- Grid List
Filter
RubberChem 2002
$180.00
{"id":11242235972,"title":"RubberChem 2002","handle":"978-1-85957-316-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Munich, Germany, 11th-12th June 2002, Conference Proceedings \u003cbr\u003eISBN 978-1-85957-316-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003ePages: 174\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubberChem 2002 - The Third International Rubber Chemicals, Compounding, and Mixing Conference was held in Munich, Germany. This two day event brought together the leading experts in the rubber and related industries. \u003cbr\u003e\u003cbr\u003eThe conference provided an excellent forum for discussing the wide range of compounding materials, chemicals, and mixing techniques. The important aspects of health \u0026amp; safety of materials and rubber products were also covered in the comprehensive technical programme.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e\u003cbr\u003eAnother View of the Rubber Chemicals Industry \u003cbr\u003eRichard Simpson, Rapra Technology Ltd, UK \u003cbr\u003e\u003cbr\u003eA New \"Intelligent\" Viscosity Reduction Concept - Better Processability without Sacrifice in Dynamic Properties \u003cbr\u003eKarl Menting, Schill \u0026amp; Seilacher 'Struktol' AG, Germany \u003cbr\u003e\u003cbr\u003eLow-Temperature Curing by Using Zinc-2-mercaptobenzothiazole (ZMBT) in Combination with Dithiocarbamates (DTC) and Amine Curing Systems \u003cbr\u003eNico Huntink, Flexsys BV, The Netherlands \u003cbr\u003e\u003cbr\u003eRubcon - Technology of High Filled Composite Materials \u003cbr\u003eProf Oleg Figovsky, Israel Research Centre \"Polymate\", Israel \u003cbr\u003e\u003cbr\u003eNew Optimised System for the Lead-Free Crosslinking of Epichlorohydrin (ECO) Elastomer \u003cbr\u003eHans Martin Issel, RheinChemie Rheinau GmbH, Germany \u003cbr\u003e\u003cbr\u003eHazardous Emissions in the Rubber Industry - Sampling and Analysis \u003cbr\u003eUlrich Giese, Deutsches Institut für Kautschuktechnologie EV (DIK), Germany \u003cbr\u003e\u003cbr\u003eReduction of the Emission of Harmful Substances from Rubber Based Commodity Articles \u003cbr\u003eRita H Auerbach, Federal Institute Materials Research, Germany \u003cbr\u003e\u003cbr\u003eAccurate Ultra Low Fines Conveying of Carbon Black \u003cbr\u003eBob Yarwood, BMH Chronos Richardson Ltd, UK \u003cbr\u003e\u003cbr\u003eSilica Dusts \u003cbr\u003eYves Bomal, Rhodia, France \u003cbr\u003e\u003cbr\u003eImplementation of the ATEX Environmental Directive - Process Dusts \u003cbr\u003eUlf Persson, Nederman, Sweden \u003cbr\u003ePaper unavailable at time of print \u003cbr\u003e\u003cbr\u003ePretreatments of Elastomers to Enhance Adhesion \u003cbr\u003eRalf H Dahm, D M Brewis, I Mathieson, J L Tegg ISST Loughborough University, UK \u003cbr\u003e\u003cbr\u003eHNBR Technology for use in Bonded Multi-Layer Hoses \u003cbr\u003eNick Sandland \u0026amp; Peter Abraham, Zeon Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePolar Plasticisers in EPDM - An Unorthodox Approach with Interesting Results \u003cbr\u003eThomas Mergenhagen, Schill \u0026amp; Seilacher 'Struktol' AG, Germany \u003cbr\u003e\u003cbr\u003eMulti-Ingredient- Preweighs - A New Concept of Handling Rubber Chemicals \u003cbr\u003eThomas Kromminga, RheinChemie Rheinau GmbH, Germany \u003cbr\u003e\u003cbr\u003eScission and Recombination Efficiency of Hybrid Crosslinks \u003cbr\u003eAhmed S Farid, University of North London, UK \u003cbr\u003e\u003cbr\u003eResearch on Extractables from Food-Contact Rubber Compounds using GC-MS and LC-MS Based Techniques \u003cbr\u003eJohn Sidwell, Rapra Technology Ltd, UK \u003cbr\u003e\u003cbr\u003eCompounding Effects on Physical Properties and Rubber-Metal Bonding \u003cbr\u003eR J Del Vecchio, Technical Consulting, USA \u003cbr\u003e\u003cbr\u003eBest Practices in Product Stewardship \u003cbr\u003eWolfram Keller, PRTM, Germany \u003cbr\u003e\u003cbr\u003eClean Rubber - Straining Applications with Gear Extruders \u003cbr\u003eWinfried Trost, Uth GmbH, Germany \u003cbr\u003e\u003cbr\u003eDevelopments in the Field of Batch-Off Lines \u003cbr\u003ePeter Steinl \u0026amp; Christina Lebeus, LWB Steinl GmbH, Germany \u003cbr\u003ePaper unavailable at time of print\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:31-04:00","created_at":"2017-06-22T21:14:31-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","additives","book","carbon black","compunding","curing","emission","extrusion","fillers","food","health","mixing","r-properties","rubber","safety","viscosity"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378422084,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"RubberChem 2002","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-316-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Munich, Germany, 11th-12th June 2002, Conference Proceedings \u003cbr\u003eISBN 978-1-85957-316-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002 \u003cbr\u003e\u003c\/span\u003ePages: 174\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRubberChem 2002 - The Third International Rubber Chemicals, Compounding, and Mixing Conference was held in Munich, Germany. This two day event brought together the leading experts in the rubber and related industries. \u003cbr\u003e\u003cbr\u003eThe conference provided an excellent forum for discussing the wide range of compounding materials, chemicals, and mixing techniques. The important aspects of health \u0026amp; safety of materials and rubber products were also covered in the comprehensive technical programme.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eList of Papers\u003c\/strong\u003e\u003cbr\u003eAnother View of the Rubber Chemicals Industry \u003cbr\u003eRichard Simpson, Rapra Technology Ltd, UK \u003cbr\u003e\u003cbr\u003eA New \"Intelligent\" Viscosity Reduction Concept - Better Processability without Sacrifice in Dynamic Properties \u003cbr\u003eKarl Menting, Schill \u0026amp; Seilacher 'Struktol' AG, Germany \u003cbr\u003e\u003cbr\u003eLow-Temperature Curing by Using Zinc-2-mercaptobenzothiazole (ZMBT) in Combination with Dithiocarbamates (DTC) and Amine Curing Systems \u003cbr\u003eNico Huntink, Flexsys BV, The Netherlands \u003cbr\u003e\u003cbr\u003eRubcon - Technology of High Filled Composite Materials \u003cbr\u003eProf Oleg Figovsky, Israel Research Centre \"Polymate\", Israel \u003cbr\u003e\u003cbr\u003eNew Optimised System for the Lead-Free Crosslinking of Epichlorohydrin (ECO) Elastomer \u003cbr\u003eHans Martin Issel, RheinChemie Rheinau GmbH, Germany \u003cbr\u003e\u003cbr\u003eHazardous Emissions in the Rubber Industry - Sampling and Analysis \u003cbr\u003eUlrich Giese, Deutsches Institut für Kautschuktechnologie EV (DIK), Germany \u003cbr\u003e\u003cbr\u003eReduction of the Emission of Harmful Substances from Rubber Based Commodity Articles \u003cbr\u003eRita H Auerbach, Federal Institute Materials Research, Germany \u003cbr\u003e\u003cbr\u003eAccurate Ultra Low Fines Conveying of Carbon Black \u003cbr\u003eBob Yarwood, BMH Chronos Richardson Ltd, UK \u003cbr\u003e\u003cbr\u003eSilica Dusts \u003cbr\u003eYves Bomal, Rhodia, France \u003cbr\u003e\u003cbr\u003eImplementation of the ATEX Environmental Directive - Process Dusts \u003cbr\u003eUlf Persson, Nederman, Sweden \u003cbr\u003ePaper unavailable at time of print \u003cbr\u003e\u003cbr\u003ePretreatments of Elastomers to Enhance Adhesion \u003cbr\u003eRalf H Dahm, D M Brewis, I Mathieson, J L Tegg ISST Loughborough University, UK \u003cbr\u003e\u003cbr\u003eHNBR Technology for use in Bonded Multi-Layer Hoses \u003cbr\u003eNick Sandland \u0026amp; Peter Abraham, Zeon Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePolar Plasticisers in EPDM - An Unorthodox Approach with Interesting Results \u003cbr\u003eThomas Mergenhagen, Schill \u0026amp; Seilacher 'Struktol' AG, Germany \u003cbr\u003e\u003cbr\u003eMulti-Ingredient- Preweighs - A New Concept of Handling Rubber Chemicals \u003cbr\u003eThomas Kromminga, RheinChemie Rheinau GmbH, Germany \u003cbr\u003e\u003cbr\u003eScission and Recombination Efficiency of Hybrid Crosslinks \u003cbr\u003eAhmed S Farid, University of North London, UK \u003cbr\u003e\u003cbr\u003eResearch on Extractables from Food-Contact Rubber Compounds using GC-MS and LC-MS Based Techniques \u003cbr\u003eJohn Sidwell, Rapra Technology Ltd, UK \u003cbr\u003e\u003cbr\u003eCompounding Effects on Physical Properties and Rubber-Metal Bonding \u003cbr\u003eR J Del Vecchio, Technical Consulting, USA \u003cbr\u003e\u003cbr\u003eBest Practices in Product Stewardship \u003cbr\u003eWolfram Keller, PRTM, Germany \u003cbr\u003e\u003cbr\u003eClean Rubber - Straining Applications with Gear Extruders \u003cbr\u003eWinfried Trost, Uth GmbH, Germany \u003cbr\u003e\u003cbr\u003eDevelopments in the Field of Batch-Off Lines \u003cbr\u003ePeter Steinl \u0026amp; Christina Lebeus, LWB Steinl GmbH, Germany \u003cbr\u003ePaper unavailable at time of print\u003cbr\u003e\u003cbr\u003e"}
RubberChem 2008
$140.00
{"id":11242236804,"title":"RubberChem 2008","handle":"978-1-8473-5077-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra \u003cbr\u003eISBN 978-1-8473-5077-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePrague, Czech Republic, 3-4 December 2008\u003c\/p\u003e\n\u003cp\u003e20 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe sixth international conference took place in December 2008, it ensured all who atteneded were kept up to date with the new regulations, applications and, of course, the ever changing composition of competitive products. \u003cbr\u003e\u003cbr\u003eThe rubber industry continues to face the ongoing challenges of cost-down pressures from the automotive industry, low-price competition from suppliers in China and Eastern Europe and an array of environmental issues.\u003cbr\u003e\u003cbr\u003eThe conference proceedings are now availabe for general release, all 20 papers presented at this conference are featured ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 THE BUSINESS ENVIRONMENT AND LEGISLATION\u003cbr\u003ePaper 1\u003c\/strong\u003e Outlook for rubber chemicals: current conditions and future prospects\u003cbr\u003ePaul Ita, Notch Consulting Group, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 2\u003c\/strong\u003e Impact of REACH on company and sector product stewardship efforts - some predictions for the future\u003cbr\u003eUrsula Schliessner, McKenna Long \u0026amp; Aldridge LLP, Belgium \u003cbr\u003eSESSION 2 FILLERS\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 3\u003c\/strong\u003e Carbon nanotubes\/silicone elastomer nanocomposites: multi-functional and high performance products; review and trends of their applications \u003cbr\u003eMichael Claes, Daniel Bonduel \u0026amp; Frédéric Luizi, Nanocyl SA, Belgium; Alexandre Beigbeder \u0026amp; Philippe Dubois, Université of Mons-Hainaut UMH, Belgium\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 4\u003c\/strong\u003e High performance silicas in the tire industry: sustainable mobility interest - wide specific surface area range interest\u003cbr\u003eLaurent Guy, Rhodia, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 5\u003c\/strong\u003e Carbon black fundamental properties and their effect on elastomer performance\u003cbr\u003eDr Joe Hallett, Columbian Chemicals Company, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 6\u003c\/strong\u003e Novel electrical conductive material based on natural rubber: preparation \u0026amp; characterisation\u003cbr\u003eK C Yong \u0026amp; Md Aris Ahmad, Rubber Research Institute of Malaysia, Malaysia; P J S Foot \u0026amp; H Morgan, Kingston University, UK; S Cook \u0026amp; A J Tinker, Tun Abdul Razak Research Centre, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 VULCANISATION \u0026amp; CURE SYSTEMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 7\u003c\/strong\u003e How process aids help\u003cbr\u003eMario Kuschnerus \u0026amp; Colin Clarke, Schill \u0026amp; Seilacher 'Struktol' AG, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 8\u003c\/strong\u003e Improved processing stabilizer systems for rubber compounding\u003cbr\u003eDr Ing André le Gal \u0026amp; Eva Peregi, CIBA Inc, Switzerland\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 9 \u003c\/strong\u003eActivated curing systems for IIR, CR and ECO\u003cbr\u003eDr Andreas Schröder, C Bergmann, D Hoff \u0026amp; M Säwe, Rhein Chemie Rheinau GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 10 \u003c\/strong\u003eThe effect of special chemicals on the aging resistance behavior of NR based tyre tread compounds\u003cbr\u003eProf Dipak Khastgir, P Sachdeva, IIT Kharagpur, India; S Dasgupta, S Bhattacharya \u0026amp; R Mukhopadhyay, J K Tyres Ltd, India\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 POLYMERS \u0026amp; COMPOUNDING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 11\u003c\/strong\u003e Compounding of silica filled rubber in a twin-screw extruder\u003cbr\u003eDipl-Ing Hannah Köppen, Prof Dr-Ing, Dr-Ing Eh Walter Michaeli \u0026amp; Edmund Haberstroh, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 12\u003c\/strong\u003e High and very high molecular weight EPDM polymers with 2-VINYL-5-NORBORNENE as third monomer\u003cbr\u003eChris Twigg, Michiel Dees \u0026amp; Herman Dikland, DSM Elastomers, The Netherlands; Martin van Duin, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13\u003c\/strong\u003e A futuristic material for improving tire performance: addressing rolling resistance, durability and wear characteristics\u003cbr\u003eDr Nico Huntink, Rabin Datta, Vincent Siebes, Bas Pierik \u0026amp; Peter de Lange, Teijin Twaron BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14\u003c\/strong\u003e Extrusion of physically foamed rubber profiles\u003cbr\u003eKira Epping \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 5 TESTING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15 \u003c\/strong\u003eTesting perfluoroelastomers for oil field applications\u003cbr\u003eLillian Guo, Paul McElfresh \u0026amp; Jim Fraser, Baker Hughes Inc, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 16 \u003c\/strong\u003eAccelerated test of thermoplastic elastomers under multiaxial dynamic load regarding the lifetime\u003cbr\u003eAndreas Schobel \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 17 \u003c\/strong\u003eInfluence of nature and type of flaw on the properties of a natural rubber compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Martyn Bennett, Artis, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 6 APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 18 \u003c\/strong\u003eExploring novel ways to utilise recycled tyre rubber\u003cbr\u003eGary Crutchley \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 19\u003c\/strong\u003e Revulcanisation - excellent, easy and cheap method for recycling worn-out rubber\u003cbr\u003eStanislaw Pasynkiewicz, Ewa Kowalska \u0026amp; Magdalena Zubrowska, Industrial Chemistry Research Institute, Poland\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 20 \u003c\/strong\u003eEffect of ageing on the fracture properties of a natural rubber engine mount compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:33-04:00","created_at":"2017-06-22T21:14:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","carbon black","carbon nanotubes","compounding","Environment","r-compounding","REACH","rubber","rubber formulary","silicas","silicone"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378423684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"RubberChem 2008","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-8473-5077-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239","options":["Title"],"media":[{"alt":null,"id":358742917213,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-8473-5077-0.jpg?v=1499726239","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra \u003cbr\u003eISBN 978-1-8473-5077-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePrague, Czech Republic, 3-4 December 2008\u003c\/p\u003e\n\u003cp\u003e20 Pages\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe sixth international conference took place in December 2008, it ensured all who atteneded were kept up to date with the new regulations, applications and, of course, the ever changing composition of competitive products. \u003cbr\u003e\u003cbr\u003eThe rubber industry continues to face the ongoing challenges of cost-down pressures from the automotive industry, low-price competition from suppliers in China and Eastern Europe and an array of environmental issues.\u003cbr\u003e\u003cbr\u003eThe conference proceedings are now availabe for general release, all 20 papers presented at this conference are featured ...\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1 THE BUSINESS ENVIRONMENT AND LEGISLATION\u003cbr\u003ePaper 1\u003c\/strong\u003e Outlook for rubber chemicals: current conditions and future prospects\u003cbr\u003ePaul Ita, Notch Consulting Group, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 2\u003c\/strong\u003e Impact of REACH on company and sector product stewardship efforts - some predictions for the future\u003cbr\u003eUrsula Schliessner, McKenna Long \u0026amp; Aldridge LLP, Belgium \u003cbr\u003eSESSION 2 FILLERS\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 3\u003c\/strong\u003e Carbon nanotubes\/silicone elastomer nanocomposites: multi-functional and high performance products; review and trends of their applications \u003cbr\u003eMichael Claes, Daniel Bonduel \u0026amp; Frédéric Luizi, Nanocyl SA, Belgium; Alexandre Beigbeder \u0026amp; Philippe Dubois, Université of Mons-Hainaut UMH, Belgium\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 4\u003c\/strong\u003e High performance silicas in the tire industry: sustainable mobility interest - wide specific surface area range interest\u003cbr\u003eLaurent Guy, Rhodia, France\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 5\u003c\/strong\u003e Carbon black fundamental properties and their effect on elastomer performance\u003cbr\u003eDr Joe Hallett, Columbian Chemicals Company, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 6\u003c\/strong\u003e Novel electrical conductive material based on natural rubber: preparation \u0026amp; characterisation\u003cbr\u003eK C Yong \u0026amp; Md Aris Ahmad, Rubber Research Institute of Malaysia, Malaysia; P J S Foot \u0026amp; H Morgan, Kingston University, UK; S Cook \u0026amp; A J Tinker, Tun Abdul Razak Research Centre, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3 VULCANISATION \u0026amp; CURE SYSTEMS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 7\u003c\/strong\u003e How process aids help\u003cbr\u003eMario Kuschnerus \u0026amp; Colin Clarke, Schill \u0026amp; Seilacher 'Struktol' AG, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 8\u003c\/strong\u003e Improved processing stabilizer systems for rubber compounding\u003cbr\u003eDr Ing André le Gal \u0026amp; Eva Peregi, CIBA Inc, Switzerland\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 9 \u003c\/strong\u003eActivated curing systems for IIR, CR and ECO\u003cbr\u003eDr Andreas Schröder, C Bergmann, D Hoff \u0026amp; M Säwe, Rhein Chemie Rheinau GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 10 \u003c\/strong\u003eThe effect of special chemicals on the aging resistance behavior of NR based tyre tread compounds\u003cbr\u003eProf Dipak Khastgir, P Sachdeva, IIT Kharagpur, India; S Dasgupta, S Bhattacharya \u0026amp; R Mukhopadhyay, J K Tyres Ltd, India\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4 POLYMERS \u0026amp; COMPOUNDING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 11\u003c\/strong\u003e Compounding of silica filled rubber in a twin-screw extruder\u003cbr\u003eDipl-Ing Hannah Köppen, Prof Dr-Ing, Dr-Ing Eh Walter Michaeli \u0026amp; Edmund Haberstroh, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 12\u003c\/strong\u003e High and very high molecular weight EPDM polymers with 2-VINYL-5-NORBORNENE as third monomer\u003cbr\u003eChris Twigg, Michiel Dees \u0026amp; Herman Dikland, DSM Elastomers, The Netherlands; Martin van Duin, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13\u003c\/strong\u003e A futuristic material for improving tire performance: addressing rolling resistance, durability and wear characteristics\u003cbr\u003eDr Nico Huntink, Rabin Datta, Vincent Siebes, Bas Pierik \u0026amp; Peter de Lange, Teijin Twaron BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14\u003c\/strong\u003e Extrusion of physically foamed rubber profiles\u003cbr\u003eKira Epping \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 5 TESTING\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15 \u003c\/strong\u003eTesting perfluoroelastomers for oil field applications\u003cbr\u003eLillian Guo, Paul McElfresh \u0026amp; Jim Fraser, Baker Hughes Inc, USA\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 16 \u003c\/strong\u003eAccelerated test of thermoplastic elastomers under multiaxial dynamic load regarding the lifetime\u003cbr\u003eAndreas Schobel \u0026amp; Prof Dr-Ing, Dr-Ing Eh Walter Michaeli, Institute of Plastics Processing (IKV) at RWTH Aachen University, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 17 \u003c\/strong\u003eInfluence of nature and type of flaw on the properties of a natural rubber compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Martyn Bennett, Artis, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e SESSION 6 APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 18 \u003c\/strong\u003eExploring novel ways to utilise recycled tyre rubber\u003cbr\u003eGary Crutchley \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK\u003cbr\u003e\u003cbr\u003e \u003cstrong\u003ePaper 19\u003c\/strong\u003e Revulcanisation - excellent, easy and cheap method for recycling worn-out rubber\u003cbr\u003eStanislaw Pasynkiewicz, Ewa Kowalska \u0026amp; Magdalena Zubrowska, Industrial Chemistry Research Institute, Poland\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e Paper 20 \u003c\/strong\u003eEffect of ageing on the fracture properties of a natural rubber engine mount compound\u003cbr\u003eDr Frederick E Ngolemasango, Chris O'Connor \u0026amp; John Manley, Smithers Rapra Technology Ltd, UK; Jane Clarke, Loughborough University, UK\u003cbr\u003e\u003cbr\u003e"}
Screws for Polymer Pro...
$55.00
{"id":11242232644,"title":"Screws for Polymer Processing - The Way to Better Productivity","handle":"978-1-85957-047-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-047-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e8 papers, softbound\u003c\/p\u003e\n\u003cp\u003epages 76\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe latest technology of screw selection and design from computer simulation to performance trials is discussed. The comparison of processor requirements with screw and barrel technology, computer simulation for proper screw selection, improved productivity through extruder screw design, spreadsheets for screw design, plasticating screw design, single screw mixing, problems and solutions, refurbish or renew, how outputs with grooved feed extruders, ion implantation treatment for screws and barrels are the topics included.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eContents\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eComputer simulation for proper screw selection \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eImproved productivity through extruder screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSpread sheets for screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003ePlasticating screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSingle screw mixing: Problems and solutions \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRefurbish or renew? \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eHigh outputs with grooved feed extruders \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eIon implantation treatment for screws and barrels\u003c\/span\u003e\u003c\/li\u003e","published_at":"2018-02-12T08:09:36-05:00","created_at":"2017-06-22T21:14:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","extruder screw design","plasticating screw design","polymers","processing","single screw mixing","spreadsheets screw design"],"price":5500,"price_min":5500,"price_max":5500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412932,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Screws for Polymer Processing - The Way to Better Productivity","public_title":null,"options":["Default Title"],"price":5500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-047-0 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e8 papers, softbound\u003c\/p\u003e\n\u003cp\u003epages 76\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe latest technology of screw selection and design from computer simulation to performance trials is discussed. The comparison of processor requirements with screw and barrel technology, computer simulation for proper screw selection, improved productivity through extruder screw design, spreadsheets for screw design, plasticating screw design, single screw mixing, problems and solutions, refurbish or renew, how outputs with grooved feed extruders, ion implantation treatment for screws and barrels are the topics included.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eContents\u003c\/span\u003e\u003c\/strong\u003e\u003c\/p\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eComputer simulation for proper screw selection \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eImproved productivity through extruder screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSpread sheets for screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003ePlasticating screw design \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eSingle screw mixing: Problems and solutions \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eRefurbish or renew? \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eHigh outputs with grooved feed extruders \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan face=\"verdana,geneva\" size=\"1\" style=\"font-family: verdana, geneva; font-size: xx-small;\"\u003eIon implantation treatment for screws and barrels\u003c\/span\u003e\u003c\/li\u003e"}
Selection of Polymeric...
$250.00
{"id":11242218244,"title":"Selection of Polymeric Materials","handle":"978-0-8155-1551-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Alfredo Campo \u003cbr\u003eISBN 978-0-8155-1551-7 \u003cbr\u003e\u003cbr\u003eHow to Select Design Properties from Different Standards\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003ePages 253 pp, Hardback, 159 Illustrations\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nToday engineers, designers, buyers and all those who have to work with plastics face a dilemma. There has been a proliferation of test methods by which plastic properties are measured. The property data measured by these test methods are not identical and sometimes have large differences. How are engineers, designers, buyers going to decide the type and resin grade and their property data? Which are the valid test methods? The right plastic property data are the difference between success and failure of a design, thus making the property selection process critical. For the first time, this book provides a simple and efficient approach to a highly complex and time-consuming task. There are over 26,000 different grades of polymers and millions of parts and applications, further adding to the difficulty of the selection process. \u003cbr\u003e\u003cbr\u003eSelection of Polymeric Materials steers engineers and designers onto the right path to selecting the appropriate values for each plastic property. A large amount of property information has been provided to teach and assist the plastic part designer and others in selecting the right resin and properties for an application. Various standards including ASTM, ISO, UL, and British Specifications have been discussed to help the readers in making sound decisions. \u003cbr\u003e\u003cbr\u003e• A simple and efficient approach to a highly complex and time-consuming task. \u003cbr\u003e• Allows engineers to select from various standards including ASTM, ISO, UL, and British Specification. \u003cbr\u003e• Presents information on properties such as tensile strength, melt temperature, continuous service temperature, moisture exposure, specific gravity and flammability ratings. \u003cbr\u003e• Tried and true values narrow myriad choices down quickly for readers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Polymeric Materials and Properties\u003c\/strong\u003e\u003cbr\u003e1.1 Tensile Stress-Strain Comparison Graphs \u003cbr\u003e1.2 Property Data Information for Polymeric Materials \u003cbr\u003e1.3 Material Selection Guidelines \u003cbr\u003e1.4 Polymeric Materials Specifications \u003cbr\u003e1.5 Testing Polymeric Materials \u003cbr\u003e1.6 The Need for Uniform Global Testing Standards \u003cbr\u003e1.7 Polymeric Materials \u003cbr\u003e1.8 Polymeric Materials Background \u003cbr\u003e1.9 Polymeric Materials Families \u003cbr\u003e1.10 Classification of Polymeric Materials by Performance \u003cbr\u003e1.11 Types of Thermoplastic Molecular Structures \u003cbr\u003e1.12 Manufacturing of Polymers \u003cbr\u003e1.13 Polymeric Materials Compounding Process \u003cbr\u003e1.14 Basic Characteristics of Polymeric Materials \u003cbr\u003e1.15 Families of Thermoplastic Polymers \u003cbr\u003e1.16 Families of Thermoplastic Elastomers (TPE) \u003cbr\u003e1.17 Families of Thermoset Polymers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. Mechanical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Comparison Tables of Mechanical Properties \u003cbr\u003e2.3 Comparison Between ASTM and ISO Mechanical Test Standards \u003cbr\u003e2.4 Tensile Testing \u003cbr\u003e2.5 Tensile Strength Effects Caused by Cross-Head Speeds \u003cbr\u003e2.6 Molecular Orientation Effects \u003cbr\u003e2.7 Compounding Processes \u0026amp; Properties of Glass Reinforced Polymers \u003cbr\u003e2.8 Fiber Glass Effects on Polymeric Material Properties \u003cbr\u003e2.9 Tensile Stress Effects Caused by Fiber Glass Orientation \u003cbr\u003e2.10 Weld Line Effects on Injection Molded Products \u003cbr\u003e2.11 Temperature Effects on the Behavior of Polymeric Materials \u003cbr\u003e2.12 Effects to Nylon Properties Caused by Moisture \u003cbr\u003e2.13 Flexural Testing \u003cbr\u003e2.14 Compressive Strength Testing \u003cbr\u003e2.15 Shear Strength Testing \u003cbr\u003e2.16 Stress-Strain Curves, Load Type Comparison \u003cbr\u003e2.17 Creep, Rupture, Relaxation, and Fatigue \u003cbr\u003e2.18 Tensile Creep Testing \u003cbr\u003e2.19 Flexural Creep Testing \u003cbr\u003e2.20 Isochronous Stress-Strain Curves \u003cbr\u003e2.21 Procedure for Applying Creep Modulus \u003cbr\u003e2.22 Creep Rupture \u003cbr\u003e2.23 Stress Relaxation \u003cbr\u003e2.24 Fatigue Characteristics \u003cbr\u003e2.25 Impact Strength Testing \u003cbr\u003e2.26 Impact Fracture Mechanism \u003cbr\u003e2.27 Pendulum Impact Tests \u003cbr\u003e2.28 Gardner Drop Weight Impact Testing \u003cbr\u003e2.29 Falling Weight Tower Impact Testing \u003cbr\u003e2.30 Instrumented Impact Testing \u003cbr\u003e2.31 Instrumented High-Speed Horizontal Plunger Impact Tester \u003cbr\u003e2.32 Instrumented Impact Testing (Dynatup®) \u003cbr\u003e2.33 Product Design Analysis Using Dynatup® Test Data \u003cbr\u003e2.34 Miscellaneous Impact Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Thermal Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Thermal Properties for Elevated Temperatures \u003cbr\u003e3.3 Introduction to ISO Testing Standards \u003cbr\u003e3.4 Melting Temperature Testing \u003cbr\u003e3.5 Vicat Softening Temperature Testing \u003cbr\u003e3.6 Glass Transition Temperature Testing \u003cbr\u003e3.7 Brittleness Temperature Testing \u003cbr\u003e3.8 Continuous Service Temperature Testing \u003cbr\u003e3.9 UL Temperature Index \u003cbr\u003e3.10 Heat Deflection Temperature Testing \u003cbr\u003e3.11 Soldering Heat Resistance Performance \u003cbr\u003e3.12 Coefficient of Linear Thermal Expansion Testing \u003cbr\u003e3.13 Thermal Conductivity Testing \u003cbr\u003e3.14 Melt Flow Rate \u003cbr\u003e3.15 Melt Mass-flow Rate Testing \u003cbr\u003e3.16 Capillary Rheometer Relative Melt Viscosity Testing \u003cbr\u003e3.17 Relative Melt Viscosity vs. Shear Rate Graph \u003cbr\u003e3.18 Flammability Characteristics of Polymeric Materials \u003cbr\u003e3.19 UL 94 Flammability Testing \u003cbr\u003e3.20 UL Horizontal Burn Testing \u003cbr\u003e3.21 UL Vertical Burn Testing, UL 94-V0, UL 94-V1, UL 94-V2 \u003cbr\u003e3.22 UL Vertical Burn Testing, UL 94-5V, UL 94-5VA, UL 94-5VB \u003cbr\u003e3.23 Limited Oxygen Index Testing \u003cbr\u003e3.24 Smoke Generation Testing \u003cbr\u003e3.25 Self and Flash Ignition Temperature Testing \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Electrical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Thermoplastic Polymers Characteristics for Electrical Applications \u003cbr\u003e4.3 Thermoset Polymers Characteristics for Electrical Applications \u003cbr\u003e4.4 ASTM\/UL Electrical Properties of Polymeric Materials \u003cbr\u003e4.5 Introduction to ISO\/IEC Electrical Test Methods \u003cbr\u003e4.6 Electrical Terminology \u003cbr\u003e4.7 Electrical Insulation Properties \u003cbr\u003e4.8 Electrical Resistance Properties \u003cbr\u003e4.9 Dielectric Constant Testing \u003cbr\u003e4.10 Dissipation Factor Testing \u003cbr\u003e4.11 Volume Resistivity Testing \u003cbr\u003e4.13 Dielectric Strength Testing \u003cbr\u003e4.14 Hot-Wire Ignition Testing \u003cbr\u003e4.15 High-Amperage Arc Ignition Testing \u003cbr\u003e4.16 High-Voltage Arc Tracking Rate \u003cbr\u003e4.17 Arc Resistance Testing \u003cbr\u003e4.18 Comparative Track Index Testing \u003cbr\u003e4.19 Glow Wire Testing \u003cbr\u003e4.20 Hot Mandrel Testing \u003cbr\u003e4.21 Underwriter’s Laboratories Yellow Cards \u003cbr\u003e4.22 How to Read and Interpret the \"UL Yellow Card\" \u003cbr\u003e4.23 \"UL Electrical Insulation Systems\" \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Physical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 ASTM Physical Properties of Polymeric Materials \u003cbr\u003e5.3 ASTM and ISO Comparison of Physical Testing Standards \u003cbr\u003e5.4 Specific Gravity Testing \u003cbr\u003e5.5 Density Gradient Testing \u003cbr\u003e5.6 Optical Testing Properties \u003cbr\u003e5.7 Water Absorption Testing \u003cbr\u003e5.8 Surface Hardness Testing \u003cbr\u003e5.9 Abrasion Resistance Testing \u003cbr\u003e5.10 Tear Resistance \u003cbr\u003e5.11 Coefficient of Friction Testing \u003cbr\u003e5.12 Mold Shrinkage Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Microbial, Weather, Chemical Resistance of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Fungal Resistance Testing \u003cbr\u003e6.3 Bacteria Resistance Testing \u003cbr\u003e6.4 Fungi and Bacteria Outdoor Exposure Resistance Limitations \u003cbr\u003e6.5 Weathering Tests for Polymeric Materials \u003cbr\u003e6.6 Accelerated Weathering Testing \u003cbr\u003e6.7 Exposure to Fluorescent UV Lamp, Condensation \u003cbr\u003e6.8 Accelerated Weather Testing, Weather Ometer® \u003cbr\u003e6.9 Exposure to Carbon Arc Light % Water Testing \u003cbr\u003e6.10 Exposure to Xenon Arc Light and Water Testing \u003cbr\u003e6.11 Outdoor Weathering Testing \u003cbr\u003e6.12 Chemical Resistance Testing of Polymeric Materials \u003cbr\u003e6.13 Chemical Resistance Tables of Delrin Homopolymer Acetal \u003cbr\u003eAppendices \u003cbr\u003eAcronyms for Polymeric Materials \u003cbr\u003eCommon Acronyms \u003cbr\u003eProcess Acronyms \u003cbr\u003eReinforcements and Fillers Acronyms \u003cbr\u003eNomenclature \u003cbr\u003eEnglish and Metric Units Conversion Guide\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDuPont (retired), Delaware, U.S.A.\u003cbr\u003eE. Alfredo Campo is a retired DuPont senior engineer with extensive experience and in-depth technical knowledge of polymer technology. He is a widely published author of books, articles, and papers. His latest book is The Complete Part Design Handbook for Injection Molding of Thermoplastics.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:35-04:00","created_at":"2017-06-22T21:13:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","application","ASTM","bacteria resistance","book","chemical resistance","creep","elastomer","fatigue","fracture","impact","ISO","material","mechanical test","polymeric materials","property","shear","specification","standards","tensile test","testing","thermal","thermoplastic","weathering"],"price":25000,"price_min":25000,"price_max":25000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378361924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Selection of Polymeric Materials","public_title":null,"options":["Default Title"],"price":25000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1551-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1551-7.jpg?v=1499646387"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1551-7.jpg?v=1499646387","options":["Title"],"media":[{"alt":null,"id":358743474269,"position":1,"preview_image":{"aspect_ratio":0.776,"height":499,"width":387,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1551-7.jpg?v=1499646387"},"aspect_ratio":0.776,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1551-7.jpg?v=1499646387","width":387}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Alfredo Campo \u003cbr\u003eISBN 978-0-8155-1551-7 \u003cbr\u003e\u003cbr\u003eHow to Select Design Properties from Different Standards\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003ePages 253 pp, Hardback, 159 Illustrations\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nToday engineers, designers, buyers and all those who have to work with plastics face a dilemma. There has been a proliferation of test methods by which plastic properties are measured. The property data measured by these test methods are not identical and sometimes have large differences. How are engineers, designers, buyers going to decide the type and resin grade and their property data? Which are the valid test methods? The right plastic property data are the difference between success and failure of a design, thus making the property selection process critical. For the first time, this book provides a simple and efficient approach to a highly complex and time-consuming task. There are over 26,000 different grades of polymers and millions of parts and applications, further adding to the difficulty of the selection process. \u003cbr\u003e\u003cbr\u003eSelection of Polymeric Materials steers engineers and designers onto the right path to selecting the appropriate values for each plastic property. A large amount of property information has been provided to teach and assist the plastic part designer and others in selecting the right resin and properties for an application. Various standards including ASTM, ISO, UL, and British Specifications have been discussed to help the readers in making sound decisions. \u003cbr\u003e\u003cbr\u003e• A simple and efficient approach to a highly complex and time-consuming task. \u003cbr\u003e• Allows engineers to select from various standards including ASTM, ISO, UL, and British Specification. \u003cbr\u003e• Presents information on properties such as tensile strength, melt temperature, continuous service temperature, moisture exposure, specific gravity and flammability ratings. \u003cbr\u003e• Tried and true values narrow myriad choices down quickly for readers.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Polymeric Materials and Properties\u003c\/strong\u003e\u003cbr\u003e1.1 Tensile Stress-Strain Comparison Graphs \u003cbr\u003e1.2 Property Data Information for Polymeric Materials \u003cbr\u003e1.3 Material Selection Guidelines \u003cbr\u003e1.4 Polymeric Materials Specifications \u003cbr\u003e1.5 Testing Polymeric Materials \u003cbr\u003e1.6 The Need for Uniform Global Testing Standards \u003cbr\u003e1.7 Polymeric Materials \u003cbr\u003e1.8 Polymeric Materials Background \u003cbr\u003e1.9 Polymeric Materials Families \u003cbr\u003e1.10 Classification of Polymeric Materials by Performance \u003cbr\u003e1.11 Types of Thermoplastic Molecular Structures \u003cbr\u003e1.12 Manufacturing of Polymers \u003cbr\u003e1.13 Polymeric Materials Compounding Process \u003cbr\u003e1.14 Basic Characteristics of Polymeric Materials \u003cbr\u003e1.15 Families of Thermoplastic Polymers \u003cbr\u003e1.16 Families of Thermoplastic Elastomers (TPE) \u003cbr\u003e1.17 Families of Thermoset Polymers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. Mechanical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Comparison Tables of Mechanical Properties \u003cbr\u003e2.3 Comparison Between ASTM and ISO Mechanical Test Standards \u003cbr\u003e2.4 Tensile Testing \u003cbr\u003e2.5 Tensile Strength Effects Caused by Cross-Head Speeds \u003cbr\u003e2.6 Molecular Orientation Effects \u003cbr\u003e2.7 Compounding Processes \u0026amp; Properties of Glass Reinforced Polymers \u003cbr\u003e2.8 Fiber Glass Effects on Polymeric Material Properties \u003cbr\u003e2.9 Tensile Stress Effects Caused by Fiber Glass Orientation \u003cbr\u003e2.10 Weld Line Effects on Injection Molded Products \u003cbr\u003e2.11 Temperature Effects on the Behavior of Polymeric Materials \u003cbr\u003e2.12 Effects to Nylon Properties Caused by Moisture \u003cbr\u003e2.13 Flexural Testing \u003cbr\u003e2.14 Compressive Strength Testing \u003cbr\u003e2.15 Shear Strength Testing \u003cbr\u003e2.16 Stress-Strain Curves, Load Type Comparison \u003cbr\u003e2.17 Creep, Rupture, Relaxation, and Fatigue \u003cbr\u003e2.18 Tensile Creep Testing \u003cbr\u003e2.19 Flexural Creep Testing \u003cbr\u003e2.20 Isochronous Stress-Strain Curves \u003cbr\u003e2.21 Procedure for Applying Creep Modulus \u003cbr\u003e2.22 Creep Rupture \u003cbr\u003e2.23 Stress Relaxation \u003cbr\u003e2.24 Fatigue Characteristics \u003cbr\u003e2.25 Impact Strength Testing \u003cbr\u003e2.26 Impact Fracture Mechanism \u003cbr\u003e2.27 Pendulum Impact Tests \u003cbr\u003e2.28 Gardner Drop Weight Impact Testing \u003cbr\u003e2.29 Falling Weight Tower Impact Testing \u003cbr\u003e2.30 Instrumented Impact Testing \u003cbr\u003e2.31 Instrumented High-Speed Horizontal Plunger Impact Tester \u003cbr\u003e2.32 Instrumented Impact Testing (Dynatup®) \u003cbr\u003e2.33 Product Design Analysis Using Dynatup® Test Data \u003cbr\u003e2.34 Miscellaneous Impact Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Thermal Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Thermal Properties for Elevated Temperatures \u003cbr\u003e3.3 Introduction to ISO Testing Standards \u003cbr\u003e3.4 Melting Temperature Testing \u003cbr\u003e3.5 Vicat Softening Temperature Testing \u003cbr\u003e3.6 Glass Transition Temperature Testing \u003cbr\u003e3.7 Brittleness Temperature Testing \u003cbr\u003e3.8 Continuous Service Temperature Testing \u003cbr\u003e3.9 UL Temperature Index \u003cbr\u003e3.10 Heat Deflection Temperature Testing \u003cbr\u003e3.11 Soldering Heat Resistance Performance \u003cbr\u003e3.12 Coefficient of Linear Thermal Expansion Testing \u003cbr\u003e3.13 Thermal Conductivity Testing \u003cbr\u003e3.14 Melt Flow Rate \u003cbr\u003e3.15 Melt Mass-flow Rate Testing \u003cbr\u003e3.16 Capillary Rheometer Relative Melt Viscosity Testing \u003cbr\u003e3.17 Relative Melt Viscosity vs. Shear Rate Graph \u003cbr\u003e3.18 Flammability Characteristics of Polymeric Materials \u003cbr\u003e3.19 UL 94 Flammability Testing \u003cbr\u003e3.20 UL Horizontal Burn Testing \u003cbr\u003e3.21 UL Vertical Burn Testing, UL 94-V0, UL 94-V1, UL 94-V2 \u003cbr\u003e3.22 UL Vertical Burn Testing, UL 94-5V, UL 94-5VA, UL 94-5VB \u003cbr\u003e3.23 Limited Oxygen Index Testing \u003cbr\u003e3.24 Smoke Generation Testing \u003cbr\u003e3.25 Self and Flash Ignition Temperature Testing \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Electrical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction \u003cbr\u003e4.2 Thermoplastic Polymers Characteristics for Electrical Applications \u003cbr\u003e4.3 Thermoset Polymers Characteristics for Electrical Applications \u003cbr\u003e4.4 ASTM\/UL Electrical Properties of Polymeric Materials \u003cbr\u003e4.5 Introduction to ISO\/IEC Electrical Test Methods \u003cbr\u003e4.6 Electrical Terminology \u003cbr\u003e4.7 Electrical Insulation Properties \u003cbr\u003e4.8 Electrical Resistance Properties \u003cbr\u003e4.9 Dielectric Constant Testing \u003cbr\u003e4.10 Dissipation Factor Testing \u003cbr\u003e4.11 Volume Resistivity Testing \u003cbr\u003e4.13 Dielectric Strength Testing \u003cbr\u003e4.14 Hot-Wire Ignition Testing \u003cbr\u003e4.15 High-Amperage Arc Ignition Testing \u003cbr\u003e4.16 High-Voltage Arc Tracking Rate \u003cbr\u003e4.17 Arc Resistance Testing \u003cbr\u003e4.18 Comparative Track Index Testing \u003cbr\u003e4.19 Glow Wire Testing \u003cbr\u003e4.20 Hot Mandrel Testing \u003cbr\u003e4.21 Underwriter’s Laboratories Yellow Cards \u003cbr\u003e4.22 How to Read and Interpret the \"UL Yellow Card\" \u003cbr\u003e4.23 \"UL Electrical Insulation Systems\" \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Physical Properties of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e5.1 Introduction \u003cbr\u003e5.2 ASTM Physical Properties of Polymeric Materials \u003cbr\u003e5.3 ASTM and ISO Comparison of Physical Testing Standards \u003cbr\u003e5.4 Specific Gravity Testing \u003cbr\u003e5.5 Density Gradient Testing \u003cbr\u003e5.6 Optical Testing Properties \u003cbr\u003e5.7 Water Absorption Testing \u003cbr\u003e5.8 Surface Hardness Testing \u003cbr\u003e5.9 Abrasion Resistance Testing \u003cbr\u003e5.10 Tear Resistance \u003cbr\u003e5.11 Coefficient of Friction Testing \u003cbr\u003e5.12 Mold Shrinkage Testing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Microbial, Weather, Chemical Resistance of Polymeric Materials\u003c\/strong\u003e\u003cbr\u003e6.1 Introduction \u003cbr\u003e6.2 Fungal Resistance Testing \u003cbr\u003e6.3 Bacteria Resistance Testing \u003cbr\u003e6.4 Fungi and Bacteria Outdoor Exposure Resistance Limitations \u003cbr\u003e6.5 Weathering Tests for Polymeric Materials \u003cbr\u003e6.6 Accelerated Weathering Testing \u003cbr\u003e6.7 Exposure to Fluorescent UV Lamp, Condensation \u003cbr\u003e6.8 Accelerated Weather Testing, Weather Ometer® \u003cbr\u003e6.9 Exposure to Carbon Arc Light % Water Testing \u003cbr\u003e6.10 Exposure to Xenon Arc Light and Water Testing \u003cbr\u003e6.11 Outdoor Weathering Testing \u003cbr\u003e6.12 Chemical Resistance Testing of Polymeric Materials \u003cbr\u003e6.13 Chemical Resistance Tables of Delrin Homopolymer Acetal \u003cbr\u003eAppendices \u003cbr\u003eAcronyms for Polymeric Materials \u003cbr\u003eCommon Acronyms \u003cbr\u003eProcess Acronyms \u003cbr\u003eReinforcements and Fillers Acronyms \u003cbr\u003eNomenclature \u003cbr\u003eEnglish and Metric Units Conversion Guide\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDuPont (retired), Delaware, U.S.A.\u003cbr\u003eE. Alfredo Campo is a retired DuPont senior engineer with extensive experience and in-depth technical knowledge of polymer technology. He is a widely published author of books, articles, and papers. His latest book is The Complete Part Design Handbook for Injection Molding of Thermoplastics.\u003cbr\u003e\u003cbr\u003e"}
Self-healing Materials...
$285.00
{"id":11340962436,"title":"Self-healing Materials. Principles \u0026 Technology","handle":"978-1-927885-23-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-23-9 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2017 \u003cbr\u003e\u003c\/span\u003ePages: 256 + vi Figures: 203\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eSelf-healing phenomenon, adapted from living things, was for a long time an interesting topic of discussion on the potential improvements of human-made products, but for quite a while it became applicable reality useful in many manufactured product. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has three major sections organized in fifteen chapters. The first section contains chapter which discusses the well-established mechanisms of self-healing which can be potentially applied in the development of new materials that have an ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes which occur during self-healing are also discussed and it belongs to this section. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe second part of this book compares parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning of the healing processes, activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect location, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of application the most important analytical techniques to the evaluation of the self-healing process.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final section of the book includes practical advice on the selection of additives for self-healing formulation, methods of self-healing of different polymers and application of self-healing technology in different groups of the products. This part is based on the practical knowledge, the existing patents, the published paper, and the practical application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of application of the technology of self-healing.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience for this book includes people working in the industries listed in chapter 15 and on the polymers listed in chapter 14 (see the table of contents below), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies. \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction. Lessons from Living Things \u003cbr\u003e\u003cbr\u003e2 Mechanisms of Self-healing \u003cbr\u003e2.1 Autonomic \u003cbr\u003e2.2 Click chemistry \u003cbr\u003e2.3 Crosslinking \u003cbr\u003e2.4 Hydrogen bonding \u003cbr\u003e2.5 Luminescence \u003cbr\u003e2.6 Morphological features and organization \u003cbr\u003e2.7 Shape memory \u003cbr\u003e2.8 Thermal healing \u003cbr\u003e2.9 UV \u003cbr\u003e2.10 Water \u003cbr\u003e2.11 Other mechanisms \u003cbr\u003e\u003cbr\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr\u003e3.1 Chemical reactions \u003cbr\u003e3.2 Compositional changes \u003cbr\u003e3.3 Physical processes \u003cbr\u003e3.4 Self-assembly \u003cbr\u003e\u003cbr\u003e4 Fault Detection Mechanisms \u003cbr\u003e\u003cbr\u003e5 Triggering and Tuning the Healing Processes \u003cbr\u003e\u003cbr\u003e6 Activation Energy of Self-healing \u003cbr\u003e\u003cbr\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr\u003e7.1 Autonomous \u003cbr\u003e7.2 Capsule and vascular carriers \u003cbr\u003e7.3 Environmental conditions \u003cbr\u003e7.4 Liquid flow \u003cbr\u003e7.5 Magnetic force \u003cbr\u003e7.6 Manual injection\u003c\/p\u003e\n\u003cp\u003e8 Self-healing Timescale \u003cbr\u003e\u003cbr\u003e9 Self-healing Extent \u003cbr\u003e\u003cbr\u003e10 Molecular Dynamics Simulation \u003cbr\u003e\u003cbr\u003e11 Morphology of Healing \u003cbr\u003e\u003cbr\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr\u003e12.1 X-ray computed tomography \u003cbr\u003e12.2 Raman correlation spectroscopy \u003cbr\u003e12.3 Raman spectroscopy \u003cbr\u003e12.4 Impedance spectroscopy \u003cbr\u003e12.5 Water permeability \u003cbr\u003e12.6 Surface energy \u003cbr\u003e\u003cbr\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr\u003e13.1 Polymers \u003cbr\u003e13.1.1 Urea-formaldehyde resin \u003cbr\u003e13.1.2 Polydimethylsiloxane \u003cbr\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr\u003e13.1.4 Epoxy resins \u003cbr\u003e13.1.5 Polyaniline \u003cbr\u003e13.1.6 Polyurethane \u003cbr\u003e13.2 Capsule-based materials \u003cbr\u003e13.3 Catalysts \u003cbr\u003e13.4 Chemical structures \u003cbr\u003e13.5 Coupling agents \u003cbr\u003e13.6 Crosslinkers \u003cbr\u003e13.7 Fibers \u003cbr\u003e13.8 Magneto-responsive components \u003cbr\u003e13.9 Metal complexes \u003cbr\u003e13.10 Nanoparticles \u003cbr\u003e13.11 Plasticizers \u003cbr\u003e13.12 Solvents \u003cbr\u003e13.13 Vascular self-healing materials \u003cbr\u003e\u003cbr\u003e14 Self-healing of Different Polymers \u003cbr\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr\u003e14.2 Acrylic resin \u003cbr\u003e14.3 Alkyd resin \u003cbr\u003e14.4 Cellulose and its derivatives \u003cbr\u003e14.5 Chitosan \u003cbr\u003e14.6 Cyclodextrin \u003cbr\u003e14.7 Epoxy resin \u003cbr\u003e14.8 Ethylene-vinyl acetate \u003cbr\u003e14.9 Natural rubber \u003cbr\u003e14.10 Polybutadiene \u003cbr\u003e14.11 Poly(butyl acrylate) \u003cbr\u003e14.12 Polycyclooctene \u003cbr\u003e14.13 Poly(ε-caprolactone) \u003cbr\u003e14.14 Polydimethylsiloxane \u003cbr\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr\u003e14.16 Polyethylene \u003cbr\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr\u003e14.18 Polyimide \u003cbr\u003e14.19 Polyisobutylene \u003cbr\u003e14.20 Poly(lactic acid) \u003cbr\u003e14.21 Polymethylmethacrylate \u003cbr\u003e14.22 Poly(phenylene oxide) \u003cbr\u003e14.23 Polyphosphazene \u003cbr\u003e14.24 Polypropylene \u003cbr\u003e14.25 Polystyrene \u003cbr\u003e14.26 Polysulfide \u003cbr\u003e14.27 Polyurethanes \u003cbr\u003e14.28 Poly(vinyl alcohol) \u003cbr\u003e14.29 Poly(vinyl butyral) \u003cbr\u003e14.30 Poly(vinylidene difluoride) \u003cbr\u003e\u003cbr\u003e15 Self-healing in Different Products \u003cbr\u003e15.1 Adhesives \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Asphalt pavement \u003cbr\u003e15.4 Automotive \u003cbr\u003e15.5 Cementitious materials \u003cbr\u003e15.6 Ceramic materials \u003cbr\u003e15.7 Coatings \u003cbr\u003e15.8 Composites \u003cbr\u003e15.9 Corrosion prevention \u003cbr\u003e15.10 Dental \u003cbr\u003e15.11 Electrical insulation \u003cbr\u003e15.12 Electronics \u003cbr\u003e15.13 Fabrics \u003cbr\u003e15.14 Fibers \u003cbr\u003e15.15 Film \u003cbr\u003e15.16 Foam \u003cbr\u003e15.17 Hydrogels \u003cbr\u003e15.18 Laminates \u003cbr\u003e15.19 Lubricating oils \u003cbr\u003e15.20 Medical devices \u003cbr\u003e15.21 Membranes \u003cbr\u003e15.22 Mortars \u003cbr\u003e15.23 Pipes \u003cbr\u003e15.24 Sealants \u003cbr\u003e15.25 Solar cells \u003cbr\u003e15.26 Thermal barrier coatings \u003cbr\u003e15.27 Tires \u003cbr\u003e\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/span\u003e\u003c\/p\u003e","published_at":"2017-06-22T21:15:02-04:00","created_at":"2017-07-03T21:04:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2017","additives","book","healant","material","plastics","polymer","polymers","recovery","rubber","self-healing","self-repair"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":44391632260,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Self-healing Materials. Principles \u0026 Technology","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-23-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570","options":["Title"],"media":[{"alt":null,"id":353498071133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-23-9.jpg?v=1499132570","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-23-9 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2017 \u003cbr\u003e\u003c\/span\u003ePages: 256 + vi Figures: 203\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eSelf-healing phenomenon, adapted from living things, was for a long time an interesting topic of discussion on the potential improvements of human-made products, but for quite a while it became applicable reality useful in many manufactured product. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has three major sections organized in fifteen chapters. The first section contains chapter which discusses the well-established mechanisms of self-healing which can be potentially applied in the development of new materials that have an ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes which occur during self-healing are also discussed and it belongs to this section. \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe second part of this book compares parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning of the healing processes, activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect location, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of application the most important analytical techniques to the evaluation of the self-healing process.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe final section of the book includes practical advice on the selection of additives for self-healing formulation, methods of self-healing of different polymers and application of self-healing technology in different groups of the products. This part is based on the practical knowledge, the existing patents, the published paper, and the practical application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of application of the technology of self-healing.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience for this book includes people working in the industries listed in chapter 15 and on the polymers listed in chapter 14 (see the table of contents below), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies. \u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Introduction. Lessons from Living Things \u003cbr\u003e\u003cbr\u003e2 Mechanisms of Self-healing \u003cbr\u003e2.1 Autonomic \u003cbr\u003e2.2 Click chemistry \u003cbr\u003e2.3 Crosslinking \u003cbr\u003e2.4 Hydrogen bonding \u003cbr\u003e2.5 Luminescence \u003cbr\u003e2.6 Morphological features and organization \u003cbr\u003e2.7 Shape memory \u003cbr\u003e2.8 Thermal healing \u003cbr\u003e2.9 UV \u003cbr\u003e2.10 Water \u003cbr\u003e2.11 Other mechanisms \u003cbr\u003e\u003cbr\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr\u003e3.1 Chemical reactions \u003cbr\u003e3.2 Compositional changes \u003cbr\u003e3.3 Physical processes \u003cbr\u003e3.4 Self-assembly \u003cbr\u003e\u003cbr\u003e4 Fault Detection Mechanisms \u003cbr\u003e\u003cbr\u003e5 Triggering and Tuning the Healing Processes \u003cbr\u003e\u003cbr\u003e6 Activation Energy of Self-healing \u003cbr\u003e\u003cbr\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr\u003e7.1 Autonomous \u003cbr\u003e7.2 Capsule and vascular carriers \u003cbr\u003e7.3 Environmental conditions \u003cbr\u003e7.4 Liquid flow \u003cbr\u003e7.5 Magnetic force \u003cbr\u003e7.6 Manual injection\u003c\/p\u003e\n\u003cp\u003e8 Self-healing Timescale \u003cbr\u003e\u003cbr\u003e9 Self-healing Extent \u003cbr\u003e\u003cbr\u003e10 Molecular Dynamics Simulation \u003cbr\u003e\u003cbr\u003e11 Morphology of Healing \u003cbr\u003e\u003cbr\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr\u003e12.1 X-ray computed tomography \u003cbr\u003e12.2 Raman correlation spectroscopy \u003cbr\u003e12.3 Raman spectroscopy \u003cbr\u003e12.4 Impedance spectroscopy \u003cbr\u003e12.5 Water permeability \u003cbr\u003e12.6 Surface energy \u003cbr\u003e\u003cbr\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr\u003e13.1 Polymers \u003cbr\u003e13.1.1 Urea-formaldehyde resin \u003cbr\u003e13.1.2 Polydimethylsiloxane \u003cbr\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr\u003e13.1.4 Epoxy resins \u003cbr\u003e13.1.5 Polyaniline \u003cbr\u003e13.1.6 Polyurethane \u003cbr\u003e13.2 Capsule-based materials \u003cbr\u003e13.3 Catalysts \u003cbr\u003e13.4 Chemical structures \u003cbr\u003e13.5 Coupling agents \u003cbr\u003e13.6 Crosslinkers \u003cbr\u003e13.7 Fibers \u003cbr\u003e13.8 Magneto-responsive components \u003cbr\u003e13.9 Metal complexes \u003cbr\u003e13.10 Nanoparticles \u003cbr\u003e13.11 Plasticizers \u003cbr\u003e13.12 Solvents \u003cbr\u003e13.13 Vascular self-healing materials \u003cbr\u003e\u003cbr\u003e14 Self-healing of Different Polymers \u003cbr\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr\u003e14.2 Acrylic resin \u003cbr\u003e14.3 Alkyd resin \u003cbr\u003e14.4 Cellulose and its derivatives \u003cbr\u003e14.5 Chitosan \u003cbr\u003e14.6 Cyclodextrin \u003cbr\u003e14.7 Epoxy resin \u003cbr\u003e14.8 Ethylene-vinyl acetate \u003cbr\u003e14.9 Natural rubber \u003cbr\u003e14.10 Polybutadiene \u003cbr\u003e14.11 Poly(butyl acrylate) \u003cbr\u003e14.12 Polycyclooctene \u003cbr\u003e14.13 Poly(ε-caprolactone) \u003cbr\u003e14.14 Polydimethylsiloxane \u003cbr\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr\u003e14.16 Polyethylene \u003cbr\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr\u003e14.18 Polyimide \u003cbr\u003e14.19 Polyisobutylene \u003cbr\u003e14.20 Poly(lactic acid) \u003cbr\u003e14.21 Polymethylmethacrylate \u003cbr\u003e14.22 Poly(phenylene oxide) \u003cbr\u003e14.23 Polyphosphazene \u003cbr\u003e14.24 Polypropylene \u003cbr\u003e14.25 Polystyrene \u003cbr\u003e14.26 Polysulfide \u003cbr\u003e14.27 Polyurethanes \u003cbr\u003e14.28 Poly(vinyl alcohol) \u003cbr\u003e14.29 Poly(vinyl butyral) \u003cbr\u003e14.30 Poly(vinylidene difluoride) \u003cbr\u003e\u003cbr\u003e15 Self-healing in Different Products \u003cbr\u003e15.1 Adhesives \u003cbr\u003e15.2 Aerospace \u003cbr\u003e15.3 Asphalt pavement \u003cbr\u003e15.4 Automotive \u003cbr\u003e15.5 Cementitious materials \u003cbr\u003e15.6 Ceramic materials \u003cbr\u003e15.7 Coatings \u003cbr\u003e15.8 Composites \u003cbr\u003e15.9 Corrosion prevention \u003cbr\u003e15.10 Dental \u003cbr\u003e15.11 Electrical insulation \u003cbr\u003e15.12 Electronics \u003cbr\u003e15.13 Fabrics \u003cbr\u003e15.14 Fibers \u003cbr\u003e15.15 Film \u003cbr\u003e15.16 Foam \u003cbr\u003e15.17 Hydrogels \u003cbr\u003e15.18 Laminates \u003cbr\u003e15.19 Lubricating oils \u003cbr\u003e15.20 Medical devices \u003cbr\u003e15.21 Membranes \u003cbr\u003e15.22 Mortars \u003cbr\u003e15.23 Pipes \u003cbr\u003e15.24 Sealants \u003cbr\u003e15.25 Solar cells \u003cbr\u003e15.26 Thermal barrier coatings \u003cbr\u003e15.27 Tires \u003cbr\u003e\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/span\u003e\u003c\/p\u003e"}
Self-healing Materials...
$325.00
{"id":7336424079517,"title":"Self-healing Materials. Principles \u0026 Technology, 2nd Edition","handle":"self-healing-materials-principles-technology-2nd-edition","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1-77467-002-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 336\u003cbr data-mce-fragment=\"1\"\u003eFigures: 230\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe self-healing phenomenon, adapted from living things, was for a long time an exciting topic of discussion on the potential improvements of human-made products, but for quite a while, it became applicable reality useful in many manufactured products. Ironically, the expectations from the healing of commercial products are higher than in the case of living things (for example, skin healing leaves scars that would not be acceptable for self-healed phone, watch, radio receiver, etc.) The most up-to-date information presented in this book gives a full account of means, ways, and practical results to prevent discarding products because they were once damaged. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has three major sections organized into fifteen chapters. The first section contains a chapter that discusses the well-established mechanisms of self-healing, which can be potentially applied in the development of new materials that have the ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes, which occur during self-healing, is also part of this section. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe second part of this book compares the parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of applying the most important analytical techniques to the evaluation of the self-healing processes.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe final section of the book includes:\u003cbr data-mce-fragment=\"1\"\u003e• Practical advice on the selection of additives for self-healing formulation.\u003cbr data-mce-fragment=\"1\"\u003e• Methods of self-healing of different polymers.\u003cbr data-mce-fragment=\"1\"\u003e• Application of self-healing technology in different groups of products.\u003cbr data-mce-fragment=\"1\"\u003eThis part is based on practical knowledge, the existing patents, the published paper, and useful application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of applying the technology of self-healing.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe expected audience for this book includes people working in the industries listed in the table of contents (chapter 15) and on the polymers (chapter 14), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies, services, and research. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1 Introduction. Lessons from Living Things\u003cbr data-mce-fragment=\"1\"\u003e2 Mechanisms of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e2.1 Autonomic\u003cbr data-mce-fragment=\"1\"\u003e2.2 Click chemistry \u003cbr data-mce-fragment=\"1\"\u003e2.3 Crosslinking \u003cbr data-mce-fragment=\"1\"\u003e2.4 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.5 Luminescence \u003cbr data-mce-fragment=\"1\"\u003e2.6 Morphological features and organization \u003cbr data-mce-fragment=\"1\"\u003e2.7 Shape memory \u003cbr data-mce-fragment=\"1\"\u003e2.8 Thermal healing \u003cbr data-mce-fragment=\"1\"\u003e2.9 UV\u003cbr data-mce-fragment=\"1\"\u003e2.10 Water \u003cbr data-mce-fragment=\"1\"\u003e2.11 Other mechanisms \u003cbr data-mce-fragment=\"1\"\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr data-mce-fragment=\"1\"\u003e3.1 Chemical reactions\u003cbr data-mce-fragment=\"1\"\u003e3.2 Compositional changes \u003cbr data-mce-fragment=\"1\"\u003e3.3 Physical processes \u003cbr data-mce-fragment=\"1\"\u003e3.4 Self-assembly5\u003cbr data-mce-fragment=\"1\"\u003e4 Fault Detection Mechanisms \u003cbr data-mce-fragment=\"1\"\u003e5 Triggering and Tuning the Healing Processes \u003cbr data-mce-fragment=\"1\"\u003e6 Activation Energy of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr data-mce-fragment=\"1\"\u003e7.1 Autonomous \u003cbr data-mce-fragment=\"1\"\u003e7.2 Capsule and vascular carriers \u003cbr data-mce-fragment=\"1\"\u003e7.3 Environmental conditions \u003cbr data-mce-fragment=\"1\"\u003e7.4 Liquid flow \u003cbr data-mce-fragment=\"1\"\u003e7.5 Magnetic force \u003cbr data-mce-fragment=\"1\"\u003e7.6 Manual injection \u003cbr data-mce-fragment=\"1\"\u003e8 Self-healing Timescale \u003cbr data-mce-fragment=\"1\"\u003e9 Self-healing Extent\u003cbr data-mce-fragment=\"1\"\u003e10 Molecular Dynamics Simulation\u003cbr data-mce-fragment=\"1\"\u003e11 Morphology of Healing\u003cbr data-mce-fragment=\"1\"\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr data-mce-fragment=\"1\"\u003e12.1 X-ray computed tomography \u003cbr data-mce-fragment=\"1\"\u003e12.2 Raman correlation spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.3 Raman spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.4 Impedance spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.5 Water permeability \u003cbr data-mce-fragment=\"1\"\u003e12.6 Surface energy \u003cbr data-mce-fragment=\"1\"\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr data-mce-fragment=\"1\"\u003e13.1 Polymers \u003cbr data-mce-fragment=\"1\"\u003e13.1.1 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e13.1.2 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr data-mce-fragment=\"1\"\u003e13.1.4 Epoxy resins \u003cbr data-mce-fragment=\"1\"\u003e13.1.5 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e13.1.6 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e13.2 Capsule-based materials \u003cbr data-mce-fragment=\"1\"\u003e13.3 Catalysts \u003cbr data-mce-fragment=\"1\"\u003e13.4 Chemical structures \u003cbr data-mce-fragment=\"1\"\u003e13.5 Coupling agents \u003cbr data-mce-fragment=\"1\"\u003e13.6 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e13.7 Fibers \u003cbr data-mce-fragment=\"1\"\u003e13.8 Magneto-responsive components \u003cbr data-mce-fragment=\"1\"\u003e13.9 Metal complexes \u003cbr data-mce-fragment=\"1\"\u003e13.10 Nanoparticles \u003cbr data-mce-fragment=\"1\"\u003e13.11 Plasticizers \u003cbr data-mce-fragment=\"1\"\u003e13.12 Solvents \u003cbr data-mce-fragment=\"1\"\u003e13.13 Vascular self-healing materials \u003cbr data-mce-fragment=\"1\"\u003e14 Self-healing of Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr data-mce-fragment=\"1\"\u003e14.2 Acrylic resin \u003cbr data-mce-fragment=\"1\"\u003e14.3 Alkyd resin \u003cbr data-mce-fragment=\"1\"\u003e14.4 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e14.5 Chitosan \u003cbr data-mce-fragment=\"1\"\u003e14.6 Cyclodextrin \u003cbr data-mce-fragment=\"1\"\u003e14.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e14.8 Ethylene-vinyl acetate \u003cbr data-mce-fragment=\"1\"\u003e14.9 Natural rubber \u003cbr data-mce-fragment=\"1\"\u003e14.10 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e14.11 Poly(butyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.12 Polycyclooctene \u003cbr data-mce-fragment=\"1\"\u003e14.13 Poly(ε-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e14.14 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.16 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.18 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e14.19 Polyisobutylene \u003cbr data-mce-fragment=\"1\"\u003e14.20 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.21 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e14.22 Poly(phenylene oxide) \u003cbr data-mce-fragment=\"1\"\u003e14.23 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e14.24 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e14.25 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e14.26 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e14.27 Polyurethanes \u003cbr data-mce-fragment=\"1\"\u003e14.28 Poly(vinyl alcohol) \u003cbr data-mce-fragment=\"1\"\u003e14.29 Poly(vinyl butyral) \u003cbr data-mce-fragment=\"1\"\u003e14.30 Poly(vinylidene difluoride) \u003cbr data-mce-fragment=\"1\"\u003e15 Self-healing in Different Products \u003cbr data-mce-fragment=\"1\"\u003e15.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e15.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e15.3 Asphalt pavement \u003cbr data-mce-fragment=\"1\"\u003e15.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e15.5 Cementitious materials \u003cbr data-mce-fragment=\"1\"\u003e15.6 Ceramic materials \u003cbr data-mce-fragment=\"1\"\u003e15.7 Coatings \u003cbr data-mce-fragment=\"1\"\u003e15.8 Composites \u003cbr data-mce-fragment=\"1\"\u003e15.9 Corrosion prevention \u003cbr data-mce-fragment=\"1\"\u003e15.10 Dental \u003cbr data-mce-fragment=\"1\"\u003e15.11 Electrical insulation \u003cbr data-mce-fragment=\"1\"\u003e15.12 Electronics \u003cbr data-mce-fragment=\"1\"\u003e15.13 Fabrics \u003cbr data-mce-fragment=\"1\"\u003e15.14 Fibers \u003cbr data-mce-fragment=\"1\"\u003e15.15 Film \u003cbr data-mce-fragment=\"1\"\u003e15.16 Foam \u003cbr data-mce-fragment=\"1\"\u003e15.17 Hydrogels \u003cbr data-mce-fragment=\"1\"\u003e15.18 Laminates \u003cbr data-mce-fragment=\"1\"\u003e15.19 Lubricating oils \u003cbr data-mce-fragment=\"1\"\u003e15.20 Medical devices \u003cbr data-mce-fragment=\"1\"\u003e15.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e15.22 Mortars\u003cbr data-mce-fragment=\"1\"\u003e15.23 Pipes \u003cbr data-mce-fragment=\"1\"\u003e15.24 Sealants \u003cbr data-mce-fragment=\"1\"\u003e15.25 Solar cells \u003cbr data-mce-fragment=\"1\"\u003e15.26 Thermal barrier coatings \u003cbr data-mce-fragment=\"1\"\u003e15.27 Tires \u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e","published_at":"2022-03-31T21:13:55-04:00","created_at":"2022-03-31T21:08:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2022","book","Materials"],"price":32500,"price_min":32500,"price_max":32500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":42165824716957,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"Self-healing Materials. Principles \u0026 Technology, 2nd Edition","public_title":null,"options":["Default Title"],"price":32500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-77467-002-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611","options":["Title"],"media":[{"alt":null,"id":24734753849501,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781774670026-Case.png?v=1648775611","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eGeorge Wypych\u003cbr data-mce-fragment=\"1\"\u003eISBN 978-1-77467-002-6 \u003cbr\u003ePublication: January 2022\u003cbr data-mce-fragment=\"1\"\u003ePages: 336\u003cbr data-mce-fragment=\"1\"\u003eFigures: 230\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe self-healing phenomenon, adapted from living things, was for a long time an exciting topic of discussion on the potential improvements of human-made products, but for quite a while, it became applicable reality useful in many manufactured products. Ironically, the expectations from the healing of commercial products are higher than in the case of living things (for example, skin healing leaves scars that would not be acceptable for self-healed phone, watch, radio receiver, etc.) The most up-to-date information presented in this book gives a full account of means, ways, and practical results to prevent discarding products because they were once damaged. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe book has three major sections organized into fifteen chapters. The first section contains a chapter that discusses the well-established mechanisms of self-healing, which can be potentially applied in the development of new materials that have the ability to repair themselves without or with minimal human intervention. All theoretical background required and known to-date to understand these principles is included in this section. The full chapter on chemical and physical changes, which occur during self-healing, is also part of this section. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe second part of this book compares the parameters of different self-healing technological processes. The process parameters discussed include fault detection mechanisms, methods of triggering and tuning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). Each of these topics is discussed in a separate chapter.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe third part is devoted to the mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and the discussion of applying the most important analytical techniques to the evaluation of the self-healing processes.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe final section of the book includes:\u003cbr data-mce-fragment=\"1\"\u003e• Practical advice on the selection of additives for self-healing formulation.\u003cbr data-mce-fragment=\"1\"\u003e• Methods of self-healing of different polymers.\u003cbr data-mce-fragment=\"1\"\u003e• Application of self-healing technology in different groups of products.\u003cbr data-mce-fragment=\"1\"\u003eThis part is based on practical knowledge, the existing patents, the published paper, and useful application notes. Thirty polymers and twenty-seven groups of products are selected for this discussion based on their frequency of applying the technology of self-healing.\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003eThe expected audience for this book includes people working in the industries listed in the table of contents (chapter 15) and on the polymers (chapter 14), university professors and students, those working on the reduction of wastes and recycling, and all environmental protection agencies, services, and research. \u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cbr\u003e1 Introduction. Lessons from Living Things\u003cbr data-mce-fragment=\"1\"\u003e2 Mechanisms of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e2.1 Autonomic\u003cbr data-mce-fragment=\"1\"\u003e2.2 Click chemistry \u003cbr data-mce-fragment=\"1\"\u003e2.3 Crosslinking \u003cbr data-mce-fragment=\"1\"\u003e2.4 Hydrogen bonding \u003cbr data-mce-fragment=\"1\"\u003e2.5 Luminescence \u003cbr data-mce-fragment=\"1\"\u003e2.6 Morphological features and organization \u003cbr data-mce-fragment=\"1\"\u003e2.7 Shape memory \u003cbr data-mce-fragment=\"1\"\u003e2.8 Thermal healing \u003cbr data-mce-fragment=\"1\"\u003e2.9 UV\u003cbr data-mce-fragment=\"1\"\u003e2.10 Water \u003cbr data-mce-fragment=\"1\"\u003e2.11 Other mechanisms \u003cbr data-mce-fragment=\"1\"\u003e3 Chemical and Physical Processes Occurring During Self-healing of Polymers \u003cbr data-mce-fragment=\"1\"\u003e3.1 Chemical reactions\u003cbr data-mce-fragment=\"1\"\u003e3.2 Compositional changes \u003cbr data-mce-fragment=\"1\"\u003e3.3 Physical processes \u003cbr data-mce-fragment=\"1\"\u003e3.4 Self-assembly5\u003cbr data-mce-fragment=\"1\"\u003e4 Fault Detection Mechanisms \u003cbr data-mce-fragment=\"1\"\u003e5 Triggering and Tuning the Healing Processes \u003cbr data-mce-fragment=\"1\"\u003e6 Activation Energy of Self-healing \u003cbr data-mce-fragment=\"1\"\u003e7 Means of Delivery of Healant to the Defect Location \u003cbr data-mce-fragment=\"1\"\u003e7.1 Autonomous \u003cbr data-mce-fragment=\"1\"\u003e7.2 Capsule and vascular carriers \u003cbr data-mce-fragment=\"1\"\u003e7.3 Environmental conditions \u003cbr data-mce-fragment=\"1\"\u003e7.4 Liquid flow \u003cbr data-mce-fragment=\"1\"\u003e7.5 Magnetic force \u003cbr data-mce-fragment=\"1\"\u003e7.6 Manual injection \u003cbr data-mce-fragment=\"1\"\u003e8 Self-healing Timescale \u003cbr data-mce-fragment=\"1\"\u003e9 Self-healing Extent\u003cbr data-mce-fragment=\"1\"\u003e10 Molecular Dynamics Simulation\u003cbr data-mce-fragment=\"1\"\u003e11 Morphology of Healing\u003cbr data-mce-fragment=\"1\"\u003e12 Selected Experimental Methods in Evaluation of Self-healing Efficiency \u003cbr data-mce-fragment=\"1\"\u003e12.1 X-ray computed tomography \u003cbr data-mce-fragment=\"1\"\u003e12.2 Raman correlation spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.3 Raman spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.4 Impedance spectroscopy \u003cbr data-mce-fragment=\"1\"\u003e12.5 Water permeability \u003cbr data-mce-fragment=\"1\"\u003e12.6 Surface energy \u003cbr data-mce-fragment=\"1\"\u003e13 Additives and Chemical Structures Used in Self-healing Technology \u003cbr data-mce-fragment=\"1\"\u003e13.1 Polymers \u003cbr data-mce-fragment=\"1\"\u003e13.1.1 Urea-formaldehyde resin \u003cbr data-mce-fragment=\"1\"\u003e13.1.2 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e13.1.3 Ureidopyrimidinone derivatives \u003cbr data-mce-fragment=\"1\"\u003e13.1.4 Epoxy resins \u003cbr data-mce-fragment=\"1\"\u003e13.1.5 Polyaniline \u003cbr data-mce-fragment=\"1\"\u003e13.1.6 Polyurethane \u003cbr data-mce-fragment=\"1\"\u003e13.2 Capsule-based materials \u003cbr data-mce-fragment=\"1\"\u003e13.3 Catalysts \u003cbr data-mce-fragment=\"1\"\u003e13.4 Chemical structures \u003cbr data-mce-fragment=\"1\"\u003e13.5 Coupling agents \u003cbr data-mce-fragment=\"1\"\u003e13.6 Crosslinkers \u003cbr data-mce-fragment=\"1\"\u003e13.7 Fibers \u003cbr data-mce-fragment=\"1\"\u003e13.8 Magneto-responsive components \u003cbr data-mce-fragment=\"1\"\u003e13.9 Metal complexes \u003cbr data-mce-fragment=\"1\"\u003e13.10 Nanoparticles \u003cbr data-mce-fragment=\"1\"\u003e13.11 Plasticizers \u003cbr data-mce-fragment=\"1\"\u003e13.12 Solvents \u003cbr data-mce-fragment=\"1\"\u003e13.13 Vascular self-healing materials \u003cbr data-mce-fragment=\"1\"\u003e14 Self-healing of Different Polymers \u003cbr data-mce-fragment=\"1\"\u003e14.1 Acrylonitrile-butadiene-styrene \u003cbr data-mce-fragment=\"1\"\u003e14.2 Acrylic resin \u003cbr data-mce-fragment=\"1\"\u003e14.3 Alkyd resin \u003cbr data-mce-fragment=\"1\"\u003e14.4 Cellulose and its derivatives \u003cbr data-mce-fragment=\"1\"\u003e14.5 Chitosan \u003cbr data-mce-fragment=\"1\"\u003e14.6 Cyclodextrin \u003cbr data-mce-fragment=\"1\"\u003e14.7 Epoxy resin \u003cbr data-mce-fragment=\"1\"\u003e14.8 Ethylene-vinyl acetate \u003cbr data-mce-fragment=\"1\"\u003e14.9 Natural rubber \u003cbr data-mce-fragment=\"1\"\u003e14.10 Polybutadiene \u003cbr data-mce-fragment=\"1\"\u003e14.11 Poly(butyl acrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.12 Polycyclooctene \u003cbr data-mce-fragment=\"1\"\u003e14.13 Poly(ε-caprolactone) \u003cbr data-mce-fragment=\"1\"\u003e14.14 Polydimethylsiloxane \u003cbr data-mce-fragment=\"1\"\u003e14.15 Poly(ethylene-co-methacrylic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.16 Polyethylene \u003cbr data-mce-fragment=\"1\"\u003e14.17 Poly(2-hydroxyethyl methacrylate) \u003cbr data-mce-fragment=\"1\"\u003e14.18 Polyimide \u003cbr data-mce-fragment=\"1\"\u003e14.19 Polyisobutylene \u003cbr data-mce-fragment=\"1\"\u003e14.20 Poly(lactic acid) \u003cbr data-mce-fragment=\"1\"\u003e14.21 Polymethylmethacrylate \u003cbr data-mce-fragment=\"1\"\u003e14.22 Poly(phenylene oxide) \u003cbr data-mce-fragment=\"1\"\u003e14.23 Polyphosphazene \u003cbr data-mce-fragment=\"1\"\u003e14.24 Polypropylene \u003cbr data-mce-fragment=\"1\"\u003e14.25 Polystyrene \u003cbr data-mce-fragment=\"1\"\u003e14.26 Polysulfide \u003cbr data-mce-fragment=\"1\"\u003e14.27 Polyurethanes \u003cbr data-mce-fragment=\"1\"\u003e14.28 Poly(vinyl alcohol) \u003cbr data-mce-fragment=\"1\"\u003e14.29 Poly(vinyl butyral) \u003cbr data-mce-fragment=\"1\"\u003e14.30 Poly(vinylidene difluoride) \u003cbr data-mce-fragment=\"1\"\u003e15 Self-healing in Different Products \u003cbr data-mce-fragment=\"1\"\u003e15.1 Adhesives \u003cbr data-mce-fragment=\"1\"\u003e15.2 Aerospace \u003cbr data-mce-fragment=\"1\"\u003e15.3 Asphalt pavement \u003cbr data-mce-fragment=\"1\"\u003e15.4 Automotive \u003cbr data-mce-fragment=\"1\"\u003e15.5 Cementitious materials \u003cbr data-mce-fragment=\"1\"\u003e15.6 Ceramic materials \u003cbr data-mce-fragment=\"1\"\u003e15.7 Coatings \u003cbr data-mce-fragment=\"1\"\u003e15.8 Composites \u003cbr data-mce-fragment=\"1\"\u003e15.9 Corrosion prevention \u003cbr data-mce-fragment=\"1\"\u003e15.10 Dental \u003cbr data-mce-fragment=\"1\"\u003e15.11 Electrical insulation \u003cbr data-mce-fragment=\"1\"\u003e15.12 Electronics \u003cbr data-mce-fragment=\"1\"\u003e15.13 Fabrics \u003cbr data-mce-fragment=\"1\"\u003e15.14 Fibers \u003cbr data-mce-fragment=\"1\"\u003e15.15 Film \u003cbr data-mce-fragment=\"1\"\u003e15.16 Foam \u003cbr data-mce-fragment=\"1\"\u003e15.17 Hydrogels \u003cbr data-mce-fragment=\"1\"\u003e15.18 Laminates \u003cbr data-mce-fragment=\"1\"\u003e15.19 Lubricating oils \u003cbr data-mce-fragment=\"1\"\u003e15.20 Medical devices \u003cbr data-mce-fragment=\"1\"\u003e15.21 Membranes \u003cbr data-mce-fragment=\"1\"\u003e15.22 Mortars\u003cbr data-mce-fragment=\"1\"\u003e15.23 Pipes \u003cbr data-mce-fragment=\"1\"\u003e15.24 Sealants \u003cbr data-mce-fragment=\"1\"\u003e15.25 Solar cells \u003cbr data-mce-fragment=\"1\"\u003e15.26 Thermal barrier coatings \u003cbr data-mce-fragment=\"1\"\u003e15.27 Tires \u003cbr data-mce-fragment=\"1\"\u003eIndex\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr data-mce-fragment=\"1\"\u003e\u003cbr\u003e"}
Shape Memory Polymers:...
$205.00
{"id":11242241156,"title":"Shape Memory Polymers: Fundamentals, Advances and Applications","handle":"9781909030329","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e","published_at":"2017-06-22T21:14:47-04:00","created_at":"2017-06-22T21:14:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","blends","book","mechanical properties","medical applications","modelling","morphology","p-applications","p-structural","polymer","polymer composite","polymers","shape-memory","structure","textile applications"],"price":20500,"price_min":20500,"price_max":20500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378436868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Shape Memory Polymers: Fundamentals, Advances and Applications","public_title":null,"options":["Default Title"],"price":20500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781909030329","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","options":["Title"],"media":[{"alt":null,"id":358743539805,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781909030329.jpg?v=1499955459","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Jinlian Hu, The Hong Kong Polytechnic University \u003cbr\u003eISBN 9781909030329 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages:308\n\u003ch5\u003eSummary\u003c\/h5\u003e\nShape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to the external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing.\u003cbr\u003e\u003cbr\u003eThis book provides the latest advanced information on on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP.\u003cbr\u003e\u003cbr\u003eThe basic fundamentals of SMP, including shape-memory mechanisms and mechanics, are described. This will aid the reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field.\u003cbr\u003e\u003cbr\u003eThe book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well.\u003cbr\u003e\u003cbr\u003eThis book should prove to be extremely useful for academics, R\u0026amp;D managers, researcher scientists, engineers, and all others related to the SMP research.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e1 Shape-memory Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Shape-memory Effect\u003cbr\u003e1.2.1 Shape-memory Effect in Shape-memory Polymers\u003cbr\u003e1.2.2 Shape-memory Effect in Shape-memory Polymers and Shape-memory Alloys\u003cbr\u003e1.3 Structure of Shape-memory Polymers\u003cbr\u003e1.3.1 Thermally Induced Shape-memory Polymers\u003cbr\u003e1.3.2 Athermal Shape-memory Polymers \u003cbr\u003e1.4 Classification of Shape-memory Polymers \u003cbr\u003e1.5 Conclusions\u003cbr\u003e\u003cbr\u003e2 Shape-memory Polymers: Molecular Design, Shape-memory Functionality, and Programming\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Molecular Design of Shape-memory Polymers\u003cbr\u003e2.2.1 Thermally Sensitive Shape-memory Polymers\u003cbr\u003e2.2.1.1 Shape-memory Polymers based on the\u003cbr\u003eAmorphous Phase\u003cbr\u003e2.2.1.2 Shape-memory Polymers based on Semi-crystalline Phase \u003cbr\u003e2.2.1.3 Shape-memory Polymers based on Liquid Crystalline Phase\u003cbr\u003e2.2.2. Photosensitive Shape-memory Polymers\u003cbr\u003e2.2.3. Other Molecular Architectures of Shape-memory Polymers\u003cbr\u003e2.3 Shape-memory Programming\u003cbr\u003e2.3.1 \u003cspan\u003eProcessing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.1.1 Dual-shape Creation Process for One-way Dual-shape Shape-memory Effects \u003cbr\u003e2.3.1.2 Programming for One-way Triple-shape Shape-memory Effects\u003cbr\u003e\u003cspan\u003e2.3.2 Processing One-way Shape-memory Effects \u003c\/span\u003e\u003cbr\u003e2.3.2.1 Programming for Two-way Dual-shape Shape-memory Effects\u003cbr\u003e2.3.2.2 Programming for Two-way Triple-shape Shape-memory Effects\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.3.3 Multiple Shape-memory Effects Programming\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4 Shape-memory Functionality\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.1 \u003cspan\u003eOne-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e2.4.2 \u003cspan\u003eTwo-way Shape-memory Effects\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.1 Liquid Crystalline Elastomers\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e2.4.2.2 Shape-memory Polymers having a\u003cbr\u003eSemi-crystalline Phase under Constant Stress \u003c\/span\u003e\u003cbr\u003e2.4.3 One-way Shape-memory Effects\u003cbr\u003e2.4 Shape-memory Functionality\u003cbr\u003e2.4.2.3 Shape-memory Polymer Laminated Composites\u003cbr\u003e2.4.3 Triple\/Multiple Shape-memory Effects\u003cbr\u003e2.4.4 Temperature-memory Effects \u003cbr\u003e\u003cbr\u003e2.5 Conclusions\u003cbr\u003e\u003cbr\u003e3 Shape-memory Polymer Composites \u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Nanowhisker\/Shape-memory Polymer Composites \u003cbr\u003e3.2.1 Cellulose Nanowhiskers\u003cbr\u003e3.2.2 Integration of Cellulose Nanowhiskers \u003cbr\u003e3.3 Carbon\/Shape-memory Polymer Composites\u003cbr\u003e3.3.1 Carbon Nanotube and Carbon Nanofibre\/Shape-memory Polymer Composites\u003cbr\u003e3.3.2 Carbon Black\/Shape-memory Polymer Composites\u003cbr\u003e3.3.3 Electrically Sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.4 Light-sensitive Shape-memory Polymer Nanocomposites \u003cbr\u003e3.3.5 Enhanced General Shape-memory Effect\u003cbr\u003e3.4 Fibre\/Fabric-reinforced Shape-memory Polymer Composites \u003cbr\u003e3.4.1 Microfibre or Fabric\/Shape-memory Polymer Composites \u003cbr\u003e3.4.2 Electrospun Nanofibre Shape-memory Polymer Nanocomposites \u003cbr\u003e3.5 Metal and Metal Oxides\/Shape-memory Polymer Composites \u003cbr\u003e3.6 Other Shape-memory Polymer Composites \u003cbr\u003e3.6.1 Nanoclay\/Shape-memory Polymer Composites \u003cbr\u003e3.6.2 Other Inorganic Filler\/Shape-memory Polymer Composites \u003cbr\u003e3.6.3 Organic Filler\/Shape-memory Polymer Composites\u003cbr\u003e3.6.4 Shape-memory Polymer Composites with Special Function\u003cbr\u003e3.7 Conclusions \u003cbr\u003e\u003cbr\u003e4 Shape-memory Polymer Blends \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Miscible Polymer Blends\u003cbr\u003e4.2.1 Shape-memory Polymer\/Polymer Blends \u003cbr\u003e4.2.2 Amorphous Polymer\/Crystalline Polymer Blends\u003cbr\u003e4.3 Immiscible Polymer Blends\u003cbr\u003e4.3.1 Elastomer\/Polymer Blends\u003cbr\u003e4.3.2 Other Types of Immiscible Blends\u003cbr\u003e4.4 Blending and Post-crosslinking Polymers Networks \u003cbr\u003e4.4.1 Interpenetrating Polymer Networks \u003cbr\u003e4.4.2 Crosslinked Polymer Blends.\u003cbr\u003e4.5 Conclusions \u003cbr\u003e\u003cbr\u003e5 Shape-memory Polymers Sensitive to Different Stimuli\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Thermally sensitive Shape-memory Polymers\u003cbr\u003e5.2.1 Shape-memory Effect based on Conventional Glass or Melting Transition \u003cbr\u003e5.2.2 Shape-memory Effect by Indirect Heating \u003cbr\u003e5.2.3 Shape-memory Effect based on a Thermally Reversible Reaction\u003cbr\u003e5.2.4 Shape-memory Effect based on Supermolecular Structure\u003cbr\u003e5.2.5 Two-way Shape-memory Effect based on Change in the Conformation of Anisotropic Chains\u003cbr\u003e5.2.6 Two-way Shape-memory Effect based on Cooling-induced Crystallisation Elongation\u003cbr\u003e5.2.7 Two-way Shape-memory Effect based on Shape-memory Polymer\/Carbon Nanotube Composites \u003cbr\u003e5.2.8 Multiple Shape-memory Effect based on Combined Switches\u003cbr\u003e5.2.9 Thermally active and pH-active Polymeric Hydrogels\u003cbr\u003e5.3 Light-sensitive Shape-memory Polymers\u003cbr\u003e5.3.1 Photodeformability Induced by Photoisomerisation\u003cbr\u003e5.3.2 Photodeformability induced by Photoreactive Molecules\u003cbr\u003e5.3.3 Photoactive Effect from the Addition–fragmentation Chain Transfer Reaction\u003cbr\u003e5.3.4 Light-active Polymeric Hydrogels \u003cbr\u003e5.4 Magnetic-sensitive Shape-memory Polymers \u003cbr\u003e5.4.1 Shape-memory Polymer Matrices filled with Magnetic Particles \u003cbr\u003e5.4.2 Magnetic-active polymeric gels \u003cbr\u003e5.5 Water\/solvent-sensitive Shape-memory Polymers \u003cbr\u003e5.6 Electric-sensitive Shape-memory Polymers \u003cbr\u003e5.7 Conclusions\u003cbr\u003e\u003cbr\u003e6 Modelling of Shape-memory Polymers\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Macroscale Constitutive Modelling\u003cbr\u003e6.2.1 Stress–strain Characteristics\u003cbr\u003e6.2.2 Shape-memory Properties \u003cbr\u003e6.3 Mesoscale Modelling\u003cbr\u003e6.4 Microscale Modelling \u003cbr\u003e6.5 Molecular Dynamics and Monte Carlo Simulations\u003cbr\u003e6.5.1 Reaction Characteristics\u003cbr\u003e6.5.2 Physical Properties \u003cbr\u003e6.5.3 Microstructure \u003cbr\u003e6.5.4 Hydrogen bonding Interactions \u003cbr\u003e6.5.5 Mechanical Properties\u003cbr\u003e6.6 Mathematical Modelling\u003cbr\u003e6.7 Modelling of Device Structures\u003cbr\u003e6.8 Modelling of Light-sensitive Shape-memory Polymers \u003cbr\u003e6.8.1 Three-dimensional Finite Deformation Modelling\u003cbr\u003e6.8.2 Multiple Natural Configurations Modelling \u003cbr\u003e6.8.3 Multi-scale Modelling\u003cbr\u003e6.9 Conclusions\u003cbr\u003e\u003cbr\u003e7 Supramolecular Shape-memory Polymers\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Supramolecular Chemistry \u003cbr\u003e7.2.1 Hydrogen Bonding\u003cbr\u003e7.2.2 Relationship between Shape-memory Polymers and Supramolecular Polymer Networks\u003cbr\u003e7.3 Polymers Containing Pyridine Moieties: a Pathway to Achieve Supramolecular Networks\u003cbr\u003e7.3.1 Function of Pyridine Moieties in Supramolecular Chemistry\u003cbr\u003e7.3.2 Supramolecular Pyridine-containing Polymers \u003cbr\u003e7.3.3 Supramolecular Liquid Crystalline Polymer-containing Pyridine Moieties\u003cbr\u003e7.4 Supramolecular Shape-memory Polymers based on Pyridine Moieties\u003cbr\u003e7.4.1 Synthesis\u003cbr\u003e7.4.2 Structure and Morphology\u003cbr\u003e7.4.3 Thermally induced Shape-memory Effect\u003cbr\u003e7.4.4 Moisture-sensitive Shape-memory Effect\u003cbr\u003e7.5 Supramolecular Shape-memory Polymers based on Cyclodextrins\u003cbr\u003e7.5.1 Cyclodextrins\u003cbr\u003e7.5.2 Thermally induced Shape-memory Effect\u003cbr\u003e7.5.3 Non-thermally Induced Shape-memory Effects \u003cbr\u003e7.6 Potential Applications\u003cbr\u003e7.6.1 Reshape Applications\u003cbr\u003e7.6.2 Shape-memory Effect for Hairstyles in Beauty Care\u003cbr\u003e7.6.3 Two-way Shape-memory Polymer Laminates\u003cbr\u003e7.6.4 Medical Application: Antibacterial \u003cbr\u003e7.6.5 Intelligent Windows for Smart Textile Applications \u003cbr\u003e7.7 Conclusions \u003cbr\u003e\u003cbr\u003e8 Applications of Shape-memory Polymers \u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Applications of Bulk Shape-memory Polymers\u003cbr\u003e8.2.1\u003cbr\u003e8.2.2\u003cbr\u003eFixation\u003cbr\u003e8.2.1.1 Orthodontic Wires\u003cbr\u003e8.2.1.2 Medical Casts \u003cbr\u003eActuation\u003cbr\u003e8.2.2.1 Actuation Realised by Combining Shape-memory Polymers with Specific Structures\u003cbr\u003e8.2.2.2 Actuation arising from a Two-way Shape-memory Effect Deployment \u003cbr\u003e8.2.3.1 Cold Hibernated Elastic Memory of Shape- memory Polymer Foams\u003cbr\u003e8.2.3.2 Expandable Stents\u003cbr\u003e8.2.3.3 Deployable Dialysis Needles, Coils, and Neuronal Electrodes \u003cbr\u003e8.2.3\u003cbr\u003e8.2.4\u003cbr\u003e8.3.3 Adaptable Biological Devices for Modulating Cellular– substrate Interactions\u003cbr\u003e8.3.4 Biosensor and Micro-systems\u003cbr\u003e8.3.5 Programmable Surface Pattern\u003cbr\u003e8.3.6 No-programming Reversible Shape-memory Surface Patterns\u003cbr\u003e8.4 Applications in Textiles\u003cbr\u003e8.4.1 Shape-memory Polymer Fibres\u003cbr\u003e8.4.2 Shape-memory Polymer Yarns and Fabrics\u003cbr\u003e8.4.3 Shape-memory Polymer Solutions for Finishing Fabrics \u003cbr\u003e8.4.4 Shape-memory Polymer Nanofibres and their Nonwovens\u003cbr\u003e8.4.5 Shape-memory Polymer Film\/Foam and Laminated Textiles \u003cbr\u003e8.5 Engineering Applications\u003cbr\u003e8.5.1 Transportation\u003cbr\u003e8.5.2 Sensors and Actuators\u003cbr\u003e8.5.3 Filtration\u003cbr\u003eSelf-healing \u003cbr\u003e8.2.4.1 Confined Shape-recovery Self-healing\u003cbr\u003e8.2.5 Fitting \u003cbr\u003e8.3 Applications in Surface Wrinkling and Patterning \u003cbr\u003e8.3.1 Principe of Surface Wrinkling \u003cbr\u003e8.3.2 Wetting and Spreading\u003cbr\u003e\u003cbr\u003e9 Future\u003cbr\u003eOutlook\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 New Shape-memory Polymers with Novel Structures and Diversified Functionalities\u003cbr\u003e9.2.1 New Stimulus Switches \u003cbr\u003e9.2.2 Intrinsic Athermal Switches\u003cbr\u003e9.2.3 Multi-responsive and Multi-functional Switches\u003cbr\u003e9.3 Development Trends of Shape-memory Polymer Composites and Blends \u003cbr\u003e9.3.1 Electric-Sensitive Shape-memory Effect\u003cbr\u003e9.3.2 Light-Sensitive Shape-memory Effect \u003cbr\u003e9.3.3 Magnetic-Sensitive Shape-memory Effect\u003cbr\u003e9.3.4 Water\/Solvent-Sensitive Shape-memory Effect \u003cbr\u003e9.3.5 Shape-memory Effect based on Non-thermal Phase Transitions\u003cbr\u003e9.4 Versatile Shape-memory Effects by Novel Programming Protocols\u003cbr\u003e9.4.1 Programmability \u003cbr\u003e9.4.2 Imperfection or a New Shape-memory Effect\u003cbr\u003e9.5 Fundamental Understanding \u003cbr\u003e9.6 Comprehensive Study of Structure-property Relationships \u003cbr\u003e9.7 Modelling\u003cbr\u003e9.8 Application in Textiles \u003cbr\u003e9.9 Biomedical Applications \u003cbr\u003e9.10 Applications toward Commercial Success \u003cbr\u003e9.10.1 Maturing and Broadening of Applications.\u003cbr\u003e9.10.1.1 Existing Widely Researched Areas\u003cbr\u003e9.10.1.2 Broadening Areas\u003cbr\u003e9.10.1.3 Untouched Areas\u003cbr\u003e9.10.2 Integrated Approaches\u003cbr\u003e9.10.3 Challenging Issues in Applications\u003cbr\u003e9.11 Supramolecular Shape-memory Polymers\u003cbr\u003e9.12 Conclusions\u003cbr\u003eAbbreviations\u003cbr\u003eIndex\u003c\/p\u003e"}
Shreir's Corrosion
$2,475.00
{"id":11242218692,"title":"Shreir's Corrosion","handle":"978-0-444-52788-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Various \u003cbr\u003eISBN 978-0-444-52788-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003eApproximately 4,000 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCoverage of all aspects of the corrosion phenomenon from the science behind corrosion of metallic and non-metallic materials in liquids and gases to the management of corrosion in specific industries and applications is given full attention. This multivolume book, containing approximately 4,000 pages, features cutting-edge topics such as medical applications, metal matrix composites, and corrosion modeling and it covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy.\u003c\/p\u003e\n\u003cp\u003eAudience \u003c\/p\u003e\nIndustry professionals and academics working in areas such as materials\u003cbr\u003escience, chemical\/mechanical\/metallurgical engineering, and design\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nVol. 1: Basic Concepts, High-Temperature Corrosion \u003cbr\u003eVol. 2: Corrosion in Liquids, Experimental Evaluation \u0026amp; Modelling of\u003cbr\u003eCorrosion V\u003cbr\u003eVol. 3: Corrosion of Engineering Materials \u003cbr\u003eVol. 4: Management and Control of Corrosion\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nEdited by: Tony Richardson, (Coordinating Editor), Anticorrosion Consulting,\u003cbr\u003eDurham, UK, Bob Cottis, Rob Lindsay, Stuart Lyon, David Scantlebury, \u003cbr\u003eHoward Stott, Corrosion and Protection Centre, School of Materials,\u003cbr\u003eUniversity of Manchester, Manchester, UK\u003cbr\u003eMike Graham, National Research Council, Institute for Microstructural\u003cbr\u003eSciences, Ontario, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:37-04:00","created_at":"2017-06-22T21:13:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","aspects of the corrosion phenomenon","book","corrosion","corrosion of metallic materials","Covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy","engineering materials","general","material","medical applications","metal matrix composites","non-metallic materials","p-applications","polymer"],"price":247500,"price_min":247500,"price_max":247500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378364036,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Shreir's Corrosion","public_title":null,"options":["Default Title"],"price":247500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-444-52788-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-52788-2.jpg?v=1504196733"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-52788-2.jpg?v=1504196733","options":["Title"],"media":[{"alt":null,"id":413504045149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-52788-2.jpg?v=1504196733"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-444-52788-2.jpg?v=1504196733","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Various \u003cbr\u003eISBN 978-0-444-52788-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2010\u003cbr\u003e\u003c\/span\u003eApproximately 4,000 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eCoverage of all aspects of the corrosion phenomenon from the science behind corrosion of metallic and non-metallic materials in liquids and gases to the management of corrosion in specific industries and applications is given full attention. This multivolume book, containing approximately 4,000 pages, features cutting-edge topics such as medical applications, metal matrix composites, and corrosion modeling and it covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy.\u003c\/p\u003e\n\u003cp\u003eAudience \u003c\/p\u003e\nIndustry professionals and academics working in areas such as materials\u003cbr\u003escience, chemical\/mechanical\/metallurgical engineering, and design\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nVol. 1: Basic Concepts, High-Temperature Corrosion \u003cbr\u003eVol. 2: Corrosion in Liquids, Experimental Evaluation \u0026amp; Modelling of\u003cbr\u003eCorrosion V\u003cbr\u003eVol. 3: Corrosion of Engineering Materials \u003cbr\u003eVol. 4: Management and Control of Corrosion\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nEdited by: Tony Richardson, (Coordinating Editor), Anticorrosion Consulting,\u003cbr\u003eDurham, UK, Bob Cottis, Rob Lindsay, Stuart Lyon, David Scantlebury, \u003cbr\u003eHoward Stott, Corrosion and Protection Centre, School of Materials,\u003cbr\u003eUniversity of Manchester, Manchester, UK\u003cbr\u003eMike Graham, National Research Council, Institute for Microstructural\u003cbr\u003eSciences, Ontario, Canada\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Silicon Based Polymers...
$249.00
{"id":11242249348,"title":"Silicon Based Polymers Advances in Synthesis and Supramolecular Organization","handle":"978-1-4020-8527-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ganachaud, François; Boileau, Sylvie; Boury, Bruno (Eds.) \u003cbr\u003eISBN 978-1-4020-8527-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003cbr\u003e\u003c\/span\u003e285 p. 70 illus., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicon Based Polymers presents highlights in advanced research and technological innovations using macromolecular organosilicon compounds and systems, as presented in the 2007 ISPO congress. Silicon-containing materials and polymers are used all over the world and in a variety of industries, domestic products, and high technology applications. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAmong them, silicones are certainly the most well–known, however, there are still new properties discovered and preparative processes developed all the time, therefore adding to their potential. Less known, but in preparation for the future, are other silicon containing-polymers which are now close to maturity and in fact, some are already available like polysilsesquioxanes and polysilanes.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAll these silicon-based materials can adopt very different structures like chains, dendrimers, hyperbranched and networks, physical and chemical gels. The result is a vast array of materials with applications in various areas such as optics, electronics, ionic electrolytes, liquid crystals, biomaterials, ceramics and concrete, paints and coatings … all needed to face the environmental, energetical and technological issues of today. Some industrial aspects of the applications of these materials will also be presented.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e\u003cbr\u003eChapter 1 – Functional Polysiloxanes\u003cbr\u003e\u003cbr\u003e1 - New Avenues, New Outcomes: Nanoparticle Catalysis for Polymer Makeovers\u003cbr\u003eBhanu P. S. Chauhan, Bharathi Balagam, Jitendra S. Rathore and Alok Sarkar\u003cbr\u003e\u003cbr\u003e2 - Polysiloxane based Interpenetrating Polymer networks: synthesis and properties\u003cbr\u003eOdile Fichet, Frédéric Vidal, Vincent Darras, Sylvie Boileau and Dominique Teyssié\u003cbr\u003e\u003cbr\u003e3 - Simple Strategies to Manipulate Hydrophilic Domains in Silicones\u003cbr\u003eDavid B. Thompson, Amanda S. Fawcett, and Michael A. Brook\u003cbr\u003e\u003cbr\u003e4 - Aldehyde and Carboxy Functional Polysiloxanes\u003cbr\u003eElke Fritz-Langhals\u003cbr\u003e\u003cbr\u003e5 - Molecular Devices. Chiral, Bichromophoric Silicones: Ordering Principles in Complex Molecules\u003cbr\u003eHeinz Langhals\u003cbr\u003e\u003cbr\u003e6 - Modified azo-polysiloxanes for complex photo-sensible supramolecular systems\u003cbr\u003eNicolae Hurduc, Ramona Enea, Ana-Maria Resmerita, Ioana Moleavin, Mariana Cristea, Dan Scutaru\u003cbr\u003e\u003cbr\u003e7 - Thermoreversible crosslinking of silicones using acceptor-donor interactions\u003cbr\u003eEmmanuel Pouget, François Ganachaud, and Bernard Boutevin\u003cbr\u003e\u003cbr\u003e8 - Star-shape Poly(methylvinyl-co-dimethyl)siloxanes with Carbosilane Core – Synthesis and Application\u003cbr\u003eAnna Kowalewska and Bogumila Delczyk\u003cbr\u003e\u003cbr\u003e9 - Copolycondensation of functional silanes and siloxanes in solution using tris(pentafluorophenyl)borane as a catalyst in a view to generate hybrid silicones\u003cbr\u003eClaire Longuet and François Ganachaud\u003cbr\u003e\u003cbr\u003e10 - Hydrosilylation of polymethylhydrogenosiloxanes in the presence of functional molecules such as amines, esters or alcohols\u003cbr\u003eCorinne Binet, Mathieu Dumont, Juliette Fitremann, Stéphane Gineste, Elisabeth Laurent, Jean-Daniel Marty, Monique Mauzac, Anne-Françoise Mingotaud, Waêl Moukarzel, Guillaume Palaprat and Lacramioara Zadoina\u003cbr\u003e\u003cbr\u003e11 - High Refraction Index Polysiloxanes via Organometallic Routes - an Overview.\u003cbr\u003eWlodzimierz A. Stanczyk, Anna Czech, Wojciech Duczmal, Tomasz Ganicz, Malgorzata Noskowska and Anna Szelag\u003cbr\u003e\u003cbr\u003e12 - Grafting ß-cyclodextrins to silicone, formulation of emulsions and encapsulation of antifungal drug\u003cbr\u003eAhlem Noomen, Alexandra Penciu, Souhaira Hbaieb, Rafik Kalfat, Hélène Parrot-Lopez, Noureddine Amdouni and Yves Chevalier\u003cbr\u003e\u003cbr\u003e13 - Glycosilicones\u003cbr\u003eJuliette Fitremann, Waêl Moukarzel and Monique Mauzac\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 2 – Functional Polysilsesquioxanes \u003cbr\u003e\u003cbr\u003e1 - Silsesquioxane-based Polymers: Synthesis of Phenylsilsesquioxanes with Double-decker Structure and Their Polymers\u003cbr\u003eKazuhiro Yoshida, Takayuki Hattori, and Nobumasa Ootake\u003cbr\u003e\u003cbr\u003e2 - Organosilica Mesoporous Materials With Double Functionality Amino Groups and b-cyclodextrine –Synthesis and Properties\u003cbr\u003eMaryse Bacquet, Stéphanie Willai, Michel Morcellet\u003cbr\u003e\u003cbr\u003e3 - Direct synthesis of mesoporous hybrid organic-inorganic silica powders and thin films for potential nonlinear optic applications\u003cbr\u003eEric Besson, Ahmad Mehdi, Catherine Réyé, Alain Gibaud and Robert J. P. Corriu\u003cbr\u003e\u003cbr\u003e4 - Self-association in hybrid organic-inorganic silicon-based material prepared by surfactant-free sol-gel of organosilane.\u003cbr\u003eBruno Boury\u003cbr\u003e\u003cbr\u003eChapter 3 - Polysilanes\u003cbr\u003e\u003cbr\u003e1 - The Synthesis, Self-Assembly, and Self-Organisation of Polysilane Block Copolymers\u003cbr\u003eSimon J. Holder and Richard G. Jones\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:12-04:00","created_at":"2017-06-22T21:15:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","glycosilicones","Industrial Applications","Macromolecular","nanoparticles","Organosilicon","p-chemistry","polymer","polysiloxanes","silica","Silicon Chemistry","silicones","Sol-Gel Chemistry","Supramolecular"],"price":24900,"price_min":24900,"price_max":24900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378468740,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicon Based Polymers Advances in Synthesis and Supramolecular Organization","public_title":null,"options":["Default Title"],"price":24900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4020-8527-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-8527-7.jpg?v=1499955518"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-8527-7.jpg?v=1499955518","options":["Title"],"media":[{"alt":null,"id":358749470813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-8527-7.jpg?v=1499955518"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-8527-7.jpg?v=1499955518","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ganachaud, François; Boileau, Sylvie; Boury, Bruno (Eds.) \u003cbr\u003eISBN 978-1-4020-8527-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003cbr\u003e\u003c\/span\u003e285 p. 70 illus., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicon Based Polymers presents highlights in advanced research and technological innovations using macromolecular organosilicon compounds and systems, as presented in the 2007 ISPO congress. Silicon-containing materials and polymers are used all over the world and in a variety of industries, domestic products, and high technology applications. \u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAmong them, silicones are certainly the most well–known, however, there are still new properties discovered and preparative processes developed all the time, therefore adding to their potential. Less known, but in preparation for the future, are other silicon containing-polymers which are now close to maturity and in fact, some are already available like polysilsesquioxanes and polysilanes.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eAll these silicon-based materials can adopt very different structures like chains, dendrimers, hyperbranched and networks, physical and chemical gels. The result is a vast array of materials with applications in various areas such as optics, electronics, ionic electrolytes, liquid crystals, biomaterials, ceramics and concrete, paints and coatings … all needed to face the environmental, energetical and technological issues of today. Some industrial aspects of the applications of these materials will also be presented.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003e\u003cbr\u003eChapter 1 – Functional Polysiloxanes\u003cbr\u003e\u003cbr\u003e1 - New Avenues, New Outcomes: Nanoparticle Catalysis for Polymer Makeovers\u003cbr\u003eBhanu P. S. Chauhan, Bharathi Balagam, Jitendra S. Rathore and Alok Sarkar\u003cbr\u003e\u003cbr\u003e2 - Polysiloxane based Interpenetrating Polymer networks: synthesis and properties\u003cbr\u003eOdile Fichet, Frédéric Vidal, Vincent Darras, Sylvie Boileau and Dominique Teyssié\u003cbr\u003e\u003cbr\u003e3 - Simple Strategies to Manipulate Hydrophilic Domains in Silicones\u003cbr\u003eDavid B. Thompson, Amanda S. Fawcett, and Michael A. Brook\u003cbr\u003e\u003cbr\u003e4 - Aldehyde and Carboxy Functional Polysiloxanes\u003cbr\u003eElke Fritz-Langhals\u003cbr\u003e\u003cbr\u003e5 - Molecular Devices. Chiral, Bichromophoric Silicones: Ordering Principles in Complex Molecules\u003cbr\u003eHeinz Langhals\u003cbr\u003e\u003cbr\u003e6 - Modified azo-polysiloxanes for complex photo-sensible supramolecular systems\u003cbr\u003eNicolae Hurduc, Ramona Enea, Ana-Maria Resmerita, Ioana Moleavin, Mariana Cristea, Dan Scutaru\u003cbr\u003e\u003cbr\u003e7 - Thermoreversible crosslinking of silicones using acceptor-donor interactions\u003cbr\u003eEmmanuel Pouget, François Ganachaud, and Bernard Boutevin\u003cbr\u003e\u003cbr\u003e8 - Star-shape Poly(methylvinyl-co-dimethyl)siloxanes with Carbosilane Core – Synthesis and Application\u003cbr\u003eAnna Kowalewska and Bogumila Delczyk\u003cbr\u003e\u003cbr\u003e9 - Copolycondensation of functional silanes and siloxanes in solution using tris(pentafluorophenyl)borane as a catalyst in a view to generate hybrid silicones\u003cbr\u003eClaire Longuet and François Ganachaud\u003cbr\u003e\u003cbr\u003e10 - Hydrosilylation of polymethylhydrogenosiloxanes in the presence of functional molecules such as amines, esters or alcohols\u003cbr\u003eCorinne Binet, Mathieu Dumont, Juliette Fitremann, Stéphane Gineste, Elisabeth Laurent, Jean-Daniel Marty, Monique Mauzac, Anne-Françoise Mingotaud, Waêl Moukarzel, Guillaume Palaprat and Lacramioara Zadoina\u003cbr\u003e\u003cbr\u003e11 - High Refraction Index Polysiloxanes via Organometallic Routes - an Overview.\u003cbr\u003eWlodzimierz A. Stanczyk, Anna Czech, Wojciech Duczmal, Tomasz Ganicz, Malgorzata Noskowska and Anna Szelag\u003cbr\u003e\u003cbr\u003e12 - Grafting ß-cyclodextrins to silicone, formulation of emulsions and encapsulation of antifungal drug\u003cbr\u003eAhlem Noomen, Alexandra Penciu, Souhaira Hbaieb, Rafik Kalfat, Hélène Parrot-Lopez, Noureddine Amdouni and Yves Chevalier\u003cbr\u003e\u003cbr\u003e13 - Glycosilicones\u003cbr\u003eJuliette Fitremann, Waêl Moukarzel and Monique Mauzac\u003cbr\u003e\u003cbr\u003e\u003cbr\u003eChapter 2 – Functional Polysilsesquioxanes \u003cbr\u003e\u003cbr\u003e1 - Silsesquioxane-based Polymers: Synthesis of Phenylsilsesquioxanes with Double-decker Structure and Their Polymers\u003cbr\u003eKazuhiro Yoshida, Takayuki Hattori, and Nobumasa Ootake\u003cbr\u003e\u003cbr\u003e2 - Organosilica Mesoporous Materials With Double Functionality Amino Groups and b-cyclodextrine –Synthesis and Properties\u003cbr\u003eMaryse Bacquet, Stéphanie Willai, Michel Morcellet\u003cbr\u003e\u003cbr\u003e3 - Direct synthesis of mesoporous hybrid organic-inorganic silica powders and thin films for potential nonlinear optic applications\u003cbr\u003eEric Besson, Ahmad Mehdi, Catherine Réyé, Alain Gibaud and Robert J. P. Corriu\u003cbr\u003e\u003cbr\u003e4 - Self-association in hybrid organic-inorganic silicon-based material prepared by surfactant-free sol-gel of organosilane.\u003cbr\u003eBruno Boury\u003cbr\u003e\u003cbr\u003eChapter 3 - Polysilanes\u003cbr\u003e\u003cbr\u003e1 - The Synthesis, Self-Assembly, and Self-Organisation of Polysilane Block Copolymers\u003cbr\u003eSimon J. Holder and Richard G. Jones\u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers
$125.00
{"id":11242214916,"title":"Silicone Elastomers","handle":"978-1-85957-297-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. P. Jershow, Wacker-Chemie GmbH \u003cbr\u003eISBN 978-1-85957-297-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003ePages: 164\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, domestic appliances and medical. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties. \u003cbr\u003e\u003cbr\u003eThis is a very comprehensive review of the state-of-the-art in silicone elastomers. It deals with the advantages of using silicone rubbers, such as high temperature and chemical resistance, pigmentability and transparency, combined with good electrical properties. \u003cbr\u003e\u003cbr\u003eIt describes processing by extrusion, injection moulding and calendering, and the use of silicones inflexible and rigid mould making. The key issues concerning the processing of silicones are addressed here. \u003cbr\u003e\u003cbr\u003eThe key material types and the nomenclature used to describe silicones are explained. Room temperature vulcanised (RTV), high temperature vulcanised (HTV) and liquid silicone rubbers (LSR) are all discussed. \u003cbr\u003e\u003cbr\u003eSpeciality silicones are continually being developed to meet specific application requirements, for example, standard silicone is a good electrical insulator and is used in cable coverings, however, conductive silicones are now available. These new grades of silicones are described and compared to standard grades for key performance issues. \u003cbr\u003e\u003cbr\u003eThis review is packed with details on specific silicone materials, containing over 50 tables of information together with useful graphs. It is much longer than the usual reviews in this series. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from the Rapra Abstracts database, to facilitate further reading on this subject.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Nomenclature \u003cbr\u003e2. Silicone Elastomers Market \u003cbr\u003e3. Applications for Silicone Elastomers \u003cbr\u003e3.1 Automotive \u003cbr\u003e3.2 Healthcare and Medical \u003cbr\u003e3.3 Wire and Cable \u003cbr\u003e3.4 Sanitary, Household, and Leisure \u003cbr\u003e3.5 Transmission and Distribution \u003cbr\u003e3.6 Electronics \u003cbr\u003e3.7 Mould Making \u003cbr\u003e3.8 Food Sector \u003cbr\u003e3.9 Other \u003cbr\u003e4. Composition and Function of Silicone Elastomers \u003cbr\u003e4.1 Introduction and Classifications \u003cbr\u003e4.2 Properties of Silicone Elastomers \u003cbr\u003e4.3 Chemistry and Curing Mechanisms of Silicone Elastomers \u003cbr\u003e\u003cbr\u003e5. RTV - Room Temperature Vulcanising Silicone Elastomers \u003cbr\u003e5.1 General \u003cbr\u003e5.2 Condensation Curing RTVs \u003cbr\u003e5.3 RTV-1 for CIPG and FIPG \u003cbr\u003e5.4 RTV-1 for Baking Tray Coatings \u003cbr\u003e5.5 Adhesive RTV-1 Materials \u003cbr\u003e5.6 Condensation Curing RTV-2 Systems \u003cbr\u003e5.7 Mould Making Condensation Curing RTV-2 Materials \u003cbr\u003e5.8 Condensation Curing RTV-2 Compounds for Encapsulation \u003cbr\u003e5.9 Adhesives and Sealants Based on Condensation Curing RTV-2 Compounds \u003cbr\u003e5.10 Addition Curing RTV-2 Systems \u003cbr\u003e5.11 Silicone Gels \u003cbr\u003e5.12 Addition Curing Systems for Mould Making \u003cbr\u003e5.13 Addition Cured RTV-2 Systems for Encapsulation \u003cbr\u003e5.14 Addition Cured RTV-2 Adhesives and Sealants \u003cbr\u003e5.15 Addition Cured RTV-2 Sponge for Compressible Gaskets \u003cbr\u003e6. Liquid Silicone Rubber \u003cbr\u003e6.1 General \u003cbr\u003e6.2 Curing Mechanism of Liquid Silicone Rubbers \u003cbr\u003e6.3 Standard Liquid Silicone Rubbers \u003cbr\u003e6.4 Speciality LRs \u003cbr\u003e6.5 Pigment Pastes \u003cbr\u003e7. Solid Silicone Rubber \u003cbr\u003e7.1 General \u003cbr\u003e7.2 Curing Mechanisms of Solid Silicone Rubbers \u003cbr\u003e7.3 Standard Solid Silicone Rubbers \u003cbr\u003e7.4 Speciality HTV (all peroxide) \u003cbr\u003e7.5 Addition Cured HTV \u003cbr\u003e8. Processing Silicone Elastomers \u003cbr\u003e8.1 RTV-1 Systems \u003cbr\u003e8.2 RTV-2 Systems \u003cbr\u003e8.3 LR and HTV\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Jerschow is a leading scientist in the field of silicone elastomers having written papers on processing, properties and applications and also on bonding. He works for Wacker-Chemie GmbH, a leading silicone elastomer manufacturer, hence examples in the text are drawn from the Wacker-Chemie repertoire of material grades.","published_at":"2017-06-22T21:13:24-04:00","created_at":"2017-06-22T21:13:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","adhesives","automotive","book","cable","cost management","cured RTV-2","curing","electronics","healthcare","household","leisure","medical","mold","mould","p-chemistry","plastics","polymer","processing","sanitary","sealants","sponge","transmission","wire"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354308,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-297-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-297-9.jpg?v=1499955539"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-297-9.jpg?v=1499955539","options":["Title"],"media":[{"alt":null,"id":358750453853,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-297-9.jpg?v=1499955539"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-297-9.jpg?v=1499955539","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Dr. P. Jershow, Wacker-Chemie GmbH \u003cbr\u003eISBN 978-1-85957-297-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003ePages: 164\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, domestic appliances and medical. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties. \u003cbr\u003e\u003cbr\u003eThis is a very comprehensive review of the state-of-the-art in silicone elastomers. It deals with the advantages of using silicone rubbers, such as high temperature and chemical resistance, pigmentability and transparency, combined with good electrical properties. \u003cbr\u003e\u003cbr\u003eIt describes processing by extrusion, injection moulding and calendering, and the use of silicones inflexible and rigid mould making. The key issues concerning the processing of silicones are addressed here. \u003cbr\u003e\u003cbr\u003eThe key material types and the nomenclature used to describe silicones are explained. Room temperature vulcanised (RTV), high temperature vulcanised (HTV) and liquid silicone rubbers (LSR) are all discussed. \u003cbr\u003e\u003cbr\u003eSpeciality silicones are continually being developed to meet specific application requirements, for example, standard silicone is a good electrical insulator and is used in cable coverings, however, conductive silicones are now available. These new grades of silicones are described and compared to standard grades for key performance issues. \u003cbr\u003e\u003cbr\u003eThis review is packed with details on specific silicone materials, containing over 50 tables of information together with useful graphs. It is much longer than the usual reviews in this series. \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 400 abstracts from the Rapra Abstracts database, to facilitate further reading on this subject.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Nomenclature \u003cbr\u003e2. Silicone Elastomers Market \u003cbr\u003e3. Applications for Silicone Elastomers \u003cbr\u003e3.1 Automotive \u003cbr\u003e3.2 Healthcare and Medical \u003cbr\u003e3.3 Wire and Cable \u003cbr\u003e3.4 Sanitary, Household, and Leisure \u003cbr\u003e3.5 Transmission and Distribution \u003cbr\u003e3.6 Electronics \u003cbr\u003e3.7 Mould Making \u003cbr\u003e3.8 Food Sector \u003cbr\u003e3.9 Other \u003cbr\u003e4. Composition and Function of Silicone Elastomers \u003cbr\u003e4.1 Introduction and Classifications \u003cbr\u003e4.2 Properties of Silicone Elastomers \u003cbr\u003e4.3 Chemistry and Curing Mechanisms of Silicone Elastomers \u003cbr\u003e\u003cbr\u003e5. RTV - Room Temperature Vulcanising Silicone Elastomers \u003cbr\u003e5.1 General \u003cbr\u003e5.2 Condensation Curing RTVs \u003cbr\u003e5.3 RTV-1 for CIPG and FIPG \u003cbr\u003e5.4 RTV-1 for Baking Tray Coatings \u003cbr\u003e5.5 Adhesive RTV-1 Materials \u003cbr\u003e5.6 Condensation Curing RTV-2 Systems \u003cbr\u003e5.7 Mould Making Condensation Curing RTV-2 Materials \u003cbr\u003e5.8 Condensation Curing RTV-2 Compounds for Encapsulation \u003cbr\u003e5.9 Adhesives and Sealants Based on Condensation Curing RTV-2 Compounds \u003cbr\u003e5.10 Addition Curing RTV-2 Systems \u003cbr\u003e5.11 Silicone Gels \u003cbr\u003e5.12 Addition Curing Systems for Mould Making \u003cbr\u003e5.13 Addition Cured RTV-2 Systems for Encapsulation \u003cbr\u003e5.14 Addition Cured RTV-2 Adhesives and Sealants \u003cbr\u003e5.15 Addition Cured RTV-2 Sponge for Compressible Gaskets \u003cbr\u003e6. Liquid Silicone Rubber \u003cbr\u003e6.1 General \u003cbr\u003e6.2 Curing Mechanism of Liquid Silicone Rubbers \u003cbr\u003e6.3 Standard Liquid Silicone Rubbers \u003cbr\u003e6.4 Speciality LRs \u003cbr\u003e6.5 Pigment Pastes \u003cbr\u003e7. Solid Silicone Rubber \u003cbr\u003e7.1 General \u003cbr\u003e7.2 Curing Mechanisms of Solid Silicone Rubbers \u003cbr\u003e7.3 Standard Solid Silicone Rubbers \u003cbr\u003e7.4 Speciality HTV (all peroxide) \u003cbr\u003e7.5 Addition Cured HTV \u003cbr\u003e8. Processing Silicone Elastomers \u003cbr\u003e8.1 RTV-1 Systems \u003cbr\u003e8.2 RTV-2 Systems \u003cbr\u003e8.3 LR and HTV\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Jerschow is a leading scientist in the field of silicone elastomers having written papers on processing, properties and applications and also on bonding. He works for Wacker-Chemie GmbH, a leading silicone elastomer manufacturer, hence examples in the text are drawn from the Wacker-Chemie repertoire of material grades."}
Silicone Elastomers 2006
$140.00
{"id":11242237892,"title":"Silicone Elastomers 2006","handle":"978-1-84735-002-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Report \u003cbr\u003eISBN 978-1-84735-002-2 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 19-20 September 2006\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, gaskets, domestic appliances, fabric coatings (e.g. airbags), baby bottle teats, and medical devices. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties, such as high and low temperature stability, inertness (no smell or taste), low toxicity, colorability, and transparency, combined with good electrical properties. The hardness range is wide, from 10-80 Shore A. \u003cbr\u003e\u003cbr\u003eSilicones have been in use in medical applications for over 30 years because of their long-term stability and biocompatibility. High gas permeability is a positive property in many medical devices; silicones have up to 400 times the permeability of butyl rubber at room temperature. They are also used in cosmetic applications, where their colorability and sensory properties are important (a soft, skin-like touch and appearance can be achieved). \u003cbr\u003e\u003cbr\u003eThese proceedings from Rapra’s first international conference on Silicone Elastomers will be of interest to rubber manufacturers and technologists, with a common interest in silicone elastomer materials, applications, and technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1:\u003c\/strong\u003e TRENDS AND GROWTH IN SILICONE ELASTOMERS \u003cbr\u003ePaper 1 Silicone elastomers: introduction and basic considerations\u003cbr\u003eBarry Statham, Polymer Consultant, UK \u003cbr\u003ePaper 2 Silicone expansion: trend indicators for growth in the silicone elastomer market\u003cbr\u003eThomas Tangney \u0026amp; Rachelle Jacques, Dow Corning Corporation, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2:\u003c\/strong\u003e FOOD CONTACT STUDIES \u003cbr\u003ePaper 3 The use of GCXGC-TOFMS and LC-MS for the determination of migrants from silicone rubbers into food simulants and food products\u003cbr\u003eDr. Martin Forrest, Dr. SR Holding, D Howells and M Eardley Rapra Technology, UK \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 3:\u003c\/strong\u003e SILICONE ELASTOMER MATERIALS \u003cbr\u003ePaper 4 Silicone rubber: the material of choice to meet new challenges\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning Corporation, Germany \u003cbr\u003ePaper 5 Fluorinated silicone elastomers in automotive applications\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Boßhammer, GE Bayer Silicones GmbH \u0026amp; Co.KG, Germany \u003cbr\u003ePaper 6 Influence of the network structure of silicone rubber on time-dependent autohesion as mechanism for self-healing\u003cbr\u003eMarek Mikrut \u0026amp; JWM Noordermeer, University of Twente \u0026amp; G Verbeek, Océ Technologies BV, The Netherlands \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 4:\u003c\/strong\u003e LIQUID SILICONE RUBBER \u003cbr\u003ePaper 7 The five elements to run a successful LSR process\u003cbr\u003eKurt Manigatter, ELMET Elastomere Produktions und Dienstleistungs GmbH, Germany \u003cbr\u003ePaper 8 2-Component injection moulding of LSR\u003cbr\u003eClemens Trumm, GE Bayer Silicones GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 9 Machine technology for processing LSR\u003cbr\u003eDipl Ing Wolfgang Roth, Battenfeld, GmbH, Austria \u003cbr\u003ePaper 10 LSR processing with electric driven injection moulding machines - application and experiences\u003cbr\u003eDipl Ing (FH) Martin Neff, ARBURG GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 11 Innovative machine systems for moulding LSR components\u003cbr\u003eIng. Leo Praher, ENGEL Austria GmbH, Austria \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5:\u003c\/strong\u003e PROCESSING SILICONE ELASTOMERS \u003cbr\u003ePaper 12 New developments in silicone processing\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy \u003cbr\u003ePaper 13 Machine, mould and process technology for processing HTV silicones\u003cbr\u003eManfred Arning, Esitec, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6:\u003c\/strong\u003e ADDITIVES AND FINISHING FOR SILICONE ELASTOMERS \u003cbr\u003ePaper 14 New opportunities for using silicone rubber\u003cbr\u003eDr. Maike Benter, Nanon A\/S, Denmark \u003cbr\u003ePaper 15 Colours in silicone: the visible additive\u003cbr\u003eThomas Klehr, Holland Colours, The Netherlands \u003cbr\u003ePaper 16 Bonding silicone elastomers\u003cbr\u003eAissa Benarous \u0026amp; Dr. Keith Worthington, Technical Advisor, Chemical Innovations Ltd, UK \u003cbr\u003ePaper 17 Acetone cure 1-part RTVs – non-corrosive silicone adhesives that perform\u003cbr\u003eSean Stoodley, ACC Silicones Europe, UK \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7:\u003c\/strong\u003e MEDICAL APPLICATIONS OF SILICONE ELASTOMERS \u003cbr\u003ePaper 18 Pharmaceutical and medical device applications of novel silicones\u003cbr\u003eProf David S Jones, Queen’s University of Belfast, UK \u003cbr\u003ePaper 19 Silicone elastomer gels for medical devices: viscoelasticity and performance\u003cbr\u003eDr. Gilles Lorentz, Delphine Blanc \u0026amp; Ludovic Odoni, Rhodia Research \u0026amp; Technology CRTL, France \u003cbr\u003ePaper 20 Hydrophilization of silicone rubber for biomedical applications\u003cbr\u003eFarhang Abbasi \u0026amp; Kyoumars Jalili, Sahand University of Technology, Iran\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:37-04:00","created_at":"2017-06-22T21:14:37-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","applications","biocompatibility","book","colorability","cosmetics","determination","fluorinated silicone","food","hardness","medical","migrants","p-chemistry","polymer","rubber","silicone elastomer","stability","technology"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378425540,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2006","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-002-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889","options":["Title"],"media":[{"alt":null,"id":413511286877,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-002-2.jpg?v=1504198889","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Report \u003cbr\u003eISBN 978-1-84735-002-2 \u003cbr\u003e\u003cbr\u003eFrankfurt, Germany, 19-20 September 2006\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers are important materials for many application areas such as automotive, electric and electronics, gaskets, domestic appliances, fabric coatings (e.g. airbags), baby bottle teats, and medical devices. They are increasingly being used to substitute for organic rubbers, because of their advantageous properties, such as high and low temperature stability, inertness (no smell or taste), low toxicity, colorability, and transparency, combined with good electrical properties. The hardness range is wide, from 10-80 Shore A. \u003cbr\u003e\u003cbr\u003eSilicones have been in use in medical applications for over 30 years because of their long-term stability and biocompatibility. High gas permeability is a positive property in many medical devices; silicones have up to 400 times the permeability of butyl rubber at room temperature. They are also used in cosmetic applications, where their colorability and sensory properties are important (a soft, skin-like touch and appearance can be achieved). \u003cbr\u003e\u003cbr\u003eThese proceedings from Rapra’s first international conference on Silicone Elastomers will be of interest to rubber manufacturers and technologists, with a common interest in silicone elastomer materials, applications, and technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1:\u003c\/strong\u003e TRENDS AND GROWTH IN SILICONE ELASTOMERS \u003cbr\u003ePaper 1 Silicone elastomers: introduction and basic considerations\u003cbr\u003eBarry Statham, Polymer Consultant, UK \u003cbr\u003ePaper 2 Silicone expansion: trend indicators for growth in the silicone elastomer market\u003cbr\u003eThomas Tangney \u0026amp; Rachelle Jacques, Dow Corning Corporation, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 2:\u003c\/strong\u003e FOOD CONTACT STUDIES \u003cbr\u003ePaper 3 The use of GCXGC-TOFMS and LC-MS for the determination of migrants from silicone rubbers into food simulants and food products\u003cbr\u003eDr. Martin Forrest, Dr. SR Holding, D Howells and M Eardley Rapra Technology, UK \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 3:\u003c\/strong\u003e SILICONE ELASTOMER MATERIALS \u003cbr\u003ePaper 4 Silicone rubber: the material of choice to meet new challenges\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning Corporation, Germany \u003cbr\u003ePaper 5 Fluorinated silicone elastomers in automotive applications\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Boßhammer, GE Bayer Silicones GmbH \u0026amp; Co.KG, Germany \u003cbr\u003ePaper 6 Influence of the network structure of silicone rubber on time-dependent autohesion as mechanism for self-healing\u003cbr\u003eMarek Mikrut \u0026amp; JWM Noordermeer, University of Twente \u0026amp; G Verbeek, Océ Technologies BV, The Netherlands \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 4:\u003c\/strong\u003e LIQUID SILICONE RUBBER \u003cbr\u003ePaper 7 The five elements to run a successful LSR process\u003cbr\u003eKurt Manigatter, ELMET Elastomere Produktions und Dienstleistungs GmbH, Germany \u003cbr\u003ePaper 8 2-Component injection moulding of LSR\u003cbr\u003eClemens Trumm, GE Bayer Silicones GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 9 Machine technology for processing LSR\u003cbr\u003eDipl Ing Wolfgang Roth, Battenfeld, GmbH, Austria \u003cbr\u003ePaper 10 LSR processing with electric driven injection moulding machines - application and experiences\u003cbr\u003eDipl Ing (FH) Martin Neff, ARBURG GmbH \u0026amp; Co. KG, Germany \u003cbr\u003ePaper 11 Innovative machine systems for moulding LSR components\u003cbr\u003eIng. Leo Praher, ENGEL Austria GmbH, Austria \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 5:\u003c\/strong\u003e PROCESSING SILICONE ELASTOMERS \u003cbr\u003ePaper 12 New developments in silicone processing\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy \u003cbr\u003ePaper 13 Machine, mould and process technology for processing HTV silicones\u003cbr\u003eManfred Arning, Esitec, Germany \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6:\u003c\/strong\u003e ADDITIVES AND FINISHING FOR SILICONE ELASTOMERS \u003cbr\u003ePaper 14 New opportunities for using silicone rubber\u003cbr\u003eDr. Maike Benter, Nanon A\/S, Denmark \u003cbr\u003ePaper 15 Colours in silicone: the visible additive\u003cbr\u003eThomas Klehr, Holland Colours, The Netherlands \u003cbr\u003ePaper 16 Bonding silicone elastomers\u003cbr\u003eAissa Benarous \u0026amp; Dr. Keith Worthington, Technical Advisor, Chemical Innovations Ltd, UK \u003cbr\u003ePaper 17 Acetone cure 1-part RTVs – non-corrosive silicone adhesives that perform\u003cbr\u003eSean Stoodley, ACC Silicones Europe, UK \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7:\u003c\/strong\u003e MEDICAL APPLICATIONS OF SILICONE ELASTOMERS \u003cbr\u003ePaper 18 Pharmaceutical and medical device applications of novel silicones\u003cbr\u003eProf David S Jones, Queen’s University of Belfast, UK \u003cbr\u003ePaper 19 Silicone elastomer gels for medical devices: viscoelasticity and performance\u003cbr\u003eDr. Gilles Lorentz, Delphine Blanc \u0026amp; Ludovic Odoni, Rhodia Research \u0026amp; Technology CRTL, France \u003cbr\u003ePaper 20 Hydrophilization of silicone rubber for biomedical applications\u003cbr\u003eFarhang Abbasi \u0026amp; Kyoumars Jalili, Sahand University of Technology, Iran\u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers 2008
$140.00
{"id":11242237188,"title":"Silicone Elastomers 2008","handle":"978-1-84375-069-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra conference proceedings \u003cbr\u003eISBN 978-1-84375-069-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eSilicone Elastomers 2008 brought together major material manufacturers, such as Dow Corning, Wacker Chemie, Momentive Performance Materials and Bluestar Silicones, looking at market trends and new developments in materials such as LSR and liquid fluorosilicone rubber.\u003c\/p\u003e\n\u003cp\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 2: LIQUID SILICONE RUBBER\u003c\/p\u003e\n\u003cp\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 5: FILLERS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 6: CROSSLINKING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 8: INJECTION MOULDING LIQUID SILICONE RUBBER\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePaper 1 Global expansion for the silicone rubber market\u003cbr\u003e\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: LIQUID SILICONE RUBBER\u003c\/strong\u003e\u003cbr\u003eMarco Pagliani, Dow Corning SpA, Italy \u0026amp; Fabien Virlogeux, Dow Corning France SAS\u003cbr\u003e\u003cbr\u003ePaper 2 Liquid silicone rubber, the material of your choice\u003cbr\u003e\u003cbr\u003ePaper 3 Real fluorosilicones combined with LSR processing: new product family FFSL\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Bosshammer, Momentive Performance Materials GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eAndre Colas, Dow Corning SA, Belgium\u003cbr\u003e\u003cbr\u003ePaper 4 Silicone elastomers in medical applications\u003cbr\u003e\u003cbr\u003ePaper 5 Adding colour to medical devices using pigment masterbatches\u003cbr\u003ePatrick Peignot \u0026amp; Stephen Brunerm NuSil Technology Europe, France\u003cbr\u003e\u003cbr\u003ePaper 6 Silicone elastomers for outdoor electrical power transmission and distribution applications\u003cbr\u003eDr. Hans-Jrg Winter, Wacker Chemie AG, Germany\u003cbr\u003e\u003cbr\u003ePaper 7 Corpo Fibre Reinforcement for Elastomer Applications\u003cbr\u003eSiebe Nooij, Coen Ten Herkel \u0026amp; Soren Blomaard, Taniq BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eLaurent Perier \u0026amp; Arnaud Favier, DMA Products and Consulting, 01dB-Metravib, France\u003cbr\u003e\u003cbr\u003ePaper 8 A single testing instrument with multiple testing capabilities for silicone elastomers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: FILLERS FOR SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eMichael Claes \u0026amp; Daniel Bonduel, Nanocyl SA, Belgium \u0026amp; Philippe Dubois, Universit of Mons-Hainaut, Belgium\u003cbr\u003e\u003cbr\u003ePaper 9 Carbon nanotubes\/silicone elastomer nanocomposites: multi-fuctional and high-performance products; review and trends of their applications\u003cbr\u003e\u003cbr\u003ePaper 10 Structure modified fumed silica-a clear solution for silicone rubber\u003cbr\u003eDr Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003e\u003cbr\u003ePaper 11 Improvements in reinforcement with diatomaceous earth in silicone systems\u003cbr\u003eJulian Danvers, World Minerals, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6: CROSSLINKING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eLeo Nijhof, Akzo Nobel Polymer Chemicals BV, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 12 Peroxide curing of silicone elastomers\u003cbr\u003e\u003cbr\u003ePaper 13 Crosslinking in PDMS particulate composites\u003cbr\u003eDr. Catarina Esteves, Dr. J Brokken-Zijp, Dr. J Laven \u0026amp; Dr. G de With, Technische Universiteit Eindhoven, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Silicone mixing and extrusion processing\u003cbr\u003e\u003cbr\u003ePaper 15 Carbon dioxide: good news for silicone rubber\u003cbr\u003eThomas Christensen, Nanon A\/S, Denmark\u003cbr\u003e\u003cbr\u003ePaper 16 Silicone composites\u003cbr\u003eDr. Jrgen Weidinger \u0026amp; Dr. Jrgen Ismeier, Wacker Chemie AG, Germany\u003cbr\u003e\u003cbr\u003ePaper 17 Bonding silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 18 Bubbling modelization, a help for the development of low density RTV foams\u003cbr\u003eDr. Delphine Blanc, Bluestar silicones, France\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 8: INJECTION MOULDING LIQUID SILICONE RUBBER\u003c\/strong\u003e\u003cbr\u003eProf Dr-Ing Dr-Ing Eh W Michaeli \u0026amp; Dipl-Ing Kai Openwinkel \u0026amp;, IKV Aachenm Germany\u003cbr\u003e\u003cbr\u003ePaper 19 Physical foaming of liquid silicone rubber in the injection moulding process\u003cbr\u003e\u003cbr\u003ePaper 20 High-quality LSR moulding\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:34-04:00","created_at":"2017-06-22T21:14:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","acrylic polymers","book","elastomers","fillers","fluorosilicone","liquid silicone","moulding","p-chemistry","rubber","rubbers","silicone"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378424708,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2008","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84375-069-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84375-069-5.jpg?v=1504199172"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84375-069-5.jpg?v=1504199172","options":["Title"],"media":[{"alt":null,"id":413512368221,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84375-069-5.jpg?v=1504199172"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84375-069-5.jpg?v=1504199172","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra conference proceedings \u003cbr\u003eISBN 978-1-84375-069-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eSilicone Elastomers 2008 brought together major material manufacturers, such as Dow Corning, Wacker Chemie, Momentive Performance Materials and Bluestar Silicones, looking at market trends and new developments in materials such as LSR and liquid fluorosilicone rubber.\u003c\/p\u003e\n\u003cp\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 2: LIQUID SILICONE RUBBER\u003c\/p\u003e\n\u003cp\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 5: FILLERS FOR SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 6: CROSSLINKING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003c\/p\u003e\n\u003cp\u003eSESSION 8: INJECTION MOULDING LIQUID SILICONE RUBBER\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003ePaper 1 Global expansion for the silicone rubber market\u003cbr\u003e\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: LIQUID SILICONE RUBBER\u003c\/strong\u003e\u003cbr\u003eMarco Pagliani, Dow Corning SpA, Italy \u0026amp; Fabien Virlogeux, Dow Corning France SAS\u003cbr\u003e\u003cbr\u003ePaper 2 Liquid silicone rubber, the material of your choice\u003cbr\u003e\u003cbr\u003ePaper 3 Real fluorosilicones combined with LSR processing: new product family FFSL\u003cbr\u003eOliver Franssen \u0026amp; Dr. Stephan Bosshammer, Momentive Performance Materials GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eAndre Colas, Dow Corning SA, Belgium\u003cbr\u003e\u003cbr\u003ePaper 4 Silicone elastomers in medical applications\u003cbr\u003e\u003cbr\u003ePaper 5 Adding colour to medical devices using pigment masterbatches\u003cbr\u003ePatrick Peignot \u0026amp; Stephen Brunerm NuSil Technology Europe, France\u003cbr\u003e\u003cbr\u003ePaper 6 Silicone elastomers for outdoor electrical power transmission and distribution applications\u003cbr\u003eDr. Hans-Jrg Winter, Wacker Chemie AG, Germany\u003cbr\u003e\u003cbr\u003ePaper 7 Corpo Fibre Reinforcement for Elastomer Applications\u003cbr\u003eSiebe Nooij, Coen Ten Herkel \u0026amp; Soren Blomaard, Taniq BV, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eLaurent Perier \u0026amp; Arnaud Favier, DMA Products and Consulting, 01dB-Metravib, France\u003cbr\u003e\u003cbr\u003ePaper 8 A single testing instrument with multiple testing capabilities for silicone elastomers\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: FILLERS FOR SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eMichael Claes \u0026amp; Daniel Bonduel, Nanocyl SA, Belgium \u0026amp; Philippe Dubois, Universit of Mons-Hainaut, Belgium\u003cbr\u003e\u003cbr\u003ePaper 9 Carbon nanotubes\/silicone elastomer nanocomposites: multi-fuctional and high-performance products; review and trends of their applications\u003cbr\u003e\u003cbr\u003ePaper 10 Structure modified fumed silica-a clear solution for silicone rubber\u003cbr\u003eDr Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003e\u003cbr\u003ePaper 11 Improvements in reinforcement with diatomaceous earth in silicone systems\u003cbr\u003eJulian Danvers, World Minerals, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6: CROSSLINKING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eLeo Nijhof, Akzo Nobel Polymer Chemicals BV, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 12 Peroxide curing of silicone elastomers\u003cbr\u003e\u003cbr\u003ePaper 13 Crosslinking in PDMS particulate composites\u003cbr\u003eDr. Catarina Esteves, Dr. J Brokken-Zijp, Dr. J Laven \u0026amp; Dr. G de With, Technische Universiteit Eindhoven, The Netherlands\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003c\/strong\u003e\u003cbr\u003eUbaldo Colombo, Colmec SpA, Italy\u003cbr\u003e\u003cbr\u003ePaper 14 Silicone mixing and extrusion processing\u003cbr\u003e\u003cbr\u003ePaper 15 Carbon dioxide: good news for silicone rubber\u003cbr\u003eThomas Christensen, Nanon A\/S, Denmark\u003cbr\u003e\u003cbr\u003ePaper 16 Silicone composites\u003cbr\u003eDr. Jrgen Weidinger \u0026amp; Dr. Jrgen Ismeier, Wacker Chemie AG, Germany\u003cbr\u003e\u003cbr\u003ePaper 17 Bonding silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 18 Bubbling modelization, a help for the development of low density RTV foams\u003cbr\u003eDr. Delphine Blanc, Bluestar silicones, France\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 8: INJECTION MOULDING LIQUID SILICONE RUBBER\u003c\/strong\u003e\u003cbr\u003eProf Dr-Ing Dr-Ing Eh W Michaeli \u0026amp; Dipl-Ing Kai Openwinkel \u0026amp;, IKV Aachenm Germany\u003cbr\u003e\u003cbr\u003ePaper 19 Physical foaming of liquid silicone rubber in the injection moulding process\u003cbr\u003e\u003cbr\u003ePaper 20 High-quality LSR moulding\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria\u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers 2009
$135.00
{"id":11242237252,"title":"Silicone Elastomers 2009","handle":"978-1-84735-395-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-395-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2009 \u003cbr\u003e\u003c\/span\u003ePages: 20 papers\u003cbr\u003eFormat: Soft-backed\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third international conference on silicone elastomers informed the length and breadth of the silicone elastomers supply chain on current research developments and new applications. The application areas of silicone elastomers are widespread due to their wide spectrum of high performance qualities; temperature stability, electrical resistance, chemical inertia and high biocompatibility. Medical, healthcare, food, automotive, electrical, electronic and domestic appliance industries all require silicone elastomer blends that meet individual criteria.\u003cbr\u003e\u003cbr\u003eOrganisations that work with fluorosilicone, silicone composites, thermoplastic silicones, bonding agents, epoxy silicone blends, carbon nanotubes, medical grade silicones, extrusion, mixing or fine mesh straining will all benefit from these proceedings. The conference informed delegates on silicone elastomer market trends, materials, applications, testing, additives, fillers, and processing.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 1: Silicone elastomers – solutions for the future\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Hans Peter Wolf, Fabien Virlogeux \u0026amp; E Gerlach, Dow Corning GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: SILICONE ELASTOMER MATERIALS\u003cbr\u003ePaper 2: Fluoro technologies created new dimensions for liquid silicone rubber \u003cbr\u003e\u003c\/strong\u003eFabien Virlogeux, HP Wolf \u0026amp; E Gerlach, Dow Corning GmbH, Germany\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003ePaper 3: Silicone elastomers – clear as glass\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eDip –Ing Oliver Franssen \u0026amp; H Bayerl, Momentive Performance Materials GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePaper 4: Formulation of two-part elastomer systems: From theory to practice\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eDelphine Blanc \u0026amp; Caroline Moine, Bluestar Silicones, France\u003c\/p\u003e\n\u003cbr\u003e\u003cstrong\u003ePaper 5: Contribution of soft segment entanglements on thermomechanical properties of silicone-urea copolymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eIskender Yiglor, T Eynur, M Bakan \u0026amp; E Yilgor, Koc University, Turkey\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 6: Mechanical and thermal properties of epoxy silicone blends synthesized in supercritical carbon dioxide\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eM G H Zaidi, A Tiwari, T Agarwal, V Kumar, P L Sah, G B Pant University, India \u0026amp; S Alam, Defense Material Stores Research \u0026amp; Development Establishment, India\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 7: Advances in silicone elastomers for healthcare applications\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eBurkhard Ledig, Momentive Performance Materials GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 8: Silicone elastomers in medical applications: Recent developments\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Andre Colas \u0026amp; X Thomas, Dow Corning SA, Belgium\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 9: Determination of the overall migration from silicone elastomers into stimulants and foodstuffs using H-NMR techniques\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eProf Dr. Thomas Simat, Dresden University of Technology, Germany \u0026amp; R Helling, Saxon Institute for Public and Veterinary Health, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003ePaper 10: Claim and benefit –based approaches for assessing the antimicrobial performance of silicone elastomer formulations\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePeter D Askew, Industrial Microbiological Services Ltd (IMSL), UK\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: ADDITIVES FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 11: Microbial biofilm inhibitor for silicone elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eSvoboda Tabakova \u0026amp; V Mircheva, Bulgarian Academy of Sciences, Bulgaria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6: FILLERS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 12: Silicones and carbon nanotubes – from antistatic to fire barrier and fouling release coatings\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Michel Mahy, Nanocyl SA, Belgium\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13: Fumed silica – more than just a powder\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eMario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14: Fillers for silicone elastomers – non-silica alternatives\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ei V Dr. Thomas Doege, Quarzwerke GmbH, Germany \u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15: Collapse resistant extrusions and further benefits with Neuburg Siliceous Earth in peroxide cured high consistency silicone rubber\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eHubert Oggermüller, Nicole Westhaus, Rainer Lüttich, Hoffmann Mineral GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 16: Recent advances in bonding agents for silicone elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eAlbert Achen, LORD Germany GmbH, Germany \u0026amp; Patrick Warren, LORD Corporation, USA\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 17: Recent advances in silicone mixing and extrusion processing\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 18: Fine mesh straining and extrusion applications with gear pump systems for silicone elastomers\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eWinfried Trost \u0026amp; H Hain, Uth GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 19: Elastomer multi component moulding\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eIng Leopol Praher, Engel Austria GmbH, Austria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 20: LSR tooling at its best, what are the main factors for efficient and economic production?\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:34-04:00","created_at":"2017-06-22T21:14:35-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","application","book","carbon nanotubes","elastomers","epoxy silicone","formulation","fumed silica","p-chemistry","polymer","properties","rubber","Silicone","silicone-urea"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378424772,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2009","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-395-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-395-5.jpg?v=1499955602"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-395-5.jpg?v=1499955602","options":["Title"],"media":[{"alt":null,"id":358752125021,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-395-5.jpg?v=1499955602"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-395-5.jpg?v=1499955602","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-395-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2009 \u003cbr\u003e\u003c\/span\u003ePages: 20 papers\u003cbr\u003eFormat: Soft-backed\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third international conference on silicone elastomers informed the length and breadth of the silicone elastomers supply chain on current research developments and new applications. The application areas of silicone elastomers are widespread due to their wide spectrum of high performance qualities; temperature stability, electrical resistance, chemical inertia and high biocompatibility. Medical, healthcare, food, automotive, electrical, electronic and domestic appliance industries all require silicone elastomer blends that meet individual criteria.\u003cbr\u003e\u003cbr\u003eOrganisations that work with fluorosilicone, silicone composites, thermoplastic silicones, bonding agents, epoxy silicone blends, carbon nanotubes, medical grade silicones, extrusion, mixing or fine mesh straining will all benefit from these proceedings. The conference informed delegates on silicone elastomer market trends, materials, applications, testing, additives, fillers, and processing.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: MARKET TRENDS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 1: Silicone elastomers – solutions for the future\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Hans Peter Wolf, Fabien Virlogeux \u0026amp; E Gerlach, Dow Corning GmbH, Germany\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: SILICONE ELASTOMER MATERIALS\u003cbr\u003ePaper 2: Fluoro technologies created new dimensions for liquid silicone rubber \u003cbr\u003e\u003c\/strong\u003eFabien Virlogeux, HP Wolf \u0026amp; E Gerlach, Dow Corning GmbH, Germany\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003ePaper 3: Silicone elastomers – clear as glass\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eDip –Ing Oliver Franssen \u0026amp; H Bayerl, Momentive Performance Materials GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003ePaper 4: Formulation of two-part elastomer systems: From theory to practice\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003eDelphine Blanc \u0026amp; Caroline Moine, Bluestar Silicones, France\u003c\/p\u003e\n\u003cbr\u003e\u003cstrong\u003ePaper 5: Contribution of soft segment entanglements on thermomechanical properties of silicone-urea copolymers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eIskender Yiglor, T Eynur, M Bakan \u0026amp; E Yilgor, Koc University, Turkey\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 6: Mechanical and thermal properties of epoxy silicone blends synthesized in supercritical carbon dioxide\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eM G H Zaidi, A Tiwari, T Agarwal, V Kumar, P L Sah, G B Pant University, India \u0026amp; S Alam, Defense Material Stores Research \u0026amp; Development Establishment, India\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: APPLICATIONS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 7: Advances in silicone elastomers for healthcare applications\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eBurkhard Ledig, Momentive Performance Materials GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 8: Silicone elastomers in medical applications: Recent developments\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Andre Colas \u0026amp; X Thomas, Dow Corning SA, Belgium\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003eSESSION 4: TESTING SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 9: Determination of the overall migration from silicone elastomers into stimulants and foodstuffs using H-NMR techniques\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eProf Dr. Thomas Simat, Dresden University of Technology, Germany \u0026amp; R Helling, Saxon Institute for Public and Veterinary Health, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003ePaper 10: Claim and benefit –based approaches for assessing the antimicrobial performance of silicone elastomer formulations\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePeter D Askew, Industrial Microbiological Services Ltd (IMSL), UK\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: ADDITIVES FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 11: Microbial biofilm inhibitor for silicone elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eSvoboda Tabakova \u0026amp; V Mircheva, Bulgarian Academy of Sciences, Bulgaria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003eSESSION 6: FILLERS FOR SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 12: Silicones and carbon nanotubes – from antistatic to fire barrier and fouling release coatings\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Michel Mahy, Nanocyl SA, Belgium\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 13: Fumed silica – more than just a powder\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eMario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 14: Fillers for silicone elastomers – non-silica alternatives\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ei V Dr. Thomas Doege, Quarzwerke GmbH, Germany \u003cbr\u003e\u003cbr\u003e+++ Paper unavailable at time of print +++\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 15: Collapse resistant extrusions and further benefits with Neuburg Siliceous Earth in peroxide cured high consistency silicone rubber\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eHubert Oggermüller, Nicole Westhaus, Rainer Lüttich, Hoffmann Mineral GmbH \u0026amp; Co KG, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 7: PROCESSING SILICONE ELASTOMERS\u003cbr\u003e\u003cbr\u003ePaper 16: Recent advances in bonding agents for silicone elastomers\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eAlbert Achen, LORD Germany GmbH, Germany \u0026amp; Patrick Warren, LORD Corporation, USA\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 17: Recent advances in silicone mixing and extrusion processing\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 18: Fine mesh straining and extrusion applications with gear pump systems for silicone elastomers\u003cbr\u003e\u003cbr\u003e\u003c\/strong\u003eWinfried Trost \u0026amp; H Hain, Uth GmbH, Germany\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 19: Elastomer multi component moulding\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eIng Leopol Praher, Engel Austria GmbH, Austria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePaper 20: LSR tooling at its best, what are the main factors for efficient and economic production?\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e"}
Silicone Elastomers 2011
$165.00
{"id":11242230852,"title":"Silicone Elastomers 2011","handle":"978-1-84735-627-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-627-7\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers have a unique combination of properties not found with organic elastomers, such as stability over a very wide temperature range, good electrical properties and environmental resistance, no smell or taste, high biocompatibility, low softness without plasticizers, and high colourability and transparency. Despite their relatively high cost, silicone elastomers are being increasingly used for applications where durability and safety in use are particularly important such as; automotive, electrical and electronic, domestic appliances, food processing, medical devices and baby bottle teats.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered the whole range of silicone elastomer materials, including high temperature vulcanised (HTV), room temperature vulcanised (RTV) and liquid silicone rubber (LSR).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1 MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 1 Silicone elastomers – from innovation to function\u003cbr\u003eHans Winkelbach, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 2 Building the future on silicone elastomers – sustainable innovation\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cb\u003eSESSION 2 SILICONE ELASTOMER MATERIALS\u003c\/b\u003e\u003cbr\u003ePaper 3 Silicone elastomers beyond traditional self bonding and self lubricating technology\u003cbr\u003eDr. Jürgen Ismeier \u0026amp; Axel Schmidt, Wacker Chemie AG, Germany\u003cbr\u003ePaper 4 Innovations in silicone rubber technologies\u003cbr\u003eFabien Virlogeux, Dr. H P Wolf \u0026amp; P Beyer, Dow Corning France SaS, France\u003cbr\u003ePaper 5 Novel silicone rubber curing technology with UV light\u003cbr\u003eClemens Trumm, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 6 Effect of electron beam irradiation on structure-property relationship of compatible blends of LLDPE and PDMS rubber\u003cbr\u003eRadhasvam Giri, K Naskar \u0026amp; Prof G B Nando, Rubber Technology Centre, Indian Institute of Technology, India\u003cbr\u003e\u003cb\u003eSESSION 3 APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 7 High-temperature silicone elastomers for rolling stock cables\u003cbr\u003eDr. Bernard Dalbe, Nexans Research Centre, France\u003cbr\u003ePaper 8 New high modulus silicone elastomer – fibre reinforced LSR\u003cbr\u003eOliver Franssen, Momentive Performance Materials GmbH, Germany \u0026amp; Alexander Widmayr Woco Industrietechnik GmbH, Germany\u003cbr\u003ePaper 9 Lighting applications for silicones\u003cbr\u003eMariusz Kalecinski, Philips Lighting Poland SA, Poland\u003cbr\u003ePAPER UNAVAILABLE Paper 10 Silicone soft skin adhesive technology\u003cbr\u003eAudrey Wipret, Dow Corning Europe SA, Belgium\u003cbr\u003e\u003cb\u003eSESSION 4 TESTING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 11 Are silicone elastomers suitable for all food contact applications? Migration properties and durability of silicone elastomers in food contact\u003cbr\u003eRuediger Helling, Saxon Institute for Public and Veterinary Health \u0026amp; Prof Dr. Thomas J Simat, University of Technology Dresden, Germany\u003cbr\u003e\u003cb\u003eSESSION 5 FILLERS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 12 New and tailor-made precipitated silica grades for high performance silicone rubber\u003cbr\u003eDr. Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003ePaper 13 Preparation and structure-property behaviour of silica modified silicone-urea copolymers\u003cbr\u003eIskender Yilgor \u0026amp; Emel Yilgor, Koc University, Turkey\u003cbr\u003e\u003cb\u003eSESSION 6 PROCESSING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 14 Bonding capabilities of a new agent for silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003ePaper 15 Innovation in silicone processing equipment\u003cbr\u003eDr. Fabio Belotti, Battaggion SpA, Italy\u003cbr\u003ePaper 16 The latest technical advances in mixing and extrusion of silicone compounds\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003ePaper 17 Quality requirements and economic aspects for the production of high-quality silicone elastomers\u003cbr\u003eHorst Hain, Uth GmbH, Germany\u003cbr\u003ePaper 18 2K solutions for thermoplastics and LSR\u003cbr\u003eDaniel Schölmberger, Elmet GmbH, Austria\u003cbr\u003ePaper 19 HTV\/LSR machinery and equipment, highest accuracy and lowest energy consumption\u003cbr\u003eArmin Mattes, Engel Austria GmbH, Austria\u003cbr\u003ePaper 20 State of the art dosing technology for LSR\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria","published_at":"2017-06-22T21:14:16-04:00","created_at":"2017-06-22T21:14:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","application","biocompatibility","bonding","book","environmental resistance","fillers","food contact","high temperature vulcanised (HTV)","medical devices","p-chemistry","plasticizers","polymer","room temperature vulcanised (RTV)","rubber","Silicone elastomers","silicone rubber","testing"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378402948,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Elastomers 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-627-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957","options":["Title"],"media":[{"alt":null,"id":358752190557,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-627-7.jpg?v=1499727957","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-627-7\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSilicone elastomers have a unique combination of properties not found with organic elastomers, such as stability over a very wide temperature range, good electrical properties and environmental resistance, no smell or taste, high biocompatibility, low softness without plasticizers, and high colourability and transparency. Despite their relatively high cost, silicone elastomers are being increasingly used for applications where durability and safety in use are particularly important such as; automotive, electrical and electronic, domestic appliances, food processing, medical devices and baby bottle teats.\u003cbr\u003e\u003cbr\u003eThese proceedings cover all the presentations from the conference which covered the whole range of silicone elastomer materials, including high temperature vulcanised (HTV), room temperature vulcanised (RTV) and liquid silicone rubber (LSR).\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1 MARKET TRENDS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 1 Silicone elastomers – from innovation to function\u003cbr\u003eHans Winkelbach, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 2 Building the future on silicone elastomers – sustainable innovation\u003cbr\u003eDr. Hans Peter Wolf, Dow Corning GmbH, Germany\u003cbr\u003e\u003cb\u003eSESSION 2 SILICONE ELASTOMER MATERIALS\u003c\/b\u003e\u003cbr\u003ePaper 3 Silicone elastomers beyond traditional self bonding and self lubricating technology\u003cbr\u003eDr. Jürgen Ismeier \u0026amp; Axel Schmidt, Wacker Chemie AG, Germany\u003cbr\u003ePaper 4 Innovations in silicone rubber technologies\u003cbr\u003eFabien Virlogeux, Dr. H P Wolf \u0026amp; P Beyer, Dow Corning France SaS, France\u003cbr\u003ePaper 5 Novel silicone rubber curing technology with UV light\u003cbr\u003eClemens Trumm, Momentive Performance Materials GmbH, Germany\u003cbr\u003ePaper 6 Effect of electron beam irradiation on structure-property relationship of compatible blends of LLDPE and PDMS rubber\u003cbr\u003eRadhasvam Giri, K Naskar \u0026amp; Prof G B Nando, Rubber Technology Centre, Indian Institute of Technology, India\u003cbr\u003e\u003cb\u003eSESSION 3 APPLICATIONS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 7 High-temperature silicone elastomers for rolling stock cables\u003cbr\u003eDr. Bernard Dalbe, Nexans Research Centre, France\u003cbr\u003ePaper 8 New high modulus silicone elastomer – fibre reinforced LSR\u003cbr\u003eOliver Franssen, Momentive Performance Materials GmbH, Germany \u0026amp; Alexander Widmayr Woco Industrietechnik GmbH, Germany\u003cbr\u003ePaper 9 Lighting applications for silicones\u003cbr\u003eMariusz Kalecinski, Philips Lighting Poland SA, Poland\u003cbr\u003ePAPER UNAVAILABLE Paper 10 Silicone soft skin adhesive technology\u003cbr\u003eAudrey Wipret, Dow Corning Europe SA, Belgium\u003cbr\u003e\u003cb\u003eSESSION 4 TESTING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 11 Are silicone elastomers suitable for all food contact applications? Migration properties and durability of silicone elastomers in food contact\u003cbr\u003eRuediger Helling, Saxon Institute for Public and Veterinary Health \u0026amp; Prof Dr. Thomas J Simat, University of Technology Dresden, Germany\u003cbr\u003e\u003cb\u003eSESSION 5 FILLERS FOR SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 12 New and tailor-made precipitated silica grades for high performance silicone rubber\u003cbr\u003eDr. Mario Scholz, Evonik Degussa GmbH, Germany\u003cbr\u003ePaper 13 Preparation and structure-property behaviour of silica modified silicone-urea copolymers\u003cbr\u003eIskender Yilgor \u0026amp; Emel Yilgor, Koc University, Turkey\u003cbr\u003e\u003cb\u003eSESSION 6 PROCESSING SILICONE ELASTOMERS\u003c\/b\u003e\u003cbr\u003ePaper 14 Bonding capabilities of a new agent for silicone elastomers\u003cbr\u003eAissa Benarous, Chemical Innovations Ltd, UK\u003cbr\u003ePaper 15 Innovation in silicone processing equipment\u003cbr\u003eDr. Fabio Belotti, Battaggion SpA, Italy\u003cbr\u003ePaper 16 The latest technical advances in mixing and extrusion of silicone compounds\u003cbr\u003eDr. Ubaldo Colombo, Colmec SpA, Italy\u003cbr\u003ePaper 17 Quality requirements and economic aspects for the production of high-quality silicone elastomers\u003cbr\u003eHorst Hain, Uth GmbH, Germany\u003cbr\u003ePaper 18 2K solutions for thermoplastics and LSR\u003cbr\u003eDaniel Schölmberger, Elmet GmbH, Austria\u003cbr\u003ePaper 19 HTV\/LSR machinery and equipment, highest accuracy and lowest energy consumption\u003cbr\u003eArmin Mattes, Engel Austria GmbH, Austria\u003cbr\u003ePaper 20 State of the art dosing technology for LSR\u003cbr\u003eKurt Manigatter, Elmet GmbH, Austria"}
Silicone Products for ...
$125.00
{"id":11242215492,"title":"Silicone Products for Food Contact Applications","handle":"978-1-84735-097-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Martin Forrest \u003cbr\u003eISBN 978-1-84735-097-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003c\/span\u003e\u003cbr\u003eRapra Review Report\u003cbr\u003eVol. 16, No. 8, Report 188\u003cbr\u003eSoft-backed, 297 x 210 mm, 124 pages.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nin a variety of different food contact situations and conditions. \u003cbr\u003e\u003cbr\u003eThe origin of this review report was a Food Standards Agency (FSA) project on food contact silicone based materials that was carried out at Rapra from 2003 until 2005. The objective of this project was to provide detailed information on the types and composition of silicone based products that are used in contact with food and to identify the extent to which the migration of specific constituents into food could occur. In addition to giving a summary of the findings of this extensive FSA project, this review report also provides an extensive overview of the principal types of silicone products that are used in food contact situations, from a description of their manufacture and chemical composition, to a detailed review of the potential migrants and their migration behaviour. It also covers the relevant national and EU food contact legislation and describes recent, food related technological developments. \u003cbr\u003e\u003cbr\u003eThis report is the final one of a trilogy that has addressed food contact materials. It joins a report summarising the current situation with respect to the use of rubber products for food applications (Review Report No. 182) and one reviewing the use of coatings and inks (Review Report No. 186). \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 230 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. Silicone Products for Food Contact Applications\u003c\/strong\u003e \u003cbr\u003e2.1 Silicone Polymers – Chemistry, Structure, and Properties \u003cbr\u003e2.1.1 Definition of a Silicone Polymer \u003cbr\u003e2.1.2 Chemical Bonding in Silicones \u003cbr\u003e2.1.3 Physical Characteristics \u003cbr\u003e2.1.4 Chemical Properties \u003cbr\u003e2.2 Food Contact Silicone Products – Manufacture and Composition \u003cbr\u003e2.2.1 Introduction \u003cbr\u003e2.2.2 Manufacture of Silicone Polymers and Their Precursors \u003cbr\u003e2.2.3 Silicone Fluids and Silicone Gums \u003cbr\u003e2.2.4 Silicone Rubbers – from High MW Gums \u003cbr\u003e2.2.5 Silicone Rubbers – From Relatively Low MW Liquids \u003cbr\u003e2.2.6 Silicone Resins \u003cbr\u003e2.2.7 Silicone Greases \u003cbr\u003e2.2.8 Copolymers \u003cbr\u003e2.2.9 Silicone Surfactants \u003cbr\u003e2.3 Food Contact and Food Related Applications \u003cbr\u003e2.3.1 Release Agents \u003cbr\u003e2.3.2 Silicone Rubbers \u003cbr\u003e2.3.3 Silicones as Additives for Polymers \u003cbr\u003e2.3.4 Silicones in Food Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Regulations Covering the Use of Silicones With Food\u003c\/strong\u003e \u003cbr\u003e3.1 Existing EU Legislation and Guideline Documents \u003cbr\u003e3.2 Council of Europe Resolution on Silicones (Resolution AP (2004)) \u003cbr\u003e3.3 German Recommendation XV from the BfR \u003cbr\u003e3.4 Other National Legislation in the EU \u003cbr\u003e3.4.1 Belgium \u003cbr\u003e3.4.2 Italy \u003cbr\u003e3.4.3 Netherlands \u003cbr\u003e3.4.4 United Kingdom \u003cbr\u003e3.5 The US Food and Drug Administration (FDA) \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. Assessing the Safety of Silicone Materials and Articles for Food Applications\u003c\/strong\u003e \u003cbr\u003e4.1 Fingerprinting of Potential Migrants from Silicone Products \u003cbr\u003e4.1.1 Multi-element Semi-quantitative Inductively Coupled Plasma Scan \u003cbr\u003e4.1.2 Targeting of Specific Species \u003cbr\u003e4.1.3 Identification of Low MW Potential Migrants \u003cbr\u003e4.2 Overall Migration Tests \u003cbr\u003e4.2.1 FDA Regulations for Rubbers \u003cbr\u003e4.2.2 Council of Europe Silicone Resolution \u003cbr\u003e4.3 Determination of Specific Species in Food Simulants and Foods \u003cbr\u003e4.3.1 Determination of Specific Elements \u003cbr\u003e4.3.2 Determination of Formaldehyde \u003cbr\u003e4.3.3 Determination of Low MW Species Using GC-MS and LC-MS \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Foods Standards Agency Silicone Project – Contract Number A03046\u003c\/strong\u003e \u003cbr\u003e5.1 Silicone Products Studied in the Project \u003cbr\u003e5.1.1 Silicone Rubbers \u003cbr\u003e5.1.2 Silicone Fluids \u003cbr\u003e5.1.3 Silicone Resins – Uncured Products \u003cbr\u003e5.1.4 Silicon Resin Coated Bakeware from Supermarkets \u003cbr\u003e5.1.5 Compositional Fingerprinting Work \u003cbr\u003e5.2 Migration Experiments with Food Simulants \u003cbr\u003e5.2.1 Overall Migration Work \u003cbr\u003e5.2.2 Specific Migration Work \u003cbr\u003e5.3 Migration Experiments with Food Products \u003cbr\u003e5.3.1 Contact Tests Performed on the Silicone Products \u003cbr\u003e5.3.2 Determination of Specific Migrants in Food Products \u003cbr\u003e5.4 Summary of Project Results \u003cbr\u003e5.4.1 Summary of the Data Obtained on the Silicone Rubber Samples \u003cbr\u003e5.4.2 Summary of the Data Obtained on the Silicone Fluids \u003cbr\u003e5.4.3 Summary of the Data Obtained on the Silicone Resin Samples \u003cbr\u003e5.4.4 Overall Summary of the Project and the Results Obtained \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Migration Mechanisms, Potential Migrants, and Published Migration Data\u003c\/strong\u003e \u003cbr\u003e6.1 Possible Migration Mechanisms for Chemical Species from Silicone Products \u003cbr\u003e6.1.1 Migration to Air (Volatilisation) \u003cbr\u003e6.1.2 Migration into Fluids \u003cbr\u003e6.1.3 Migration into Foodstuffs \u003cbr\u003e6.2 Potential Migrants from Silicone Products \u003cbr\u003e6.2.1 Summary of Potential Migrants \u003cbr\u003e6.2.2 Specific Potential Migrants \u003cbr\u003e6.3 Published Migration Data \u003cbr\u003e6.3.1 Silicone Rubber Study \u003cbr\u003e6.3.2 Silicone Rubber Teats and Soothers \u003cbr\u003e6.3.3 Peroxide Breakdown Products \u003cbr\u003e6.3.4 Polydimethylsiloxane Oligomers \u003cbr\u003e6.3.5 General Assessment of Silicone Rubbers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Improving the Safety of Silicones for Food Use and Future Trends\u003c\/strong\u003e \u003cbr\u003e7.1 Silicone Foams \u003cbr\u003e7.2 Antibacterial Additives and Coatings \u003cbr\u003e7.3 Intelligent Packaging \u003cbr\u003e7.4 Barrier Coatings \u003cbr\u003e7.5 Non-stick Additives \u003cbr\u003e7.6 Nanoparticulate Silicones \u003cbr\u003e7.7 Inks and Varnishes \u003cbr\u003e7.8 Radiation-cured Release Coatings \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Conclusion\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eReferences \u003cbr\u003eAcknowledgements \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eStructural Assignments for Silicone Polymers and Oligomers \u003cbr\u003eReferences from the Polymer Library Database \u003cbr\u003eSubject Index \u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest started his career in 1977 with James Walkers \u0026amp; Co. Ltd, and during this time he progressed to the position of Rubber Technologist, having obtained his first degree in Polymer Technology at the London School of Polymer Technology (LSPT). In 1983 he started a full time Master of Science course in Polymer Science and Technology at the LSPT. After being awarded his MSc in 1984, he completed a Ph.D. in Polymer Chemistry at Loughborough University in 1988. He then joined Rapra Technology as a Consultant in the Polymer Analysis section and remained in that section until 2006, rising to the position of Principal Consultant. During his time in the Polymer Analysis section, Dr. Forrest was the main contact at Rapra for consultancy projects involving the analysis of rubber compounds and rubber based products. During his 20 years at Rapra he has also managed a number of FSA, TSB, and EU funded research projects, and since 2006 he has been a Project Manager for the Research Projects Group.","published_at":"2017-06-22T21:13:26-04:00","created_at":"2017-06-22T21:13:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","acrylic polymers","additives","book","food","food contact","p-chemistry","polymer","resins","silicone","silicone fluids","silicone gums","silicone rubbers"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378355140,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Silicone Products for Food Contact Applications","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-097-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-097-8.jpg?v=1499725036"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-097-8.jpg?v=1499725036","options":["Title"],"media":[{"alt":null,"id":358752714845,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-097-8.jpg?v=1499725036"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-097-8.jpg?v=1499725036","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Martin Forrest \u003cbr\u003eISBN 978-1-84735-097-8 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003c\/span\u003e\u003cbr\u003eRapra Review Report\u003cbr\u003eVol. 16, No. 8, Report 188\u003cbr\u003eSoft-backed, 297 x 210 mm, 124 pages.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nin a variety of different food contact situations and conditions. \u003cbr\u003e\u003cbr\u003eThe origin of this review report was a Food Standards Agency (FSA) project on food contact silicone based materials that was carried out at Rapra from 2003 until 2005. The objective of this project was to provide detailed information on the types and composition of silicone based products that are used in contact with food and to identify the extent to which the migration of specific constituents into food could occur. In addition to giving a summary of the findings of this extensive FSA project, this review report also provides an extensive overview of the principal types of silicone products that are used in food contact situations, from a description of their manufacture and chemical composition, to a detailed review of the potential migrants and their migration behaviour. It also covers the relevant national and EU food contact legislation and describes recent, food related technological developments. \u003cbr\u003e\u003cbr\u003eThis report is the final one of a trilogy that has addressed food contact materials. It joins a report summarising the current situation with respect to the use of rubber products for food applications (Review Report No. 182) and one reviewing the use of coatings and inks (Review Report No. 186). \u003cbr\u003e\u003cbr\u003eThe review is accompanied by around 230 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e2. Silicone Products for Food Contact Applications\u003c\/strong\u003e \u003cbr\u003e2.1 Silicone Polymers – Chemistry, Structure, and Properties \u003cbr\u003e2.1.1 Definition of a Silicone Polymer \u003cbr\u003e2.1.2 Chemical Bonding in Silicones \u003cbr\u003e2.1.3 Physical Characteristics \u003cbr\u003e2.1.4 Chemical Properties \u003cbr\u003e2.2 Food Contact Silicone Products – Manufacture and Composition \u003cbr\u003e2.2.1 Introduction \u003cbr\u003e2.2.2 Manufacture of Silicone Polymers and Their Precursors \u003cbr\u003e2.2.3 Silicone Fluids and Silicone Gums \u003cbr\u003e2.2.4 Silicone Rubbers – from High MW Gums \u003cbr\u003e2.2.5 Silicone Rubbers – From Relatively Low MW Liquids \u003cbr\u003e2.2.6 Silicone Resins \u003cbr\u003e2.2.7 Silicone Greases \u003cbr\u003e2.2.8 Copolymers \u003cbr\u003e2.2.9 Silicone Surfactants \u003cbr\u003e2.3 Food Contact and Food Related Applications \u003cbr\u003e2.3.1 Release Agents \u003cbr\u003e2.3.2 Silicone Rubbers \u003cbr\u003e2.3.3 Silicones as Additives for Polymers \u003cbr\u003e2.3.4 Silicones in Food Processing \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Regulations Covering the Use of Silicones With Food\u003c\/strong\u003e \u003cbr\u003e3.1 Existing EU Legislation and Guideline Documents \u003cbr\u003e3.2 Council of Europe Resolution on Silicones (Resolution AP (2004)) \u003cbr\u003e3.3 German Recommendation XV from the BfR \u003cbr\u003e3.4 Other National Legislation in the EU \u003cbr\u003e3.4.1 Belgium \u003cbr\u003e3.4.2 Italy \u003cbr\u003e3.4.3 Netherlands \u003cbr\u003e3.4.4 United Kingdom \u003cbr\u003e3.5 The US Food and Drug Administration (FDA) \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. Assessing the Safety of Silicone Materials and Articles for Food Applications\u003c\/strong\u003e \u003cbr\u003e4.1 Fingerprinting of Potential Migrants from Silicone Products \u003cbr\u003e4.1.1 Multi-element Semi-quantitative Inductively Coupled Plasma Scan \u003cbr\u003e4.1.2 Targeting of Specific Species \u003cbr\u003e4.1.3 Identification of Low MW Potential Migrants \u003cbr\u003e4.2 Overall Migration Tests \u003cbr\u003e4.2.1 FDA Regulations for Rubbers \u003cbr\u003e4.2.2 Council of Europe Silicone Resolution \u003cbr\u003e4.3 Determination of Specific Species in Food Simulants and Foods \u003cbr\u003e4.3.1 Determination of Specific Elements \u003cbr\u003e4.3.2 Determination of Formaldehyde \u003cbr\u003e4.3.3 Determination of Low MW Species Using GC-MS and LC-MS \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Foods Standards Agency Silicone Project – Contract Number A03046\u003c\/strong\u003e \u003cbr\u003e5.1 Silicone Products Studied in the Project \u003cbr\u003e5.1.1 Silicone Rubbers \u003cbr\u003e5.1.2 Silicone Fluids \u003cbr\u003e5.1.3 Silicone Resins – Uncured Products \u003cbr\u003e5.1.4 Silicon Resin Coated Bakeware from Supermarkets \u003cbr\u003e5.1.5 Compositional Fingerprinting Work \u003cbr\u003e5.2 Migration Experiments with Food Simulants \u003cbr\u003e5.2.1 Overall Migration Work \u003cbr\u003e5.2.2 Specific Migration Work \u003cbr\u003e5.3 Migration Experiments with Food Products \u003cbr\u003e5.3.1 Contact Tests Performed on the Silicone Products \u003cbr\u003e5.3.2 Determination of Specific Migrants in Food Products \u003cbr\u003e5.4 Summary of Project Results \u003cbr\u003e5.4.1 Summary of the Data Obtained on the Silicone Rubber Samples \u003cbr\u003e5.4.2 Summary of the Data Obtained on the Silicone Fluids \u003cbr\u003e5.4.3 Summary of the Data Obtained on the Silicone Resin Samples \u003cbr\u003e5.4.4 Overall Summary of the Project and the Results Obtained \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Migration Mechanisms, Potential Migrants, and Published Migration Data\u003c\/strong\u003e \u003cbr\u003e6.1 Possible Migration Mechanisms for Chemical Species from Silicone Products \u003cbr\u003e6.1.1 Migration to Air (Volatilisation) \u003cbr\u003e6.1.2 Migration into Fluids \u003cbr\u003e6.1.3 Migration into Foodstuffs \u003cbr\u003e6.2 Potential Migrants from Silicone Products \u003cbr\u003e6.2.1 Summary of Potential Migrants \u003cbr\u003e6.2.2 Specific Potential Migrants \u003cbr\u003e6.3 Published Migration Data \u003cbr\u003e6.3.1 Silicone Rubber Study \u003cbr\u003e6.3.2 Silicone Rubber Teats and Soothers \u003cbr\u003e6.3.3 Peroxide Breakdown Products \u003cbr\u003e6.3.4 Polydimethylsiloxane Oligomers \u003cbr\u003e6.3.5 General Assessment of Silicone Rubbers \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Improving the Safety of Silicones for Food Use and Future Trends\u003c\/strong\u003e \u003cbr\u003e7.1 Silicone Foams \u003cbr\u003e7.2 Antibacterial Additives and Coatings \u003cbr\u003e7.3 Intelligent Packaging \u003cbr\u003e7.4 Barrier Coatings \u003cbr\u003e7.5 Non-stick Additives \u003cbr\u003e7.6 Nanoparticulate Silicones \u003cbr\u003e7.7 Inks and Varnishes \u003cbr\u003e7.8 Radiation-cured Release Coatings \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Conclusion\u003c\/strong\u003e \u003cbr\u003e\u003cbr\u003eReferences \u003cbr\u003eAcknowledgements \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eStructural Assignments for Silicone Polymers and Oligomers \u003cbr\u003eReferences from the Polymer Library Database \u003cbr\u003eSubject Index \u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest started his career in 1977 with James Walkers \u0026amp; Co. Ltd, and during this time he progressed to the position of Rubber Technologist, having obtained his first degree in Polymer Technology at the London School of Polymer Technology (LSPT). In 1983 he started a full time Master of Science course in Polymer Science and Technology at the LSPT. After being awarded his MSc in 1984, he completed a Ph.D. in Polymer Chemistry at Loughborough University in 1988. He then joined Rapra Technology as a Consultant in the Polymer Analysis section and remained in that section until 2006, rising to the position of Principal Consultant. During his time in the Polymer Analysis section, Dr. Forrest was the main contact at Rapra for consultancy projects involving the analysis of rubber compounds and rubber based products. During his 20 years at Rapra he has also managed a number of FSA, TSB, and EU funded research projects, and since 2006 he has been a Project Manager for the Research Projects Group."}
Sittig's Handbook of T...
$655.00
{"id":11242226948,"title":"Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens","handle":"978-0-8155-1553-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Richard P. Pohanish \u003cbr\u003eISBN 978-0-8155-1553-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003cbr\u003e\u003c\/span\u003e5th Edition, 3,000 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor more than a quarter-century, \u003cstrong\u003eSittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens\u003c\/strong\u003e has continued to gather an ever-widening audience of users because it has proven to be among the most reliable, easy-to-use and essential reference works on hazardous materials. \u003cstrong\u003eSittig’s 5th Edition\u003c\/strong\u003e remains the lone comprehensive work providing a vast array of critical information on the 2,100 most heavily used, transported, and regulated chemical substances of both occupational and environmental concern.\n\u003cp class=\"style5\"\u003eEach year in the United States alone, over 350 billion pounds of toxic chemicals are manufactured and more than 8 billion pounds of these hazardous materials are transported through populated areas. It is not surprising that commercial chemical incidents occur tens of thousands of times each year, often with devastating and exorbitantly expensive consequences.\u003c\/p\u003e\n\u003cp\u003eGiven the reality of problems related to chemical hazards, including accidents and spills, the advent of new threats to our way of life, and the challenges of communicating complex data; \u003cstrong\u003eSittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens, 5th Edition\u003c\/strong\u003e provides data so that responsible decisions can be made by all who may have contact with the chemicals covered in this reference work.\u003c\/p\u003e\n\u003cp\u003eInformation is the most vital resource anyone can have when dealing with potential hazardous substance accidents or acts of terror. \u003cstrong\u003eSittig’s \u003c\/strong\u003eprovides extensive data for each of the 2,100 chemicals in a uniform format, enabling fast and accurate decisions in any situation. The chemicals are presented alphabetically and classified as a carcinogen, hazardous substance, hazardous waste, or toxic pollutant. This new edition contains extensively expanded information in all 28 fields for each chemical \u003cem\u003e(see the table of contents)\u003c\/em\u003e and has been updated to keep pace with world events. Chemicals classified as WMD have been included in the new edition as has more information frequently queried by first responders and frontline industrial safety personnel.\u003c\/p\u003e\n\u003cp\u003eToxic and hazardous chemicals are manufactured in nearly every country in the world. They are a critical part of the global economy and also one of the greatest threats to our safety and security. \u003cstrong\u003eSittig’s Handbook\u003c\/strong\u003e has proven itself, year after year, to be one of the most important major references anyone dealing with these substances can have at their disposal. This \u003cstrong\u003e5th Edition\u003c\/strong\u003e will prove that it is, once again, the lone comprehensive work available.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul type=\"disc\"\u003e\n\u003cli\u003eMolecular Formula\u003c\/li\u003e\n\u003cli\u003eCommon Formula\u003c\/li\u003e\n\u003cli\u003eSynonyms\u003c\/li\u003e\n\u003cli\u003eCAS Registry Number\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eWhen alternate numbers exist, these have been added to the 5th Edition and will also appear in the CAS Index.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDOT ID\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eDOT information has been updated to comply with the 2004 US Department of Transportation (DOT) \u003cem\u003eEmergency Response Guide\u003c\/em\u003e and classifications.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eEEC Number\u003c\/li\u003e\n\u003cli\u003eRegulatory Authority\n\u003cul type=\"circle\"\u003e\n\u003cli\u003e\n\u003cp\u003eThe \u003cem\u003eCarcinogenicity\u003c\/em\u003e subsection has been simplified to contain the latest information from the National Cancer Institute (NCI), the National Toxicology Program (NCP), and the International Agency for Research on Cancer (IARC) with assessments and Cancer Groups 1 – 4. This is fortified with additional information on cancer in the Permissible Exposure in Air section (see below) as OSHA, NIOSH, ACGIH (American Conference of Governmental Hygienists) and the German Research Society (Deutsche Forchungsgemeinshaft) list their assessments.\u003c\/p\u003e\n\u003cul type=\"square\"\u003e\n\u003cli\u003eTesting information from the EPA follows carcinogen information.\u003c\/li\u003e\n\u003cli\u003eIf the chemical is used as a pesticide, the EPA status is listed as supported, canceled, etc.\u003c\/li\u003e\n\u003cli\u003eCanada’s Workplace Hazardous Material Information System (WHMIS) values have been added.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eCited in U.S. State Regulations\u003c\/li\u003e\n\u003cli\u003eDescription\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eAdditional Physical Properties information has been added. Molecular weights are now present, as is vapor pressure, specific gravity, vapor density, and more.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePotential Exposure\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow Contains the RTECS Compound Description, and more precise usage information has been added to most entries. Also in this section, the top 50 chemicals and some production figures have been added. For example, Phenol is shown as “Top 50 chemical production; 3.71 billion pounds in 1992, 3.60 billion pounds in 1991.”\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eIncompatibilities\u003c\/li\u003e\n\u003cli\u003ePermissible Exposure Limits in Air\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThis section has been completely reorganized and rewritten to harmonize with the various agencies and advisory providers. It is much more readable than the 4th Edition and now shows OSHA PELs, NIOSH RELs, ACGIH TLVs and Germany’s MAKs and BATs, and NIOSH IDLHs (levels at which chemicals are immediately dangerous to life and health). This section also contains updated permissible exposure limits for countries around the world.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDetermination in Air\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThis has been updated with more OSHA and NIOSH testing information.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePermissible Concentration in Water\u003c\/li\u003e\n\u003cli\u003eDetermination in Water\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThe Log Kow (Octanol\/water partition coefficient) has been added to this section. This is a simple, easily understood number and an indicator of potential pollution. Also, where there is information on Fish Toxicity numerical levels and ratings (LOW, INTERMEDIATE, HIGH, EXTRA HIGH) from the \u003cem\u003eNational Agricultural Risk Analysis Database\u003c\/em\u003e, it is included here.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eRoutes of Entry\u003c\/li\u003e\n\u003cli\u003eHarmful Effects and Symptoms\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eShort Term Exposure\u003c\/li\u003e\n\u003cli\u003eLong Term Exposure\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains Human Toxicity numerical levels and ratings (LOW, INTERMEDIATE, HIGH, EXTRA HIGH) from the \u003cem\u003eNational Agricultural Risk Analysis Database.\u003c\/em\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePoints of Attack\u003c\/li\u003e\n\u003cli\u003eMedical Surveillance\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains recommended testing from NIOSH and \u003cu\u003erequired\u003c\/u\u003e testing mandated by OSHA.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePersonal Protective Methods\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains more specific information on protective materials for suits and gloves.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eRespirator Selection\n\u003cul type=\"square\"\u003e\n\u003cli\u003eThis section has been brought up-to-date extensively with information from the NIOSH Pocket Guide (2006 edition).\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eStorage\u003c\/li\u003e\n\u003cli\u003eShipping\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eDOT information has been updated to comply with the 2004 US Department of Transportation (DOT) \u003cem\u003eEmergency Response Guide\u003c\/em\u003e and classifications.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eSpill Handling\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow contains the Soil Absorption Index from the \u003cem\u003eEPA National Agricultural Risk Analysis Database\u003c\/em\u003e.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eFire Extinguishing\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow contains information on specific products of combustion. For example, many otherwise mildly hazardous chemicals can emit highly toxic fumes and gasses in the heat of fire such as sulfur oxides, nitrogen oxides, arsenic, mercury, nickel, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDisposal Method Suggested\u003c\/li\u003e\n\u003cli\u003eReferences\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRichard P. Pohanish is the author of numerous articles and professional reference works including (with Stanley Greene) four books and two CD-ROMs for the environmental, health and safety field. Mr. Pohanish has been active in the environmental field since 1980, is the President and Publisher of Chem-Data Systems, cofounder of Chemtox, Inc., and co-author of Sittig’s Pesticides and Agricultural Chemicals (2005).","published_at":"2017-06-22T21:14:03-04:00","created_at":"2017-06-22T21:14:03-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","ACGIH","arsenic","book","cancer","carcinogens","CAS","chemicals","disposal","DOT","EEC","effects","EINECS","environment","environmental","EPA","equipment manufacturers","exposure limits","firefighters","first aid","gasses","Germany’s MAKs and BATs","gloves","harmful","harmful effects","hazardous","hazardous waste","health","hygienists","long exposure","mercury","nickel","NIOSH","nitrogen oxides","OSHA","paramedics","police","polymer","protective materials","respiratory","routes of entry","RTECS Number","s hipping","safety","short exposure","storage","suits","sulfur oxides","symptoms","toxic","toxic fumes","toxic pollutant","toxicologists","waste disposal","WHMIS"],"price":65500,"price_min":65500,"price_max":65500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens","public_title":null,"options":["Default Title"],"price":65500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-8155-1553-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1553-1.jpg?v=1499955671"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1553-1.jpg?v=1499955671","options":["Title"],"media":[{"alt":null,"id":358754156637,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1553-1.jpg?v=1499955671"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-8155-1553-1.jpg?v=1499955671","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Richard P. Pohanish \u003cbr\u003eISBN 978-0-8155-1553-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008 \u003cbr\u003e\u003c\/span\u003e5th Edition, 3,000 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor more than a quarter-century, \u003cstrong\u003eSittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens\u003c\/strong\u003e has continued to gather an ever-widening audience of users because it has proven to be among the most reliable, easy-to-use and essential reference works on hazardous materials. \u003cstrong\u003eSittig’s 5th Edition\u003c\/strong\u003e remains the lone comprehensive work providing a vast array of critical information on the 2,100 most heavily used, transported, and regulated chemical substances of both occupational and environmental concern.\n\u003cp class=\"style5\"\u003eEach year in the United States alone, over 350 billion pounds of toxic chemicals are manufactured and more than 8 billion pounds of these hazardous materials are transported through populated areas. It is not surprising that commercial chemical incidents occur tens of thousands of times each year, often with devastating and exorbitantly expensive consequences.\u003c\/p\u003e\n\u003cp\u003eGiven the reality of problems related to chemical hazards, including accidents and spills, the advent of new threats to our way of life, and the challenges of communicating complex data; \u003cstrong\u003eSittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens, 5th Edition\u003c\/strong\u003e provides data so that responsible decisions can be made by all who may have contact with the chemicals covered in this reference work.\u003c\/p\u003e\n\u003cp\u003eInformation is the most vital resource anyone can have when dealing with potential hazardous substance accidents or acts of terror. \u003cstrong\u003eSittig’s \u003c\/strong\u003eprovides extensive data for each of the 2,100 chemicals in a uniform format, enabling fast and accurate decisions in any situation. The chemicals are presented alphabetically and classified as a carcinogen, hazardous substance, hazardous waste, or toxic pollutant. This new edition contains extensively expanded information in all 28 fields for each chemical \u003cem\u003e(see the table of contents)\u003c\/em\u003e and has been updated to keep pace with world events. Chemicals classified as WMD have been included in the new edition as has more information frequently queried by first responders and frontline industrial safety personnel.\u003c\/p\u003e\n\u003cp\u003eToxic and hazardous chemicals are manufactured in nearly every country in the world. They are a critical part of the global economy and also one of the greatest threats to our safety and security. \u003cstrong\u003eSittig’s Handbook\u003c\/strong\u003e has proven itself, year after year, to be one of the most important major references anyone dealing with these substances can have at their disposal. This \u003cstrong\u003e5th Edition\u003c\/strong\u003e will prove that it is, once again, the lone comprehensive work available.\u003c\/p\u003e\n\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul type=\"disc\"\u003e\n\u003cli\u003eMolecular Formula\u003c\/li\u003e\n\u003cli\u003eCommon Formula\u003c\/li\u003e\n\u003cli\u003eSynonyms\u003c\/li\u003e\n\u003cli\u003eCAS Registry Number\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eWhen alternate numbers exist, these have been added to the 5th Edition and will also appear in the CAS Index.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDOT ID\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eDOT information has been updated to comply with the 2004 US Department of Transportation (DOT) \u003cem\u003eEmergency Response Guide\u003c\/em\u003e and classifications.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eEEC Number\u003c\/li\u003e\n\u003cli\u003eRegulatory Authority\n\u003cul type=\"circle\"\u003e\n\u003cli\u003e\n\u003cp\u003eThe \u003cem\u003eCarcinogenicity\u003c\/em\u003e subsection has been simplified to contain the latest information from the National Cancer Institute (NCI), the National Toxicology Program (NCP), and the International Agency for Research on Cancer (IARC) with assessments and Cancer Groups 1 – 4. This is fortified with additional information on cancer in the Permissible Exposure in Air section (see below) as OSHA, NIOSH, ACGIH (American Conference of Governmental Hygienists) and the German Research Society (Deutsche Forchungsgemeinshaft) list their assessments.\u003c\/p\u003e\n\u003cul type=\"square\"\u003e\n\u003cli\u003eTesting information from the EPA follows carcinogen information.\u003c\/li\u003e\n\u003cli\u003eIf the chemical is used as a pesticide, the EPA status is listed as supported, canceled, etc.\u003c\/li\u003e\n\u003cli\u003eCanada’s Workplace Hazardous Material Information System (WHMIS) values have been added.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eCited in U.S. State Regulations\u003c\/li\u003e\n\u003cli\u003eDescription\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eAdditional Physical Properties information has been added. Molecular weights are now present, as is vapor pressure, specific gravity, vapor density, and more.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePotential Exposure\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow Contains the RTECS Compound Description, and more precise usage information has been added to most entries. Also in this section, the top 50 chemicals and some production figures have been added. For example, Phenol is shown as “Top 50 chemical production; 3.71 billion pounds in 1992, 3.60 billion pounds in 1991.”\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eIncompatibilities\u003c\/li\u003e\n\u003cli\u003ePermissible Exposure Limits in Air\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThis section has been completely reorganized and rewritten to harmonize with the various agencies and advisory providers. It is much more readable than the 4th Edition and now shows OSHA PELs, NIOSH RELs, ACGIH TLVs and Germany’s MAKs and BATs, and NIOSH IDLHs (levels at which chemicals are immediately dangerous to life and health). This section also contains updated permissible exposure limits for countries around the world.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDetermination in Air\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThis has been updated with more OSHA and NIOSH testing information.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePermissible Concentration in Water\u003c\/li\u003e\n\u003cli\u003eDetermination in Water\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eThe Log Kow (Octanol\/water partition coefficient) has been added to this section. This is a simple, easily understood number and an indicator of potential pollution. Also, where there is information on Fish Toxicity numerical levels and ratings (LOW, INTERMEDIATE, HIGH, EXTRA HIGH) from the \u003cem\u003eNational Agricultural Risk Analysis Database\u003c\/em\u003e, it is included here.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eRoutes of Entry\u003c\/li\u003e\n\u003cli\u003eHarmful Effects and Symptoms\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eShort Term Exposure\u003c\/li\u003e\n\u003cli\u003eLong Term Exposure\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains Human Toxicity numerical levels and ratings (LOW, INTERMEDIATE, HIGH, EXTRA HIGH) from the \u003cem\u003eNational Agricultural Risk Analysis Database.\u003c\/em\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePoints of Attack\u003c\/li\u003e\n\u003cli\u003eMedical Surveillance\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains recommended testing from NIOSH and \u003cu\u003erequired\u003c\/u\u003e testing mandated by OSHA.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003ePersonal Protective Methods\n\u003cul type=\"square\"\u003e\n\u003cli\u003eNow contains more specific information on protective materials for suits and gloves.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eRespirator Selection\n\u003cul type=\"square\"\u003e\n\u003cli\u003eThis section has been brought up-to-date extensively with information from the NIOSH Pocket Guide (2006 edition).\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eStorage\u003c\/li\u003e\n\u003cli\u003eShipping\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eDOT information has been updated to comply with the 2004 US Department of Transportation (DOT) \u003cem\u003eEmergency Response Guide\u003c\/em\u003e and classifications.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eSpill Handling\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow contains the Soil Absorption Index from the \u003cem\u003eEPA National Agricultural Risk Analysis Database\u003c\/em\u003e.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eFire Extinguishing\n\u003cul type=\"circle\"\u003e\n\u003cli\u003eNow contains information on specific products of combustion. For example, many otherwise mildly hazardous chemicals can emit highly toxic fumes and gasses in the heat of fire such as sulfur oxides, nitrogen oxides, arsenic, mercury, nickel, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003eDisposal Method Suggested\u003c\/li\u003e\n\u003cli\u003eReferences\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRichard P. Pohanish is the author of numerous articles and professional reference works including (with Stanley Greene) four books and two CD-ROMs for the environmental, health and safety field. Mr. Pohanish has been active in the environmental field since 1980, is the President and Publisher of Chem-Data Systems, cofounder of Chemtox, Inc., and co-author of Sittig’s Pesticides and Agricultural Chemicals (2005)."}
Smart Polymer Systems ...
$135.00
{"id":11242250500,"title":"Smart Polymer Systems 2010","handle":"978-1-84735-494-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-494-5 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2010 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSmart Polymer Systems 2010 was iSmithers’ inaugural international conference on stimuli-responsive polymers. These material systems repeatedly dramatically react to small changes in their external environment in a predictable manner.\u003cbr\u003e\u003cbr\u003eWith an immensely wide range of potential applications; biomembranes, intelligent textiles, tissue engineering and smart coatings to name a few – the same thing that makes these materials so exciting, is also the barrier to their commercialisation. \u003cbr\u003e\u003cbr\u003eThe conference highlighted the most recent advances and developments in this rapidly evolving field and provided attendees with a broad and comprehensive outlook on the emerging trends, perspectives, and limitations of the technological applications of various classes of stimuli-responsive polymer materials.\u003cbr\u003e\u003cbr\u003eThese proceedings cover presentations from an impressive panel of speakers from industry and academia including Unilever, Procter \u0026amp; Gamble, DSM, MIT, Duke, Stanford and Clarkson Universities who showcased the scope of these \"smart\" materials, their potential applications and how you might capitalise on this emerging technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: RESPONSIVE COATINGS\u003cbr\u003ePaper 1 \u003cbr\u003eStimuli-responsive polyelectrolyte multilayers: from pH and temperature-sensitive\u003cbr\u003enanotube surface arrays to living cells with functional synthetic backpacks\u003cbr\u003eDr. Michael Rubner, Department of Materials Science \u0026amp; Engineering, Massachusetts Institute\u003cbr\u003eof Technology, US (Paper unavailable at the time of print)\u003cbr\u003e\u003cbr\u003ePaper 2 \u003cbr\u003eSelf-repairing polymeric films\u003cbr\u003eDr. Marek W Urban, School of Polymers \u0026amp; High Performance Materials, University of\u003cbr\u003eSouthern Mississippi, US (Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 3 \u003cbr\u003eInteractive polymer substrates via polymer grafting\u003cbr\u003eDr. Igor Luzinov, School of Materials Science \u0026amp; Engineering, Clemson University, US\u003cbr\u003ePaper 4 Hybrid materials for application in anti-reflective coatings\u003cbr\u003eDr. Pascal Buskens, N Arfsten, R Habets, H Langermans, A Overbeek, B Plum, R de Rijk \u0026amp; J\u003cbr\u003eScheerder, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003eSESSION 2: SMART TEXTILES\u003cbr\u003ePaper 5 \u003cbr\u003ePreparation and application of responsive coatings prepared on textile fibers\u003cbr\u003eProf Jan Genzer \u0026amp; Kiran K Goli, North Carolina State University, US\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 6 \u003cbr\u003eResponsive coating design on substrates\/ particles\u003cbr\u003eDr Maxim Orlov, D Salloum, R Sheparovych, V Gartstein \u0026amp; F Sherman, The Procter \u0026amp;\u003cbr\u003eGamble Company, US \u0026amp; S Minko, M Motornov \u0026amp; R Lupitskyy, Clarkson University, US\u003cbr\u003ePaper unavailable at time of print\u003cbr\u003e\u003cbr\u003eSESSION 3: RESPONSIVE COMPOSITES\u003cbr\u003ePaper 7 \u003cbr\u003eNew microfluidic elastomer composites with switchable shape, stiffness, and color\u003cbr\u003eProf. Orlin D Velev, Department of Chemical \u0026amp; Biomolecular Engineering, North Carolina\u003cbr\u003eState University, US\u003cbr\u003e\u003cbr\u003ePaper 8 \u003cbr\u003eNew smart plastic with reversible and tunable transparent to opaque transition\u003cbr\u003eDr. Chris DeArmitt, Phantom Plastics, US\u003cbr\u003e\u003cbr\u003eSESSION 4: BIOINTERFACES, CAPSULES, SENSORS AND SEPARATION DEVICES\u003cbr\u003ePaper 9 \u003cbr\u003e“Smart” (bio) polymeric surfaces: fabrication and characterization\u003cbr\u003eProf Stefan Zauscher, Department of Mechanical Engineering \u0026amp; Materials Science, Duke\u003cbr\u003eUniversity, US\u003cbr\u003e\u003cbr\u003ePaper 10 \u003cbr\u003eEmulsions-templated assembly of stimulus-responsive particles: smart colloidosomes\u003cbr\u003ewith tunable permeability and dissolution trigger\u003cbr\u003eDr. Sven Holger Behrens, School of Chemical \u0026amp; Biomolecular Engineering, Georgia Institute\u003cbr\u003eof Technology, US\u003cbr\u003e\u003cbr\u003ePaper 11 \u003cbr\u003eMultifunctional layer-by-layer tailored capsules: delivery nanosystems with externally\u003cbr\u003etriggered properties\u003cbr\u003eProf Gleb B Sukhorukov, Centre for Materials Research, Queen Mary University of London,\u003cbr\u003eUK\u003cbr\u003e\u003cbr\u003ePaper 12 \u003cbr\u003eStimuli-responsive thin hydrogel films and membranes\u003cbr\u003eDr. Sergiy Minko, Department of Chemistry \u0026amp; Biomolecular Science, Clarkson University, US\u003cbr\u003e\u003cbr\u003eSESSION 5: SMART COLLOIDS AND HYDROGELS\u003cbr\u003ePaper 13 \u003cbr\u003eBiopolymer-based colloidal delivery systems\u003cbr\u003eDr. Ashok Patel, Unilever R\u0026amp;D Vlaardingen, The Netherlands\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 14 \u003cbr\u003eAutonomic self-healing in hydrogel thin films\u003cbr\u003eProf Andrew Lyon \u0026amp; Antoinette B South, Georgia Institute of Technology, US\u003cbr\u003e\u003cbr\u003ePaper 15 \u003cbr\u003eDevelopments in “smart” temperature-responsive chromatographic resins\u003cbr\u003eDr. Brad Woonton, K De Silva, P Maharjan, CSIRO, Australia \u0026amp; M Hearn \u0026amp; W Jackson, ARC\u003cbr\u003eSpecial Research Centre for Green Chemistry, Australia\u003cbr\u003e\u003cbr\u003eSESSION 6: CELL INTERACTIONS WITH RESPONSIVE BIOMATERIALS\u003cbr\u003ePaper 16 \u003cbr\u003eCell-responsive biomaterials for regenerative medicine applications\u003cbr\u003eProf Sarah Heilshorn, Stanford University, US\u003cbr\u003e\u003cbr\u003ePaper 17 \u003cbr\u003eMicropatterned poly (NIPAM) for engineering cell sheets with defined structural\u003cbr\u003eorganization\u003cbr\u003eProf Joyce Y Wong, BC Isenberg, C Williams, Y Tsuda, T Shimizu, M Yamato \u0026amp; T Okano,\u003cbr\u003eDepartment of Biomedical Engineering, Boston University College of Engineering, US\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003eSESSION 7: GENETICALLY ENGINEERED “SMART” POLYPEPTIDES\u003cbr\u003ePaper 18 \u003cbr\u003eBioengineering of elastin-mimetic smart materials\u003cbr\u003eProf Vincent P Conticello, M Patterson, S Payne, W Kim, A McMillan \u0026amp; E Wright, Department\u003cbr\u003eof Chemistry, Emory University, US\u003cbr\u003e\u003cbr\u003ePaper 19 \u003cbr\u003eRecombinamers and derived functional systems: from nano-objects to macro gels\u003cbr\u003eProf J Carlos Rodriguez-Cabello, GIR BIOFORGE, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 20\u003cbr\u003eThermally targeted delivery of therapeutic peptides\u003cbr\u003eProf Drazen Raucher \u0026amp; Gene L Bidwell III, Department of Biochemistry, University of\u003cbr\u003eMississippi Medical Center, US\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:16-04:00","created_at":"2017-06-22T21:15:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","biointerfaces","book","coatings","colloids","composites","elastomer","general","hydrogels","peptides","plastic","polymeric fims","polymers","textiles"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471812,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Smart Polymer Systems 2010","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-494-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-494-5.jpg?v=1499955744"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-494-5.jpg?v=1499955744","options":["Title"],"media":[{"alt":null,"id":358755237981,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-494-5.jpg?v=1499955744"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-494-5.jpg?v=1499955744","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-494-5 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2010 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSmart Polymer Systems 2010 was iSmithers’ inaugural international conference on stimuli-responsive polymers. These material systems repeatedly dramatically react to small changes in their external environment in a predictable manner.\u003cbr\u003e\u003cbr\u003eWith an immensely wide range of potential applications; biomembranes, intelligent textiles, tissue engineering and smart coatings to name a few – the same thing that makes these materials so exciting, is also the barrier to their commercialisation. \u003cbr\u003e\u003cbr\u003eThe conference highlighted the most recent advances and developments in this rapidly evolving field and provided attendees with a broad and comprehensive outlook on the emerging trends, perspectives, and limitations of the technological applications of various classes of stimuli-responsive polymer materials.\u003cbr\u003e\u003cbr\u003eThese proceedings cover presentations from an impressive panel of speakers from industry and academia including Unilever, Procter \u0026amp; Gamble, DSM, MIT, Duke, Stanford and Clarkson Universities who showcased the scope of these \"smart\" materials, their potential applications and how you might capitalise on this emerging technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: RESPONSIVE COATINGS\u003cbr\u003ePaper 1 \u003cbr\u003eStimuli-responsive polyelectrolyte multilayers: from pH and temperature-sensitive\u003cbr\u003enanotube surface arrays to living cells with functional synthetic backpacks\u003cbr\u003eDr. Michael Rubner, Department of Materials Science \u0026amp; Engineering, Massachusetts Institute\u003cbr\u003eof Technology, US (Paper unavailable at the time of print)\u003cbr\u003e\u003cbr\u003ePaper 2 \u003cbr\u003eSelf-repairing polymeric films\u003cbr\u003eDr. Marek W Urban, School of Polymers \u0026amp; High Performance Materials, University of\u003cbr\u003eSouthern Mississippi, US (Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 3 \u003cbr\u003eInteractive polymer substrates via polymer grafting\u003cbr\u003eDr. Igor Luzinov, School of Materials Science \u0026amp; Engineering, Clemson University, US\u003cbr\u003ePaper 4 Hybrid materials for application in anti-reflective coatings\u003cbr\u003eDr. Pascal Buskens, N Arfsten, R Habets, H Langermans, A Overbeek, B Plum, R de Rijk \u0026amp; J\u003cbr\u003eScheerder, DSM Research, The Netherlands\u003cbr\u003e\u003cbr\u003eSESSION 2: SMART TEXTILES\u003cbr\u003ePaper 5 \u003cbr\u003ePreparation and application of responsive coatings prepared on textile fibers\u003cbr\u003eProf Jan Genzer \u0026amp; Kiran K Goli, North Carolina State University, US\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 6 \u003cbr\u003eResponsive coating design on substrates\/ particles\u003cbr\u003eDr Maxim Orlov, D Salloum, R Sheparovych, V Gartstein \u0026amp; F Sherman, The Procter \u0026amp;\u003cbr\u003eGamble Company, US \u0026amp; S Minko, M Motornov \u0026amp; R Lupitskyy, Clarkson University, US\u003cbr\u003ePaper unavailable at time of print\u003cbr\u003e\u003cbr\u003eSESSION 3: RESPONSIVE COMPOSITES\u003cbr\u003ePaper 7 \u003cbr\u003eNew microfluidic elastomer composites with switchable shape, stiffness, and color\u003cbr\u003eProf. Orlin D Velev, Department of Chemical \u0026amp; Biomolecular Engineering, North Carolina\u003cbr\u003eState University, US\u003cbr\u003e\u003cbr\u003ePaper 8 \u003cbr\u003eNew smart plastic with reversible and tunable transparent to opaque transition\u003cbr\u003eDr. Chris DeArmitt, Phantom Plastics, US\u003cbr\u003e\u003cbr\u003eSESSION 4: BIOINTERFACES, CAPSULES, SENSORS AND SEPARATION DEVICES\u003cbr\u003ePaper 9 \u003cbr\u003e“Smart” (bio) polymeric surfaces: fabrication and characterization\u003cbr\u003eProf Stefan Zauscher, Department of Mechanical Engineering \u0026amp; Materials Science, Duke\u003cbr\u003eUniversity, US\u003cbr\u003e\u003cbr\u003ePaper 10 \u003cbr\u003eEmulsions-templated assembly of stimulus-responsive particles: smart colloidosomes\u003cbr\u003ewith tunable permeability and dissolution trigger\u003cbr\u003eDr. Sven Holger Behrens, School of Chemical \u0026amp; Biomolecular Engineering, Georgia Institute\u003cbr\u003eof Technology, US\u003cbr\u003e\u003cbr\u003ePaper 11 \u003cbr\u003eMultifunctional layer-by-layer tailored capsules: delivery nanosystems with externally\u003cbr\u003etriggered properties\u003cbr\u003eProf Gleb B Sukhorukov, Centre for Materials Research, Queen Mary University of London,\u003cbr\u003eUK\u003cbr\u003e\u003cbr\u003ePaper 12 \u003cbr\u003eStimuli-responsive thin hydrogel films and membranes\u003cbr\u003eDr. Sergiy Minko, Department of Chemistry \u0026amp; Biomolecular Science, Clarkson University, US\u003cbr\u003e\u003cbr\u003eSESSION 5: SMART COLLOIDS AND HYDROGELS\u003cbr\u003ePaper 13 \u003cbr\u003eBiopolymer-based colloidal delivery systems\u003cbr\u003eDr. Ashok Patel, Unilever R\u0026amp;D Vlaardingen, The Netherlands\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003ePaper 14 \u003cbr\u003eAutonomic self-healing in hydrogel thin films\u003cbr\u003eProf Andrew Lyon \u0026amp; Antoinette B South, Georgia Institute of Technology, US\u003cbr\u003e\u003cbr\u003ePaper 15 \u003cbr\u003eDevelopments in “smart” temperature-responsive chromatographic resins\u003cbr\u003eDr. Brad Woonton, K De Silva, P Maharjan, CSIRO, Australia \u0026amp; M Hearn \u0026amp; W Jackson, ARC\u003cbr\u003eSpecial Research Centre for Green Chemistry, Australia\u003cbr\u003e\u003cbr\u003eSESSION 6: CELL INTERACTIONS WITH RESPONSIVE BIOMATERIALS\u003cbr\u003ePaper 16 \u003cbr\u003eCell-responsive biomaterials for regenerative medicine applications\u003cbr\u003eProf Sarah Heilshorn, Stanford University, US\u003cbr\u003e\u003cbr\u003ePaper 17 \u003cbr\u003eMicropatterned poly (NIPAM) for engineering cell sheets with defined structural\u003cbr\u003eorganization\u003cbr\u003eProf Joyce Y Wong, BC Isenberg, C Williams, Y Tsuda, T Shimizu, M Yamato \u0026amp; T Okano,\u003cbr\u003eDepartment of Biomedical Engineering, Boston University College of Engineering, US\u003cbr\u003e(Paper unavailable at time of print)\u003cbr\u003e\u003cbr\u003eSESSION 7: GENETICALLY ENGINEERED “SMART” POLYPEPTIDES\u003cbr\u003ePaper 18 \u003cbr\u003eBioengineering of elastin-mimetic smart materials\u003cbr\u003eProf Vincent P Conticello, M Patterson, S Payne, W Kim, A McMillan \u0026amp; E Wright, Department\u003cbr\u003eof Chemistry, Emory University, US\u003cbr\u003e\u003cbr\u003ePaper 19 \u003cbr\u003eRecombinamers and derived functional systems: from nano-objects to macro gels\u003cbr\u003eProf J Carlos Rodriguez-Cabello, GIR BIOFORGE, University of Valladolid, Spain\u003cbr\u003e\u003cbr\u003ePaper 20\u003cbr\u003eThermally targeted delivery of therapeutic peptides\u003cbr\u003eProf Drazen Raucher \u0026amp; Gene L Bidwell III, Department of Biochemistry, University of\u003cbr\u003eMississippi Medical Center, US\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Solid-State NMR of Pol...
$115.00
{"id":11242215812,"title":"Solid-State NMR of Polymers","handle":"978-1-85957-272-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Mirau \u003cbr\u003eISBN 978-1-85957-272-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 144, Figures: 43, Tables: 2\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNMR spectroscopy has emerged as one of the most important methods for the solid-state characterization of polymers. This report gives an overview of the methods and applications of NMR to relevant polymer problems with an emphasis on how NMR can be used for materials characterization and to understand structure-property relationships in polymers. This report is of interest to both the chemical and pharmaceutical industry. \u003cbr\u003e\u003cbr\u003eThe review begins with a discussion of the fundamental principles which underpin solid-state NMR, before leading onto the experimental methods involved, including magic-angle sample spinning, and multi-dimensional NMR. A section is then devoted to polymer structure and conformation, including information on semicrystalline polymers. Polymer morphology is detailed, with a focus on polymer crystallinity and blends. The review is completed with a discussion on polymer dynamics, with particular emphasis on semicrystalline, as well as amorphous, polymers. \u003cbr\u003eThe book comprises a concise expert overview, accompanied by an indexed section containing approximately four hundred references and abstracts from the Rapra Abstracts database. These will provide the reader of this report with a valuable reference for further information relating to the study of polymer microstructure using solid-state NMR.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Fundamental Principles 1.2 Solid-State NMR \u003cbr\u003e1.2.1 Chemical Shift Anisotropy and Magic-Angle Spinning \u003cbr\u003e1.2.2 Dipolar Couplings \u003cbr\u003e1.3 Experimental Methods\u003cbr\u003e1.3.1 Cross Polarization \u003cbr\u003e1.3.2 Magic-Angle Sample Spinning \u003cbr\u003e1.3.3 NMR Relaxation in Solids\u003cbr\u003e1.3.4 Solid-State Proton NMR\u003cbr\u003e1.3.5 Wideline NMR\u003cbr\u003e1.3.6 Multi-Dimensional NM.R\u003cbr\u003e2. Polymer Structure and Conformation \u003cbr\u003e2.1 Semicrystalline Polymers \u003cbr\u003e2.2 Amorphous Polymers \u003cbr\u003e2.3 Rubbers \u003cbr\u003e2.4 Polymer Reactivity and Curing \u003cbr\u003e2.5 Other Studies\u003cbr\u003e3 Polymer Morphology \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.1.1Polymer Crystallinity \u003cbr\u003e3.1.2 Spin Diffusion and Polymer Morphology \u003cbr\u003e3.2 Semicrystalline Polymers \u003cbr\u003e3.3 Polymer Blends \u003cbr\u003e3.4 Multiphase Polymers \u003cbr\u003e4. Polymer Dynamics \u003cbr\u003e4.1 Semicrystalline Polymers\u003cbr\u003e4.2 Amorphous Polymers \u003cbr\u003e4.3 Polymer Blends \u003cbr\u003e4.4 Multiphase Polymers \u003cbr\u003eAbbreviations \u003cbr\u003eAdditional References \u003cbr\u003eReferences from the Rapra Abstracts Database\u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Mirau holds the position of Distinguished Member of Technical Staff at Bell Laboratories, AT\u0026amp;T and Lucent Technologies, New Jersey, USA. He has published widely on solid-state NMR and is a member of the American Chemical Society, the American Physical Society as well as the American Association for the Advancement of Science.","published_at":"2017-06-22T21:13:27-04:00","created_at":"2017-06-22T21:13:27-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","blends","book","characterization","crystallinity","magic-angle","material","morphology","multi-dimensional","NMR","p-testing","polymer","polymers","semicrystalline","spectroscopy","structure"],"price":11500,"price_min":11500,"price_max":11500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378355780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Solid-State NMR of Polymers","public_title":null,"options":["Default Title"],"price":11500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-272-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-272-6.jpg?v=1499913835"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-272-6.jpg?v=1499913835","options":["Title"],"media":[{"alt":null,"id":358755565661,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-272-6.jpg?v=1499913835"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-272-6.jpg?v=1499913835","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: P. Mirau \u003cbr\u003eISBN 978-1-85957-272-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 144, Figures: 43, Tables: 2\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nNMR spectroscopy has emerged as one of the most important methods for the solid-state characterization of polymers. This report gives an overview of the methods and applications of NMR to relevant polymer problems with an emphasis on how NMR can be used for materials characterization and to understand structure-property relationships in polymers. This report is of interest to both the chemical and pharmaceutical industry. \u003cbr\u003e\u003cbr\u003eThe review begins with a discussion of the fundamental principles which underpin solid-state NMR, before leading onto the experimental methods involved, including magic-angle sample spinning, and multi-dimensional NMR. A section is then devoted to polymer structure and conformation, including information on semicrystalline polymers. Polymer morphology is detailed, with a focus on polymer crystallinity and blends. The review is completed with a discussion on polymer dynamics, with particular emphasis on semicrystalline, as well as amorphous, polymers. \u003cbr\u003eThe book comprises a concise expert overview, accompanied by an indexed section containing approximately four hundred references and abstracts from the Rapra Abstracts database. These will provide the reader of this report with a valuable reference for further information relating to the study of polymer microstructure using solid-state NMR.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Fundamental Principles 1.2 Solid-State NMR \u003cbr\u003e1.2.1 Chemical Shift Anisotropy and Magic-Angle Spinning \u003cbr\u003e1.2.2 Dipolar Couplings \u003cbr\u003e1.3 Experimental Methods\u003cbr\u003e1.3.1 Cross Polarization \u003cbr\u003e1.3.2 Magic-Angle Sample Spinning \u003cbr\u003e1.3.3 NMR Relaxation in Solids\u003cbr\u003e1.3.4 Solid-State Proton NMR\u003cbr\u003e1.3.5 Wideline NMR\u003cbr\u003e1.3.6 Multi-Dimensional NM.R\u003cbr\u003e2. Polymer Structure and Conformation \u003cbr\u003e2.1 Semicrystalline Polymers \u003cbr\u003e2.2 Amorphous Polymers \u003cbr\u003e2.3 Rubbers \u003cbr\u003e2.4 Polymer Reactivity and Curing \u003cbr\u003e2.5 Other Studies\u003cbr\u003e3 Polymer Morphology \u003cbr\u003e3.1 Introduction \u003cbr\u003e3.1.1Polymer Crystallinity \u003cbr\u003e3.1.2 Spin Diffusion and Polymer Morphology \u003cbr\u003e3.2 Semicrystalline Polymers \u003cbr\u003e3.3 Polymer Blends \u003cbr\u003e3.4 Multiphase Polymers \u003cbr\u003e4. Polymer Dynamics \u003cbr\u003e4.1 Semicrystalline Polymers\u003cbr\u003e4.2 Amorphous Polymers \u003cbr\u003e4.3 Polymer Blends \u003cbr\u003e4.4 Multiphase Polymers \u003cbr\u003eAbbreviations \u003cbr\u003eAdditional References \u003cbr\u003eReferences from the Rapra Abstracts Database\u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Mirau holds the position of Distinguished Member of Technical Staff at Bell Laboratories, AT\u0026amp;T and Lucent Technologies, New Jersey, USA. He has published widely on solid-state NMR and is a member of the American Chemical Society, the American Physical Society as well as the American Association for the Advancement of Science."}
Solvents Database (CD)...
$470.00
{"id":11242201732,"title":"Solvents Database (CD) v.4.0","handle":"978-1-895198-68-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-895198-68-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of solvents: over 1800\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Solvent Database was first developed in 2001 to contain data vital in any solvent application in one comprehensive source. It had initially slightly over 1000 common solvents The fourth edition of the database had total 1627 solvents, consisting about 60% solvents having a generic chemical name and remaining were industrial solvents which were mixtures of component solvents. The solvents in the database belong to 30 groups listed in the table of contents. It is noticeable that 10 new groups of solvents recently included, are for green solvents. \u003cbr\u003eIn addition to the solvent applications, the database is a very useful tool for those who are interested in curatives (for example, a large collection of amines and polyhydric alcohols are included), common monomers also used as solvents, and low boiling liquids used in aerosols. A large number of the solvents and the data fields makes this database with about 90,000 individual data the largest and the most comprehensive database on solvents. This edition contains all-important “green solvents”.\u003cbr\u003eThe solvent database is divided into five sections: General, Physical, Health, Environmental, and Use. Information on the selected solvent can be accessed by clicking on any of the above tabs. The database has 140 data fields. The figures below show real screens available in the database. Each screen contains the solvent name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003cbr\u003e\u003cbr\u003eIn the General section the following data are displayed: Name, CAS number, Acronym, Chemical category, Empirical formula, IUPAC name, Mixture, Moisture contents, Molecular weight, Other properties, Product contents, EC number, RTECS number, and Synonyms 1, 2, 3.\u003cbr\u003e\u003cbr\u003ePhysical section contains data on Name, CAS number, Dielectric constant, Acceptor number, Acid dissociation constant, Aniline point, Antoine temperature range, Antoine constants A, B, and C, Boiling temperature, Coefficient of thermal expansion, Color, Corrosivity, Donor number, Electrical conductivity, Evaporation rates with butyl acetate=1 and ether=1, Freezing temperature, Hansen solubility parameters dD, dP, and dH, Molar volume, Heat of combustion, Enthalpy of vaporization, Enthalpy of vaporization temperature, Henry's law constant, Hildebrand solubility parameter, Kauri butanol number, Odor, Odor threshold, pH, Polarity parameter, ET(30), Refractive index, Solubility in water, Specific gravity, Specific gravity temperature, Specific heat, State, Surface tension, Thermal conductivity, Vapor density, Vapor pressure, Vapor pressure temperature, Viscosity, and Viscosity temperature.\u003cbr\u003e\u003cbr\u003eHealth section contains data on Name, CAS number, Autoignition temperature, Carcinogenicity: IRAC, NTP, OSHA, Mutagenic properties, Reproduction\/developmental toxicity, DOT class, TDG class, ICAO\/IATA class, packaging group, IMDG class, packaging group, UN\/NA hazard class, UN packaging group, Proper shipping name, Explosion limits: lower and upper, Flash point, Flash point method, LD50 dermal (rabbit), LC50 inhalation (rat), LD50 oral (mouse), LD50 oral (rat), Maximum concentration during 30 min exposure (NIOSH-IDLH), Maximum concentration at any time: ACGIH, NIOSH, OSHA, Maximum concentration during continuous exposure for 15 min: ACGIH, NIOSH, OSHA, NFPA flammability, health, reactivity, HMIS flammability, health, reactivity, Route of entry, Ingestion, Skin irritation, Eye irritation, Inhalation, First aid: eyes, skin, inhalation, Chronic effects, Target organs, Threshold limiting value: ACGIH, NIOSH, OSHA, UN number, UN risk phrases, and UN safety phrases. \u003cbr\u003e \u003cbr\u003eEnvironmental section contains data on Name, CAS number, Aquatic toxicity, Bluegill sunfish (96-h LC50), Daphnia magna (96-h LC50) and (48-h LC50), Fathead minnow (96-h LC50), Rainbow trout (96-h LC50), Bioconcentration factor, Biodegradation probability, Biological oxygen demand (20-day test) and (5-day test), Chemical oxygen demand, Atmospheric half-life, Hydroxyl rate constant, Global warming potential, Montreal protocol, Partition coefficient, Ozone depletion potential (CFC11=1), Ozone rate constant, Soil absorption constant, Theoretical oxygen demand, Urban ozone formation potential (C2H4=1), UV absorption.\u003cbr\u003e \u003cbr\u003eUse section contains information on Name, CAS number, Manufacturer, Outstanding properties, Potential substitutes, Recommended for polymers, Features \u0026amp; benefits, Processing methods, Recommended dosage, and Recommended for products.\u003cbr\u003e\u003cbr\u003eSolvent search is a simple process which can be done in the several ways. The most common is search by a solvent name. In this case, the program searches through the list of synonyms and proposes choices. Searching is easy by typing the first letter or two of their name which moves list to the location of solvent. Solvents can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list of solvents. In addition to searching capability and viewing data on individual solvents, solvents can be sorted according to values of any property. This operation is accomplished by clicking on the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of solvents for which data exist for the selected property. The solvent property can be viewed on the screen and used for evaluation of solvent suitability for a chosen task or solvent selection for application as well as solvent comparison. \u003cbr\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer with Pentium processor (or other processors of similar speed) having a screen with a resolution of at least 600 by 800 operating under Windows 2000 or higher. The program contains operation manual which explains further details of the operation. \u003cbr\u003eIn summary, the database is a very powerful tool, considering that it is currently to our knowledge (and it has been for the last 6 years) the largest existing database on solvents. The database is an excellent companion to the Handbook of Solvents because data in the database do not repeat information or data included in the book (Handbook of Solvents also contains a large number of numerical data not included in the database). The printed form of this database would require at least 8000 pages in a book format. This is several times larger volume than was available in any past book containing information on the solvent properties.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Guide to database operation (selection from general menu)\u003cbr\u003e2 Information on the data fields (left click on data field)\u003cbr\u003e3 Solvent groups included\u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Alcohols\u003cbr\u003e3.3 Aldehydes\u003cbr\u003e3.4 Aliphatic hydrocarbons\u003cbr\u003e3.5 Amides\u003cbr\u003e3.6 Amines\u003cbr\u003e3.7 Aromatic hydrocarbons\u003cbr\u003e3.8 Biodegradable solvents\u003cbr\u003e3.9 Biorenewable solvents\u003cbr\u003e3.10 Chlorofluorocarbons \u003cbr\u003e3.11 Deep eutectic solvents\u003cbr\u003e3.12 Esters\u003cbr\u003e3.13 Ethers\u003cbr\u003e3.14 Fatty acid methyl esters\u003cbr\u003e3.15 Generally recognized as safe, GRAS, solvents and their precursors\u003cbr\u003e3.16 Glycol ethers\u003cbr\u003e3.17 Halogenated\u003cbr\u003e3.18 Heterocyclic\u003cbr\u003e3.19 Hydrofluorocarbons\u003cbr\u003e3.20 Hydrofluoroethers\u003cbr\u003e3.21 Ionic liquids\u003cbr\u003e3.22 Ketones\u003cbr\u003e3.23 Miscellaneous\u003cbr\u003e3.24 Nitriles\u003cbr\u003e3.25 Perfluorocarbons\u003cbr\u003e3.26 Polyhydric alcohols\u003cbr\u003e3.27 Siloxanes\u003cbr\u003e3.28 Sulfoxides\u003cbr\u003e3.29 Supercritical fluids\u003cbr\u003e3.30 Terpenes\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eAnna Wypych\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers, 3 databases, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.\u003c\/div\u003e\n\u003cdiv\u003e\u003cb\u003eGeorge Wypych\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e","published_at":"2017-06-22T21:12:42-04:00","created_at":"2017-06-22T21:12:42-04:00","vendor":"Chemtec Publishing","type":"CD","tags":["2014","autoignition","carcinogenicity","CAS","cd","dosage","DOT","empirical formula","explosion limits","eyes","flammability","flash point","health","HMIS","ICAO\/IATA class","IMDG","inhalation","IRAC","LC50","LD50","lower","mutagenic properties","NTP","OSHA","packaging group","polymers","potential substitutes","reactivity","reproduction","skin","solvent additives","solvent groups","TDG","temperature","UN packaging","UN\/NA hazard","upper"],"price":47000,"price_min":47000,"price_max":47000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378309700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Solvents Database (CD) v.4.0","public_title":null,"options":["Default Title"],"price":47000,"weight":1000,"compare_at_price":null,"inventory_quantity":-3,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-68-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-68-3.jpg?v=1504200108"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-68-3.jpg?v=1504200108","options":["Title"],"media":[{"alt":null,"id":413514858589,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-68-3.jpg?v=1504200108"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-68-3.jpg?v=1504200108","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Anna \u0026amp; George Wypych \u003cbr\u003eISBN 978-1-895198-68-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of solvents: over 1800\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe Solvent Database was first developed in 2001 to contain data vital in any solvent application in one comprehensive source. It had initially slightly over 1000 common solvents The fourth edition of the database had total 1627 solvents, consisting about 60% solvents having a generic chemical name and remaining were industrial solvents which were mixtures of component solvents. The solvents in the database belong to 30 groups listed in the table of contents. It is noticeable that 10 new groups of solvents recently included, are for green solvents. \u003cbr\u003eIn addition to the solvent applications, the database is a very useful tool for those who are interested in curatives (for example, a large collection of amines and polyhydric alcohols are included), common monomers also used as solvents, and low boiling liquids used in aerosols. A large number of the solvents and the data fields makes this database with about 90,000 individual data the largest and the most comprehensive database on solvents. This edition contains all-important “green solvents”.\u003cbr\u003eThe solvent database is divided into five sections: General, Physical, Health, Environmental, and Use. Information on the selected solvent can be accessed by clicking on any of the above tabs. The database has 140 data fields. The figures below show real screens available in the database. Each screen contains the solvent name and its chemical structure. The data can be viewed on screen and printed in a predefined format.\u003cbr\u003e\u003cbr\u003eIn the General section the following data are displayed: Name, CAS number, Acronym, Chemical category, Empirical formula, IUPAC name, Mixture, Moisture contents, Molecular weight, Other properties, Product contents, EC number, RTECS number, and Synonyms 1, 2, 3.\u003cbr\u003e\u003cbr\u003ePhysical section contains data on Name, CAS number, Dielectric constant, Acceptor number, Acid dissociation constant, Aniline point, Antoine temperature range, Antoine constants A, B, and C, Boiling temperature, Coefficient of thermal expansion, Color, Corrosivity, Donor number, Electrical conductivity, Evaporation rates with butyl acetate=1 and ether=1, Freezing temperature, Hansen solubility parameters dD, dP, and dH, Molar volume, Heat of combustion, Enthalpy of vaporization, Enthalpy of vaporization temperature, Henry's law constant, Hildebrand solubility parameter, Kauri butanol number, Odor, Odor threshold, pH, Polarity parameter, ET(30), Refractive index, Solubility in water, Specific gravity, Specific gravity temperature, Specific heat, State, Surface tension, Thermal conductivity, Vapor density, Vapor pressure, Vapor pressure temperature, Viscosity, and Viscosity temperature.\u003cbr\u003e\u003cbr\u003eHealth section contains data on Name, CAS number, Autoignition temperature, Carcinogenicity: IRAC, NTP, OSHA, Mutagenic properties, Reproduction\/developmental toxicity, DOT class, TDG class, ICAO\/IATA class, packaging group, IMDG class, packaging group, UN\/NA hazard class, UN packaging group, Proper shipping name, Explosion limits: lower and upper, Flash point, Flash point method, LD50 dermal (rabbit), LC50 inhalation (rat), LD50 oral (mouse), LD50 oral (rat), Maximum concentration during 30 min exposure (NIOSH-IDLH), Maximum concentration at any time: ACGIH, NIOSH, OSHA, Maximum concentration during continuous exposure for 15 min: ACGIH, NIOSH, OSHA, NFPA flammability, health, reactivity, HMIS flammability, health, reactivity, Route of entry, Ingestion, Skin irritation, Eye irritation, Inhalation, First aid: eyes, skin, inhalation, Chronic effects, Target organs, Threshold limiting value: ACGIH, NIOSH, OSHA, UN number, UN risk phrases, and UN safety phrases. \u003cbr\u003e \u003cbr\u003eEnvironmental section contains data on Name, CAS number, Aquatic toxicity, Bluegill sunfish (96-h LC50), Daphnia magna (96-h LC50) and (48-h LC50), Fathead minnow (96-h LC50), Rainbow trout (96-h LC50), Bioconcentration factor, Biodegradation probability, Biological oxygen demand (20-day test) and (5-day test), Chemical oxygen demand, Atmospheric half-life, Hydroxyl rate constant, Global warming potential, Montreal protocol, Partition coefficient, Ozone depletion potential (CFC11=1), Ozone rate constant, Soil absorption constant, Theoretical oxygen demand, Urban ozone formation potential (C2H4=1), UV absorption.\u003cbr\u003e \u003cbr\u003eUse section contains information on Name, CAS number, Manufacturer, Outstanding properties, Potential substitutes, Recommended for polymers, Features \u0026amp; benefits, Processing methods, Recommended dosage, and Recommended for products.\u003cbr\u003e\u003cbr\u003eSolvent search is a simple process which can be done in the several ways. The most common is search by a solvent name. In this case, the program searches through the list of synonyms and proposes choices. Searching is easy by typing the first letter or two of their name which moves list to the location of solvent. Solvents can also be searched by CAS number, empirical formula, or any other property, or simply by browsing the list of solvents. In addition to searching capability and viewing data on individual solvents, solvents can be sorted according to values of any property. This operation is accomplished by clicking on the property tab and selection of the required search term from a pull-down menu. The operation returns a selection of solvents for which data exist for the selected property. The solvent property can be viewed on the screen and used for evaluation of solvent suitability for a chosen task or solvent selection for application as well as solvent comparison. \u003cbr\u003eThe above description shows that operation of the database is so simple that it does not require any computer skills. The appropriate computer for database use is a PC-based computer with Pentium processor (or other processors of similar speed) having a screen with a resolution of at least 600 by 800 operating under Windows 2000 or higher. The program contains operation manual which explains further details of the operation. \u003cbr\u003eIn summary, the database is a very powerful tool, considering that it is currently to our knowledge (and it has been for the last 6 years) the largest existing database on solvents. The database is an excellent companion to the Handbook of Solvents because data in the database do not repeat information or data included in the book (Handbook of Solvents also contains a large number of numerical data not included in the database). The printed form of this database would require at least 8000 pages in a book format. This is several times larger volume than was available in any past book containing information on the solvent properties.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Guide to database operation (selection from general menu)\u003cbr\u003e2 Information on the data fields (left click on data field)\u003cbr\u003e3 Solvent groups included\u003cbr\u003e3.1 Acids\u003cbr\u003e3.2 Alcohols\u003cbr\u003e3.3 Aldehydes\u003cbr\u003e3.4 Aliphatic hydrocarbons\u003cbr\u003e3.5 Amides\u003cbr\u003e3.6 Amines\u003cbr\u003e3.7 Aromatic hydrocarbons\u003cbr\u003e3.8 Biodegradable solvents\u003cbr\u003e3.9 Biorenewable solvents\u003cbr\u003e3.10 Chlorofluorocarbons \u003cbr\u003e3.11 Deep eutectic solvents\u003cbr\u003e3.12 Esters\u003cbr\u003e3.13 Ethers\u003cbr\u003e3.14 Fatty acid methyl esters\u003cbr\u003e3.15 Generally recognized as safe, GRAS, solvents and their precursors\u003cbr\u003e3.16 Glycol ethers\u003cbr\u003e3.17 Halogenated\u003cbr\u003e3.18 Heterocyclic\u003cbr\u003e3.19 Hydrofluorocarbons\u003cbr\u003e3.20 Hydrofluoroethers\u003cbr\u003e3.21 Ionic liquids\u003cbr\u003e3.22 Ketones\u003cbr\u003e3.23 Miscellaneous\u003cbr\u003e3.24 Nitriles\u003cbr\u003e3.25 Perfluorocarbons\u003cbr\u003e3.26 Polyhydric alcohols\u003cbr\u003e3.27 Siloxanes\u003cbr\u003e3.28 Sulfoxides\u003cbr\u003e3.29 Supercritical fluids\u003cbr\u003e3.30 Terpenes\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cdiv\u003e\u003cb\u003eAnna Wypych\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eAnna Wypych, born in 1937, studied chemical engineering and polymer chemistry and obtained M. Sc. in chemical engineering in 1960. The professional expertise includes both teaching and research \u0026amp; development. Anna Wypych has published 1 book (MSDS Manual), 6 scientific papers, 3 databases, and obtained 3 patents. She specializes in polymer additives for PVC and other polymers and evaluates their effect on health and environment.\u003c\/div\u003e\n\u003cdiv\u003e\u003cb\u003eGeorge Wypych\u003c\/b\u003e\u003c\/div\u003e\n\u003cdiv\u003eGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e"}
Specialized Molding Te...
$216.00
{"id":11242207684,"title":"Specialized Molding Techniques - Application, Design, Materials and Processing","handle":"1-884207-91-x","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Hans-Peter Heim and Helmut Potente \u003cbr\u003e10-ISBN 1-884207-91-X \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-884207-91-4 \u003c\/span\u003e\u003cbr\u003eUniversity of Paderborn, Germany\u003cbr\u003e\u003cbr\u003ePages: 317, Figures: 207, Tables: 45\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA surge of new molding technologies is transforming plastics processing and material forms to the highly efficient, integrated manufacturing that will set industry standards in the early years of this century. Many of these emerging material-process technologies discussed in this book include: gas-assisted injection molding, fusible core injection molding, low pressure injection molding (including laminate molding and liquid-gas assist molding), advanced blow molding, thermoplastic sheet composite processing, reactive liquid composite molding, microcellular plastics, lamellar injection molding, and multi-material, multiprocess technology, coinjection, in-mold decoration, encapsulation, stack molding, micro-injection molding, fusible core, vibration-assisted, injection molding extrusion, surface replication and direct compounding. The main emphasis is given to thin-wall molding, gas-assist molding, and vacuum assisted resin transfer molding. To put these new technologies in a context and to accentuate opportunities, the relations among these technologies are analyzed in terms of \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eProducts:\u003c\/strong\u003e auto parts (e.g. bumpers, trim, keyless entry module, blower switch housing), business machines chassis, pallets, furniture, handles, television housings, covers, golf club shafts, connectors, notebook casing, switches, sensors, antennas, sockets, lighting, cellular phone housing, submicron parts, and medical devices.\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e composition, resin consideration, blends, structure (skin\/core), shrinkage, viscosity, weld line strength, structural properties, morphology, reinforcement, surface roughness \u003cbr\u003e\u003cstrong\u003eProcessing:\u003c\/strong\u003e macroscopic structure, size and shape, typical problems and their solutions, flow length, injection pressure prediction, process simulation, processing parameters, tooling issues, rheology, rheokinetics, flow equations, flow simulation, no-slip boundary conditions, pressure loss, surface appearance, manufacturing cost, leakage modelling, set-up criteria, optimization of molding parameters non-return valve applications.\u003cbr\u003e\u003cstrong\u003eGeometry:\u003c\/strong\u003e function (enclosure\/support) and complexity (symmetric\/three-dimensional), molding window, filling of a complex part, design optimization, x-ray tomography, image reconstruction, acoustic imaging, warpage calculation, simulation and calculation, flow channels, and tight tolerance. \u003cbr\u003eReview of manufacturers, licenses, required investment in equipment, and cost benefits expected in return.\u003cbr\u003eThis is in addition to evaluation of hardware, processing parameters, problems, and results of the application of these processes. The examples of some other processes involved include: photoimaging, in-mold circuit definition, two-shot, one-shot, two-cavity shuttle design, valve gate technology, low-pressure injection molding, in-mold decoration, plating, in-mold assembly, sandwich molding, and large part molding.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eGas-Assisted Injection Molding\u003cbr\u003eFusible Core Injection Molding\u003cbr\u003eLow-Pressure Injection Molding (including laminate molding and liquid-gas assist molding)\u003cbr\u003eAdvanced Blow Molding\u003cbr\u003eThermoplastic Sheet Composite Processing\u003cbr\u003eReactive Liquid Composite Molding\u003cbr\u003eMicrocellular Plastics\u003cbr\u003eLamellar Injection Molding\u003cbr\u003eMultimaterial\/Multiprocess Technology\u003cbr\u003eCoinjection\u003cbr\u003eIn-Mold Decoration\u003cbr\u003eEncapsulation\u003cbr\u003eStack Molding\u003cbr\u003eMicroinjection Molding\u003cbr\u003eFusible Core\u003cbr\u003eVibration-Assisted\u003cbr\u003eInjection Molding Extrusion\u003cbr\u003eSurface Replication\u003cbr\u003eDirect Compounding\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eHans-Peter Heim\u003c\/strong\u003e studied engineering and business administration at the University of Paderborn in Germany. He completed his diploma thesis in 1996 at an automotive supplier company in Italy. Following this, he carried out different projects on quality assurance and quality improvement in plastics processing at this same company. Since 1997 he has worked in the field of gas-assisted injection molding, quality improvement and quality assurance in Prof. Dr.-Ing. H. Potente's group at the KTP Institute of Plastics Engineering in Paderborn. He has been chief engineer at the KTP since 1999. He completed his Ph.D. thesis on gas-assisted injection molding in March 2001. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eProfessor Dr.-Ing. Helmut Potente\u003c\/strong\u003e gained his doctorate at the IKV Institute of Plastics Processing at Aachen University of Technology. From 1971 to 1974 he was head of the Plastics Process Engineering Laboratory at Westfälische Metallindustrie KG Hueck \u0026amp; Co. in Lippstadt\/Germany. In 1974 he was appointed an academic officer and Professor of Joining, Forming and Refining Technology for Plastics at Aachen University of Technology. Since 1980 he has held the Chair of Plastics Engineering at the University of Paderborn and been Head of the Institute of Plastics Processing.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:00-04:00","created_at":"2017-06-22T21:13:00-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","blow molding","book","coinjection","in-mold decoration","injection","lamellar","liquid composites","material","microcellular","molding","moulding","multimaterial","multiprocess","p-processing","plastics","polymer","processing","sheet composite","thermoplastic"],"price":21600,"price_min":21600,"price_max":21600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378326980,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Specialized Molding Techniques - Application, Design, Materials and Processing","public_title":null,"options":["Default Title"],"price":21600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-884207-91-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-91-X.jpg?v=1499913869"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-91-X.jpg?v=1499913869","options":["Title"],"media":[{"alt":null,"id":358759268445,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-91-X.jpg?v=1499913869"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-91-X.jpg?v=1499913869","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Hans-Peter Heim and Helmut Potente \u003cbr\u003e10-ISBN 1-884207-91-X \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-884207-91-4 \u003c\/span\u003e\u003cbr\u003eUniversity of Paderborn, Germany\u003cbr\u003e\u003cbr\u003ePages: 317, Figures: 207, Tables: 45\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA surge of new molding technologies is transforming plastics processing and material forms to the highly efficient, integrated manufacturing that will set industry standards in the early years of this century. Many of these emerging material-process technologies discussed in this book include: gas-assisted injection molding, fusible core injection molding, low pressure injection molding (including laminate molding and liquid-gas assist molding), advanced blow molding, thermoplastic sheet composite processing, reactive liquid composite molding, microcellular plastics, lamellar injection molding, and multi-material, multiprocess technology, coinjection, in-mold decoration, encapsulation, stack molding, micro-injection molding, fusible core, vibration-assisted, injection molding extrusion, surface replication and direct compounding. The main emphasis is given to thin-wall molding, gas-assist molding, and vacuum assisted resin transfer molding. To put these new technologies in a context and to accentuate opportunities, the relations among these technologies are analyzed in terms of \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eProducts:\u003c\/strong\u003e auto parts (e.g. bumpers, trim, keyless entry module, blower switch housing), business machines chassis, pallets, furniture, handles, television housings, covers, golf club shafts, connectors, notebook casing, switches, sensors, antennas, sockets, lighting, cellular phone housing, submicron parts, and medical devices.\u003cbr\u003e\u003cstrong\u003eMaterials:\u003c\/strong\u003e composition, resin consideration, blends, structure (skin\/core), shrinkage, viscosity, weld line strength, structural properties, morphology, reinforcement, surface roughness \u003cbr\u003e\u003cstrong\u003eProcessing:\u003c\/strong\u003e macroscopic structure, size and shape, typical problems and their solutions, flow length, injection pressure prediction, process simulation, processing parameters, tooling issues, rheology, rheokinetics, flow equations, flow simulation, no-slip boundary conditions, pressure loss, surface appearance, manufacturing cost, leakage modelling, set-up criteria, optimization of molding parameters non-return valve applications.\u003cbr\u003e\u003cstrong\u003eGeometry:\u003c\/strong\u003e function (enclosure\/support) and complexity (symmetric\/three-dimensional), molding window, filling of a complex part, design optimization, x-ray tomography, image reconstruction, acoustic imaging, warpage calculation, simulation and calculation, flow channels, and tight tolerance. \u003cbr\u003eReview of manufacturers, licenses, required investment in equipment, and cost benefits expected in return.\u003cbr\u003eThis is in addition to evaluation of hardware, processing parameters, problems, and results of the application of these processes. The examples of some other processes involved include: photoimaging, in-mold circuit definition, two-shot, one-shot, two-cavity shuttle design, valve gate technology, low-pressure injection molding, in-mold decoration, plating, in-mold assembly, sandwich molding, and large part molding.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eGas-Assisted Injection Molding\u003cbr\u003eFusible Core Injection Molding\u003cbr\u003eLow-Pressure Injection Molding (including laminate molding and liquid-gas assist molding)\u003cbr\u003eAdvanced Blow Molding\u003cbr\u003eThermoplastic Sheet Composite Processing\u003cbr\u003eReactive Liquid Composite Molding\u003cbr\u003eMicrocellular Plastics\u003cbr\u003eLamellar Injection Molding\u003cbr\u003eMultimaterial\/Multiprocess Technology\u003cbr\u003eCoinjection\u003cbr\u003eIn-Mold Decoration\u003cbr\u003eEncapsulation\u003cbr\u003eStack Molding\u003cbr\u003eMicroinjection Molding\u003cbr\u003eFusible Core\u003cbr\u003eVibration-Assisted\u003cbr\u003eInjection Molding Extrusion\u003cbr\u003eSurface Replication\u003cbr\u003eDirect Compounding\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eHans-Peter Heim\u003c\/strong\u003e studied engineering and business administration at the University of Paderborn in Germany. He completed his diploma thesis in 1996 at an automotive supplier company in Italy. Following this, he carried out different projects on quality assurance and quality improvement in plastics processing at this same company. Since 1997 he has worked in the field of gas-assisted injection molding, quality improvement and quality assurance in Prof. Dr.-Ing. H. Potente's group at the KTP Institute of Plastics Engineering in Paderborn. He has been chief engineer at the KTP since 1999. He completed his Ph.D. thesis on gas-assisted injection molding in March 2001. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eProfessor Dr.-Ing. Helmut Potente\u003c\/strong\u003e gained his doctorate at the IKV Institute of Plastics Processing at Aachen University of Technology. From 1971 to 1974 he was head of the Plastics Process Engineering Laboratory at Westfälische Metallindustrie KG Hueck \u0026amp; Co. in Lippstadt\/Germany. In 1974 he was appointed an academic officer and Professor of Joining, Forming and Refining Technology for Plastics at Aachen University of Technology. Since 1980 he has held the Chair of Plastics Engineering at the University of Paderborn and been Head of the Institute of Plastics Processing.\u003cbr\u003e\u003cbr\u003e"}