods for Thermoplastic Elastomers (TPEs) \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e17 Recent Developments and Trends\u003c\/strong\u003e\u003cbr\u003e17.1 Current State \u003cbr\u003e17.2 Drivers for the Growth of TPEs \u003cbr\u003e17.3 Trends in Technical Development \u003cbr\u003e17.4 Other New Developments \u003cbr\u003eAppendix 1: Books, Conferences, Major Review Articles \u003cbr\u003eAppendix 2: Major Suppliers of Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 3: ISO Nomenclature for Thermoplastic Elastomers \u003cbr\u003eAppendix 4: Processing Data Sheets for Commercial Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 5: Technical Data Sheets for Commercial Thermoplastic Elastomers and Compounds \u003cbr\u003eAppendix 6: Recent TPE Patents \u003cbr\u003eGlossary \u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDrobny Polymer Associates, Inc.\u003cbr\u003eJiri George Drobny is a world renowned authority in the field of thermoplastic elastomers. His career spans over 40 years in the rubber and plastic processing industries in worldwide. He has been sought after for his multifaceted contributions to the field as an educator, lecturer, prolific author, and esteemed consultant.\u003cbr\u003e\u003cbr\u003e"}
Handbook of Thermoset ...
$249.00
{"id":11242243140,"title":"Handbook of Thermoset Plastics, 3rd Edition","handle":"9781455731077","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dodiuk \u0026amp; Goodman \u003cbr\u003eISBN 9781455731077 \u003cbr\u003e\u003cbr\u003e800 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Goodman and Dodiuk-Kenig provide a comprehensive reference guide to the chemistry, manufacturing, and applications of thermosets.\u003cbr\u003e\u003cbr\u003e• Updated to include recent developments in manufacturing - from biopolymers to nanocomposites.\u003cbr\u003e\u003cbr\u003e• Case Studies illustrate applications of key thermoset plastics.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermosetting plastics are a distinct category of plastics whose high performance, durability and reliability at high temperatures make them suitable for specialty applications ranging from automotive and aerospace through to electronic packaging and consumer products (your melamine kitchen worktop is a thermoset resin!). Recent developments in thermoset plastics technology and processes has broadened their use exponentially over recent years, and these developments continue: in November 2011, French scientists created a new lightweight thermoset that is as strong and stable as previous materials yet can be easily reworked and reshaped when heated which makes it unique amongst thermosets and allows for repair and recycling.\u003cbr\u003e\u003cbr\u003eThe Handbook of Thermoset Plastics, now in its 3rd edition, provides a comprehensive survey of the chemical processes, manufacturing techniques and design properties of each polymer, along with their applications. Written by a team of highly experienced practitioners, the practical implications of using thermoset plastics are presented - both their strengths and weaknesses. The data and descriptions presented here enable engineers, scientists, and technicians to form judgments and take action on the basis of informed analysis. The aim of the book is to help the reader to make the right decision and take the correct action - avoiding the pitfalls the authors’ experience has uncovered.\u003cbr\u003e\u003cbr\u003eThe new edition has been updated throughout to reflect current practice in manufacturing and processing, featuring:\u003cbr\u003e\u003cbr\u003e• Case Studies to demonstrate how particular properties make different polymers suitable for different applications, as well as covering end-use and safety considerations.\u003cbr\u003e\u003cbr\u003e• A new chapter on using nanoparticles to enhance thermal and mechanical properties.\u003cbr\u003e\u003cbr\u003e• A new chapter describing new materials based on renewable resources (such as soy-based thermoset plastics).\u003cbr\u003e\u003cbr\u003e• A new chapter covering recent developments and potential future technologies such as new catalysts for Controlled Radical Polymerization.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, chemical engineers, polymer chemists, design engineers, manufacturing engineers and technicians, students of polymer engineering and chemistry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.Phenol-Formaldehyde Resins \u003cbr\u003e3.Polybenzoxazines-New Generation Phenolic Resins \u003cbr\u003e4.Aminoresins \u003cbr\u003e5.Furan Resins \u003cbr\u003e6.Unsaturated Polyester and Vinyl Ester Resins\u003cbr\u003e7.Allyls\u003cbr\u003e8.Epoxy Resins\u003cbr\u003e9.Thermo and Chemoset Polyurethanes \u003cbr\u003e10.Aromatic Polyimides and High-Temperature Resistant Thermoset Polymers: Research, Development and Engineering Applications\u003cbr\u003e11.Cyanate Ester Resins\u003cbr\u003e12.Maleimide Based Alder-Ene Thermosets: Recent Advances\u003cbr\u003e13.Syntactic Foams Based on Thermoset Polymers \u003cbr\u003e14.Silicones\u003cbr\u003e15.Thermosets from Renewable Sources\u003cbr\u003e16.Nanotechnology Based Thermosets\u003cbr\u003e17.Crosslinked Thermoplastics\u003cbr\u003e18.Processing of Thermoset Resins","published_at":"2017-06-22T21:14:53-04:00","created_at":"2017-06-22T21:14:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","Bakelite","book","composite materials","material","nanoparticles","plastics","polymers","thermoset","thermoset applications","thermoset chemistry","thermoset manufacturing"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444484,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thermoset Plastics, 3rd Edition","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781455731077","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781455731077.jpg?v=1499472588"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731077.jpg?v=1499472588","options":["Title"],"media":[{"alt":null,"id":356343185501,"position":1,"preview_image":{"aspect_ratio":0.784,"height":499,"width":391,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731077.jpg?v=1499472588"},"aspect_ratio":0.784,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731077.jpg?v=1499472588","width":391}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dodiuk \u0026amp; Goodman \u003cbr\u003eISBN 9781455731077 \u003cbr\u003e\u003cbr\u003e800 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• Goodman and Dodiuk-Kenig provide a comprehensive reference guide to the chemistry, manufacturing, and applications of thermosets.\u003cbr\u003e\u003cbr\u003e• Updated to include recent developments in manufacturing - from biopolymers to nanocomposites.\u003cbr\u003e\u003cbr\u003e• Case Studies illustrate applications of key thermoset plastics.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermosetting plastics are a distinct category of plastics whose high performance, durability and reliability at high temperatures make them suitable for specialty applications ranging from automotive and aerospace through to electronic packaging and consumer products (your melamine kitchen worktop is a thermoset resin!). Recent developments in thermoset plastics technology and processes has broadened their use exponentially over recent years, and these developments continue: in November 2011, French scientists created a new lightweight thermoset that is as strong and stable as previous materials yet can be easily reworked and reshaped when heated which makes it unique amongst thermosets and allows for repair and recycling.\u003cbr\u003e\u003cbr\u003eThe Handbook of Thermoset Plastics, now in its 3rd edition, provides a comprehensive survey of the chemical processes, manufacturing techniques and design properties of each polymer, along with their applications. Written by a team of highly experienced practitioners, the practical implications of using thermoset plastics are presented - both their strengths and weaknesses. The data and descriptions presented here enable engineers, scientists, and technicians to form judgments and take action on the basis of informed analysis. The aim of the book is to help the reader to make the right decision and take the correct action - avoiding the pitfalls the authors’ experience has uncovered.\u003cbr\u003e\u003cbr\u003eThe new edition has been updated throughout to reflect current practice in manufacturing and processing, featuring:\u003cbr\u003e\u003cbr\u003e• Case Studies to demonstrate how particular properties make different polymers suitable for different applications, as well as covering end-use and safety considerations.\u003cbr\u003e\u003cbr\u003e• A new chapter on using nanoparticles to enhance thermal and mechanical properties.\u003cbr\u003e\u003cbr\u003e• A new chapter describing new materials based on renewable resources (such as soy-based thermoset plastics).\u003cbr\u003e\u003cbr\u003e• A new chapter covering recent developments and potential future technologies such as new catalysts for Controlled Radical Polymerization.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003ePlastics engineers, chemical engineers, polymer chemists, design engineers, manufacturing engineers and technicians, students of polymer engineering and chemistry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.Phenol-Formaldehyde Resins \u003cbr\u003e3.Polybenzoxazines-New Generation Phenolic Resins \u003cbr\u003e4.Aminoresins \u003cbr\u003e5.Furan Resins \u003cbr\u003e6.Unsaturated Polyester and Vinyl Ester Resins\u003cbr\u003e7.Allyls\u003cbr\u003e8.Epoxy Resins\u003cbr\u003e9.Thermo and Chemoset Polyurethanes \u003cbr\u003e10.Aromatic Polyimides and High-Temperature Resistant Thermoset Polymers: Research, Development and Engineering Applications\u003cbr\u003e11.Cyanate Ester Resins\u003cbr\u003e12.Maleimide Based Alder-Ene Thermosets: Recent Advances\u003cbr\u003e13.Syntactic Foams Based on Thermoset Polymers \u003cbr\u003e14.Silicones\u003cbr\u003e15.Thermosets from Renewable Sources\u003cbr\u003e16.Nanotechnology Based Thermosets\u003cbr\u003e17.Crosslinked Thermoplastics\u003cbr\u003e18.Processing of Thermoset Resins"}
Handbook of Thermoset ...
$145.00
{"id":11242228548,"title":"Handbook of Thermoset Plastics, Second Edition","handle":"0-8155-1421-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sidney H. Goodman \u003cbr\u003eISBN 0-8155-1421-2 \u003cbr\u003e\u003cbr\u003ePages: 525, Figures: 160, Tables: 165\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Handbook of Thermoset Plastics is specifically aimed to help engineers, chemists, physicists, and students who need general, as well as technical, details concerning everything from historical data and terminology to highly specific curing and staging data. It is written so that both non-specialists and specialists can follow along easily while making available in-depth data for those who wish to expand their knowledge into new areas of expertise.\u003cbr\u003eThe thermoset plastics technology has increasingly become important to designers and users who work in specialty applications. Everything from toys to medical devices, and from automotive to sports and recreation products, are being manufactured using thermoset plastics. An increased understanding of thermoset plastics technology and processes has broadened their use exponentially over the last few years. In fact, the importance and contributions of unsaturated polyesters, urethanes, and epoxy thermosets have driven unprecedented sales and production figures that approach the definition of commodity materials.\u003cbr\u003eAs a survey of the technology, the handbook provides the reader with the practical implications of crosslinking, as well as establishing relationships between time, temperature, and mass often ignored in the general overviews allotted to thermoset plastics in other handbooks. The Handbook of Thermoset Plastics offers the complete collection of general and technical details available on this important subject.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction (history, definitions, crosslinking and curing, the influence of time, temperature, and mass, shelflife and pot life, curing, staging, stoichiometric considerations, prepolymerization and adducting). \u003cbr\u003e2. Phenol-formaldehyde (introduction, raw materials, resinification (production) of phenol-formaldehyde resins, phenolic resins in friction materials, phenolic resins trade names and manufacturers).\u003cbr\u003e3. Amino and furan resins (introduction, raw materials, amino resins, furan resins, properties of amino and furan resins, trade names).\u003cbr\u003e4. Unsaturated polyester and vinyl ester resins (unsaturated polyesters, vinyl ester resins, compounding of unsaturated polyester and vinyl ester resins, applicable manufacturing processes, recent developments, trade names and manufacturers of unsaturated polyester and vinyl esters).\u003cbr\u003e5. Allyls (introduction, chemistry, polymerization and processing, formulation, properties, applications).\u003cbr\u003e6. Epoxy resins (introduction, resin types, curatives and crosslinking reactions, alkaline curing agents, acid curing agents, formulation principles, properties, applications).\u003cbr\u003e7. Thermoset polyurethanes (introduction, environmental regulation and its impact on polyurethane technology, modification of amines for reaction with isocyanates, recent developments, amines, water-borne polyurethanes, catalysts, diisocyanates).\u003cbr\u003e8. High performance polyimidides and related thermoset polymers; past, present development, and future research (historical perspective, polyimides from condensation reactions, thermoplastic polyimides, addition-curable polyimides and other polymers, nadimide-terminated thermosetting polyimides, maleimide-terminated thermosetting polyimides, cyanate-terminated thermosetting polymers, high temperature thermosetting resins based on phthalonitrile, acetylene-terminated thermosetting polymers, propargyl-terminated oligomers, phenylethynyl-terminated thermosetting polymers, applicability of thermoset isoimides\/imides to resin transfer molding processing, application of high-performance polymers to improve galvanic corrosion of imide-based compounds, future demands in ultrahigh temperature resistant polymers, chemical structures suitable for ultrahigh temperature use, novel cross-linking mechanisms for stability at ultrahigh temperatures, polymer-ceramic materials).\u003cbr\u003e9. Silicones (introduction, silicone fluids, silicone rubbers, room-temperature-vulcanizing silicones, heat cured systems, silicone laminates, government specifications for silicone products).\u003cbr\u003e10. Crosslinked thermoplastics (introduction, crosslinking of thermoplastics, effects of crosslinking of the polymer, chemical crosslinking, rotational molding, post-irradiation effects, acrylates, trade names).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nSidney H. Goodman is a Senior Staff\/Principal Engineer at the Components \u0026amp; Materials Center, Hughes Aircraft Co., and a Senior Lecturer in the Department of Chemical Engineering, University of Southern California. He received his M.S. in Chemical Engineering from USC in 1970. He is a senior member of the Society of Plastics Engineers (SPE), a member of the Society for the Advancement of Materials and Process Engineers (SAMPE). He has published 12 papers and issued 1 patent in his twenty-plus years of industrial plastics experience.","published_at":"2017-06-22T21:14:08-04:00","created_at":"2017-06-22T21:14:08-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","acrylic polymers","book","crosslinked","imides","maleimide-terminated","molding","moulding","oligomers","p-chemistry","phthalonitrile","plastics","polyimides","polymer","product properties environmental\/safety issues each technology area. These papers are not contained main conference book. RAPRA Business Machines Appliances","propargyl","resines","silicones","thermoplastics","thermoset plastics"],"price":14500,"price_min":14500,"price_max":14500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378397060,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thermoset Plastics, Second Edition","public_title":null,"options":["Default Title"],"price":14500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"0-8155-1421-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sidney H. Goodman \u003cbr\u003eISBN 0-8155-1421-2 \u003cbr\u003e\u003cbr\u003ePages: 525, Figures: 160, Tables: 165\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Handbook of Thermoset Plastics is specifically aimed to help engineers, chemists, physicists, and students who need general, as well as technical, details concerning everything from historical data and terminology to highly specific curing and staging data. It is written so that both non-specialists and specialists can follow along easily while making available in-depth data for those who wish to expand their knowledge into new areas of expertise.\u003cbr\u003eThe thermoset plastics technology has increasingly become important to designers and users who work in specialty applications. Everything from toys to medical devices, and from automotive to sports and recreation products, are being manufactured using thermoset plastics. An increased understanding of thermoset plastics technology and processes has broadened their use exponentially over the last few years. In fact, the importance and contributions of unsaturated polyesters, urethanes, and epoxy thermosets have driven unprecedented sales and production figures that approach the definition of commodity materials.\u003cbr\u003eAs a survey of the technology, the handbook provides the reader with the practical implications of crosslinking, as well as establishing relationships between time, temperature, and mass often ignored in the general overviews allotted to thermoset plastics in other handbooks. The Handbook of Thermoset Plastics offers the complete collection of general and technical details available on this important subject.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction (history, definitions, crosslinking and curing, the influence of time, temperature, and mass, shelflife and pot life, curing, staging, stoichiometric considerations, prepolymerization and adducting). \u003cbr\u003e2. Phenol-formaldehyde (introduction, raw materials, resinification (production) of phenol-formaldehyde resins, phenolic resins in friction materials, phenolic resins trade names and manufacturers).\u003cbr\u003e3. Amino and furan resins (introduction, raw materials, amino resins, furan resins, properties of amino and furan resins, trade names).\u003cbr\u003e4. Unsaturated polyester and vinyl ester resins (unsaturated polyesters, vinyl ester resins, compounding of unsaturated polyester and vinyl ester resins, applicable manufacturing processes, recent developments, trade names and manufacturers of unsaturated polyester and vinyl esters).\u003cbr\u003e5. Allyls (introduction, chemistry, polymerization and processing, formulation, properties, applications).\u003cbr\u003e6. Epoxy resins (introduction, resin types, curatives and crosslinking reactions, alkaline curing agents, acid curing agents, formulation principles, properties, applications).\u003cbr\u003e7. Thermoset polyurethanes (introduction, environmental regulation and its impact on polyurethane technology, modification of amines for reaction with isocyanates, recent developments, amines, water-borne polyurethanes, catalysts, diisocyanates).\u003cbr\u003e8. High performance polyimidides and related thermoset polymers; past, present development, and future research (historical perspective, polyimides from condensation reactions, thermoplastic polyimides, addition-curable polyimides and other polymers, nadimide-terminated thermosetting polyimides, maleimide-terminated thermosetting polyimides, cyanate-terminated thermosetting polymers, high temperature thermosetting resins based on phthalonitrile, acetylene-terminated thermosetting polymers, propargyl-terminated oligomers, phenylethynyl-terminated thermosetting polymers, applicability of thermoset isoimides\/imides to resin transfer molding processing, application of high-performance polymers to improve galvanic corrosion of imide-based compounds, future demands in ultrahigh temperature resistant polymers, chemical structures suitable for ultrahigh temperature use, novel cross-linking mechanisms for stability at ultrahigh temperatures, polymer-ceramic materials).\u003cbr\u003e9. Silicones (introduction, silicone fluids, silicone rubbers, room-temperature-vulcanizing silicones, heat cured systems, silicone laminates, government specifications for silicone products).\u003cbr\u003e10. Crosslinked thermoplastics (introduction, crosslinking of thermoplastics, effects of crosslinking of the polymer, chemical crosslinking, rotational molding, post-irradiation effects, acrylates, trade names).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nSidney H. Goodman is a Senior Staff\/Principal Engineer at the Components \u0026amp; Materials Center, Hughes Aircraft Co., and a Senior Lecturer in the Department of Chemical Engineering, University of Southern California. He received his M.S. in Chemical Engineering from USC in 1970. He is a senior member of the Society of Plastics Engineers (SPE), a member of the Society for the Advancement of Materials and Process Engineers (SAMPE). He has published 12 papers and issued 1 patent in his twenty-plus years of industrial plastics experience."}
Handbook of Thermoset ...
$225.00
{"id":11242241604,"title":"Handbook of Thermoset Resins","handle":"9781847354105","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Debdatta Ratna \u003cbr\u003eISBN 9781847354105 \u003cbr\u003e\u003cbr\u003ePages: 422\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Thermoset Resins is intended to be a self-sufficient guide dedicated to \"thermoset resins\", an important class of polymer materials. The book begins with a general introduction to thermoset and is ended with thermoset nanocomposites, a subject of current interest. Use this to make a knowledge-base on the subject OR to plan future research works.\u003cbr\u003e\u003cbr\u003eMany objectives of this book have been achieved, and include; providing detailed information on synthesis, characterizations, applications and toughening of thermoset resins. The review of the recent advances on thermoset-based composites and nanocomposite is presented. It also highlights highlight the future directions of research in various areas of thermoset resins.\u003cbr\u003e\u003cbr\u003eWith these objectives in mind, Handbook of Thermoset Resins will be extremely useful for the scientists and researchers in the field of polymer science in general and thermoset resins in particular.\u003cbr\u003e\u003cbr\u003eWith such broad technical contents covering the basic concepts and recent advances, this handbook is intended to serve as a useful textbook for students, researchers, engineers, R \u0026amp; D scientists from academia, research laboratories and industries (related to resins, fibre composites, adhesive, paints, rubbers, printing ink etc).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. General Introduction to Thermoset Networks\u003cbr\u003e2. Chemistry, Properties, and Applications of Thermoset Resins\u003cbr\u003e3. Epoxy Resins \u003cbr\u003e4. Toughened Thermoset Resins\u003cbr\u003e5. Toughened Epoxy Resins\u003cbr\u003e6. Thermoset Composites\u003cbr\u003e7. Thermoset Nanocomposites\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:48-04:00","created_at":"2017-06-22T21:14:48-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","book","composites","epoxy resins","nanocomposites","p-chemistry","poly","properties"],"price":22500,"price_min":22500,"price_max":22500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378440836,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thermoset Resins","public_title":null,"options":["Default Title"],"price":22500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847354105","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847354105.jpg?v=1499472778"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354105.jpg?v=1499472778","options":["Title"],"media":[{"alt":null,"id":356343349341,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354105.jpg?v=1499472778"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847354105.jpg?v=1499472778","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Debdatta Ratna \u003cbr\u003eISBN 9781847354105 \u003cbr\u003e\u003cbr\u003ePages: 422\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHandbook of Thermoset Resins is intended to be a self-sufficient guide dedicated to \"thermoset resins\", an important class of polymer materials. The book begins with a general introduction to thermoset and is ended with thermoset nanocomposites, a subject of current interest. Use this to make a knowledge-base on the subject OR to plan future research works.\u003cbr\u003e\u003cbr\u003eMany objectives of this book have been achieved, and include; providing detailed information on synthesis, characterizations, applications and toughening of thermoset resins. The review of the recent advances on thermoset-based composites and nanocomposite is presented. It also highlights highlight the future directions of research in various areas of thermoset resins.\u003cbr\u003e\u003cbr\u003eWith these objectives in mind, Handbook of Thermoset Resins will be extremely useful for the scientists and researchers in the field of polymer science in general and thermoset resins in particular.\u003cbr\u003e\u003cbr\u003eWith such broad technical contents covering the basic concepts and recent advances, this handbook is intended to serve as a useful textbook for students, researchers, engineers, R \u0026amp; D scientists from academia, research laboratories and industries (related to resins, fibre composites, adhesive, paints, rubbers, printing ink etc).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. General Introduction to Thermoset Networks\u003cbr\u003e2. Chemistry, Properties, and Applications of Thermoset Resins\u003cbr\u003e3. Epoxy Resins \u003cbr\u003e4. Toughened Thermoset Resins\u003cbr\u003e5. Toughened Epoxy Resins\u003cbr\u003e6. Thermoset Composites\u003cbr\u003e7. Thermoset Nanocomposites\u003cbr\u003e\u003cbr\u003e"}
Handbook of Thin Film ...
$199.00
{"id":11242203780,"title":"Handbook of Thin Film Deposition, 3rd Edition","handle":"9781437778731","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K Seshan \u003cbr\u003eISBN 9781437778731 \u003cbr\u003e\u003cbr\u003ePages: 408\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- A practical survey of thin film technologies aimed at engineers and managers involved in all stages of the process: design, fabrication, quality assurance and applications.\u003cbr\u003e\u003cbr\u003e- Covers core processes and applications in the semiconductor industry and new developments in the photovoltaic and optical thin film industries.\u003cbr\u003e\u003cbr\u003e- The new edition takes covers the transition taking place in the semiconductor world from Al\/SiO2 to copper interconnects with low-k dielectrics.\u003cbr\u003e\u003cbr\u003e- Written by acknowledged industry experts from key companies in the semiconductor industry including Intel and IBM.\u003cbr\u003e\u003cbr\u003e- Foreword by Gordon E. Moore, co-founder of Intel and formulator of the renowned ‘Moore’s Law’ relating to the technology development cycle in the semiconductor industry.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe Handbook of Thin Film Deposition is a comprehensive reference focusing on thin film technologies and applications used in the semiconductor industry and the closely related areas of thin film deposition, thin film micro properties, photovoltaic solar energy applications, new materials for memory applications and methods for thin film optical processes. In a major restructuring, this edition of the handbook lays the foundations for an up-to-date treatment of lithography, contamination and yield management, and reliability of thin films. The established physical and chemical deposition processes and technologies are then covered, the last section of the book being devoted to more recent technological developments such as microelectromechanical systems, photovoltaic applications, digital cameras, CCD arrays, and optical thin films.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nForeword to the Third Edition\u003cbr\u003eScaling of Devices and Thermal Scaling\u003cbr\u003ePVD - Special Topics\u003cbr\u003eCVD New Developments\u003cbr\u003eCVD Equipment\u003cbr\u003eCMP Method and Practice\u003cbr\u003eProcess Technology for Copper Interconnects\u003cbr\u003eOptical Thin Films\u003cbr\u003eThin Films in Photovoltaics\u003cbr\u003eThin Films in Memory Applications\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eKrishna Seshan was formerly Assistant Professor in Materials Science at the University of Arizona and has extensive professional experience as a technologist with both the IBM and Intel Corporations.\u003c\/div\u003e","published_at":"2017-06-22T21:12:49-04:00","created_at":"2017-06-22T21:12:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","book","p-applications","polymer","quality assurance","technologies and applications in the semiconductors","thin films"],"price":19900,"price_min":19900,"price_max":19900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378316612,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Thin Film Deposition, 3rd Edition","public_title":null,"options":["Default Title"],"price":19900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781437778731","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781437778731.jpg?v=1499472868"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781437778731.jpg?v=1499472868","options":["Title"],"media":[{"alt":null,"id":356343414877,"position":1,"preview_image":{"aspect_ratio":0.629,"height":499,"width":314,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781437778731.jpg?v=1499472868"},"aspect_ratio":0.629,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781437778731.jpg?v=1499472868","width":314}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K Seshan \u003cbr\u003eISBN 9781437778731 \u003cbr\u003e\u003cbr\u003ePages: 408\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- A practical survey of thin film technologies aimed at engineers and managers involved in all stages of the process: design, fabrication, quality assurance and applications.\u003cbr\u003e\u003cbr\u003e- Covers core processes and applications in the semiconductor industry and new developments in the photovoltaic and optical thin film industries.\u003cbr\u003e\u003cbr\u003e- The new edition takes covers the transition taking place in the semiconductor world from Al\/SiO2 to copper interconnects with low-k dielectrics.\u003cbr\u003e\u003cbr\u003e- Written by acknowledged industry experts from key companies in the semiconductor industry including Intel and IBM.\u003cbr\u003e\u003cbr\u003e- Foreword by Gordon E. Moore, co-founder of Intel and formulator of the renowned ‘Moore’s Law’ relating to the technology development cycle in the semiconductor industry.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThe Handbook of Thin Film Deposition is a comprehensive reference focusing on thin film technologies and applications used in the semiconductor industry and the closely related areas of thin film deposition, thin film micro properties, photovoltaic solar energy applications, new materials for memory applications and methods for thin film optical processes. In a major restructuring, this edition of the handbook lays the foundations for an up-to-date treatment of lithography, contamination and yield management, and reliability of thin films. The established physical and chemical deposition processes and technologies are then covered, the last section of the book being devoted to more recent technological developments such as microelectromechanical systems, photovoltaic applications, digital cameras, CCD arrays, and optical thin films.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nForeword to the Third Edition\u003cbr\u003eScaling of Devices and Thermal Scaling\u003cbr\u003ePVD - Special Topics\u003cbr\u003eCVD New Developments\u003cbr\u003eCVD Equipment\u003cbr\u003eCMP Method and Practice\u003cbr\u003eProcess Technology for Copper Interconnects\u003cbr\u003eOptical Thin Films\u003cbr\u003eThin Films in Photovoltaics\u003cbr\u003eThin Films in Memory Applications\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003eKrishna Seshan was formerly Assistant Professor in Materials Science at the University of Arizona and has extensive professional experience as a technologist with both the IBM and Intel Corporations.\u003c\/div\u003e"}