- Grid List
Filter
Rheology. Concepts, Me...
$299.00
{"id":11427417284,"title":"Rheology. Concepts, Methods, and Applications, 3rd Edition","handle":"rheology-concepts-methods-and-applications-3rd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-21-5 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2017\u003cbr\u003ePages 486+xiv\u003cbr\u003eFigures 265\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe third edition of this excellent book brings many new additions, which include new methods and applications based on the most recently published literature. The most notable new sections discuss heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003cbr\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of the rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors are very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intent to pass their knowledge to the next generations. Previous editions of this book are used as a textbook in many universities worldwide.\u003c\/p\u003e\n\u003cp\u003eThis book is very useful in industrial applications but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eIntroduction. Rheology: Subject and Goals\u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/strong\u003e\u003cbr\u003e1.2 Deformations \u003cbr\u003e1.3 Kinematics of deformations \u003cbr\u003e1.4 Heterogeneity on flow \u003cbr\u003e1.5 Summary − continuum mechanics in rheology\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments \u003cbr\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003cbr\u003e2.3 Model interpretations \u003cbr\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003cbr\u003e2.5 Relationships among viscoelastic functions \u003cbr\u003e2.6 Viscoelasticity and molecular models \u003cbr\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 Liquids \u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003cbr\u003e3.2 Non-Newtonian shear flow \u003cbr\u003e3.3 Equations for viscosity and flow curves \u003cbr\u003e3.4 Elasticity in shear flows \u003cbr\u003e3.5 Structure rearrangements induced by shear flow \u003cbr\u003e3.6 Limits of shear flow − instabilities \u003cbr\u003e3.7 Extensional flow \u003cbr\u003e3.8 Conclusions − real liquid is a complex liquid\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions \u003cbr\u003e4.2 Linear elastic (Hookean) materials \u003cbr\u003e4.3 Linear anisotropic solids \u003cbr\u003e4.4 Large deformations in solids and non-linearity \u003cbr\u003e4.5 Limits of elasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry Experimental Methods \u003c\/strong\u003e\u003cbr\u003e5.1 Introduction − Classification of experimental methods \u003cbr\u003e5.2 Capillary viscometry \u003cbr\u003e5.3 Rotational rheometry \u003cbr\u003e5.4 Plastometers \u003cbr\u003e5.5 Method of falling sphere \u003cbr\u003e5.6 Extension \u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003cbr\u003e5.8 Physical methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology \u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Rheological properties of real materials and their characterization \u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003cbr\u003e6.4 Solution of dynamic problems \u003cbr\u003e \u003cstrong\u003eNotation \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eSolutions \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eIndex \u003c\/strong\u003e\u003c\/p\u003e","published_at":"2017-07-13T17:21:03-04:00","created_at":"2017-07-13T17:22:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":29900,"price_min":29900,"price_max":29900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":45226298884,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 3rd Edition","public_title":null,"options":["Default Title"],"price":29900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-21-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062","options":["Title"],"media":[{"alt":null,"id":412845899869,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-21-5.jpg?v=1504029062","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-21-5 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2017\u003cbr\u003ePages 486+xiv\u003cbr\u003eFigures 265\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe third edition of this excellent book brings many new additions, which include new methods and applications based on the most recently published literature. The most notable new sections discuss heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003cbr\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids but solid materials are discussed in one full chapter.\u003cbr\u003eThe goal of the rheological studies is not to measure some rheological variables but to generate relevant data and this requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in studies of materials. This is one very strong aspect of this book which will help to avert costly confusions - common when data are generated under wrong conditions or data are wrongly used.\u003cbr\u003eMethods of measurement and raw data treatment are included in one large chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here giving many choices for experimentation and guidance on where and how to use them properly.\u003cbr\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. Usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003cbr\u003eThe authors are very meticulous in showing the historical sequence of developments which led to the present advancements in rheology. This aspect is of interest of specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of achievements of many scientists give the essential historical background of contributors to rheology as a science and as the method of solving many practical problems.\u003cbr\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two very famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them and they intent to pass their knowledge to the next generations. Previous editions of this book are used as a textbook in many universities worldwide.\u003c\/p\u003e\n\u003cp\u003eThis book is very useful in industrial applications but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in industry.\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003eIntroduction. Rheology: Subject and Goals\u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/strong\u003e\u003cbr\u003e1.2 Deformations \u003cbr\u003e1.3 Kinematics of deformations \u003cbr\u003e1.4 Heterogeneity on flow \u003cbr\u003e1.5 Summary − continuum mechanics in rheology\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 Viscoelasticity \u003c\/strong\u003e\u003cbr\u003e2.1 Basic experiments \u003cbr\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003cbr\u003e2.3 Model interpretations \u003cbr\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003cbr\u003e2.5 Relationships among viscoelastic functions \u003cbr\u003e2.6 Viscoelasticity and molecular models \u003cbr\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003cbr\u003e2.8 Non-linear effects in viscoelasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3 Liquids \u003c\/strong\u003e\u003cbr\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003cbr\u003e3.2 Non-Newtonian shear flow \u003cbr\u003e3.3 Equations for viscosity and flow curves \u003cbr\u003e3.4 Elasticity in shear flows \u003cbr\u003e3.5 Structure rearrangements induced by shear flow \u003cbr\u003e3.6 Limits of shear flow − instabilities \u003cbr\u003e3.7 Extensional flow \u003cbr\u003e3.8 Conclusions − real liquid is a complex liquid\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e4 Solids \u003c\/strong\u003e\u003cbr\u003e4.1 Introduction and definitions \u003cbr\u003e4.2 Linear elastic (Hookean) materials \u003cbr\u003e4.3 Linear anisotropic solids \u003cbr\u003e4.4 Large deformations in solids and non-linearity \u003cbr\u003e4.5 Limits of elasticity\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e5 Rheometry Experimental Methods \u003c\/strong\u003e\u003cbr\u003e5.1 Introduction − Classification of experimental methods \u003cbr\u003e5.2 Capillary viscometry \u003cbr\u003e5.3 Rotational rheometry \u003cbr\u003e5.4 Plastometers \u003cbr\u003e5.5 Method of falling sphere \u003cbr\u003e5.6 Extension \u003cbr\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003cbr\u003e5.8 Physical methods\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e6 Applications of Rheology \u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Rheological properties of real materials and their characterization \u003cbr\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003cbr\u003e6.4 Solution of dynamic problems \u003cbr\u003e \u003cstrong\u003eNotation \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eSolutions \u003c\/strong\u003e\u003cbr\u003e \u003cstrong\u003eIndex \u003c\/strong\u003e\u003c\/p\u003e"}
Rheology. Concepts, Me...
$325.00
{"id":7289169084573,"title":"Rheology. Concepts, Methods, and Applications, 4th Edition","handle":"copy-of-rheology-concepts-methods-and-applications-4th-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-93-2 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2022\u003cbr\u003ePages 520+xvi\u003cbr\u003eFigures 300\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThe fourth edition of this excellent book, used by many universities and companies for teaching and research purposes, brings significant current information on new methods and applications based on recently published literature. The most notable new sections discuss non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how a particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids, but solid materials are also discussed in one full chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe rheological studies' goal is not to measure some rheological variables but to generate relevant data, which requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in materials studies. This is one powerful aspect of this book, which will help to avert costly confusion - common when data are generated under wrong conditions or data are wrongly used.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMethods of measurement and raw data treatment are included in one large, chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here, giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. The usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe authors are very meticulous in showing the historical sequence of developments, which led to the present advancements in rheology. This aspect is of interest to specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of many scientists' achievements give essential historical background of contributors to rheology as science and solve many practical problems.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them. We are fortunate that they intend to pass their knowledge to the next generations. Previous editions of this book were used as a textbook in many universities worldwide.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book is instrumental in industrial applications, but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIntroduction. Rheology: Subject and Goals\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.2 Deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.3 Kinematics of deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.4 Heterogeneity on flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.5 Summary − continuum mechanics in rheology \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e2 Viscoelasticity \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.1 Basic experiments \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3 Model interpretations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.5 Relationships among viscoelastic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.6 Viscoelasticity and molecular models \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.8 Non-linear effects in viscoelasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e3 Liquids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.2 Non-Newtonian shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.3 Equations for viscosity and flow curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.4 Elasticity in shear flows \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.5 Structure rearrangements induced by shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.6 Limits of shear flow − instabilities \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.7 Extensional flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.8 Conclusions − real liquid is a complex liquid \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e4 Solids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.1 Introduction and definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.2 Linear elastic (Hookean) materials \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.3 Linear anisotropic solids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.4 Large deformations in solids and non-linearity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.5 Limits of elasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e5 Rheometry Experimental Methods \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.1 Introduction − Classification of experimental methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.2 Capillary viscometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.3 Rotational rheometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.4 Plastometers \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.5 Method of falling sphere \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.6 Extension \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.8 Physical methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e6 Applications of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.1 Introduction \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.2 Rheological properties of real materials and their characterization \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.4 Solution of dynamic problems \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eNotation \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eSolutions \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIndex \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2022-02-21T11:26:15-05:00","created_at":"2022-02-21T11:11:16-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","boltzmann-volterra stresses","book","capillary viscometry","creep","deformation","elongation","equations","liquid","Newtonian liquids","non-Newtonian liquids","p-properties","plastometers","polymer","rheokinetics","rheological","rheology","rheometry","solids","viscoelasticity"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":41999155921053,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Concepts, Methods, and Applications, 4th Edition","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"deny","barcode":"978-1-927885-93-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764","options":["Title"],"media":[{"alt":null,"id":24441167478941,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885932.png?v=1645460764","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthors: Prof. Dr. Alexander Ya. Malkin, Prof. Dr. Avraam I. Isayev \u003cbr\u003eISBN 978-1-927885-93-2 (hard copy)\u003cbr\u003e\u003cbr\u003ePublished: 2022\u003cbr\u003ePages 520+xvi\u003cbr\u003eFigures 300\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eThe fourth edition of this excellent book, used by many universities and companies for teaching and research purposes, brings significant current information on new methods and applications based on recently published literature. The most notable new sections discuss non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow, and molecular orientation.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe first four chapters of this book discuss various aspects of the theoretical rheology and, by examples of many studies, show how a particular theory, model, or equation can be used in solving different problems. The main emphasis is on liquids, but solid materials are also discussed in one full chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe rheological studies' goal is not to measure some rheological variables but to generate relevant data, which requires experience and understanding of theory. The authors share their experiences of many years of experimental studies and teaching to show the use of rheology in materials studies. This is one powerful aspect of this book, which will help to avert costly confusion - common when data are generated under wrong conditions or data are wrongly used.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMethods of measurement and raw data treatment are included in one large, chapter which constitutes over one-quarter of the book. Eight groups of methods are discussed here, giving many choices for experimentation and guidance on where and how to use them properly.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final chapter shows how to use rheological methods in different groups of products and methods of their manufacture. The usefulness of chemorheological (rheokinetical) measurements is also emphasized. This chapter continues with examples of purposeful applications in practical matters.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe authors are very meticulous in showing the historical sequence of developments, which led to the present advancements in rheology. This aspect is of interest to specialists in rheology, professors, and their students because it shows in chronological order important events and teaches about their implications on further discoveries. References to various chapters and short summaries of many scientists' achievements give essential historical background of contributors to rheology as science and solve many practical problems.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eMany people need this book, ranging from students to accomplished rheologists because it contains expert advice of two famous and accomplished scientists and teachers who know discoveries first-hand because they may have taken part in some of them. We are fortunate that they intend to pass their knowledge to the next generations. Previous editions of this book were used as a textbook in many universities worldwide.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThis book is instrumental in industrial applications, but it is invaluable as a teaching tool in universities and colleges because it is consistent with programs of rheology courses. The practicality of this book will prepare students for typical tasks in the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIntroduction. Rheology: Subject and Goals\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e1 Continuum Mechanics as a Foundation of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.2 Deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.3 Kinematics of deformations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.4 Heterogeneity on flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e1.5 Summary − continuum mechanics in rheology \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e2 Viscoelasticity \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.1 Basic experiments \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.2 Relaxation and creep − spectral representation. Dynamic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3 Model interpretations \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Superposition − The Boltzmann-Volterra Principle \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.5 Relationships among viscoelastic functions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.6 Viscoelasticity and molecular models \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.8 Non-linear effects in viscoelasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e3 Liquids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.1 Newtonian and non-Newtonian liquids. Definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.2 Non-Newtonian shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.3 Equations for viscosity and flow curves \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.4 Elasticity in shear flows \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.5 Structure rearrangements induced by shear flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.6 Limits of shear flow − instabilities \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.7 Extensional flow \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e3.8 Conclusions − real liquid is a complex liquid \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e4 Solids \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.1 Introduction and definitions \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.2 Linear elastic (Hookean) materials \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.3 Linear anisotropic solids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.4 Large deformations in solids and non-linearity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e4.5 Limits of elasticity \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e5 Rheometry Experimental Methods \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.1 Introduction − Classification of experimental methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.2 Capillary viscometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.3 Rotational rheometry \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.4 Plastometers \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.5 Method of falling sphere \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.6 Extension \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.7 Measurement of viscoelastic properties by dynamic (oscillation) methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e5.8 Physical methods \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003e6 Applications of Rheology \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.1 Introduction \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.2 Rheological properties of real materials and their characterization \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.3 Rheokinetics (chemorheology) and rheokinetic liquids \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e6.4 Solution of dynamic problems \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eNotation \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eSolutions \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan\u003eIndex \u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia \u003cbr\u003e\u003cbr\u003eProf. Dr. Avraam I. Isayev, Distinguished Professor, Institute of Polymer Engineering, The University of Akron, Akron, USA\u003cbr\u003e\u003cbr\u003e"}
Rheology. Fundamentals
$150.00
{"id":11242225604,"title":"Rheology. Fundamentals","handle":"1-895198-09-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Alexander Ya. Malkin \u003cbr\u003e10-ISBN 1-895198-09-7 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-09-6 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e315 pages, 101 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nMost technological improvements are realized through application of rheology used to modify properties of materials. At the same time, rheology is a complex discipline not fully understood by most researchers and engineers. It is not because rheology is too difficult to understand but mostly because the discipline uses its own language full of terms and models, understood by rheologists but not commonly used by others. ChemTec Publishing introduces a new series entitled Fundamental Topics in Rheology, designed to facilitate the conversion of rheology from a field familiar to a narrow group of specialists to a popularly applied science. The first book in the series was written by Prof. Malkin who is an accomplished researcher in the field. Prof. Malkin wrote one of the first books on polymer rheology together with his mentor and well-known Russian scientist Prof. Vinogradov. This book is still in a popular use in every major library. The present, difficult task to write on fundamental principles of rheology in an easy to understand way without losing its scientific content, Prof. Malkin fulfilled with accomplishment. It is only possible to write this book according to the previously defined prescription, if author can see nature as a complex but homogeneous entirety, divided to disciplines for the clarity of thought or simply to concentrate on one angle of observation at the time but with proper balance always maintained, and this was precisely achieved by the author.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eIntroduction \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSubject and language of rheology \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStress \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eDeformation and rate of deformation \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological equations of state \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological viscous fluids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eElastic solids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eViscoelasticity. \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEach chapter is completed by two sections: examples of practical application of theory and a review of the most important concepts introduced. Both sections of each chapter were designed to assure that the most important goal is achieved -- that the knowledge is absorbed by the reader rather than leaving the image of complexity and impenetrability of the topic. It is no exaggeration to say that this book should be available for anyone who wants to work with materials in any capacity would it be in research or production in any area of science or industry. This book is an invaluable source for students but is also to be found on the desk of rheologists. \u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia","published_at":"2017-06-22T21:13:59-04:00","created_at":"2017-06-22T21:13:59-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","book","deformation","elastic solids","p-properties","polymer","rheological equations","rheology","stress","viscoelasticity","viscous fluids"],"price":15000,"price_min":15000,"price_max":15000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391172,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rheology. Fundamentals","public_title":null,"options":["Default Title"],"price":15000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-09-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-09-7.jpg?v=1504029577"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-09-7.jpg?v=1504029577","options":["Title"],"media":[{"alt":null,"id":412847112285,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-09-7.jpg?v=1504029577"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-09-7.jpg?v=1504029577","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. Alexander Ya. Malkin \u003cbr\u003e10-ISBN 1-895198-09-7 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-09-6 \u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e315 pages, 101 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nMost technological improvements are realized through application of rheology used to modify properties of materials. At the same time, rheology is a complex discipline not fully understood by most researchers and engineers. It is not because rheology is too difficult to understand but mostly because the discipline uses its own language full of terms and models, understood by rheologists but not commonly used by others. ChemTec Publishing introduces a new series entitled Fundamental Topics in Rheology, designed to facilitate the conversion of rheology from a field familiar to a narrow group of specialists to a popularly applied science. The first book in the series was written by Prof. Malkin who is an accomplished researcher in the field. Prof. Malkin wrote one of the first books on polymer rheology together with his mentor and well-known Russian scientist Prof. Vinogradov. This book is still in a popular use in every major library. The present, difficult task to write on fundamental principles of rheology in an easy to understand way without losing its scientific content, Prof. Malkin fulfilled with accomplishment. It is only possible to write this book according to the previously defined prescription, if author can see nature as a complex but homogeneous entirety, divided to disciplines for the clarity of thought or simply to concentrate on one angle of observation at the time but with proper balance always maintained, and this was precisely achieved by the author.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eIntroduction \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSubject and language of rheology \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStress \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eDeformation and rate of deformation \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological equations of state \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRheological viscous fluids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eElastic solids \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eViscoelasticity. \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eEach chapter is completed by two sections: examples of practical application of theory and a review of the most important concepts introduced. Both sections of each chapter were designed to assure that the most important goal is achieved -- that the knowledge is absorbed by the reader rather than leaving the image of complexity and impenetrability of the topic. It is no exaggeration to say that this book should be available for anyone who wants to work with materials in any capacity would it be in research or production in any area of science or industry. This book is an invaluable source for students but is also to be found on the desk of rheologists. \u003cbr\u003e\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProf. Dr. Alexander Ya. Malkin, Principal Research Fellow, Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"}
Ring Opening Polymeriz...
$75.00
{"id":11242256772,"title":"Ring Opening Polymerization","handle":"978-1-85957-057-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Spassky \u003cbr\u003eISBN 978-1-85957-057-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003eUniversite Pierre et Marie Curie\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e101 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe dependence of polymerizability upon ring strain, the significance of ring-chain equilibria, and the potential for formation of cyclic oligomers are outlined. The mechanism and implementation of anionic ring-opening polymerization, cationic ring-opening polymerization, stereospecific coordinated anionic polymerization, free radical ring-opening polymerization, and ionic ring-opening copolymerization are described. A final section on ring-opening metathesis polymerization includes a brief discussion of catalysts, thermodynamics, stereochemistry, kinetics, and applications.","published_at":"2017-06-22T21:15:34-04:00","created_at":"2017-06-22T21:15:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","acrylic polymers","book","catalysts","kinetics","p-chemistry","ring opening polymerization","stereochemistry","thermodynamics"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378497924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Ring Opening Polymerization","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-057-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. Spassky \u003cbr\u003eISBN 978-1-85957-057-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1995\u003cbr\u003e\u003c\/span\u003eUniversite Pierre et Marie Curie\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e101 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe dependence of polymerizability upon ring strain, the significance of ring-chain equilibria, and the potential for formation of cyclic oligomers are outlined. The mechanism and implementation of anionic ring-opening polymerization, cationic ring-opening polymerization, stereospecific coordinated anionic polymerization, free radical ring-opening polymerization, and ionic ring-opening copolymerization are described. A final section on ring-opening metathesis polymerization includes a brief discussion of catalysts, thermodynamics, stereochemistry, kinetics, and applications."}
Rotational Molding
$75.00
{"id":11242255812,"title":"Rotational Molding","handle":"978-1-85957-009-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford \u003cbr\u003eISBN 978-1-85957-009-8 \u003cbr\u003e\u003cbr\u003eThe Queens University of Belfast\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e86 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProf. Crawford explains the fundamentals of rotational molding, with particular reference to advances in the key areas of materials, machinery, molds, and process control. He considers relationships between processing conditions and product properties and looks at the future of the process and the likely advances still to be made. More than 350 abstracts were selected as references.","published_at":"2017-06-22T21:15:31-04:00","created_at":"2017-06-22T21:15:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","machinery","materials","molds","moulding","p-processing","polymer","process control","rotational molding"],"price":7500,"price_min":7500,"price_max":7500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378495556,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rotational Molding","public_title":null,"options":["Default Title"],"price":7500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-009-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895","options":["Title"],"media":[{"alt":null,"id":358738886749,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-009-8.jpg?v=1499954895","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford \u003cbr\u003eISBN 978-1-85957-009-8 \u003cbr\u003e\u003cbr\u003eThe Queens University of Belfast\u003cbr\u003eReview Report\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e86 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProf. Crawford explains the fundamentals of rotational molding, with particular reference to advances in the key areas of materials, machinery, molds, and process control. He considers relationships between processing conditions and product properties and looks at the future of the process and the likely advances still to be made. More than 350 abstracts were selected as references."}
Rotational Molding Tec...
$225.00
{"id":11242226564,"title":"Rotational Molding Technology","handle":"1-884207-85-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: James L. Throne and R.J. Crawford \u003cbr\u003eISBN 1-884207-85-5 \u003cbr\u003e\u003cbr\u003ePages: 450\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book clarifies and quantifies many of the technical interactions in the process. It distinguishes itself from other books on the subject by being a seamless story of the advanced aspects of the rotational molding process. There are seven chapters within the book.\u003cbr\u003eThe U.S. market for rotational molding products was one billion pounds in the year 2000. The growth of the rotational molding industry has grown at 10 to 15% per year. With this growth has come an increasing need for details on the complex, technical aspects of the process.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eIntroduction to Rotational Molding\u003c\/li\u003e\n\u003cli\u003eA brief overview of the process and a comparison of rotational molding versus blow molding and twin-sheet thermoforming.\u003c\/li\u003e\n\u003cli\u003eRotational Molding Polymers\u003c\/li\u003e\n\u003cli\u003eDescribes the characteristics of polyolefins, which are the major class of polymers used in the process. It includes descriptions of vinyls, nylons, PVC plastisols, silicones, and thermosetting polymers.\u003c\/li\u003e\n\u003cli\u003ePulverizing, Grinding and Attrition\u003c\/li\u003e\n\u003cli\u003eFocuses on the particle size of solid polymer powders, particle size distribution, particle analysis techniques, and optimum particle shape. It also details pigments and property enhancers.\u003c\/li\u003e\n\u003cli\u003eRotational Molding Machines\u003c\/li\u003e\n\u003cli\u003eAn overview of the myriad types of commercial rotational molding machines.\u003c\/li\u003e\n\u003cli\u003eMolds\u003c\/li\u003e\n\u003cli\u003eCompares materials such as steel, aluminum, and electroformed nickel in terms of their characteristic strength and thermal efficiencies. It also discusses mold design aspects and various mold releases.\u003c\/li\u003e\n\u003cli\u003eProcessing\u003c\/li\u003e\n\u003cli\u003eCovers powder flow behavior, particle-to-particle adhesion, and densification as well as bubble removal, oven cycle time, and other mechanisms.\u003c\/li\u003e\n\u003cli\u003ePart Design\u003c\/li\u003e\n\u003cli\u003eProvides an overview of the technical aspects that influence the part design, including powder flow into and out of acute angles, and the effect of processing on properties and polymer characteristics.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nR.J. Crawford is a Professor of Mechanical Engineering at the University of Auckland, New Zealand. He has published over 200 papers and is the author of five textbooks on plastics and engineering materials. He has been awarded numerous prizes for his research including the Netlon Medal from the Institute of Materials. James L. Throne is President of Sherwood Technologies, Inc., a polymer processing consulting firm he started in 1985. He has more than 20 years industrial experience, and taught for 10 years in universities. He has published nearly 200 technical papers, has nine patents, and has written eight books on polymer processing.","published_at":"2017-06-22T21:14:02-04:00","created_at":"2017-06-22T21:14:02-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","adhesion","attrition","book","bubbles","grinding","mold design","molds","nylons","p-processing","polymer","polyolefins","process","pulverizing","PVC plastisols","silicones","thermosetting polymers","vinyls"],"price":22500,"price_min":22500,"price_max":22500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378393732,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rotational Molding Technology","public_title":null,"options":["Default Title"],"price":22500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"1-884207-85-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-85-5.jpg?v=1499954920"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-85-5.jpg?v=1499954920","options":["Title"],"media":[{"alt":null,"id":358739673181,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-85-5.jpg?v=1499954920"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-85-5.jpg?v=1499954920","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: James L. Throne and R.J. Crawford \u003cbr\u003eISBN 1-884207-85-5 \u003cbr\u003e\u003cbr\u003ePages: 450\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book clarifies and quantifies many of the technical interactions in the process. It distinguishes itself from other books on the subject by being a seamless story of the advanced aspects of the rotational molding process. There are seven chapters within the book.\u003cbr\u003eThe U.S. market for rotational molding products was one billion pounds in the year 2000. The growth of the rotational molding industry has grown at 10 to 15% per year. With this growth has come an increasing need for details on the complex, technical aspects of the process.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eIntroduction to Rotational Molding\u003c\/li\u003e\n\u003cli\u003eA brief overview of the process and a comparison of rotational molding versus blow molding and twin-sheet thermoforming.\u003c\/li\u003e\n\u003cli\u003eRotational Molding Polymers\u003c\/li\u003e\n\u003cli\u003eDescribes the characteristics of polyolefins, which are the major class of polymers used in the process. It includes descriptions of vinyls, nylons, PVC plastisols, silicones, and thermosetting polymers.\u003c\/li\u003e\n\u003cli\u003ePulverizing, Grinding and Attrition\u003c\/li\u003e\n\u003cli\u003eFocuses on the particle size of solid polymer powders, particle size distribution, particle analysis techniques, and optimum particle shape. It also details pigments and property enhancers.\u003c\/li\u003e\n\u003cli\u003eRotational Molding Machines\u003c\/li\u003e\n\u003cli\u003eAn overview of the myriad types of commercial rotational molding machines.\u003c\/li\u003e\n\u003cli\u003eMolds\u003c\/li\u003e\n\u003cli\u003eCompares materials such as steel, aluminum, and electroformed nickel in terms of their characteristic strength and thermal efficiencies. It also discusses mold design aspects and various mold releases.\u003c\/li\u003e\n\u003cli\u003eProcessing\u003c\/li\u003e\n\u003cli\u003eCovers powder flow behavior, particle-to-particle adhesion, and densification as well as bubble removal, oven cycle time, and other mechanisms.\u003c\/li\u003e\n\u003cli\u003ePart Design\u003c\/li\u003e\n\u003cli\u003eProvides an overview of the technical aspects that influence the part design, including powder flow into and out of acute angles, and the effect of processing on properties and polymer characteristics.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nR.J. Crawford is a Professor of Mechanical Engineering at the University of Auckland, New Zealand. He has published over 200 papers and is the author of five textbooks on plastics and engineering materials. He has been awarded numerous prizes for his research including the Netlon Medal from the Institute of Materials. James L. Throne is President of Sherwood Technologies, Inc., a polymer processing consulting firm he started in 1985. He has more than 20 years industrial experience, and taught for 10 years in universities. He has published nearly 200 technical papers, has nine patents, and has written eight books on polymer processing."}
Rubber Basics
$144.00
{"id":11242227076,"title":"Rubber Basics","handle":"978-1-85957-307-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.B. Simpson \u003cbr\u003eISBN 978-1-85957-307-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003epages: 150,tables: 59, figures: 26\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Rubber Basics book comprises a glossary of terms used in the rubber industry, a detailed description of the common rubber materials, a section on rubber additives, and an outline of the equipment types used in rubber processing. \u003cbr\u003e\u003cbr\u003eThe book aims to be a useful desktop reference book for anyone in the rubber industry. It provides a quick means of obtaining information about key subjects. It is simple enough to be understood by someone with a basic knowledge of the industry, but comprehensive enough to provide additional information for experienced workers moving into new areas. \u003cbr\u003e\u003cbr\u003eMany abbreviations are found in the industry and the glossary contains a good number of entries defining these. Terms relating to many aspects of the industry are included in materials, additives, physical test methods and machinery types to analytical test equipment. Examples include Adiabatic, Conductive Rubber, Dolly, Mooney Scorch Test, Rubbone, and Whiting. \u003cbr\u003e\u003cbr\u003eA useful short section lists the specific gravities of common rubbers and compounding ingredients, an important factor in material selection. \u003cbr\u003e\u003cbr\u003eThe section on rubbers is derived from the Rapra material selection programme known as Rubacams. It includes basic chemical structures for each rubber type together with information about material properties and uses. The material types covered range from natural rubber through polysulphide rubbers to thermoplastic elastomers. \u003cbr\u003e\u003cbr\u003eRubber compounding ingredients are listed and discussed from accelerators to waxes. The role of each ingredient in rubber compounding is described, together with general comments on usefulness and some of the issues involved. For example, titanium dioxide is generally used as a whitening agent but is also a useful reinforcing agent, the limiting factor being cost. \u003cbr\u003e\u003cbr\u003eRubber processing involves a wide variety of equipment from bale heaters to tyre retreading and testing machinery. This section describes each type in turn and its uses. Thus moulding, extrusion, hose braiding and dipping are all covered in this section.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSection 1: Glossary of Rubber Terms \u003cbr\u003eSection 2: Specific Gravities of Some Rubbers and Compounding Ingredients \u003cbr\u003e\u003cbr\u003eSection 3: Rubbers including: \u003cbr\u003eNatural Rubber, Nitrile Rubbers, Polyisoprene, Polybutadiene, Epichlorohydrin Polymers, Polychloroprene, Polynorbornene Butyl Rubbers, Styrene-Butadiene Rubber, Ethylene-Propylene Rubber, Chlorosulphonated Polyethylene, Ethylene-Vinyl Acetate Copolymer, Ethylene-Acrylic Rubber, Polyacrylate Rubbers, Silicone Rubbers, Ebonite, Polysulphide Rubber, Propylene Oxide-Allyl Glycidyl Ether Copolymer, Polyurethane Elastomers, Fluorocarbon Rubber and Thermoplastic Elastomers. \u003cbr\u003e\u003cbr\u003eSection 4: Rubber Compounding Ingredients including: \u003cbr\u003eAccelerators, Antidegradants, Blowing Agents, Dusting and Anti-Tack Agents, Factice, Fillers, Fire Retardants, Peroxides, Petroleum Oils, Pigments, Prevulcanisation Inhibitors, Release Agents, Vulcanising Agents, and Waxes \u003cbr\u003e\u003cbr\u003eSection 5: Rubber Processing Equipment including \u003cbr\u003eAutoclaves, Cable Manufacturing, Calenders, Compression Moulding Presses, Conveyors, Cutting Equipment, Deflashing, Dipping, Dusting Devices, Extruders, Granulators, Shredders, Grinders, Hose Machinery, Injection Moulding Machines, Internal Mixers, Marking Devices, Metal Preparation for Bonding, Mills, Mixers for Rubber Dough, Moulds, Ovens, Preheaters, Presses, Spreading Machines, Transfer Moulding and Tyre Building Equipment\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRichard Simpson is an expert in rubber processing and testing, having worked at Rapra in a senior capacity for many years.","published_at":"2017-06-22T21:14:04-04:00","created_at":"2017-06-22T21:14:04-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","additives","book","cable","calenders","chlorosulphonated Polyethylene","compounding","conveyors","copolymer","curing","ebonite","elastomers","epichlorohydrin","ethylene-acrylic","ethylene-propylene","Ethylene-Vinyl Acetate","extruders","fillers","fluorocarbon","granulators","grinders","ingredients","injection","moulding","natural rubber","Nitrile","polyacrylate","polybutadiene","polychloroprene","polyisoprene","polynorbornene butyl","polysulphide","polyurethane","processing","Propylene Oxide-Allyl Glycidyl Ether","r-properties","rubber","rubber formulary","shredders","silicone","styrene-butadiene","thermoplastic","tyre"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394244,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Basics","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-307-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-307-5.jpg?v=1499954968"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-307-5.jpg?v=1499954968","options":["Title"],"media":[{"alt":null,"id":358740263005,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-307-5.jpg?v=1499954968"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-307-5.jpg?v=1499954968","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.B. Simpson \u003cbr\u003eISBN 978-1-85957-307-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003epages: 150,tables: 59, figures: 26\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Rubber Basics book comprises a glossary of terms used in the rubber industry, a detailed description of the common rubber materials, a section on rubber additives, and an outline of the equipment types used in rubber processing. \u003cbr\u003e\u003cbr\u003eThe book aims to be a useful desktop reference book for anyone in the rubber industry. It provides a quick means of obtaining information about key subjects. It is simple enough to be understood by someone with a basic knowledge of the industry, but comprehensive enough to provide additional information for experienced workers moving into new areas. \u003cbr\u003e\u003cbr\u003eMany abbreviations are found in the industry and the glossary contains a good number of entries defining these. Terms relating to many aspects of the industry are included in materials, additives, physical test methods and machinery types to analytical test equipment. Examples include Adiabatic, Conductive Rubber, Dolly, Mooney Scorch Test, Rubbone, and Whiting. \u003cbr\u003e\u003cbr\u003eA useful short section lists the specific gravities of common rubbers and compounding ingredients, an important factor in material selection. \u003cbr\u003e\u003cbr\u003eThe section on rubbers is derived from the Rapra material selection programme known as Rubacams. It includes basic chemical structures for each rubber type together with information about material properties and uses. The material types covered range from natural rubber through polysulphide rubbers to thermoplastic elastomers. \u003cbr\u003e\u003cbr\u003eRubber compounding ingredients are listed and discussed from accelerators to waxes. The role of each ingredient in rubber compounding is described, together with general comments on usefulness and some of the issues involved. For example, titanium dioxide is generally used as a whitening agent but is also a useful reinforcing agent, the limiting factor being cost. \u003cbr\u003e\u003cbr\u003eRubber processing involves a wide variety of equipment from bale heaters to tyre retreading and testing machinery. This section describes each type in turn and its uses. Thus moulding, extrusion, hose braiding and dipping are all covered in this section.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSection 1: Glossary of Rubber Terms \u003cbr\u003eSection 2: Specific Gravities of Some Rubbers and Compounding Ingredients \u003cbr\u003e\u003cbr\u003eSection 3: Rubbers including: \u003cbr\u003eNatural Rubber, Nitrile Rubbers, Polyisoprene, Polybutadiene, Epichlorohydrin Polymers, Polychloroprene, Polynorbornene Butyl Rubbers, Styrene-Butadiene Rubber, Ethylene-Propylene Rubber, Chlorosulphonated Polyethylene, Ethylene-Vinyl Acetate Copolymer, Ethylene-Acrylic Rubber, Polyacrylate Rubbers, Silicone Rubbers, Ebonite, Polysulphide Rubber, Propylene Oxide-Allyl Glycidyl Ether Copolymer, Polyurethane Elastomers, Fluorocarbon Rubber and Thermoplastic Elastomers. \u003cbr\u003e\u003cbr\u003eSection 4: Rubber Compounding Ingredients including: \u003cbr\u003eAccelerators, Antidegradants, Blowing Agents, Dusting and Anti-Tack Agents, Factice, Fillers, Fire Retardants, Peroxides, Petroleum Oils, Pigments, Prevulcanisation Inhibitors, Release Agents, Vulcanising Agents, and Waxes \u003cbr\u003e\u003cbr\u003eSection 5: Rubber Processing Equipment including \u003cbr\u003eAutoclaves, Cable Manufacturing, Calenders, Compression Moulding Presses, Conveyors, Cutting Equipment, Deflashing, Dipping, Dusting Devices, Extruders, Granulators, Shredders, Grinders, Hose Machinery, Injection Moulding Machines, Internal Mixers, Marking Devices, Metal Preparation for Bonding, Mills, Mixers for Rubber Dough, Moulds, Ovens, Preheaters, Presses, Spreading Machines, Transfer Moulding and Tyre Building Equipment\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRichard Simpson is an expert in rubber processing and testing, having worked at Rapra in a senior capacity for many years."}
Rubber Bonding 2001
$160.00
{"id":11242235524,"title":"Rubber Bonding 2001","handle":"978-1-85957-298-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-298-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003epages 224\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFollowing the three very successful conferences dealing with the subject of bonding rubbers of all types to a wide variety of substrates, Rapra Technology Ltd and European Rubber Journal held this further broad-based conference on the subject. \u003cbr\u003e\u003cbr\u003ePapers presented at this fourth conference discuss technical updates of the current state of the art in bonding technology, and also introduce some of the developments that have taken place with bonding systems. A number of papers examine many aspects of the theoretical background of the science of adhesion theory to enable the factory practitioner to understand more fully the establishment of the best possible bonds between rubbers and substrates, and to achieve best service life from the products manufactured.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePerformance of Bonding to Conform to Environmental Requirements. Mike Rooke, Henkel Industrial Adhesive, UK\u003c\/li\u003e\n\u003cli\u003eAdhesion: Analysis by Fracture Mechanics. Chris Stevens, NGF Europe Ltd.\u003c\/li\u003e\n\u003cli\u003eThe adhesive Role of Particulate Filler between Incompatible Rubbers. Jane Clarke, RuPEC, Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eInvestigation of the Kinetics of Bond Formation and Durability of New Multifunctional Bonding System. Mark Weih, Lord Corporation, USA\u003c\/li\u003e\n\u003cli\u003eTime-dependent Failure of Bonded Elastomer to Rigid Substrate Joints. Marina Fernando, Virginia Geldhill, MRPRA Rubber Consultants, UK\u003c\/li\u003e\n\u003cli\u003eBonding Silica Filled Natural Rubber Compounds to Rigid Substrate Joints. Ali Ansarifar, IPTME Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eNew Generation of Adhesion Activated Yarn- A Key product for Innovative Solutions. Hans Janssen, Teijin Twaron BV, The Netherlands\u003c\/li\u003e\n\u003cli\u003eThe Improvement of Interfacial Adhesion of a Reinforced Polyurethane and Steel via Silane Coupling Agents. Mohammed Reza Moghbeli, N Mohannadi, E Zangirian, Polymer Engineering Science Dept., Amir Kabir University, Iran\u003c\/li\u003e\n\u003cli\u003eKey Elements in the Interface of Rubber to Metal Bonds. Stefan Dehnicke, Chemetall GmBH, Germany\u003c\/li\u003e\n\u003cli\u003eSome Applications of Analytical and Spectroscopic Techniques in the Study of Rubber Bonding. John Sidwell, Rapra Technology Limited, UK\u003c\/li\u003e\n\u003cli\u003eAutomation of Rubber Injection Presses. Peter Stenl, LWB Steinl GmBH \u0026amp; Co Kg, Germany\u003c\/li\u003e\n\u003cli\u003eMulti Component Injection Moulding of Liquid Silicone Rubber\/Thermoplastic Combinations. Christoph Lettowsky, IKV, Germany\u003c\/li\u003e\n\u003cli\u003eAdhesion of Rubber to Brass – The Influence of Cobalt on Interface Morphology. Steve Fulton, Rhodia Industrial Specialities, UK\u003c\/li\u003e\n\u003cli\u003ePost Vulcanisation Bonding. Keith Worthington, Compound Ingredients Ltd., UK\u003c\/li\u003e\n\u003cli\u003eRubber Bonding between EPDM Sheets with Various Percent Peroxide. Jean-Maurice Vergnaud, University St. Etienne, France\u003c\/li\u003e\n\u003cli\u003eReaction Kinetics of Rubber to Metal Bonding Agents and its Implications on Bond Durability. Sture Persson, Svedala Skega AB, Sweden\u003c\/li\u003e\n\u003cli\u003eInterfacial Bonding Heterogeneity \u0026amp; Synergism in Polymer-Polymer Adhesion Strength. Nasser Mohammadi, A Sharif, M R Moghbeli, E Zangirian, Polymer Engineering Science Dept.,\u003c\/li\u003e\n\u003cli\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:14:29-04:00","created_at":"2017-06-22T21:14:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","air monitoring","bonding","book","compounds","coupling agents","environment","fillers","health","injection moulding","joints. adhesion","liquid silicone","molding","natural rubber","plastics","polyurethane","r-properties","reinforced","rigid","rubber","safety","silane","silica"],"price":16000,"price_min":16000,"price_max":16000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378419460,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Bonding 2001","public_title":null,"options":["Default Title"],"price":16000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-298-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-298-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003epages 224\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFollowing the three very successful conferences dealing with the subject of bonding rubbers of all types to a wide variety of substrates, Rapra Technology Ltd and European Rubber Journal held this further broad-based conference on the subject. \u003cbr\u003e\u003cbr\u003ePapers presented at this fourth conference discuss technical updates of the current state of the art in bonding technology, and also introduce some of the developments that have taken place with bonding systems. A number of papers examine many aspects of the theoretical background of the science of adhesion theory to enable the factory practitioner to understand more fully the establishment of the best possible bonds between rubbers and substrates, and to achieve best service life from the products manufactured.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003ePerformance of Bonding to Conform to Environmental Requirements. Mike Rooke, Henkel Industrial Adhesive, UK\u003c\/li\u003e\n\u003cli\u003eAdhesion: Analysis by Fracture Mechanics. Chris Stevens, NGF Europe Ltd.\u003c\/li\u003e\n\u003cli\u003eThe adhesive Role of Particulate Filler between Incompatible Rubbers. Jane Clarke, RuPEC, Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eInvestigation of the Kinetics of Bond Formation and Durability of New Multifunctional Bonding System. Mark Weih, Lord Corporation, USA\u003c\/li\u003e\n\u003cli\u003eTime-dependent Failure of Bonded Elastomer to Rigid Substrate Joints. Marina Fernando, Virginia Geldhill, MRPRA Rubber Consultants, UK\u003c\/li\u003e\n\u003cli\u003eBonding Silica Filled Natural Rubber Compounds to Rigid Substrate Joints. Ali Ansarifar, IPTME Loughborough University, UK\u003c\/li\u003e\n\u003cli\u003eNew Generation of Adhesion Activated Yarn- A Key product for Innovative Solutions. Hans Janssen, Teijin Twaron BV, The Netherlands\u003c\/li\u003e\n\u003cli\u003eThe Improvement of Interfacial Adhesion of a Reinforced Polyurethane and Steel via Silane Coupling Agents. Mohammed Reza Moghbeli, N Mohannadi, E Zangirian, Polymer Engineering Science Dept., Amir Kabir University, Iran\u003c\/li\u003e\n\u003cli\u003eKey Elements in the Interface of Rubber to Metal Bonds. Stefan Dehnicke, Chemetall GmBH, Germany\u003c\/li\u003e\n\u003cli\u003eSome Applications of Analytical and Spectroscopic Techniques in the Study of Rubber Bonding. John Sidwell, Rapra Technology Limited, UK\u003c\/li\u003e\n\u003cli\u003eAutomation of Rubber Injection Presses. Peter Stenl, LWB Steinl GmBH \u0026amp; Co Kg, Germany\u003c\/li\u003e\n\u003cli\u003eMulti Component Injection Moulding of Liquid Silicone Rubber\/Thermoplastic Combinations. Christoph Lettowsky, IKV, Germany\u003c\/li\u003e\n\u003cli\u003eAdhesion of Rubber to Brass – The Influence of Cobalt on Interface Morphology. Steve Fulton, Rhodia Industrial Specialities, UK\u003c\/li\u003e\n\u003cli\u003ePost Vulcanisation Bonding. Keith Worthington, Compound Ingredients Ltd., UK\u003c\/li\u003e\n\u003cli\u003eRubber Bonding between EPDM Sheets with Various Percent Peroxide. Jean-Maurice Vergnaud, University St. Etienne, France\u003c\/li\u003e\n\u003cli\u003eReaction Kinetics of Rubber to Metal Bonding Agents and its Implications on Bond Durability. Sture Persson, Svedala Skega AB, Sweden\u003c\/li\u003e\n\u003cli\u003eInterfacial Bonding Heterogeneity \u0026amp; Synergism in Polymer-Polymer Adhesion Strength. Nasser Mohammadi, A Sharif, M R Moghbeli, E Zangirian, Polymer Engineering Science Dept.,\u003c\/li\u003e\n\u003cli\u003e\n\u003c\/ul\u003e"}
Rubber Fume
$270.00
{"id":11242258116,"title":"Rubber Fume","handle":"978-1-85957-127-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Bryan Willoughby \u003cbr\u003eISBN 978-1-85957-127-9 \u003cbr\u003e\u003cbr\u003e105 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive review covers Rapra vulcanization fume project - a unique study analyzing cure volatiles from a suite of formulations using a common pool of ingredients. The experiments were conducted and analytical findings are presented, discussed and compared with on-site data. GC\/MS was used to identify and determine components of fumes. In the study, which included 75 ingredients, 157 different emissions were found. The document contains 100 tables of data. \u003cbr\u003e\u003cbr\u003eRubbers tested: SBR, NR, EP, EPDM, NBR, IIR, CR, and CSM. Testing conditions: cure temperatures - 150-200C and 175-225C as well as emissions during cooling. The data obtained are also accessible from an electronic database.\u003cbr\u003e\u003cbr\u003e","published_at":"2018-02-12T07:43:13-05:00","created_at":"2017-06-22T21:15:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","CR","CSM","emissions","EP","EPDM","IIR","NBR","NR","quality control","rubbers","SBR","testing"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378502020,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Fume","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-127-9.jpg?v=1499955272"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-127-9.jpg?v=1499955272","options":["Title"],"media":[{"alt":null,"id":358740820061,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-127-9.jpg?v=1499955272"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-127-9.jpg?v=1499955272","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Bryan Willoughby \u003cbr\u003eISBN 978-1-85957-127-9 \u003cbr\u003e\u003cbr\u003e105 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe comprehensive review covers Rapra vulcanization fume project - a unique study analyzing cure volatiles from a suite of formulations using a common pool of ingredients. The experiments were conducted and analytical findings are presented, discussed and compared with on-site data. GC\/MS was used to identify and determine components of fumes. In the study, which included 75 ingredients, 157 different emissions were found. The document contains 100 tables of data. \u003cbr\u003e\u003cbr\u003eRubbers tested: SBR, NR, EP, EPDM, NBR, IIR, CR, and CSM. Testing conditions: cure temperatures - 150-200C and 175-225C as well as emissions during cooling. The data obtained are also accessible from an electronic database.\u003cbr\u003e\u003cbr\u003e"}
Rubber Injection Moldi...
$99.00
{"id":11242232964,"title":"Rubber Injection Molding 2000 Today's Technology, Theory and Practice","handle":"978-1-85957-245-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-245-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2000 \u003cbr\u003e\u003c\/span\u003eLondon\u003cbr\u003e8 papers, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eInjection moulding of elastomers for mass-produced products, such as those for the automotive industries, is a critical process for rubber product manufacturers. Processing equipment and materials are continuously under development for the application. This conference addressed the advances that have been made.\u003c\/p\u003e\n\u003cp\u003eThe conference proceedings will be of importance to rubber processors, materials suppliers, compounders and end-users alike. The papers discuss developments that are currently available to optimise production from the injection moulding process along with new techniques, materials, and equipment.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eContents\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cli\u003eOverview of Injection Moulding of Rubbers \u003cbr\u003e\u003ci\u003eMark Smithson, Avon Rubber plc, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eLiquid Silicone Rubbers for Injection Moulding \u003cbr\u003e\u003ci\u003ePeter Jerschow, Wacker-Chemie GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eVarious Solutions for Dual Injection in Different Application Fields \u003cbr\u003e\u003ci\u003eJean Louise Picard, REP Machinery Limited, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e2 Shot Injection Moulding - High Performance and Conventional Rubbers \u003cbr\u003e\u003ci\u003eManfred Arning, Engel Vertriebsgesellschaft mbH, Austria \u003cbr\u003ePaper unavailable at time of print\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eNew Developments for the Optimisation of Injection Moulded Elastomers Using 3D Simulation \u003cbr\u003e\u003ci\u003eLothar H. Kallien, SIGMA Engineering GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eOptimisation of NBR Compounds for the Injection Moulding Process – Influencing Rheological Properties with Fatty Acids and Fatty Acid Derivatives \u003cbr\u003e\u003ci\u003eHans Magg, Bayer AG, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eInjection Moulding of Rubber - Problems, Causes, Solutions \u003cbr\u003e\u003ci\u003eC. Clarke, K.-H. Menting and T. Mergenhagen, Schill \u0026amp; Seilacher GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eDevelopment of New FKM Technology for High Processing Performances in Injection Molding \u003cbr\u003e\u003ci\u003ePatrick Paglia, DuPont Dow Elastomers, Switzerland\u003c\/i\u003e\n\u003c\/li\u003e","published_at":"2017-06-22T21:14:22-04:00","created_at":"2017-06-22T21:14:22-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","book","elastomers","filling","injection","molding","mould","moulding","p-processing","rheological properties","rubber","rubbers","silicone","stability"],"price":9900,"price_min":9900,"price_max":9900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413252,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Injection Molding 2000 Today's Technology, Theory and Practice","public_title":null,"options":["Default Title"],"price":9900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-245-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577","options":["Title"],"media":[{"alt":null,"id":412849963101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-245-0.jpg?v=1504030577","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-245-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2000 \u003cbr\u003e\u003c\/span\u003eLondon\u003cbr\u003e8 papers, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eInjection moulding of elastomers for mass-produced products, such as those for the automotive industries, is a critical process for rubber product manufacturers. Processing equipment and materials are continuously under development for the application. This conference addressed the advances that have been made.\u003c\/p\u003e\n\u003cp\u003eThe conference proceedings will be of importance to rubber processors, materials suppliers, compounders and end-users alike. The papers discuss developments that are currently available to optimise production from the injection moulding process along with new techniques, materials, and equipment.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eContents\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cli\u003eOverview of Injection Moulding of Rubbers \u003cbr\u003e\u003ci\u003eMark Smithson, Avon Rubber plc, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eLiquid Silicone Rubbers for Injection Moulding \u003cbr\u003e\u003ci\u003ePeter Jerschow, Wacker-Chemie GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eVarious Solutions for Dual Injection in Different Application Fields \u003cbr\u003e\u003ci\u003eJean Louise Picard, REP Machinery Limited, UK \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003e2 Shot Injection Moulding - High Performance and Conventional Rubbers \u003cbr\u003e\u003ci\u003eManfred Arning, Engel Vertriebsgesellschaft mbH, Austria \u003cbr\u003ePaper unavailable at time of print\u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eNew Developments for the Optimisation of Injection Moulded Elastomers Using 3D Simulation \u003cbr\u003e\u003ci\u003eLothar H. Kallien, SIGMA Engineering GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eOptimisation of NBR Compounds for the Injection Moulding Process – Influencing Rheological Properties with Fatty Acids and Fatty Acid Derivatives \u003cbr\u003e\u003ci\u003eHans Magg, Bayer AG, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eInjection Moulding of Rubber - Problems, Causes, Solutions \u003cbr\u003e\u003ci\u003eC. Clarke, K.-H. Menting and T. Mergenhagen, Schill \u0026amp; Seilacher GmbH, Germany \u003c\/i\u003e\n\u003c\/li\u003e\n\u003cli\u003eDevelopment of New FKM Technology for High Processing Performances in Injection Molding \u003cbr\u003e\u003ci\u003ePatrick Paglia, DuPont Dow Elastomers, Switzerland\u003c\/i\u003e\n\u003c\/li\u003e"}
Rubber Product Failure
$125.00
{"id":11242227716,"title":"Rubber Product Failure","handle":"978-1-85957-330-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown \u003cbr\u003eISBN 978-1-85957-330-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 106, figures: 3, tables: 4\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber components are used in many demanding applications, from tyres and seals to gloves and medical devices, and failure can be catastrophic. This review of rubber product failure outlines and illustrates the common causes of failure while addressing ways of avoiding it. \u003cbr\u003e\u003cbr\u003eThere has been increasing pressure to improve performance so that rubbers can be used at higher temperatures and in harsher environments. For example, the under-the-bonnet temperature has increased in some vehicles and new medical devices require longer lifetimes in potentially degrading biological fluids. The expectations of tyre performance, in particular, are increasing, and retreads have been in the spotlight for failures. \u003cbr\u003e\u003cbr\u003eThe definition of failure depends on the application. For example, a racing car engine seal that lasts for one race may be acceptable, but in a normal car, a lifespan of 10 years is more reasonable. If appearance is critical as in surface coatings and paints, then discolouration is a failure, whilst in seals, leakage is not acceptable. Each rubber product must be fit for the use specified by the consumer. \u003cbr\u003e\u003cbr\u003eFailure analysis is critical to product improvement. The problem is obvious to see, for example, a hole in a hot water bottle, but the cause of the problem can be much harder to find. It can range from a design fault to poor material selection, to processing problems, to manufacturing errors such as poor dimensional tolerances, to poor installation, product abuse, and unexpected service conditions. The rubber technologist must become a detective, gathering evidence, understanding the material type and using deductive reasoning. \u003cbr\u003e\u003cbr\u003eTesting and analysis of failed materials and components add to the information available for failure analysis. For example, stored aged tyres appeared superficially to be alright for use, but on drum testing small cracks grew more quickly than in new tyres leading to rapid failure in service. \u003cbr\u003e\u003cbr\u003eQuality control procedures such as product inspection, testing, and material quality checks can help to reach 100% reliability. In critical applications such as electricians' gloves for high voltage working, gloves are inspected before each use, while engine seals may be routinely replaced before the expected lifetime to avoid problems. \u003cbr\u003e\u003cbr\u003eIt is customary to hide failures, thus the number of specific cases published in the literature is not high. However, several reviews have been written on specific products and references can be found at the end of this review. Around 400 abstracts from papers in the Polymer Library are included with an index. Subjects covered include tyre wear and failure, seals, engine components, rubber bonding failure, rubber failure due to chloramine in water, tank treads, gloves and condoms, medical devices and EPDM roofing membranes.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Failure Analysis \u003cbr\u003e\u003cbr\u003e3. The Reasons for Failure \u003cbr\u003e\u003cbr\u003e3.1 Design Error \u003cbr\u003e3.2 Inappropriate Material \u003cbr\u003e3.3 Manufacturing Faults \u003cbr\u003e3.4 Incorrect Installation \u003cbr\u003e3.5 Unexpected Service Conditions \u003cbr\u003e3.6 Deliberate or Accidental Misuse \u003cbr\u003e3.7 Strategic Weakness \u003cbr\u003e4. The Causes of Failure \u003cbr\u003e\u003cbr\u003e4.1 General \u003cbr\u003e4.2 Temperature \u003cbr\u003e4.3 Effect of Fluids \u003cbr\u003e4.4 Weathering \u003cbr\u003e4.5 Ionising Radiation \u003cbr\u003e4.6 Biological Attack \u003cbr\u003e4.7 Fatigue \u003cbr\u003e4.8 Set, Stress Relaxation, and Creep \u003cbr\u003e4.9 Abrasion \u003cbr\u003e4.10 Electrical Stress \u003cbr\u003e5. Preventing Failure \u003cbr\u003e\u003cbr\u003e5.1 General \u003cbr\u003e5.2 Service Trials \u003cbr\u003e5.3 Experience \u003cbr\u003e5.4 Accelerated Testing \u003cbr\u003e5.5 Quality Control \u003cbr\u003e6. The Literature \u003cbr\u003e\u003cbr\u003e6.1 General \u003cbr\u003e6.2 Tyres \u003cbr\u003e6.3 Seals \u003cbr\u003e6.4 Other Products \u003cbr\u003e7. Conclusions \u003cbr\u003e\u003cbr\u003eAdditional References \u003cbr\u003eAbstracts from the Polymer Library Database \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is renowned in the rubber industry for his knowledge of rubber testing, including work on the 40 year ageing of rubber project recently completed at Rapra. He has studied many cases of product failure and has acted as an expert witness. He has published and edited numerous books and reports, and currently works with the Rapra Testing and Quality Group.","published_at":"2017-06-22T21:14:05-04:00","created_at":"2017-06-22T21:14:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","abrasion","biological attack","book","creep","electrical stress","fatigue","fluids","ionising","r-testing","radiation","relaxation","rubber","stress","temperature","weathering"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378395268,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Product Failure","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-330-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-330-3.jpg?v=1499955316"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-330-3.jpg?v=1499955316","options":["Title"],"media":[{"alt":null,"id":358741344349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-330-3.jpg?v=1499955316"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-330-3.jpg?v=1499955316","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown \u003cbr\u003eISBN 978-1-85957-330-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 106, figures: 3, tables: 4\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber components are used in many demanding applications, from tyres and seals to gloves and medical devices, and failure can be catastrophic. This review of rubber product failure outlines and illustrates the common causes of failure while addressing ways of avoiding it. \u003cbr\u003e\u003cbr\u003eThere has been increasing pressure to improve performance so that rubbers can be used at higher temperatures and in harsher environments. For example, the under-the-bonnet temperature has increased in some vehicles and new medical devices require longer lifetimes in potentially degrading biological fluids. The expectations of tyre performance, in particular, are increasing, and retreads have been in the spotlight for failures. \u003cbr\u003e\u003cbr\u003eThe definition of failure depends on the application. For example, a racing car engine seal that lasts for one race may be acceptable, but in a normal car, a lifespan of 10 years is more reasonable. If appearance is critical as in surface coatings and paints, then discolouration is a failure, whilst in seals, leakage is not acceptable. Each rubber product must be fit for the use specified by the consumer. \u003cbr\u003e\u003cbr\u003eFailure analysis is critical to product improvement. The problem is obvious to see, for example, a hole in a hot water bottle, but the cause of the problem can be much harder to find. It can range from a design fault to poor material selection, to processing problems, to manufacturing errors such as poor dimensional tolerances, to poor installation, product abuse, and unexpected service conditions. The rubber technologist must become a detective, gathering evidence, understanding the material type and using deductive reasoning. \u003cbr\u003e\u003cbr\u003eTesting and analysis of failed materials and components add to the information available for failure analysis. For example, stored aged tyres appeared superficially to be alright for use, but on drum testing small cracks grew more quickly than in new tyres leading to rapid failure in service. \u003cbr\u003e\u003cbr\u003eQuality control procedures such as product inspection, testing, and material quality checks can help to reach 100% reliability. In critical applications such as electricians' gloves for high voltage working, gloves are inspected before each use, while engine seals may be routinely replaced before the expected lifetime to avoid problems. \u003cbr\u003e\u003cbr\u003eIt is customary to hide failures, thus the number of specific cases published in the literature is not high. However, several reviews have been written on specific products and references can be found at the end of this review. Around 400 abstracts from papers in the Polymer Library are included with an index. Subjects covered include tyre wear and failure, seals, engine components, rubber bonding failure, rubber failure due to chloramine in water, tank treads, gloves and condoms, medical devices and EPDM roofing membranes.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. Failure Analysis \u003cbr\u003e\u003cbr\u003e3. The Reasons for Failure \u003cbr\u003e\u003cbr\u003e3.1 Design Error \u003cbr\u003e3.2 Inappropriate Material \u003cbr\u003e3.3 Manufacturing Faults \u003cbr\u003e3.4 Incorrect Installation \u003cbr\u003e3.5 Unexpected Service Conditions \u003cbr\u003e3.6 Deliberate or Accidental Misuse \u003cbr\u003e3.7 Strategic Weakness \u003cbr\u003e4. The Causes of Failure \u003cbr\u003e\u003cbr\u003e4.1 General \u003cbr\u003e4.2 Temperature \u003cbr\u003e4.3 Effect of Fluids \u003cbr\u003e4.4 Weathering \u003cbr\u003e4.5 Ionising Radiation \u003cbr\u003e4.6 Biological Attack \u003cbr\u003e4.7 Fatigue \u003cbr\u003e4.8 Set, Stress Relaxation, and Creep \u003cbr\u003e4.9 Abrasion \u003cbr\u003e4.10 Electrical Stress \u003cbr\u003e5. Preventing Failure \u003cbr\u003e\u003cbr\u003e5.1 General \u003cbr\u003e5.2 Service Trials \u003cbr\u003e5.3 Experience \u003cbr\u003e5.4 Accelerated Testing \u003cbr\u003e5.5 Quality Control \u003cbr\u003e6. The Literature \u003cbr\u003e\u003cbr\u003e6.1 General \u003cbr\u003e6.2 Tyres \u003cbr\u003e6.3 Seals \u003cbr\u003e6.4 Other Products \u003cbr\u003e7. Conclusions \u003cbr\u003e\u003cbr\u003eAdditional References \u003cbr\u003eAbstracts from the Polymer Library Database \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is renowned in the rubber industry for his knowledge of rubber testing, including work on the 40 year ageing of rubber project recently completed at Rapra. He has studied many cases of product failure and has acted as an expert witness. He has published and edited numerous books and reports, and currently works with the Rapra Testing and Quality Group."}
Rubber Technologist's ...
$245.00
{"id":11242234500,"title":"Rubber Technologist's Handbook, Volume 2","handle":"978-1-84735-099-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by J. White, S.S. De, and K. Naskar \u003cbr\u003eISBN 978-1-84735-099-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is a companion volume to Rubber Technologists Handbook published in 2001. Written by experts in their respective fields, this handbook discusses the most recent developments in the subject.\u003cbr\u003e\u003cbr\u003eThe ten chapters cover Microscopic Imaging of Rubber Compounds, Intelligent Tyres, Silica-Filled Rubber Compounds, Fibres In The Rubber Industry, Naval and Space Applications of Rubber, Advances in Fillers for the Rubber Industry, Thermoplastic Elastomers by Dynamic Vulcanisation, Polymers In Cable Applications, Durability of Rubber Compounds, and Radiochemical Ageing of Ethylene-Propylene-Diene Monomer\u003cbr\u003e\u003cbr\u003eThis book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Microscopic Imaging of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Fillers and Elastomer Reinforcement\u003cbr\u003e1.3 Characterisation of the Filler Dispersion\u003cbr\u003e1.3.1 Techniques\u003cbr\u003e1.3.2 Microscopy\u003cbr\u003e1.3.3 Automated Image Analysis\u003cbr\u003e1.4 Analytical Procedure by TEM\/AIA\u003cbr\u003e1.4.1 Preparation of the Samples and TEM Images\u003cbr\u003e1.4.2 Image Digitalisation\u003cbr\u003e1.4.3 Image Analysis\u003cbr\u003e1.4.4 Statistical Analysis\u003cbr\u003e1.5 Morphology of Carbon Black Dispersions\u003cbr\u003e1.5.1 Dry state\u003cbr\u003e1.5.2 Compounds\u003cbr\u003e1.6 Morphometric Analysis on Silica Filled Compounds\u003cbr\u003e1.6.1 Atomic Force Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.2 Transmission Electron Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.3 Microdensitometry and 3D-TEM\/Electron Tomography\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Intelligent Tyres\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Features of the Intelligent Tyre\u003cbr\u003e2.2.1 Identification and Memory\u003cbr\u003e2.2.2 Temperature\u003cbr\u003e2.2.3 Inflation Pressure\u003cbr\u003e2.2.4 Cornering Forces\u003cbr\u003e2.2.5 Tyre Mileage\u003cbr\u003e2.2.6 Treadwear\u003cbr\u003e2.3 Historical Perspective\u003cbr\u003e2.3.1 Tyres\u003cbr\u003e2.3.2 Competing Products - Wheel-based Systems\u003cbr\u003e2.3.3 The TREAD Act of 2000\u003cbr\u003e2.3.4 Outlook for Intelligent Tyres\u003cbr\u003e2.4 Design of the Intelligent Tyre System\u003cbr\u003e2.4.1 Tyre\u003cbr\u003e2.4.2 Electronics\u003cbr\u003e2.4.3 Signal from Tyre\u003cbr\u003e2.4.4 Readers\u003cbr\u003e2.5 Standards\u003cbr\u003e2.6 Summary\u003cbr\u003eAcknowledgement\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Silica-Filled Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Characteristics of High-Dispersion Silicas\u003cbr\u003e3.2.1 Various Classes of Silicas: Pyrogenic versus Precipitated, and their Production\u003cbr\u003e3.2.2 Properties of Highly Dispersible Silicas\u003cbr\u003e3.2.3 Compatibility Aspects\u003cbr\u003e3.3 Coupling Agents\u003cbr\u003e3.3.1 Types of Commonly used Coupling Agents\u003cbr\u003e3.3.2 Reactions Between Silica, Silane Coupling Agent and Rubber Polymer\u003cbr\u003e3.3.3 Kinetics\u003cbr\u003e3.3.4 Alternative Coupling Agents\u003cbr\u003e3.4 Characterisation Methods for Silica-Rubber Coupling\u003cbr\u003e3.4.1 Rubber Reinforcement by Silica versus Carbon Black\u003cbr\u003e3.4.2 The Payne Effect\u003cbr\u003e3.4.3 Hysteresis Properties: tan d at 60 °C\u003cbr\u003e3.4.4 Alternative Means to Quantify Filler-Filler and Filler-Polymer Interaction\u003cbr\u003e3.5 Mixing of Silica-Rubber Compounds\u003cbr\u003e3.5.1 Effect of TESPT on the Properties of Uncured and Cured Compounds\u003cbr\u003e3.5.2 Properties of Uncured Compounds in Relation to the Dump Temperature in the Presence of TESPT \u003cbr\u003eSilane Coupling Agent\u003cbr\u003e3.5.3 Effect of the Dump Temperature on the Tensile Properties of Cured Samples\u003cbr\u003e3.5.4 Interactions Between Time and Temperature as an Indication of Reaction Kinetics of the \u003cbr\u003eCoupling Reaction\u003cbr\u003e3.5.5 Effect of Mixer Size and Rotor Type\u003cbr\u003e3.5.6 considerations on Mixer Operation\u003cbr\u003e3.6 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Fibres in the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fibre Types and General Properties\u003cbr\u003e4.2.1 Cotton\u003cbr\u003e4.2.2 Rayon\u003cbr\u003e4.2.3 Polyamides\u003cbr\u003e4.2.4 Polyester, Poly(ethylene terephthalate) (PET)\u003cbr\u003e4.2.5 Aramid\u003cbr\u003e4.2.6 Others\u003cbr\u003e4.3 Yarn and Cord Processes\u003cbr\u003e4.3.1 Twisting\u003cbr\u003e4.3.2 Texturing\u003cbr\u003e4.4 Fibre Units\u003cbr\u003e4.4.1 Titer: Tex and Denier\u003cbr\u003e4.4.2 Tenacity and Modulus: g\/denier, N\/tex or GPa\u003cbr\u003e4.5 Adhesion\u003cbr\u003e4.5.1 Types of Adhesive Interactions\u003cbr\u003e4.6 Dipping Process\u003cbr\u003e4.6.1 Factors Influencing Adhesion in Standard Resorcinol Formaldehyde Latex (RFL) Treatment\u003cbr\u003e4.7 Alternative Dip Treatments for Polyester or Aramid\u003cbr\u003e4.8 Chemically Altering the Surface\u003cbr\u003e4.8.1 Polyester\u003cbr\u003e4.9 Plasma Treatment\u003cbr\u003e4.10 Rubber Treatment\u003cbr\u003e4.10.1 Mixing Ingredients\u003cbr\u003e4.10.2 Chemical Modification of Rubber\u003cbr\u003e4.11 Methods for Analysis\u003cbr\u003e4.11.1 Pullout Tests\u003cbr\u003e4.11.2 Peel Tests\u003cbr\u003e4.11.3 Surface Analysis\u003cbr\u003e4.12 Fibres in Tyres\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Naval and Space Applications of Rubber\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Acoustic Applications\u003cbr\u003e5.2.1 Sonar Rubber Domes\u003cbr\u003e5.2.2 Active Sonar\u003cbr\u003e5.2.3 Insulation\u003cbr\u003e5.3 Solid Rocket Propellants\u003cbr\u003e5.4 Blast Mitigative Coatings\u003cbr\u003e5.5 Aircraft Tyres\u003cbr\u003e5.6 Airships\u003cbr\u003e5.7 Inflatable Seacraft\u003cbr\u003e5.7.1 Combat Rubber Raiding Craft\u003cbr\u003e5.7.2 Hovercraft\u003cbr\u003e5.8 Rubber Sealants\u003cbr\u003e5.9 Miscellaneous Applications\u003cbr\u003e5.9.1 Rubber Bullets\u003cbr\u003e5.9.2 Intrusion Barriers\u003cbr\u003e5.9.3 Elastomeric Torpedo Launcher\u003cbr\u003e5.9.4 Mobile Offshore Base\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Advances in Fillers for the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Requirements for Fillers in Tyre Applications\u003cbr\u003e6.3 Advances in Carbon Black\u003cbr\u003e6.3.1 Chemically-Modified Carbon Blacks\u003cbr\u003e6.3.2 Inversion Carbon Blacks\u003cbr\u003e6.4 Filler Particles Containing Both Carbon Black and Silica\u003cbr\u003e6.4.1 Carbon-Silica Dual Phase Filler\u003cbr\u003e6.4.2 Silica-Coated Carbon Blacks\u003cbr\u003e6.5 Advances in Silica and Other Filler Materials\u003cbr\u003e6.5.1 New Precipitated Silica for Silicone Rubber\u003cbr\u003e6.5.2 Starch\u003cbr\u003e6.5.3 Organo-Clays\u003cbr\u003e6.6 Advanced Rubber-Filler Masterbatches\u003cbr\u003e6.6.1 Cabot Elastomer Composites\u003cbr\u003e6.6.2 Powdered Rubber\u003cbr\u003e6.7 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Thermoplastic Elastomers by Dynamic Vulcanisation\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Polymer Blends\u003cbr\u003e7.3 Classification of TPE\u003cbr\u003e7.4 Dynamic Vulcanisation\u003cbr\u003e7.5 Production of TPV\u003cbr\u003e7.6 PP\/EPDM TPV\u003cbr\u003e7.6.1 Crosslinking Agents For PP\/EPDM TPV\u003cbr\u003e7.6.2 Morphology of PP\/EPDM TPV\u003cbr\u003e7.7 Rheology and Processing of TPV\u003cbr\u003e7.8 Compounding in TPV\u003cbr\u003e7.9 End Use Applications of TPV\u003cbr\u003e7.10 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Polymers in Cable Application\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Broad Classification of Cables\u003cbr\u003e8.2.1 Rigid Power Cables\u003cbr\u003e8.2.2 Flexible Power and Control Cables\u003cbr\u003e8.2.3 Special Purpose Cables\u003cbr\u003e8.3 Components of Cable\u003cbr\u003e8.3.1 Conductor\u003cbr\u003e8.3.2 Insulation\u003cbr\u003e8.3.3 Significance of Different Properties on Cable Insulation Quality and Performance\u003cbr\u003e8.3.4 Chemical Resistance\u003cbr\u003e8.3.5 Selection Criteria for Insulation\u003cbr\u003e8.4 Cable Jacket (Sheath)\u003cbr\u003e8.4.1 Property Requirements of Cable Jacketing Materials\u003cbr\u003e8.4.2 Criteria for Selection of Sheaths (Cable Jacket)\u003cbr\u003e8.5 Semi Conductive Components for High Voltage Cable\u003cbr\u003e8.5.1 Property Requirements of Semi-conductive Compounds\u003cbr\u003e8.6 Different Cable Materials\u003cbr\u003e8.6.1 Polymers used in Cables as Insulation, Sheathing and Semi-conducting Materials\u003cbr\u003e8.6.2 Common Elastomers for Cables\u003cbr\u003e8.6.3 Specialty Elastomers for Cables\u003cbr\u003e8.6.4 Thermoplastic Elastomers for Cables\u003cbr\u003e8.6.5 High-Temperature Thermoplastics and Thermosets\u003cbr\u003e8.7 Different Methods of PE to XLPE Conversion\u003cbr\u003e8.7.1 Crosslinking by High-Energy Irradiation (Electron Beam)\u003cbr\u003e8.7.2 Crosslinking by the Sioplas Technique\u003cbr\u003e8.8 Different Compounding Ingredients\u003cbr\u003e8.8.1 Crosslinking Agents\u003cbr\u003e8.8.2 Metal Oxides\u003cbr\u003e8.8.3 Organic Peroxides and Other Curing Agents\u003cbr\u003e8.8.4 Accelerators\u003cbr\u003e8.8.5 Antioxidants\u003cbr\u003e8.8.6 Antiozonants\u003cbr\u003e8.8.7 Fillers\u003cbr\u003e8.8.8 Auxiliary Additives\u003cbr\u003e8.8.9 Plasticiser, Softeners, Processing Aids\u003cbr\u003e8.8.10 Coupling-agents\u003cbr\u003e8.9 Cable Manufacturing Process\u003cbr\u003e8.9.1 Basic Principles of Compounding\u003cbr\u003e8.9.2 Internal Mixing\u003cbr\u003e8.9.3 Open Mixing\u003cbr\u003e8.9.4 Application of Cable Insulation Covering\u003cbr\u003e8.9.5 Curing of Cable\u003cbr\u003e8.9.6 Dual Extrusion System\u003cbr\u003e8.9.7 Triple Extrusion System\u003cbr\u003e8.9.8 Improvement in CV Curing Techniques\u003cbr\u003e8.10 Quality Checks and Tests\u003cbr\u003e8.11 Polymers in some Specialty Cables\u003cbr\u003e8.11.1 Mining Cable\u003cbr\u003e8.11.2 Aircraft and Spacecraft Cable\u003cbr\u003e8.11.3 Nuclear Power Cables\u003cbr\u003e8.11.4 Ship Board and Marine Cables\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Durability of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Oxidation and Antioxidant Chemistry\u003cbr\u003e9.2.1 Introduction\u003cbr\u003e9.2.2 Mechanism of Rubber Oxidation\u003cbr\u003e9.2.3 Stabilisation Mechanism of Antioxidants\u003cbr\u003e9.2.4 Methods of Studying the Oxidation Resistance of Rubber\u003cbr\u003e9.3 Ozone and Antiozonant Chemistry\u003cbr\u003e9.3.1 Introduction\u003cbr\u003e9.3.2 Mechanism of Ozone Attack on Elastomers\u003cbr\u003e9.3.3 Mechanism of Antiozonants\u003cbr\u003e9.4 Mechanism of Protection Against Flex Cracking\u003cbr\u003e9.5 Trends Towards Long-Lasting Antidegradants\u003cbr\u003e9.5.1 Introduction\u003cbr\u003e9.5.2 Long-Lasting Antioxidants\u003cbr\u003e9.5.3 Long-Lasting Antiozonants\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Radiochemical Ageing of Ethylene-Propylene-Diene \u003cbr\u003eMonomer Elastomers\u003c\/strong\u003e\u003cbr\u003eIntroduction\u003cbr\u003eRadiochemical Degradation\u003cbr\u003eUnits\u003cbr\u003eRadiation Sources\u003cbr\u003eCommercial Processes and Applications\u003cbr\u003eExperimental\u003cbr\u003eMaterials\u003cbr\u003eIrradiation\u003cbr\u003e10.1 Degradation Under Inert Atmosphere\u003cbr\u003e10.1.1 Infra Red (IR) Analysis\u003cbr\u003e10.1.2 UV-vis Analysis\u003cbr\u003e10.1.3 Evaluation of Crosslinking\u003cbr\u003e10.1.4 Mass Spectrometry Analysis\u003cbr\u003e10.1.5 Mechanism of Degradation Under an Inert Atmosphere\u003cbr\u003e10.2 Identification and Quantification of Chemical Changes in EPDM and EPR Films g-Irradiated Under Oxygen Atmosphere\u003cbr\u003e10.2.1 IR Analysis\u003cbr\u003e10.2.2 UV-vis Analysis\u003cbr\u003e10.2.3 Analysis of the Oxidation Products\u003cbr\u003e10.2.4 Gamma Irradiation in vacuo of Hydroperoxides \u003cbr\u003eFormed in EPDM Films\u003cbr\u003e10.2.5 Mass Spectrometry Analysis\u003cbr\u003e10.2.6 Evaluation of Crosslinking\u003cbr\u003e10.2.7 Post-Irradiation Analysis\u003cbr\u003e10.2.8 Conclusion\u003cbr\u003e10.3 Mechanism of Radiooxidation\u003cbr\u003e10.3.1 Formation of Hydroperoxides\u003cbr\u003e10.3.2 Recombination of Peroxy Radicals\u003cbr\u003e10.3.3 Conclusion\u003cbr\u003e10.4 Evaluation of Some Anti-Oxidants\u003cbr\u003e10.4.1 Experimental\u003cbr\u003e10.4.2 Experimental Results\u003cbr\u003e10.4.3 Conclusion\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Silicone Rubber\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Chemistry\u003cbr\u003e11.3 Manufacturing\u003cbr\u003e11.4 Three Major Classifications of Silicone Rubber\u003cbr\u003e11.5 Properties\u003cbr\u003e11.5.1 Heat Resistance Property\u003cbr\u003e11.5.2 Low-Temperature Flexibility\u003cbr\u003e11.5.3 Mechanical Properties\u003cbr\u003e11.5.4 Compression Set\u003cbr\u003e11.5.5 Oil and Solvent Resistance\u003cbr\u003e11.5.6 Steam Resistance\u003cbr\u003e11.5.7 Water Resistance\u003cbr\u003e11.5.8 Electrical Properties\u003cbr\u003e11.5.9 Bio-compatibility\u003cbr\u003e11.5.10 Permeability\u003cbr\u003e11.5.11 Damping Characteristics\u003cbr\u003e11.5.12 Surface Energy or Release Property\u003cbr\u003e11.5.13 Weathering Resistance\u003cbr\u003e11.5.14 Radiation Resistance\u003cbr\u003e11.5.15 Thermal Ablative\u003cbr\u003e11.6 Compounding\u003cbr\u003e11.6.1 Silicone Gums\u003cbr\u003e11.6.2 Reinforced Gums (Bases)\u003cbr\u003e11.6.3 Filler\u003cbr\u003e11.6.4 Softener\u003cbr\u003e11.6.5 Vulcanisation\u003cbr\u003e11.7 Processing\u003cbr\u003e11.7.1 Mixing\u003cbr\u003e11.7.2 Moulding\u003cbr\u003e11.7.3 Extrusion\u003cbr\u003e11.7.4 Oven Curing\u003cbr\u003e11.7.5 Sponge\u003cbr\u003e11.7.6 Calendering\u003cbr\u003e11.7.7 Co-moulding and Over-moulding\u003cbr\u003e11.8 Troubleshooting\u003cbr\u003e11.9 Applications\u003cbr\u003e11.9.1 Automotive Applications\u003cbr\u003e11.9.2 Aerospace Applications\u003cbr\u003e11.9.3 Electrical and Electronics\u003cbr\u003e11.9.4 Coatings\u003cbr\u003e11.9.5 Appliances\u003cbr\u003e11.9.6 Foams\u003cbr\u003e11.9.7 Medical Products\u003cbr\u003e11.9.8 Baby Care\u003cbr\u003e11.9.9 Consumer Products\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:26-04:00","created_at":"2017-06-22T21:14:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","ageing","book","cable","compounds","durability","fibers","fillers","imaging","polymers","r-compounding","rubber","rubber formulary","silica-filled rubber","silicone","tyres","vulcanisation"],"price":24500,"price_min":24500,"price_max":29900,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378416772,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-84735-099-2","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 2 - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":24500,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-099-2","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50445044612,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-100-5","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 2 - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":29900,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-099-978-1-84735-100-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376","options":["Cover"],"media":[{"alt":null,"id":358741868637,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-099-2.jpg?v=1499955376","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by J. White, S.S. De, and K. Naskar \u003cbr\u003eISBN 978-1-84735-099-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2008 \u003c\/span\u003e\u003cbr\u003e\n\u003ch5\u003e\n\u003cbr\u003eSummary\u003c\/h5\u003e\nThis book is a companion volume to Rubber Technologists Handbook published in 2001. Written by experts in their respective fields, this handbook discusses the most recent developments in the subject.\u003cbr\u003e\u003cbr\u003eThe ten chapters cover Microscopic Imaging of Rubber Compounds, Intelligent Tyres, Silica-Filled Rubber Compounds, Fibres In The Rubber Industry, Naval and Space Applications of Rubber, Advances in Fillers for the Rubber Industry, Thermoplastic Elastomers by Dynamic Vulcanisation, Polymers In Cable Applications, Durability of Rubber Compounds, and Radiochemical Ageing of Ethylene-Propylene-Diene Monomer\u003cbr\u003e\u003cbr\u003eThis book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1 Microscopic Imaging of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Fillers and Elastomer Reinforcement\u003cbr\u003e1.3 Characterisation of the Filler Dispersion\u003cbr\u003e1.3.1 Techniques\u003cbr\u003e1.3.2 Microscopy\u003cbr\u003e1.3.3 Automated Image Analysis\u003cbr\u003e1.4 Analytical Procedure by TEM\/AIA\u003cbr\u003e1.4.1 Preparation of the Samples and TEM Images\u003cbr\u003e1.4.2 Image Digitalisation\u003cbr\u003e1.4.3 Image Analysis\u003cbr\u003e1.4.4 Statistical Analysis\u003cbr\u003e1.5 Morphology of Carbon Black Dispersions\u003cbr\u003e1.5.1 Dry state\u003cbr\u003e1.5.2 Compounds\u003cbr\u003e1.6 Morphometric Analysis on Silica Filled Compounds\u003cbr\u003e1.6.1 Atomic Force Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.2 Transmission Electron Microscopy\/Automated Image Analysis\u003cbr\u003e1.6.3 Microdensitometry and 3D-TEM\/Electron Tomography\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2 Intelligent Tyres\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Features of the Intelligent Tyre\u003cbr\u003e2.2.1 Identification and Memory\u003cbr\u003e2.2.2 Temperature\u003cbr\u003e2.2.3 Inflation Pressure\u003cbr\u003e2.2.4 Cornering Forces\u003cbr\u003e2.2.5 Tyre Mileage\u003cbr\u003e2.2.6 Treadwear\u003cbr\u003e2.3 Historical Perspective\u003cbr\u003e2.3.1 Tyres\u003cbr\u003e2.3.2 Competing Products - Wheel-based Systems\u003cbr\u003e2.3.3 The TREAD Act of 2000\u003cbr\u003e2.3.4 Outlook for Intelligent Tyres\u003cbr\u003e2.4 Design of the Intelligent Tyre System\u003cbr\u003e2.4.1 Tyre\u003cbr\u003e2.4.2 Electronics\u003cbr\u003e2.4.3 Signal from Tyre\u003cbr\u003e2.4.4 Readers\u003cbr\u003e2.5 Standards\u003cbr\u003e2.6 Summary\u003cbr\u003eAcknowledgement\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 Silica-Filled Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Characteristics of High-Dispersion Silicas\u003cbr\u003e3.2.1 Various Classes of Silicas: Pyrogenic versus Precipitated, and their Production\u003cbr\u003e3.2.2 Properties of Highly Dispersible Silicas\u003cbr\u003e3.2.3 Compatibility Aspects\u003cbr\u003e3.3 Coupling Agents\u003cbr\u003e3.3.1 Types of Commonly used Coupling Agents\u003cbr\u003e3.3.2 Reactions Between Silica, Silane Coupling Agent and Rubber Polymer\u003cbr\u003e3.3.3 Kinetics\u003cbr\u003e3.3.4 Alternative Coupling Agents\u003cbr\u003e3.4 Characterisation Methods for Silica-Rubber Coupling\u003cbr\u003e3.4.1 Rubber Reinforcement by Silica versus Carbon Black\u003cbr\u003e3.4.2 The Payne Effect\u003cbr\u003e3.4.3 Hysteresis Properties: tan d at 60 °C\u003cbr\u003e3.4.4 Alternative Means to Quantify Filler-Filler and Filler-Polymer Interaction\u003cbr\u003e3.5 Mixing of Silica-Rubber Compounds\u003cbr\u003e3.5.1 Effect of TESPT on the Properties of Uncured and Cured Compounds\u003cbr\u003e3.5.2 Properties of Uncured Compounds in Relation to the Dump Temperature in the Presence of TESPT \u003cbr\u003eSilane Coupling Agent\u003cbr\u003e3.5.3 Effect of the Dump Temperature on the Tensile Properties of Cured Samples\u003cbr\u003e3.5.4 Interactions Between Time and Temperature as an Indication of Reaction Kinetics of the \u003cbr\u003eCoupling Reaction\u003cbr\u003e3.5.5 Effect of Mixer Size and Rotor Type\u003cbr\u003e3.5.6 considerations on Mixer Operation\u003cbr\u003e3.6 Conclusions\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Fibres in the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Fibre Types and General Properties\u003cbr\u003e4.2.1 Cotton\u003cbr\u003e4.2.2 Rayon\u003cbr\u003e4.2.3 Polyamides\u003cbr\u003e4.2.4 Polyester, Poly(ethylene terephthalate) (PET)\u003cbr\u003e4.2.5 Aramid\u003cbr\u003e4.2.6 Others\u003cbr\u003e4.3 Yarn and Cord Processes\u003cbr\u003e4.3.1 Twisting\u003cbr\u003e4.3.2 Texturing\u003cbr\u003e4.4 Fibre Units\u003cbr\u003e4.4.1 Titer: Tex and Denier\u003cbr\u003e4.4.2 Tenacity and Modulus: g\/denier, N\/tex or GPa\u003cbr\u003e4.5 Adhesion\u003cbr\u003e4.5.1 Types of Adhesive Interactions\u003cbr\u003e4.6 Dipping Process\u003cbr\u003e4.6.1 Factors Influencing Adhesion in Standard Resorcinol Formaldehyde Latex (RFL) Treatment\u003cbr\u003e4.7 Alternative Dip Treatments for Polyester or Aramid\u003cbr\u003e4.8 Chemically Altering the Surface\u003cbr\u003e4.8.1 Polyester\u003cbr\u003e4.9 Plasma Treatment\u003cbr\u003e4.10 Rubber Treatment\u003cbr\u003e4.10.1 Mixing Ingredients\u003cbr\u003e4.10.2 Chemical Modification of Rubber\u003cbr\u003e4.11 Methods for Analysis\u003cbr\u003e4.11.1 Pullout Tests\u003cbr\u003e4.11.2 Peel Tests\u003cbr\u003e4.11.3 Surface Analysis\u003cbr\u003e4.12 Fibres in Tyres\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Naval and Space Applications of Rubber\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Acoustic Applications\u003cbr\u003e5.2.1 Sonar Rubber Domes\u003cbr\u003e5.2.2 Active Sonar\u003cbr\u003e5.2.3 Insulation\u003cbr\u003e5.3 Solid Rocket Propellants\u003cbr\u003e5.4 Blast Mitigative Coatings\u003cbr\u003e5.5 Aircraft Tyres\u003cbr\u003e5.6 Airships\u003cbr\u003e5.7 Inflatable Seacraft\u003cbr\u003e5.7.1 Combat Rubber Raiding Craft\u003cbr\u003e5.7.2 Hovercraft\u003cbr\u003e5.8 Rubber Sealants\u003cbr\u003e5.9 Miscellaneous Applications\u003cbr\u003e5.9.1 Rubber Bullets\u003cbr\u003e5.9.2 Intrusion Barriers\u003cbr\u003e5.9.3 Elastomeric Torpedo Launcher\u003cbr\u003e5.9.4 Mobile Offshore Base\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Advances in Fillers for the Rubber Industry\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Requirements for Fillers in Tyre Applications\u003cbr\u003e6.3 Advances in Carbon Black\u003cbr\u003e6.3.1 Chemically-Modified Carbon Blacks\u003cbr\u003e6.3.2 Inversion Carbon Blacks\u003cbr\u003e6.4 Filler Particles Containing Both Carbon Black and Silica\u003cbr\u003e6.4.1 Carbon-Silica Dual Phase Filler\u003cbr\u003e6.4.2 Silica-Coated Carbon Blacks\u003cbr\u003e6.5 Advances in Silica and Other Filler Materials\u003cbr\u003e6.5.1 New Precipitated Silica for Silicone Rubber\u003cbr\u003e6.5.2 Starch\u003cbr\u003e6.5.3 Organo-Clays\u003cbr\u003e6.6 Advanced Rubber-Filler Masterbatches\u003cbr\u003e6.6.1 Cabot Elastomer Composites\u003cbr\u003e6.6.2 Powdered Rubber\u003cbr\u003e6.7 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Thermoplastic Elastomers by Dynamic Vulcanisation\u003c\/strong\u003e\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Polymer Blends\u003cbr\u003e7.3 Classification of TPE\u003cbr\u003e7.4 Dynamic Vulcanisation\u003cbr\u003e7.5 Production of TPV\u003cbr\u003e7.6 PP\/EPDM TPV\u003cbr\u003e7.6.1 Crosslinking Agents For PP\/EPDM TPV\u003cbr\u003e7.6.2 Morphology of PP\/EPDM TPV\u003cbr\u003e7.7 Rheology and Processing of TPV\u003cbr\u003e7.8 Compounding in TPV\u003cbr\u003e7.9 End Use Applications of TPV\u003cbr\u003e7.10 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8 Polymers in Cable Application\u003c\/strong\u003e\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Broad Classification of Cables\u003cbr\u003e8.2.1 Rigid Power Cables\u003cbr\u003e8.2.2 Flexible Power and Control Cables\u003cbr\u003e8.2.3 Special Purpose Cables\u003cbr\u003e8.3 Components of Cable\u003cbr\u003e8.3.1 Conductor\u003cbr\u003e8.3.2 Insulation\u003cbr\u003e8.3.3 Significance of Different Properties on Cable Insulation Quality and Performance\u003cbr\u003e8.3.4 Chemical Resistance\u003cbr\u003e8.3.5 Selection Criteria for Insulation\u003cbr\u003e8.4 Cable Jacket (Sheath)\u003cbr\u003e8.4.1 Property Requirements of Cable Jacketing Materials\u003cbr\u003e8.4.2 Criteria for Selection of Sheaths (Cable Jacket)\u003cbr\u003e8.5 Semi Conductive Components for High Voltage Cable\u003cbr\u003e8.5.1 Property Requirements of Semi-conductive Compounds\u003cbr\u003e8.6 Different Cable Materials\u003cbr\u003e8.6.1 Polymers used in Cables as Insulation, Sheathing and Semi-conducting Materials\u003cbr\u003e8.6.2 Common Elastomers for Cables\u003cbr\u003e8.6.3 Specialty Elastomers for Cables\u003cbr\u003e8.6.4 Thermoplastic Elastomers for Cables\u003cbr\u003e8.6.5 High-Temperature Thermoplastics and Thermosets\u003cbr\u003e8.7 Different Methods of PE to XLPE Conversion\u003cbr\u003e8.7.1 Crosslinking by High-Energy Irradiation (Electron Beam)\u003cbr\u003e8.7.2 Crosslinking by the Sioplas Technique\u003cbr\u003e8.8 Different Compounding Ingredients\u003cbr\u003e8.8.1 Crosslinking Agents\u003cbr\u003e8.8.2 Metal Oxides\u003cbr\u003e8.8.3 Organic Peroxides and Other Curing Agents\u003cbr\u003e8.8.4 Accelerators\u003cbr\u003e8.8.5 Antioxidants\u003cbr\u003e8.8.6 Antiozonants\u003cbr\u003e8.8.7 Fillers\u003cbr\u003e8.8.8 Auxiliary Additives\u003cbr\u003e8.8.9 Plasticiser, Softeners, Processing Aids\u003cbr\u003e8.8.10 Coupling-agents\u003cbr\u003e8.9 Cable Manufacturing Process\u003cbr\u003e8.9.1 Basic Principles of Compounding\u003cbr\u003e8.9.2 Internal Mixing\u003cbr\u003e8.9.3 Open Mixing\u003cbr\u003e8.9.4 Application of Cable Insulation Covering\u003cbr\u003e8.9.5 Curing of Cable\u003cbr\u003e8.9.6 Dual Extrusion System\u003cbr\u003e8.9.7 Triple Extrusion System\u003cbr\u003e8.9.8 Improvement in CV Curing Techniques\u003cbr\u003e8.10 Quality Checks and Tests\u003cbr\u003e8.11 Polymers in some Specialty Cables\u003cbr\u003e8.11.1 Mining Cable\u003cbr\u003e8.11.2 Aircraft and Spacecraft Cable\u003cbr\u003e8.11.3 Nuclear Power Cables\u003cbr\u003e8.11.4 Ship Board and Marine Cables\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9 Durability of Rubber Compounds\u003c\/strong\u003e\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Oxidation and Antioxidant Chemistry\u003cbr\u003e9.2.1 Introduction\u003cbr\u003e9.2.2 Mechanism of Rubber Oxidation\u003cbr\u003e9.2.3 Stabilisation Mechanism of Antioxidants\u003cbr\u003e9.2.4 Methods of Studying the Oxidation Resistance of Rubber\u003cbr\u003e9.3 Ozone and Antiozonant Chemistry\u003cbr\u003e9.3.1 Introduction\u003cbr\u003e9.3.2 Mechanism of Ozone Attack on Elastomers\u003cbr\u003e9.3.3 Mechanism of Antiozonants\u003cbr\u003e9.4 Mechanism of Protection Against Flex Cracking\u003cbr\u003e9.5 Trends Towards Long-Lasting Antidegradants\u003cbr\u003e9.5.1 Introduction\u003cbr\u003e9.5.2 Long-Lasting Antioxidants\u003cbr\u003e9.5.3 Long-Lasting Antiozonants\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Radiochemical Ageing of Ethylene-Propylene-Diene \u003cbr\u003eMonomer Elastomers\u003c\/strong\u003e\u003cbr\u003eIntroduction\u003cbr\u003eRadiochemical Degradation\u003cbr\u003eUnits\u003cbr\u003eRadiation Sources\u003cbr\u003eCommercial Processes and Applications\u003cbr\u003eExperimental\u003cbr\u003eMaterials\u003cbr\u003eIrradiation\u003cbr\u003e10.1 Degradation Under Inert Atmosphere\u003cbr\u003e10.1.1 Infra Red (IR) Analysis\u003cbr\u003e10.1.2 UV-vis Analysis\u003cbr\u003e10.1.3 Evaluation of Crosslinking\u003cbr\u003e10.1.4 Mass Spectrometry Analysis\u003cbr\u003e10.1.5 Mechanism of Degradation Under an Inert Atmosphere\u003cbr\u003e10.2 Identification and Quantification of Chemical Changes in EPDM and EPR Films g-Irradiated Under Oxygen Atmosphere\u003cbr\u003e10.2.1 IR Analysis\u003cbr\u003e10.2.2 UV-vis Analysis\u003cbr\u003e10.2.3 Analysis of the Oxidation Products\u003cbr\u003e10.2.4 Gamma Irradiation in vacuo of Hydroperoxides \u003cbr\u003eFormed in EPDM Films\u003cbr\u003e10.2.5 Mass Spectrometry Analysis\u003cbr\u003e10.2.6 Evaluation of Crosslinking\u003cbr\u003e10.2.7 Post-Irradiation Analysis\u003cbr\u003e10.2.8 Conclusion\u003cbr\u003e10.3 Mechanism of Radiooxidation\u003cbr\u003e10.3.1 Formation of Hydroperoxides\u003cbr\u003e10.3.2 Recombination of Peroxy Radicals\u003cbr\u003e10.3.3 Conclusion\u003cbr\u003e10.4 Evaluation of Some Anti-Oxidants\u003cbr\u003e10.4.1 Experimental\u003cbr\u003e10.4.2 Experimental Results\u003cbr\u003e10.4.3 Conclusion\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e11 Silicone Rubber\u003c\/strong\u003e\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Chemistry\u003cbr\u003e11.3 Manufacturing\u003cbr\u003e11.4 Three Major Classifications of Silicone Rubber\u003cbr\u003e11.5 Properties\u003cbr\u003e11.5.1 Heat Resistance Property\u003cbr\u003e11.5.2 Low-Temperature Flexibility\u003cbr\u003e11.5.3 Mechanical Properties\u003cbr\u003e11.5.4 Compression Set\u003cbr\u003e11.5.5 Oil and Solvent Resistance\u003cbr\u003e11.5.6 Steam Resistance\u003cbr\u003e11.5.7 Water Resistance\u003cbr\u003e11.5.8 Electrical Properties\u003cbr\u003e11.5.9 Bio-compatibility\u003cbr\u003e11.5.10 Permeability\u003cbr\u003e11.5.11 Damping Characteristics\u003cbr\u003e11.5.12 Surface Energy or Release Property\u003cbr\u003e11.5.13 Weathering Resistance\u003cbr\u003e11.5.14 Radiation Resistance\u003cbr\u003e11.5.15 Thermal Ablative\u003cbr\u003e11.6 Compounding\u003cbr\u003e11.6.1 Silicone Gums\u003cbr\u003e11.6.2 Reinforced Gums (Bases)\u003cbr\u003e11.6.3 Filler\u003cbr\u003e11.6.4 Softener\u003cbr\u003e11.6.5 Vulcanisation\u003cbr\u003e11.7 Processing\u003cbr\u003e11.7.1 Mixing\u003cbr\u003e11.7.2 Moulding\u003cbr\u003e11.7.3 Extrusion\u003cbr\u003e11.7.4 Oven Curing\u003cbr\u003e11.7.5 Sponge\u003cbr\u003e11.7.6 Calendering\u003cbr\u003e11.7.7 Co-moulding and Over-moulding\u003cbr\u003e11.8 Troubleshooting\u003cbr\u003e11.9 Applications\u003cbr\u003e11.9.1 Automotive Applications\u003cbr\u003e11.9.2 Aerospace Applications\u003cbr\u003e11.9.3 Electrical and Electronics\u003cbr\u003e11.9.4 Coatings\u003cbr\u003e11.9.5 Appliances\u003cbr\u003e11.9.6 Foams\u003cbr\u003e11.9.7 Medical Products\u003cbr\u003e11.9.8 Baby Care\u003cbr\u003e11.9.9 Consumer Products\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e"}
Rubber Technologist's...
$180.00
{"id":11242226372,"title":"Rubber Technologist's Handbook, Volume 1","handle":"978-1-85957-262-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S.K. De and J.R. White \u003cbr\u003eISBN 978-1-85957-262-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 576\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber components are found in almost every area of modern life. Rubber is used in cars, in shoes, in construction and is used in many other applications. \u003cbr\u003eThis book provides a foundation in rubber technology and discusses the most recent developments in the subject. The book is written by experts in their respective fields. \u003cbr\u003e\u003cbr\u003eThe fourteen chapters cover natural rubber, synthetic rubber, thermoplastic elastomers, fillers, compounding additives, mixing, engineering design, testing, tyre technology, automotive applications, footwear, rubbers in construction, the durability of rubber products and rubber recycling. \u003cbr\u003e\u003cbr\u003eThe book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction, S.K. De, and J.R. White\u003cbr\u003e2. Natural Rubber, N.M. Mathew\u003cbr\u003e3. Synthetic Elastomers, S. Datta\u003cbr\u003e4. Thermoplastic Elastomers, P. Antony and S.K. De\u003cbr\u003e5. Fillers, H. Mouri\u003cbr\u003e6. Rubber Additives - Compounding Ingredients, R.N. Datta and F.A.A. Ingham \u003cbr\u003e7. Rubber Mixing, P. Freakley \u003cbr\u003e8. Engineering with Elastomers, A. Stevenson \u003cbr\u003e9. Testing, R. Brown \u003cbr\u003e10. Trends in Tyre Technology, D.M. Dryden, J.R. Luchini and G.B. Ouyang \u003cbr\u003e11. Automotive Rubbers, J-M. Jaillet \u003cbr\u003e12. Rubber Compounding in Footwear, K. Ames \u003cbr\u003e13. Rubber in Construction, A.H. Delgado, and R.M. Paroli \u003cbr\u003e14. Durability of Engineering Rubber Products, R.P. Campion \u003cbr\u003e15. Rubber Recycling, A.I. Isayev\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Jim White graduated from Imperial College, London with a degree in Physics in 1964 and completed a Ph.D. in Chemical Physics in the Department of Chemical Engineering at Imperial College in 1968. After one year as a Research Officer at Morganite Carbon Company and two years as a Postdoc in the Biophysics Department at Johns Hopkins University, Baltimore he moved to Queen Mary College, London as a Senior Research Assistant. He has been at the University of Newcastle upon Tyne since 1975. He was awarded the degree of DSc (Eng) by the University of London in 1994. He is Associate Editor of the Journal of Materials Science. \u003cbr\u003e\u003cbr\u003eProfessor Sadhan K De has been a Professor at the Rubber Technology Center at the Indian Institute of Technology, Kharagpur, since 1982. He was the Founding Head of the Rubber Technology Center at Indian Institute of Technology, from 1982 to 1987, and then again headed the Center from 1995-1999. Professor De was the Dean of Postgraduate studies of this Institute (IIT, Kharagpur) from 1987 to 1990. He has organised three international Rubber Conferences (1980, 1986, 1997) in India, has had over 260 research publications in International Journals and co-authored three previous books, authored several review papers and chapters in books.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:01-04:00","created_at":"2017-06-22T21:14:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","additives","book","compounding","construction","durability","elastomers","fillers","footwear","mixing","natural rubber","r-compounding","rubber","rubber formulary","synthetic","testing","thermoplastic elastomers","tyre. automotive"],"price":18000,"price_min":18000,"price_max":28000,"available":true,"price_varies":true,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378392068,"title":"Soft cover","option1":"Soft cover","option2":null,"option3":null,"sku":"978-1-85957-440-9","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 1 - Soft cover","public_title":"Soft cover","options":["Soft cover"],"price":18000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-440-9","requires_selling_plan":false,"selling_plan_allocations":[]},{"id":50445119364,"title":"Hard cover","option1":"Hard cover","option2":null,"option3":null,"sku":"978-1-84735-100-5","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rubber Technologist's Handbook, Volume 1 - Hard cover","public_title":"Hard cover","options":["Hard cover"],"price":28000,"weight":0,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-100-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-262-7.jpg?v=1499955346"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-262-7.jpg?v=1499955346","options":["Cover"],"media":[{"alt":null,"id":358742392925,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-262-7.jpg?v=1499955346"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-262-7.jpg?v=1499955346","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S.K. De and J.R. White \u003cbr\u003eISBN 978-1-85957-262-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 576\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubber components are found in almost every area of modern life. Rubber is used in cars, in shoes, in construction and is used in many other applications. \u003cbr\u003eThis book provides a foundation in rubber technology and discusses the most recent developments in the subject. The book is written by experts in their respective fields. \u003cbr\u003e\u003cbr\u003eThe fourteen chapters cover natural rubber, synthetic rubber, thermoplastic elastomers, fillers, compounding additives, mixing, engineering design, testing, tyre technology, automotive applications, footwear, rubbers in construction, the durability of rubber products and rubber recycling. \u003cbr\u003e\u003cbr\u003eThe book will serve the needs of those who are already in the rubber industry and new entrants to the field who aspire to build a career in rubber and allied areas. Materials Science students and researchers, designers and engineers should all find this handbook helpful.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction, S.K. De, and J.R. White\u003cbr\u003e2. Natural Rubber, N.M. Mathew\u003cbr\u003e3. Synthetic Elastomers, S. Datta\u003cbr\u003e4. Thermoplastic Elastomers, P. Antony and S.K. De\u003cbr\u003e5. Fillers, H. Mouri\u003cbr\u003e6. Rubber Additives - Compounding Ingredients, R.N. Datta and F.A.A. Ingham \u003cbr\u003e7. Rubber Mixing, P. Freakley \u003cbr\u003e8. Engineering with Elastomers, A. Stevenson \u003cbr\u003e9. Testing, R. Brown \u003cbr\u003e10. Trends in Tyre Technology, D.M. Dryden, J.R. Luchini and G.B. Ouyang \u003cbr\u003e11. Automotive Rubbers, J-M. Jaillet \u003cbr\u003e12. Rubber Compounding in Footwear, K. Ames \u003cbr\u003e13. Rubber in Construction, A.H. Delgado, and R.M. Paroli \u003cbr\u003e14. Durability of Engineering Rubber Products, R.P. Campion \u003cbr\u003e15. Rubber Recycling, A.I. Isayev\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Jim White graduated from Imperial College, London with a degree in Physics in 1964 and completed a Ph.D. in Chemical Physics in the Department of Chemical Engineering at Imperial College in 1968. After one year as a Research Officer at Morganite Carbon Company and two years as a Postdoc in the Biophysics Department at Johns Hopkins University, Baltimore he moved to Queen Mary College, London as a Senior Research Assistant. He has been at the University of Newcastle upon Tyne since 1975. He was awarded the degree of DSc (Eng) by the University of London in 1994. He is Associate Editor of the Journal of Materials Science. \u003cbr\u003e\u003cbr\u003eProfessor Sadhan K De has been a Professor at the Rubber Technology Center at the Indian Institute of Technology, Kharagpur, since 1982. He was the Founding Head of the Rubber Technology Center at Indian Institute of Technology, from 1982 to 1987, and then again headed the Center from 1995-1999. Professor De was the Dean of Postgraduate studies of this Institute (IIT, Kharagpur) from 1987 to 1990. He has organised three international Rubber Conferences (1980, 1986, 1997) in India, has had over 260 research publications in International Journals and co-authored three previous books, authored several review papers and chapters in books.\u003cbr\u003e\u003cbr\u003e"}
RubberChem 2002
$180.00
{"id":11242235972,"title":"RubberChem 2002","handle":"978-1-85957-316-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Munich, Germany, 11th-12th June 2002, Conference Proceedings \u003cbr\u003eISBN 978-1-85957-316-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003ePages: 174\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubberChem 2002 - The Third International Rubber Chemicals, Compounding, and Mixing Conference was held in Munich, Germany. This two day event brought together the leading experts in the rubber and related industries. \u003cbr\u003e\u003cbr\u003eThe conference provided an excellent forum for discussing the wide range of compounding materials, chemicals, and mixing techniques. The important aspects of health \u0026amp; safety of materials and rubber products were also covered in the comprehensive technical programme.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e\u003cbr\u003eAnother View of the Rubber Chemicals Industry \u003cbr\u003eRichard Simpson, Rapra Technology Ltd, UK \u003cbr\u003e\u003cbr\u003eA New \"Intelligent\" Viscosity Reduction Concept - Better Processability without Sacrifice in Dynamic Properties \u003cbr\u003eKarl Menting, Schill \u0026amp; Seilacher 'Struktol' AG, Germany \u003cbr\u003e\u003cbr\u003eLow-Temperature Curing by Using Zinc-2-mercaptobenzothiazole (ZMBT) in Combination with Dithiocarbamates (DTC) and Amine Curing Systems \u003cbr\u003eNico Huntink, Flexsys BV, The Netherlands \u003cbr\u003e\u003cbr\u003eRubcon - Technology of High Filled Composite Materials \u003cbr\u003eProf Oleg Figovsky, Israel Research Centre \"Polymate\", Israel \u003cbr\u003e\u003cbr\u003eNew Optimised System for the Lead-Free Crosslinking of Epichlorohydrin (ECO) Elastomer \u003cbr\u003eHans Martin Issel, RheinChemie Rheinau GmbH, Germany \u003cbr\u003e\u003cbr\u003eHazardous Emissions in the Rubber Industry - Sampling and Analysis \u003cbr\u003eUlrich Giese, Deutsches Institut für Kautschuktechnologie EV (DIK), Germany \u003cbr\u003e\u003cbr\u003eReduction of the Emission of Harmful Substances from Rubber Based Commodity Articles \u003cbr\u003eRita H Auerbach, Federal Institute Materials Research, Germany \u003cbr\u003e\u003cbr\u003eAccurate Ultra Low Fines Conveying of Carbon Black \u003cbr\u003eBob Yarwood, BMH Chronos Richardson Ltd, UK \u003cbr\u003e\u003cbr\u003eSilica Dusts \u003cbr\u003eYves Bomal, Rhodia, France \u003cbr\u003e\u003cbr\u003eImplementation of the ATEX Environmental Directive - Process Dusts \u003cbr\u003eUlf Persson, Nederman, Sweden \u003cbr\u003ePaper unavailable at time of print \u003cbr\u003e\u003cbr\u003ePretreatments of Elastomers to Enhance Adhesion \u003cbr\u003eRalf H Dahm, D M Brewis, I Mathieson, J L Tegg ISST Loughborough University, UK \u003cbr\u003e\u003cbr\u003eHNBR Technology for use in Bonded Multi-Layer Hoses \u003cbr\u003eNick Sandland \u0026amp; Peter Abraham, Zeon Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePolar Plasticisers in EPDM - An Unorthodox Approach with Interesting Results \u003cbr\u003eThomas Mergenhagen, Schill \u0026amp; Seilacher 'Struktol' AG, Germany \u003cbr\u003e\u003cbr\u003eMulti-Ingredient- Preweighs - A New Concept of Handling Rubber Chemicals \u003cbr\u003eThomas Kromminga, RheinChemie Rheinau GmbH, Germany \u003cbr\u003e\u003cbr\u003eScission and Recombination Efficiency of Hybrid Crosslinks \u003cbr\u003eAhmed S Farid, University of North London, UK \u003cbr\u003e\u003cbr\u003eResearch on Extractables from Food-Contact Rubber Compounds using GC-MS and LC-MS Based Techniques \u003cbr\u003eJohn Sidwell, Rapra Technology Ltd, UK \u003cbr\u003e\u003cbr\u003eCompounding Effects on Physical Properties and Rubber-Metal Bonding \u003cbr\u003eR J Del Vecchio, Technical Consulting, USA \u003cbr\u003e\u003cbr\u003eBest Practices in Product Stewardship \u003cbr\u003eWolfram Keller, PRTM, Germany \u003cbr\u003e\u003cbr\u003eClean Rubber - Straining Applications with Gear Extruders \u003cbr\u003eWinfried Trost, Uth GmbH, Germany \u003cbr\u003e\u003cbr\u003eDevelopments in the Field of Batch-Off Lines \u003cbr\u003ePeter Steinl \u0026amp; Christina Lebeus, LWB Steinl GmbH, Germany \u003cbr\u003ePaper unavailable at time of print\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:31-04:00","created_at":"2017-06-22T21:14:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","additives","book","carbon black","compunding","curing","emission","extrusion","fillers","food","health","mixing","r-properties","rubber","safety","viscosity"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378422084,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"RubberChem 2002","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-316-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Munich, Germany, 11th-12th June 2002, Conference Proceedings \u003cbr\u003eISBN 978-1-85957-316-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003ePages: 174\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubberChem 2002 - The Third International Rubber Chemicals, Compounding, and Mixing Conference was held in Munich, Germany. This two day event brought together the leading experts in the rubber and related industries. \u003cbr\u003e\u003cbr\u003eThe conference provided an excellent forum for discussing the wide range of compounding materials, chemicals, and mixing techniques. The important aspects of health \u0026amp; safety of materials and rubber products were also covered in the comprehensive technical programme.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e\u003cbr\u003eAnother View of the Rubber Chemicals Industry \u003cbr\u003eRichard Simpson, Rapra Technology Ltd, UK \u003cbr\u003e\u003cbr\u003eA New \"Intelligent\" Viscosity Reduction Concept - Better Processability without Sacrifice in Dynamic Properties \u003cbr\u003eKarl Menting, Schill \u0026amp; Seilacher 'Struktol' AG, Germany \u003cbr\u003e\u003cbr\u003eLow-Temperature Curing by Using Zinc-2-mercaptobenzothiazole (ZMBT) in Combination with Dithiocarbamates (DTC) and Amine Curing Systems \u003cbr\u003eNico Huntink, Flexsys BV, The Netherlands \u003cbr\u003e\u003cbr\u003eRubcon - Technology of High Filled Composite Materials \u003cbr\u003eProf Oleg Figovsky, Israel Research Centre \"Polymate\", Israel \u003cbr\u003e\u003cbr\u003eNew Optimised System for the Lead-Free Crosslinking of Epichlorohydrin (ECO) Elastomer \u003cbr\u003eHans Martin Issel, RheinChemie Rheinau GmbH, Germany \u003cbr\u003e\u003cbr\u003eHazardous Emissions in the Rubber Industry - Sampling and Analysis \u003cbr\u003eUlrich Giese, Deutsches Institut für Kautschuktechnologie EV (DIK), Germany \u003cbr\u003e\u003cbr\u003eReduction of the Emission of Harmful Substances from Rubber Based Commodity Articles \u003cbr\u003eRita H Auerbach, Federal Institute Materials Research, Germany \u003cbr\u003e\u003cbr\u003eAccurate Ultra Low Fines Conveying of Carbon Black \u003cbr\u003eBob Yarwood, BMH Chronos Richardson Ltd, UK \u003cbr\u003e\u003cbr\u003eSilica Dusts \u003cbr\u003eYves Bomal, Rhodia, France \u003cbr\u003e\u003cbr\u003eImplementation of the ATEX Environmental Directive - Process Dusts \u003cbr\u003eUlf Persson, Nederman, Sweden \u003cbr\u003ePaper unavailable at time of print \u003cbr\u003e\u003cbr\u003ePretreatments of Elastomers to Enhance Adhesion \u003cbr\u003eRalf H Dahm, D M Brewis, I Mathieson, J L Tegg ISST Loughborough University, UK \u003cbr\u003e\u003cbr\u003eHNBR Technology for use in Bonded Multi-Layer Hoses \u003cbr\u003eNick Sandland \u0026amp; Peter Abraham, Zeon Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePolar Plasticisers in EPDM - An Unorthodox Approach with Interesting Results \u003cbr\u003eThomas Mergenhagen, Schill \u0026amp; Seilacher 'Struktol' AG, Germany \u003cbr\u003e\u003cbr\u003eMulti-Ingredient- Preweighs - A New Concept of Handling Rubber Chemicals \u003cbr\u003eThomas Kromminga, RheinChemie Rheinau GmbH, Germany \u003cbr\u003e\u003cbr\u003eScission and Recombination Efficiency of Hybrid Crosslinks \u003cbr\u003eAhmed S Farid, University of North London, UK \u003cbr\u003e\u003cbr\u003eResearch on Extractables from Food-Contact Rubber Compounds using GC-MS and LC-MS Based Techniques \u003cbr\u003eJohn Sidwell, Rapra Technology Ltd, UK \u003cbr\u003e\u003cbr\u003eCompounding Effects on Physical Properties and Rubber-Metal Bonding \u003cbr\u003eR J Del Vecchio, Technical Consulting, USA \u003cbr\u003e\u003cbr\u003eBest Practices in Product Stewardship \u003cbr\u003eWolfram Keller, PRTM, Germany \u003cbr\u003e\u003cbr\u003eClean Rubber - Straining Applications with Gear Extruders \u003cbr\u003eWinfried Trost, Uth GmbH, Germany \u003cbr\u003e\u003cbr\u003eDevelopments in the Field of Batch-Off Lines \u003cbr\u003ePeter Steinl \u0026amp; Christina Lebeus, LWB Steinl GmbH, Germany \u003cbr\u003ePaper unavailable at time of print\u003cbr\u003e\u003cbr\u003e"}
RubberChem 2008
$140.00
{"id":11242236804,"title":"RubberChem 2008","handle":"978-1-8473-5077-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra \u003cbr\u003eISBN 978-1-8473-5077-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePrague, Czech Republic, 3-4 December 2008\u003c\/p\u003e\n\u003cp\u003e20 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe sixth international conference took place in December 2008, it ensured all who atteneded were kept up to date with the new regulations, applications and, of course, the ever changing composition of competitive products. \u003cbr\u003e\u003cbr\u003eThe rubber industry continues to face the ongoing challenges of cost-down pressures from the automotive industry, low-price competition from suppliers in China and Eastern Europe and an array of environmental issues.\u003cbr\u003e\u003cbr\u003eThe conference proceedings are now availabe for general release, all 20 papers presented at this conference are featured ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 THE BUSINESS ENVIRONMENT AND LEGISLATION\u003cbr\u003ePaper 1\u003c\/strong\u003e Outlook for rubber chemicals: current conditions and future prospects\u003cbr\u003ePaul Ita, Notch Consulting Group, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 2\u003c\/strong\u003e Impact of REACH on company and sector product stewardship efforts - some predictions for the future\u003cbr\u003eUrsula Schliessner, McKenna Long \u0026amp; Aldridge LLP, Belgium \u003cbr\u003eSESSION 2 FILLERS\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 3\u003c\/strong\u003e Carbon nanotubes\/silicone elastomer nanocomposites: multi-functional and high performance products; review and trends of their applications \u003cbr\u003eMichael Claes, Daniel Bonduel \u0026amp; Frédéric Luizi, Nanocyl SA, Belgium; Alexandre Beigbeder \u0026amp; Philippe Dubois, Université of Mons-Hainaut UMH, Belgium\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 4\u003c\/strong\u003e High performance silicas in the tire industry: sustainable mobility interest - wide specific surface area range interest\u003cbr\u003eLaurent Guy, Rhodia, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 5\u003c\/strong\u003e Carbon black fundamental properties and their effect on elastomer performance\u003cbr\u003eDr Joe Hallett, Columbian Chemicals Company, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 6\u003c\/strong\u003e Novel electrical conductive material based on natural rubber: preparation \u0026amp; characterisation\u003cbr\u003eK C Yong \u0026amp; Md Aris Ahmad, Rubber Research Institute of Malaysia, Malaysia; P J S Foot \u0026amp; H Morgan, Kingston University, UK; S Cook \u0026amp; A J Tinker, Tun Abdul Razak Research Centre, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 VULCANISATION \u0026amp; CURE SYSTEMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 7\u003c\/strong\u003e How process aids help\u003cbr\u003eMario Kuschnerus \u0026amp; Colin Clarke, Schill \u0026amp; Seilacher 'Struktol' AG, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 8\u003c\/strong\u003e Improved processing stabilizer systems for rubber compounding\u003cbr\u003eDr Ing André le Gal \u0026amp; Eva Peregi, CIBA Inc, Switzerland\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 9 \u003c\/strong\u003eActivated curing systems for IIR, CR and ECO\u003cbr\u003eDr Andreas Schröder, C Bergmann, D Hoff \u0026amp; M Säwe, Rhein Chemie Rheinau GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 10 \u003c\/strong\u003eThe effect of special chemicals on the aging resistance behavior of NR based tyre tread compounds\u003cbr\u003eProf Dipak Khastgir, P Sachdeva, IIT Kharagpur, India; S Dasgupta, S Bhattacharya \u0026amp; R Mukhopadhyay, J K Tyres Ltd, India\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 POLYMERS \u0026amp; COMPOUNDING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 11\u003c\/strong\u003e Compounding of silica filled rubber in a twin-screw extruder\u003cbr\u003eDipl-Ing Hannah Köppen, Prof Dr-Ing, Dr-Ing Eh Walter Michaeli \u0026amp; Edmund Haberstroh, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 12\u003c\/strong\u003e High and very high molecular weight EPDM polymers with 2-VINYL-5-NORBORNENE as third monomer\u003cbr\u003eChris Twigg, Michiel Dees \u0026amp; Herman Dikland, DSM Elastomers, The Netherlands; Martin van Duin, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13\u003c\/strong\u003e A futuristic material for improving tire performance: addressing rolling resistance, durability and wear characteristics\u003cbr\u003eDr Nico Huntink, Rabin Datta, Vincent Siebes, Bas Pierik \u0026amp; Peter de Lange, Teijin Twaron BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14\u003c\/strong\u003e Extrusion of physically foamed rubber profiles\u003cbr\u003eKira Epping \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 5 TESTING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15 \u003c\/strong\u003eTesting perfluoroelastomers for oil field applications\u003cbr\u003eLillian Guo, Paul McElfresh \u0026amp; Jim Fraser, Baker Hughes Inc, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 16 \u003c\/strong\u003eAccelerated test of thermoplastic elastomers under multiaxial dynamic load regarding the lifetime\u003cbr\u003eAndreas Schobel \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 17 \u003c\/strong\u003eInfluence of nature and type of flaw on the properties of a natural rubber compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Martyn Bennett, Artis, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 6 APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 18 \u003c\/strong\u003eExploring novel ways to utilise recycled tyre rubber\u003cbr\u003eGary Crutchley \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 19\u003c\/strong\u003e Revulcanisation - excellent, easy and cheap method for recycling worn-out rubber\u003cbr\u003eStanislaw Pasynkiewicz, Ewa Kowalska \u0026amp; Magdalena Zubrowska, Industrial Chemistry Research Institute, Poland\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 20 \u003c\/strong\u003eEffect of ageing on the fracture properties of a natural rubber engine mount compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:33-04:00","created_at":"2017-06-22T21:14:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","carbon black","carbon nanotubes","compounding","Environment","r-compounding","REACH","rubber","rubber formulary","silicas","silicone"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"RubberChem 2008","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-8473-5077-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239","options":["Title"],"media":[{"alt":null,"id":358742917213,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra \u003cbr\u003eISBN 978-1-8473-5077-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePrague, Czech Republic, 3-4 December 2008\u003c\/p\u003e\n\u003cp\u003e20 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe sixth international conference took place in December 2008, it ensured all who atteneded were kept up to date with the new regulations, applications and, of course, the ever changing composition of competitive products. \u003cbr\u003e\u003cbr\u003eThe rubber industry continues to face the ongoing challenges of cost-down pressures from the automotive industry, low-price competition from suppliers in China and Eastern Europe and an array of environmental issues.\u003cbr\u003e\u003cbr\u003eThe conference proceedings are now availabe for general release, all 20 papers presented at this conference are featured ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 THE BUSINESS ENVIRONMENT AND LEGISLATION\u003cbr\u003ePaper 1\u003c\/strong\u003e Outlook for rubber chemicals: current conditions and future prospects\u003cbr\u003ePaul Ita, Notch Consulting Group, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 2\u003c\/strong\u003e Impact of REACH on company and sector product stewardship efforts - some predictions for the future\u003cbr\u003eUrsula Schliessner, McKenna Long \u0026amp; Aldridge LLP, Belgium \u003cbr\u003eSESSION 2 FILLERS\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 3\u003c\/strong\u003e Carbon nanotubes\/silicone elastomer nanocomposites: multi-functional and high performance products; review and trends of their applications \u003cbr\u003eMichael Claes, Daniel Bonduel \u0026amp; Frédéric Luizi, Nanocyl SA, Belgium; Alexandre Beigbeder \u0026amp; Philippe Dubois, Université of Mons-Hainaut UMH, Belgium\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 4\u003c\/strong\u003e High performance silicas in the tire industry: sustainable mobility interest - wide specific surface area range interest\u003cbr\u003eLaurent Guy, Rhodia, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 5\u003c\/strong\u003e Carbon black fundamental properties and their effect on elastomer performance\u003cbr\u003eDr Joe Hallett, Columbian Chemicals Company, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 6\u003c\/strong\u003e Novel electrical conductive material based on natural rubber: preparation \u0026amp; characterisation\u003cbr\u003eK C Yong \u0026amp; Md Aris Ahmad, Rubber Research Institute of Malaysia, Malaysia; P J S Foot \u0026amp; H Morgan, Kingston University, UK; S Cook \u0026amp; A J Tinker, Tun Abdul Razak Research Centre, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 VULCANISATION \u0026amp; CURE SYSTEMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 7\u003c\/strong\u003e How process aids help\u003cbr\u003eMario Kuschnerus \u0026amp; Colin Clarke, Schill \u0026amp; Seilacher 'Struktol' AG, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 8\u003c\/strong\u003e Improved processing stabilizer systems for rubber compounding\u003cbr\u003eDr Ing André le Gal \u0026amp; Eva Peregi, CIBA Inc, Switzerland\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 9 \u003c\/strong\u003eActivated curing systems for IIR, CR and ECO\u003cbr\u003eDr Andreas Schröder, C Bergmann, D Hoff \u0026amp; M Säwe, Rhein Chemie Rheinau GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 10 \u003c\/strong\u003eThe effect of special chemicals on the aging resistance behavior of NR based tyre tread compounds\u003cbr\u003eProf Dipak Khastgir, P Sachdeva, IIT Kharagpur, India; S Dasgupta, S Bhattacharya \u0026amp; R Mukhopadhyay, J K Tyres Ltd, India\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 POLYMERS \u0026amp; COMPOUNDING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 11\u003c\/strong\u003e Compounding of silica filled rubber in a twin-screw extruder\u003cbr\u003eDipl-Ing Hannah Köppen, Prof Dr-Ing, Dr-Ing Eh Walter Michaeli \u0026amp; Edmund Haberstroh, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 12\u003c\/strong\u003e High and very high molecular weight EPDM polymers with 2-VINYL-5-NORBORNENE as third monomer\u003cbr\u003eChris Twigg, Michiel Dees \u0026amp; Herman Dikland, DSM Elastomers, The Netherlands; Martin van Duin, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13\u003c\/strong\u003e A futuristic material for improving tire performance: addressing rolling resistance, durability and wear characteristics\u003cbr\u003eDr Nico Huntink, Rabin Datta, Vincent Siebes, Bas Pierik \u0026amp; Peter de Lange, Teijin Twaron BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14\u003c\/strong\u003e Extrusion of physically foamed rubber profiles\u003cbr\u003eKira Epping \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 5 TESTING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15 \u003c\/strong\u003eTesting perfluoroelastomers for oil field applications\u003cbr\u003eLillian Guo, Paul McElfresh \u0026amp; Jim Fraser, Baker Hughes Inc, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 16 \u003c\/strong\u003eAccelerated test of thermoplastic elastomers under multiaxial dynamic load regarding the lifetime\u003cbr\u003eAndreas Schobel \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 17 \u003c\/strong\u003eInfluence of nature and type of flaw on the properties of a natural rubber compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Martyn Bennett, Artis, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 6 APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 18 \u003c\/strong\u003eExploring novel ways to utilise recycled tyre rubber\u003cbr\u003eGary Crutchley \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 19\u003c\/strong\u003e Revulcanisation - excellent, easy and cheap method for recycling worn-out rubber\u003cbr\u003eStanislaw Pasynkiewicz, Ewa Kowalska \u0026amp; Magdalena Zubrowska, Industrial Chemistry Research Institute, Poland\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 20 \u003c\/strong\u003eEffect of ageing on the fracture properties of a natural rubber engine mount compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e"}
Screws for Polymer Pro...
$55.00
{"id":11242232644,"title":"Screws for Polymer Processing - The Way to Better Productivity","handle":"978-1-85957-047-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-047-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e8 papers, softbound\u003c\/p\u003e\n\u003cp\u003epages 76\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe latest technology of screw selection and design from computer simulation to performance trials is discussed. The comparison of processor requirements with screw and barrel technology, computer simulation for proper screw selection, improved productivity through extruder screw design, spreadsheets for screw design, plasticating screw design, single screw mixing, problems and solutions, refurbish or renew, how outputs with grooved feed extruders, ion implantation treatment for screws and barrels are the topics included.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eContents\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eComputer simulation for proper screw selection \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eImproved productivity through extruder screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSpread sheets for screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003ePlasticating screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSingle screw mixing: Problems and solutions \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRefurbish or renew? \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eHigh outputs with grooved feed extruders \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eIon implantation treatment for screws and barrels\u003c\/span\u003e\u003c\/li\u003e","published_at":"2018-02-12T08:09:36-05:00","created_at":"2017-06-22T21:14:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","extruder screw design","plasticating screw design","polymers","processing","single screw mixing","spreadsheets screw design"],"price":5500,"price_min":5500,"price_max":5500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412932,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Screws for Polymer Processing - The Way to Better Productivity","public_title":null,"options":["Default Title"],"price":5500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-047-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e8 papers, softbound\u003c\/p\u003e\n\u003cp\u003epages 76\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe latest technology of screw selection and design from computer simulation to performance trials is discussed. The comparison of processor requirements with screw and barrel technology, computer simulation for proper screw selection, improved productivity through extruder screw design, spreadsheets for screw design, plasticating screw design, single screw mixing, problems and solutions, refurbish or renew, how outputs with grooved feed extruders, ion implantation treatment for screws and barrels are the topics included.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eContents\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eComputer simulation for proper screw selection \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eImproved productivity through extruder screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSpread sheets for screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003ePlasticating screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSingle screw mixing: Problems and solutions \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRefurbish or renew? \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eHigh outputs with grooved feed extruders \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eIon implantation treatment for screws and barrels\u003c\/span\u003e\u003c\/li\u003e"}
Selection of Polymeric...
$250.00
{"id":11242218244,"title":"Selection of Polymeric Materials","handle":"978-0-8155-1551-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Alfredo Campo \u003cbr\u003eISBN 978-0-8155-1551-7 \u003cbr\u003e\u003cbr\u003eHow to Select Design Properties from Different Standards\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003ePages 253 pp, Hardback, 159 Illustrations\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nToday engineers, designers, buyers and all those who have to work with plastics face a dilemma. There has been a proliferation of test methods by which plastic properties are measured. The property data measured by these test methods are not identical and sometimes have large differences. How are engineers, designers, buyers going to decide the type and resin grade and their property data? Which are the valid test methods? The right plastic property data are the difference between success and failure of a design, thus making the property selection process critical. For the first time, this book provides a simple and efficient approach to a highly complex and time-consuming task. There are over 26,000 different grades of polymers and millions of parts and applications, further adding to the difficulty of the selection process. \u003cbr\u003e\u003cbr\u003eSelection of Polymeric Materials steers engineers and designers onto the right path to selecting the appropriate values for each plastic property. A large amount of property information has been provided to teach and assist the plastic part designer and others in selecting the right resin and properties for an application. Various standards including ASTM, ISO, UL, and British Specifications have been discussed to help the readers in making sound decisions. \u003cbr\u003e\u003cbr\u003e• A simple and efficient approach to a highly complex and time-consuming task. \u003cbr\u003e• Allows engineers to select from various standards including ASTM, ISO, UL, and British Specification. \u003cbr\u003e• Presents information on properties such as tensile strength, melt temperature, continuous service temperature, moisture exposure, specific gravity and flammability ratings. \u003cbr\u003e• Tried and true values narrow myriad choices down quickly for readers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Polymeric Materials and Properties\u003c\/strong\u003e\u003cbr\u003e1.1 Tensile Stress-Strain Comparison Graphs \u003cbr\u003e1.2 Property Data Information for Polymeric Materials \u003cbr\u003e1.3 Material Selection Guidelines \u003cbr\u003e1.4 Polymeric Materials Specifications \u003cbr\u003e1.5 Testing Polymeric Materials \u003cbr\u003e1.6 The Need for Uniform Global Testing Standards \u003cbr\u003e1.7 Polymeric Materials \u003cbr\u003e1.8 Polymeric Materials Background \u003cbr\u003e1.9 Polymeric Materials Families \u003cbr\u003e1.10 Classification of Polymeric Materials by Performance \u003cbr\u003e1.11 Types of Thermoplastic Molecular Structures \u003cbr\u003e1.12 Manufacturing of Polymers \u003cbr\u003e1.13 Polymeric Materials Compounding Process \u003cbr\u003e1.14 Basic Characteristics of Polymeric Materials \u003cbr\u003e1.15 Families of Thermoplastic Polymers \u003cbr\u003e1.16 Families of Thermoplastic Elastomers (TPE) \u003cbr\u003e1.17 Families of Thermoset Polymers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. Mechanical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Comparison Tables of Mechanical Properties \u003cbr\u003e2.3 Comparison Between ASTM and ISO Mechanical Test Standards \u003cbr\u003e2.4 Tensile Testing \u003cbr\u003e2.5 Tensile Strength Effects Caused by Cross-Head Speeds \u003cbr\u003e2.6 Molecular Orientation Effects \u003cbr\u003e2.7 Compounding Processes \u0026amp; Properties of Glass Reinforced Polymers \u003cbr\u003e2.8 Fiber Glass Effects on Polymeric Material Properties \u003cbr\u003e2.9 Tensile Stress Effects Caused by Fiber Glass Orientation \u003cbr\u003e2.10 Weld Line Effects on Injection Molded Products \u003cbr\u003e2.11 Temperature Effects on the Behavior of Polymeric Materials \u003cbr\u003e2.12 Effects to Nylon Properties Caused by Moisture \u003cbr\u003e2.13 Flexural Testing \u003cbr\u003e2.14 Compressive Strength Testing \u003cbr\u003e2.15 Shear Strength Testing \u003cbr\u003e2.16 Stress-Strain Curves, Load Type Comparison \u003cbr\u003e2.17 Creep, Rupture, Relaxation, and Fatigue \u003cbr\u003e2.18 Tensile Creep Testing \u003cbr\u003e2.19 Flexural Creep Testing \u003cbr\u003e2.20 Isochronous Stress-Strain Curves \u003cbr\u003e2.21 Procedure for Applying Creep Modulus \u003cbr\u003e2.22 Creep Rupture \u003cbr\u003e2.23 Stress Relaxation \u003cbr\u003e2.24 Fatigue Characteristics \u003cbr\u003e2.25 Impact Strength Testing \u003cbr\u003e2.26 Impact Fracture Mechanism \u003cbr\u003e2.27 Pendulum Impact Tests \u003cbr\u003e2.28 Gardner Drop Weight Impact Testing \u003cbr\u003e2.29 Falling Weight Tower Impact Testing \u003cbr\u003e2.30 Instrumented Impact Testing \u003cbr\u003e2.31 Instrumented High-Speed Horizontal Plunger Impact Tester \u003cbr\u003e2.32 Instrumented Impact Testing (Dynatup®) \u003cbr\u003e2.33 Product Design Analysis Using Dynatup® Test Data \u003cbr\u003e2.34 Miscellaneous Impact Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Thermal Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Thermal Properties for Elevated Temperatures \u003cbr\u003e3.3 Introduction to ISO Testing Standards \u003cbr\u003e3.4 Melting Temperature Testing \u003cbr\u003e3.5 Vicat Softening Temperature Testing \u003cbr\u003e3.6 Glass Transition Temperature Testing \u003cbr\u003e3.7 Brittleness Temperature Testing \u003cbr\u003e3.8 Continuous Service Temperature Testing \u003cbr\u003e3.9 UL Temperature Index \u003cbr\u003e3.10 Heat Deflection Temperature Testing \u003cbr\u003e3.11 Soldering Heat Resistance Performance \u003cbr\u003e3.12 Coefficient of Linear Thermal Expansion Testing \u003cbr\u003e3.13 Thermal Conductivity Testing \u003cbr\u003e3.14 Melt Flow Rate \u003cbr\u003e3.15 Melt Mass-flow Rate Testing \u003cbr\u003e3.16 Capillary Rheometer Relative Melt Viscosity Testing \u003cbr\u003e3.17 Relative Melt Viscosity vs. Shear Rate Graph \u003cbr\u003e3.18 Flammability Characteristics of Polymeric Materials \u003cbr\u003e3.19 UL 94 Flammability Testing \u003cbr\u003e3.20 UL Horizontal Burn Testing \u003cbr\u003e3.21 UL Vertical Burn Testing, UL 94-V0, UL 94-V1, UL 94-V2 \u003cbr\u003e3.22 UL Vertical Burn Testing, UL 94-5V, UL 94-5VA, UL 94-5VB \u003cbr\u003e3.23 Limited Oxygen Index Testing \u003cbr\u003e3.24 Smoke Generation Testing \u003cbr\u003e3.25 Self and Flash Ignition Temperature Testing \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Electrical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Thermoplastic Polymers Characteristics for Electrical Applications \u003cbr\u003e4.3 Thermoset Polymers Characteristics for Electrical Applications \u003cbr\u003e4.4 ASTM\/UL Electrical Properties of Polymeric Materials \u003cbr\u003e4.5 Introduction to ISO\/IEC Electrical Test Methods \u003cbr\u003e4.6 Electrical Terminology \u003cbr\u003e4.7 Electrical Insulation Properties \u003cbr\u003e4.8 Electrical Resistance Properties \u003cbr\u003e4.9 Dielectric Constant Testing \u003cbr\u003e4.10 Dissipation Factor Testing \u003cbr\u003e4.11 Volume Resistivity Testing \u003cbr\u003e4.13 Dielectric Strength Testing \u003cbr\u003e4.14 Hot-Wire Ignition Testing \u003cbr\u003e4.15 High-Amperage Arc Ignition Testing \u003cbr\u003e4.16 High-Voltage Arc Tracking Rate \u003cbr\u003e4.17 Arc Resistance Testing \u003cbr\u003e4.18 Comparative Track Index Testing \u003cbr\u003e4.19 Glow Wire Testing \u003cbr\u003e4.20 Hot Mandrel Testing \u003cbr\u003e4.21 Underwriter’s Laboratories Yellow Cards \u003cbr\u003e4.22 How to Read and Interpret the \"UL Yellow Card\" \u003cbr\u003e4.23 \"UL Electrical Insulation Systems\" \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Physical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 ASTM Physical Properties of Polymeric Materials \u003cbr\u003e5.3 ASTM and ISO Comparison of Physical Testing Standards \u003cbr\u003e5.4 Specific Gravity Testing \u003cbr\u003e5.5 Density Gradient Testing \u003cbr\u003e5.6 Optical Testing Properties \u003cbr\u003e5.7 Water Absorption Testing \u003cbr\u003e5.8 Surface Hardness Testing \u003cbr\u003e5.9 Abrasion Resistance Testing \u003cbr\u003e5.10 Tear Resistance \u003cbr\u003e5.11 Coefficient of Friction Testing \u003cbr\u003e5.12 Mold Shrinkage Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Microbial, Weather, Chemical Resistance of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Fungal Resistance Testing \u003cbr\u003e6.3 Bacteria Resistance Testing \u003cbr\u003e6.4 Fungi and Bacteria Outdoor Exposure Resistance Limitations \u003cbr\u003e6.5 Weathering Tests for Polymeric Materials \u003cbr\u003e6.6 Accelerated Weathering Testing \u003cbr\u003e6.7 Exposure to Fluorescent UV Lamp, Condensation \u003cbr\u003e6.8 Accelerated Weather Testing, Weather Ometer® \u003cbr\u003e6.9 Exposure to Carbon Arc Light % Water Testing \u003cbr\u003e6.10 Exposure to Xenon Arc Light and Water Testing \u003cbr\u003e6.11 Outdoor Weathering Testing \u003cbr\u003e6.12 Chemical Resistance Testing of Polymeric Materials \u003cbr\u003e6.13 Chemical Resistance Tables of Delrin Homopolymer Acetal \u003cbr\u003eAppendices \u003cbr\u003eAcronyms for Polymeric Materials \u003cbr\u003eCommon Acronyms \u003cbr\u003eProcess Acronyms \u003cbr\u003eReinforcements and Fillers Acronyms \u003cbr\u003eNomenclature \u003cbr\u003eEnglish and Metric Units Conversion Guide\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDuPont (retired), Delaware, U.S.A.\u003cbr\u003eE. Alfredo Campo is a retired DuPont senior engineer with extensive experience and in-depth technical knowledge of polymer technology. He is a widely published author of books, articles, and papers. His latest book is The Complete Part Design Handbook for Injection Molding of Thermoplastics.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:35-04:00","created_at":"2017-06-22T21:13:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","application","ASTM","bacteria resistance","book","chemical resistance","creep","elastomer","fatigue","fracture","impact","ISO","material","mechanical test","polymeric materials","property","shear","specification","standards","tensile test","testing","thermal","thermoplastic","weathering"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378361924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Selection of Polymeric Materials","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1551-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1551-7.jpg?v=1499646387"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1551-7.jpg?v=1499646387","options":["Title"],"media":[{"alt":null,"id":358743474269,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1551-7.jpg?v=1499646387"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1551-7.jpg?v=1499646387","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Alfredo Campo \u003cbr\u003eISBN 978-0-8155-1551-7 \u003cbr\u003e\u003cbr\u003eHow to Select Design Properties from Different Standards\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003ePages 253 pp, Hardback, 159 Illustrations\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nToday engineers, designers, buyers and all those who have to work with plastics face a dilemma. There has been a proliferation of test methods by which plastic properties are measured. The property data measured by these test methods are not identical and sometimes have large differences. How are engineers, designers, buyers going to decide the type and resin grade and their property data? Which are the valid test methods? The right plastic property data are the difference between success and failure of a design, thus making the property selection process critical. For the first time, this book provides a simple and efficient approach to a highly complex and time-consuming task. There are over 26,000 different grades of polymers and millions of parts and applications, further adding to the difficulty of the selection process. \u003cbr\u003e\u003cbr\u003eSelection of Polymeric Materials steers engineers and designers onto the right path to selecting the appropriate values for each plastic property. A large amount of property information has been provided to teach and assist the plastic part designer and others in selecting the right resin and properties for an application. Various standards including ASTM, ISO, UL, and British Specifications have been discussed to help the readers in making sound decisions. \u003cbr\u003e\u003cbr\u003e• A simple and efficient approach to a highly complex and time-consuming task. \u003cbr\u003e• Allows engineers to select from various standards including ASTM, ISO, UL, and British Specification. \u003cbr\u003e• Presents information on properties such as tensile strength, melt temperature, continuous service temperature, moisture exposure, specific gravity and flammability ratings. \u003cbr\u003e• Tried and true values narrow myriad choices down quickly for readers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Polymeric Materials and Properties\u003c\/strong\u003e\u003cbr\u003e1.1 Tensile Stress-Strain Comparison Graphs \u003cbr\u003e1.2 Property Data Information for Polymeric Materials \u003cbr\u003e1.3 Material Selection Guidelines \u003cbr\u003e1.4 Polymeric Materials Specifications \u003cbr\u003e1.5 Testing Polymeric Materials \u003cbr\u003e1.6 The Need for Uniform Global Testing Standards \u003cbr\u003e1.7 Polymeric Materials \u003cbr\u003e1.8 Polymeric Materials Background \u003cbr\u003e1.9 Polymeric Materials Families \u003cbr\u003e1.10 Classification of Polymeric Materials by Performance \u003cbr\u003e1.11 Types of Thermoplastic Molecular Structures \u003cbr\u003e1.12 Manufacturing of Polymers \u003cbr\u003e1.13 Polymeric Materials Compounding Process \u003cbr\u003e1.14 Basic Characteristics of Polymeric Materials \u003cbr\u003e1.15 Families of Thermoplastic Polymers \u003cbr\u003e1.16 Families of Thermoplastic Elastomers (TPE) \u003cbr\u003e1.17 Families of Thermoset Polymers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. Mechanical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Comparison Tables of Mechanical Properties \u003cbr\u003e2.3 Comparison Between ASTM and ISO Mechanical Test Standards \u003cbr\u003e2.4 Tensile Testing \u003cbr\u003e2.5 Tensile Strength Effects Caused by Cross-Head Speeds \u003cbr\u003e2.6 Molecular Orientation Effects \u003cbr\u003e2.7 Compounding Processes \u0026amp; Properties of Glass Reinforced Polymers \u003cbr\u003e2.8 Fiber Glass Effects on Polymeric Material Properties \u003cbr\u003e2.9 Tensile Stress Effects Caused by Fiber Glass Orientation \u003cbr\u003e2.10 Weld Line Effects on Injection Molded Products \u003cbr\u003e2.11 Temperature Effects on the Behavior of Polymeric Materials \u003cbr\u003e2.12 Effects to Nylon Properties Caused by Moisture \u003cbr\u003e2.13 Flexural Testing \u003cbr\u003e2.14 Compressive Strength Testing \u003cbr\u003e2.15 Shear Strength Testing \u003cbr\u003e2.16 Stress-Strain Curves, Load Type Comparison \u003cbr\u003e2.17 Creep, Rupture, Relaxation, and Fatigue \u003cbr\u003e2.18 Tensile Creep Testing \u003cbr\u003e2.19 Flexural Creep Testing \u003cbr\u003e2.20 Isochronous Stress-Strain Curves \u003cbr\u003e2.21 Procedure for Applying Creep Modulus \u003cbr\u003e2.22 Creep Rupture \u003cbr\u003e2.23 Stress Relaxation \u003cbr\u003e2.24 Fatigue Characteristics \u003cbr\u003e2.25 Impact Strength Testing \u003cbr\u003e2.26 Impact Fracture Mechanism \u003cbr\u003e2.27 Pendulum Impact Tests \u003cbr\u003e2.28 Gardner Drop Weight Impact Testing \u003cbr\u003e2.29 Falling Weight Tower Impact Testing \u003cbr\u003e2.30 Instrumented Impact Testing \u003cbr\u003e2.31 Instrumented High-Speed Horizontal Plunger Impact Tester \u003cbr\u003e2.32 Instrumented Impact Testing (Dynatup®) \u003cbr\u003e2.33 Product Design Analysis Using Dynatup® Test Data \u003cbr\u003e2.34 Miscellaneous Impact Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Thermal Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Thermal Properties for Elevated Temperatures \u003cbr\u003e3.3 Introduction to ISO Testing Standards \u003cbr\u003e3.4 Melting Temperature Testing \u003cbr\u003e3.5 Vicat Softening Temperature Testing \u003cbr\u003e3.6 Glass Transition Temperature Testing \u003cbr\u003e3.7 Brittleness Temperature Testing \u003cbr\u003e3.8 Continuous Service Temperature Testing \u003cbr\u003e3.9 UL Temperature Index \u003cbr\u003e3.10 Heat Deflection Temperature Testing \u003cbr\u003e3.11 Soldering Heat Resistance Performance \u003cbr\u003e3.12 Coefficient of Linear Thermal Expansion Testing \u003cbr\u003e3.13 Thermal Conductivity Testing \u003cbr\u003e3.14 Melt Flow Rate \u003cbr\u003e3.15 Melt Mass-flow Rate Testing \u003cbr\u003e3.16 Capillary Rheometer Relative Melt Viscosity Testing \u003cbr\u003e3.17 Relative Melt Viscosity vs. Shear Rate Graph \u003cbr\u003e3.18 Flammability Characteristics of Polymeric Materials \u003cbr\u003e3.19 UL 94 Flammability Testing \u003cbr\u003e3.20 UL Horizontal Burn Testing \u003cbr\u003e3.21 UL Vertical Burn Testing, UL 94-V0, UL 94-V1, UL 94-V2 \u003cbr\u003e3.22 UL Vertical Burn Testing, UL 94-5V, UL 94-5VA, UL 94-5VB \u003cbr\u003e3.23 Limited Oxygen Index Testing \u003cbr\u003e3.24 Smoke Generation Testing \u003cbr\u003e3.25 Self and Flash Ignition Temperature Testing \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Electrical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Thermoplastic Polymers Characteristics for Electrical Applications \u003cbr\u003e4.3 Thermoset Polymers Characteristics for Electrical Applications \u003cbr\u003e4.4 ASTM\/UL Electrical Properties of Polymeric Materials \u003cbr\u003e4.5 Introduction to ISO\/IEC Electrical Test Methods \u003cbr\u003e4.6 Electrical Terminology \u003cbr\u003e4.7 Electrical Insulation Properties \u003cbr\u003e4.8 Electrical Resistance Properties \u003cbr\u003e4.9 Dielectric Constant Testing \u003cbr\u003e4.10 Dissipation Factor Testing \u003cbr\u003e4.11 Volume Resistivity Testing \u003cbr\u003e4.13 Dielectric Strength Testing \u003cbr\u003e4.14 Hot-Wire Ignition Testing \u003cbr\u003e4.15 High-Amperage Arc Ignition Testing \u003cbr\u003e4.16 High-Voltage Arc Tracking Rate \u003cbr\u003e4.17 Arc Resistance Testing \u003cbr\u003e4.18 Comparative Track Index Testing \u003cbr\u003e4.19 Glow Wire Testing \u003cbr\u003e4.20 Hot Mandrel Testing \u003cbr\u003e4.21 Underwriter’s Laboratories Yellow Cards \u003cbr\u003e4.22 How to Read and Interpret the \"UL Yellow Card\" \u003cbr\u003e4.23 \"UL Electrical Insulation Systems\" \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Physical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 ASTM Physical Properties of Polymeric Materials \u003cbr\u003e5.3 ASTM and ISO Comparison of Physical Testing Standards \u003cbr\u003e5.4 Specific Gravity Testing \u003cbr\u003e5.5 Density Gradient Testing \u003cbr\u003e5.6 Optical Testing Properties \u003cbr\u003e5.7 Water Absorption Testing \u003cbr\u003e5.8 Surface Hardness Testing \u003cbr\u003e5.9 Abrasion Resistance Testing \u003cbr\u003e5.10 Tear Resistance \u003cbr\u003e5.11 Coefficient of Friction Testing \u003cbr\u003e5.12 Mold Shrinkage Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Microbial, Weather, Chemical Resistance of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Fungal Resistance Testing \u003cbr\u003e6.3 Bacteria Resistance Testing \u003cbr\u003e6.4 Fungi and Bacteria Outdoor Exposure Resistance Limitations \u003cbr\u003e6.5 Weathering Tests for Polymeric Materials \u003cbr\u003e6.6 Accelerated Weathering Testing \u003cbr\u003e6.7 Exposure to Fluorescent UV Lamp, Condensation \u003cbr\u003e6.8 Accelerated Weather Testing, Weather Ometer® \u003cbr\u003e6.9 Exposure to Carbon Arc Light % Water Testing \u003cbr\u003e6.10 Exposure to Xenon Arc Light and Water Testing \u003cbr\u003e6.11 Outdoor Weathering Testing \u003cbr\u003e6.12 Chemical Resistance Testing of Polymeric Materials \u003cbr\u003e6.13 Chemical Resistance Tables of Delrin Homopolymer Acetal \u003cbr\u003eAppendices \u003cbr\u003eAcronyms for Polymeric Materials \u003cbr\u003eCommon Acronyms \u003cbr\u003eProcess Acronyms \u003cbr\u003eReinforcements and Fillers Acronyms \u003cbr\u003eNomenclature \u003cbr\u003eEnglish and Metric Units Conversion Guide\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDuPont (retired), Delaware, U.S.A.\u003cbr\u003eE. Alfredo Campo is a retired DuPont senior engineer with extensive experience and in-depth technical knowledge of polymer technology. He is a widely published author of books, articles, and papers. His latest book is The Complete Part Design Handbook for Injection Molding of Thermoplastics.\u003cbr\u003e\u003cbr\u003e"}
Self-healing Materials...
$285.00
{"id":11340962436,"title":"Self-healing Materials. Principles \u0026 Technology","handle":"978-1-927885-23-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-23-9 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2017 \u003cbr\u003e\u003c\/span\u003ePages: 256 + vi Figures: 203\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eSelf-healing phenomenon, adapted from living things, was for a long time an interesting topic of discussion on the potential improvements of human-made products, but for quite a while it became applicable reality useful in many manufactured product. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has three major sections organized in fifteen chapters. The first section contains chapter which discusses the well-established mechanisms of self-healing which can be potentially applied in the development of new materials that have an ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes which occur during self-healing are also discussed and it belongs to this section. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe second part of this book compares parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning of the healing processes, activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect location, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of application the most important analytical techniques to the evaluation of the self-healing process.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final section of the book includes practical advice on the selection of additives for self-healing formulation, methods of self-healing of different polymers and application of self-healing technology in different groups of the products. This part is based on the practical knowledge, the existing patents, the published paper, and the practical application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of application of the technology of self-healing.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience for this book includes people working in the industries listed in chapter 15 and on the polymers listed in chapter 14 (see the table of contents below), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies. \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction. Lessons from Living Things \u003cbr\u003e\u003cbr\u003e2 Mechanisms of Self-healing \u003cbr\u003e2.1 Autonomic \u003cbr\u003e2.2 Click chemistry \u003cbr\u003e2.3 Crosslinking \u003cbr\u003e2.4 Hydrogen bonding \u003cbr\u003e2.5 Luminescence \u003cbr\u003e2.6 Morphological features and organization \u003cbr\u003e2.7 Shape memory \u003cbr\u003e2.8 Thermal healing \u003cbr\u003e2.9 UV \u003cbr\u003e2.10 Water \u003cbr\u003e2.11 Other mechanisms \u003cbr\u003e\u003cbr\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr\u003e3.1 Chemical reactions \u003cbr\u003e3.2 Compositional changes \u003cbr\u003e3.3 Physical processes \u003cbr\u003e3.4 Self-assembly \u003cbr\u003e\u003cbr\u003e4 Fault Detection Mechanisms \u003cbr\u003e\u003cbr\u003e5 Triggering and Tuning the Healing Processes \u003cbr\u003e\u003cbr\u003e6 Activation Energy of Self-healing \u003cbr\u003e\u003cbr\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr\u003e7.1 Autonomous \u003cbr\u003e7.2 Capsule and vascular carriers \u003cbr\u003e7.3 Environmental conditions \u003cbr\u003e7.4 Liquid flow \u003cbr\u003e7.5 Magnetic force \u003cbr\u003e7.6 Manual injection\u003c\/p\u003e\n\u003cp\u003e8 Self-healing Timescale \u003cbr\u003e\u003cbr\u003e9 Self-healing Extent \u003cbr\u003e\u003cbr\u003e10 Molecular Dynamics Simulation \u003cbr\u003e\u003cbr\u003e11 Morphology of Healing \u003cbr\u003e\u003cbr\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr\u003e12.1 X-ray computed tomography \u003cbr\u003e12.2 Raman correlation spectroscopy \u003cbr\u003e12.3 Raman spectroscopy \u003cbr\u003e12.4 Impedance spectroscopy \u003cbr\u003e12.5 Water permeability \u003cbr\u003e12.6 Surface energy \u003cbr\u003e\u003cbr\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr\u003e13.1 Polymers \u003cbr\u003e13.1.1 Urea-formaldehyde resin \u003cbr\u003e13.1.2 Polydimethylsiloxane \u003cbr\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr\u003e13.1.4 Epoxy resins \u003cbr\u003e13.1.5 Polyaniline \u003cbr\u003e13.1.6 Polyurethane \u003cbr\u003e13.2 Capsule-based materials \u003cbr\u003e13.3 Catalysts \u003cbr\u003e13.4 Chemical structures \u003cbr\u003e13.5 Coupling agents \u003cbr\u003e13.6 Crosslinkers \u003cbr\u003e13.7 Fibers \u003cbr\u003e13.8 Magneto-responsive components \u003cbr\u003e13.9 Metal complexes \u003cbr\u003e13.10 Nanoparticles \u003cbr\u003e13.11 Plasticizers \u003cbr\u003e13.12 Solvents \u003cbr\u003e13.13 Vascular self-healing materials \u003cbr\u003e\u003cbr\u003e14 Self-healing of Different Polymers \u003cbr\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr\u003e14.2 Acrylic resin \u003cbr\u003e14.3 Alkyd resin \u003cbr\u003e14.4 Cellulose and its derivatives \u003cbr\u003e14.5 Chitosan \u003cbr\u003e14.6 Cyclodextrin \u003cbr\u003e14.7 Epoxy resin \u003cbr\u003e14.8 Ethylene-vinyl acetate \u003cbr\u003e14.9 Natural rubber \u003cbr\u003e14.10 Polybutadiene \u003cbr\u003e14.11 Poly(butyl acrylate) \u003cbr\u003e14.12 Polycyclooctene \u003cbr\u003e14.13 Poly(ε-caprolactone) \u003cbr\u003e14.14 Polydimethylsiloxane \u003cbr\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr\u003e14.16 Polyethylene \u003cbr\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr\u003e14.18 Polyimide \u003cbr\u003e14.19 Polyisobutylene \u003cbr\u003e14.20 Poly(lactic acid) \u003cbr\u003e14.21 Polymethylmethacrylate \u003cbr\u003e14.22 Poly(phenylene oxide) \u003cbr\u003e14.23 Polyphosphazene \u003cbr\u003e14.24 Polypropylene \u003cbr\u003e14.25 Polystyrene \u003cbr\u003e14.26 Polysulfide \u003cbr\u003e14.27 Polyurethanes \u003cbr\u003e14.28 Poly(vinyl alcohol) \u003cbr\u003e14.29 Poly(vinyl butyral) \u003cbr\u003e14.30 Poly(vinylidene difluoride) \u003cbr\u003e\u003cbr\u003e15 Self-healing in Different Products \u003cbr\u003e15.1 Adhesives \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Asphalt pavement \u003cbr\u003e15.4 Automotive \u003cbr\u003e15.5 Cementitious materials \u003cbr\u003e15.6 Ceramic materials \u003cbr\u003e15.7 Coatings \u003cbr\u003e15.8 Composites \u003cbr\u003e15.9 Corrosion prevention \u003cbr\u003e15.10 Dental \u003cbr\u003e15.11 Electrical insulation \u003cbr\u003e15.12 Electronics \u003cbr\u003e15.13 Fabrics \u003cbr\u003e15.14 Fibers \u003cbr\u003e15.15 Film \u003cbr\u003e15.16 Foam \u003cbr\u003e15.17 Hydrogels \u003cbr\u003e15.18 Laminates \u003cbr\u003e15.19 Lubricating oils \u003cbr\u003e15.20 Medical devices \u003cbr\u003e15.21 Membranes \u003cbr\u003e15.22 Mortars \u003cbr\u003e15.23 Pipes \u003cbr\u003e15.24 Sealants \u003cbr\u003e15.25 Solar cells \u003cbr\u003e15.26 Thermal barrier coatings \u003cbr\u003e15.27 Tires \u003cbr\u003e\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/span\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:15:02-04:00","created_at":"2017-07-03T21:04:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","additives","book","healant","material","plastics","polymer","polymers","recovery","rubber","self-healing","self-repair"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":44391632260,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Self-healing Materials. Principles \u0026 Technology","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-23-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570","options":["Title"],"media":[{"alt":null,"id":353498071133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-23-9 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2017 \u003cbr\u003e\u003c\/span\u003ePages: 256 + vi Figures: 203\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eSelf-healing phenomenon, adapted from living things, was for a long time an interesting topic of discussion on the potential improvements of human-made products, but for quite a while it became applicable reality useful in many manufactured product. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has three major sections organized in fifteen chapters. The first section contains chapter which discusses the well-established mechanisms of self-healing which can be potentially applied in the development of new materials that have an ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes which occur during self-healing are also discussed and it belongs to this section. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe second part of this book compares parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning of the healing processes, activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect location, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of application the most important analytical techniques to the evaluation of the self-healing process.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final section of the book includes practical advice on the selection of additives for self-healing formulation, methods of self-healing of different polymers and application of self-healing technology in different groups of the products. This part is based on the practical knowledge, the existing patents, the published paper, and the practical application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of application of the technology of self-healing.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience for this book includes people working in the industries listed in chapter 15 and on the polymers listed in chapter 14 (see the table of contents below), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies. \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction. Lessons from Living Things \u003cbr\u003e\u003cbr\u003e2 Mechanisms of Self-healing \u003cbr\u003e2.1 Autonomic \u003cbr\u003e2.2 Click chemistry \u003cbr\u003e2.3 Crosslinking \u003cbr\u003e2.4 Hydrogen bonding \u003cbr\u003e2.5 Luminescence \u003cbr\u003e2.6 Morphological features and organization \u003cbr\u003e2.7 Shape memory \u003cbr\u003e2.8 Thermal healing \u003cbr\u003e2.9 UV \u003cbr\u003e2.10 Water \u003cbr\u003e2.11 Other mechanisms \u003cbr\u003e\u003cbr\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr\u003e3.1 Chemical reactions \u003cbr\u003e3.2 Compositional changes \u003cbr\u003e3.3 Physical processes \u003cbr\u003e3.4 Self-assembly \u003cbr\u003e\u003cbr\u003e4 Fault Detection Mechanisms \u003cbr\u003e\u003cbr\u003e5 Triggering and Tuning the Healing Processes \u003cbr\u003e\u003cbr\u003e6 Activation Energy of Self-healing \u003cbr\u003e\u003cbr\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr\u003e7.1 Autonomous \u003cbr\u003e7.2 Capsule and vascular carriers \u003cbr\u003e7.3 Environmental conditions \u003cbr\u003e7.4 Liquid flow \u003cbr\u003e7.5 Magnetic force \u003cbr\u003e7.6 Manual injection\u003c\/p\u003e\n\u003cp\u003e8 Self-healing Timescale \u003cbr\u003e\u003cbr\u003e9 Self-healing Extent \u003cbr\u003e\u003cbr\u003e10 Molecular Dynamics Simulation \u003cbr\u003e\u003cbr\u003e11 Morphology of Healing \u003cbr\u003e\u003cbr\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr\u003e12.1 X-ray computed tomography \u003cbr\u003e12.2 Raman correlation spectroscopy \u003cbr\u003e12.3 Raman spectroscopy \u003cbr\u003e12.4 Impedance spectroscopy \u003cbr\u003e12.5 Water permeability \u003cbr\u003e12.6 Surface energy \u003cbr\u003e\u003cbr\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr\u003e13.1 Polymers \u003cbr\u003e13.1.1 Urea-formaldehyde resin \u003cbr\u003e13.1.2 Polydimethylsiloxane \u003cbr\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr\u003e13.1.4 Epoxy resins \u003cbr\u003e13.1.5 Polyaniline \u003cbr\u003e13.1.6 Polyurethane \u003cbr\u003e13.2 Capsule-based materials \u003cbr\u003e13.3 Catalysts \u003cbr\u003e13.4 Chemical structures \u003cbr\u003e13.5 Coupling agents \u003cbr\u003e13.6 Crosslinkers \u003cbr\u003e13.7 Fibers \u003cbr\u003e13.8 Magneto-responsive components \u003cbr\u003e13.9 Metal complexes \u003cbr\u003e13.10 Nanoparticles \u003cbr\u003e13.11 Plasticizers \u003cbr\u003e13.12 Solvents \u003cbr\u003e13.13 Vascular self-healing materials \u003cbr\u003e\u003cbr\u003e14 Self-healing of Different Polymers \u003cbr\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr\u003e14.2 Acrylic resin \u003cbr\u003e14.3 Alkyd resin \u003cbr\u003e14.4 Cellulose and its derivatives \u003cbr\u003e14.5 Chitosan \u003cbr\u003e14.6 Cyclodextrin \u003cbr\u003e14.7 Epoxy resin \u003cbr\u003e14.8 Ethylene-vinyl acetate \u003cbr\u003e14.9 Natural rubber \u003cbr\u003e14.10 Polybutadiene \u003cbr\u003e14.11 Poly(butyl acrylate) \u003cbr\u003e14.12 Polycyclooctene \u003cbr\u003e14.13 Poly(ε-caprolactone) \u003cbr\u003e14.14 Polydimethylsiloxane \u003cbr\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr\u003e14.16 Polyethylene \u003cbr\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr\u003e14.18 Polyimide \u003cbr\u003e14.19 Polyisobutylene \u003cbr\u003e14.20 Poly(lactic acid) \u003cbr\u003e14.21 Polymethylmethacrylate \u003cbr\u003e14.22 Poly(phenylene oxide) \u003cbr\u003e14.23 Polyphosphazene \u003cbr\u003e14.24 Polypropylene \u003cbr\u003e14.25 Polystyrene \u003cbr\u003e14.26 Polysulfide \u003cbr\u003e14.27 Polyurethanes \u003cbr\u003e14.28 Poly(vinyl alcohol) \u003cbr\u003e14.29 Poly(vinyl butyral) \u003cbr\u003e14.30 Poly(vinylidene difluoride) \u003cbr\u003e\u003cbr\u003e15 Self-healing in Different Products \u003cbr\u003e15.1 Adhesives \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Asphalt pavement \u003cbr\u003e15.4 Automotive \u003cbr\u003e15.5 Cementitious materials \u003cbr\u003e15.6 Ceramic materials \u003cbr\u003e15.7 Coatings \u003cbr\u003e15.8 Composites \u003cbr\u003e15.9 Corrosion prevention \u003cbr\u003e15.10 Dental \u003cbr\u003e15.11 Electrical insulation \u003cbr\u003e15.12 Electronics \u003cbr\u003e15.13 Fabrics \u003cbr\u003e15.14 Fibers \u003cbr\u003e15.15 Film \u003cbr\u003e15.16 Foam \u003cbr\u003e15.17 Hydrogels \u003cbr\u003e15.18 Laminates \u003cbr\u003e15.19 Lubricating oils \u003cbr\u003e15.20 Medical devices \u003cbr\u003e15.21 Membranes \u003cbr\u003e15.22 Mortars \u003cbr\u003e15.23 Pipes \u003cbr\u003e15.24 Sealants \u003cbr\u003e15.25 Solar cells \u003cbr\u003e15.26 Thermal barrier coatings \u003cbr\u003e15.27 Tires \u003cbr\u003e\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/span\u003e\u003c\/p\u003e"}
Self-healing Materials...
$325.00
{"id":7336424079517,"title":"Self-healing Materials. Principles \u0026 Technology, 2nd Edition","handle":"self-healing-materials-principles-technology-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1-77467-002-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 336\u003cbr data-mce-fragment=\"1\"\u003eFigures: 230\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe self-healing phenomenon, adapted from living things, was for a long time an exciting topic of discussion on the potential improvements of human-made products, but for quite a while, it became applicable reality useful in many manufactured products. Ironically, the expectations from the healing of commercial products are higher than in the case of living things (for example, skin healing leaves scars that would not be acceptable for self-healed phone, watch, radio receiver, etc.) The most up-to-date information presented in this book gives a full account of means, ways, and practical results to prevent discarding products because they were once damaged. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has three major sections organized into fifteen chapters. The first section contains a chapter that discusses the well-established mechanisms of self-healing, which can be potentially applied in the development of new materials that have the ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes, which occur during self-healing, is also part of this section. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe second part of this book compares the parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of applying the most important analytical techniques to the evaluation of the self-healing processes.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe final section of the book includes:\u003cbr data-mce-fragment=\"1\"\u003e• Practical advice on the selection of additives for self-healing formulation.\u003cbr data-mce-fragment=\"1\"\u003e• Methods of self-healing of different polymers.\u003cbr data-mce-fragment=\"1\"\u003e• Application of self-healing technology in different groups of products.\u003cbr data-mce-fragment=\"1\"\u003eThis part is based on practical knowledge, the existing patents, the published paper, and useful application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of applying the technology of self-healing.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe expected audience for this book includes people working in the industries listed in the table of contents (chapter 15) and on the polymers (chapter 14), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies, services, and research. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1 Introduction. Lessons from Living Things\u003cbr data-mce-fragment=\"1\"\u003e2 Mechanisms of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e2.1 Autonomic\u003cbr data-mce-fragment=\"1\"\u003e2.2 Click chemistry \u003cbr data-mce-fragment=\"1\"\u003e2.3 Crosslinking \u003cbr data-mce-fragment=\"1\"\u003e2.4 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.5 Luminescence \u003cbr data-mce-fragment=\"1\"\u003e2.6 Morphological features and organization \u003cbr data-mce-fragment=\"1\"\u003e2.7 Shape memory \u003cbr data-mce-fragment=\"1\"\u003e2.8 Thermal healing \u003cbr data-mce-fragment=\"1\"\u003e2.9 UV\u003cbr data-mce-fragment=\"1\"\u003e2.10 Water \u003cbr data-mce-fragment=\"1\"\u003e2.11 Other mechanisms \u003cbr data-mce-fragment=\"1\"\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr data-mce-fragment=\"1\"\u003e3.1 Chemical reactions\u003cbr data-mce-fragment=\"1\"\u003e3.2 Compositional changes \u003cbr data-mce-fragment=\"1\"\u003e3.3 Physical processes \u003cbr data-mce-fragment=\"1\"\u003e3.4 Self-assembly5\u003cbr data-mce-fragment=\"1\"\u003e4 Fault Detection Mechanisms \u003cbr data-mce-fragment=\"1\"\u003e5 Triggering and Tuning the Healing Processes \u003cbr data-mce-fragment=\"1\"\u003e6 Activation Energy of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr data-mce-fragment=\"1\"\u003e7.1 Autonomous \u003cbr data-mce-fragment=\"1\"\u003e7.2 Capsule and vascular carriers \u003cbr data-mce-fragment=\"1\"\u003e7.3 Environmental conditions \u003cbr data-mce-fragment=\"1\"\u003e7.4 Liquid flow \u003cbr data-mce-fragment=\"1\"\u003e7.5 Magnetic force \u003cbr data-mce-fragment=\"1\"\u003e7.6 Manual injection \u003cbr data-mce-fragment=\"1\"\u003e8 Self-healing Timescale \u003cbr data-mce-fragment=\"1\"\u003e9 Self-healing Extent\u003cbr data-mce-fragment=\"1\"\u003e10 Molecular Dynamics Simulation\u003cbr data-mce-fragment=\"1\"\u003e11 Morphology of Healing\u003cbr data-mce-fragment=\"1\"\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr data-mce-fragment=\"1\"\u003e12.1 X-ray computed tomography \u003cbr data-mce-fragment=\"1\"\u003e12.2 Raman correlation spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.3 Raman spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.4 Impedance spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.5 Water permeability \u003cbr data-mce-fragment=\"1\"\u003e12.6 Surface energy \u003cbr data-mce-fragment=\"1\"\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr data-mce-fragment=\"1\"\u003e13.1 Polymers \u003cbr data-mce-fragment=\"1\"\u003e13.1.1 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e13.1.2 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr data-mce-fragment=\"1\"\u003e13.1.4 Epoxy resins \u003cbr data-mce-fragment=\"1\"\u003e13.1.5 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e13.1.6 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e13.2 Capsule-based materials \u003cbr data-mce-fragment=\"1\"\u003e13.3 Catalysts \u003cbr data-mce-fragment=\"1\"\u003e13.4 Chemical structures \u003cbr data-mce-fragment=\"1\"\u003e13.5 Coupling agents \u003cbr data-mce-fragment=\"1\"\u003e13.6 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e13.7 Fibers \u003cbr data-mce-fragment=\"1\"\u003e13.8 Magneto-responsive components \u003cbr data-mce-fragment=\"1\"\u003e13.9 Metal complexes \u003cbr data-mce-fragment=\"1\"\u003e13.10 Nanoparticles \u003cbr data-mce-fragment=\"1\"\u003e13.11 Plasticizers \u003cbr data-mce-fragment=\"1\"\u003e13.12 Solvents \u003cbr data-mce-fragment=\"1\"\u003e13.13 Vascular self-healing materials \u003cbr data-mce-fragment=\"1\"\u003e14 Self-healing of Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr data-mce-fragment=\"1\"\u003e14.2 Acrylic resin \u003cbr data-mce-fragment=\"1\"\u003e14.3 Alkyd resin \u003cbr data-mce-fragment=\"1\"\u003e14.4 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e14.5 Chitosan \u003cbr data-mce-fragment=\"1\"\u003e14.6 Cyclodextrin \u003cbr data-mce-fragment=\"1\"\u003e14.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e14.8 Ethylene-vinyl acetate \u003cbr data-mce-fragment=\"1\"\u003e14.9 Natural rubber \u003cbr data-mce-fragment=\"1\"\u003e14.10 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e14.11 Poly(butyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.12 Polycyclooctene \u003cbr data-mce-fragment=\"1\"\u003e14.13 Poly(ε-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e14.14 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.16 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.18 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e14.19 Polyisobutylene \u003cbr data-mce-fragment=\"1\"\u003e14.20 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.21 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e14.22 Poly(phenylene oxide) \u003cbr data-mce-fragment=\"1\"\u003e14.23 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e14.24 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e14.25 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e14.26 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e14.27 Polyurethanes \u003cbr data-mce-fragment=\"1\"\u003e14.28 Poly(vinyl alcohol) \u003cbr data-mce-fragment=\"1\"\u003e14.29 Poly(vinyl butyral) \u003cbr data-mce-fragment=\"1\"\u003e14.30 Poly(vinylidene difluoride) \u003cbr data-mce-fragment=\"1\"\u003e15 Self-healing in Different Products \u003cbr data-mce-fragment=\"1\"\u003e15.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e15.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e15.3 Asphalt pavement \u003cbr data-mce-fragment=\"1\"\u003e15.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e15.5 Cementitious materials \u003cbr data-mce-fragment=\"1\"\u003e15.6 Ceramic materials \u003cbr data-mce-fragment=\"1\"\u003e15.7 Coatings \u003cbr data-mce-fragment=\"1\"\u003e15.8 Composites \u003cbr data-mce-fragment=\"1\"\u003e15.9 Corrosion prevention \u003cbr data-mce-fragment=\"1\"\u003e15.10 Dental \u003cbr data-mce-fragment=\"1\"\u003e15.11 Electrical insulation \u003cbr data-mce-fragment=\"1\"\u003e15.12 Electronics \u003cbr data-mce-fragment=\"1\"\u003e15.13 Fabrics \u003cbr data-mce-fragment=\"1\"\u003e15.14 Fibers \u003cbr data-mce-fragment=\"1\"\u003e15.15 Film \u003cbr data-mce-fragment=\"1\"\u003e15.16 Foam \u003cbr data-mce-fragment=\"1\"\u003e15.17 Hydrogels \u003cbr data-mce-fragment=\"1\"\u003e15.18 Laminates \u003cbr data-mce-fragment=\"1\"\u003e15.19 Lubricating oils \u003cbr data-mce-fragment=\"1\"\u003e15.20 Medical devices \u003cbr data-mce-fragment=\"1\"\u003e15.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e15.22 Mortars\u003cbr data-mce-fragment=\"1\"\u003e15.23 Pipes \u003cbr data-mce-fragment=\"1\"\u003e15.24 Sealants \u003cbr data-mce-fragment=\"1\"\u003e15.25 Solar cells \u003cbr data-mce-fragment=\"1\"\u003e15.26 Thermal barrier coatings \u003cbr data-mce-fragment=\"1\"\u003e15.27 Tires \u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T21:13:55-04:00","created_at":"2022-03-31T21:08:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","Materials"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165824716957,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Self-healing Materials. Principles \u0026 Technology, 2nd Edition","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-002-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611","options":["Title"],"media":[{"alt":null,"id":24734753849501,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1-77467-002-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 336\u003cbr data-mce-fragment=\"1\"\u003eFigures: 230\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe self-healing phenomenon, adapted from living things, was for a long time an exciting topic of discussion on the potential improvements of human-made products, but for quite a while, it became applicable reality useful in many manufactured products. Ironically, the expectations from the healing of commercial products are higher than in the case of living things (for example, skin healing leaves scars that would not be acceptable for self-healed phone, watch, radio receiver, etc.) The most up-to-date information presented in this book gives a full account of means, ways, and practical results to prevent discarding products because they were once damaged. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has three major sections organized into fifteen chapters. The first section contains a chapter that discusses the well-established mechanisms of self-healing, which can be potentially applied in the development of new materials that have the ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes, which occur during self-healing, is also part of this section. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe second part of this book compares the parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of applying the most important analytical techniques to the evaluation of the self-healing processes.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe final section of the book includes:\u003cbr data-mce-fragment=\"1\"\u003e• Practical advice on the selection of additives for self-healing formulation.\u003cbr data-mce-fragment=\"1\"\u003e• Methods of self-healing of different polymers.\u003cbr data-mce-fragment=\"1\"\u003e• Application of self-healing technology in different groups of products.\u003cbr data-mce-fragment=\"1\"\u003eThis part is based on practical knowledge, the existing patents, the published paper, and useful application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of applying the technology of self-healing.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe expected audience for this book includes people working in the industries listed in the table of contents (chapter 15) and on the polymers (chapter 14), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies, services, and research. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1 Introduction. Lessons from Living Things\u003cbr data-mce-fragment=\"1\"\u003e2 Mechanisms of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e2.1 Autonomic\u003cbr data-mce-fragment=\"1\"\u003e2.2 Click chemistry \u003cbr data-mce-fragment=\"1\"\u003e2.3 Crosslinking \u003cbr data-mce-fragment=\"1\"\u003e2.4 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.5 Luminescence \u003cbr data-mce-fragment=\"1\"\u003e2.6 Morphological features and organization \u003cbr data-mce-fragment=\"1\"\u003e2.7 Shape memory \u003cbr data-mce-fragment=\"1\"\u003e2.8 Thermal healing \u003cbr data-mce-fragment=\"1\"\u003e2.9 UV\u003cbr data-mce-fragment=\"1\"\u003e2.10 Water \u003cbr data-mce-fragment=\"1\"\u003e2.11 Other mechanisms \u003cbr data-mce-fragment=\"1\"\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr data-mce-fragment=\"1\"\u003e3.1 Chemical reactions\u003cbr data-mce-fragment=\"1\"\u003e3.2 Compositional changes \u003cbr data-mce-fragment=\"1\"\u003e3.3 Physical processes \u003cbr data-mce-fragment=\"1\"\u003e3.4 Self-assembly5\u003cbr data-mce-fragment=\"1\"\u003e4 Fault Detection Mechanisms \u003cbr data-mce-fragment=\"1\"\u003e5 Triggering and Tuning the Healing Processes \u003cbr data-mce-fragment=\"1\"\u003e6 Activation Energy of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr data-mce-fragment=\"1\"\u003e7.1 Autonomous \u003cbr data-mce-fragment=\"1\"\u003e7.2 Capsule and vascular carriers \u003cbr data-mce-fragment=\"1\"\u003e7.3 Environmental conditions \u003cbr data-mce-fragment=\"1\"\u003e7.4 Liquid flow \u003cbr data-mce-fragment=\"1\"\u003e7.5 Magnetic force \u003cbr data-mce-fragment=\"1\"\u003e7.6 Manual injection \u003cbr data-mce-fragment=\"1\"\u003e8 Self-healing Timescale \u003cbr data-mce-fragment=\"1\"\u003e9 Self-healing Extent\u003cbr data-mce-fragment=\"1\"\u003e10 Molecular Dynamics Simulation\u003cbr data-mce-fragment=\"1\"\u003e11 Morphology of Healing\u003cbr data-mce-fragment=\"1\"\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr data-mce-fragment=\"1\"\u003e12.1 X-ray computed tomography \u003cbr data-mce-fragment=\"1\"\u003e12.2 Raman correlation spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.3 Raman spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.4 Impedance spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.5 Water permeability \u003cbr data-mce-fragment=\"1\"\u003e12.6 Surface energy \u003cbr data-mce-fragment=\"1\"\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr data-mce-fragment=\"1\"\u003e13.1 Polymers \u003cbr data-mce-fragment=\"1\"\u003e13.1.1 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e13.1.2 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr data-mce-fragment=\"1\"\u003e13.1.4 Epoxy resins \u003cbr data-mce-fragment=\"1\"\u003e13.1.5 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e13.1.6 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e13.2 Capsule-based materials \u003cbr data-mce-fragment=\"1\"\u003e13.3 Catalysts \u003cbr data-mce-fragment=\"1\"\u003e13.4 Chemical structures \u003cbr data-mce-fragment=\"1\"\u003e13.5 Coupling agents \u003cbr data-mce-fragment=\"1\"\u003e13.6 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e13.7 Fibers \u003cbr data-mce-fragment=\"1\"\u003e13.8 Magneto-responsive components \u003cbr data-mce-fragment=\"1\"\u003e13.9 Metal complexes \u003cbr data-mce-fragment=\"1\"\u003e13.10 Nanoparticles \u003cbr data-mce-fragment=\"1\"\u003e13.11 Plasticizers \u003cbr data-mce-fragment=\"1\"\u003e13.12 Solvents \u003cbr data-mce-fragment=\"1\"\u003e13.13 Vascular self-healing materials \u003cbr data-mce-fragment=\"1\"\u003e14 Self-healing of Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr data-mce-fragment=\"1\"\u003e14.2 Acrylic resin \u003cbr data-mce-fragment=\"1\"\u003e14.3 Alkyd resin \u003cbr data-mce-fragment=\"1\"\u003e14.4 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e14.5 Chitosan \u003cbr data-mce-fragment=\"1\"\u003e14.6 Cyclodextrin \u003cbr data-mce-fragment=\"1\"\u003e14.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e14.8 Ethylene-vinyl acetate \u003cbr data-mce-fragment=\"1\"\u003e14.9 Natural rubber \u003cbr data-mce-fragment=\"1\"\u003e14.10 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e14.11 Poly(butyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.12 Polycyclooctene \u003cbr data-mce-fragment=\"1\"\u003e14.13 Poly(ε-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e14.14 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.16 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.18 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e14.19 Polyisobutylene \u003cbr data-mce-fragment=\"1\"\u003e14.20 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.21 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e14.22 Poly(phenylene oxide) \u003cbr data-mce-fragment=\"1\"\u003e14.23 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e14.24 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e14.25 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e14.26 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e14.27 Polyurethanes \u003cbr data-mce-fragment=\"1\"\u003e14.28 Poly(vinyl alcohol) \u003cbr data-mce-fragment=\"1\"\u003e14.29 Poly(vinyl butyral) \u003cbr data-mce-fragment=\"1\"\u003e14.30 Poly(vinylidene difluoride) \u003cbr data-mce-fragment=\"1\"\u003e15 Self-healing in Different Products \u003cbr data-mce-fragment=\"1\"\u003e15.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e15.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e15.3 Asphalt pavement \u003cbr data-mce-fragment=\"1\"\u003e15.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e15.5 Cementitious materials \u003cbr data-mce-fragment=\"1\"\u003e15.6 Ceramic materials \u003cbr data-mce-fragment=\"1\"\u003e15.7 Coatings \u003cbr data-mce-fragment=\"1\"\u003e15.8 Composites \u003cbr data-mce-fragment=\"1\"\u003e15.9 Corrosion prevention \u003cbr data-mce-fragment=\"1\"\u003e15.10 Dental \u003cbr data-mce-fragment=\"1\"\u003e15.11 Electrical insulation \u003cbr data-mce-fragment=\"1\"\u003e15.12 Electronics \u003cbr data-mce-fragment=\"1\"\u003e15.13 Fabrics \u003cbr data-mce-fragment=\"1\"\u003e15.14 Fibers \u003cbr data-mce-fragment=\"1\"\u003e15.15 Film \u003cbr data-mce-fragment=\"1\"\u003e15.16 Foam \u003cbr data-mce-fragment=\"1\"\u003e15.17 Hydrogels \u003cbr data-mce-fragment=\"1\"\u003e15.18 Laminates \u003cbr data-mce-fragment=\"1\"\u003e15.19 Lubricating oils \u003cbr data-mce-fragment=\"1\"\u003e15.20 Medical devices \u003cbr data-mce-fragment=\"1\"\u003e15.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e15.22 Mortars\u003cbr data-mce-fragment=\"1\"\u003e15.23 Pipes \u003cbr data-mce-fragment=\"1\"\u003e15.24 Sealants \u003cbr data-mce-fragment=\"1\"\u003e15.25 Solar cells \u003cbr data-mce-fragment=\"1\"\u003e15.26 Thermal barrier coatings \u003cbr data-mce-fragment=\"1\"\u003e15.27 Tires \u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Shape Memory Polymers:...
$205.00
{"id":11242241156,"title":"Shape Memory Polymers: Fundamentals, Advances and Applications","handle":"9781909030329","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","blends","book","mechanical properties","medical applications","modelling","morphology","p-applications","p-structural","polymer","polymer composite","polymers","shape-memory","structure","textile applications"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Shape Memory Polymers: Fundamentals, Advances and Applications","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781909030329","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","options":["Title"],"media":[{"alt":null,"id":358743539805,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}