- Grid List
Filter
Recycling of Plastic M...
$109.00
{"id":11242238468,"title":"Recycling of Plastic Materials","handle":"1-895198-03-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","bottles","car","environment","film","packing","paper","PE","PET","plastic materials","plastics","polyamide-6. blends","polyethylene","polymer","pvc","recycling","rubber","tires","waste"],"price":10900,"price_min":10900,"price_max":10900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Recycling of Plastic Materials","public_title":null,"options":["Default Title"],"price":10900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-03-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Regulation of Food Pac...
$125.00
{"id":11242214212,"title":"Regulation of Food Packaging in Europe and the USA","handle":"978-1-85957-471-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Derek J Knight and Lesley A Creighton \u003cbr\u003eISBN 978-1-85957-471-3 \u003cbr\u003e\u003cbr\u003eSafePharm Laboratories Ltd.\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003eRapra Review Reports, Vol. 15, No. 5, Report 173\u003cbr\u003epages 120\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA wide variety of plastics is used in food-contact applications and it is important that such plastics do not affect the food with which they come into contact. Given the obvious importance of producing safe and wholesome food, with adequate shelf life, it is not surprising that the food industry is heavily regulated. There is considerable public concern about the safety of food packaging, and one issue is the potential migration of compounding ingredients, monomers or additives from plastics into food. In general, food diffuses into plastic packaging, enhancing the migration of unreacted monomers and potentially mobile additives from the plastic into the food. \u003cbr\u003e\u003cbr\u003eThe objective of food packaging legislation is to protect the consumer by controlling the contamination of food by chemicals transferred from the packaging. Standard migration tests are available based on prescribed food simulants; these tests include overall migration testing and specific migration tests (for individual chemical species). The gradual development of lower detection limits for analytical methods has shown that many substances previously not considered as indirect food additives do actually migrate into food. \u003cbr\u003e\u003cbr\u003eFood packaging regulations are constantly under revision, and differ significantly between Europe and the USA – even between countries within the EU, although there is a strong harmonising influence from the Council of Europe and the European Commission. The regulation of food-contact materials in the EU is currently in a state of development, with various aspects still subject to national provisions until the European Commission has completed the harmonisation process. The US regulatory system is complex, with various approval and certification schemes. \u003cbr\u003e\u003cbr\u003eThis Rapra Review Report provides a clearly written summary of the current legislation surrounding the use of plastics in contact with food. It will be of interest to those working to formulate food-contact plastics, food processors and testing laboratories, packaging manufacturers and users, together with organisations working to ensure safe conditions for food production. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. INTRODUCTION AND OVERVIEW \u003cbr\u003e2. PLASTICS FOR USE IN PACKAGING\u003cbr\u003e2.1 Characteristics of Plastics\u003cbr\u003e2.2 Applications in Packaging\u003cbr\u003e2.2.1 Polymer Types\u003cbr\u003e2.2.2 Combination Products \u003cbr\u003e3. SAFETY EVALUATION OF FOOD PACKAGING\u003cbr\u003e3.1 Exposure Assessment\u003cbr\u003e3.1.1 Migration Evaluation\u003cbr\u003e3.1.2 Estimation of Dietary Exposure\u003cbr\u003e3.2 Toxicology Testing\u003cbr\u003e3.3 Risk Assessment \u003cbr\u003e4. CONTROL OF FOOD PACKAGING IN THE EU\u003cbr\u003e4.1 General Principles and the Framework Directive\u003cbr\u003e4.2 Food-Contact Plastics\u003cbr\u003e4.2.1 The Plastics Directive\u003cbr\u003e4.2.2 EU Lists of Substances for Plastics\u003cbr\u003e4.2.3 Safety Assessment of Additives and Starting Substances for Food-Contact Plastics\u003cbr\u003e4.2.4 Safety Assessment of Polymer Substances\u003cbr\u003e4.3 Future Developments for Food Plastics in the EU\u003cbr\u003e4.3.1 Introduction\u003cbr\u003e4.3.2 Proposed Introduction of a Revised Regulation to Council Directive 89\/109\/EC\u003cbr\u003e4.3.3 The Plastics Super Directive\u003cbr\u003e4.3.4 Active and Intelligent Packaging\u003cbr\u003e4.4 Other EU Food Packaging Measures\u003cbr\u003e4.4.1 Regenerated Cellulose Film\u003cbr\u003e4.4.2 Ceramic Articles\u003cbr\u003e4.4.3 Control of Vinyl Chloride from PVC\u003cbr\u003e4.4.4 Control of N-nitrosamines from Teats and Soothers\u003cbr\u003e4.4.5 Restrictions on Certain Epoxy Derivatives\u003cbr\u003e4.5 Disposal and Recycling of Plastics\u003cbr\u003e4.6 Strategy for Food-Contact Plastic Approval in the EU \u003cbr\u003e5. NATIONAL CONTROLS ON FOOD PACKAGING IN EU COUNTRIES\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Germany\u003cbr\u003e5.3 France\u003cbr\u003e5.4 The Netherlands\u003cbr\u003e5.5 Belgium\u003cbr\u003e5.6 Italy \u003cbr\u003e6. COUNCIL OF EUROPE WORK ON FOOD PACKAGING\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Completed Council of Europe Resolutions\u003cbr\u003e6.2.1 Colorants in Plastic Materials\u003cbr\u003e6.2.2 Polymerisation Aids\u003cbr\u003e6.2.3 Surface Coatings\u003cbr\u003e6.2.4 Ion Exchange and Absorbent Resins\u003cbr\u003e6.2.5 Silicones\u003cbr\u003e6.3 Council of Europe Ongoing Work\u003cbr\u003e6.3.1 Paper and Board\u003cbr\u003e6.3.2 Packaging Inks\u003cbr\u003e6.3.3 Rubber\u003cbr\u003e6.3.4 Other Draft Resolutions and Guidelines and Future Developments \u003cbr\u003e7. FOOD PACKAGING IN THE USA\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Development of US Food Packaging Legislation\u003cbr\u003e7.3 The Petition\u003cbr\u003e7.4 Threshold of Regulation Process\u003cbr\u003e7.5 The Pre-Marketing Notification Scheme \u003cbr\u003e8. CONCLUSIONS\u003cbr\u003eAcknowledgements\u003cbr\u003eAdditional References\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDerek J Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd., a leading UK contract research organisation, specialising in safety assessments of chemicals, biocides, and agrochemical pesticides. He heads a team of regulatory affairs professionals who deal with a wide range of registration projects covering many product types for regulatory compliance in all the key markets globally. As such he has gained an overall perspective into commercial issues associated with the regulation of the chemical industry. He is a Fellow of the RSC and a Fellow of TOPRA. His doctoral studies at the University of Oxford were in organosulphur chemistry. \u003cbr\u003e\u003cbr\u003eLesley A Creighton has worked within SafePharm Laboratories for 13 years providing regulatory support to the chemical industry for the notification of new chemical substances, food contact materials, and cosmetic products. She has a combined science degree in chemistry and mathematics and is a member of both the RSC and TOPRA. 2004\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:21-04:00","created_at":"2017-06-22T21:13:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","acrylic polymers","book","cellulose","ceramic","epoxy derivatives","EU","exposure","film","food","materials","migration","p-applications","packaging","plastics","polymer","PVC","recycling","testing","toxicology"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378351300,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Regulation of Food Packaging in Europe and the USA","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-471-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-471-3.jpg?v=1499724997"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-471-3.jpg?v=1499724997","options":["Title"],"media":[{"alt":null,"id":358733873245,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-471-3.jpg?v=1499724997"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-471-3.jpg?v=1499724997","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Derek J Knight and Lesley A Creighton \u003cbr\u003eISBN 978-1-85957-471-3 \u003cbr\u003e\u003cbr\u003eSafePharm Laboratories Ltd.\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003eRapra Review Reports, Vol. 15, No. 5, Report 173\u003cbr\u003epages 120\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA wide variety of plastics is used in food-contact applications and it is important that such plastics do not affect the food with which they come into contact. Given the obvious importance of producing safe and wholesome food, with adequate shelf life, it is not surprising that the food industry is heavily regulated. There is considerable public concern about the safety of food packaging, and one issue is the potential migration of compounding ingredients, monomers or additives from plastics into food. In general, food diffuses into plastic packaging, enhancing the migration of unreacted monomers and potentially mobile additives from the plastic into the food. \u003cbr\u003e\u003cbr\u003eThe objective of food packaging legislation is to protect the consumer by controlling the contamination of food by chemicals transferred from the packaging. Standard migration tests are available based on prescribed food simulants; these tests include overall migration testing and specific migration tests (for individual chemical species). The gradual development of lower detection limits for analytical methods has shown that many substances previously not considered as indirect food additives do actually migrate into food. \u003cbr\u003e\u003cbr\u003eFood packaging regulations are constantly under revision, and differ significantly between Europe and the USA – even between countries within the EU, although there is a strong harmonising influence from the Council of Europe and the European Commission. The regulation of food-contact materials in the EU is currently in a state of development, with various aspects still subject to national provisions until the European Commission has completed the harmonisation process. The US regulatory system is complex, with various approval and certification schemes. \u003cbr\u003e\u003cbr\u003eThis Rapra Review Report provides a clearly written summary of the current legislation surrounding the use of plastics in contact with food. It will be of interest to those working to formulate food-contact plastics, food processors and testing laboratories, packaging manufacturers and users, together with organisations working to ensure safe conditions for food production. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. INTRODUCTION AND OVERVIEW \u003cbr\u003e2. PLASTICS FOR USE IN PACKAGING\u003cbr\u003e2.1 Characteristics of Plastics\u003cbr\u003e2.2 Applications in Packaging\u003cbr\u003e2.2.1 Polymer Types\u003cbr\u003e2.2.2 Combination Products \u003cbr\u003e3. SAFETY EVALUATION OF FOOD PACKAGING\u003cbr\u003e3.1 Exposure Assessment\u003cbr\u003e3.1.1 Migration Evaluation\u003cbr\u003e3.1.2 Estimation of Dietary Exposure\u003cbr\u003e3.2 Toxicology Testing\u003cbr\u003e3.3 Risk Assessment \u003cbr\u003e4. CONTROL OF FOOD PACKAGING IN THE EU\u003cbr\u003e4.1 General Principles and the Framework Directive\u003cbr\u003e4.2 Food-Contact Plastics\u003cbr\u003e4.2.1 The Plastics Directive\u003cbr\u003e4.2.2 EU Lists of Substances for Plastics\u003cbr\u003e4.2.3 Safety Assessment of Additives and Starting Substances for Food-Contact Plastics\u003cbr\u003e4.2.4 Safety Assessment of Polymer Substances\u003cbr\u003e4.3 Future Developments for Food Plastics in the EU\u003cbr\u003e4.3.1 Introduction\u003cbr\u003e4.3.2 Proposed Introduction of a Revised Regulation to Council Directive 89\/109\/EC\u003cbr\u003e4.3.3 The Plastics Super Directive\u003cbr\u003e4.3.4 Active and Intelligent Packaging\u003cbr\u003e4.4 Other EU Food Packaging Measures\u003cbr\u003e4.4.1 Regenerated Cellulose Film\u003cbr\u003e4.4.2 Ceramic Articles\u003cbr\u003e4.4.3 Control of Vinyl Chloride from PVC\u003cbr\u003e4.4.4 Control of N-nitrosamines from Teats and Soothers\u003cbr\u003e4.4.5 Restrictions on Certain Epoxy Derivatives\u003cbr\u003e4.5 Disposal and Recycling of Plastics\u003cbr\u003e4.6 Strategy for Food-Contact Plastic Approval in the EU \u003cbr\u003e5. NATIONAL CONTROLS ON FOOD PACKAGING IN EU COUNTRIES\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Germany\u003cbr\u003e5.3 France\u003cbr\u003e5.4 The Netherlands\u003cbr\u003e5.5 Belgium\u003cbr\u003e5.6 Italy \u003cbr\u003e6. COUNCIL OF EUROPE WORK ON FOOD PACKAGING\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Completed Council of Europe Resolutions\u003cbr\u003e6.2.1 Colorants in Plastic Materials\u003cbr\u003e6.2.2 Polymerisation Aids\u003cbr\u003e6.2.3 Surface Coatings\u003cbr\u003e6.2.4 Ion Exchange and Absorbent Resins\u003cbr\u003e6.2.5 Silicones\u003cbr\u003e6.3 Council of Europe Ongoing Work\u003cbr\u003e6.3.1 Paper and Board\u003cbr\u003e6.3.2 Packaging Inks\u003cbr\u003e6.3.3 Rubber\u003cbr\u003e6.3.4 Other Draft Resolutions and Guidelines and Future Developments \u003cbr\u003e7. FOOD PACKAGING IN THE USA\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Development of US Food Packaging Legislation\u003cbr\u003e7.3 The Petition\u003cbr\u003e7.4 Threshold of Regulation Process\u003cbr\u003e7.5 The Pre-Marketing Notification Scheme \u003cbr\u003e8. CONCLUSIONS\u003cbr\u003eAcknowledgements\u003cbr\u003eAdditional References\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDerek J Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd., a leading UK contract research organisation, specialising in safety assessments of chemicals, biocides, and agrochemical pesticides. He heads a team of regulatory affairs professionals who deal with a wide range of registration projects covering many product types for regulatory compliance in all the key markets globally. As such he has gained an overall perspective into commercial issues associated with the regulation of the chemical industry. He is a Fellow of the RSC and a Fellow of TOPRA. His doctoral studies at the University of Oxford were in organosulphur chemistry. \u003cbr\u003e\u003cbr\u003eLesley A Creighton has worked within SafePharm Laboratories for 13 years providing regulatory support to the chemical industry for the notification of new chemical substances, food contact materials, and cosmetic products. She has a combined science degree in chemistry and mathematics and is a member of both the RSC and TOPRA. 2004\u003cbr\u003e\u003cbr\u003e"}
Reinforced Thermoplast...
$75.00
{"id":11242254404,"title":"Reinforced Thermoplastics - Composition, Processing and Applications","handle":"978-0-902348-78-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.G. Kelleher \u003cbr\u003eISBN 978-0-902348-78-3 \u003cbr\u003e\u003cbr\u003eNew Jersey Polymer Extension Center\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003eReview Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report covers semi and non-crystalline thermoplastics, polymer blends, and various classes of reinforcing fibers and their properties which determine their suitability for specific applications. The long-term properties are discussed and effect of external forces, heat, weathering, chemical attack, and frictional wear. The uses in telecommunication, medical devices, sporting goods, and automotive applications provide an indication of the potential of these materials. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFibers:\u003c\/strong\u003e glass, ceramic, wollastonite, asbestos, carbon-graphite, aramid, UHMWPE, rigid rod \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Content:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eReinforcing Fibers\u003c\/li\u003e\n\u003cli\u003eEffect of Reinforcement\u003c\/li\u003e\n\u003cli\u003eTime-dependent Properties\u003c\/li\u003e\n\u003cli\u003eFactors Affecting Properties\u003c\/li\u003e\n\u003cli\u003eInjection Molding\u003c\/li\u003e\n\u003cli\u003eInfluence of Processing on Morphology\u003c\/li\u003e\n\u003cli\u003eApplications of Thermoplastic Composites\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:15:28-04:00","created_at":"2017-06-22T21:15:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","aramid","asbestos","book","carbon-graphite","ceramic","composition","glass","p-structural","polymer","processing","rigid rod","thermoplastics","UHMWPE","wollastonite"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378489860,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Reinforced Thermoplastics - Composition, Processing and Applications","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-902348-78-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-902348-78-3.jpg?v=1499954163"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-902348-78-3.jpg?v=1499954163","options":["Title"],"media":[{"alt":null,"id":358734430301,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-902348-78-3.jpg?v=1499954163"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-902348-78-3.jpg?v=1499954163","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P.G. Kelleher \u003cbr\u003eISBN 978-0-902348-78-3 \u003cbr\u003e\u003cbr\u003eNew Jersey Polymer Extension Center\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003eReview Report\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report covers semi and non-crystalline thermoplastics, polymer blends, and various classes of reinforcing fibers and their properties which determine their suitability for specific applications. The long-term properties are discussed and effect of external forces, heat, weathering, chemical attack, and frictional wear. The uses in telecommunication, medical devices, sporting goods, and automotive applications provide an indication of the potential of these materials. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFibers:\u003c\/strong\u003e glass, ceramic, wollastonite, asbestos, carbon-graphite, aramid, UHMWPE, rigid rod \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Content:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eReinforcing Fibers\u003c\/li\u003e\n\u003cli\u003eEffect of Reinforcement\u003c\/li\u003e\n\u003cli\u003eTime-dependent Properties\u003c\/li\u003e\n\u003cli\u003eFactors Affecting Properties\u003c\/li\u003e\n\u003cli\u003eInjection Molding\u003c\/li\u003e\n\u003cli\u003eInfluence of Processing on Morphology\u003c\/li\u003e\n\u003cli\u003eApplications of Thermoplastic Composites\u003c\/li\u003e\n\u003c\/ul\u003e"}
Rheology and its Role ...
$72.00
{"id":11242256708,"title":"Rheology and its Role in Plastics Processing","handle":"978-1-85957-053-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Prentice \u003cbr\u003eISBN 978-1-85957-053-1 \u003cbr\u003e\u003cbr\u003eThe Nottingham Trent University\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003e94 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review encompases fundamental principles and rheological equations of state, polymer melt rheology (shear and extensional flow, viscoelasticity, die swell and melt fracture) and rheological measurement techniques. It describes the main plastics processing techniques and explains the influence of polymer melt rheology upon their operation. 48 figures and more than 80 equations enhance the review, which is also supported by extensive, indexed bibliography.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eRheological Equations of State\u003c\/li\u003e\n\u003cli\u003eFundamental Principles of Rheology\u003c\/li\u003e\n\u003cli\u003ePolymer Melt Rheology\u003c\/li\u003e\n\u003cli\u003eRheological Techniques\u003c\/li\u003e\n\u003cli\u003ePolymer Processing (extrusion, injection molding, calendering, rotational casting)\u003c\/li\u003e\n\u003cli\u003eThe Effect of Rheology on Polymer Processing\u003c\/li\u003e\n\u003cli\u003eRheology in the Design\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:15:34-04:00","created_at":"2017-06-22T21:15:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","book","calendering","extrusion","injection molding","moulding","p-properties","plastics","polymer","polymers","processing","rheology","rotational casting"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378497860,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology and its Role in Plastics Processing","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-053-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-053-1.jpg?v=1499954183"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-053-1.jpg?v=1499954183","options":["Title"],"media":[{"alt":null,"id":358734987357,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-053-1.jpg?v=1499954183"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-053-1.jpg?v=1499954183","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Prentice \u003cbr\u003eISBN 978-1-85957-053-1 \u003cbr\u003e\u003cbr\u003eThe Nottingham Trent University\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003e94 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review encompases fundamental principles and rheological equations of state, polymer melt rheology (shear and extensional flow, viscoelasticity, die swell and melt fracture) and rheological measurement techniques. It describes the main plastics processing techniques and explains the influence of polymer melt rheology upon their operation. 48 figures and more than 80 equations enhance the review, which is also supported by extensive, indexed bibliography.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eRheological Equations of State\u003c\/li\u003e\n\u003cli\u003eFundamental Principles of Rheology\u003c\/li\u003e\n\u003cli\u003ePolymer Melt Rheology\u003c\/li\u003e\n\u003cli\u003eRheological Techniques\u003c\/li\u003e\n\u003cli\u003ePolymer Processing (extrusion, injection molding, calendering, rotational casting)\u003c\/li\u003e\n\u003cli\u003eThe Effect of Rheology on Polymer Processing\u003c\/li\u003e\n\u003cli\u003eRheology in the Design\u003c\/li\u003e\n\u003c\/ul\u003e"}
Rheology Essentials of...
$150.00
{"id":11242232900,"title":"Rheology Essentials of Cosmetic and Food Emulsions","handle":"978-3-540-25553-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rüdiger Brummer \u003cbr\u003eISBN 978-3-540-25553-6 \u003cbr\u003e\u003cbr\u003eSpringer Laboratory \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 180, 184 illus., 139 in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks, and lotions, as well as sun-block products. Keeping track of them and their properties are not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by expert inflows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests.\u003c\/p\u003e\n\u003cp\u003eBeginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedures: how to characterize cosmetic and food emulsions with different rheological tests such as temperature, time, stress and strain, both static and dynamic. Also the critical topic of how the results correlate with other important product characteristics, for instance, skin sensation, pumping performance, stability etc. is carefully explored. Many pictures, illustrations, graphs, and tables help readers new to the measurement of cosmetic emulsions in their daily work as well as to the more experienced who seek additional special tips and tricks.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 INTRODUCTION (pg. 1) \u003cbr\u003e2 A TRIP BACK IN TIME (pg. 5)\u003cbr\u003e3 SKIN AND ITS CARE (pg. 15)\u003cbr\u003e\u003cb\u003e4 EMULSIONS – SOME THEORETICAL ASPECTS (pg. 17)\u003cbr\u003e\u003c\/b\u003e4.1 Physicochemical Structure of Cosmetic Products (pg.17)\u003cbr\u003e4.2 Modern Emulsifiers (pg. 19)\u003cbr\u003e4.3 Skin Care and Cleansing (pg. 19)\u003cbr\u003e4.4 Microemulsions (pg. 19)\u003cbr\u003e4.5 Emulsifier-Free Products (pg. 20)\u003cbr\u003e4.6 Production of Emulsions (pg.21)\u003cbr\u003e4.7 Processes occurring during Emulsification (pg. 21)\u003cbr\u003e4.8 Serrated Disc Disperser (pg. 22)\u003cbr\u003e\u003cb\u003e5 BASIC PHYSICAL AND MATHEMATICAL PRINCIPLES (pg. 25)\u003cbr\u003e\u003c\/b\u003e5.1 Important Definitions (pg. 25)\u003cbr\u003e5.2 One-Dimensional Parallel PlatesModel (pg. 28)\u003cbr\u003e5.3 Parallel PlateMeasuring System (pg. 30)\u003cbr\u003e5.4 Cone-PlateMeasuring System (pg. 31)\u003cbr\u003e5.5 Coaxial Cylinder Systems (pg. 32)\u003cbr\u003e5.6 Double GapMeasuring System (pg. 35)\u003cbr\u003e5.7 Flow Through Circular Capillary (pg. 36)\u003cbr\u003e5.8 CorrectionMethods (pg. 38)\u003cbr\u003e5.8.1 PPMeasurement System (pg. 39)\u003cbr\u003e5.8.2 Cylinder Measurement Systems (pg. 39)\u003cbr\u003e5.8.3 Circular Capillaries (pg. 39)\u003cbr\u003e5.9 Deformation and Relaxation 40)\u003cbr\u003e5.10 Thixotropy and Rheopexy (pg. 43)\u003cbr\u003e5.11 Vibration orOscillationMeasurements (pg. 44)\u003cbr\u003e5.11.1 Steady andDynamic Stress (pg. 45)\u003cbr\u003e5.11.2 Ideal Elastic Solids (pg. 46)\u003cbr\u003e5.11.3 IdealViscous Fluids (pg. 46)\u003cbr\u003e5.11.4 Real Solids (pg. 47)\u003cbr\u003e5.11.5 Complex Representation (pg. 48)\u003cbr\u003eXVI)\u003cbr\u003e\u003cb\u003e6 MEASURING INSTRUMENTS (pg. 51)\u003cbr\u003e\u003c\/b\u003e6.1 Modern Rheometer (pg. 52)\u003cbr\u003e6.2 High Shear Rheometer (pg. 54)\u003cbr\u003e6.3 StandardViscometer (pg. 55)\u003cbr\u003e6.4 OftenUsedViscometer (pg. 56)\u003cbr\u003e6.5 Automatic Sampler (pg. 57)\u003cbr\u003e6.6 In-process In-\/On-line Viscosity Measurements (pg. 58)\u003cbr\u003e6.7 Future Prospects (pg. 61)\u003cbr\u003e\u003cb\u003e7 MOST IMPORTANT TEST METHODS (pg. 63)\u003cbr\u003e\u003c\/b\u003e7.1 Stress Ramp Test (pg. 65)\u003cbr\u003e7.2 Newtonian Flow Behavior (pg. 67)\u003cbr\u003e7.3 Creep Test and Creep Recovery (pg. 67)\u003cbr\u003e7.4 The Ideal Elastic Behavior (pg. 68)\u003cbr\u003e7.5 The IdealViscous Behavior (pg. 68)\u003cbr\u003e7.6 RealViscoelastic Behavior (pg. 69)\u003cbr\u003e7.7 Steady Flow Curve (pg. 69)\u003cbr\u003e7.8 AmplitudeDependence (pg. 71)\u003cbr\u003e7.9 Structure Breakdown and BuildUp (pg. 73)\u003cbr\u003e7.10 TimeDependence (pg. 74)\u003cbr\u003e7.11 Frequency Test (pg. 75)\u003cbr\u003e7.12 Temperature Dependence (pg. 76)\u003cbr\u003e7.13 Combined Temperature-Time Test (pg. 77)\u003cbr\u003e\u003cb\u003e8 ANALYSIS OF MEASURING RESULTS AND CORRELATIONS)\u003cbr\u003eWITH OTHER TESTS (pg. 81)\u003cbr\u003e\u003c\/b\u003e8.1 Yield Stress (pg. 81)\u003cbr\u003e8.1.1 Correlations of the Yield Stress with the Primary Skin Feel (pg. 82)\u003cbr\u003e8.1.2 Optimization of the Stress Ramp Test (pg. 83)\u003cbr\u003e8.1.3 Residue Emptying (pg. 85)\u003cbr\u003e8.1.4 Energy Input (pg. 87)\u003cbr\u003e8.1.4.1 Measurement of the Energy Input (pg. 88)\u003cbr\u003e8.1.5 Droplet Sizes and their Distribution (pg. 90)\u003cbr\u003e8.1.6 Pumpability of Cosmetic Emulsions (pg. 92)\u003cbr\u003e8.1.6.1 Estimation of the Maximum Shear Rate (pg. 93)\u003cbr\u003e8.1.6.2 Calculation of the Shear Stress (pg. 94)\u003cbr\u003e8.1.7 Stability Studies Using Yield Stress Measurements (pg. 95)\u003cbr\u003e8.1.8 Results Obtained (pg. 96)\u003cbr\u003e8.2 Steady Flow (pg. 97)\u003cbr\u003e8.2.1 Determination of the Measuring Time (pg. 97)\u003cbr\u003e8.2.2 Temperature Dependence of the Dynamic Viscosity (pg. 98)\u003cbr\u003e8.2.3 Secondary Skin Feel (pg. 99)\u003cbr\u003e8.2.3.1 Investigation of the Secondary Skin Feel (pg. 100)\u003cbr\u003e8.3 OscillatoryMeasurements (pg. 101)\u003cbr\u003e8.3.1 Temperature Dependence of the Moduli (pg. 106)\u003cbr\u003e8.3.2 Temperature Stability (pg. 110)\u003cbr\u003e8.3.3 Rheological Swing Test for Temperature Stability (pg. 112)\u003cbr\u003e8.4 Time Temperature Superposition (TTS) (pg. 117)\u003cbr\u003e8.4.1 Softening Point (pg. 118)\u003cbr\u003e8.4.2 Freezing Point (pg. 118)\u003cbr\u003e8.4.3 Determination of the Master Curve at Constant Frequency (pg.118)\u003cbr\u003e8.4.3.1 Determination of the Activation Energy)\u003cbr\u003evia the Temperature (pg.119)\u003cbr\u003e8.4.3.2 Viscosity (pg. 119)\u003cbr\u003e8.4.3.3 Arrhenius Equation (pg. 120)\u003cbr\u003e8.4.3.4 WLF Equation (pg. 122)\u003cbr\u003e8.4.3.5 First Conclusion (pg. 122)\u003cbr\u003e8.4.3.6 Determination of the Master Curve)\u003cbr\u003ewith Variable Frequency (pg. 123)\u003cbr\u003e8.4.3.7 Final Conclusion (pg. 124)\u003cbr\u003e\u003cb\u003e9 INTERPRETATION (pg. 125)\u003cbr\u003e\u003c\/b\u003e9.1 Relationships for Polymers (pg. 125)\u003cbr\u003e9.2 General Statements for Cosmetic Emulsions (pg. 127)\u003cbr\u003e\u003cb\u003e10 CALIBRATION\/VALIDATION (pg. 131)\u003cbr\u003e\u003c\/b\u003e10.1 Basic Principles of Statistical Analysis (pg. 133)\u003cbr\u003e10.1.1 NormalDistribution (GaussianDistribution) (pg. 133)\u003cbr\u003e10.1.2 MeanValue (pg. 134)\u003cbr\u003e10.1.3 True Value (pg. 135)\u003cbr\u003e10.1.4 StandardDeviation andVariance (pg. 135)\u003cbr\u003e10.1.4.1 StandardDeviation (pg. 136)\u003cbr\u003e10.1.4.2 Coefficient ofVariation (pg. 136)\u003cbr\u003e10.1.5 MeasuredValue, Result, RandomVariable (pg. 136)\u003cbr\u003e10.1.6 Population, Series,MeasuredValue (pg. 137)\u003cbr\u003e10.1.7 Errors andDeviations (pg. 137)\u003cbr\u003e10.1.7.1 Error Types (pg. 137)\u003cbr\u003e10.1.8 Precision (pg. 138)\u003cbr\u003e10.1.9 Accuracy (pg. 139)\u003cbr\u003e10.1.10 Trueness (pg. 139)\u003cbr\u003e10.1.11 Repeatability (pg. 139)\u003cbr\u003e10.1.12 Reproducibility (pg. 140)\u003cbr\u003e10.1.13 Outliers (pg. 140)\u003cbr\u003e10.2 Back to the Laboratory (pg. 140)\u003cbr\u003e10.2.1 Calibration Test forOscillatoryMeasurements (pg. 143)\u003cbr\u003e10.2.2 Temperature (pg. 145)\u003cbr\u003e\u003cb\u003e11 TIPS AND TRICKS (pg. 147)\u003cbr\u003e\u003c\/b\u003e11.1 Materials for Geometric Systems (pg. 147)\u003cbr\u003e11.2 Cone-plate (pg. 147)\u003cbr\u003e11.3 Parallel Plate (pg. 148)\u003cbr\u003e11.4 Cylinder Systems (pg. 148)\u003cbr\u003e11.5 Cleaning Measuring Systems (pg. 148)\u003cbr\u003e11.6 Measurement Artifacts (pg. 149)\u003cbr\u003e11.7 Filling of Cone-plate and Parallel Plate Measuring Systems (pg. 150)\u003cbr\u003e11.8 Interpretation (pg. 152)\u003cbr\u003e\u003cb\u003e12 DEFINITION OF COSMETICS (pg. 155)\u003cbr\u003e\u003c\/b\u003e12.1 Cosmetics vs.Drugs (pg. 155)\u003cbr\u003e12.2 Production of Cosmetic Products (pg. 155)\u003cbr\u003e12.3 Naming, Trademark Law, Patents Law (pg. 156)\u003cbr\u003e12.4 Marketing of Cosmetic Products (pg. 156)\u003cbr\u003e12.5 Advertising Cosmetic Products (pg. 157)\u003cbr\u003e12.6 Comments (pg. 160)\u003cbr\u003e\u003cb\u003e13 EXCURSION IN THEWORLD OF FOOD RHEOLOGY (pg. 161)\u003cbr\u003e\u003c\/b\u003e13.1 AShort History of Food Rheology (pg. 161)\u003cbr\u003e13.1.1 TheOrigins of Food Rheology (pg. 163)\u003cbr\u003e13.2 Honey (pg. 163)\u003cbr\u003e13.3 Sandwich Spreads (pg. 164)\u003cbr\u003e13.4 Cheese (pg. 165)\u003cbr\u003e13.5 Ketchup (pg. 165)\u003cbr\u003e13.6 Yoghurt (pg. 166)\u003cbr\u003e13.7 Marzipan (pg. 166)\u003cbr\u003e13.8 Starch (pg. 168)\u003cbr\u003e13.9 Foams (pg. 169)\u003cbr\u003e13.10 Chocolate (pg. 170)\u003cbr\u003e13.11 Psychorheology (pg. 170)\u003cbr\u003e\u003cb\u003e14 LIST OF REFERENCES (pg. 173)\u003cbr\u003e15 SUBJECT INDEX (pg. 177)\u003cbr\u003e\u003c\/b\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:14:22-04:00","created_at":"2017-06-22T21:14:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","analysis","book","cosmetic emulsions","cosmetics","emulsion","food technology","kosmetische emulsionen","p-properties","polymer","reology","rheologie","rheology","test methods","toiletries","toilettenartikel","viscosimetry"],"price":15000,"price_min":15000,"price_max":15000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413188,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology Essentials of Cosmetic and Food Emulsions","public_title":null,"options":["Default Title"],"price":15000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-25553-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-25553-6.jpg?v=1499954205"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-25553-6.jpg?v=1499954205","options":["Title"],"media":[{"alt":null,"id":358737739869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-25553-6.jpg?v=1499954205"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-25553-6.jpg?v=1499954205","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rüdiger Brummer \u003cbr\u003eISBN 978-3-540-25553-6 \u003cbr\u003e\u003cbr\u003eSpringer Laboratory \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 180, 184 illus., 139 in color., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCosmetic emulsions exist today in many forms for a wide variety of applications, including face and hand creams for normal, dry or oily skin, body milks, and lotions, as well as sun-block products. Keeping track of them and their properties are not always easy despite informative product names or partial names (e.g. hand or face cream) that clearly indicate their use and properties. This practical manual provides a detailed overview that describes the key properties and explains how to measure them using modern techniques. Written by expert inflows and flow properties, it focuses on the application of rheological (flow) measurements to cosmetic and food emulsions and the correlation of these results with findings from other tests.\u003c\/p\u003e\n\u003cp\u003eBeginning with a brief history of rheology and some fundamental principles, the manual describes in detail the use of modern viscometers and rheometers, including concise explanations of the different available instruments. But the focus remains on practical everyday lab procedures: how to characterize cosmetic and food emulsions with different rheological tests such as temperature, time, stress and strain, both static and dynamic. Also the critical topic of how the results correlate with other important product characteristics, for instance, skin sensation, pumping performance, stability etc. is carefully explored. Many pictures, illustrations, graphs, and tables help readers new to the measurement of cosmetic emulsions in their daily work as well as to the more experienced who seek additional special tips and tricks.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 INTRODUCTION (pg. 1) \u003cbr\u003e2 A TRIP BACK IN TIME (pg. 5)\u003cbr\u003e3 SKIN AND ITS CARE (pg. 15)\u003cbr\u003e\u003cb\u003e4 EMULSIONS – SOME THEORETICAL ASPECTS (pg. 17)\u003cbr\u003e\u003c\/b\u003e4.1 Physicochemical Structure of Cosmetic Products (pg.17)\u003cbr\u003e4.2 Modern Emulsifiers (pg. 19)\u003cbr\u003e4.3 Skin Care and Cleansing (pg. 19)\u003cbr\u003e4.4 Microemulsions (pg. 19)\u003cbr\u003e4.5 Emulsifier-Free Products (pg. 20)\u003cbr\u003e4.6 Production of Emulsions (pg.21)\u003cbr\u003e4.7 Processes occurring during Emulsification (pg. 21)\u003cbr\u003e4.8 Serrated Disc Disperser (pg. 22)\u003cbr\u003e\u003cb\u003e5 BASIC PHYSICAL AND MATHEMATICAL PRINCIPLES (pg. 25)\u003cbr\u003e\u003c\/b\u003e5.1 Important Definitions (pg. 25)\u003cbr\u003e5.2 One-Dimensional Parallel PlatesModel (pg. 28)\u003cbr\u003e5.3 Parallel PlateMeasuring System (pg. 30)\u003cbr\u003e5.4 Cone-PlateMeasuring System (pg. 31)\u003cbr\u003e5.5 Coaxial Cylinder Systems (pg. 32)\u003cbr\u003e5.6 Double GapMeasuring System (pg. 35)\u003cbr\u003e5.7 Flow Through Circular Capillary (pg. 36)\u003cbr\u003e5.8 CorrectionMethods (pg. 38)\u003cbr\u003e5.8.1 PPMeasurement System (pg. 39)\u003cbr\u003e5.8.2 Cylinder Measurement Systems (pg. 39)\u003cbr\u003e5.8.3 Circular Capillaries (pg. 39)\u003cbr\u003e5.9 Deformation and Relaxation 40)\u003cbr\u003e5.10 Thixotropy and Rheopexy (pg. 43)\u003cbr\u003e5.11 Vibration orOscillationMeasurements (pg. 44)\u003cbr\u003e5.11.1 Steady andDynamic Stress (pg. 45)\u003cbr\u003e5.11.2 Ideal Elastic Solids (pg. 46)\u003cbr\u003e5.11.3 IdealViscous Fluids (pg. 46)\u003cbr\u003e5.11.4 Real Solids (pg. 47)\u003cbr\u003e5.11.5 Complex Representation (pg. 48)\u003cbr\u003eXVI)\u003cbr\u003e\u003cb\u003e6 MEASURING INSTRUMENTS (pg. 51)\u003cbr\u003e\u003c\/b\u003e6.1 Modern Rheometer (pg. 52)\u003cbr\u003e6.2 High Shear Rheometer (pg. 54)\u003cbr\u003e6.3 StandardViscometer (pg. 55)\u003cbr\u003e6.4 OftenUsedViscometer (pg. 56)\u003cbr\u003e6.5 Automatic Sampler (pg. 57)\u003cbr\u003e6.6 In-process In-\/On-line Viscosity Measurements (pg. 58)\u003cbr\u003e6.7 Future Prospects (pg. 61)\u003cbr\u003e\u003cb\u003e7 MOST IMPORTANT TEST METHODS (pg. 63)\u003cbr\u003e\u003c\/b\u003e7.1 Stress Ramp Test (pg. 65)\u003cbr\u003e7.2 Newtonian Flow Behavior (pg. 67)\u003cbr\u003e7.3 Creep Test and Creep Recovery (pg. 67)\u003cbr\u003e7.4 The Ideal Elastic Behavior (pg. 68)\u003cbr\u003e7.5 The IdealViscous Behavior (pg. 68)\u003cbr\u003e7.6 RealViscoelastic Behavior (pg. 69)\u003cbr\u003e7.7 Steady Flow Curve (pg. 69)\u003cbr\u003e7.8 AmplitudeDependence (pg. 71)\u003cbr\u003e7.9 Structure Breakdown and BuildUp (pg. 73)\u003cbr\u003e7.10 TimeDependence (pg. 74)\u003cbr\u003e7.11 Frequency Test (pg. 75)\u003cbr\u003e7.12 Temperature Dependence (pg. 76)\u003cbr\u003e7.13 Combined Temperature-Time Test (pg. 77)\u003cbr\u003e\u003cb\u003e8 ANALYSIS OF MEASURING RESULTS AND CORRELATIONS)\u003cbr\u003eWITH OTHER TESTS (pg. 81)\u003cbr\u003e\u003c\/b\u003e8.1 Yield Stress (pg. 81)\u003cbr\u003e8.1.1 Correlations of the Yield Stress with the Primary Skin Feel (pg. 82)\u003cbr\u003e8.1.2 Optimization of the Stress Ramp Test (pg. 83)\u003cbr\u003e8.1.3 Residue Emptying (pg. 85)\u003cbr\u003e8.1.4 Energy Input (pg. 87)\u003cbr\u003e8.1.4.1 Measurement of the Energy Input (pg. 88)\u003cbr\u003e8.1.5 Droplet Sizes and their Distribution (pg. 90)\u003cbr\u003e8.1.6 Pumpability of Cosmetic Emulsions (pg. 92)\u003cbr\u003e8.1.6.1 Estimation of the Maximum Shear Rate (pg. 93)\u003cbr\u003e8.1.6.2 Calculation of the Shear Stress (pg. 94)\u003cbr\u003e8.1.7 Stability Studies Using Yield Stress Measurements (pg. 95)\u003cbr\u003e8.1.8 Results Obtained (pg. 96)\u003cbr\u003e8.2 Steady Flow (pg. 97)\u003cbr\u003e8.2.1 Determination of the Measuring Time (pg. 97)\u003cbr\u003e8.2.2 Temperature Dependence of the Dynamic Viscosity (pg. 98)\u003cbr\u003e8.2.3 Secondary Skin Feel (pg. 99)\u003cbr\u003e8.2.3.1 Investigation of the Secondary Skin Feel (pg. 100)\u003cbr\u003e8.3 OscillatoryMeasurements (pg. 101)\u003cbr\u003e8.3.1 Temperature Dependence of the Moduli (pg. 106)\u003cbr\u003e8.3.2 Temperature Stability (pg. 110)\u003cbr\u003e8.3.3 Rheological Swing Test for Temperature Stability (pg. 112)\u003cbr\u003e8.4 Time Temperature Superposition (TTS) (pg. 117)\u003cbr\u003e8.4.1 Softening Point (pg. 118)\u003cbr\u003e8.4.2 Freezing Point (pg. 118)\u003cbr\u003e8.4.3 Determination of the Master Curve at Constant Frequency (pg.118)\u003cbr\u003e8.4.3.1 Determination of the Activation Energy)\u003cbr\u003evia the Temperature (pg.119)\u003cbr\u003e8.4.3.2 Viscosity (pg. 119)\u003cbr\u003e8.4.3.3 Arrhenius Equation (pg. 120)\u003cbr\u003e8.4.3.4 WLF Equation (pg. 122)\u003cbr\u003e8.4.3.5 First Conclusion (pg. 122)\u003cbr\u003e8.4.3.6 Determination of the Master Curve)\u003cbr\u003ewith Variable Frequency (pg. 123)\u003cbr\u003e8.4.3.7 Final Conclusion (pg. 124)\u003cbr\u003e\u003cb\u003e9 INTERPRETATION (pg. 125)\u003cbr\u003e\u003c\/b\u003e9.1 Relationships for Polymers (pg. 125)\u003cbr\u003e9.2 General Statements for Cosmetic Emulsions (pg. 127)\u003cbr\u003e\u003cb\u003e10 CALIBRATION\/VALIDATION (pg. 131)\u003cbr\u003e\u003c\/b\u003e10.1 Basic Principles of Statistical Analysis (pg. 133)\u003cbr\u003e10.1.1 NormalDistribution (GaussianDistribution) (pg. 133)\u003cbr\u003e10.1.2 MeanValue (pg. 134)\u003cbr\u003e10.1.3 True Value (pg. 135)\u003cbr\u003e10.1.4 StandardDeviation andVariance (pg. 135)\u003cbr\u003e10.1.4.1 StandardDeviation (pg. 136)\u003cbr\u003e10.1.4.2 Coefficient ofVariation (pg. 136)\u003cbr\u003e10.1.5 MeasuredValue, Result, RandomVariable (pg. 136)\u003cbr\u003e10.1.6 Population, Series,MeasuredValue (pg. 137)\u003cbr\u003e10.1.7 Errors andDeviations (pg. 137)\u003cbr\u003e10.1.7.1 Error Types (pg. 137)\u003cbr\u003e10.1.8 Precision (pg. 138)\u003cbr\u003e10.1.9 Accuracy (pg. 139)\u003cbr\u003e10.1.10 Trueness (pg. 139)\u003cbr\u003e10.1.11 Repeatability (pg. 139)\u003cbr\u003e10.1.12 Reproducibility (pg. 140)\u003cbr\u003e10.1.13 Outliers (pg. 140)\u003cbr\u003e10.2 Back to the Laboratory (pg. 140)\u003cbr\u003e10.2.1 Calibration Test forOscillatoryMeasurements (pg. 143)\u003cbr\u003e10.2.2 Temperature (pg. 145)\u003cbr\u003e\u003cb\u003e11 TIPS AND TRICKS (pg. 147)\u003cbr\u003e\u003c\/b\u003e11.1 Materials for Geometric Systems (pg. 147)\u003cbr\u003e11.2 Cone-plate (pg. 147)\u003cbr\u003e11.3 Parallel Plate (pg. 148)\u003cbr\u003e11.4 Cylinder Systems (pg. 148)\u003cbr\u003e11.5 Cleaning Measuring Systems (pg. 148)\u003cbr\u003e11.6 Measurement Artifacts (pg. 149)\u003cbr\u003e11.7 Filling of Cone-plate and Parallel Plate Measuring Systems (pg. 150)\u003cbr\u003e11.8 Interpretation (pg. 152)\u003cbr\u003e\u003cb\u003e12 DEFINITION OF COSMETICS (pg. 155)\u003cbr\u003e\u003c\/b\u003e12.1 Cosmetics vs.Drugs (pg. 155)\u003cbr\u003e12.2 Production of Cosmetic Products (pg. 155)\u003cbr\u003e12.3 Naming, Trademark Law, Patents Law (pg. 156)\u003cbr\u003e12.4 Marketing of Cosmetic Products (pg. 156)\u003cbr\u003e12.5 Advertising Cosmetic Products (pg. 157)\u003cbr\u003e12.6 Comments (pg. 160)\u003cbr\u003e\u003cb\u003e13 EXCURSION IN THEWORLD OF FOOD RHEOLOGY (pg. 161)\u003cbr\u003e\u003c\/b\u003e13.1 AShort History of Food Rheology (pg. 161)\u003cbr\u003e13.1.1 TheOrigins of Food Rheology (pg. 163)\u003cbr\u003e13.2 Honey (pg. 163)\u003cbr\u003e13.3 Sandwich Spreads (pg. 164)\u003cbr\u003e13.4 Cheese (pg. 165)\u003cbr\u003e13.5 Ketchup (pg. 165)\u003cbr\u003e13.6 Yoghurt (pg. 166)\u003cbr\u003e13.7 Marzipan (pg. 166)\u003cbr\u003e13.8 Starch (pg. 168)\u003cbr\u003e13.9 Foams (pg. 169)\u003cbr\u003e13.10 Chocolate (pg. 170)\u003cbr\u003e13.11 Psychorheology (pg. 170)\u003cbr\u003e\u003cb\u003e14 LIST OF REFERENCES (pg. 173)\u003cbr\u003e15 SUBJECT INDEX (pg. 177)\u003cbr\u003e\u003c\/b\u003e\u003c\/p\u003e"}
Rheology. Concepts, Me...
$250.00
{"id":11242225732,"title":"Rheology. Concepts, Methods, and Applications","handle":"1-895198-33-x","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003e10-ISBN 1-895198-33-X\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e13-ISBN 978-1-895198-33-1\u003cbr\u003e\u003cbr\u003ePublished: 2006\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003eThe first edition of this book is out of print. \u003ca href=\"http:\/\/chemtec.org\/proddetail.php?prod=978-1-895198-49-2\"\u003eClick here\u003c\/a\u003e to proceed to the 2nd edition of this book. \u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe pursuit of the golden balance between oversimplification and overload with theory has always been the primary goal of every author of a book on rheology. Rheology is a tool for chemists and chemical engineers to solve many practical problems. They have to learn what to measure, how to measure, and what to do with the data. But, the learning process should not take users away from their major goals, such as manufacturing quality products, developing new materials, analysis of material durability.\n\u003cp\u003eThe first four chapters of this book discuss various aspects of theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003c\/p\u003e\n\u003cp\u003eThe goal of rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003c\/p\u003e\n\u003cp\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/p\u003e\n\u003cp\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/p\u003e\n\u003cp\u003eThe authors were very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003c\/p\u003e\n\u003cp\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intend to pass their knowledge to the next generations.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eThis book is very useful in the industry but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003ePreface\u003cbr\u003eIntroduction. Rheology: Subject and Goals\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology\u003c\/strong\u003e\u003cbr\u003e1.1 Stresses\u003cbr\u003e1.1.1 General theory\u003cbr\u003e1.1.2 Law of equality of conjugated stresses\u003cbr\u003e1.1.3 Principal stresses\u003cbr\u003e1.1.4 Invariants of a stress tensor\u003cbr\u003e1.1.5 Hydrostatic pressure - spherical tensor and deviator\u003cbr\u003e1.1.6 Equilibrium (balance) equations\u003cbr\u003e1.2 Deformations\u003cbr\u003e1.2.1 Deformations and displacements\u003cbr\u003e1.2.1.1 Deformations\u003cbr\u003e1.2.1.2 Displacements\u003cbr\u003e1.2.2 Infinitesimal deformations: principal values and invariants\u003cbr\u003e1.2.3 Large (finite) deformations\u003cbr\u003e1.2.4 Special cases of deformations - uniaxial elongation and simple shear\u003cbr\u003e1.2.4.1 Uniaxial elongation and Poisson's ratio\u003cbr\u003e1.2.4.2 Simple shear and pure shear \u003cbr\u003e1.3 Kinematics of deformations\u003cbr\u003e1.3.1 Rates of deformation and vorticity\u003cbr\u003e1.3.2 Deformation rates when deformations are large\u003cbr\u003e1.4 Summary - continuum mechanics in rheology\u003cbr\u003e1.4.1 General principles\u003cbr\u003e1.4.2 Objects of continuum as tensors\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 1\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments\u003cbr\u003e2.1.1 Creep (retarded deformation)\u003cbr\u003e2.1.2 Relaxation\u003cbr\u003e2.1.3 Fading memory\u003cbr\u003e2.2 Relaxation and creep - spectral representation. Dynamic functions\u003cbr\u003e2.2.1 Retardation and relaxation spectra - definitions\u003cbr\u003e2.2.2 Dynamic functions\u003cbr\u003e2.3 Model interpretations\u003cbr\u003e2.3.1 Basic mechanical models\u003cbr\u003e2.3.2 Complicated mechanical models - differential rheological equations\u003cbr\u003e2.3.3 Non-mechanical models\u003cbr\u003e2.4 Superposition - The Boltzmann-Volterra principle\u003cbr\u003e2.4.1 Integral formulation of the superposition principle\u003cbr\u003e2.4.2 Superposition principle expressed via spectra\u003cbr\u003e2.4.3 Simple transient modes of deformation\u003cbr\u003e2.4.3.1 Relaxation after sudden deformation\u003cbr\u003e2.4.3.2 Developing stresses at constant shear rate\u003cbr\u003e2.4.3.3 Relaxation after steady shear flow\u003cbr\u003e2.4.3 Relationship between relaxation and creep functions\u003cbr\u003e2.4.4 Relaxation function and large deformations\u003cbr\u003e2.5 Relationships among viscoelastic functions\u003cbr\u003e2.5.1 Dynamic functions - relaxation, creep, and spectra\u003cbr\u003e2.5.2 Constants and viscoelastic functions\u003cbr\u003e2.5.3 Calculation of a relaxation spectrum\u003cbr\u003e2.5.3.1 Introduction - general concept\u003cbr\u003e2.5.3.2 Kernel approximation - finding a continuous spectrum\u003cbr\u003e2.5.3.3 Computer-aided methods for a discrete spectrum\u003cbr\u003e2.6 Viscoelasticity and molecular models\u003cbr\u003e2.6.1 Molecular movements of an individual chain\u003cbr\u003e2.6.1.1 A spring-and-bead model (\"free draining chain\")\u003cbr\u003e2.6.1.2 Model of a non-draining coil\u003cbr\u003e2.6.1.3 Model of a rotating coil\u003cbr\u003e2.6.2 Relaxation properties of concentrated polymer solutions and melts\u003cbr\u003e2.6.2.1 Concept of entanglements\u003cbr\u003e2.6.2.2 Two-part distribution of friction coefficient\u003cbr\u003e2.6.2.3 Non-equivalent friction along a chain\u003cbr\u003e2.6.2.4 Viscoelastic entanglements\u003cbr\u003e2.6.2.5 Rubber-like network\u003cbr\u003e2.6.2.6 \"Tube\" (reptation) model\u003cbr\u003e2.6.2.7 Some conclusions\u003cbr\u003e2.6.3 Viscoelasticity of polydisperse polymers\u003cbr\u003e2.7 Time-temperature superposition. Reduced (\"master\") viscoelastic curves\u003cbr\u003e2.7.1 Superposition of experimental curves\u003cbr\u003e2.7.2 Master curves and relaxation states\u003cbr\u003e2.7.3 \"Universal\" relaxation spectra\u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003cbr\u003e2.8.1 Experimental evidences\u003cbr\u003e2.8.1.1 Non-Newtonian viscosity\u003cbr\u003e2.8.1.2 Non-Hookean behavior of solids\u003cbr\u003e2.8.1.3 Non-linear creep\u003cbr\u003e2.8.1.4 Non-linear relaxation\u003cbr\u003e2.8.1.5 Non-linear periodic measurements\u003cbr\u003e2.8.2 Linear - non-linear correlations\u003cbr\u003e2.8.3 Rheological equations of state for non-linear viscoelastic behavior\u003cbr\u003e2.8.3.1 The K-BKZ model \u003cbr\u003e2.8.3.2 The Wagner models \u003cbr\u003e2.8.3.2 The Leonov model\u003cbr\u003e2.8.3.4 The Marrucci models\u003cbr\u003e2.8.4 Comments - constructing non-linear constitutive equations and experiment\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 2\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Liquids\u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions\u003cbr\u003e3.2 Non-Newtonian shear flow\u003cbr\u003e3.2.1 Non-Newtonian behavior of viscoelastic polymeric materials\u003cbr\u003e3.2.2 Non-Newtonian behavior of structured systems - plasticity of liquids\u003cbr\u003e3.2.3 Viscosity of anisotropic liquids\u003cbr\u003e3.3 Equations for viscosity and flow curves\u003cbr\u003e3.3.1 Introduction - the meaning of viscosity measurement\u003cbr\u003e3.3.2 Power-law equations\u003cbr\u003e3.3.3 Equations with yield stress\u003cbr\u003e3.3.4 Basic dependencies of viscosity\u003cbr\u003e3.3.4.1 Viscosity of polymer melts\u003cbr\u003e3.3.4.2 Viscosity of polymer solutions\u003cbr\u003e3.3.4.3 Viscosity of suspensions\u003cbr\u003e3.3.5 Effect of molecular weight distribution on non-Newtonian flow\u003cbr\u003e3.4 Elasticity in shear flows\u003cbr\u003e3.4.1 Rubbery shear deformations - elastic recoil\u003cbr\u003e3.4.2 Normal stresses in shear flow\u003cbr\u003e3.4.2.1 The Weissenberg effect\u003cbr\u003e3.4.2.2 First normal stress difference - quantitative approach\u003cbr\u003e3.4.2.3 Second normal stress difference and secondary flow\u003cbr\u003e3.4.3 Normal stresses and elasticity\u003cbr\u003e3.4.4 Die swell\u003cbr\u003e3.5 Structure rearrangements induced by shear flow\u003cbr\u003e3.5.1 Transient deformation regimes\u003cbr\u003e3.5.2 Thixotropy and rheopexy\u003cbr\u003e3.5.3 Shear-induced phase transitions\u003cbr\u003e3.6 Limits of shear flow - instabilities\u003cbr\u003e3.6.1 Inertial turbulency\u003cbr\u003e3.6.2 The Toms effect\u003cbr\u003e3.6.3 Instabilities inflow of elastic liquids\u003cbr\u003e3.7 Extensional flow\u003cbr\u003e3.7.1 Model experiments - uniaxial flow\u003cbr\u003e3.7.2 Model experiments - rupture\u003cbr\u003e3.7.3 Extension of industrial polymers\u003cbr\u003e3.7.3.1 Multiaxial elongation\u003cbr\u003e3.7.4 The tubeless siphon effect\u003cbr\u003e3.7.5 Instabilities in extension\u003cbr\u003e3.7.5.1 Phase transitions in extension\u003cbr\u003e3.7.5.2 Rayleigh instability\u003cbr\u003e3.7.5.3 Instabilities in extension of a viscoelastic thread\u003cbr\u003e3.8 Conclusions - real liquid is a complex liquid\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 3\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions\u003cbr\u003e4.2 Linear elastic (Hookean) materials\u003cbr\u003e4.3 Linear anisotropic solids\u003cbr\u003e4.4 Large deformations in solids and non-linearity\u003cbr\u003e4.4.1 A single-constant model\u003cbr\u003e4.4.2 Multi-constant models\u003cbr\u003e4.4.2.1 Two-constant potential function\u003cbr\u003e4.4.2.2 Multi-member series\u003cbr\u003e4.4.2.3 General presentation\u003cbr\u003e4.4.2.4 Elastic potential of the power-law type\u003cbr\u003e4.4.3 The Poynting effect\u003cbr\u003e4.5 Limits of elasticity\u003cbr\u003e4.5.1 Standard experiment - main definitions\u003cbr\u003e4.5.2 Plasticity\u003cbr\u003e4.5.3 Criteria of plasticity and failure\u003cbr\u003e4.5.3.1 Maximum shear stress\u003cbr\u003e4.5.3.2 The intensity of shear stresses (\"energetic\" criterion)\u003cbr\u003e4.5.3.3 Maximum normal stress\u003cbr\u003e4.5.3.4 Maximum deformation\u003cbr\u003e4.5.3.5 Complex criteria\u003cbr\u003e4.5.4 Structure effects\u003cbr\u003e4.5.4.1 Strengthening\u003cbr\u003e4.5.4.2 Thixotropy\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 4\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry. Experimental Methods\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction - Classification of experimental methods\u003cbr\u003e5.2 Capillary viscometry\u003cbr\u003e5.2.1 Basic theory\u003cbr\u003e5.2.2 Corrections\u003cbr\u003e5.2.2.1 Kinetic correction\u003cbr\u003e5.2.2.2 Entrance correction\u003cbr\u003e5.2.2.3 Pressure losses in a reservoir of viscometer\u003cbr\u003e5.2.2.4 Temperature correction\u003cbr\u003e5.2.2.5 Pressure correction\u003cbr\u003e5.2.2.6 Correction for slip near a wall\u003cbr\u003e5.2.2.7 Adsorption on a channel surface\u003cbr\u003e5.2.3 Flow in incompletely filled capillary\u003cbr\u003e5.2.3.1 Motion under action of gravitation forces\u003cbr\u003e5.2.3.2 Motion caused by surface tension forces\u003cbr\u003e5.2.4 Limits of capillary viscometry\u003cbr\u003e5.2.5 Non-viscometric measurements using capillary viscometers\u003cbr\u003e5.2.6 Capillary viscometers\u003cbr\u003e5.2.6.1 Classification of the basic types of instruments\u003cbr\u003e5.2.6.2 Viscometers with the assigned load\u003cbr\u003e5.2.6.3 Cup viscometers\u003cbr\u003e5.2.6.4 Glass viscometers\u003cbr\u003e5.2.7 Viscometers with controlled flow rate\u003cbr\u003e5.2.7.1 Instruments with a power drive\u003cbr\u003e5.2.7.2 Instruments with hydraulic drive\u003cbr\u003e5.2.7.3 Extrusion rheometers\u003cbr\u003e5.2.7.4 Technological capillary tube viscometers\u003cbr\u003e5.3 Rotational rheometry\u003cbr\u003e5.3.1 Tasks and capabilities of the method\u003cbr\u003e5.3.1.1 Viscometric and non-viscometric measurements\u003cbr\u003e5.3.1.2 The method of a constant frequency of rotation\u003cbr\u003e5.3.1.3 The method of a constant torque\u003cbr\u003e5.3.2 Basic theory of rotational instruments\u003cbr\u003e5.3.2.1 Instruments with coaxial cylinders\u003cbr\u003e5.3.2.2 Instruments with conical surfaces\u003cbr\u003e5.3.2.3 Bi-conical viscometers\u003cbr\u003e5.3.2.4 Disk viscometers\u003cbr\u003e5.3.2.5 Viscometers with spherical surfaces\u003cbr\u003e5.3.2.6 End (bottom) corrections in instruments with coaxial cylinders\u003cbr\u003e5.3.2.7 On a role of rigidity of dynamometer\u003cbr\u003e5.3.2.8 Temperature effects\u003cbr\u003e5.3.3 Limitations of rotational viscometry\u003cbr\u003e5.3.4 Rotational instruments\u003cbr\u003e5.3.4.1 Introduction - general considerations\u003cbr\u003e5.3.4.2 Rheogoniometers and elastoviscometers\u003cbr\u003e5.3.4.3 Viscometers with assigned rotational speed\u003cbr\u003e5.3.4.4 Rotational viscometers for special purposes\u003cbr\u003e5.3.4.5 Rotational instruments for technological purposes\u003cbr\u003e5.3.5 Measuring normal stresses\u003cbr\u003e5.3.5.1 Cone-and-plate technique\u003cbr\u003e5.3.5.2 Plate-and-plate technique\u003cbr\u003e5.3.5.3 Coaxial cylinders technique\u003cbr\u003e5.3.5.4 Hole-pressure effect\u003cbr\u003e5.4 Plastometers\u003cbr\u003e5.4.1. Shear flow plastometers\u003cbr\u003e5.4.2 Squeezing flow plastometers\u003cbr\u003e5.4.3 Method of telescopic shear\u003cbr\u003e5.4.3.1 Telescopic shear penetrometer\u003cbr\u003e5.5 Method of falling sphere\u003cbr\u003e5.5.1 Principles\u003cbr\u003e5.5.1.1 Corrections\u003cbr\u003e5.5.2 Method of rolling sphere\u003cbr\u003e5.5.3 Viscometers with falling sphere\u003cbr\u003e5.5.4 Viscometers with falling cylinder\u003cbr\u003e5.6 Extension\u003cbr\u003e5.6.1 General considerations\u003cbr\u003e5.6.2. Experimental methods\u003cbr\u003e5.6.2.1 The simplest measuring schemes\u003cbr\u003e5.6.2.2 Tension in a controlled regime\u003cbr\u003e5.6.2.3 Tubeless siphon instruments\u003cbr\u003e5.6.2.4 Flow in convergent channels\u003cbr\u003e5.6.2.5 High strain rate methods\u003cbr\u003e5.6.3 Biaxial extension\u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods\u003cbr\u003e5.7.1 Principles of measurement - homogeneous deformation\u003cbr\u003e5.7.2 Inhomogeneous deformations\u003cbr\u003e5.7.3 Torsion oscillations\u003cbr\u003e5.7.4 Measuring the impedance of a system\u003cbr\u003e5.7.5 Resonance oscillations\u003cbr\u003e5.7.6 Damping (free) oscillations\u003cbr\u003e5.7.7 Wave propagation\u003cbr\u003e5.7.7.1 Shear waves\u003cbr\u003e5.7.7.2 Longitudinal waves\u003cbr\u003e5.7.8 Vibration viscometry\u003cbr\u003e5.7.8.1 Torsion oscillations\u003cbr\u003e5.7.8.2 Oscillation of a disk in liquid\u003cbr\u003e5.7.8.3 Oscillations of sphere\u003cbr\u003e5.7.8.4 Damping oscillations\u003cbr\u003e5.7.9 Measuring viscoelastic properties in non-symmetrical flows\u003cbr\u003e5.7.9 About experimental techniques\u003cbr\u003e5.7.9.1 Rotational instruments\u003cbr\u003e5.7.9.2 Devices with electromagnetic excitation\u003cbr\u003e5.7.9.3 Torsion pendulums\u003cbr\u003e5.8 Physical methods\u003cbr\u003e5.8.1 Rheo-optical methods\u003cbr\u003e5.8.1.1 Basic remarks\u003cbr\u003e5.8.1.2 Stress - optical rules for polymer melts\u003cbr\u003e5.8.1.3 Stress-optical rule for polymer solutions\u003cbr\u003e5.8.1.4 Viscometers for optical observations\u003cbr\u003e5.8.1.5 Polarization methods for measuring stresses\u003cbr\u003e5.8.1.6 Visualization of polymer flow in dies\u003cbr\u003e5.8.2. Velocimetry\u003cbr\u003e5.8.3 Viscometers-calorimeters\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 5\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Rheological properties of real materials and their characterization\u003cbr\u003e6.2.1 Polymer materials\u003cbr\u003e6.2.2 Mineral oils and oil-based products\u003cbr\u003e6.2.3 Food products\u003cbr\u003e6.2.4 Cosmetics and pharmaceuticals\u003cbr\u003e6.2.5 Biological fluids\u003cbr\u003e6.2.6 Concentrated suspensions\u003cbr\u003e6.2.7 Electro- and magneto-rheological materials\u003cbr\u003e6.2.8 Concluding remarks\u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids\u003cbr\u003e6.3.1. Formulation of problem\u003cbr\u003e6.3.2. Linear polymerization\u003cbr\u003e6.3.3 Oligomer curing\u003cbr\u003e6.3.3.1 Viscosity change and a gel-point\u003cbr\u003e6.3.3.2 Curing at high shear rates\u003cbr\u003e6.3.3.3 Curing after gel-point\u003cbr\u003e6.3.4 Intermolecular transformations\u003cbr\u003e6.4 Solution of dynamic problems\u003cbr\u003e6.4.1 General formulation\u003cbr\u003e6.4.2 Flow through tubes\u003cbr\u003e6.4.3 Flow in technological equipment\u003cbr\u003e6.4.3.1 Pumping screw\u003cbr\u003e6.4.3.2 Calendering and related processes\u003cbr\u003e6.4.3.3 Extension-based technologies\u003cbr\u003e6.4.3.4 Molding technologies\u003cbr\u003e6.4.3.5 Compression molding\u003cbr\u003e6.4.3.6 Injection molding\u003cbr\u003e6.4.3.7 Injection-compression molding\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 6\u003c\/p\u003e\n\u003cp\u003eNotations\u003c\/p\u003e\n\u003cp\u003eAnswers\u003c\/p\u003e\n\u003cp\u003eIndex\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2018-02-11T10:50:56-05:00","created_at":"2017-06-22T21:13:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","anisotropic","creep","deformations","dynamic","elastoviscometers","flow","function","industry","kinematics","Leonov","liquids. definitions","Marrucci","Newtonian","non-Newtonian","Poisson's ratio","polymeric","relaxation","retardation","rheogoniometers","rheology","rubbery","shear","stresses","tensor","The K-BKZ","uniaxial elongation","viscoelastic","viscoelasticity","viscometers","Wagner","Weissenberg"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391300,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-33-X.jpg?v=1499954813"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-33-X.jpg?v=1499954813","options":["Title"],"media":[{"alt":null,"id":358738264157,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-33-X.jpg?v=1499954813"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-33-X.jpg?v=1499954813","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003e10-ISBN 1-895198-33-X\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e13-ISBN 978-1-895198-33-1\u003cbr\u003e\u003cbr\u003ePublished: 2006\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003eThe first edition of this book is out of print. \u003ca href=\"http:\/\/chemtec.org\/proddetail.php?prod=978-1-895198-49-2\"\u003eClick here\u003c\/a\u003e to proceed to the 2nd edition of this book. \u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe pursuit of the golden balance between oversimplification and overload with theory has always been the primary goal of every author of a book on rheology. Rheology is a tool for chemists and chemical engineers to solve many practical problems. They have to learn what to measure, how to measure, and what to do with the data. But, the learning process should not take users away from their major goals, such as manufacturing quality products, developing new materials, analysis of material durability.\n\u003cp\u003eThe first four chapters of this book discuss various aspects of theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003c\/p\u003e\n\u003cp\u003eThe goal of rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003c\/p\u003e\n\u003cp\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/p\u003e\n\u003cp\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/p\u003e\n\u003cp\u003eThe authors were very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003c\/p\u003e\n\u003cp\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intend to pass their knowledge to the next generations.\u003c\/p\u003e\n\u003cp\u003e\u003cbr\u003eThis book is very useful in the industry but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003ePreface\u003cbr\u003eIntroduction. Rheology: Subject and Goals\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology\u003c\/strong\u003e\u003cbr\u003e1.1 Stresses\u003cbr\u003e1.1.1 General theory\u003cbr\u003e1.1.2 Law of equality of conjugated stresses\u003cbr\u003e1.1.3 Principal stresses\u003cbr\u003e1.1.4 Invariants of a stress tensor\u003cbr\u003e1.1.5 Hydrostatic pressure - spherical tensor and deviator\u003cbr\u003e1.1.6 Equilibrium (balance) equations\u003cbr\u003e1.2 Deformations\u003cbr\u003e1.2.1 Deformations and displacements\u003cbr\u003e1.2.1.1 Deformations\u003cbr\u003e1.2.1.2 Displacements\u003cbr\u003e1.2.2 Infinitesimal deformations: principal values and invariants\u003cbr\u003e1.2.3 Large (finite) deformations\u003cbr\u003e1.2.4 Special cases of deformations - uniaxial elongation and simple shear\u003cbr\u003e1.2.4.1 Uniaxial elongation and Poisson's ratio\u003cbr\u003e1.2.4.2 Simple shear and pure shear \u003cbr\u003e1.3 Kinematics of deformations\u003cbr\u003e1.3.1 Rates of deformation and vorticity\u003cbr\u003e1.3.2 Deformation rates when deformations are large\u003cbr\u003e1.4 Summary - continuum mechanics in rheology\u003cbr\u003e1.4.1 General principles\u003cbr\u003e1.4.2 Objects of continuum as tensors\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 1\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments\u003cbr\u003e2.1.1 Creep (retarded deformation)\u003cbr\u003e2.1.2 Relaxation\u003cbr\u003e2.1.3 Fading memory\u003cbr\u003e2.2 Relaxation and creep - spectral representation. Dynamic functions\u003cbr\u003e2.2.1 Retardation and relaxation spectra - definitions\u003cbr\u003e2.2.2 Dynamic functions\u003cbr\u003e2.3 Model interpretations\u003cbr\u003e2.3.1 Basic mechanical models\u003cbr\u003e2.3.2 Complicated mechanical models - differential rheological equations\u003cbr\u003e2.3.3 Non-mechanical models\u003cbr\u003e2.4 Superposition - The Boltzmann-Volterra principle\u003cbr\u003e2.4.1 Integral formulation of the superposition principle\u003cbr\u003e2.4.2 Superposition principle expressed via spectra\u003cbr\u003e2.4.3 Simple transient modes of deformation\u003cbr\u003e2.4.3.1 Relaxation after sudden deformation\u003cbr\u003e2.4.3.2 Developing stresses at constant shear rate\u003cbr\u003e2.4.3.3 Relaxation after steady shear flow\u003cbr\u003e2.4.3 Relationship between relaxation and creep functions\u003cbr\u003e2.4.4 Relaxation function and large deformations\u003cbr\u003e2.5 Relationships among viscoelastic functions\u003cbr\u003e2.5.1 Dynamic functions - relaxation, creep, and spectra\u003cbr\u003e2.5.2 Constants and viscoelastic functions\u003cbr\u003e2.5.3 Calculation of a relaxation spectrum\u003cbr\u003e2.5.3.1 Introduction - general concept\u003cbr\u003e2.5.3.2 Kernel approximation - finding a continuous spectrum\u003cbr\u003e2.5.3.3 Computer-aided methods for a discrete spectrum\u003cbr\u003e2.6 Viscoelasticity and molecular models\u003cbr\u003e2.6.1 Molecular movements of an individual chain\u003cbr\u003e2.6.1.1 A spring-and-bead model (\"free draining chain\")\u003cbr\u003e2.6.1.2 Model of a non-draining coil\u003cbr\u003e2.6.1.3 Model of a rotating coil\u003cbr\u003e2.6.2 Relaxation properties of concentrated polymer solutions and melts\u003cbr\u003e2.6.2.1 Concept of entanglements\u003cbr\u003e2.6.2.2 Two-part distribution of friction coefficient\u003cbr\u003e2.6.2.3 Non-equivalent friction along a chain\u003cbr\u003e2.6.2.4 Viscoelastic entanglements\u003cbr\u003e2.6.2.5 Rubber-like network\u003cbr\u003e2.6.2.6 \"Tube\" (reptation) model\u003cbr\u003e2.6.2.7 Some conclusions\u003cbr\u003e2.6.3 Viscoelasticity of polydisperse polymers\u003cbr\u003e2.7 Time-temperature superposition. Reduced (\"master\") viscoelastic curves\u003cbr\u003e2.7.1 Superposition of experimental curves\u003cbr\u003e2.7.2 Master curves and relaxation states\u003cbr\u003e2.7.3 \"Universal\" relaxation spectra\u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003cbr\u003e2.8.1 Experimental evidences\u003cbr\u003e2.8.1.1 Non-Newtonian viscosity\u003cbr\u003e2.8.1.2 Non-Hookean behavior of solids\u003cbr\u003e2.8.1.3 Non-linear creep\u003cbr\u003e2.8.1.4 Non-linear relaxation\u003cbr\u003e2.8.1.5 Non-linear periodic measurements\u003cbr\u003e2.8.2 Linear - non-linear correlations\u003cbr\u003e2.8.3 Rheological equations of state for non-linear viscoelastic behavior\u003cbr\u003e2.8.3.1 The K-BKZ model \u003cbr\u003e2.8.3.2 The Wagner models \u003cbr\u003e2.8.3.2 The Leonov model\u003cbr\u003e2.8.3.4 The Marrucci models\u003cbr\u003e2.8.4 Comments - constructing non-linear constitutive equations and experiment\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 2\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Liquids\u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions\u003cbr\u003e3.2 Non-Newtonian shear flow\u003cbr\u003e3.2.1 Non-Newtonian behavior of viscoelastic polymeric materials\u003cbr\u003e3.2.2 Non-Newtonian behavior of structured systems - plasticity of liquids\u003cbr\u003e3.2.3 Viscosity of anisotropic liquids\u003cbr\u003e3.3 Equations for viscosity and flow curves\u003cbr\u003e3.3.1 Introduction - the meaning of viscosity measurement\u003cbr\u003e3.3.2 Power-law equations\u003cbr\u003e3.3.3 Equations with yield stress\u003cbr\u003e3.3.4 Basic dependencies of viscosity\u003cbr\u003e3.3.4.1 Viscosity of polymer melts\u003cbr\u003e3.3.4.2 Viscosity of polymer solutions\u003cbr\u003e3.3.4.3 Viscosity of suspensions\u003cbr\u003e3.3.5 Effect of molecular weight distribution on non-Newtonian flow\u003cbr\u003e3.4 Elasticity in shear flows\u003cbr\u003e3.4.1 Rubbery shear deformations - elastic recoil\u003cbr\u003e3.4.2 Normal stresses in shear flow\u003cbr\u003e3.4.2.1 The Weissenberg effect\u003cbr\u003e3.4.2.2 First normal stress difference - quantitative approach\u003cbr\u003e3.4.2.3 Second normal stress difference and secondary flow\u003cbr\u003e3.4.3 Normal stresses and elasticity\u003cbr\u003e3.4.4 Die swell\u003cbr\u003e3.5 Structure rearrangements induced by shear flow\u003cbr\u003e3.5.1 Transient deformation regimes\u003cbr\u003e3.5.2 Thixotropy and rheopexy\u003cbr\u003e3.5.3 Shear-induced phase transitions\u003cbr\u003e3.6 Limits of shear flow - instabilities\u003cbr\u003e3.6.1 Inertial turbulency\u003cbr\u003e3.6.2 The Toms effect\u003cbr\u003e3.6.3 Instabilities inflow of elastic liquids\u003cbr\u003e3.7 Extensional flow\u003cbr\u003e3.7.1 Model experiments - uniaxial flow\u003cbr\u003e3.7.2 Model experiments - rupture\u003cbr\u003e3.7.3 Extension of industrial polymers\u003cbr\u003e3.7.3.1 Multiaxial elongation\u003cbr\u003e3.7.4 The tubeless siphon effect\u003cbr\u003e3.7.5 Instabilities in extension\u003cbr\u003e3.7.5.1 Phase transitions in extension\u003cbr\u003e3.7.5.2 Rayleigh instability\u003cbr\u003e3.7.5.3 Instabilities in extension of a viscoelastic thread\u003cbr\u003e3.8 Conclusions - real liquid is a complex liquid\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 3\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions\u003cbr\u003e4.2 Linear elastic (Hookean) materials\u003cbr\u003e4.3 Linear anisotropic solids\u003cbr\u003e4.4 Large deformations in solids and non-linearity\u003cbr\u003e4.4.1 A single-constant model\u003cbr\u003e4.4.2 Multi-constant models\u003cbr\u003e4.4.2.1 Two-constant potential function\u003cbr\u003e4.4.2.2 Multi-member series\u003cbr\u003e4.4.2.3 General presentation\u003cbr\u003e4.4.2.4 Elastic potential of the power-law type\u003cbr\u003e4.4.3 The Poynting effect\u003cbr\u003e4.5 Limits of elasticity\u003cbr\u003e4.5.1 Standard experiment - main definitions\u003cbr\u003e4.5.2 Plasticity\u003cbr\u003e4.5.3 Criteria of plasticity and failure\u003cbr\u003e4.5.3.1 Maximum shear stress\u003cbr\u003e4.5.3.2 The intensity of shear stresses (\"energetic\" criterion)\u003cbr\u003e4.5.3.3 Maximum normal stress\u003cbr\u003e4.5.3.4 Maximum deformation\u003cbr\u003e4.5.3.5 Complex criteria\u003cbr\u003e4.5.4 Structure effects\u003cbr\u003e4.5.4.1 Strengthening\u003cbr\u003e4.5.4.2 Thixotropy\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 4\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry. Experimental Methods\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction - Classification of experimental methods\u003cbr\u003e5.2 Capillary viscometry\u003cbr\u003e5.2.1 Basic theory\u003cbr\u003e5.2.2 Corrections\u003cbr\u003e5.2.2.1 Kinetic correction\u003cbr\u003e5.2.2.2 Entrance correction\u003cbr\u003e5.2.2.3 Pressure losses in a reservoir of viscometer\u003cbr\u003e5.2.2.4 Temperature correction\u003cbr\u003e5.2.2.5 Pressure correction\u003cbr\u003e5.2.2.6 Correction for slip near a wall\u003cbr\u003e5.2.2.7 Adsorption on a channel surface\u003cbr\u003e5.2.3 Flow in incompletely filled capillary\u003cbr\u003e5.2.3.1 Motion under action of gravitation forces\u003cbr\u003e5.2.3.2 Motion caused by surface tension forces\u003cbr\u003e5.2.4 Limits of capillary viscometry\u003cbr\u003e5.2.5 Non-viscometric measurements using capillary viscometers\u003cbr\u003e5.2.6 Capillary viscometers\u003cbr\u003e5.2.6.1 Classification of the basic types of instruments\u003cbr\u003e5.2.6.2 Viscometers with the assigned load\u003cbr\u003e5.2.6.3 Cup viscometers\u003cbr\u003e5.2.6.4 Glass viscometers\u003cbr\u003e5.2.7 Viscometers with controlled flow rate\u003cbr\u003e5.2.7.1 Instruments with a power drive\u003cbr\u003e5.2.7.2 Instruments with hydraulic drive\u003cbr\u003e5.2.7.3 Extrusion rheometers\u003cbr\u003e5.2.7.4 Technological capillary tube viscometers\u003cbr\u003e5.3 Rotational rheometry\u003cbr\u003e5.3.1 Tasks and capabilities of the method\u003cbr\u003e5.3.1.1 Viscometric and non-viscometric measurements\u003cbr\u003e5.3.1.2 The method of a constant frequency of rotation\u003cbr\u003e5.3.1.3 The method of a constant torque\u003cbr\u003e5.3.2 Basic theory of rotational instruments\u003cbr\u003e5.3.2.1 Instruments with coaxial cylinders\u003cbr\u003e5.3.2.2 Instruments with conical surfaces\u003cbr\u003e5.3.2.3 Bi-conical viscometers\u003cbr\u003e5.3.2.4 Disk viscometers\u003cbr\u003e5.3.2.5 Viscometers with spherical surfaces\u003cbr\u003e5.3.2.6 End (bottom) corrections in instruments with coaxial cylinders\u003cbr\u003e5.3.2.7 On a role of rigidity of dynamometer\u003cbr\u003e5.3.2.8 Temperature effects\u003cbr\u003e5.3.3 Limitations of rotational viscometry\u003cbr\u003e5.3.4 Rotational instruments\u003cbr\u003e5.3.4.1 Introduction - general considerations\u003cbr\u003e5.3.4.2 Rheogoniometers and elastoviscometers\u003cbr\u003e5.3.4.3 Viscometers with assigned rotational speed\u003cbr\u003e5.3.4.4 Rotational viscometers for special purposes\u003cbr\u003e5.3.4.5 Rotational instruments for technological purposes\u003cbr\u003e5.3.5 Measuring normal stresses\u003cbr\u003e5.3.5.1 Cone-and-plate technique\u003cbr\u003e5.3.5.2 Plate-and-plate technique\u003cbr\u003e5.3.5.3 Coaxial cylinders technique\u003cbr\u003e5.3.5.4 Hole-pressure effect\u003cbr\u003e5.4 Plastometers\u003cbr\u003e5.4.1. Shear flow plastometers\u003cbr\u003e5.4.2 Squeezing flow plastometers\u003cbr\u003e5.4.3 Method of telescopic shear\u003cbr\u003e5.4.3.1 Telescopic shear penetrometer\u003cbr\u003e5.5 Method of falling sphere\u003cbr\u003e5.5.1 Principles\u003cbr\u003e5.5.1.1 Corrections\u003cbr\u003e5.5.2 Method of rolling sphere\u003cbr\u003e5.5.3 Viscometers with falling sphere\u003cbr\u003e5.5.4 Viscometers with falling cylinder\u003cbr\u003e5.6 Extension\u003cbr\u003e5.6.1 General considerations\u003cbr\u003e5.6.2. Experimental methods\u003cbr\u003e5.6.2.1 The simplest measuring schemes\u003cbr\u003e5.6.2.2 Tension in a controlled regime\u003cbr\u003e5.6.2.3 Tubeless siphon instruments\u003cbr\u003e5.6.2.4 Flow in convergent channels\u003cbr\u003e5.6.2.5 High strain rate methods\u003cbr\u003e5.6.3 Biaxial extension\u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods\u003cbr\u003e5.7.1 Principles of measurement - homogeneous deformation\u003cbr\u003e5.7.2 Inhomogeneous deformations\u003cbr\u003e5.7.3 Torsion oscillations\u003cbr\u003e5.7.4 Measuring the impedance of a system\u003cbr\u003e5.7.5 Resonance oscillations\u003cbr\u003e5.7.6 Damping (free) oscillations\u003cbr\u003e5.7.7 Wave propagation\u003cbr\u003e5.7.7.1 Shear waves\u003cbr\u003e5.7.7.2 Longitudinal waves\u003cbr\u003e5.7.8 Vibration viscometry\u003cbr\u003e5.7.8.1 Torsion oscillations\u003cbr\u003e5.7.8.2 Oscillation of a disk in liquid\u003cbr\u003e5.7.8.3 Oscillations of sphere\u003cbr\u003e5.7.8.4 Damping oscillations\u003cbr\u003e5.7.9 Measuring viscoelastic properties in non-symmetrical flows\u003cbr\u003e5.7.9 About experimental techniques\u003cbr\u003e5.7.9.1 Rotational instruments\u003cbr\u003e5.7.9.2 Devices with electromagnetic excitation\u003cbr\u003e5.7.9.3 Torsion pendulums\u003cbr\u003e5.8 Physical methods\u003cbr\u003e5.8.1 Rheo-optical methods\u003cbr\u003e5.8.1.1 Basic remarks\u003cbr\u003e5.8.1.2 Stress - optical rules for polymer melts\u003cbr\u003e5.8.1.3 Stress-optical rule for polymer solutions\u003cbr\u003e5.8.1.4 Viscometers for optical observations\u003cbr\u003e5.8.1.5 Polarization methods for measuring stresses\u003cbr\u003e5.8.1.6 Visualization of polymer flow in dies\u003cbr\u003e5.8.2. Velocimetry\u003cbr\u003e5.8.3 Viscometers-calorimeters\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 5\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Rheological properties of real materials and their characterization\u003cbr\u003e6.2.1 Polymer materials\u003cbr\u003e6.2.2 Mineral oils and oil-based products\u003cbr\u003e6.2.3 Food products\u003cbr\u003e6.2.4 Cosmetics and pharmaceuticals\u003cbr\u003e6.2.5 Biological fluids\u003cbr\u003e6.2.6 Concentrated suspensions\u003cbr\u003e6.2.7 Electro- and magneto-rheological materials\u003cbr\u003e6.2.8 Concluding remarks\u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids\u003cbr\u003e6.3.1. Formulation of problem\u003cbr\u003e6.3.2. Linear polymerization\u003cbr\u003e6.3.3 Oligomer curing\u003cbr\u003e6.3.3.1 Viscosity change and a gel-point\u003cbr\u003e6.3.3.2 Curing at high shear rates\u003cbr\u003e6.3.3.3 Curing after gel-point\u003cbr\u003e6.3.4 Intermolecular transformations\u003cbr\u003e6.4 Solution of dynamic problems\u003cbr\u003e6.4.1 General formulation\u003cbr\u003e6.4.2 Flow through tubes\u003cbr\u003e6.4.3 Flow in technological equipment\u003cbr\u003e6.4.3.1 Pumping screw\u003cbr\u003e6.4.3.2 Calendering and related processes\u003cbr\u003e6.4.3.3 Extension-based technologies\u003cbr\u003e6.4.3.4 Molding technologies\u003cbr\u003e6.4.3.5 Compression molding\u003cbr\u003e6.4.3.6 Injection molding\u003cbr\u003e6.4.3.7 Injection-compression molding\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 6\u003c\/p\u003e\n\u003cp\u003eNotations\u003c\/p\u003e\n\u003cp\u003eAnswers\u003c\/p\u003e\n\u003cp\u003eIndex\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e"}
Rheology. Concepts, Me...
$285.00
{"id":11242225860,"title":"Rheology. Concepts, Methods, and Applications, 2nd Edition","handle":"978-1-895198-49-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-895198-49-2 \u003cbr\u003e\u003cbr\u003ePages 474+xiv\u003cbr\u003eFigures 252\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe second edition of this excellent book brings many new features, which were outlined in the preface to the 2nd Edition. \u003cbr\u003eThe pursuit of the golden balance between oversimplification and overload with theory has always been the primary goal of every author of a book on rheology. Rheology is a tool for chemists and chemical engineers to solve many practical problems. They have to learn what to measure, how to measure, and what to do with the data. But, the learning process should not take users away from their major goals, such as manufacturing quality products, developing new materials, analysis of material durability.\u003cbr\u003eThe first four chapters of this book discuss various aspects of theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors were very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intend to pass their knowledge to the next generations. \u003cbr\u003e\u003cbr\u003eThis book is very useful in the industry but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface to the 2nd Edition\u003c\/b\u003e\u003cbr\u003eIn preparing the Second Edition of this book, the general structure of the book is maintained and some necessary corrections and additions are made. The most important recent results published in periodicals till the middle of 2011 are added. In particular, Section 2.8.1 of Chapter 2, Section 3.5.2 of Chapter 3 and Subsection 5.8.1.2 of Chapter 5 are modified. A new Subsection 5.6.2.6 on Capillary breakup in elongational rheometry is added. Furthermore, Section 3.2.3 on Viscosity of anisotropic liquids and Section 3.6.3 on Instabilities in the flow of elastic fluids of Chapter 3 are completely rewritten. Many other modifications in the text are made and some new figures are added. Also, all the detected misprints and errors found by ourselves or pointed out by colleagues are corrected. \u003cbr\u003eAfter publication of the First Edition of the book, a lot of comments and advice from our friends and colleagues were received. We are very grateful to all of them for constructive criticism and valuable comments.\u003cbr\u003eWe are also grateful to our Editor, Dr. G. Wypych, for his hard work in improving the manuscript and making it ready for publication.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003eAlexander Ya. Malkin,\u003c\/b\u003e\u003cbr\u003eMoscow, Russia\u003cbr\u003e\u003cbr\u003e\u003cb\u003eAvraam I. Isayev\u003c\/b\u003e\u003cbr\u003eAkron, Ohio, USA\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eIntroduction. Rheology: Subject and Goals\u003cbr\u003e\u003cbr\u003e1 Continuum Mechanics as a Foundation of Rheology\u003cbr\u003e1.1 Stresses\u003cbr\u003e1.1.1 General theory\u003cbr\u003e1.1.2 Law of equality of conjugated stresses\u003cbr\u003e1.1.3 Principal stresses\u003cbr\u003e1.1.4 Invariants of a stress tensor\u003cbr\u003e1.1.5 Hydrostatic pressure - spherical tensor and deviator\u003cbr\u003e1.1.6 Equilibrium (balance) equations\u003cbr\u003e1.2 Deformations\u003cbr\u003e1.2.1 Deformations and displacements\u003cbr\u003e1.2.1.1 Deformations\u003cbr\u003e1.2.1.2 Displacements\u003cbr\u003e1.2.2 Infinitesimal deformations: principal values and invariants\u003cbr\u003e1.2.3 Large (finite) deformations\u003cbr\u003e1.2.4 Special cases of deformations - uniaxial elongation and simple shear\u003cbr\u003e1.2.4.1 Uniaxial elongation and Poisson's ratio\u003cbr\u003e1.2.4.2 Simple shear and pure shear \u003cbr\u003e1.3 Kinematics of deformations\u003cbr\u003e1.3.1 Rates of deformation and vorticity\u003cbr\u003e1.3.2 Deformation rates when deformations are large\u003cbr\u003e1.4 Summary - continuum mechanics in rheology\u003cbr\u003e1.4.1 General principles\u003cbr\u003e1.4.2 Objects of continuum as tensors\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 1\u003cbr\u003e\u003cbr\u003e2 Viscoelasticity \u003cbr\u003e2.1 Basic experiments\u003cbr\u003e2.1.1 Creep (retarded deformation)\u003cbr\u003e2.1.2 Relaxation\u003cbr\u003e2.1.3 Fading memory\u003cbr\u003e2.2 Relaxation and creep - spectral representation. Dynamic functions\u003cbr\u003e2.2.1 Retardation and relaxation spectra - definitions\u003cbr\u003e2.2.2 Dynamic functions\u003cbr\u003e2.3 Model interpretations\u003cbr\u003e2.3.1 Basic mechanical models\u003cbr\u003e2.3.2 Complicated mechanical models - differential rheological equations\u003cbr\u003e2.3.3 Non-mechanical models\u003cbr\u003e2.4 Superposition - The Boltzmann-Volterra principle\u003cbr\u003e2.4.1 Integral formulation of the superposition principle\u003cbr\u003e2.4.2 Superposition principle expressed via spectra\u003cbr\u003e2.4.3 Simple transient modes of deformation\u003cbr\u003e2.4.3.1 Relaxation after sudden deformation\u003cbr\u003e2.4.3.2 Developing stresses at constant shear rate\u003cbr\u003e2.4.3.3 Relaxation after steady shear flow\u003cbr\u003e2.4.3 Relationship between relaxation and creep functions\u003cbr\u003e2.4.4 Relaxation function and large deformations\u003cbr\u003e2.4.3.4 Relationship between relaxation and creep functions \u003cbr\u003e2.4.3.5 Relaxation function and large deformations\u003cbr\u003e2.5 Relationships among viscoelastic functions\u003cbr\u003e2.5.1 Dynamic functions - relaxation, creep, and spectra\u003cbr\u003e2.5.2 Constants and viscoelastic functions\u003cbr\u003e2.5.3 Calculation of a relaxation spectrum\u003cbr\u003e2.5.3.1 Introduction - general concept\u003cbr\u003e2.5.3.2 Kernel approximation - finding a continuous spectrum\u003cbr\u003e2.5.3.3 Computer-aided methods for a discrete spectrum\u003cbr\u003e2.6 Viscoelasticity and molecular models\u003cbr\u003e2.6.1 Molecular movements of an individual chain\u003cbr\u003e2.6.1.1 A spring-and-bead model (\"free draining chain\")\u003cbr\u003e2.6.1.2 Model of a non-draining coil\u003cbr\u003e2.6.1.3 Model of a rotating coil\u003cbr\u003e2.6.2 Relaxation properties of concentrated polymer solutions and melts\u003cbr\u003e2.6.2.1 Concept of entanglements\u003cbr\u003e2.6.2.2 Two-part distribution of friction coefficient\u003cbr\u003e2.6.2.3 Non-equivalent friction along a chain\u003cbr\u003e2.6.2.4 Viscoelastic entanglements\u003cbr\u003e2.6.2.5 Rubber-like network\u003cbr\u003e2.6.2.6 \"Tube\" (reptation) model\u003cbr\u003e2.6.2.7 Some conclusions\u003cbr\u003e2.6.3 Viscoelasticity of polydisperse polymers\u003cbr\u003e2.7 Time-temperature superposition. Reduced (\"master\") viscoelastic curves\u003cbr\u003e2.7.1 Superposition of experimental curves\u003cbr\u003e2.7.2 Master curves and relaxation states\u003cbr\u003e2.7.3 \"Universal\" relaxation spectra\u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003cbr\u003e2.8.1 Experimental evidences\u003cbr\u003e2.8.1.1 Non-Newtonian viscosity\u003cbr\u003e2.8.1.2 Non-Hookean behavior of solids\u003cbr\u003e2.8.1.3 Non-linear creep\u003cbr\u003e2.8.1.4 Non-linear relaxation\u003cbr\u003e2.8.1.5 Non-linear periodic measurements\u003cbr\u003e2.8.2 Linear - non-linear correlations\u003cbr\u003e2.8.3 Rheological equations of state for non-linear viscoelastic behavior\u003cbr\u003e2.8.3.1 The K-BKZ model \u003cbr\u003e2.8.3.2 The Wagner models \u003cbr\u003e2.8.3.2 The Leonov model\u003cbr\u003e2.8.3.4 The Marrucci models\u003cbr\u003e2.8.4 Comments - constructing non-linear constitutive equations and experiment\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 2\u003cbr\u003e\u003cbr\u003e3 Liquids\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions\u003cbr\u003e3.2 Non-Newtonian shear flow\u003cbr\u003e3.2.1 Non-Newtonian behavior of viscoelastic polymeric materials\u003cbr\u003e3.2.2 Non-Newtonian behavior of structured systems - plasticity of liquids\u003cbr\u003e3.2.3 Viscosity of anisotropic liquids\u003cbr\u003e3.3 Equations for viscosity and flow curves\u003cbr\u003e3.3.1 Introduction - the meaning of viscosity measurement\u003cbr\u003e3.3.2 Power-law equations\u003cbr\u003e3.3.3 Equations with yield stress\u003cbr\u003e3.3.4 Basic dependencies of viscosity\u003cbr\u003e3.3.4.1 Viscosity of polymer melts\u003cbr\u003e3.3.4.2 Viscosity of polymer solutions\u003cbr\u003e3.3.4.3 Viscosity of suspensions\u003cbr\u003e3.3.5 Effect of molecular weight distribution on non-Newtonian flow\u003cbr\u003e3.4 Elasticity in shear flows\u003cbr\u003e3.4.1 Rubbery shear deformations - elastic recoil\u003cbr\u003e3.4.2 Normal stresses in shear flow\u003cbr\u003e3.4.2.1 The Weissenberg effect\u003cbr\u003e3.4.2.2 First normal stress difference - quantitative approach\u003cbr\u003e3.4.2.3 Second normal stress difference and secondary flow\u003cbr\u003e3.4.3 Normal stresses and elasticity\u003cbr\u003e3.4.4 Die swell\u003cbr\u003e3.5 Structure rearrangements induced by shear flow\u003cbr\u003e3.5.1 Transient deformation regimes\u003cbr\u003e3.5.2 Thixotropy and rheopexy\u003cbr\u003e3.5.3 Shear-induced phase transitions\u003cbr\u003e3.6 Limits of shear flow - instabilities\u003cbr\u003e3.6.1 Inertial turbulency\u003cbr\u003e3.6.2 The Toms effect\u003cbr\u003e3.6.3 Instabilities inflow of elastic liquids\u003cbr\u003e3.6.3.1 Dynamic structure formation and secondary flows in elastic fluids\u003cbr\u003e3.6.3.2 Secondary flows in the flow of elastic fluids\u003cbr\u003e3.6.3.3 Shear banding\u003cbr\u003e3.7 Extensional flow\u003cbr\u003e3.7.1 Model experiments - uniaxial flow\u003cbr\u003e3.7.2 Model experiments - rupture\u003cbr\u003e3.7.3 Extension of industrial polymers\u003cbr\u003e3.7.3.1 Multiaxial elongation\u003cbr\u003e3.7.4 The tubeless siphon effect\u003cbr\u003e3.7.5 Instabilities in extension\u003cbr\u003e3.7.5.1 Phase transitions in extension\u003cbr\u003e3.7.5.2 Rayleigh instability\u003cbr\u003e3.7.5.3 Instabilities in extension of a viscoelastic thread\u003cbr\u003e3.8 Conclusions - real liquid is a complex liquid\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 3\u003cbr\u003e\u003cbr\u003e4 Solids\u003cbr\u003e4.1 Introduction and definitions\u003cbr\u003e4.2 Linear elastic (Hookean) materials\u003cbr\u003e4.3 Linear anisotropic solids\u003cbr\u003e4.4 Large deformations in solids and non-linearity\u003cbr\u003e4.4.1 A single-constant model\u003cbr\u003e4.4.2 Multi-constant models\u003cbr\u003e4.4.2.1 Two-constant potential function\u003cbr\u003e4.4.2.2 Multi-member series\u003cbr\u003e4.4.2.3 General presentation\u003cbr\u003e4.4.2.4 Elastic potential of the power-law type\u003cbr\u003e4.4.3 The Poynting effect\u003cbr\u003e4.5 Limits of elasticity\u003cbr\u003e4.5.1 Standard experiment - main definitions\u003cbr\u003e4.5.2 Plasticity\u003cbr\u003e4.5.3 Criteria of plasticity and failure\u003cbr\u003e4.5.3.1 Maximum shear stress\u003cbr\u003e4.5.3.2 The intensity of shear stresses (\"energetic\" criterion)\u003cbr\u003e4.5.3.3 Maximum normal stress\u003cbr\u003e4.5.3.4 Maximum deformation\u003cbr\u003e4.5.3.5 Complex criteria\u003cbr\u003e4.5.4 Structure effects\u003cbr\u003e4.5.4.1 Strengthening\u003cbr\u003e4.5.4.2 Thixotropy\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 4\u003cbr\u003e\u003cbr\u003e5 Rheometry. Experimental Methods\u003cbr\u003e5.1 Introduction - Classification of experimental methods\u003cbr\u003e5.2 Capillary viscometry\u003cbr\u003e5.2.1 Basic theory\u003cbr\u003e5.2.2 Corrections\u003cbr\u003e5.2.2.1 Kinetic correction\u003cbr\u003e5.2.2.2 Entrance correction\u003cbr\u003e5.2.2.3 Pressure losses in a reservoir of viscometer\u003cbr\u003e5.2.2.4 Temperature correction\u003cbr\u003e5.2.2.5 Pressure correction\u003cbr\u003e5.2.2.6 Correction for slip near a wall\u003cbr\u003e5.2.2.7 Adsorption on a channel surface\u003cbr\u003e5.2.3 Flow in incompletely filled capillary\u003cbr\u003e5.2.3.1 Motion under action of gravitation forces\u003cbr\u003e5.2.3.2 Motion caused by surface tension forces\u003cbr\u003e5.2.4 Limits of capillary viscometry\u003cbr\u003e5.2.5 Non-viscometric measurements using capillary viscometers\u003cbr\u003e5.2.6 Capillary viscometers\u003cbr\u003e5.2.6.1 Classification of the basic types of instruments\u003cbr\u003e5.2.6.2 Viscometers with the assigned load\u003cbr\u003e5.2.6.3 Cup viscometers\u003cbr\u003e5.2.6.4 Glass viscometers\u003cbr\u003e5.2.7 Viscometers with controlled flow rate\u003cbr\u003e5.2.7.1 Instruments with a power drive\u003cbr\u003e5.2.7.2 Instruments with hydraulic drive\u003cbr\u003e5.2.7.3 Extrusion rheometers\u003cbr\u003e5.2.7.4 Technological capillary tube viscometers\u003cbr\u003e5.3 Rotational rheometry\u003cbr\u003e5.3.1 Tasks and capabilities of the method\u003cbr\u003e5.3.1.1 Viscometric and non-viscometric measurements\u003cbr\u003e5.3.1.2 The method of a constant frequency of rotation\u003cbr\u003e5.3.1.3 The method of a constant torque\u003cbr\u003e5.3.2 Basic theory of rotational instruments\u003cbr\u003e5.3.2.1 Instruments with coaxial cylinders\u003cbr\u003e5.3.2.2 Instruments with conical surfaces\u003cbr\u003e5.3.2.3 Bi-conical viscometers\u003cbr\u003e5.3.2.4 Disk viscometers\u003cbr\u003e5.3.2.5 Viscometers with spherical surfaces\u003cbr\u003e5.3.2.6 End (bottom) corrections in instruments with coaxial cylinders\u003cbr\u003e5.3.2.7 On a role of rigidity of dynamometer\u003cbr\u003e5.3.2.8 Temperature effects\u003cbr\u003e5.3.3 Limitations of rotational viscometry\u003cbr\u003e5.3.4 Rotational instruments\u003cbr\u003e5.3.4.1 Introduction - general considerations\u003cbr\u003e5.3.4.2 Rheogoniometers and elastoviscometers\u003cbr\u003e5.3.4.3 Viscometers with assigned rotational speed\u003cbr\u003e5.3.4.4 Rotational viscometers for special purposes\u003cbr\u003e5.3.4.5 Rotational instruments for technological purposes\u003cbr\u003e5.3.5 Measuring normal stresses\u003cbr\u003e5.3.5.1 Cone-and-plate technique\u003cbr\u003e5.3.5.2 Plate-and-plate technique\u003cbr\u003e5.3.5.3 Coaxial cylinders technique\u003cbr\u003e5.3.5.4 Hole-pressure effect\u003cbr\u003e5.4 Plastometers\u003cbr\u003e5.4.1. Shear flow plastometers\u003cbr\u003e5.4.2 Squeezing flow plastometers\u003cbr\u003e5.4.3 Method of telescopic shear\u003cbr\u003e5.4.3.1 Telescopic shear penetrometer\u003cbr\u003e5.5 Method of falling sphere\u003cbr\u003e5.5.1 Principles\u003cbr\u003e5.5.1.1 Corrections\u003cbr\u003e5.5.2 Method of rolling sphere\u003cbr\u003e5.5.3 Viscometers with falling sphere\u003cbr\u003e5.5.4 Viscometers with falling cylinder\u003cbr\u003e5.6 Extension\u003cbr\u003e5.6.1 General considerations\u003cbr\u003e5.6.2. Experimental methods\u003cbr\u003e5.6.2.1 The simplest measuring schemes\u003cbr\u003e5.6.2.2 Tension in a controlled regime\u003cbr\u003e5.6.2.3 Tubeless siphon instruments\u003cbr\u003e5.6.2.4 Flow in convergent channels\u003cbr\u003e5.6.2.5 High strain rate methods\u003cbr\u003e5.6.3 Biaxial extension\u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods\u003cbr\u003e5.7.1 Principles of measurement - homogeneous deformation\u003cbr\u003e5.7.2 Inhomogeneous deformations\u003cbr\u003e5.7.3 Torsion oscillations\u003cbr\u003e5.7.4 Measuring the impedance of a system\u003cbr\u003e5.7.5 Resonance oscillations\u003cbr\u003e5.7.6 Damping (free) oscillations\u003cbr\u003e5.7.7 Wave propagation\u003cbr\u003e5.7.7.1 Shear waves\u003cbr\u003e5.7.7.2 Longitudinal waves\u003cbr\u003e5.7.8 Vibration viscometry\u003cbr\u003e5.7.8.1 Torsion oscillations\u003cbr\u003e5.7.8.2 Oscillation of a disk in liquid\u003cbr\u003e5.7.8.3 Oscillations of sphere\u003cbr\u003e5.7.8.4 Damping oscillations\u003cbr\u003e5.7.9 Measuring viscoelastic properties in non-symmetrical flows\u003cbr\u003e5.7.9 About experimental techniques\u003cbr\u003e5.7.9.1 Rotational instruments\u003cbr\u003e5.7.9.2 Devices with electromagnetic excitation\u003cbr\u003e5.7.9.3 Torsion pendulums\u003cbr\u003e5.8 Physical methods\u003cbr\u003e5.8.1 Rheo-optical methods\u003cbr\u003e5.8.1.1 Basic remarks\u003cbr\u003e5.8.1.2 Stress - optical rules for polymer melts\u003cbr\u003e5.8.1.3 Stress-optical rule for polymer solutions\u003cbr\u003e5.8.1.4 Viscometers for optical observations\u003cbr\u003e5.8.1.5 Polarization methods for measuring stresses\u003cbr\u003e5.8.1.6 Visualization of polymer flow in dies\u003cbr\u003e5.8.2. Velocimetry\u003cbr\u003e5.8.3 Viscometers-calorimeters\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 5\u003cbr\u003e\u003cbr\u003e6 Applications of Rheology\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Rheological properties of real materials and their characterization\u003cbr\u003e6.2.1 Polymer materials\u003cbr\u003e6.2.2 Mineral oils and oil-based products\u003cbr\u003e6.2.3 Food products\u003cbr\u003e6.2.4 Cosmetics and pharmaceuticals\u003cbr\u003e6.2.5 Biological fluids\u003cbr\u003e6.2.6 Concentrated suspensions\u003cbr\u003e6.2.7 Electro- and magneto-rheological materials\u003cbr\u003e6.2.8 Concluding remarks\u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids\u003cbr\u003e6.3.1. Formulation of problem\u003cbr\u003e6.3.2. Linear polymerization\u003cbr\u003e6.3.3 Oligomer curing\u003cbr\u003e6.3.3.1 Viscosity change and a gel-point\u003cbr\u003e6.3.3.2 Curing at high shear rates\u003cbr\u003e6.3.3.3 Curing after gel-point\u003cbr\u003e6.3.4 Intermolecular transformations\u003cbr\u003e6.4 Solution of dynamic problems\u003cbr\u003e6.4.1 General formulation\u003cbr\u003e6.4.2 Flow through tubes\u003cbr\u003e6.4.3 Flow in technological equipment\u003cbr\u003e6.4.3.1 Pumping screw\u003cbr\u003e6.4.3.2 Calendering and related processes\u003cbr\u003e6.4.3.3 Extension-based technologies\u003cbr\u003e6.4.3.4 Molding technologies\u003cbr\u003e6.4.3.5 Compression molding\u003cbr\u003e6.4.3.6 Injection molding\u003cbr\u003e6.4.3.7 Injection-compression molding\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 6\u003cbr\u003eNotations\u003cbr\u003eAnswers\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2018-02-11T11:09:20-05:00","created_at":"2017-06-22T21:14:00-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","creep","deformation","dynamic","elasticity","elongation","extension","flow","liquids","Newtonian","non-Newtonian","plastometers","polymer melts","polymer solutions","rheokinetics","rheological equations","rheological properties","rheology","rheometry","rubber","shear flow","solids","stresses","suspensions","the Boltzmann-Volterra","time-temperature superposition","viscoelastic functions","viscoelasticity"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391428,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-49-2.jpg?v=1499954842"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-49-2.jpg?v=1499954842","options":["Title"],"media":[{"alt":null,"id":358738296925,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-49-2.jpg?v=1499954842"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-49-2.jpg?v=1499954842","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-895198-49-2 \u003cbr\u003e\u003cbr\u003ePages 474+xiv\u003cbr\u003eFigures 252\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe second edition of this excellent book brings many new features, which were outlined in the preface to the 2nd Edition. \u003cbr\u003eThe pursuit of the golden balance between oversimplification and overload with theory has always been the primary goal of every author of a book on rheology. Rheology is a tool for chemists and chemical engineers to solve many practical problems. They have to learn what to measure, how to measure, and what to do with the data. But, the learning process should not take users away from their major goals, such as manufacturing quality products, developing new materials, analysis of material durability.\u003cbr\u003eThe first four chapters of this book discuss various aspects of theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors were very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intend to pass their knowledge to the next generations. \u003cbr\u003e\u003cbr\u003eThis book is very useful in the industry but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cb\u003ePreface to the 2nd Edition\u003c\/b\u003e\u003cbr\u003eIn preparing the Second Edition of this book, the general structure of the book is maintained and some necessary corrections and additions are made. The most important recent results published in periodicals till the middle of 2011 are added. In particular, Section 2.8.1 of Chapter 2, Section 3.5.2 of Chapter 3 and Subsection 5.8.1.2 of Chapter 5 are modified. A new Subsection 5.6.2.6 on Capillary breakup in elongational rheometry is added. Furthermore, Section 3.2.3 on Viscosity of anisotropic liquids and Section 3.6.3 on Instabilities in the flow of elastic fluids of Chapter 3 are completely rewritten. Many other modifications in the text are made and some new figures are added. Also, all the detected misprints and errors found by ourselves or pointed out by colleagues are corrected. \u003cbr\u003eAfter publication of the First Edition of the book, a lot of comments and advice from our friends and colleagues were received. We are very grateful to all of them for constructive criticism and valuable comments.\u003cbr\u003eWe are also grateful to our Editor, Dr. G. Wypych, for his hard work in improving the manuscript and making it ready for publication.\u003cbr\u003e\u003cbr\u003e\u003cb\u003e\u003cbr\u003eAlexander Ya. Malkin,\u003c\/b\u003e\u003cbr\u003eMoscow, Russia\u003cbr\u003e\u003cbr\u003e\u003cb\u003eAvraam I. Isayev\u003c\/b\u003e\u003cbr\u003eAkron, Ohio, USA\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eIntroduction. Rheology: Subject and Goals\u003cbr\u003e\u003cbr\u003e1 Continuum Mechanics as a Foundation of Rheology\u003cbr\u003e1.1 Stresses\u003cbr\u003e1.1.1 General theory\u003cbr\u003e1.1.2 Law of equality of conjugated stresses\u003cbr\u003e1.1.3 Principal stresses\u003cbr\u003e1.1.4 Invariants of a stress tensor\u003cbr\u003e1.1.5 Hydrostatic pressure - spherical tensor and deviator\u003cbr\u003e1.1.6 Equilibrium (balance) equations\u003cbr\u003e1.2 Deformations\u003cbr\u003e1.2.1 Deformations and displacements\u003cbr\u003e1.2.1.1 Deformations\u003cbr\u003e1.2.1.2 Displacements\u003cbr\u003e1.2.2 Infinitesimal deformations: principal values and invariants\u003cbr\u003e1.2.3 Large (finite) deformations\u003cbr\u003e1.2.4 Special cases of deformations - uniaxial elongation and simple shear\u003cbr\u003e1.2.4.1 Uniaxial elongation and Poisson's ratio\u003cbr\u003e1.2.4.2 Simple shear and pure shear \u003cbr\u003e1.3 Kinematics of deformations\u003cbr\u003e1.3.1 Rates of deformation and vorticity\u003cbr\u003e1.3.2 Deformation rates when deformations are large\u003cbr\u003e1.4 Summary - continuum mechanics in rheology\u003cbr\u003e1.4.1 General principles\u003cbr\u003e1.4.2 Objects of continuum as tensors\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 1\u003cbr\u003e\u003cbr\u003e2 Viscoelasticity \u003cbr\u003e2.1 Basic experiments\u003cbr\u003e2.1.1 Creep (retarded deformation)\u003cbr\u003e2.1.2 Relaxation\u003cbr\u003e2.1.3 Fading memory\u003cbr\u003e2.2 Relaxation and creep - spectral representation. Dynamic functions\u003cbr\u003e2.2.1 Retardation and relaxation spectra - definitions\u003cbr\u003e2.2.2 Dynamic functions\u003cbr\u003e2.3 Model interpretations\u003cbr\u003e2.3.1 Basic mechanical models\u003cbr\u003e2.3.2 Complicated mechanical models - differential rheological equations\u003cbr\u003e2.3.3 Non-mechanical models\u003cbr\u003e2.4 Superposition - The Boltzmann-Volterra principle\u003cbr\u003e2.4.1 Integral formulation of the superposition principle\u003cbr\u003e2.4.2 Superposition principle expressed via spectra\u003cbr\u003e2.4.3 Simple transient modes of deformation\u003cbr\u003e2.4.3.1 Relaxation after sudden deformation\u003cbr\u003e2.4.3.2 Developing stresses at constant shear rate\u003cbr\u003e2.4.3.3 Relaxation after steady shear flow\u003cbr\u003e2.4.3 Relationship between relaxation and creep functions\u003cbr\u003e2.4.4 Relaxation function and large deformations\u003cbr\u003e2.4.3.4 Relationship between relaxation and creep functions \u003cbr\u003e2.4.3.5 Relaxation function and large deformations\u003cbr\u003e2.5 Relationships among viscoelastic functions\u003cbr\u003e2.5.1 Dynamic functions - relaxation, creep, and spectra\u003cbr\u003e2.5.2 Constants and viscoelastic functions\u003cbr\u003e2.5.3 Calculation of a relaxation spectrum\u003cbr\u003e2.5.3.1 Introduction - general concept\u003cbr\u003e2.5.3.2 Kernel approximation - finding a continuous spectrum\u003cbr\u003e2.5.3.3 Computer-aided methods for a discrete spectrum\u003cbr\u003e2.6 Viscoelasticity and molecular models\u003cbr\u003e2.6.1 Molecular movements of an individual chain\u003cbr\u003e2.6.1.1 A spring-and-bead model (\"free draining chain\")\u003cbr\u003e2.6.1.2 Model of a non-draining coil\u003cbr\u003e2.6.1.3 Model of a rotating coil\u003cbr\u003e2.6.2 Relaxation properties of concentrated polymer solutions and melts\u003cbr\u003e2.6.2.1 Concept of entanglements\u003cbr\u003e2.6.2.2 Two-part distribution of friction coefficient\u003cbr\u003e2.6.2.3 Non-equivalent friction along a chain\u003cbr\u003e2.6.2.4 Viscoelastic entanglements\u003cbr\u003e2.6.2.5 Rubber-like network\u003cbr\u003e2.6.2.6 \"Tube\" (reptation) model\u003cbr\u003e2.6.2.7 Some conclusions\u003cbr\u003e2.6.3 Viscoelasticity of polydisperse polymers\u003cbr\u003e2.7 Time-temperature superposition. Reduced (\"master\") viscoelastic curves\u003cbr\u003e2.7.1 Superposition of experimental curves\u003cbr\u003e2.7.2 Master curves and relaxation states\u003cbr\u003e2.7.3 \"Universal\" relaxation spectra\u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003cbr\u003e2.8.1 Experimental evidences\u003cbr\u003e2.8.1.1 Non-Newtonian viscosity\u003cbr\u003e2.8.1.2 Non-Hookean behavior of solids\u003cbr\u003e2.8.1.3 Non-linear creep\u003cbr\u003e2.8.1.4 Non-linear relaxation\u003cbr\u003e2.8.1.5 Non-linear periodic measurements\u003cbr\u003e2.8.2 Linear - non-linear correlations\u003cbr\u003e2.8.3 Rheological equations of state for non-linear viscoelastic behavior\u003cbr\u003e2.8.3.1 The K-BKZ model \u003cbr\u003e2.8.3.2 The Wagner models \u003cbr\u003e2.8.3.2 The Leonov model\u003cbr\u003e2.8.3.4 The Marrucci models\u003cbr\u003e2.8.4 Comments - constructing non-linear constitutive equations and experiment\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 2\u003cbr\u003e\u003cbr\u003e3 Liquids\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions\u003cbr\u003e3.2 Non-Newtonian shear flow\u003cbr\u003e3.2.1 Non-Newtonian behavior of viscoelastic polymeric materials\u003cbr\u003e3.2.2 Non-Newtonian behavior of structured systems - plasticity of liquids\u003cbr\u003e3.2.3 Viscosity of anisotropic liquids\u003cbr\u003e3.3 Equations for viscosity and flow curves\u003cbr\u003e3.3.1 Introduction - the meaning of viscosity measurement\u003cbr\u003e3.3.2 Power-law equations\u003cbr\u003e3.3.3 Equations with yield stress\u003cbr\u003e3.3.4 Basic dependencies of viscosity\u003cbr\u003e3.3.4.1 Viscosity of polymer melts\u003cbr\u003e3.3.4.2 Viscosity of polymer solutions\u003cbr\u003e3.3.4.3 Viscosity of suspensions\u003cbr\u003e3.3.5 Effect of molecular weight distribution on non-Newtonian flow\u003cbr\u003e3.4 Elasticity in shear flows\u003cbr\u003e3.4.1 Rubbery shear deformations - elastic recoil\u003cbr\u003e3.4.2 Normal stresses in shear flow\u003cbr\u003e3.4.2.1 The Weissenberg effect\u003cbr\u003e3.4.2.2 First normal stress difference - quantitative approach\u003cbr\u003e3.4.2.3 Second normal stress difference and secondary flow\u003cbr\u003e3.4.3 Normal stresses and elasticity\u003cbr\u003e3.4.4 Die swell\u003cbr\u003e3.5 Structure rearrangements induced by shear flow\u003cbr\u003e3.5.1 Transient deformation regimes\u003cbr\u003e3.5.2 Thixotropy and rheopexy\u003cbr\u003e3.5.3 Shear-induced phase transitions\u003cbr\u003e3.6 Limits of shear flow - instabilities\u003cbr\u003e3.6.1 Inertial turbulency\u003cbr\u003e3.6.2 The Toms effect\u003cbr\u003e3.6.3 Instabilities inflow of elastic liquids\u003cbr\u003e3.6.3.1 Dynamic structure formation and secondary flows in elastic fluids\u003cbr\u003e3.6.3.2 Secondary flows in the flow of elastic fluids\u003cbr\u003e3.6.3.3 Shear banding\u003cbr\u003e3.7 Extensional flow\u003cbr\u003e3.7.1 Model experiments - uniaxial flow\u003cbr\u003e3.7.2 Model experiments - rupture\u003cbr\u003e3.7.3 Extension of industrial polymers\u003cbr\u003e3.7.3.1 Multiaxial elongation\u003cbr\u003e3.7.4 The tubeless siphon effect\u003cbr\u003e3.7.5 Instabilities in extension\u003cbr\u003e3.7.5.1 Phase transitions in extension\u003cbr\u003e3.7.5.2 Rayleigh instability\u003cbr\u003e3.7.5.3 Instabilities in extension of a viscoelastic thread\u003cbr\u003e3.8 Conclusions - real liquid is a complex liquid\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 3\u003cbr\u003e\u003cbr\u003e4 Solids\u003cbr\u003e4.1 Introduction and definitions\u003cbr\u003e4.2 Linear elastic (Hookean) materials\u003cbr\u003e4.3 Linear anisotropic solids\u003cbr\u003e4.4 Large deformations in solids and non-linearity\u003cbr\u003e4.4.1 A single-constant model\u003cbr\u003e4.4.2 Multi-constant models\u003cbr\u003e4.4.2.1 Two-constant potential function\u003cbr\u003e4.4.2.2 Multi-member series\u003cbr\u003e4.4.2.3 General presentation\u003cbr\u003e4.4.2.4 Elastic potential of the power-law type\u003cbr\u003e4.4.3 The Poynting effect\u003cbr\u003e4.5 Limits of elasticity\u003cbr\u003e4.5.1 Standard experiment - main definitions\u003cbr\u003e4.5.2 Plasticity\u003cbr\u003e4.5.3 Criteria of plasticity and failure\u003cbr\u003e4.5.3.1 Maximum shear stress\u003cbr\u003e4.5.3.2 The intensity of shear stresses (\"energetic\" criterion)\u003cbr\u003e4.5.3.3 Maximum normal stress\u003cbr\u003e4.5.3.4 Maximum deformation\u003cbr\u003e4.5.3.5 Complex criteria\u003cbr\u003e4.5.4 Structure effects\u003cbr\u003e4.5.4.1 Strengthening\u003cbr\u003e4.5.4.2 Thixotropy\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 4\u003cbr\u003e\u003cbr\u003e5 Rheometry. Experimental Methods\u003cbr\u003e5.1 Introduction - Classification of experimental methods\u003cbr\u003e5.2 Capillary viscometry\u003cbr\u003e5.2.1 Basic theory\u003cbr\u003e5.2.2 Corrections\u003cbr\u003e5.2.2.1 Kinetic correction\u003cbr\u003e5.2.2.2 Entrance correction\u003cbr\u003e5.2.2.3 Pressure losses in a reservoir of viscometer\u003cbr\u003e5.2.2.4 Temperature correction\u003cbr\u003e5.2.2.5 Pressure correction\u003cbr\u003e5.2.2.6 Correction for slip near a wall\u003cbr\u003e5.2.2.7 Adsorption on a channel surface\u003cbr\u003e5.2.3 Flow in incompletely filled capillary\u003cbr\u003e5.2.3.1 Motion under action of gravitation forces\u003cbr\u003e5.2.3.2 Motion caused by surface tension forces\u003cbr\u003e5.2.4 Limits of capillary viscometry\u003cbr\u003e5.2.5 Non-viscometric measurements using capillary viscometers\u003cbr\u003e5.2.6 Capillary viscometers\u003cbr\u003e5.2.6.1 Classification of the basic types of instruments\u003cbr\u003e5.2.6.2 Viscometers with the assigned load\u003cbr\u003e5.2.6.3 Cup viscometers\u003cbr\u003e5.2.6.4 Glass viscometers\u003cbr\u003e5.2.7 Viscometers with controlled flow rate\u003cbr\u003e5.2.7.1 Instruments with a power drive\u003cbr\u003e5.2.7.2 Instruments with hydraulic drive\u003cbr\u003e5.2.7.3 Extrusion rheometers\u003cbr\u003e5.2.7.4 Technological capillary tube viscometers\u003cbr\u003e5.3 Rotational rheometry\u003cbr\u003e5.3.1 Tasks and capabilities of the method\u003cbr\u003e5.3.1.1 Viscometric and non-viscometric measurements\u003cbr\u003e5.3.1.2 The method of a constant frequency of rotation\u003cbr\u003e5.3.1.3 The method of a constant torque\u003cbr\u003e5.3.2 Basic theory of rotational instruments\u003cbr\u003e5.3.2.1 Instruments with coaxial cylinders\u003cbr\u003e5.3.2.2 Instruments with conical surfaces\u003cbr\u003e5.3.2.3 Bi-conical viscometers\u003cbr\u003e5.3.2.4 Disk viscometers\u003cbr\u003e5.3.2.5 Viscometers with spherical surfaces\u003cbr\u003e5.3.2.6 End (bottom) corrections in instruments with coaxial cylinders\u003cbr\u003e5.3.2.7 On a role of rigidity of dynamometer\u003cbr\u003e5.3.2.8 Temperature effects\u003cbr\u003e5.3.3 Limitations of rotational viscometry\u003cbr\u003e5.3.4 Rotational instruments\u003cbr\u003e5.3.4.1 Introduction - general considerations\u003cbr\u003e5.3.4.2 Rheogoniometers and elastoviscometers\u003cbr\u003e5.3.4.3 Viscometers with assigned rotational speed\u003cbr\u003e5.3.4.4 Rotational viscometers for special purposes\u003cbr\u003e5.3.4.5 Rotational instruments for technological purposes\u003cbr\u003e5.3.5 Measuring normal stresses\u003cbr\u003e5.3.5.1 Cone-and-plate technique\u003cbr\u003e5.3.5.2 Plate-and-plate technique\u003cbr\u003e5.3.5.3 Coaxial cylinders technique\u003cbr\u003e5.3.5.4 Hole-pressure effect\u003cbr\u003e5.4 Plastometers\u003cbr\u003e5.4.1. Shear flow plastometers\u003cbr\u003e5.4.2 Squeezing flow plastometers\u003cbr\u003e5.4.3 Method of telescopic shear\u003cbr\u003e5.4.3.1 Telescopic shear penetrometer\u003cbr\u003e5.5 Method of falling sphere\u003cbr\u003e5.5.1 Principles\u003cbr\u003e5.5.1.1 Corrections\u003cbr\u003e5.5.2 Method of rolling sphere\u003cbr\u003e5.5.3 Viscometers with falling sphere\u003cbr\u003e5.5.4 Viscometers with falling cylinder\u003cbr\u003e5.6 Extension\u003cbr\u003e5.6.1 General considerations\u003cbr\u003e5.6.2. Experimental methods\u003cbr\u003e5.6.2.1 The simplest measuring schemes\u003cbr\u003e5.6.2.2 Tension in a controlled regime\u003cbr\u003e5.6.2.3 Tubeless siphon instruments\u003cbr\u003e5.6.2.4 Flow in convergent channels\u003cbr\u003e5.6.2.5 High strain rate methods\u003cbr\u003e5.6.3 Biaxial extension\u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods\u003cbr\u003e5.7.1 Principles of measurement - homogeneous deformation\u003cbr\u003e5.7.2 Inhomogeneous deformations\u003cbr\u003e5.7.3 Torsion oscillations\u003cbr\u003e5.7.4 Measuring the impedance of a system\u003cbr\u003e5.7.5 Resonance oscillations\u003cbr\u003e5.7.6 Damping (free) oscillations\u003cbr\u003e5.7.7 Wave propagation\u003cbr\u003e5.7.7.1 Shear waves\u003cbr\u003e5.7.7.2 Longitudinal waves\u003cbr\u003e5.7.8 Vibration viscometry\u003cbr\u003e5.7.8.1 Torsion oscillations\u003cbr\u003e5.7.8.2 Oscillation of a disk in liquid\u003cbr\u003e5.7.8.3 Oscillations of sphere\u003cbr\u003e5.7.8.4 Damping oscillations\u003cbr\u003e5.7.9 Measuring viscoelastic properties in non-symmetrical flows\u003cbr\u003e5.7.9 About experimental techniques\u003cbr\u003e5.7.9.1 Rotational instruments\u003cbr\u003e5.7.9.2 Devices with electromagnetic excitation\u003cbr\u003e5.7.9.3 Torsion pendulums\u003cbr\u003e5.8 Physical methods\u003cbr\u003e5.8.1 Rheo-optical methods\u003cbr\u003e5.8.1.1 Basic remarks\u003cbr\u003e5.8.1.2 Stress - optical rules for polymer melts\u003cbr\u003e5.8.1.3 Stress-optical rule for polymer solutions\u003cbr\u003e5.8.1.4 Viscometers for optical observations\u003cbr\u003e5.8.1.5 Polarization methods for measuring stresses\u003cbr\u003e5.8.1.6 Visualization of polymer flow in dies\u003cbr\u003e5.8.2. Velocimetry\u003cbr\u003e5.8.3 Viscometers-calorimeters\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 5\u003cbr\u003e\u003cbr\u003e6 Applications of Rheology\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Rheological properties of real materials and their characterization\u003cbr\u003e6.2.1 Polymer materials\u003cbr\u003e6.2.2 Mineral oils and oil-based products\u003cbr\u003e6.2.3 Food products\u003cbr\u003e6.2.4 Cosmetics and pharmaceuticals\u003cbr\u003e6.2.5 Biological fluids\u003cbr\u003e6.2.6 Concentrated suspensions\u003cbr\u003e6.2.7 Electro- and magneto-rheological materials\u003cbr\u003e6.2.8 Concluding remarks\u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids\u003cbr\u003e6.3.1. Formulation of problem\u003cbr\u003e6.3.2. Linear polymerization\u003cbr\u003e6.3.3 Oligomer curing\u003cbr\u003e6.3.3.1 Viscosity change and a gel-point\u003cbr\u003e6.3.3.2 Curing at high shear rates\u003cbr\u003e6.3.3.3 Curing after gel-point\u003cbr\u003e6.3.4 Intermolecular transformations\u003cbr\u003e6.4 Solution of dynamic problems\u003cbr\u003e6.4.1 General formulation\u003cbr\u003e6.4.2 Flow through tubes\u003cbr\u003e6.4.3 Flow in technological equipment\u003cbr\u003e6.4.3.1 Pumping screw\u003cbr\u003e6.4.3.2 Calendering and related processes\u003cbr\u003e6.4.3.3 Extension-based technologies\u003cbr\u003e6.4.3.4 Molding technologies\u003cbr\u003e6.4.3.5 Compression molding\u003cbr\u003e6.4.3.6 Injection molding\u003cbr\u003e6.4.3.7 Injection-compression molding\u003cbr\u003eReferences\u003cbr\u003eQuestions for Chapter 6\u003cbr\u003eNotations\u003cbr\u003eAnswers\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e"}
Rheology. Concepts, Me...
$299.00
{"id":11427417284,"title":"Rheology. Concepts, Methods, and Applications, 3rd Edition","handle":"rheology-concepts-methods-and-applications-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-21-5 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2017\u003cbr\u003ePages 486+xiv\u003cbr\u003eFigures 265\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe third edition of this excellent book brings many new additions, which include new methods and applications based on the most recently published literature. The most notable new sections discuss heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003cbr\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of the rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors are very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intent to pass their knowledge to the next generations. Previous editions of this book are used as a textbook in many universities worldwide.\u003c\/p\u003e\n\u003cp\u003eThis book is very useful in industrial applications but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eIntroduction. Rheology: Subject and Goals\u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/strong\u003e\u003cbr\u003e1.2 Deformations \u003cbr\u003e1.3 Kinematics of deformations \u003cbr\u003e1.4 Heterogeneity on flow \u003cbr\u003e1.5 Summary − continuum mechanics in rheology\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments \u003cbr\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003cbr\u003e2.3 Model interpretations \u003cbr\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003cbr\u003e2.5 Relationships among viscoelastic functions \u003cbr\u003e2.6 Viscoelasticity and molecular models \u003cbr\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 Liquids \u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003cbr\u003e3.2 Non-Newtonian shear flow \u003cbr\u003e3.3 Equations for viscosity and flow curves \u003cbr\u003e3.4 Elasticity in shear flows \u003cbr\u003e3.5 Structure rearrangements induced by shear flow \u003cbr\u003e3.6 Limits of shear flow − instabilities \u003cbr\u003e3.7 Extensional flow \u003cbr\u003e3.8 Conclusions − real liquid is a complex liquid\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions \u003cbr\u003e4.2 Linear elastic (Hookean) materials \u003cbr\u003e4.3 Linear anisotropic solids \u003cbr\u003e4.4 Large deformations in solids and non-linearity \u003cbr\u003e4.5 Limits of elasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry Experimental Methods \u003c\/strong\u003e\u003cbr\u003e5.1 Introduction − Classification of experimental methods \u003cbr\u003e5.2 Capillary viscometry \u003cbr\u003e5.3 Rotational rheometry \u003cbr\u003e5.4 Plastometers \u003cbr\u003e5.5 Method of falling sphere \u003cbr\u003e5.6 Extension \u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003cbr\u003e5.8 Physical methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology \u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Rheological properties of real materials and their characterization \u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003cbr\u003e6.4 Solution of dynamic problems \u003cbr\u003e \u003cstrong\u003eNotation \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eSolutions \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eIndex \u003c\/strong\u003e\u003c\/p\u003e","published_at":"2017-07-13T17:21:03-04:00","created_at":"2017-07-13T17:22:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45226298884,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 3rd Edition","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-21-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062","options":["Title"],"media":[{"alt":null,"id":412845899869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-21-5 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2017\u003cbr\u003ePages 486+xiv\u003cbr\u003eFigures 265\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe third edition of this excellent book brings many new additions, which include new methods and applications based on the most recently published literature. The most notable new sections discuss heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003cbr\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of the rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors are very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intent to pass their knowledge to the next generations. Previous editions of this book are used as a textbook in many universities worldwide.\u003c\/p\u003e\n\u003cp\u003eThis book is very useful in industrial applications but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eIntroduction. Rheology: Subject and Goals\u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/strong\u003e\u003cbr\u003e1.2 Deformations \u003cbr\u003e1.3 Kinematics of deformations \u003cbr\u003e1.4 Heterogeneity on flow \u003cbr\u003e1.5 Summary − continuum mechanics in rheology\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments \u003cbr\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003cbr\u003e2.3 Model interpretations \u003cbr\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003cbr\u003e2.5 Relationships among viscoelastic functions \u003cbr\u003e2.6 Viscoelasticity and molecular models \u003cbr\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 Liquids \u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003cbr\u003e3.2 Non-Newtonian shear flow \u003cbr\u003e3.3 Equations for viscosity and flow curves \u003cbr\u003e3.4 Elasticity in shear flows \u003cbr\u003e3.5 Structure rearrangements induced by shear flow \u003cbr\u003e3.6 Limits of shear flow − instabilities \u003cbr\u003e3.7 Extensional flow \u003cbr\u003e3.8 Conclusions − real liquid is a complex liquid\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions \u003cbr\u003e4.2 Linear elastic (Hookean) materials \u003cbr\u003e4.3 Linear anisotropic solids \u003cbr\u003e4.4 Large deformations in solids and non-linearity \u003cbr\u003e4.5 Limits of elasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry Experimental Methods \u003c\/strong\u003e\u003cbr\u003e5.1 Introduction − Classification of experimental methods \u003cbr\u003e5.2 Capillary viscometry \u003cbr\u003e5.3 Rotational rheometry \u003cbr\u003e5.4 Plastometers \u003cbr\u003e5.5 Method of falling sphere \u003cbr\u003e5.6 Extension \u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003cbr\u003e5.8 Physical methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology \u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Rheological properties of real materials and their characterization \u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003cbr\u003e6.4 Solution of dynamic problems \u003cbr\u003e \u003cstrong\u003eNotation \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eSolutions \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eIndex \u003c\/strong\u003e\u003c\/p\u003e"}
Rheology. Concepts, Me...
$325.00
{"id":7289169084573,"title":"Rheology. Concepts, Methods, and Applications, 4th Edition","handle":"copy-of-rheology-concepts-methods-and-applications-4th-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-93-2 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2022\u003cbr\u003ePages 520+xvi\u003cbr\u003eFigures 300\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThe fourth edition of this excellent book, used by many universities and companies for teaching and research purposes, brings significant current information on new methods and applications based on recently published literature. The most notable new sections discuss non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how a particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids, but solid materials are also discussed in one full chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe rheological studies' goal is not to measure some rheological variables but to generate relevant data, which requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in materials studies. This is one powerful aspect of this book, which will help to avert costly confusion - common when data are generated under wrong conditions or data are wrongly used.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMethods of measurement and raw data treatment are included in one large, chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here, giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. The usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe authors are very meticulous in showing the historical sequence of developments, which led to the present advancements in rheology. This aspect is of interest to specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of many scientists' achievements give essential historical background of contributors to rheology as science and solve many practical problems.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them. We are fortunate that they intend to pass their knowledge to the next generations. Previous editions of this book were used as a textbook in many universities worldwide.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book is instrumental in industrial applications, but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIntroduction. Rheology: Subject and Goals\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.2 Deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.3 Kinematics of deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.4 Heterogeneity on flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.5 Summary − continuum mechanics in rheology \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e2 Viscoelasticity \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.1 Basic experiments \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3 Model interpretations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.5 Relationships among viscoelastic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.6 Viscoelasticity and molecular models \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.8 Non-linear effects in viscoelasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e3 Liquids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.2 Non-Newtonian shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.3 Equations for viscosity and flow curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.4 Elasticity in shear flows \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.5 Structure rearrangements induced by shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.6 Limits of shear flow − instabilities \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.7 Extensional flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.8 Conclusions − real liquid is a complex liquid \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e4 Solids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.1 Introduction and definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.2 Linear elastic (Hookean) materials \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.3 Linear anisotropic solids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.4 Large deformations in solids and non-linearity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.5 Limits of elasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e5 Rheometry Experimental Methods \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.1 Introduction − Classification of experimental methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.2 Capillary viscometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.3 Rotational rheometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.4 Plastometers \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.5 Method of falling sphere \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.6 Extension \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.8 Physical methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e6 Applications of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.1 Introduction \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.2 Rheological properties of real materials and their characterization \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.4 Solution of dynamic problems \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eNotation \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eSolutions \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIndex \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2022-02-21T11:26:15-05:00","created_at":"2022-02-21T11:11:16-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":41999155921053,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 4th Edition","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-93-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764","options":["Title"],"media":[{"alt":null,"id":24441167478941,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-93-2 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2022\u003cbr\u003ePages 520+xvi\u003cbr\u003eFigures 300\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThe fourth edition of this excellent book, used by many universities and companies for teaching and research purposes, brings significant current information on new methods and applications based on recently published literature. The most notable new sections discuss non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how a particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids, but solid materials are also discussed in one full chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe rheological studies' goal is not to measure some rheological variables but to generate relevant data, which requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in materials studies. This is one powerful aspect of this book, which will help to avert costly confusion - common when data are generated under wrong conditions or data are wrongly used.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMethods of measurement and raw data treatment are included in one large, chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here, giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. The usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe authors are very meticulous in showing the historical sequence of developments, which led to the present advancements in rheology. This aspect is of interest to specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of many scientists' achievements give essential historical background of contributors to rheology as science and solve many practical problems.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them. We are fortunate that they intend to pass their knowledge to the next generations. Previous editions of this book were used as a textbook in many universities worldwide.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book is instrumental in industrial applications, but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIntroduction. Rheology: Subject and Goals\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.2 Deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.3 Kinematics of deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.4 Heterogeneity on flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.5 Summary − continuum mechanics in rheology \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e2 Viscoelasticity \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.1 Basic experiments \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3 Model interpretations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.5 Relationships among viscoelastic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.6 Viscoelasticity and molecular models \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.8 Non-linear effects in viscoelasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e3 Liquids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.2 Non-Newtonian shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.3 Equations for viscosity and flow curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.4 Elasticity in shear flows \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.5 Structure rearrangements induced by shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.6 Limits of shear flow − instabilities \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.7 Extensional flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.8 Conclusions − real liquid is a complex liquid \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e4 Solids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.1 Introduction and definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.2 Linear elastic (Hookean) materials \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.3 Linear anisotropic solids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.4 Large deformations in solids and non-linearity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.5 Limits of elasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e5 Rheometry Experimental Methods \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.1 Introduction − Classification of experimental methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.2 Capillary viscometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.3 Rotational rheometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.4 Plastometers \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.5 Method of falling sphere \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.6 Extension \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.8 Physical methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e6 Applications of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.1 Introduction \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.2 Rheological properties of real materials and their characterization \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.4 Solution of dynamic problems \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eNotation \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eSolutions \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIndex \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e"}
Rheology. Fundamentals
$150.00
{"id":11242225604,"title":"Rheology. Fundamentals","handle":"1-895198-09-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Alexander Ya. Malkin \u003cbr\u003e10-ISBN 1-895198-09-7 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-09-6 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e315 pages, 101 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nMost technological improvements are realized through application of rheology used to modify properties of materials. At the same time, rheology is a complex discipline not fully understood by most researchers and engineers. It is not because rheology is too difficult to understand but mostly because the discipline uses its own language full of terms and models, understood by rheologists but not commonly used by others. ChemTec Publishing introduces a new series entitled Fundamental Topics in Rheology, designed to facilitate the conversion of rheology from a field familiar to a narrow group of specialists to a popularly applied science. The first book in the series was written by Prof. Malkin who is an accomplished researcher in the field. Prof. Malkin wrote one of the first books on polymer rheology together with his mentor and well-known Russian scientist Prof. Vinogradov. This book is still in a popular use in every major library. The present, difficult task to write on fundamental principles of rheology in an easy to understand way without losing its scientific content, Prof. Malkin fulfilled with accomplishment. It is only possible to write this book according to the previously defined prescription, if author can see nature as a complex but homogeneous entirety, divided to disciplines for the clarity of thought or simply to concentrate on one angle of observation at the time but with proper balance always maintained, and this was precisely achieved by the author.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eIntroduction \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSubject and language of rheology \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStress \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eDeformation and rate of deformation \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological equations of state \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological viscous fluids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eElastic solids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eViscoelasticity. \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEach chapter is completed by two sections: examples of practical application of theory and a review of the most important concepts introduced. Both sections of each chapter were designed to assure that the most important goal is achieved -- that the knowledge is absorbed by the reader rather than leaving the image of complexity and impenetrability of the topic. It is no exaggeration to say that this book should be available for anyone who wants to work with materials in any capacity would it be in research or production in any area of science or industry. This book is an invaluable source for students but is also to be found on the desk of rheologists. \u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia","published_at":"2017-06-22T21:13:59-04:00","created_at":"2017-06-22T21:13:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","book","deformation","elastic solids","p-properties","polymer","rheological equations","rheology","stress","viscoelasticity","viscous fluids"],"price":15000,"price_min":15000,"price_max":15000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Fundamentals","public_title":null,"options":["Default Title"],"price":15000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-09-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-09-7.jpg?v=1504029577"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-09-7.jpg?v=1504029577","options":["Title"],"media":[{"alt":null,"id":412847112285,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-09-7.jpg?v=1504029577"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-09-7.jpg?v=1504029577","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Alexander Ya. Malkin \u003cbr\u003e10-ISBN 1-895198-09-7 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-09-6 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e315 pages, 101 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nMost technological improvements are realized through application of rheology used to modify properties of materials. At the same time, rheology is a complex discipline not fully understood by most researchers and engineers. It is not because rheology is too difficult to understand but mostly because the discipline uses its own language full of terms and models, understood by rheologists but not commonly used by others. ChemTec Publishing introduces a new series entitled Fundamental Topics in Rheology, designed to facilitate the conversion of rheology from a field familiar to a narrow group of specialists to a popularly applied science. The first book in the series was written by Prof. Malkin who is an accomplished researcher in the field. Prof. Malkin wrote one of the first books on polymer rheology together with his mentor and well-known Russian scientist Prof. Vinogradov. This book is still in a popular use in every major library. The present, difficult task to write on fundamental principles of rheology in an easy to understand way without losing its scientific content, Prof. Malkin fulfilled with accomplishment. It is only possible to write this book according to the previously defined prescription, if author can see nature as a complex but homogeneous entirety, divided to disciplines for the clarity of thought or simply to concentrate on one angle of observation at the time but with proper balance always maintained, and this was precisely achieved by the author.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eIntroduction \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSubject and language of rheology \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStress \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eDeformation and rate of deformation \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological equations of state \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological viscous fluids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eElastic solids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eViscoelasticity. \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEach chapter is completed by two sections: examples of practical application of theory and a review of the most important concepts introduced. Both sections of each chapter were designed to assure that the most important goal is achieved -- that the knowledge is absorbed by the reader rather than leaving the image of complexity and impenetrability of the topic. It is no exaggeration to say that this book should be available for anyone who wants to work with materials in any capacity would it be in research or production in any area of science or industry. This book is an invaluable source for students but is also to be found on the desk of rheologists. \u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"}
Ring Opening Polymeriz...
$75.00
{"id":11242256772,"title":"Ring Opening Polymerization","handle":"978-1-85957-057-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Spassky \u003cbr\u003eISBN 978-1-85957-057-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003eUniversite Pierre et Marie Curie\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e101 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe dependence of polymerizability upon ring strain, the significance of ring-chain equilibria, and the potential for formation of cyclic oligomers are outlined. The mechanism and implementation of anionic ring-opening polymerization, cationic ring-opening polymerization, stereospecific coordinated anionic polymerization, free radical ring-opening polymerization, and ionic ring-opening copolymerization are described. A final section on ring-opening metathesis polymerization includes a brief discussion of catalysts, thermodynamics, stereochemistry, kinetics, and applications.","published_at":"2017-06-22T21:15:34-04:00","created_at":"2017-06-22T21:15:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","acrylic polymers","book","catalysts","kinetics","p-chemistry","ring opening polymerization","stereochemistry","thermodynamics"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378497924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Ring Opening Polymerization","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-057-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Spassky \u003cbr\u003eISBN 978-1-85957-057-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003eUniversite Pierre et Marie Curie\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e101 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe dependence of polymerizability upon ring strain, the significance of ring-chain equilibria, and the potential for formation of cyclic oligomers are outlined. The mechanism and implementation of anionic ring-opening polymerization, cationic ring-opening polymerization, stereospecific coordinated anionic polymerization, free radical ring-opening polymerization, and ionic ring-opening copolymerization are described. A final section on ring-opening metathesis polymerization includes a brief discussion of catalysts, thermodynamics, stereochemistry, kinetics, and applications."}
Rotational Molding
$75.00
{"id":11242255812,"title":"Rotational Molding","handle":"978-1-85957-009-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford \u003cbr\u003eISBN 978-1-85957-009-8 \u003cbr\u003e\u003cbr\u003eThe Queens University of Belfast\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e86 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProf. Crawford explains the fundamentals of rotational molding, with particular reference to advances in the key areas of materials, machinery, molds, and process control. He considers relationships between processing conditions and product properties and looks at the future of the process and the likely advances still to be made. More than 350 abstracts were selected as references.","published_at":"2017-06-22T21:15:31-04:00","created_at":"2017-06-22T21:15:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","machinery","materials","molds","moulding","p-processing","polymer","process control","rotational molding"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378495556,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rotational Molding","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-009-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895","options":["Title"],"media":[{"alt":null,"id":358738886749,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford \u003cbr\u003eISBN 978-1-85957-009-8 \u003cbr\u003e\u003cbr\u003eThe Queens University of Belfast\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e86 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProf. Crawford explains the fundamentals of rotational molding, with particular reference to advances in the key areas of materials, machinery, molds, and process control. He considers relationships between processing conditions and product properties and looks at the future of the process and the likely advances still to be made. More than 350 abstracts were selected as references."}
Rotational Molding Tec...
$225.00
{"id":11242226564,"title":"Rotational Molding Technology","handle":"1-884207-85-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: James L. Throne and R.J. Crawford \u003cbr\u003eISBN 1-884207-85-5 \u003cbr\u003e\u003cbr\u003ePages: 450\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book clarifies and quantifies many of the technical interactions in the process. It distinguishes itself from other books on the subject by being a seamless story of the advanced aspects of the rotational molding process. There are seven chapters within the book.\u003cbr\u003eThe U.S. market for rotational molding products was one billion pounds in the year 2000. The growth of the rotational molding industry has grown at 10 to 15% per year. With this growth has come an increasing need for details on the complex, technical aspects of the process.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eIntroduction to Rotational Molding\u003c\/li\u003e\n\u003cli\u003eA brief overview of the process and a comparison of rotational molding versus blow molding and twin-sheet thermoforming.\u003c\/li\u003e\n\u003cli\u003eRotational Molding Polymers\u003c\/li\u003e\n\u003cli\u003eDescribes the characteristics of polyolefins, which are the major class of polymers used in the process. It includes descriptions of vinyls, nylons, PVC plastisols, silicones, and thermosetting polymers.\u003c\/li\u003e\n\u003cli\u003ePulverizing, Grinding and Attrition\u003c\/li\u003e\n\u003cli\u003eFocuses on the particle size of solid polymer powders, particle size distribution, particle analysis techniques, and optimum particle shape. It also details pigments and property enhancers.\u003c\/li\u003e\n\u003cli\u003eRotational Molding Machines\u003c\/li\u003e\n\u003cli\u003eAn overview of the myriad types of commercial rotational molding machines.\u003c\/li\u003e\n\u003cli\u003eMolds\u003c\/li\u003e\n\u003cli\u003eCompares materials such as steel, aluminum, and electroformed nickel in terms of their characteristic strength and thermal efficiencies. It also discusses mold design aspects and various mold releases.\u003c\/li\u003e\n\u003cli\u003eProcessing\u003c\/li\u003e\n\u003cli\u003eCovers powder flow behavior, particle-to-particle adhesion, and densification as well as bubble removal, oven cycle time, and other mechanisms.\u003c\/li\u003e\n\u003cli\u003ePart Design\u003c\/li\u003e\n\u003cli\u003eProvides an overview of the technical aspects that influence the part design, including powder flow into and out of acute angles, and the effect of processing on properties and polymer characteristics.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nR.J. Crawford is a Professor of Mechanical Engineering at the University of Auckland, New Zealand. He has published over 200 papers and is the author of five textbooks on plastics and engineering materials. He has been awarded numerous prizes for his research including the Netlon Medal from the Institute of Materials. James L. Throne is President of Sherwood Technologies, Inc., a polymer processing consulting firm he started in 1985. He has more than 20 years industrial experience, and taught for 10 years in universities. He has published nearly 200 technical papers, has nine patents, and has written eight books on polymer processing.","published_at":"2017-06-22T21:14:02-04:00","created_at":"2017-06-22T21:14:02-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","adhesion","attrition","book","bubbles","grinding","mold design","molds","nylons","p-processing","polymer","polyolefins","process","pulverizing","PVC plastisols","silicones","thermosetting polymers","vinyls"],"price":22500,"price_min":22500,"price_max":22500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378393732,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rotational Molding Technology","public_title":null,"options":["Default Title"],"price":22500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-85-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-85-5.jpg?v=1499954920"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-85-5.jpg?v=1499954920","options":["Title"],"media":[{"alt":null,"id":358739673181,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-85-5.jpg?v=1499954920"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-85-5.jpg?v=1499954920","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: James L. Throne and R.J. Crawford \u003cbr\u003eISBN 1-884207-85-5 \u003cbr\u003e\u003cbr\u003ePages: 450\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book clarifies and quantifies many of the technical interactions in the process. It distinguishes itself from other books on the subject by being a seamless story of the advanced aspects of the rotational molding process. There are seven chapters within the book.\u003cbr\u003eThe U.S. market for rotational molding products was one billion pounds in the year 2000. The growth of the rotational molding industry has grown at 10 to 15% per year. With this growth has come an increasing need for details on the complex, technical aspects of the process.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eIntroduction to Rotational Molding\u003c\/li\u003e\n\u003cli\u003eA brief overview of the process and a comparison of rotational molding versus blow molding and twin-sheet thermoforming.\u003c\/li\u003e\n\u003cli\u003eRotational Molding Polymers\u003c\/li\u003e\n\u003cli\u003eDescribes the characteristics of polyolefins, which are the major class of polymers used in the process. It includes descriptions of vinyls, nylons, PVC plastisols, silicones, and thermosetting polymers.\u003c\/li\u003e\n\u003cli\u003ePulverizing, Grinding and Attrition\u003c\/li\u003e\n\u003cli\u003eFocuses on the particle size of solid polymer powders, particle size distribution, particle analysis techniques, and optimum particle shape. It also details pigments and property enhancers.\u003c\/li\u003e\n\u003cli\u003eRotational Molding Machines\u003c\/li\u003e\n\u003cli\u003eAn overview of the myriad types of commercial rotational molding machines.\u003c\/li\u003e\n\u003cli\u003eMolds\u003c\/li\u003e\n\u003cli\u003eCompares materials such as steel, aluminum, and electroformed nickel in terms of their characteristic strength and thermal efficiencies. It also discusses mold design aspects and various mold releases.\u003c\/li\u003e\n\u003cli\u003eProcessing\u003c\/li\u003e\n\u003cli\u003eCovers powder flow behavior, particle-to-particle adhesion, and densification as well as bubble removal, oven cycle time, and other mechanisms.\u003c\/li\u003e\n\u003cli\u003ePart Design\u003c\/li\u003e\n\u003cli\u003eProvides an overview of the technical aspects that influence the part design, including powder flow into and out of acute angles, and the effect of processing on properties and polymer characteristics.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nR.J. Crawford is a Professor of Mechanical Engineering at the University of Auckland, New Zealand. He has published over 200 papers and is the author of five textbooks on plastics and engineering materials. He has been awarded numerous prizes for his research including the Netlon Medal from the Institute of Materials. James L. Throne is President of Sherwood Technologies, Inc., a polymer processing consulting firm he started in 1985. He has more than 20 years industrial experience, and taught for 10 years in universities. He has published nearly 200 technical papers, has nine patents, and has written eight books on polymer processing."}
Rubber Basics
$144.00
{"id":11242227076,"title":"Rubber Basics","handle":"978-1-85957-307-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.B. Simpson \u003cbr\u003eISBN 978-1-85957-307-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003epages: 150,tables: 59, figures: 26\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Rubber Basics book comprises a glossary of terms used in the rubber industry, a detailed description of the common rubber materials, a section on rubber additives, and an outline of the equipment types used in rubber processing. \u003cbr\u003e\u003cbr\u003eThe book aims to be a useful desktop reference book for anyone in the rubber industry. It provides a quick means of obtaining information about key subjects. It is simple enough to be understood by someone with a basic knowledge of the industry, but comprehensive enough to provide additional information for experienced workers moving into new areas. \u003cbr\u003e\u003cbr\u003eMany abbreviations are found in the industry and the glossary contains a good number of entries defining these. Terms relating to many aspects of the industry are included in materials, additives, physical test methods and machinery types to analytical test equipment. Examples include Adiabatic, Conductive Rubber, Dolly, Mooney Scorch Test, Rubbone, and Whiting. \u003cbr\u003e\u003cbr\u003eA useful short section lists the specific gravities of common rubbers and compounding ingredients, an important factor in material selection. \u003cbr\u003e\u003cbr\u003eThe section on rubbers is derived from the Rapra material selection programme known as Rubacams. It includes basic chemical structures for each rubber type together with information about material properties and uses. The material types covered range from natural rubber through polysulphide rubbers to thermoplastic elastomers. \u003cbr\u003e\u003cbr\u003eRubber compounding ingredients are listed and discussed from accelerators to waxes. The role of each ingredient in rubber compounding is described, together with general comments on usefulness and some of the issues involved. For example, titanium dioxide is generally used as a whitening agent but is also a useful reinforcing agent, the limiting factor being cost. \u003cbr\u003e\u003cbr\u003eRubber processing involves a wide variety of equipment from bale heaters to tyre retreading and testing machinery. This section describes each type in turn and its uses. Thus moulding, extrusion, hose braiding and dipping are all covered in this section.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSection 1: Glossary of Rubber Terms \u003cbr\u003eSection 2: Specific Gravities of Some Rubbers and Compounding Ingredients \u003cbr\u003e\u003cbr\u003eSection 3: Rubbers including: \u003cbr\u003eNatural Rubber, Nitrile Rubbers, Polyisoprene, Polybutadiene, Epichlorohydrin Polymers, Polychloroprene, Polynorbornene Butyl Rubbers, Styrene-Butadiene Rubber, Ethylene-Propylene Rubber, Chlorosulphonated Polyethylene, Ethylene-Vinyl Acetate Copolymer, Ethylene-Acrylic Rubber, Polyacrylate Rubbers, Silicone Rubbers, Ebonite, Polysulphide Rubber, Propylene Oxide-Allyl Glycidyl Ether Copolymer, Polyurethane Elastomers, Fluorocarbon Rubber and Thermoplastic Elastomers. \u003cbr\u003e\u003cbr\u003eSection 4: Rubber Compounding Ingredients including: \u003cbr\u003eAccelerators, Antidegradants, Blowing Agents, Dusting and Anti-Tack Agents, Factice, Fillers, Fire Retardants, Peroxides, Petroleum Oils, Pigments, Prevulcanisation Inhibitors, Release Agents, Vulcanising Agents, and Waxes \u003cbr\u003e\u003cbr\u003eSection 5: Rubber Processing Equipment including \u003cbr\u003eAutoclaves, Cable Manufacturing, Calenders, Compression Moulding Presses, Conveyors, Cutting Equipment, Deflashing, Dipping, Dusting Devices, Extruders, Granulators, Shredders, Grinders, Hose Machinery, Injection Moulding Machines, Internal Mixers, Marking Devices, Metal Preparation for Bonding, Mills, Mixers for Rubber Dough, Moulds, Ovens, Preheaters, Presses, Spreading Machines, Transfer Moulding and Tyre Building Equipment\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRichard Simpson is an expert in rubber processing and testing, having worked at Rapra in a senior capacity for many years.","published_at":"2017-06-22T21:14:04-04:00","created_at":"2017-06-22T21:14:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","additives","book","cable","calenders","chlorosulphonated Polyethylene","compounding","conveyors","copolymer","curing","ebonite","elastomers","epichlorohydrin","ethylene-acrylic","ethylene-propylene","Ethylene-Vinyl Acetate","extruders","fillers","fluorocarbon","granulators","grinders","ingredients","injection","moulding","natural rubber","Nitrile","polyacrylate","polybutadiene","polychloroprene","polyisoprene","polynorbornene butyl","polysulphide","polyurethane","processing","Propylene Oxide-Allyl Glycidyl Ether","r-properties","rubber","rubber formulary","shredders","silicone","styrene-butadiene","thermoplastic","tyre"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394244,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Basics","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-307-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-307-5.jpg?v=1499954968"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-307-5.jpg?v=1499954968","options":["Title"],"media":[{"alt":null,"id":358740263005,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-307-5.jpg?v=1499954968"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-307-5.jpg?v=1499954968","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.B. Simpson \u003cbr\u003eISBN 978-1-85957-307-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003epages: 150,tables: 59, figures: 26\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Rubber Basics book comprises a glossary of terms used in the rubber industry, a detailed description of the common rubber materials, a section on rubber additives, and an outline of the equipment types used in rubber processing. \u003cbr\u003e\u003cbr\u003eThe book aims to be a useful desktop reference book for anyone in the rubber industry. It provides a quick means of obtaining information about key subjects. It is simple enough to be understood by someone with a basic knowledge of the industry, but comprehensive enough to provide additional information for experienced workers moving into new areas. \u003cbr\u003e\u003cbr\u003eMany abbreviations are found in the industry and the glossary contains a good number of entries defining these. Terms relating to many aspects of the industry are included in materials, additives, physical test methods and machinery types to analytical test equipment. Examples include Adiabatic, Conductive Rubber, Dolly, Mooney Scorch Test, Rubbone, and Whiting. \u003cbr\u003e\u003cbr\u003eA useful short section lists the specific gravities of common rubbers and compounding ingredients, an important factor in material selection. \u003cbr\u003e\u003cbr\u003eThe section on rubbers is derived from the Rapra material selection programme known as Rubacams. It includes basic chemical structures for each rubber type together with information about material properties and uses. The material types covered range from natural rubber through polysulphide rubbers to thermoplastic elastomers. \u003cbr\u003e\u003cbr\u003eRubber compounding ingredients are listed and discussed from accelerators to waxes. The role of each ingredient in rubber compounding is described, together with general comments on usefulness and some of the issues involved. For example, titanium dioxide is generally used as a whitening agent but is also a useful reinforcing agent, the limiting factor being cost. \u003cbr\u003e\u003cbr\u003eRubber processing involves a wide variety of equipment from bale heaters to tyre retreading and testing machinery. This section describes each type in turn and its uses. Thus moulding, extrusion, hose braiding and dipping are all covered in this section.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSection 1: Glossary of Rubber Terms \u003cbr\u003eSection 2: Specific Gravities of Some Rubbers and Compounding Ingredients \u003cbr\u003e\u003cbr\u003eSection 3: Rubbers including: \u003cbr\u003eNatural Rubber, Nitrile Rubbers, Polyisoprene, Polybutadiene, Epichlorohydrin Polymers, Polychloroprene, Polynorbornene Butyl Rubbers, Styrene-Butadiene Rubber, Ethylene-Propylene Rubber, Chlorosulphonated Polyethylene, Ethylene-Vinyl Acetate Copolymer, Ethylene-Acrylic Rubber, Polyacrylate Rubbers, Silicone Rubbers, Ebonite, Polysulphide Rubber, Propylene Oxide-Allyl Glycidyl Ether Copolymer, Polyurethane Elastomers, Fluorocarbon Rubber and Thermoplastic Elastomers. \u003cbr\u003e\u003cbr\u003eSection 4: Rubber Compounding Ingredients including: \u003cbr\u003eAccelerators, Antidegradants, Blowing Agents, Dusting and Anti-Tack Agents, Factice, Fillers, Fire Retardants, Peroxides, Petroleum Oils, Pigments, Prevulcanisation Inhibitors, Release Agents, Vulcanising Agents, and Waxes \u003cbr\u003e\u003cbr\u003eSection 5: Rubber Processing Equipment including \u003cbr\u003eAutoclaves, Cable Manufacturing, Calenders, Compression Moulding Presses, Conveyors, Cutting Equipment, Deflashing, Dipping, Dusting Devices, Extruders, Granulators, Shredders, Grinders, Hose Machinery, Injection Moulding Machines, Internal Mixers, Marking Devices, Metal Preparation for Bonding, Mills, Mixers for Rubber Dough, Moulds, Ovens, Preheaters, Presses, Spreading Machines, Transfer Moulding and Tyre Building Equipment\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRichard Simpson is an expert in rubber processing and testing, having worked at Rapra in a senior capacity for many years."}
Rubber Bonding 2001
$160.00
{"id":11242235524,"title":"Rubber Bonding 2001","handle":"978-1-85957-298-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-298-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003epages 224\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFollowing the three very successful conferences dealing with the subject of bonding rubbers of all types to a wide variety of substrates, Rapra Technology Ltd and European Rubber Journal held this further broad-based conference on the subject. \u003cbr\u003e\u003cbr\u003ePapers presented at this fourth conference discuss technical updates of the current state of the art in bonding technology, and also introduce some of the developments that have taken place with bonding systems. A number of papers examine many aspects of the theoretical background of the science of adhesion theory to enable the factory practitioner to understand more fully the establishment of the best possible bonds between rubbers and substrates, and to achieve best service life from the products manufactured.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePerformance of Bonding to Conform to Environmental Requirements. Mike Rooke, Henkel Industrial Adhesive, UK\u003c\/li\u003e\n\u003cli\u003eAdhesion: Analysis by Fracture Mechanics. Chris Stevens, NGF Europe Ltd.\u003c\/li\u003e\n\u003cli\u003eThe adhesive Role of Particulate Filler between Incompatible Rubbers. Jane Clarke, RuPEC, Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eInvestigation of the Kinetics of Bond Formation and Durability of New Multifunctional Bonding System. Mark Weih, Lord Corporation, USA\u003c\/li\u003e\n\u003cli\u003eTime-dependent Failure of Bonded Elastomer to Rigid Substrate Joints. Marina Fernando, Virginia Geldhill, MRPRA Rubber Consultants, UK\u003c\/li\u003e\n\u003cli\u003eBonding Silica Filled Natural Rubber Compounds to Rigid Substrate Joints. Ali Ansarifar, IPTME Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eNew Generation of Adhesion Activated Yarn- A Key product for Innovative Solutions. Hans Janssen, Teijin Twaron BV, The Netherlands\u003c\/li\u003e\n\u003cli\u003eThe Improvement of Interfacial Adhesion of a Reinforced Polyurethane and Steel via Silane Coupling Agents. Mohammed Reza Moghbeli, N Mohannadi, E Zangirian, Polymer Engineering Science Dept., Amir Kabir University, Iran\u003c\/li\u003e\n\u003cli\u003eKey Elements in the Interface of Rubber to Metal Bonds. Stefan Dehnicke, Chemetall GmBH, Germany\u003c\/li\u003e\n\u003cli\u003eSome Applications of Analytical and Spectroscopic Techniques in the Study of Rubber Bonding. John Sidwell, Rapra Technology Limited, UK\u003c\/li\u003e\n\u003cli\u003eAutomation of Rubber Injection Presses. Peter Stenl, LWB Steinl GmBH \u0026amp; Co Kg, Germany\u003c\/li\u003e\n\u003cli\u003eMulti Component Injection Moulding of Liquid Silicone Rubber\/Thermoplastic Combinations. Christoph Lettowsky, IKV, Germany\u003c\/li\u003e\n\u003cli\u003eAdhesion of Rubber to Brass – The Influence of Cobalt on Interface Morphology. Steve Fulton, Rhodia Industrial Specialities, UK\u003c\/li\u003e\n\u003cli\u003ePost Vulcanisation Bonding. Keith Worthington, Compound Ingredients Ltd., UK\u003c\/li\u003e\n\u003cli\u003eRubber Bonding between EPDM Sheets with Various Percent Peroxide. Jean-Maurice Vergnaud, University St. Etienne, France\u003c\/li\u003e\n\u003cli\u003eReaction Kinetics of Rubber to Metal Bonding Agents and its Implications on Bond Durability. Sture Persson, Svedala Skega AB, Sweden\u003c\/li\u003e\n\u003cli\u003eInterfacial Bonding Heterogeneity \u0026amp; Synergism in Polymer-Polymer Adhesion Strength. Nasser Mohammadi, A Sharif, M R Moghbeli, E Zangirian, Polymer Engineering Science Dept.,\u003c\/li\u003e\n\u003cli\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:29-04:00","created_at":"2017-06-22T21:14:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","air monitoring","bonding","book","compounds","coupling agents","environment","fillers","health","injection moulding","joints. adhesion","liquid silicone","molding","natural rubber","plastics","polyurethane","r-properties","reinforced","rigid","rubber","safety","silane","silica"],"price":16000,"price_min":16000,"price_max":16000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378419460,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Bonding 2001","public_title":null,"options":["Default Title"],"price":16000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-298-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-298-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003epages 224\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFollowing the three very successful conferences dealing with the subject of bonding rubbers of all types to a wide variety of substrates, Rapra Technology Ltd and European Rubber Journal held this further broad-based conference on the subject. \u003cbr\u003e\u003cbr\u003ePapers presented at this fourth conference discuss technical updates of the current state of the art in bonding technology, and also introduce some of the developments that have taken place with bonding systems. A number of papers examine many aspects of the theoretical background of the science of adhesion theory to enable the factory practitioner to understand more fully the establishment of the best possible bonds between rubbers and substrates, and to achieve best service life from the products manufactured.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePerformance of Bonding to Conform to Environmental Requirements. Mike Rooke, Henkel Industrial Adhesive, UK\u003c\/li\u003e\n\u003cli\u003eAdhesion: Analysis by Fracture Mechanics. Chris Stevens, NGF Europe Ltd.\u003c\/li\u003e\n\u003cli\u003eThe adhesive Role of Particulate Filler between Incompatible Rubbers. Jane Clarke, RuPEC, Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eInvestigation of the Kinetics of Bond Formation and Durability of New Multifunctional Bonding System. Mark Weih, Lord Corporation, USA\u003c\/li\u003e\n\u003cli\u003eTime-dependent Failure of Bonded Elastomer to Rigid Substrate Joints. Marina Fernando, Virginia Geldhill, MRPRA Rubber Consultants, UK\u003c\/li\u003e\n\u003cli\u003eBonding Silica Filled Natural Rubber Compounds to Rigid Substrate Joints. Ali Ansarifar, IPTME Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eNew Generation of Adhesion Activated Yarn- A Key product for Innovative Solutions. Hans Janssen, Teijin Twaron BV, The Netherlands\u003c\/li\u003e\n\u003cli\u003eThe Improvement of Interfacial Adhesion of a Reinforced Polyurethane and Steel via Silane Coupling Agents. Mohammed Reza Moghbeli, N Mohannadi, E Zangirian, Polymer Engineering Science Dept., Amir Kabir University, Iran\u003c\/li\u003e\n\u003cli\u003eKey Elements in the Interface of Rubber to Metal Bonds. Stefan Dehnicke, Chemetall GmBH, Germany\u003c\/li\u003e\n\u003cli\u003eSome Applications of Analytical and Spectroscopic Techniques in the Study of Rubber Bonding. John Sidwell, Rapra Technology Limited, UK\u003c\/li\u003e\n\u003cli\u003eAutomation of Rubber Injection Presses. Peter Stenl, LWB Steinl GmBH \u0026amp; Co Kg, Germany\u003c\/li\u003e\n\u003cli\u003eMulti Component Injection Moulding of Liquid Silicone Rubber\/Thermoplastic Combinations. Christoph Lettowsky, IKV, Germany\u003c\/li\u003e\n\u003cli\u003eAdhesion of Rubber to Brass – The Influence of Cobalt on Interface Morphology. Steve Fulton, Rhodia Industrial Specialities, UK\u003c\/li\u003e\n\u003cli\u003ePost Vulcanisation Bonding. Keith Worthington, Compound Ingredients Ltd., UK\u003c\/li\u003e\n\u003cli\u003eRubber Bonding between EPDM Sheets with Various Percent Peroxide. Jean-Maurice Vergnaud, University St. Etienne, France\u003c\/li\u003e\n\u003cli\u003eReaction Kinetics of Rubber to Metal Bonding Agents and its Implications on Bond Durability. Sture Persson, Svedala Skega AB, Sweden\u003c\/li\u003e\n\u003cli\u003eInterfacial Bonding Heterogeneity \u0026amp; Synergism in Polymer-Polymer Adhesion Strength. Nasser Mohammadi, A Sharif, M R Moghbeli, E Zangirian, Polymer Engineering Science Dept.,\u003c\/li\u003e\n\u003cli\u003e\n\u003c\/ul\u003e"}
Rubber Fume
$270.00
{"id":11242258116,"title":"Rubber Fume","handle":"978-1-85957-127-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Bryan Willoughby \u003cbr\u003eISBN 978-1-85957-127-9 \u003cbr\u003e\u003cbr\u003e105 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive review covers Rapra vulcanization fume project - a unique study analyzing cure volatiles from a suite of formulations using a common pool of ingredients. The experiments were conducted and analytical findings are presented, discussed and compared with on-site data. GC\/MS was used to identify and determine components of fumes. In the study, which included 75 ingredients, 157 different emissions were found. The document contains 100 tables of data. \u003cbr\u003e\u003cbr\u003eRubbers tested: SBR, NR, EP, EPDM, NBR, IIR, CR, and CSM. Testing conditions: cure temperatures - 150-200C and 175-225C as well as emissions during cooling. The data obtained are also accessible from an electronic database.\u003cbr\u003e\u003cbr\u003e","published_at":"2018-02-12T07:43:13-05:00","created_at":"2017-06-22T21:15:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","CR","CSM","emissions","EP","EPDM","IIR","NBR","NR","quality control","rubbers","SBR","testing"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378502020,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Fume","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-127-9.jpg?v=1499955272"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-127-9.jpg?v=1499955272","options":["Title"],"media":[{"alt":null,"id":358740820061,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-127-9.jpg?v=1499955272"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-127-9.jpg?v=1499955272","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Bryan Willoughby \u003cbr\u003eISBN 978-1-85957-127-9 \u003cbr\u003e\u003cbr\u003e105 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive review covers Rapra vulcanization fume project - a unique study analyzing cure volatiles from a suite of formulations using a common pool of ingredients. The experiments were conducted and analytical findings are presented, discussed and compared with on-site data. GC\/MS was used to identify and determine components of fumes. In the study, which included 75 ingredients, 157 different emissions were found. The document contains 100 tables of data. \u003cbr\u003e\u003cbr\u003eRubbers tested: SBR, NR, EP, EPDM, NBR, IIR, CR, and CSM. Testing conditions: cure temperatures - 150-200C and 175-225C as well as emissions during cooling. The data obtained are also accessible from an electronic database.\u003cbr\u003e\u003cbr\u003e"}
Rubber Injection Moldi...
$99.00
{"id":11242232964,"title":"Rubber Injection Molding 2000 Today's Technology, Theory and Practice","handle":"978-1-85957-245-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-245-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2000 \u003cbr\u003e\u003c\/span\u003eLondon\u003cbr\u003e8 papers, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eInjection moulding of elastomers for mass-produced products, such as those for the automotive industries, is a critical process for rubber product manufacturers. Processing equipment and materials are continuously under development for the application. This conference addressed the advances that have been made.\u003c\/p\u003e\n\u003cp\u003eThe conference proceedings will be of importance to rubber processors, materials suppliers, compounders and end-users alike. The papers discuss developments that are currently available to optimise production from the injection moulding process along with new techniques, materials, and equipment.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eContents\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cli\u003eOverview of Injection Moulding of Rubbers \u003cbr\u003e\u003ci\u003eMark Smithson, Avon Rubber plc, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eLiquid Silicone Rubbers for Injection Moulding \u003cbr\u003e\u003ci\u003ePeter Jerschow, Wacker-Chemie GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eVarious Solutions for Dual Injection in Different Application Fields \u003cbr\u003e\u003ci\u003eJean Louise Picard, REP Machinery Limited, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e2 Shot Injection Moulding - High Performance and Conventional Rubbers \u003cbr\u003e\u003ci\u003eManfred Arning, Engel Vertriebsgesellschaft mbH, Austria \u003cbr\u003ePaper unavailable at time of print\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eNew Developments for the Optimisation of Injection Moulded Elastomers Using 3D Simulation \u003cbr\u003e\u003ci\u003eLothar H. Kallien, SIGMA Engineering GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eOptimisation of NBR Compounds for the Injection Moulding Process – Influencing Rheological Properties with Fatty Acids and Fatty Acid Derivatives \u003cbr\u003e\u003ci\u003eHans Magg, Bayer AG, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eInjection Moulding of Rubber - Problems, Causes, Solutions \u003cbr\u003e\u003ci\u003eC. Clarke, K.-H. Menting and T. Mergenhagen, Schill \u0026amp; Seilacher GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eDevelopment of New FKM Technology for High Processing Performances in Injection Molding \u003cbr\u003e\u003ci\u003ePatrick Paglia, DuPont Dow Elastomers, Switzerland\u003c\/i\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:14:22-04:00","created_at":"2017-06-22T21:14:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","book","elastomers","filling","injection","molding","mould","moulding","p-processing","rheological properties","rubber","rubbers","silicone","stability"],"price":9900,"price_min":9900,"price_max":9900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413252,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Injection Molding 2000 Today's Technology, Theory and Practice","public_title":null,"options":["Default Title"],"price":9900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-245-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577","options":["Title"],"media":[{"alt":null,"id":412849963101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-245-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2000 \u003cbr\u003e\u003c\/span\u003eLondon\u003cbr\u003e8 papers, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eInjection moulding of elastomers for mass-produced products, such as those for the automotive industries, is a critical process for rubber product manufacturers. Processing equipment and materials are continuously under development for the application. This conference addressed the advances that have been made.\u003c\/p\u003e\n\u003cp\u003eThe conference proceedings will be of importance to rubber processors, materials suppliers, compounders and end-users alike. The papers discuss developments that are currently available to optimise production from the injection moulding process along with new techniques, materials, and equipment.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eContents\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cli\u003eOverview of Injection Moulding of Rubbers \u003cbr\u003e\u003ci\u003eMark Smithson, Avon Rubber plc, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eLiquid Silicone Rubbers for Injection Moulding \u003cbr\u003e\u003ci\u003ePeter Jerschow, Wacker-Chemie GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eVarious Solutions for Dual Injection in Different Application Fields \u003cbr\u003e\u003ci\u003eJean Louise Picard, REP Machinery Limited, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e2 Shot Injection Moulding - High Performance and Conventional Rubbers \u003cbr\u003e\u003ci\u003eManfred Arning, Engel Vertriebsgesellschaft mbH, Austria \u003cbr\u003ePaper unavailable at time of print\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eNew Developments for the Optimisation of Injection Moulded Elastomers Using 3D Simulation \u003cbr\u003e\u003ci\u003eLothar H. Kallien, SIGMA Engineering GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eOptimisation of NBR Compounds for the Injection Moulding Process – Influencing Rheological Properties with Fatty Acids and Fatty Acid Derivatives \u003cbr\u003e\u003ci\u003eHans Magg, Bayer AG, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eInjection Moulding of Rubber - Problems, Causes, Solutions \u003cbr\u003e\u003ci\u003eC. Clarke, K.-H. Menting and T. Mergenhagen, Schill \u0026amp; Seilacher GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eDevelopment of New FKM Technology for High Processing Performances in Injection Molding \u003cbr\u003e\u003ci\u003ePatrick Paglia, DuPont Dow Elastomers, Switzerland\u003c\/i\u003e\n\u003c\/li\u003e"}
Rubber Product Failure
$125.00
{"id":11242227716,"title":"Rubber Product Failure","handle":"978-1-85957-330-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown \u003cbr\u003eISBN 978-1-85957-330-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 106, figures: 3, tables: 4\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber components are used in many demanding applications, from tyres and seals to gloves and medical devices, and failure can be catastrophic. This review of rubber product failure outlines and illustrates the common causes of failure while addressing ways of avoiding it. \u003cbr\u003e\u003cbr\u003eThere has been increasing pressure to improve performance so that rubbers can be used at higher temperatures and in harsher environments. For example, the under-the-bonnet temperature has increased in some vehicles and new medical devices require longer lifetimes in potentially degrading biological fluids. The expectations of tyre performance, in particular, are increasing, and retreads have been in the spotlight for failures. \u003cbr\u003e\u003cbr\u003eThe definition of failure depends on the application. For example, a racing car engine seal that lasts for one race may be acceptable, but in a normal car, a lifespan of 10 years is more reasonable. If appearance is critical as in surface coatings and paints, then discolouration is a failure, whilst in seals, leakage is not acceptable. Each rubber product must be fit for the use specified by the consumer. \u003cbr\u003e\u003cbr\u003eFailure analysis is critical to product improvement. The problem is obvious to see, for example, a hole in a hot water bottle, but the cause of the problem can be much harder to find. It can range from a design fault to poor material selection, to processing problems, to manufacturing errors such as poor dimensional tolerances, to poor installation, product abuse, and unexpected service conditions. The rubber technologist must become a detective, gathering evidence, understanding the material type and using deductive reasoning. \u003cbr\u003e\u003cbr\u003eTesting and analysis of failed materials and components add to the information available for failure analysis. For example, stored aged tyres appeared superficially to be alright for use, but on drum testing small cracks grew more quickly than in new tyres leading to rapid failure in service. \u003cbr\u003e\u003cbr\u003eQuality control procedures such as product inspection, testing, and material quality checks can help to reach 100% reliability. In critical applications such as electricians' gloves for high voltage working, gloves are inspected before each use, while engine seals may be routinely replaced before the expected lifetime to avoid problems. \u003cbr\u003e\u003cbr\u003eIt is customary to hide failures, thus the number of specific cases published in the literature is not high. However, several reviews have been written on specific products and references can be found at the end of this review. Around 400 abstracts from papers in the Polymer Library are included with an index. Subjects covered include tyre wear and failure, seals, engine components, rubber bonding failure, rubber failure due to chloramine in water, tank treads, gloves and condoms, medical devices and EPDM roofing membranes.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Failure Analysis \u003cbr\u003e\u003cbr\u003e3. The Reasons for Failure \u003cbr\u003e\u003cbr\u003e3.1 Design Error \u003cbr\u003e3.2 Inappropriate Material \u003cbr\u003e3.3 Manufacturing Faults \u003cbr\u003e3.4 Incorrect Installation \u003cbr\u003e3.5 Unexpected Service Conditions \u003cbr\u003e3.6 Deliberate or Accidental Misuse \u003cbr\u003e3.7 Strategic Weakness \u003cbr\u003e4. The Causes of Failure \u003cbr\u003e\u003cbr\u003e4.1 General \u003cbr\u003e4.2 Temperature \u003cbr\u003e4.3 Effect of Fluids \u003cbr\u003e4.4 Weathering \u003cbr\u003e4.5 Ionising Radiation \u003cbr\u003e4.6 Biological Attack \u003cbr\u003e4.7 Fatigue \u003cbr\u003e4.8 Set, Stress Relaxation, and Creep \u003cbr\u003e4.9 Abrasion \u003cbr\u003e4.10 Electrical Stress \u003cbr\u003e5. Preventing Failure \u003cbr\u003e\u003cbr\u003e5.1 General \u003cbr\u003e5.2 Service Trials \u003cbr\u003e5.3 Experience \u003cbr\u003e5.4 Accelerated Testing \u003cbr\u003e5.5 Quality Control \u003cbr\u003e6. The Literature \u003cbr\u003e\u003cbr\u003e6.1 General \u003cbr\u003e6.2 Tyres \u003cbr\u003e6.3 Seals \u003cbr\u003e6.4 Other Products \u003cbr\u003e7. Conclusions \u003cbr\u003e\u003cbr\u003eAdditional References \u003cbr\u003eAbstracts from the Polymer Library Database \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is renowned in the rubber industry for his knowledge of rubber testing, including work on the 40 year ageing of rubber project recently completed at Rapra. He has studied many cases of product failure and has acted as an expert witness. He has published and edited numerous books and reports, and currently works with the Rapra Testing and Quality Group.","published_at":"2017-06-22T21:14:05-04:00","created_at":"2017-06-22T21:14:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","abrasion","biological attack","book","creep","electrical stress","fatigue","fluids","ionising","r-testing","radiation","relaxation","rubber","stress","temperature","weathering"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378395268,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Product Failure","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-330-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-330-3.jpg?v=1499955316"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-330-3.jpg?v=1499955316","options":["Title"],"media":[{"alt":null,"id":358741344349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-330-3.jpg?v=1499955316"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-330-3.jpg?v=1499955316","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown \u003cbr\u003eISBN 978-1-85957-330-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 106, figures: 3, tables: 4\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber components are used in many demanding applications, from tyres and seals to gloves and medical devices, and failure can be catastrophic. This review of rubber product failure outlines and illustrates the common causes of failure while addressing ways of avoiding it. \u003cbr\u003e\u003cbr\u003eThere has been increasing pressure to improve performance so that rubbers can be used at higher temperatures and in harsher environments. For example, the under-the-bonnet temperature has increased in some vehicles and new medical devices require longer lifetimes in potentially degrading biological fluids. The expectations of tyre performance, in particular, are increasing, and retreads have been in the spotlight for failures. \u003cbr\u003e\u003cbr\u003eThe definition of failure depends on the application. For example, a racing car engine seal that lasts for one race may be acceptable, but in a normal car, a lifespan of 10 years is more reasonable. If appearance is critical as in surface coatings and paints, then discolouration is a failure, whilst in seals, leakage is not acceptable. Each rubber product must be fit for the use specified by the consumer. \u003cbr\u003e\u003cbr\u003eFailure analysis is critical to product improvement. The problem is obvious to see, for example, a hole in a hot water bottle, but the cause of the problem can be much harder to find. It can range from a design fault to poor material selection, to processing problems, to manufacturing errors such as poor dimensional tolerances, to poor installation, product abuse, and unexpected service conditions. The rubber technologist must become a detective, gathering evidence, understanding the material type and using deductive reasoning. \u003cbr\u003e\u003cbr\u003eTesting and analysis of failed materials and components add to the information available for failure analysis. For example, stored aged tyres appeared superficially to be alright for use, but on drum testing small cracks grew more quickly than in new tyres leading to rapid failure in service. \u003cbr\u003e\u003cbr\u003eQuality control procedures such as product inspection, testing, and material quality checks can help to reach 100% reliability. In critical applications such as electricians' gloves for high voltage working, gloves are inspected before each use, while engine seals may be routinely replaced before the expected lifetime to avoid problems. \u003cbr\u003e\u003cbr\u003eIt is customary to hide failures, thus the number of specific cases published in the literature is not high. However, several reviews have been written on specific products and references can be found at the end of this review. Around 400 abstracts from papers in the Polymer Library are included with an index. Subjects covered include tyre wear and failure, seals, engine components, rubber bonding failure, rubber failure due to chloramine in water, tank treads, gloves and condoms, medical devices and EPDM roofing membranes.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Failure Analysis \u003cbr\u003e\u003cbr\u003e3. The Reasons for Failure \u003cbr\u003e\u003cbr\u003e3.1 Design Error \u003cbr\u003e3.2 Inappropriate Material \u003cbr\u003e3.3 Manufacturing Faults \u003cbr\u003e3.4 Incorrect Installation \u003cbr\u003e3.5 Unexpected Service Conditions \u003cbr\u003e3.6 Deliberate or Accidental Misuse \u003cbr\u003e3.7 Strategic Weakness \u003cbr\u003e4. The Causes of Failure \u003cbr\u003e\u003cbr\u003e4.1 General \u003cbr\u003e4.2 Temperature \u003cbr\u003e4.3 Effect of Fluids \u003cbr\u003e4.4 Weathering \u003cbr\u003e4.5 Ionising Radiation \u003cbr\u003e4.6 Biological Attack \u003cbr\u003e4.7 Fatigue \u003cbr\u003e4.8 Set, Stress Relaxation, and Creep \u003cbr\u003e4.9 Abrasion \u003cbr\u003e4.10 Electrical Stress \u003cbr\u003e5. Preventing Failure \u003cbr\u003e\u003cbr\u003e5.1 General \u003cbr\u003e5.2 Service Trials \u003cbr\u003e5.3 Experience \u003cbr\u003e5.4 Accelerated Testing \u003cbr\u003e5.5 Quality Control \u003cbr\u003e6. The Literature \u003cbr\u003e\u003cbr\u003e6.1 General \u003cbr\u003e6.2 Tyres \u003cbr\u003e6.3 Seals \u003cbr\u003e6.4 Other Products \u003cbr\u003e7. Conclusions \u003cbr\u003e\u003cbr\u003eAdditional References \u003cbr\u003eAbstracts from the Polymer Library Database \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is renowned in the rubber industry for his knowledge of rubber testing, including work on the 40 year ageing of rubber project recently completed at Rapra. He has studied many cases of product failure and has acted as an expert witness. He has published and edited numerous books and reports, and currently works with the Rapra Testing and Quality Group."}
Rubber Technologist's ...
$245.00
{"id":11242234500,"title":"Rubber Technologist's Handbook, Volume 2","handle":"978-1-84735-099-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by J. White, S.S. De, and K. Naskar \u003cbr\u003eISBN 978-1-84735-099-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is a companion volume to Rubber Technologists Handbook published in 2001. Written by experts in their respective fields, this handbook discusses the most recent developments in the subject.\u003cbr\u003e\u003cbr\u003eThe ten chapters cover Microscopic Imaging of Rubber Compounds, Intelligent Tyres, Silica-Filled Rubber Compounds, Fibres In The Rubber Industry, Naval and Space Applications of Rubber, Advances in Fillers for the Rubber Industry, Thermoplastic Elastomers by Dynamic Vulcanisation, Polymers In Cable Applications, Durability of Rubber Compounds, and Radiochemical Ageing of Ethylene-Propylene-Diene Monomer\u003cbr\u003e\u003cbr\u003eThis book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Microscopic Imaging of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Fillers and Elastomer Reinforcement\u003cbr\u003e1.3 Characterisation of the Filler Dispersion\u003cbr\u003e1.3.1 Techniques\u003cbr\u003e1.3.2 Microscopy\u003cbr\u003e1.3.3 Automated Image Analysis\u003cbr\u003e1.4 Analytical Procedure by TEM\/AIA\u003cbr\u003e1.4.1 Preparation of the Samples and TEM Images\u003cbr\u003e1.4.2 Image Digitalisation\u003cbr\u003e1.4.3 Image Analysis\u003cbr\u003e1.4.4 Statistical Analysis\u003cbr\u003e1.5 Morphology of Carbon Black Dispersions\u003cbr\u003e1.5.1 Dry state\u003cbr\u003e1.5.2 Compounds\u003cbr\u003e1.6 Morphometric Analysis on Silica Filled Compounds\u003cbr\u003e1.6.1 Atomic Force Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.2 Transmission Electron Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.3 Microdensitometry and 3D-TEM\/Electron Tomography\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Intelligent Tyres\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Features of the Intelligent Tyre\u003cbr\u003e2.2.1 Identification and Memory\u003cbr\u003e2.2.2 Temperature\u003cbr\u003e2.2.3 Inflation Pressure\u003cbr\u003e2.2.4 Cornering Forces\u003cbr\u003e2.2.5 Tyre Mileage\u003cbr\u003e2.2.6 Treadwear\u003cbr\u003e2.3 Historical Perspective\u003cbr\u003e2.3.1 Tyres\u003cbr\u003e2.3.2 Competing Products - Wheel-based Systems\u003cbr\u003e2.3.3 The TREAD Act of 2000\u003cbr\u003e2.3.4 Outlook for Intelligent Tyres\u003cbr\u003e2.4 Design of the Intelligent Tyre System\u003cbr\u003e2.4.1 Tyre\u003cbr\u003e2.4.2 Electronics\u003cbr\u003e2.4.3 Signal from Tyre\u003cbr\u003e2.4.4 Readers\u003cbr\u003e2.5 Standards\u003cbr\u003e2.6 Summary\u003cbr\u003eAcknowledgement\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Silica-Filled Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Characteristics of High-Dispersion Silicas\u003cbr\u003e3.2.1 Various Classes of Silicas: Pyrogenic versus Precipitated, and their Production\u003cbr\u003e3.2.2 Properties of Highly Dispersible Silicas\u003cbr\u003e3.2.3 Compatibility Aspects\u003cbr\u003e3.3 Coupling Agents\u003cbr\u003e3.3.1 Types of Commonly used Coupling Agents\u003cbr\u003e3.3.2 Reactions Between Silica, Silane Coupling Agent and Rubber Polymer\u003cbr\u003e3.3.3 Kinetics\u003cbr\u003e3.3.4 Alternative Coupling Agents\u003cbr\u003e3.4 Characterisation Methods for Silica-Rubber Coupling\u003cbr\u003e3.4.1 Rubber Reinforcement by Silica versus Carbon Black\u003cbr\u003e3.4.2 The Payne Effect\u003cbr\u003e3.4.3 Hysteresis Properties: tan d at 60 °C\u003cbr\u003e3.4.4 Alternative Means to Quantify Filler-Filler and Filler-Polymer Interaction\u003cbr\u003e3.5 Mixing of Silica-Rubber Compounds\u003cbr\u003e3.5.1 Effect of TESPT on the Properties of Uncured and Cured Compounds\u003cbr\u003e3.5.2 Properties of Uncured Compounds in Relation to the Dump Temperature in the Presence of TESPT \u003cbr\u003eSilane Coupling Agent\u003cbr\u003e3.5.3 Effect of the Dump Temperature on the Tensile Properties of Cured Samples\u003cbr\u003e3.5.4 Interactions Between Time and Temperature as an Indication of Reaction Kinetics of the \u003cbr\u003eCoupling Reaction\u003cbr\u003e3.5.5 Effect of Mixer Size and Rotor Type\u003cbr\u003e3.5.6 considerations on Mixer Operation\u003cbr\u003e3.6 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Fibres in the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fibre Types and General Properties\u003cbr\u003e4.2.1 Cotton\u003cbr\u003e4.2.2 Rayon\u003cbr\u003e4.2.3 Polyamides\u003cbr\u003e4.2.4 Polyester, Poly(ethylene terephthalate) (PET)\u003cbr\u003e4.2.5 Aramid\u003cbr\u003e4.2.6 Others\u003cbr\u003e4.3 Yarn and Cord Processes\u003cbr\u003e4.3.1 Twisting\u003cbr\u003e4.3.2 Texturing\u003cbr\u003e4.4 Fibre Units\u003cbr\u003e4.4.1 Titer: Tex and Denier\u003cbr\u003e4.4.2 Tenacity and Modulus: g\/denier, N\/tex or GPa\u003cbr\u003e4.5 Adhesion\u003cbr\u003e4.5.1 Types of Adhesive Interactions\u003cbr\u003e4.6 Dipping Process\u003cbr\u003e4.6.1 Factors Influencing Adhesion in Standard Resorcinol Formaldehyde Latex (RFL) Treatment\u003cbr\u003e4.7 Alternative Dip Treatments for Polyester or Aramid\u003cbr\u003e4.8 Chemically Altering the Surface\u003cbr\u003e4.8.1 Polyester\u003cbr\u003e4.9 Plasma Treatment\u003cbr\u003e4.10 Rubber Treatment\u003cbr\u003e4.10.1 Mixing Ingredients\u003cbr\u003e4.10.2 Chemical Modification of Rubber\u003cbr\u003e4.11 Methods for Analysis\u003cbr\u003e4.11.1 Pullout Tests\u003cbr\u003e4.11.2 Peel Tests\u003cbr\u003e4.11.3 Surface Analysis\u003cbr\u003e4.12 Fibres in Tyres\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Naval and Space Applications of Rubber\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Acoustic Applications\u003cbr\u003e5.2.1 Sonar Rubber Domes\u003cbr\u003e5.2.2 Active Sonar\u003cbr\u003e5.2.3 Insulation\u003cbr\u003e5.3 Solid Rocket Propellants\u003cbr\u003e5.4 Blast Mitigative Coatings\u003cbr\u003e5.5 Aircraft Tyres\u003cbr\u003e5.6 Airships\u003cbr\u003e5.7 Inflatable Seacraft\u003cbr\u003e5.7.1 Combat Rubber Raiding Craft\u003cbr\u003e5.7.2 Hovercraft\u003cbr\u003e5.8 Rubber Sealants\u003cbr\u003e5.9 Miscellaneous Applications\u003cbr\u003e5.9.1 Rubber Bullets\u003cbr\u003e5.9.2 Intrusion Barriers\u003cbr\u003e5.9.3 Elastomeric Torpedo Launcher\u003cbr\u003e5.9.4 Mobile Offshore Base\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Advances in Fillers for the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Requirements for Fillers in Tyre Applications\u003cbr\u003e6.3 Advances in Carbon Black\u003cbr\u003e6.3.1 Chemically-Modified Carbon Blacks\u003cbr\u003e6.3.2 Inversion Carbon Blacks\u003cbr\u003e6.4 Filler Particles Containing Both Carbon Black and Silica\u003cbr\u003e6.4.1 Carbon-Silica Dual Phase Filler\u003cbr\u003e6.4.2 Silica-Coated Carbon Blacks\u003cbr\u003e6.5 Advances in Silica and Other Filler Materials\u003cbr\u003e6.5.1 New Precipitated Silica for Silicone Rubber\u003cbr\u003e6.5.2 Starch\u003cbr\u003e6.5.3 Organo-Clays\u003cbr\u003e6.6 Advanced Rubber-Filler Masterbatches\u003cbr\u003e6.6.1 Cabot Elastomer Composites\u003cbr\u003e6.6.2 Powdered Rubber\u003cbr\u003e6.7 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Thermoplastic Elastomers by Dynamic Vulcanisation\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Polymer Blends\u003cbr\u003e7.3 Classification of TPE\u003cbr\u003e7.4 Dynamic Vulcanisation\u003cbr\u003e7.5 Production of TPV\u003cbr\u003e7.6 PP\/EPDM TPV\u003cbr\u003e7.6.1 Crosslinking Agents For PP\/EPDM TPV\u003cbr\u003e7.6.2 Morphology of PP\/EPDM TPV\u003cbr\u003e7.7 Rheology and Processing of TPV\u003cbr\u003e7.8 Compounding in TPV\u003cbr\u003e7.9 End Use Applications of TPV\u003cbr\u003e7.10 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Polymers in Cable Application\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Broad Classification of Cables\u003cbr\u003e8.2.1 Rigid Power Cables\u003cbr\u003e8.2.2 Flexible Power and Control Cables\u003cbr\u003e8.2.3 Special Purpose Cables\u003cbr\u003e8.3 Components of Cable\u003cbr\u003e8.3.1 Conductor\u003cbr\u003e8.3.2 Insulation\u003cbr\u003e8.3.3 Significance of Different Properties on Cable Insulation Quality and Performance\u003cbr\u003e8.3.4 Chemical Resistance\u003cbr\u003e8.3.5 Selection Criteria for Insulation\u003cbr\u003e8.4 Cable Jacket (Sheath)\u003cbr\u003e8.4.1 Property Requirements of Cable Jacketing Materials\u003cbr\u003e8.4.2 Criteria for Selection of Sheaths (Cable Jacket)\u003cbr\u003e8.5 Semi Conductive Components for High Voltage Cable\u003cbr\u003e8.5.1 Property Requirements of Semi-conductive Compounds\u003cbr\u003e8.6 Different Cable Materials\u003cbr\u003e8.6.1 Polymers used in Cables as Insulation, Sheathing and Semi-conducting Materials\u003cbr\u003e8.6.2 Common Elastomers for Cables\u003cbr\u003e8.6.3 Specialty Elastomers for Cables\u003cbr\u003e8.6.4 Thermoplastic Elastomers for Cables\u003cbr\u003e8.6.5 High-Temperature Thermoplastics and Thermosets\u003cbr\u003e8.7 Different Methods of PE to XLPE Conversion\u003cbr\u003e8.7.1 Crosslinking by High-Energy Irradiation (Electron Beam)\u003cbr\u003e8.7.2 Crosslinking by the Sioplas Technique\u003cbr\u003e8.8 Different Compounding Ingredients\u003cbr\u003e8.8.1 Crosslinking Agents\u003cbr\u003e8.8.2 Metal Oxides\u003cbr\u003e8.8.3 Organic Peroxides and Other Curing Agents\u003cbr\u003e8.8.4 Accelerators\u003cbr\u003e8.8.5 Antioxidants\u003cbr\u003e8.8.6 Antiozonants\u003cbr\u003e8.8.7 Fillers\u003cbr\u003e8.8.8 Auxiliary Additives\u003cbr\u003e8.8.9 Plasticiser, Softeners, Processing Aids\u003cbr\u003e8.8.10 Coupling-agents\u003cbr\u003e8.9 Cable Manufacturing Process\u003cbr\u003e8.9.1 Basic Principles of Compounding\u003cbr\u003e8.9.2 Internal Mixing\u003cbr\u003e8.9.3 Open Mixing\u003cbr\u003e8.9.4 Application of Cable Insulation Covering\u003cbr\u003e8.9.5 Curing of Cable\u003cbr\u003e8.9.6 Dual Extrusion System\u003cbr\u003e8.9.7 Triple Extrusion System\u003cbr\u003e8.9.8 Improvement in CV Curing Techniques\u003cbr\u003e8.10 Quality Checks and Tests\u003cbr\u003e8.11 Polymers in some Specialty Cables\u003cbr\u003e8.11.1 Mining Cable\u003cbr\u003e8.11.2 Aircraft and Spacecraft Cable\u003cbr\u003e8.11.3 Nuclear Power Cables\u003cbr\u003e8.11.4 Ship Board and Marine Cables\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Durability of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Oxidation and Antioxidant Chemistry\u003cbr\u003e9.2.1 Introduction\u003cbr\u003e9.2.2 Mechanism of Rubber Oxidation\u003cbr\u003e9.2.3 Stabilisation Mechanism of Antioxidants\u003cbr\u003e9.2.4 Methods of Studying the Oxidation Resistance of Rubber\u003cbr\u003e9.3 Ozone and Antiozonant Chemistry\u003cbr\u003e9.3.1 Introduction\u003cbr\u003e9.3.2 Mechanism of Ozone Attack on Elastomers\u003cbr\u003e9.3.3 Mechanism of Antiozonants\u003cbr\u003e9.4 Mechanism of Protection Against Flex Cracking\u003cbr\u003e9.5 Trends Towards Long-Lasting Antidegradants\u003cbr\u003e9.5.1 Introduction\u003cbr\u003e9.5.2 Long-Lasting Antioxidants\u003cbr\u003e9.5.3 Long-Lasting Antiozonants\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Radiochemical Ageing of Ethylene-Propylene-Diene \u003cbr\u003eMonomer Elastomers\u003c\/strong\u003e\u003cbr\u003eIntroduction\u003cbr\u003eRadiochemical Degradation\u003cbr\u003eUnits\u003cbr\u003eRadiation Sources\u003cbr\u003eCommercial Processes and Applications\u003cbr\u003eExperimental\u003cbr\u003eMaterials\u003cbr\u003eIrradiation\u003cbr\u003e10.1 Degradation Under Inert Atmosphere\u003cbr\u003e10.1.1 Infra Red (IR) Analysis\u003cbr\u003e10.1.2 UV-vis Analysis\u003cbr\u003e10.1.3 Evaluation of Crosslinking\u003cbr\u003e10.1.4 Mass Spectrometry Analysis\u003cbr\u003e10.1.5 Mechanism of Degradation Under an Inert Atmosphere\u003cbr\u003e10.2 Identification and Quantification of Chemical Changes in EPDM and EPR Films g-Irradiated Under Oxygen Atmosphere\u003cbr\u003e10.2.1 IR Analysis\u003cbr\u003e10.2.2 UV-vis Analysis\u003cbr\u003e10.2.3 Analysis of the Oxidation Products\u003cbr\u003e10.2.4 Gamma Irradiation in vacuo of Hydroperoxides \u003cbr\u003eFormed in EPDM Films\u003cbr\u003e10.2.5 Mass Spectrometry Analysis\u003cbr\u003e10.2.6 Evaluation of Crosslinking\u003cbr\u003e10.2.7 Post-Irradiation Analysis\u003cbr\u003e10.2.8 Conclusion\u003cbr\u003e10.3 Mechanism of Radiooxidation\u003cbr\u003e10.3.1 Formation of Hydroperoxides\u003cbr\u003e10.3.2 Recombination of Peroxy Radicals\u003cbr\u003e10.3.3 Conclusion\u003cbr\u003e10.4 Evaluation of Some Anti-Oxidants\u003cbr\u003e10.4.1 Experimental\u003cbr\u003e10.4.2 Experimental Results\u003cbr\u003e10.4.3 Conclusion\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Silicone Rubber\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Chemistry\u003cbr\u003e11.3 Manufacturing\u003cbr\u003e11.4 Three Major Classifications of Silicone Rubber\u003cbr\u003e11.5 Properties\u003cbr\u003e11.5.1 Heat Resistance Property\u003cbr\u003e11.5.2 Low-Temperature Flexibility\u003cbr\u003e11.5.3 Mechanical Properties\u003cbr\u003e11.5.4 Compression Set\u003cbr\u003e11.5.5 Oil and Solvent Resistance\u003cbr\u003e11.5.6 Steam Resistance\u003cbr\u003e11.5.7 Water Resistance\u003cbr\u003e11.5.8 Electrical Properties\u003cbr\u003e11.5.9 Bio-compatibility\u003cbr\u003e11.5.10 Permeability\u003cbr\u003e11.5.11 Damping Characteristics\u003cbr\u003e11.5.12 Surface Energy or Release Property\u003cbr\u003e11.5.13 Weathering Resistance\u003cbr\u003e11.5.14 Radiation Resistance\u003cbr\u003e11.5.15 Thermal Ablative\u003cbr\u003e11.6 Compounding\u003cbr\u003e11.6.1 Silicone Gums\u003cbr\u003e11.6.2 Reinforced Gums (Bases)\u003cbr\u003e11.6.3 Filler\u003cbr\u003e11.6.4 Softener\u003cbr\u003e11.6.5 Vulcanisation\u003cbr\u003e11.7 Processing\u003cbr\u003e11.7.1 Mixing\u003cbr\u003e11.7.2 Moulding\u003cbr\u003e11.7.3 Extrusion\u003cbr\u003e11.7.4 Oven Curing\u003cbr\u003e11.7.5 Sponge\u003cbr\u003e11.7.6 Calendering\u003cbr\u003e11.7.7 Co-moulding and Over-moulding\u003cbr\u003e11.8 Troubleshooting\u003cbr\u003e11.9 Applications\u003cbr\u003e11.9.1 Automotive Applications\u003cbr\u003e11.9.2 Aerospace Applications\u003cbr\u003e11.9.3 Electrical and Electronics\u003cbr\u003e11.9.4 Coatings\u003cbr\u003e11.9.5 Appliances\u003cbr\u003e11.9.6 Foams\u003cbr\u003e11.9.7 Medical Products\u003cbr\u003e11.9.8 Baby Care\u003cbr\u003e11.9.9 Consumer Products\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:26-04:00","created_at":"2017-06-22T21:14:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","ageing","book","cable","compounds","durability","fibers","fillers","imaging","polymers","r-compounding","rubber","rubber formulary","silica-filled rubber","silicone","tyres","vulcanisation"],"price":24500,"price_min":24500,"price_max":29900,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378416772,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-84735-099-2","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 2 - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":24500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-099-2","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50445044612,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-100-5","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 2 - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":29900,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-099-978-1-84735-100-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376","options":["Cover"],"media":[{"alt":null,"id":358741868637,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by J. White, S.S. De, and K. Naskar \u003cbr\u003eISBN 978-1-84735-099-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is a companion volume to Rubber Technologists Handbook published in 2001. Written by experts in their respective fields, this handbook discusses the most recent developments in the subject.\u003cbr\u003e\u003cbr\u003eThe ten chapters cover Microscopic Imaging of Rubber Compounds, Intelligent Tyres, Silica-Filled Rubber Compounds, Fibres In The Rubber Industry, Naval and Space Applications of Rubber, Advances in Fillers for the Rubber Industry, Thermoplastic Elastomers by Dynamic Vulcanisation, Polymers In Cable Applications, Durability of Rubber Compounds, and Radiochemical Ageing of Ethylene-Propylene-Diene Monomer\u003cbr\u003e\u003cbr\u003eThis book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Microscopic Imaging of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Fillers and Elastomer Reinforcement\u003cbr\u003e1.3 Characterisation of the Filler Dispersion\u003cbr\u003e1.3.1 Techniques\u003cbr\u003e1.3.2 Microscopy\u003cbr\u003e1.3.3 Automated Image Analysis\u003cbr\u003e1.4 Analytical Procedure by TEM\/AIA\u003cbr\u003e1.4.1 Preparation of the Samples and TEM Images\u003cbr\u003e1.4.2 Image Digitalisation\u003cbr\u003e1.4.3 Image Analysis\u003cbr\u003e1.4.4 Statistical Analysis\u003cbr\u003e1.5 Morphology of Carbon Black Dispersions\u003cbr\u003e1.5.1 Dry state\u003cbr\u003e1.5.2 Compounds\u003cbr\u003e1.6 Morphometric Analysis on Silica Filled Compounds\u003cbr\u003e1.6.1 Atomic Force Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.2 Transmission Electron Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.3 Microdensitometry and 3D-TEM\/Electron Tomography\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Intelligent Tyres\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Features of the Intelligent Tyre\u003cbr\u003e2.2.1 Identification and Memory\u003cbr\u003e2.2.2 Temperature\u003cbr\u003e2.2.3 Inflation Pressure\u003cbr\u003e2.2.4 Cornering Forces\u003cbr\u003e2.2.5 Tyre Mileage\u003cbr\u003e2.2.6 Treadwear\u003cbr\u003e2.3 Historical Perspective\u003cbr\u003e2.3.1 Tyres\u003cbr\u003e2.3.2 Competing Products - Wheel-based Systems\u003cbr\u003e2.3.3 The TREAD Act of 2000\u003cbr\u003e2.3.4 Outlook for Intelligent Tyres\u003cbr\u003e2.4 Design of the Intelligent Tyre System\u003cbr\u003e2.4.1 Tyre\u003cbr\u003e2.4.2 Electronics\u003cbr\u003e2.4.3 Signal from Tyre\u003cbr\u003e2.4.4 Readers\u003cbr\u003e2.5 Standards\u003cbr\u003e2.6 Summary\u003cbr\u003eAcknowledgement\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Silica-Filled Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Characteristics of High-Dispersion Silicas\u003cbr\u003e3.2.1 Various Classes of Silicas: Pyrogenic versus Precipitated, and their Production\u003cbr\u003e3.2.2 Properties of Highly Dispersible Silicas\u003cbr\u003e3.2.3 Compatibility Aspects\u003cbr\u003e3.3 Coupling Agents\u003cbr\u003e3.3.1 Types of Commonly used Coupling Agents\u003cbr\u003e3.3.2 Reactions Between Silica, Silane Coupling Agent and Rubber Polymer\u003cbr\u003e3.3.3 Kinetics\u003cbr\u003e3.3.4 Alternative Coupling Agents\u003cbr\u003e3.4 Characterisation Methods for Silica-Rubber Coupling\u003cbr\u003e3.4.1 Rubber Reinforcement by Silica versus Carbon Black\u003cbr\u003e3.4.2 The Payne Effect\u003cbr\u003e3.4.3 Hysteresis Properties: tan d at 60 °C\u003cbr\u003e3.4.4 Alternative Means to Quantify Filler-Filler and Filler-Polymer Interaction\u003cbr\u003e3.5 Mixing of Silica-Rubber Compounds\u003cbr\u003e3.5.1 Effect of TESPT on the Properties of Uncured and Cured Compounds\u003cbr\u003e3.5.2 Properties of Uncured Compounds in Relation to the Dump Temperature in the Presence of TESPT \u003cbr\u003eSilane Coupling Agent\u003cbr\u003e3.5.3 Effect of the Dump Temperature on the Tensile Properties of Cured Samples\u003cbr\u003e3.5.4 Interactions Between Time and Temperature as an Indication of Reaction Kinetics of the \u003cbr\u003eCoupling Reaction\u003cbr\u003e3.5.5 Effect of Mixer Size and Rotor Type\u003cbr\u003e3.5.6 considerations on Mixer Operation\u003cbr\u003e3.6 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Fibres in the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fibre Types and General Properties\u003cbr\u003e4.2.1 Cotton\u003cbr\u003e4.2.2 Rayon\u003cbr\u003e4.2.3 Polyamides\u003cbr\u003e4.2.4 Polyester, Poly(ethylene terephthalate) (PET)\u003cbr\u003e4.2.5 Aramid\u003cbr\u003e4.2.6 Others\u003cbr\u003e4.3 Yarn and Cord Processes\u003cbr\u003e4.3.1 Twisting\u003cbr\u003e4.3.2 Texturing\u003cbr\u003e4.4 Fibre Units\u003cbr\u003e4.4.1 Titer: Tex and Denier\u003cbr\u003e4.4.2 Tenacity and Modulus: g\/denier, N\/tex or GPa\u003cbr\u003e4.5 Adhesion\u003cbr\u003e4.5.1 Types of Adhesive Interactions\u003cbr\u003e4.6 Dipping Process\u003cbr\u003e4.6.1 Factors Influencing Adhesion in Standard Resorcinol Formaldehyde Latex (RFL) Treatment\u003cbr\u003e4.7 Alternative Dip Treatments for Polyester or Aramid\u003cbr\u003e4.8 Chemically Altering the Surface\u003cbr\u003e4.8.1 Polyester\u003cbr\u003e4.9 Plasma Treatment\u003cbr\u003e4.10 Rubber Treatment\u003cbr\u003e4.10.1 Mixing Ingredients\u003cbr\u003e4.10.2 Chemical Modification of Rubber\u003cbr\u003e4.11 Methods for Analysis\u003cbr\u003e4.11.1 Pullout Tests\u003cbr\u003e4.11.2 Peel Tests\u003cbr\u003e4.11.3 Surface Analysis\u003cbr\u003e4.12 Fibres in Tyres\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Naval and Space Applications of Rubber\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Acoustic Applications\u003cbr\u003e5.2.1 Sonar Rubber Domes\u003cbr\u003e5.2.2 Active Sonar\u003cbr\u003e5.2.3 Insulation\u003cbr\u003e5.3 Solid Rocket Propellants\u003cbr\u003e5.4 Blast Mitigative Coatings\u003cbr\u003e5.5 Aircraft Tyres\u003cbr\u003e5.6 Airships\u003cbr\u003e5.7 Inflatable Seacraft\u003cbr\u003e5.7.1 Combat Rubber Raiding Craft\u003cbr\u003e5.7.2 Hovercraft\u003cbr\u003e5.8 Rubber Sealants\u003cbr\u003e5.9 Miscellaneous Applications\u003cbr\u003e5.9.1 Rubber Bullets\u003cbr\u003e5.9.2 Intrusion Barriers\u003cbr\u003e5.9.3 Elastomeric Torpedo Launcher\u003cbr\u003e5.9.4 Mobile Offshore Base\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Advances in Fillers for the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Requirements for Fillers in Tyre Applications\u003cbr\u003e6.3 Advances in Carbon Black\u003cbr\u003e6.3.1 Chemically-Modified Carbon Blacks\u003cbr\u003e6.3.2 Inversion Carbon Blacks\u003cbr\u003e6.4 Filler Particles Containing Both Carbon Black and Silica\u003cbr\u003e6.4.1 Carbon-Silica Dual Phase Filler\u003cbr\u003e6.4.2 Silica-Coated Carbon Blacks\u003cbr\u003e6.5 Advances in Silica and Other Filler Materials\u003cbr\u003e6.5.1 New Precipitated Silica for Silicone Rubber\u003cbr\u003e6.5.2 Starch\u003cbr\u003e6.5.3 Organo-Clays\u003cbr\u003e6.6 Advanced Rubber-Filler Masterbatches\u003cbr\u003e6.6.1 Cabot Elastomer Composites\u003cbr\u003e6.6.2 Powdered Rubber\u003cbr\u003e6.7 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Thermoplastic Elastomers by Dynamic Vulcanisation\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Polymer Blends\u003cbr\u003e7.3 Classification of TPE\u003cbr\u003e7.4 Dynamic Vulcanisation\u003cbr\u003e7.5 Production of TPV\u003cbr\u003e7.6 PP\/EPDM TPV\u003cbr\u003e7.6.1 Crosslinking Agents For PP\/EPDM TPV\u003cbr\u003e7.6.2 Morphology of PP\/EPDM TPV\u003cbr\u003e7.7 Rheology and Processing of TPV\u003cbr\u003e7.8 Compounding in TPV\u003cbr\u003e7.9 End Use Applications of TPV\u003cbr\u003e7.10 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Polymers in Cable Application\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Broad Classification of Cables\u003cbr\u003e8.2.1 Rigid Power Cables\u003cbr\u003e8.2.2 Flexible Power and Control Cables\u003cbr\u003e8.2.3 Special Purpose Cables\u003cbr\u003e8.3 Components of Cable\u003cbr\u003e8.3.1 Conductor\u003cbr\u003e8.3.2 Insulation\u003cbr\u003e8.3.3 Significance of Different Properties on Cable Insulation Quality and Performance\u003cbr\u003e8.3.4 Chemical Resistance\u003cbr\u003e8.3.5 Selection Criteria for Insulation\u003cbr\u003e8.4 Cable Jacket (Sheath)\u003cbr\u003e8.4.1 Property Requirements of Cable Jacketing Materials\u003cbr\u003e8.4.2 Criteria for Selection of Sheaths (Cable Jacket)\u003cbr\u003e8.5 Semi Conductive Components for High Voltage Cable\u003cbr\u003e8.5.1 Property Requirements of Semi-conductive Compounds\u003cbr\u003e8.6 Different Cable Materials\u003cbr\u003e8.6.1 Polymers used in Cables as Insulation, Sheathing and Semi-conducting Materials\u003cbr\u003e8.6.2 Common Elastomers for Cables\u003cbr\u003e8.6.3 Specialty Elastomers for Cables\u003cbr\u003e8.6.4 Thermoplastic Elastomers for Cables\u003cbr\u003e8.6.5 High-Temperature Thermoplastics and Thermosets\u003cbr\u003e8.7 Different Methods of PE to XLPE Conversion\u003cbr\u003e8.7.1 Crosslinking by High-Energy Irradiation (Electron Beam)\u003cbr\u003e8.7.2 Crosslinking by the Sioplas Technique\u003cbr\u003e8.8 Different Compounding Ingredients\u003cbr\u003e8.8.1 Crosslinking Agents\u003cbr\u003e8.8.2 Metal Oxides\u003cbr\u003e8.8.3 Organic Peroxides and Other Curing Agents\u003cbr\u003e8.8.4 Accelerators\u003cbr\u003e8.8.5 Antioxidants\u003cbr\u003e8.8.6 Antiozonants\u003cbr\u003e8.8.7 Fillers\u003cbr\u003e8.8.8 Auxiliary Additives\u003cbr\u003e8.8.9 Plasticiser, Softeners, Processing Aids\u003cbr\u003e8.8.10 Coupling-agents\u003cbr\u003e8.9 Cable Manufacturing Process\u003cbr\u003e8.9.1 Basic Principles of Compounding\u003cbr\u003e8.9.2 Internal Mixing\u003cbr\u003e8.9.3 Open Mixing\u003cbr\u003e8.9.4 Application of Cable Insulation Covering\u003cbr\u003e8.9.5 Curing of Cable\u003cbr\u003e8.9.6 Dual Extrusion System\u003cbr\u003e8.9.7 Triple Extrusion System\u003cbr\u003e8.9.8 Improvement in CV Curing Techniques\u003cbr\u003e8.10 Quality Checks and Tests\u003cbr\u003e8.11 Polymers in some Specialty Cables\u003cbr\u003e8.11.1 Mining Cable\u003cbr\u003e8.11.2 Aircraft and Spacecraft Cable\u003cbr\u003e8.11.3 Nuclear Power Cables\u003cbr\u003e8.11.4 Ship Board and Marine Cables\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Durability of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Oxidation and Antioxidant Chemistry\u003cbr\u003e9.2.1 Introduction\u003cbr\u003e9.2.2 Mechanism of Rubber Oxidation\u003cbr\u003e9.2.3 Stabilisation Mechanism of Antioxidants\u003cbr\u003e9.2.4 Methods of Studying the Oxidation Resistance of Rubber\u003cbr\u003e9.3 Ozone and Antiozonant Chemistry\u003cbr\u003e9.3.1 Introduction\u003cbr\u003e9.3.2 Mechanism of Ozone Attack on Elastomers\u003cbr\u003e9.3.3 Mechanism of Antiozonants\u003cbr\u003e9.4 Mechanism of Protection Against Flex Cracking\u003cbr\u003e9.5 Trends Towards Long-Lasting Antidegradants\u003cbr\u003e9.5.1 Introduction\u003cbr\u003e9.5.2 Long-Lasting Antioxidants\u003cbr\u003e9.5.3 Long-Lasting Antiozonants\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Radiochemical Ageing of Ethylene-Propylene-Diene \u003cbr\u003eMonomer Elastomers\u003c\/strong\u003e\u003cbr\u003eIntroduction\u003cbr\u003eRadiochemical Degradation\u003cbr\u003eUnits\u003cbr\u003eRadiation Sources\u003cbr\u003eCommercial Processes and Applications\u003cbr\u003eExperimental\u003cbr\u003eMaterials\u003cbr\u003eIrradiation\u003cbr\u003e10.1 Degradation Under Inert Atmosphere\u003cbr\u003e10.1.1 Infra Red (IR) Analysis\u003cbr\u003e10.1.2 UV-vis Analysis\u003cbr\u003e10.1.3 Evaluation of Crosslinking\u003cbr\u003e10.1.4 Mass Spectrometry Analysis\u003cbr\u003e10.1.5 Mechanism of Degradation Under an Inert Atmosphere\u003cbr\u003e10.2 Identification and Quantification of Chemical Changes in EPDM and EPR Films g-Irradiated Under Oxygen Atmosphere\u003cbr\u003e10.2.1 IR Analysis\u003cbr\u003e10.2.2 UV-vis Analysis\u003cbr\u003e10.2.3 Analysis of the Oxidation Products\u003cbr\u003e10.2.4 Gamma Irradiation in vacuo of Hydroperoxides \u003cbr\u003eFormed in EPDM Films\u003cbr\u003e10.2.5 Mass Spectrometry Analysis\u003cbr\u003e10.2.6 Evaluation of Crosslinking\u003cbr\u003e10.2.7 Post-Irradiation Analysis\u003cbr\u003e10.2.8 Conclusion\u003cbr\u003e10.3 Mechanism of Radiooxidation\u003cbr\u003e10.3.1 Formation of Hydroperoxides\u003cbr\u003e10.3.2 Recombination of Peroxy Radicals\u003cbr\u003e10.3.3 Conclusion\u003cbr\u003e10.4 Evaluation of Some Anti-Oxidants\u003cbr\u003e10.4.1 Experimental\u003cbr\u003e10.4.2 Experimental Results\u003cbr\u003e10.4.3 Conclusion\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Silicone Rubber\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Chemistry\u003cbr\u003e11.3 Manufacturing\u003cbr\u003e11.4 Three Major Classifications of Silicone Rubber\u003cbr\u003e11.5 Properties\u003cbr\u003e11.5.1 Heat Resistance Property\u003cbr\u003e11.5.2 Low-Temperature Flexibility\u003cbr\u003e11.5.3 Mechanical Properties\u003cbr\u003e11.5.4 Compression Set\u003cbr\u003e11.5.5 Oil and Solvent Resistance\u003cbr\u003e11.5.6 Steam Resistance\u003cbr\u003e11.5.7 Water Resistance\u003cbr\u003e11.5.8 Electrical Properties\u003cbr\u003e11.5.9 Bio-compatibility\u003cbr\u003e11.5.10 Permeability\u003cbr\u003e11.5.11 Damping Characteristics\u003cbr\u003e11.5.12 Surface Energy or Release Property\u003cbr\u003e11.5.13 Weathering Resistance\u003cbr\u003e11.5.14 Radiation Resistance\u003cbr\u003e11.5.15 Thermal Ablative\u003cbr\u003e11.6 Compounding\u003cbr\u003e11.6.1 Silicone Gums\u003cbr\u003e11.6.2 Reinforced Gums (Bases)\u003cbr\u003e11.6.3 Filler\u003cbr\u003e11.6.4 Softener\u003cbr\u003e11.6.5 Vulcanisation\u003cbr\u003e11.7 Processing\u003cbr\u003e11.7.1 Mixing\u003cbr\u003e11.7.2 Moulding\u003cbr\u003e11.7.3 Extrusion\u003cbr\u003e11.7.4 Oven Curing\u003cbr\u003e11.7.5 Sponge\u003cbr\u003e11.7.6 Calendering\u003cbr\u003e11.7.7 Co-moulding and Over-moulding\u003cbr\u003e11.8 Troubleshooting\u003cbr\u003e11.9 Applications\u003cbr\u003e11.9.1 Automotive Applications\u003cbr\u003e11.9.2 Aerospace Applications\u003cbr\u003e11.9.3 Electrical and Electronics\u003cbr\u003e11.9.4 Coatings\u003cbr\u003e11.9.5 Appliances\u003cbr\u003e11.9.6 Foams\u003cbr\u003e11.9.7 Medical Products\u003cbr\u003e11.9.8 Baby Care\u003cbr\u003e11.9.9 Consumer Products\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e"}
Rubber Technologist's...
$180.00
{"id":11242226372,"title":"Rubber Technologist's Handbook, Volume 1","handle":"978-1-85957-262-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S.K. De and J.R. White \u003cbr\u003eISBN 978-1-85957-262-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 576\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber components are found in almost every area of modern life. Rubber is used in cars, in shoes, in construction and is used in many other applications. \u003cbr\u003eThis book provides a foundation in rubber technology and discusses the most recent developments in the subject. The book is written by experts in their respective fields. \u003cbr\u003e\u003cbr\u003eThe fourteen chapters cover natural rubber, synthetic rubber, thermoplastic elastomers, fillers, compounding additives, mixing, engineering design, testing, tyre technology, automotive applications, footwear, rubbers in construction, the durability of rubber products and rubber recycling. \u003cbr\u003e\u003cbr\u003eThe book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction, S.K. De, and J.R. White\u003cbr\u003e2. Natural Rubber, N.M. Mathew\u003cbr\u003e3. Synthetic Elastomers, S. Datta\u003cbr\u003e4. Thermoplastic Elastomers, P. Antony and S.K. De\u003cbr\u003e5. Fillers, H. Mouri\u003cbr\u003e6. Rubber Additives - Compounding Ingredients, R.N. Datta and F.A.A. Ingham \u003cbr\u003e7. Rubber Mixing, P. Freakley \u003cbr\u003e8. Engineering with Elastomers, A. Stevenson \u003cbr\u003e9. Testing, R. Brown \u003cbr\u003e10. Trends in Tyre Technology, D.M. Dryden, J.R. Luchini and G.B. Ouyang \u003cbr\u003e11. Automotive Rubbers, J-M. Jaillet \u003cbr\u003e12. Rubber Compounding in Footwear, K. Ames \u003cbr\u003e13. Rubber in Construction, A.H. Delgado, and R.M. Paroli \u003cbr\u003e14. Durability of Engineering Rubber Products, R.P. Campion \u003cbr\u003e15. Rubber Recycling, A.I. Isayev\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Jim White graduated from Imperial College, London with a degree in Physics in 1964 and completed a Ph.D. in Chemical Physics in the Department of Chemical Engineering at Imperial College in 1968. After one year as a Research Officer at Morganite Carbon Company and two years as a Postdoc in the Biophysics Department at Johns Hopkins University, Baltimore he moved to Queen Mary College, London as a Senior Research Assistant. He has been at the University of Newcastle upon Tyne since 1975. He was awarded the degree of DSc (Eng) by the University of London in 1994. He is Associate Editor of the Journal of Materials Science. \u003cbr\u003e\u003cbr\u003eProfessor Sadhan K De has been a Professor at the Rubber Technology Center at the Indian Institute of Technology, Kharagpur, since 1982. He was the Founding Head of the Rubber Technology Center at Indian Institute of Technology, from 1982 to 1987, and then again headed the Center from 1995-1999. Professor De was the Dean of Postgraduate studies of this Institute (IIT, Kharagpur) from 1987 to 1990. He has organised three international Rubber Conferences (1980, 1986, 1997) in India, has had over 260 research publications in International Journals and co-authored three previous books, authored several review papers and chapters in books.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:01-04:00","created_at":"2017-06-22T21:14:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","additives","book","compounding","construction","durability","elastomers","fillers","footwear","mixing","natural rubber","r-compounding","rubber","rubber formulary","synthetic","testing","thermoplastic elastomers","tyre. automotive"],"price":18000,"price_min":18000,"price_max":28000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378392068,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-85957-440-9","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 1 - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":18000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-440-9","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50445119364,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-100-5","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 1 - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":28000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-100-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-262-7.jpg?v=1499955346"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-262-7.jpg?v=1499955346","options":["Cover"],"media":[{"alt":null,"id":358742392925,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-262-7.jpg?v=1499955346"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-262-7.jpg?v=1499955346","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S.K. De and J.R. White \u003cbr\u003eISBN 978-1-85957-262-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 576\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber components are found in almost every area of modern life. Rubber is used in cars, in shoes, in construction and is used in many other applications. \u003cbr\u003eThis book provides a foundation in rubber technology and discusses the most recent developments in the subject. The book is written by experts in their respective fields. \u003cbr\u003e\u003cbr\u003eThe fourteen chapters cover natural rubber, synthetic rubber, thermoplastic elastomers, fillers, compounding additives, mixing, engineering design, testing, tyre technology, automotive applications, footwear, rubbers in construction, the durability of rubber products and rubber recycling. \u003cbr\u003e\u003cbr\u003eThe book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction, S.K. De, and J.R. White\u003cbr\u003e2. Natural Rubber, N.M. Mathew\u003cbr\u003e3. Synthetic Elastomers, S. Datta\u003cbr\u003e4. Thermoplastic Elastomers, P. Antony and S.K. De\u003cbr\u003e5. Fillers, H. Mouri\u003cbr\u003e6. Rubber Additives - Compounding Ingredients, R.N. Datta and F.A.A. Ingham \u003cbr\u003e7. Rubber Mixing, P. Freakley \u003cbr\u003e8. Engineering with Elastomers, A. Stevenson \u003cbr\u003e9. Testing, R. Brown \u003cbr\u003e10. Trends in Tyre Technology, D.M. Dryden, J.R. Luchini and G.B. Ouyang \u003cbr\u003e11. Automotive Rubbers, J-M. Jaillet \u003cbr\u003e12. Rubber Compounding in Footwear, K. Ames \u003cbr\u003e13. Rubber in Construction, A.H. Delgado, and R.M. Paroli \u003cbr\u003e14. Durability of Engineering Rubber Products, R.P. Campion \u003cbr\u003e15. Rubber Recycling, A.I. Isayev\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Jim White graduated from Imperial College, London with a degree in Physics in 1964 and completed a Ph.D. in Chemical Physics in the Department of Chemical Engineering at Imperial College in 1968. After one year as a Research Officer at Morganite Carbon Company and two years as a Postdoc in the Biophysics Department at Johns Hopkins University, Baltimore he moved to Queen Mary College, London as a Senior Research Assistant. He has been at the University of Newcastle upon Tyne since 1975. He was awarded the degree of DSc (Eng) by the University of London in 1994. He is Associate Editor of the Journal of Materials Science. \u003cbr\u003e\u003cbr\u003eProfessor Sadhan K De has been a Professor at the Rubber Technology Center at the Indian Institute of Technology, Kharagpur, since 1982. He was the Founding Head of the Rubber Technology Center at Indian Institute of Technology, from 1982 to 1987, and then again headed the Center from 1995-1999. Professor De was the Dean of Postgraduate studies of this Institute (IIT, Kharagpur) from 1987 to 1990. He has organised three international Rubber Conferences (1980, 1986, 1997) in India, has had over 260 research publications in International Journals and co-authored three previous books, authored several review papers and chapters in books.\u003cbr\u003e\u003cbr\u003e"}