- Grid List
Filter
Polypropylene
$361.00
{"id":11242244036,"title":"Polypropylene","handle":"1-884207-58-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Clive Maier, Teresa Calafut \u003cbr\u003e10-ISBN 1-884207-58-8 \u003cbr\u003e13-\u003cspan\u003eISBN 978-1-884207-58-7\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 425, Figures: 315 , Tables: 115\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolypropylene, The Definitive User's Guide and Databook present in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect - science, technology, engineering, properties, design, processing, applications - of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use.\u003cbr\u003eDespite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene, The Definitive User's Guide, and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene, The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChemical Properties\u003cbr\u003eMorphology\u003cbr\u003eCommercial Forms\u003cbr\u003eAdditives\u003cbr\u003eData Sheet Properties\u003cbr\u003eDesign\u003cbr\u003eFilms, Sheets, Fibers \u0026amp; Foams\u003cbr\u003e\u003cstrong\u003eExtensive Processing Data On\u003c\/strong\u003e\u003cbr\u003ePre-Processing\u003cbr\u003eInjection Extrusion \u0026amp; Blow Molding\u003cbr\u003eThermoforming\u003cbr\u003eCalendering\u003cbr\u003eCompression\u003cbr\u003eMachining\u003cbr\u003eJoining\u003cbr\u003eDecorating\u003cbr\u003e\u003cstrong\u003eFunctions Including\u003c\/strong\u003e\u003cbr\u003eMechanical, Thermal \u0026amp; Electrical Properties\u003cbr\u003ePermeability\u003cbr\u003eUV Light and Weathering\u003cbr\u003eSterilization\u003cbr\u003eViscosity\u003cbr\u003eChemical Resistance\u003cbr\u003eFlammability\u003cbr\u003eToxicity\u003cbr\u003eAlso Included\u003cbr\u003eEnvironmental Considerations\u003cbr\u003eAgency Approvals\u003cbr\u003eApplications\u003cbr\u003eCommercial Suppliers\u003cbr\u003eAvailable Grades\u003cbr\u003e\u003cstrong\u003eInformation Presented As\u003c\/strong\u003e\u003cbr\u003eTextual\u003cbr\u003eDiscussions\u003cbr\u003eImages\u003cbr\u003eGraphs\u003cbr\u003eTables","published_at":"2017-06-22T21:14:56-04:00","created_at":"2017-06-22T21:14:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","additives","blow molding","book","calendering","chemical resistance","compression","decorating","electrical","Environment","extrusion","fibers","films","flammability","foams","injection","joining","mechanical","morphology","moulding","p-chemistry","permeability","polymer","polypropylene","processing","properties","sheets","sterilization","thermal","thermoforming","thermoplastic","toxicity","UV","viscosity","weathering"],"price":36100,"price_min":36100,"price_max":36100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378446532,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polypropylene","public_title":null,"options":["Default Title"],"price":36100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-884207-58-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990","options":["Title"],"media":[{"alt":null,"id":358710083677,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Clive Maier, Teresa Calafut \u003cbr\u003e10-ISBN 1-884207-58-8 \u003cbr\u003e13-\u003cspan\u003eISBN 978-1-884207-58-7\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 425, Figures: 315 , Tables: 115\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolypropylene, The Definitive User's Guide and Databook present in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect - science, technology, engineering, properties, design, processing, applications - of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use.\u003cbr\u003eDespite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene, The Definitive User's Guide, and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene, The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChemical Properties\u003cbr\u003eMorphology\u003cbr\u003eCommercial Forms\u003cbr\u003eAdditives\u003cbr\u003eData Sheet Properties\u003cbr\u003eDesign\u003cbr\u003eFilms, Sheets, Fibers \u0026amp; Foams\u003cbr\u003e\u003cstrong\u003eExtensive Processing Data On\u003c\/strong\u003e\u003cbr\u003ePre-Processing\u003cbr\u003eInjection Extrusion \u0026amp; Blow Molding\u003cbr\u003eThermoforming\u003cbr\u003eCalendering\u003cbr\u003eCompression\u003cbr\u003eMachining\u003cbr\u003eJoining\u003cbr\u003eDecorating\u003cbr\u003e\u003cstrong\u003eFunctions Including\u003c\/strong\u003e\u003cbr\u003eMechanical, Thermal \u0026amp; Electrical Properties\u003cbr\u003ePermeability\u003cbr\u003eUV Light and Weathering\u003cbr\u003eSterilization\u003cbr\u003eViscosity\u003cbr\u003eChemical Resistance\u003cbr\u003eFlammability\u003cbr\u003eToxicity\u003cbr\u003eAlso Included\u003cbr\u003eEnvironmental Considerations\u003cbr\u003eAgency Approvals\u003cbr\u003eApplications\u003cbr\u003eCommercial Suppliers\u003cbr\u003eAvailable Grades\u003cbr\u003e\u003cstrong\u003eInformation Presented As\u003c\/strong\u003e\u003cbr\u003eTextual\u003cbr\u003eDiscussions\u003cbr\u003eImages\u003cbr\u003eGraphs\u003cbr\u003eTables"}
Polysaccharides in Med...
$265.00
{"id":11242255108,"title":"Polysaccharides in Medicinal and Pharmaceutical Applications","handle":"978-1-84735-436-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Valentin Popa \u003cbr\u003eISBN 978-1-84735-436-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book presents new and specific aspects in the field of polysaccharides and their derivatives recommended for use in medicine and pharmacy. At the same time, the aspects developed in this book will be useful to design new systems for drugs delivery, immunomodulation, and new materials based on polysaccharides isolated from different sources and their derivatives.\u003cbr\u003e\u003cbr\u003eThe structure and properties of polysaccharides from different sources with potential applications in the fields of medicine and pharmacy are discussed. Thus, the structural aspects concerning hyaluronic acids, fungal extracellular polysaccharides, celluloses, alginates, hemicelluloses, dextran, glyconjugates, and cyclodextrins are covered. The applications are described both for nonmodified and modified forms of polysaccharides for drug delivery, immunomodulation, tissue engineering and hydrogel preparation.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:29-04:00","created_at":"2017-06-22T21:15:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","appilcation","book","drug delivery","hydrogel","immunomodulation","p-applications","polysaccharides","tissue"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378490628,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polysaccharides in Medicinal and Pharmaceutical Applications","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-436-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-436-5.jpg?v=1499953417"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-436-5.jpg?v=1499953417","options":["Title"],"media":[{"alt":null,"id":358712016989,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-436-5.jpg?v=1499953417"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-436-5.jpg?v=1499953417","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Valentin Popa \u003cbr\u003eISBN 978-1-84735-436-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book presents new and specific aspects in the field of polysaccharides and their derivatives recommended for use in medicine and pharmacy. At the same time, the aspects developed in this book will be useful to design new systems for drugs delivery, immunomodulation, and new materials based on polysaccharides isolated from different sources and their derivatives.\u003cbr\u003e\u003cbr\u003eThe structure and properties of polysaccharides from different sources with potential applications in the fields of medicine and pharmacy are discussed. Thus, the structural aspects concerning hyaluronic acids, fungal extracellular polysaccharides, celluloses, alginates, hemicelluloses, dextran, glyconjugates, and cyclodextrins are covered. The applications are described both for nonmodified and modified forms of polysaccharides for drug delivery, immunomodulation, tissue engineering and hydrogel preparation.\u003cbr\u003e\u003cbr\u003e"}
Polyvinyl Alcohol: Mat...
$125.00
{"id":11242216260,"title":"Polyvinyl Alcohol: Materials, Processing and Applications","handle":"978-1-84735-095-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-095-4 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2009\u003cbr\u003e\u003c\/span\u003eRapra Review Report 191, Vol. 16, No. 11, 2009\u003c\/p\u003e\n\u003cp\u003ePages: 142\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor a number of years, plastic wastes have been accumulating at such a rate that there are now huge environmental concerns with their disposal. Options such as landfill and incineration have not been well received by the public, or indeed government legislation, and focus is now firmly upon the use of biodegradable alternatives for mass applications.\u003cbr\u003e\u003cbr\u003eOne material that has been considered for mass application has been polyvinyl alcohol (PVOH). To date, the use of this material has been confined to comparatively low technology applications such as paper coatings and fibre sizing, which rely upon its inherently poor resistance to moisture to initiate degradation and ultimate disposal.\u003cbr\u003e\u003cbr\u003ePolyvinyl Alcohol: Materials, Processing, and Applications provide a concise introduction to PVOH - the material itself, the processing and applications, and also potential future directions for PVOH. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. \u003cbr\u003e\u003cbr\u003eShe has now worked in the field of polymer processing for over twenty four years and has published work on a variety of plastic related subjects.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:28-04:00","created_at":"2017-06-22T21:13:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","applications","book","p-chemistry","polymer","polyvinyl alcohol","processing","PVOH"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378356548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polyvinyl Alcohol: Materials, Processing and Applications","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-095-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482","options":["Title"],"media":[{"alt":null,"id":358715424861,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-095-4 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2009\u003cbr\u003e\u003c\/span\u003eRapra Review Report 191, Vol. 16, No. 11, 2009\u003c\/p\u003e\n\u003cp\u003ePages: 142\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor a number of years, plastic wastes have been accumulating at such a rate that there are now huge environmental concerns with their disposal. Options such as landfill and incineration have not been well received by the public, or indeed government legislation, and focus is now firmly upon the use of biodegradable alternatives for mass applications.\u003cbr\u003e\u003cbr\u003eOne material that has been considered for mass application has been polyvinyl alcohol (PVOH). To date, the use of this material has been confined to comparatively low technology applications such as paper coatings and fibre sizing, which rely upon its inherently poor resistance to moisture to initiate degradation and ultimate disposal.\u003cbr\u003e\u003cbr\u003ePolyvinyl Alcohol: Materials, Processing, and Applications provide a concise introduction to PVOH - the material itself, the processing and applications, and also potential future directions for PVOH. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. \u003cbr\u003e\u003cbr\u003eShe has now worked in the field of polymer processing for over twenty four years and has published work on a variety of plastic related subjects.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Blo...
$90.00
{"id":11242224772,"title":"Practical Guide to Blow Moulding","handle":"978-1-85957-513-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. C. Lee \u003cbr\u003eISBN 978-1-85957-513-0 \u003cbr\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003ePages: 204\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlow moulding is a manufacturing process used to form hollow plastic parts. It evolved from the ancient art of glass blowing and it is used to particular advantage with plastic materials. Celluloid was used first to blow mould baby rattles and novelties in the 1930s, linear low-density polyethylene was used in the 1940s for high production bottles and these days polyethylene terephthalate is used to make anything from soda bottles to highly sophisticated multilayered containers and automotive fuel tanks in the last decade. \u003cbr\u003e\u003cbr\u003eWhen designing a product it is important to consider aspects such as a material's characteristics, the processing methods available, the assembly and finishing procedures, and the life cycle and expected performance of the product. This book presents the basics of blow moulding as well as the latest state-of-the-art and science of the industry. A key feature is the approach of discussing the ‘basics’ and then taking the reader through the entire process from design development through to final production. \u003cbr\u003e\u003cbr\u003eIt is very important for those involved in the manufacturing operation to keep abreast of the advances that are being made. This book will be of interest to those already using the blow moulding process and those who are interested in the potential offered by this versatile technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 What is Blow Moulding?\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.1.1 Definition\u003cbr\u003e1.1.2 Basic Process\u003cbr\u003e1.1.3 History and Development\u003cbr\u003e1.2 Types of Blow Moulding\u003cbr\u003e1.2.1 Introduction\u003cbr\u003e1.2.2 Stretch Blow Moulding\u003cbr\u003e1.2.3 Extrusion Blow Moulding\u003cbr\u003e1.3 Material Considerations\u003cbr\u003e1.3.1 Materials Selection\u003cbr\u003e1.3.2 Product Properties and Market Usage\u003cbr\u003eReferences \u003cbr\u003e2 Design and Engineering\u003cbr\u003e2.1 Design\u003cbr\u003e2.1.1 Product Design and Development System\u003cbr\u003e2.1.2 Process Management Tracking Systems\u003cbr\u003e2.2 Basic Design\u003cbr\u003e2.2.1 Basic Design Considerations\u003cbr\u003e2.2.2 Bottle and Container Design\u003cbr\u003e2.2.3 Structural Design\u003cbr\u003e2.2.4 Design Details\u003cbr\u003e2.3 Selection of Materials\u003cbr\u003e2.3.1 Polymer Principles\u003cbr\u003e2.3.2 Types of Polymers\u003cbr\u003e2.3.3 Amorphous and Crystalline\u003cbr\u003e2.3.4 Fundamental Properties\u003cbr\u003e2.4 Characteristics For Blow Moulding\u003cbr\u003e2.4.1 HDPE\u003cbr\u003e2.4.2 Acrylonitrile Butadiene Styrene (ABS)\u003cbr\u003e2.4.3 Polycarbonate (PC)\u003cbr\u003e2.4.4 Polypropylene\u003cbr\u003e2.4.5 Polyphenylene Oxide\u003cbr\u003e2.5 Colouring Plastic Materials\u003cbr\u003e2.6 Regrind\u003cbr\u003e2.6.1 Re-grind Specifications\u003cbr\u003e2.6.2 Process Performance\u003cbr\u003e2.6.3 Physical Properties\u003cbr\u003e2.7 Post Consumer and Industrial Recycled Materials\u003cbr\u003eReferences\u003cbr\u003eGeneral Reading \u003cbr\u003e3 Mould Design and Engineering\u003cbr\u003e3.1 Main Characteristics of the Mould\u003cbr\u003e3.2 Basic Design and Construction Considerations\u003cbr\u003e3.2.1 Mould Materials\u003cbr\u003e3.2.2 Selection of Materials\u003cbr\u003e3.2.3 Characteristics of Mould Materials\u003cbr\u003e3.3 Cut Mould versus Cast Moulds\u003cbr\u003e3.3.1 Cast Aluminium Moulds\u003cbr\u003e3.3.2 Cut Moulds\u003cbr\u003e3.3.3 Cast and Cut Moulds\u003cbr\u003e3.4 Importance of Fast Mould Cooling\u003cbr\u003e3.4.1 Fast Heat Transfer Material Considerations\u003cbr\u003e3.4.2 Manifolds\u003cbr\u003e3.4.3 Control of Flash\u003cbr\u003e3.4.4 Rate of Cooling\u003cbr\u003e3.4.5 Remedies for Flash\u003cbr\u003e3.5 The Pinch Off\u003cbr\u003e3.5.1 Importance\u003cbr\u003e3.6 High Quality, Undamaged Mould Cavity Finish\u003cbr\u003e3.6.1 Mould Cavity Finish\u003cbr\u003e3.7 Effects of Air and Moisture Trapped in the Mould\u003cbr\u003e3.7.1 Polished Moulds\u003cbr\u003e3.7.2 Moisture\u003cbr\u003e3.8 Injection of the Blowing Air\u003cbr\u003e3.8.1 Injection Blowing Air\u003cbr\u003e3.8.2 Blowing Devices\u003cbr\u003e3.9 Ejection of the Piece from the Mould\u003cbr\u003e3.9.1 Ejection Methods\u003cbr\u003e3.9.2 Manual Ejection\u003cbr\u003e3.9.3 Automatic Ejection\u003cbr\u003e3.9.4 Hydraulic Systems\u003cbr\u003e3.10 Pre-Pinch Bars\u003cbr\u003e3.10.1 Top Pinch\u003cbr\u003e3.10.2 Bottom Pinch\u003cbr\u003e3.11 Bottle Moulds\u003cbr\u003e3.11.1 Neck Ring and Blow Pin Design\u003cbr\u003e3.12 Dome Systems\u003cbr\u003e3.12.1 Dome Blow Pin\u003cbr\u003e3.12.2 Trimming Types\u003cbr\u003e3.13 Pre-Finished System\u003cbr\u003e3.13.1 Pre-Finished Neck Rings\u003cbr\u003e3.14 Unusual Problems\u003cbr\u003e3.14.1 Special Features\u003cbr\u003e3.14.2 Irregular Shaped Parts\u003cbr\u003e3.15 Computer Aided Design and Engineering for Mould Making\u003cbr\u003e3.15.1 Application in Mould Making\u003cbr\u003e3.15.2 Systems and Methods\u003cbr\u003e3.16 General Mould Buying Practices\u003cbr\u003e3.16.1 Mould Procurement\u003cbr\u003e3.16.2 Request for Quotation\u003cbr\u003e3.17 Mould Maintenance Program\u003cbr\u003e3.17.1 The Moulds Used to Produce Polyvinyl Chloride (PVC) and Polyethylene Terephthalate\u003cbr\u003e3.17.2 Moulds for PE\u003cbr\u003e3.17.3 Mould Cooling Lines\u003cbr\u003e3.17.4 Guide Pins and Bushings\u003cbr\u003e3.17.5 Striker Plates and Blow Pin Plates\u003cbr\u003e3.17.6 Pinch off\u003cbr\u003e3.17.7 Shut Down\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e4 The Extrusion Blow Moulding System\u003cbr\u003e4.1 Extruder\u003cbr\u003e4.2 Drive\u003cbr\u003e4.2.1 Motors\u003cbr\u003e4.3 Gear Box\u003cbr\u003e4.4 Screw Support Bearings\u003cbr\u003e4.4.1 Life of Thrust Bearings\u003cbr\u003e4.5 Extruder Feed\u003cbr\u003e4.5.1 Feed\u003cbr\u003e4.6 Hopper\u003cbr\u003e4.6.2 Feed Throat\u003cbr\u003e4.7 Single-Screw Extruder\u003cbr\u003e4.7.1 Barrel Construction\u003cbr\u003e4.7.2 Zone Heating\u003cbr\u003e4.7.3 Venting\u003cbr\u003e4.7.4 Wear Resistant Barrels\u003cbr\u003e4.7.5 Grooved Barrels\u003cbr\u003e4.7.6 Pressure Generation\u003cbr\u003e4.8 Melt Filtration\u003cbr\u003e4.9 The Screw\u003cbr\u003e4.9.1 General-Purpose Screw\u003cbr\u003e4.9.2 Screw Zones\u003cbr\u003e4.9.3 Dedicated Screws\u003cbr\u003e4.9.4 Barrier Screws\u003cbr\u003e4.9.5 Wear-Resistant Screws\u003cbr\u003e4.9.6 Mixing Pins and Sections\u003cbr\u003e4.9.7 Distributive and Dispersive Mixing\u003cbr\u003e4.10 The Extrusion Blow Moulding Head and Die Unit\u003cbr\u003e4.10.1 Centre-Feed Die\u003cbr\u003e4.10.2 Side-Feed Dies\u003cbr\u003e4.10.3 Wall Thickness\u003cbr\u003e4.10.4 Accumulator Head\u003cbr\u003e4.10.5 Die and Mandrel\u003cbr\u003e4.10.6 Die Swell\u003cbr\u003e4.10.7 Parison Adjustment\u003cbr\u003e4.10.8 Die Shaping\u003cbr\u003e4.10.9 Parison Programming\u003cbr\u003e4.10.10 Blow-up Ratio\u003cbr\u003e4.11 Mould Clamping Systems\u003cbr\u003e4.11.2 Clamping System Requirements\u003cbr\u003e4.11.3 Clamp Operation\u003cbr\u003e4.11.4 Press Types \u003cbr\u003e5 Extrusion Blow Moulding Advanced Systems\u003cbr\u003e5.1 Co-Extrusion Blow Moulding\u003cbr\u003e5.1.1 Arrangement of Extruders for Co-Extrusion\u003cbr\u003e5.1.2 Multi-Layered Structures\u003cbr\u003e5.1.3 Co-Extrusion Systems\u003cbr\u003e5.2 Three-Dimensional Blow Moulding\u003cbr\u003e5.2.1 Introduction to 3-D\u003cbr\u003e5.2.2 3-D Extrusion Processes\u003cbr\u003e5.2.3 Suction Blow Moulding\u003cbr\u003e5.2.4 Parison Manipulation\u003cbr\u003e5.2.5 3-D Extrusion Systems\u003cbr\u003e5.2.6 Head Adapter Radial Wall System\u003cbr\u003e5.3 Double Walled Parts and Containers \u003cbr\u003e6 Injection and Stretch Blow Moulding Machines\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.1.1 Injection Moulding Process\u003cbr\u003e6.2 Process Characteristics\u003cbr\u003e6.2.1 One step Machine\u003cbr\u003e6.2.2 Two Step Process\u003cbr\u003e6.2.3 Moulding Process\u003cbr\u003e6.3 Tooling\u003cbr\u003e6.3.1 Introduction\u003cbr\u003e6.4 Stretch Blow Moulding\u003cbr\u003e6.4.1 Introduction\u003cbr\u003eReferences \u003cbr\u003e7 Safe and Efficient Set-up, Start-up, Operation, Shutdown Procedures and Safety\u003cbr\u003e7.1 Start-up\u003cbr\u003e7.1.1 Start-Up Preparations\u003cbr\u003e7.1.2 Melt Temperature\u003cbr\u003e7.1.3 Warming up an Empty Machine\u003cbr\u003e7.1.4 Warming up a Full Machine\u003cbr\u003e7.1.5 Initial Operation and Purging\u003cbr\u003e7.1.6 Commencing Moulding – Manual Operation\u003cbr\u003e7.1.7 Commencing Moulding – Automatic Operation\u003cbr\u003e7.1.8 Changing Conditions and Dimension Verification\u003cbr\u003e7.1.9 Recording Production Conditions\u003cbr\u003e7.2 Safety in Normal Machine Operation\u003cbr\u003e7.2.1 Operation\u003cbr\u003e7.2.2 Safety Considerations\u003cbr\u003e7.3 Shutting Down\u003cbr\u003e7.3.1 Temporary Stops\u003cbr\u003e7.3.2 Overnight Stops\u003cbr\u003e7.3.3 High Temperature Work\u003cbr\u003e7.3.4 Heat-Sensitive Materials\u003cbr\u003e7.3.5 Purge Materials\u003cbr\u003e7.3.6 Shutting Down an Injection Blow Moulding Machine\u003cbr\u003e7.3.7 Check Recommendations\u003cbr\u003eReferences \u003cbr\u003e8 Fault Finding – Causes and Effects\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Troubleshooting\u003cbr\u003e8.3 Brainstorming\u003cbr\u003e8.4 Problems and Causes\u003cbr\u003e8.4.1 Background Sounds of the Plant\u003cbr\u003e8.4.2 Quality Problems\u003cbr\u003e8.4.3 Machine and Equipment Problems\u003cbr\u003e8.4.4 Importance of Consistent Material\u003cbr\u003e8.4.5 Process Settings\u003cbr\u003e8.4.6 Ambient Conditions\u003cbr\u003e8.5 Preventive and Corrective Actions\u003cbr\u003e8.5.1 Corrective Actions\u003cbr\u003e8.5.2 Corrective-Action Team\u003cbr\u003e8.5.3 Root Cause\u003cbr\u003e8.6 Packaging\u003cbr\u003e8.7 Scrap\u003cbr\u003e8.7.1 Contaminated Material\u003cbr\u003e8.7.2 Reworked Parts \u003cbr\u003e9 Auxiliary Equipment: Design, Function, Operation, and Safety\u003cbr\u003e9.1 Bulk Material Handling Systems\u003cbr\u003e9.2 Dryer\u003cbr\u003e9.2.1 Hot Air Dryers\u003cbr\u003e9.2.2 Dryer Operation\u003cbr\u003e9.2.3 Dryer Safety\u003cbr\u003e9.3 Blenders and Metering Equipment (Feeders)\u003cbr\u003e9.3.1 A Volumetric Blender\u003cbr\u003e9.3.2 Gravimetric Systems\u003cbr\u003e9.3.3 Metering and Blending Equipment\u003cbr\u003e9.3.4 Machine Operation\u003cbr\u003e9.4 Machine Safety\u003cbr\u003e9.5 Hopper Loader\u003cbr\u003e9.5.1 Loader Operation\u003cbr\u003e9.6 Water Temperature Controllers\u003cbr\u003e9.6.1 Operation\u003cbr\u003e9.7 In-line Inspection and Testing Equipment\u003cbr\u003e9.7.1 Laser Measurement\u003cbr\u003e9.7.2 Ultrasonic Testing\u003cbr\u003e9.7.3 Vision Systems\u003cbr\u003e9.7.4 Mechanical\u003cbr\u003e9.8 Conveyors\u003cbr\u003e9.9 Granulators\u003cbr\u003e9.10 Safety \u003cbr\u003e10 Finishing\u003cbr\u003e10.1 Planning for the Finishing of a Blow Moulded Part\u003cbr\u003e10.1.1 Product Design\u003cbr\u003e10.1.2 Mould Engineering\u003cbr\u003e10.1.3 Process Planning\u003cbr\u003e10.2 Removing Domes and Other Sections\u003cbr\u003e10.3 Flash Removal\u003cbr\u003e10.3.1 The Cutting Machine – Round Parts versus Parts with Corners \u003cbr\u003e11 Decoration of Blow Moulded Products\u003cbr\u003e11.1 Testing Surface Treated Parts\u003cbr\u003e11.2 Spray Painting\u003cbr\u003e11.3 Screen Printing\u003cbr\u003e11.4 Hot Stamping\u003cbr\u003e11.5 Pad Printing\u003cbr\u003e11.6 Labels and Decals \u003cbr\u003e12 Glossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNorman Lee has held various positions in the plastics industry in product and process design and development, in a career of over forty years culminating as Vice President of Research and Development with Zarn, Inc., USA. He has been active in the SPE in the Plastic Environmental (Recycling), Blow Molding and Product Development Divisions. He has written several technical reference books and been granted 20 patents in the field of blow moulding. Mr. Lee is now directing his own consulting services, offering seminars and in-plant training programs for the blow moulding industry and conducting expert witness work.","published_at":"2017-06-22T21:13:56-04:00","created_at":"2017-06-22T21:13:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","barrel","blow moulding","book","co-extrusion","die","drive","extruder","feed","gear box","hopper","mandrel","materials","motors","moulding","p-processing","PE","plastics","polyethylene","polymer","polyvinyl chloride","PVC","screw","terephthalate","wear"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378389892,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Blow Moulding","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-513-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-513-0.jpg?v=1499953510"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-513-0.jpg?v=1499953510","options":["Title"],"media":[{"alt":null,"id":358716244061,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-513-0.jpg?v=1499953510"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-513-0.jpg?v=1499953510","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. C. Lee \u003cbr\u003eISBN 978-1-85957-513-0 \u003cbr\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003ePages: 204\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlow moulding is a manufacturing process used to form hollow plastic parts. It evolved from the ancient art of glass blowing and it is used to particular advantage with plastic materials. Celluloid was used first to blow mould baby rattles and novelties in the 1930s, linear low-density polyethylene was used in the 1940s for high production bottles and these days polyethylene terephthalate is used to make anything from soda bottles to highly sophisticated multilayered containers and automotive fuel tanks in the last decade. \u003cbr\u003e\u003cbr\u003eWhen designing a product it is important to consider aspects such as a material's characteristics, the processing methods available, the assembly and finishing procedures, and the life cycle and expected performance of the product. This book presents the basics of blow moulding as well as the latest state-of-the-art and science of the industry. A key feature is the approach of discussing the ‘basics’ and then taking the reader through the entire process from design development through to final production. \u003cbr\u003e\u003cbr\u003eIt is very important for those involved in the manufacturing operation to keep abreast of the advances that are being made. This book will be of interest to those already using the blow moulding process and those who are interested in the potential offered by this versatile technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 What is Blow Moulding?\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.1.1 Definition\u003cbr\u003e1.1.2 Basic Process\u003cbr\u003e1.1.3 History and Development\u003cbr\u003e1.2 Types of Blow Moulding\u003cbr\u003e1.2.1 Introduction\u003cbr\u003e1.2.2 Stretch Blow Moulding\u003cbr\u003e1.2.3 Extrusion Blow Moulding\u003cbr\u003e1.3 Material Considerations\u003cbr\u003e1.3.1 Materials Selection\u003cbr\u003e1.3.2 Product Properties and Market Usage\u003cbr\u003eReferences \u003cbr\u003e2 Design and Engineering\u003cbr\u003e2.1 Design\u003cbr\u003e2.1.1 Product Design and Development System\u003cbr\u003e2.1.2 Process Management Tracking Systems\u003cbr\u003e2.2 Basic Design\u003cbr\u003e2.2.1 Basic Design Considerations\u003cbr\u003e2.2.2 Bottle and Container Design\u003cbr\u003e2.2.3 Structural Design\u003cbr\u003e2.2.4 Design Details\u003cbr\u003e2.3 Selection of Materials\u003cbr\u003e2.3.1 Polymer Principles\u003cbr\u003e2.3.2 Types of Polymers\u003cbr\u003e2.3.3 Amorphous and Crystalline\u003cbr\u003e2.3.4 Fundamental Properties\u003cbr\u003e2.4 Characteristics For Blow Moulding\u003cbr\u003e2.4.1 HDPE\u003cbr\u003e2.4.2 Acrylonitrile Butadiene Styrene (ABS)\u003cbr\u003e2.4.3 Polycarbonate (PC)\u003cbr\u003e2.4.4 Polypropylene\u003cbr\u003e2.4.5 Polyphenylene Oxide\u003cbr\u003e2.5 Colouring Plastic Materials\u003cbr\u003e2.6 Regrind\u003cbr\u003e2.6.1 Re-grind Specifications\u003cbr\u003e2.6.2 Process Performance\u003cbr\u003e2.6.3 Physical Properties\u003cbr\u003e2.7 Post Consumer and Industrial Recycled Materials\u003cbr\u003eReferences\u003cbr\u003eGeneral Reading \u003cbr\u003e3 Mould Design and Engineering\u003cbr\u003e3.1 Main Characteristics of the Mould\u003cbr\u003e3.2 Basic Design and Construction Considerations\u003cbr\u003e3.2.1 Mould Materials\u003cbr\u003e3.2.2 Selection of Materials\u003cbr\u003e3.2.3 Characteristics of Mould Materials\u003cbr\u003e3.3 Cut Mould versus Cast Moulds\u003cbr\u003e3.3.1 Cast Aluminium Moulds\u003cbr\u003e3.3.2 Cut Moulds\u003cbr\u003e3.3.3 Cast and Cut Moulds\u003cbr\u003e3.4 Importance of Fast Mould Cooling\u003cbr\u003e3.4.1 Fast Heat Transfer Material Considerations\u003cbr\u003e3.4.2 Manifolds\u003cbr\u003e3.4.3 Control of Flash\u003cbr\u003e3.4.4 Rate of Cooling\u003cbr\u003e3.4.5 Remedies for Flash\u003cbr\u003e3.5 The Pinch Off\u003cbr\u003e3.5.1 Importance\u003cbr\u003e3.6 High Quality, Undamaged Mould Cavity Finish\u003cbr\u003e3.6.1 Mould Cavity Finish\u003cbr\u003e3.7 Effects of Air and Moisture Trapped in the Mould\u003cbr\u003e3.7.1 Polished Moulds\u003cbr\u003e3.7.2 Moisture\u003cbr\u003e3.8 Injection of the Blowing Air\u003cbr\u003e3.8.1 Injection Blowing Air\u003cbr\u003e3.8.2 Blowing Devices\u003cbr\u003e3.9 Ejection of the Piece from the Mould\u003cbr\u003e3.9.1 Ejection Methods\u003cbr\u003e3.9.2 Manual Ejection\u003cbr\u003e3.9.3 Automatic Ejection\u003cbr\u003e3.9.4 Hydraulic Systems\u003cbr\u003e3.10 Pre-Pinch Bars\u003cbr\u003e3.10.1 Top Pinch\u003cbr\u003e3.10.2 Bottom Pinch\u003cbr\u003e3.11 Bottle Moulds\u003cbr\u003e3.11.1 Neck Ring and Blow Pin Design\u003cbr\u003e3.12 Dome Systems\u003cbr\u003e3.12.1 Dome Blow Pin\u003cbr\u003e3.12.2 Trimming Types\u003cbr\u003e3.13 Pre-Finished System\u003cbr\u003e3.13.1 Pre-Finished Neck Rings\u003cbr\u003e3.14 Unusual Problems\u003cbr\u003e3.14.1 Special Features\u003cbr\u003e3.14.2 Irregular Shaped Parts\u003cbr\u003e3.15 Computer Aided Design and Engineering for Mould Making\u003cbr\u003e3.15.1 Application in Mould Making\u003cbr\u003e3.15.2 Systems and Methods\u003cbr\u003e3.16 General Mould Buying Practices\u003cbr\u003e3.16.1 Mould Procurement\u003cbr\u003e3.16.2 Request for Quotation\u003cbr\u003e3.17 Mould Maintenance Program\u003cbr\u003e3.17.1 The Moulds Used to Produce Polyvinyl Chloride (PVC) and Polyethylene Terephthalate\u003cbr\u003e3.17.2 Moulds for PE\u003cbr\u003e3.17.3 Mould Cooling Lines\u003cbr\u003e3.17.4 Guide Pins and Bushings\u003cbr\u003e3.17.5 Striker Plates and Blow Pin Plates\u003cbr\u003e3.17.6 Pinch off\u003cbr\u003e3.17.7 Shut Down\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e4 The Extrusion Blow Moulding System\u003cbr\u003e4.1 Extruder\u003cbr\u003e4.2 Drive\u003cbr\u003e4.2.1 Motors\u003cbr\u003e4.3 Gear Box\u003cbr\u003e4.4 Screw Support Bearings\u003cbr\u003e4.4.1 Life of Thrust Bearings\u003cbr\u003e4.5 Extruder Feed\u003cbr\u003e4.5.1 Feed\u003cbr\u003e4.6 Hopper\u003cbr\u003e4.6.2 Feed Throat\u003cbr\u003e4.7 Single-Screw Extruder\u003cbr\u003e4.7.1 Barrel Construction\u003cbr\u003e4.7.2 Zone Heating\u003cbr\u003e4.7.3 Venting\u003cbr\u003e4.7.4 Wear Resistant Barrels\u003cbr\u003e4.7.5 Grooved Barrels\u003cbr\u003e4.7.6 Pressure Generation\u003cbr\u003e4.8 Melt Filtration\u003cbr\u003e4.9 The Screw\u003cbr\u003e4.9.1 General-Purpose Screw\u003cbr\u003e4.9.2 Screw Zones\u003cbr\u003e4.9.3 Dedicated Screws\u003cbr\u003e4.9.4 Barrier Screws\u003cbr\u003e4.9.5 Wear-Resistant Screws\u003cbr\u003e4.9.6 Mixing Pins and Sections\u003cbr\u003e4.9.7 Distributive and Dispersive Mixing\u003cbr\u003e4.10 The Extrusion Blow Moulding Head and Die Unit\u003cbr\u003e4.10.1 Centre-Feed Die\u003cbr\u003e4.10.2 Side-Feed Dies\u003cbr\u003e4.10.3 Wall Thickness\u003cbr\u003e4.10.4 Accumulator Head\u003cbr\u003e4.10.5 Die and Mandrel\u003cbr\u003e4.10.6 Die Swell\u003cbr\u003e4.10.7 Parison Adjustment\u003cbr\u003e4.10.8 Die Shaping\u003cbr\u003e4.10.9 Parison Programming\u003cbr\u003e4.10.10 Blow-up Ratio\u003cbr\u003e4.11 Mould Clamping Systems\u003cbr\u003e4.11.2 Clamping System Requirements\u003cbr\u003e4.11.3 Clamp Operation\u003cbr\u003e4.11.4 Press Types \u003cbr\u003e5 Extrusion Blow Moulding Advanced Systems\u003cbr\u003e5.1 Co-Extrusion Blow Moulding\u003cbr\u003e5.1.1 Arrangement of Extruders for Co-Extrusion\u003cbr\u003e5.1.2 Multi-Layered Structures\u003cbr\u003e5.1.3 Co-Extrusion Systems\u003cbr\u003e5.2 Three-Dimensional Blow Moulding\u003cbr\u003e5.2.1 Introduction to 3-D\u003cbr\u003e5.2.2 3-D Extrusion Processes\u003cbr\u003e5.2.3 Suction Blow Moulding\u003cbr\u003e5.2.4 Parison Manipulation\u003cbr\u003e5.2.5 3-D Extrusion Systems\u003cbr\u003e5.2.6 Head Adapter Radial Wall System\u003cbr\u003e5.3 Double Walled Parts and Containers \u003cbr\u003e6 Injection and Stretch Blow Moulding Machines\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.1.1 Injection Moulding Process\u003cbr\u003e6.2 Process Characteristics\u003cbr\u003e6.2.1 One step Machine\u003cbr\u003e6.2.2 Two Step Process\u003cbr\u003e6.2.3 Moulding Process\u003cbr\u003e6.3 Tooling\u003cbr\u003e6.3.1 Introduction\u003cbr\u003e6.4 Stretch Blow Moulding\u003cbr\u003e6.4.1 Introduction\u003cbr\u003eReferences \u003cbr\u003e7 Safe and Efficient Set-up, Start-up, Operation, Shutdown Procedures and Safety\u003cbr\u003e7.1 Start-up\u003cbr\u003e7.1.1 Start-Up Preparations\u003cbr\u003e7.1.2 Melt Temperature\u003cbr\u003e7.1.3 Warming up an Empty Machine\u003cbr\u003e7.1.4 Warming up a Full Machine\u003cbr\u003e7.1.5 Initial Operation and Purging\u003cbr\u003e7.1.6 Commencing Moulding – Manual Operation\u003cbr\u003e7.1.7 Commencing Moulding – Automatic Operation\u003cbr\u003e7.1.8 Changing Conditions and Dimension Verification\u003cbr\u003e7.1.9 Recording Production Conditions\u003cbr\u003e7.2 Safety in Normal Machine Operation\u003cbr\u003e7.2.1 Operation\u003cbr\u003e7.2.2 Safety Considerations\u003cbr\u003e7.3 Shutting Down\u003cbr\u003e7.3.1 Temporary Stops\u003cbr\u003e7.3.2 Overnight Stops\u003cbr\u003e7.3.3 High Temperature Work\u003cbr\u003e7.3.4 Heat-Sensitive Materials\u003cbr\u003e7.3.5 Purge Materials\u003cbr\u003e7.3.6 Shutting Down an Injection Blow Moulding Machine\u003cbr\u003e7.3.7 Check Recommendations\u003cbr\u003eReferences \u003cbr\u003e8 Fault Finding – Causes and Effects\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Troubleshooting\u003cbr\u003e8.3 Brainstorming\u003cbr\u003e8.4 Problems and Causes\u003cbr\u003e8.4.1 Background Sounds of the Plant\u003cbr\u003e8.4.2 Quality Problems\u003cbr\u003e8.4.3 Machine and Equipment Problems\u003cbr\u003e8.4.4 Importance of Consistent Material\u003cbr\u003e8.4.5 Process Settings\u003cbr\u003e8.4.6 Ambient Conditions\u003cbr\u003e8.5 Preventive and Corrective Actions\u003cbr\u003e8.5.1 Corrective Actions\u003cbr\u003e8.5.2 Corrective-Action Team\u003cbr\u003e8.5.3 Root Cause\u003cbr\u003e8.6 Packaging\u003cbr\u003e8.7 Scrap\u003cbr\u003e8.7.1 Contaminated Material\u003cbr\u003e8.7.2 Reworked Parts \u003cbr\u003e9 Auxiliary Equipment: Design, Function, Operation, and Safety\u003cbr\u003e9.1 Bulk Material Handling Systems\u003cbr\u003e9.2 Dryer\u003cbr\u003e9.2.1 Hot Air Dryers\u003cbr\u003e9.2.2 Dryer Operation\u003cbr\u003e9.2.3 Dryer Safety\u003cbr\u003e9.3 Blenders and Metering Equipment (Feeders)\u003cbr\u003e9.3.1 A Volumetric Blender\u003cbr\u003e9.3.2 Gravimetric Systems\u003cbr\u003e9.3.3 Metering and Blending Equipment\u003cbr\u003e9.3.4 Machine Operation\u003cbr\u003e9.4 Machine Safety\u003cbr\u003e9.5 Hopper Loader\u003cbr\u003e9.5.1 Loader Operation\u003cbr\u003e9.6 Water Temperature Controllers\u003cbr\u003e9.6.1 Operation\u003cbr\u003e9.7 In-line Inspection and Testing Equipment\u003cbr\u003e9.7.1 Laser Measurement\u003cbr\u003e9.7.2 Ultrasonic Testing\u003cbr\u003e9.7.3 Vision Systems\u003cbr\u003e9.7.4 Mechanical\u003cbr\u003e9.8 Conveyors\u003cbr\u003e9.9 Granulators\u003cbr\u003e9.10 Safety \u003cbr\u003e10 Finishing\u003cbr\u003e10.1 Planning for the Finishing of a Blow Moulded Part\u003cbr\u003e10.1.1 Product Design\u003cbr\u003e10.1.2 Mould Engineering\u003cbr\u003e10.1.3 Process Planning\u003cbr\u003e10.2 Removing Domes and Other Sections\u003cbr\u003e10.3 Flash Removal\u003cbr\u003e10.3.1 The Cutting Machine – Round Parts versus Parts with Corners \u003cbr\u003e11 Decoration of Blow Moulded Products\u003cbr\u003e11.1 Testing Surface Treated Parts\u003cbr\u003e11.2 Spray Painting\u003cbr\u003e11.3 Screen Printing\u003cbr\u003e11.4 Hot Stamping\u003cbr\u003e11.5 Pad Printing\u003cbr\u003e11.6 Labels and Decals \u003cbr\u003e12 Glossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNorman Lee has held various positions in the plastics industry in product and process design and development, in a career of over forty years culminating as Vice President of Research and Development with Zarn, Inc., USA. He has been active in the SPE in the Plastic Environmental (Recycling), Blow Molding and Product Development Divisions. He has written several technical reference books and been granted 20 patents in the field of blow moulding. Mr. Lee is now directing his own consulting services, offering seminars and in-plant training programs for the blow moulding industry and conducting expert witness work."}
Practical Guide to Che...
$180.00
{"id":11242214724,"title":"Practical Guide to Chemical Safety Testing","handle":"978-1-85957-372-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.J. Knight and M.B. Thomas \u003cbr\u003eISBN 978-1-85957-372-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances. \u003cbr\u003e\u003cbr\u003eHealth and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R\u0026amp;D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required. \u003cbr\u003e\u003cbr\u003eA Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results. \u003cbr\u003e\u003cbr\u003eThere is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment. \u003cbr\u003e\u003cbr\u003eEcotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals. \u003cbr\u003e\u003cbr\u003eRegulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers. \u003cbr\u003e\u003cbr\u003eThis book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Purpose of the Book\u003cbr\u003e1.2 Purpose of Safety Evaluation\u003cbr\u003e1.3 Safety Studies\u003cbr\u003e1.4 Risk Assessment and Safety Data\u003cbr\u003e1.5 Regulatory Schemes\u003cbr\u003e1.6 Summary \u003cbr\u003e2 Mammalian Toxicology\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Acute Toxicity Studies\u003cbr\u003e2.2.1 Nature and Relevance of Tests\u003cbr\u003e2.2.2 Methodology\u003cbr\u003e2.2.3 Acute Oral Toxicity Studies\u003cbr\u003e2.2.4 Dermal Toxicity Studies\u003cbr\u003e2.2.5 Inhalation Toxicity Studies\u003cbr\u003e2.2.6 Alternative Acute Oral Toxicity Methods\u003cbr\u003e2.2.7 Local Tolerance Tests\u003cbr\u003e2.2.8 Contact Sensitisation\u003cbr\u003e2.3 Repeated Dose Toxicity Studies\u003cbr\u003e2.3.1 Nature and Relevance of Tests\u003cbr\u003e2.3.2 Importance of Repeated Dose Toxicity\u003cbr\u003e2.3.3 Methodology\u003cbr\u003e2.4 Reproduction Toxicology\u003cbr\u003e2.4.1 Nature and Relevance of Tests\u003cbr\u003e2.4.2 Methodology\u003cbr\u003e2.4.3 Alternative Approaches\u003cbr\u003e2.5 Carcinogenicity\u003cbr\u003e2.5.1 Nature and Relevance of Tests\u003cbr\u003e2.5.2 Methodology\u003cbr\u003e2.5.3 Dose Levels\u003cbr\u003e2.5.4 Conduct of Study\u003cbr\u003e2.5.5 Data Evaluation\u003cbr\u003e2.5.6 Risk Assessment\u003cbr\u003e2.5.7 Alternative Approaches\u003cbr\u003e2.6 Medical Device Testing\u003cbr\u003e2.6.1 Exposure Routes\u003cbr\u003e2.6.2 Dose Preparation\u003cbr\u003e2.6.3 Cytotoxicity Testing of Medical Devices \u003cbr\u003e3 Genetic Toxicology\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Mechanisms of Mutation – Genes and Chromosomes\u003cbr\u003e3.3 Standard Genetic Toxicology Assays\u003cbr\u003e3.4 Bacterial Mutagenicity Assays\u003cbr\u003e3.5 Chromosome Aberration Tests In Vitro\u003cbr\u003e3.6 Mammalian Cell Gene Mutation Assays In Vitro\u003cbr\u003e3.7 The In Vivo Micronucleus Test\u003cbr\u003e3.8 The Unscheduled DNA Synthesis Assay\u003cbr\u003e3.9 Conclusions \u003cbr\u003e4 Ecotoxicology\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Bacterial Toxicity Testing\u003cbr\u003e4.3 Biodegradation Tests\u003cbr\u003e4.3.1 Ready Biodegradation Tests\u003cbr\u003e4.3.2 Inherent Biodegradation Tests\u003cbr\u003e4.3.3 Simulation Tests\u003cbr\u003e4.3.4 Anaerobic Biodegradation Tests\u003cbr\u003e4.4 Aquatic Toxicity Testing\u003cbr\u003e4.4.1 Acute Tests\u003cbr\u003e4.4.2 Analytical Measurements\u003cbr\u003e4.4.3 Difficult Substances\u003cbr\u003e4.4.4 Chronic Tests\u003cbr\u003e4.5 Fish Bioaccumulation Test\u003cbr\u003e4.6 Sediment Toxicity Tests\u003cbr\u003e4.7 Terrestrial Toxicity Tests\u003cbr\u003e4.7.1 Earthworms\u003cbr\u003e4.7.2 Bees and Beneficial\u003cbr\u003e4.7.3 Plant Growth Tests\u003cbr\u003e4.8 Microcosm and Mesocosm Studies\u003cbr\u003e4.9 Conclusion \u003cbr\u003e5 Physico-Chemical Properties\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Performance of the General Physico-Chemical Tests\u003cbr\u003e5.2.1 Melting Temperature\/Melting Range (OECD Test Guideline 102)\u003cbr\u003e5.2.2 Boiling Point (OECD Test Guideline 103)\u003cbr\u003e5.2.3 Vapour Pressure (OECD Test Guideline 104)\u003cbr\u003e5.2.4 Water Solubility (OECD Test Guideline 105)\u003cbr\u003e5.2.5 Partition Coefficient (OECD Test Guidelines and 117)\u003cbr\u003e5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)\u003cbr\u003e5.2.7 Density\/Relative Density (OECD Test Guideline 109)\u003cbr\u003e5.2.8 Particle Size Distribution (OECD Test Guideline 110)\u003cbr\u003e5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)\u003cbr\u003e5.2.10 Dissociation Constant (OECD Test Guideline 112)\u003cbr\u003e5.2.11 Surface Tension (OECD Test Guideline 115)\u003cbr\u003e5.2.12 Fat Solubility (OECD Test Guideline 116)\u003cbr\u003e5.3 Performance of the Polymer Specific Physico-Chemical Tests\u003cbr\u003e5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)\u003cbr\u003e5.3.2 Solution\/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)\u003cbr\u003e5.4 Performance of the Hazardous Physico-Chemical Tests\u003cbr\u003e5.4.1 Flash Point (EC Method A9)\u003cbr\u003e5.4.2 Flammable Solids (EC Method A10)\u003cbr\u003e5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)\u003cbr\u003e5.4.4 Explosive Properties (EC Method A14)\u003cbr\u003e5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)\u003cbr\u003e5.4.6 Oxidising Properties (EC Method A17)\u003cbr\u003e5.5 Order in which Physico-Chemical Tests are Performed\u003cbr\u003e5.6 Conclusion \u003cbr\u003e6 Alternatives to Animal Testing for Safety Evaluation\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Validation of Alternative Methods\u003cbr\u003e6.3 Aspects of Human Toxicity Targeted By In Vitro Assays\u003cbr\u003e6.3.1 Systemic Toxicological Properties\u003cbr\u003e6.3.2 Validated Tests Currently in Use in the EU\u003cbr\u003e6.4 Structure-Activity Relationships and Prediction of Properties\u003cbr\u003e6.5 Strategies to Minimise Use of Animals\u003cbr\u003e6.6 Future Developments and Conclusions \u003cbr\u003e7 Toxicological Assessment within a Risk Assessment Framework\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Definitions and Concepts\u003cbr\u003e7.2.1 Risk\u003cbr\u003e7.2.2 Toxicology\u003cbr\u003e7.3 Exposure Scenarios\u003cbr\u003e7.3.1 Routes of Administration\u003cbr\u003e7.3.2 Exposure Prediction\u003cbr\u003e7.4 Judgements\u003cbr\u003e7.4.1 The ‘Precautionary Principle’\u003cbr\u003e7.4.2 What Test and When?\u003cbr\u003e7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes\u003cbr\u003e7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity\u003cbr\u003e7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity\u003cbr\u003e7.5 Risk Management\u003cbr\u003e7.6 Final Word \u003cbr\u003e8 Environmental Risk Assessment\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Exposure Assessment\u003cbr\u003e8.2.1 Identification of the Target Compartments\u003cbr\u003e8.2.2 Estimation of Emissions or Releases\u003cbr\u003e8.2.3 Distribution and Degradation in the Environment (Environmental Fate)\u003cbr\u003e8.2.4 Predicted Environmental Concentrations\u003cbr\u003e8.3 Effects Assessment\u003cbr\u003e8.3.1 Estimating PNECs by Applying Uncertainty Factors\u003cbr\u003e8.3.2 The Statistical Extrapolation Method\u003cbr\u003e8.4 Risk Characterisation\u003cbr\u003e8.5 Conclusion \u003cbr\u003ePART 2: REGULATORY FRAMEWORK \u003cbr\u003e9 EU Chemical Legislation\u003cbr\u003e9.1 EU Legislation within the European Economic Area and Europe\u003cbr\u003e9.2 Notification of New Substances\u003cbr\u003e9.2.1 History of the Notification Process\u003cbr\u003e9.2.2 Data Sharing\u003cbr\u003e9.2.3 Base Set Studies for Full Notification\u003cbr\u003e9.2.4 Reduced Notification Studies\u003cbr\u003e9.2.5 Level 1 and Level 2 Notification Studies\u003cbr\u003e9.2.6 The Notification Summary Form\u003cbr\u003e9.2.7 The Sole-Representative Facility\u003cbr\u003e9.2.8 Polymers\u003cbr\u003e9.2.9 Derogations\/Exemptions from Notification\u003cbr\u003e9.2.10 Confidentiality\u003cbr\u003e9.3 Risk Assessment\u003cbr\u003e9.3.1 Human Health Risk Assessment\u003cbr\u003e9.3.2 Environment Risk Assessment\u003cbr\u003e9.4 Existing Chemicals Regulation\u003cbr\u003e9.4.1 Data Collection\u003cbr\u003e9.4.2 Priority Setting\u003cbr\u003e9.4.3 Risk Assessment\u003cbr\u003e9.5 Chemical Hazard Communication\u003cbr\u003e9.5.1 Classification and Labelling of Dangerous Substances\u003cbr\u003e9.5.2 Classification and Labelling of Dangerous Preparations\u003cbr\u003e9.5.3 Safety Data Sheets\u003cbr\u003e9.6 Transport Regulations\u003cbr\u003e9.6.1 Introduction\u003cbr\u003e9.6.2 The United Nations Transportation Classification Scheme\u003cbr\u003e9.6.3 Transport of Marine Pollutants\u003cbr\u003e9.7 National Chemical Control Measures\u003cbr\u003e9.7.1 National Product Registers\u003cbr\u003e9.7.2 German Water Hazard Classification Scheme\u003cbr\u003e9.8 Other EU Legislation for Specific Product Types\u003cbr\u003e9.8.1 Control of Cosmetics in the EU\u003cbr\u003e9.8.2 Detergents\u003cbr\u003e9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic\u003cbr\u003e9.9 Summary and Future Developments \u003cbr\u003e10 Chemical Control in Japan\u003cbr\u003e10.1 Introduction to the Japanese Regulatory Culture\u003cbr\u003e10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law\u003cbr\u003e10.2.1 Introduction\u003cbr\u003e10.2.2 The Inventory of Existing Substances\u003cbr\u003e10.2.3 Exemptions from Notification\u003cbr\u003e10.2.4 Standard Notification\u003cbr\u003e10.2.5 Polymer Notification\u003cbr\u003e10.2.6 Class I and II Specified and Designated Substances\u003cbr\u003e10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law\u003cbr\u003e10.4 Hazard Communication and Product Liability\u003cbr\u003e10.5 Other Chemical Legislation\u003cbr\u003e10.6 Summary \u003cbr\u003e11 Chemical Control in the US and the Rest of the World\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)\u003cbr\u003e11.2.1 Key Objectives of TSCA\u003cbr\u003e11.2.2 The TSCA Inventory\u003cbr\u003e11.2.3 Testing of Existing Substances\u003cbr\u003e11.2.4 Manufacturing and Processing Notices\u003cbr\u003e11.2.5 PMN Requirements\u003cbr\u003e11.2.6 Significant New Use Rules (SNURs)\u003cbr\u003e11.2.7 Exemptions from PMN\u003cbr\u003e11.3 US Occupational Safety and Health Act (OSHA)\u003cbr\u003e11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals\u003cbr\u003e11.4.1 Voluntary Challenge Programme\u003cbr\u003e11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals\u003cbr\u003e11.4.3 US Voluntary Children’s Chemical Evaluation Program\u003cbr\u003e11.5 Chemical Control Legislation in Canada\u003cbr\u003e11.5.1 The Canadian Environmental Protection Act\u003cbr\u003e11.5.2 Inventories\u003cbr\u003e11.5.3 Environmental Assessment Regulations\u003cbr\u003e11.5.4 Data Requirements for Notification\u003cbr\u003e11.5.5 Significant New Activity Notice\u003cbr\u003e11.5.6 Administration\u003cbr\u003e11.5.7 Inspection, Enforcement and Penalties\u003cbr\u003e11.5.8 Future Changes\u003cbr\u003e11.5.9 The Workplace Hazardous Materials Information System\u003cbr\u003e11.6 Chemical Control Legislation in Switzerland\u003cbr\u003e11.6.1 The Federal Law on Trade in Toxic Substances\u003cbr\u003e11.6.2 The Federal Law on Environmental Protection\u003cbr\u003e11.7 Notification of New Chemical Substances in Australia\u003cbr\u003e11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme\u003cbr\u003e11.7.2 Inventory\u003cbr\u003e11.7.3 Data Requirements for Notification\u003cbr\u003e11.7.4 Existing Substances\u003cbr\u003e11.7.5 Hazard Communication\u003cbr\u003e11.8 Chemical Control in Korea\u003cbr\u003e11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification\u003cbr\u003e11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination\u003cbr\u003e11.8.3 Hazard Communication\u003cbr\u003e11.9 Chemical Control in the Philippines\u003cbr\u003e11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act\u003cbr\u003e11.9.2 Inventory\u003cbr\u003e11.9.3 Data Requirements for Notification\u003cbr\u003e11.9.4 Administration\u003cbr\u003e11.9.5 Priority Chemicals List (PCL)\u003cbr\u003e11.10 Chemical Control in The People’s Republic of China\u003cbr\u003e11.10.1 Latest Developments\u003cbr\u003e11.10.2 First Import and Toxic Chemicals Regulations\u003cbr\u003e11.10.3 Inventory\u003cbr\u003e11.10.4 Hazard Communication\u003cbr\u003e11.11 Chemical Control in New Zealand\u003cbr\u003e11.11.1 Toxic Substances Act\u003cbr\u003e11.11.2 Resource Management Act\u003cbr\u003e11.11.3 Hazardous Substances and New Organisms Act\u003cbr\u003e11.11.4 Data Requirements for Notification\u003cbr\u003e11.11.5 Hazard Communication\u003cbr\u003e11.12 Mexico\u003cbr\u003e11.12.1 Legislation\u003cbr\u003e11.12.2 Safety Data Sheets\u003cbr\u003e11.13 Singapore\u003cbr\u003e11.14 Malaysia\u003cbr\u003e11.15 Thailand\u003cbr\u003e11.16 Indonesia\u003cbr\u003e11.17 Taiwan\u003cbr\u003e11.18 HPV Programmes\u003cbr\u003e11.18.1 OECD\u003cbr\u003e11.18.2 International Council of Chemical Associations Global Initiative\u003cbr\u003e11.19 Useful Web Sites \u003cbr\u003e12 Notification of Polymers Worldwide\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 North America\u003cbr\u003e12.2.1 USA\u003cbr\u003e12.2.2 Canada\u003cbr\u003e12.3 Asia Pacific\u003cbr\u003e12.3.1 Japan\u003cbr\u003e12.3.2 Australia\u003cbr\u003e12.3.3 New Zealand\u003cbr\u003e12.3.4 Korea\u003cbr\u003e12.3.5 Philippines\u003cbr\u003e12.3.6 China\u003cbr\u003e12.4 Europe\u003cbr\u003e12.4.1 EU\u003cbr\u003e12.4.2 Switzerland\u003cbr\u003e12.5 Overall Comparison of the Nine Polymer Notification Schemes \u003cbr\u003e13 Medical Device Regulation\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 European Economic Area\u003cbr\u003e13.2.1 Background\u003cbr\u003e13.2.2 Before Marketing\u003cbr\u003e13.2.3 After Marketing\u003cbr\u003e13.3 United States of America\u003cbr\u003e13.3.1 Background\u003cbr\u003e13.3.2 Before Marketing\u003cbr\u003e13.3.3 After Marketing\u003cbr\u003e13.4 Japan\u003cbr\u003e13.4.1 Background\u003cbr\u003e13.4.2 Before Marketing\u003cbr\u003e13.4.3 After Marketing\u003cbr\u003e13.5 Conclusion \u003cbr\u003e14 Regulation of Food Packaging in the EU and US\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Control of Food Packaging in the EU\u003cbr\u003e14.2.1 EU Framework Directive\u003cbr\u003e14.2.2 Food Contact Plastics in the EU\u003cbr\u003e14.2.3 Future Developments for Food Plastics in the EU\u003cbr\u003e14.2.4 Other EU Food Packaging Measures\u003cbr\u003e14.2.5 Strategy for Food Contact Plastic Approval in the EU\u003cbr\u003e14.3 National Controls on Food Packaging in EU Countries\u003cbr\u003e14.3.1 Germany\u003cbr\u003e14.3.2 France\u003cbr\u003e14.3.3 The Netherlands\u003cbr\u003e14.3.4 Belgium\u003cbr\u003e14.3.5 Italy\u003cbr\u003e14.4 Council of Europe Work on Food Packaging\u003cbr\u003e14.4.1 Introduction\u003cbr\u003e14.4.2 Completed Council of Europe Resolutions\u003cbr\u003e14.4.3 Council of Europe Ongoing Work\u003cbr\u003e14.5 Food Packaging in the USA\u003cbr\u003e14.5.1 Introduction\u003cbr\u003e14.5.2 History and Development of US Food Packaging Legislation\u003cbr\u003e14.5.3 The FDA Petition\u003cbr\u003e14.5.4 Threshold of Regulation Process\u003cbr\u003e14.5.5 The Pre-Marketing Notification Scheme \u003cbr\u003e15 Regulation of Biocides\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 Control of Biocides in the EU\u003cbr\u003e15.2.1 Introduction\u003cbr\u003e15.2.2 Main Features of the Directive\u003cbr\u003e15.2.3 System of Approval\u003cbr\u003e15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive\u003cbr\u003e15.2.5 Authorisation of Biocidal Products\u003cbr\u003e15.2.6 Hazard Communication\u003cbr\u003e15.2.7 The Review Programme for Existing Active Substances\u003cbr\u003e15.2.8 Technical Guidance\u003cbr\u003e15.3 Control of Biocides in the USA\u003cbr\u003e15.3.1 Introduction\u003cbr\u003e15.3.2 Data Requirements for Registration\u003cbr\u003e15.3.3 Registration Applications\u003cbr\u003e15.3.4 Data Compensation\u003cbr\u003e15.3.5 Re-Registration of Existing Pesticides\u003cbr\u003e15.3.6 Petition for a Pesticide Tolerance\u003cbr\u003e15.3.7 Regulation of Food Contact Biocides\u003cbr\u003e15.4 Regulation of Biocides in Other Countries\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides. \u003cbr\u003e\u003cbr\u003eMike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:23-04:00","created_at":"2017-06-22T21:13:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","acute","air monitoring","book","classification","dose","environment","food","hazard","health","inhalation","labelling","legislation","marine","medical","methodology","oral","p-testing","packaging","pesticide","plastics","pollutants","polymer","rubber","safety","substances control","toxic","toxicity","transport","TSCA","UN"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Chemical Safety Testing","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-372-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043","options":["Title"],"media":[{"alt":null,"id":358716768349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.J. Knight and M.B. Thomas \u003cbr\u003eISBN 978-1-85957-372-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances. \u003cbr\u003e\u003cbr\u003eHealth and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R\u0026amp;D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required. \u003cbr\u003e\u003cbr\u003eA Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results. \u003cbr\u003e\u003cbr\u003eThere is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment. \u003cbr\u003e\u003cbr\u003eEcotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals. \u003cbr\u003e\u003cbr\u003eRegulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers. \u003cbr\u003e\u003cbr\u003eThis book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Purpose of the Book\u003cbr\u003e1.2 Purpose of Safety Evaluation\u003cbr\u003e1.3 Safety Studies\u003cbr\u003e1.4 Risk Assessment and Safety Data\u003cbr\u003e1.5 Regulatory Schemes\u003cbr\u003e1.6 Summary \u003cbr\u003e2 Mammalian Toxicology\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Acute Toxicity Studies\u003cbr\u003e2.2.1 Nature and Relevance of Tests\u003cbr\u003e2.2.2 Methodology\u003cbr\u003e2.2.3 Acute Oral Toxicity Studies\u003cbr\u003e2.2.4 Dermal Toxicity Studies\u003cbr\u003e2.2.5 Inhalation Toxicity Studies\u003cbr\u003e2.2.6 Alternative Acute Oral Toxicity Methods\u003cbr\u003e2.2.7 Local Tolerance Tests\u003cbr\u003e2.2.8 Contact Sensitisation\u003cbr\u003e2.3 Repeated Dose Toxicity Studies\u003cbr\u003e2.3.1 Nature and Relevance of Tests\u003cbr\u003e2.3.2 Importance of Repeated Dose Toxicity\u003cbr\u003e2.3.3 Methodology\u003cbr\u003e2.4 Reproduction Toxicology\u003cbr\u003e2.4.1 Nature and Relevance of Tests\u003cbr\u003e2.4.2 Methodology\u003cbr\u003e2.4.3 Alternative Approaches\u003cbr\u003e2.5 Carcinogenicity\u003cbr\u003e2.5.1 Nature and Relevance of Tests\u003cbr\u003e2.5.2 Methodology\u003cbr\u003e2.5.3 Dose Levels\u003cbr\u003e2.5.4 Conduct of Study\u003cbr\u003e2.5.5 Data Evaluation\u003cbr\u003e2.5.6 Risk Assessment\u003cbr\u003e2.5.7 Alternative Approaches\u003cbr\u003e2.6 Medical Device Testing\u003cbr\u003e2.6.1 Exposure Routes\u003cbr\u003e2.6.2 Dose Preparation\u003cbr\u003e2.6.3 Cytotoxicity Testing of Medical Devices \u003cbr\u003e3 Genetic Toxicology\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Mechanisms of Mutation – Genes and Chromosomes\u003cbr\u003e3.3 Standard Genetic Toxicology Assays\u003cbr\u003e3.4 Bacterial Mutagenicity Assays\u003cbr\u003e3.5 Chromosome Aberration Tests In Vitro\u003cbr\u003e3.6 Mammalian Cell Gene Mutation Assays In Vitro\u003cbr\u003e3.7 The In Vivo Micronucleus Test\u003cbr\u003e3.8 The Unscheduled DNA Synthesis Assay\u003cbr\u003e3.9 Conclusions \u003cbr\u003e4 Ecotoxicology\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Bacterial Toxicity Testing\u003cbr\u003e4.3 Biodegradation Tests\u003cbr\u003e4.3.1 Ready Biodegradation Tests\u003cbr\u003e4.3.2 Inherent Biodegradation Tests\u003cbr\u003e4.3.3 Simulation Tests\u003cbr\u003e4.3.4 Anaerobic Biodegradation Tests\u003cbr\u003e4.4 Aquatic Toxicity Testing\u003cbr\u003e4.4.1 Acute Tests\u003cbr\u003e4.4.2 Analytical Measurements\u003cbr\u003e4.4.3 Difficult Substances\u003cbr\u003e4.4.4 Chronic Tests\u003cbr\u003e4.5 Fish Bioaccumulation Test\u003cbr\u003e4.6 Sediment Toxicity Tests\u003cbr\u003e4.7 Terrestrial Toxicity Tests\u003cbr\u003e4.7.1 Earthworms\u003cbr\u003e4.7.2 Bees and Beneficial\u003cbr\u003e4.7.3 Plant Growth Tests\u003cbr\u003e4.8 Microcosm and Mesocosm Studies\u003cbr\u003e4.9 Conclusion \u003cbr\u003e5 Physico-Chemical Properties\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Performance of the General Physico-Chemical Tests\u003cbr\u003e5.2.1 Melting Temperature\/Melting Range (OECD Test Guideline 102)\u003cbr\u003e5.2.2 Boiling Point (OECD Test Guideline 103)\u003cbr\u003e5.2.3 Vapour Pressure (OECD Test Guideline 104)\u003cbr\u003e5.2.4 Water Solubility (OECD Test Guideline 105)\u003cbr\u003e5.2.5 Partition Coefficient (OECD Test Guidelines and 117)\u003cbr\u003e5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)\u003cbr\u003e5.2.7 Density\/Relative Density (OECD Test Guideline 109)\u003cbr\u003e5.2.8 Particle Size Distribution (OECD Test Guideline 110)\u003cbr\u003e5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)\u003cbr\u003e5.2.10 Dissociation Constant (OECD Test Guideline 112)\u003cbr\u003e5.2.11 Surface Tension (OECD Test Guideline 115)\u003cbr\u003e5.2.12 Fat Solubility (OECD Test Guideline 116)\u003cbr\u003e5.3 Performance of the Polymer Specific Physico-Chemical Tests\u003cbr\u003e5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)\u003cbr\u003e5.3.2 Solution\/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)\u003cbr\u003e5.4 Performance of the Hazardous Physico-Chemical Tests\u003cbr\u003e5.4.1 Flash Point (EC Method A9)\u003cbr\u003e5.4.2 Flammable Solids (EC Method A10)\u003cbr\u003e5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)\u003cbr\u003e5.4.4 Explosive Properties (EC Method A14)\u003cbr\u003e5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)\u003cbr\u003e5.4.6 Oxidising Properties (EC Method A17)\u003cbr\u003e5.5 Order in which Physico-Chemical Tests are Performed\u003cbr\u003e5.6 Conclusion \u003cbr\u003e6 Alternatives to Animal Testing for Safety Evaluation\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Validation of Alternative Methods\u003cbr\u003e6.3 Aspects of Human Toxicity Targeted By In Vitro Assays\u003cbr\u003e6.3.1 Systemic Toxicological Properties\u003cbr\u003e6.3.2 Validated Tests Currently in Use in the EU\u003cbr\u003e6.4 Structure-Activity Relationships and Prediction of Properties\u003cbr\u003e6.5 Strategies to Minimise Use of Animals\u003cbr\u003e6.6 Future Developments and Conclusions \u003cbr\u003e7 Toxicological Assessment within a Risk Assessment Framework\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Definitions and Concepts\u003cbr\u003e7.2.1 Risk\u003cbr\u003e7.2.2 Toxicology\u003cbr\u003e7.3 Exposure Scenarios\u003cbr\u003e7.3.1 Routes of Administration\u003cbr\u003e7.3.2 Exposure Prediction\u003cbr\u003e7.4 Judgements\u003cbr\u003e7.4.1 The ‘Precautionary Principle’\u003cbr\u003e7.4.2 What Test and When?\u003cbr\u003e7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes\u003cbr\u003e7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity\u003cbr\u003e7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity\u003cbr\u003e7.5 Risk Management\u003cbr\u003e7.6 Final Word \u003cbr\u003e8 Environmental Risk Assessment\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Exposure Assessment\u003cbr\u003e8.2.1 Identification of the Target Compartments\u003cbr\u003e8.2.2 Estimation of Emissions or Releases\u003cbr\u003e8.2.3 Distribution and Degradation in the Environment (Environmental Fate)\u003cbr\u003e8.2.4 Predicted Environmental Concentrations\u003cbr\u003e8.3 Effects Assessment\u003cbr\u003e8.3.1 Estimating PNECs by Applying Uncertainty Factors\u003cbr\u003e8.3.2 The Statistical Extrapolation Method\u003cbr\u003e8.4 Risk Characterisation\u003cbr\u003e8.5 Conclusion \u003cbr\u003ePART 2: REGULATORY FRAMEWORK \u003cbr\u003e9 EU Chemical Legislation\u003cbr\u003e9.1 EU Legislation within the European Economic Area and Europe\u003cbr\u003e9.2 Notification of New Substances\u003cbr\u003e9.2.1 History of the Notification Process\u003cbr\u003e9.2.2 Data Sharing\u003cbr\u003e9.2.3 Base Set Studies for Full Notification\u003cbr\u003e9.2.4 Reduced Notification Studies\u003cbr\u003e9.2.5 Level 1 and Level 2 Notification Studies\u003cbr\u003e9.2.6 The Notification Summary Form\u003cbr\u003e9.2.7 The Sole-Representative Facility\u003cbr\u003e9.2.8 Polymers\u003cbr\u003e9.2.9 Derogations\/Exemptions from Notification\u003cbr\u003e9.2.10 Confidentiality\u003cbr\u003e9.3 Risk Assessment\u003cbr\u003e9.3.1 Human Health Risk Assessment\u003cbr\u003e9.3.2 Environment Risk Assessment\u003cbr\u003e9.4 Existing Chemicals Regulation\u003cbr\u003e9.4.1 Data Collection\u003cbr\u003e9.4.2 Priority Setting\u003cbr\u003e9.4.3 Risk Assessment\u003cbr\u003e9.5 Chemical Hazard Communication\u003cbr\u003e9.5.1 Classification and Labelling of Dangerous Substances\u003cbr\u003e9.5.2 Classification and Labelling of Dangerous Preparations\u003cbr\u003e9.5.3 Safety Data Sheets\u003cbr\u003e9.6 Transport Regulations\u003cbr\u003e9.6.1 Introduction\u003cbr\u003e9.6.2 The United Nations Transportation Classification Scheme\u003cbr\u003e9.6.3 Transport of Marine Pollutants\u003cbr\u003e9.7 National Chemical Control Measures\u003cbr\u003e9.7.1 National Product Registers\u003cbr\u003e9.7.2 German Water Hazard Classification Scheme\u003cbr\u003e9.8 Other EU Legislation for Specific Product Types\u003cbr\u003e9.8.1 Control of Cosmetics in the EU\u003cbr\u003e9.8.2 Detergents\u003cbr\u003e9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic\u003cbr\u003e9.9 Summary and Future Developments \u003cbr\u003e10 Chemical Control in Japan\u003cbr\u003e10.1 Introduction to the Japanese Regulatory Culture\u003cbr\u003e10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law\u003cbr\u003e10.2.1 Introduction\u003cbr\u003e10.2.2 The Inventory of Existing Substances\u003cbr\u003e10.2.3 Exemptions from Notification\u003cbr\u003e10.2.4 Standard Notification\u003cbr\u003e10.2.5 Polymer Notification\u003cbr\u003e10.2.6 Class I and II Specified and Designated Substances\u003cbr\u003e10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law\u003cbr\u003e10.4 Hazard Communication and Product Liability\u003cbr\u003e10.5 Other Chemical Legislation\u003cbr\u003e10.6 Summary \u003cbr\u003e11 Chemical Control in the US and the Rest of the World\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)\u003cbr\u003e11.2.1 Key Objectives of TSCA\u003cbr\u003e11.2.2 The TSCA Inventory\u003cbr\u003e11.2.3 Testing of Existing Substances\u003cbr\u003e11.2.4 Manufacturing and Processing Notices\u003cbr\u003e11.2.5 PMN Requirements\u003cbr\u003e11.2.6 Significant New Use Rules (SNURs)\u003cbr\u003e11.2.7 Exemptions from PMN\u003cbr\u003e11.3 US Occupational Safety and Health Act (OSHA)\u003cbr\u003e11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals\u003cbr\u003e11.4.1 Voluntary Challenge Programme\u003cbr\u003e11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals\u003cbr\u003e11.4.3 US Voluntary Children’s Chemical Evaluation Program\u003cbr\u003e11.5 Chemical Control Legislation in Canada\u003cbr\u003e11.5.1 The Canadian Environmental Protection Act\u003cbr\u003e11.5.2 Inventories\u003cbr\u003e11.5.3 Environmental Assessment Regulations\u003cbr\u003e11.5.4 Data Requirements for Notification\u003cbr\u003e11.5.5 Significant New Activity Notice\u003cbr\u003e11.5.6 Administration\u003cbr\u003e11.5.7 Inspection, Enforcement and Penalties\u003cbr\u003e11.5.8 Future Changes\u003cbr\u003e11.5.9 The Workplace Hazardous Materials Information System\u003cbr\u003e11.6 Chemical Control Legislation in Switzerland\u003cbr\u003e11.6.1 The Federal Law on Trade in Toxic Substances\u003cbr\u003e11.6.2 The Federal Law on Environmental Protection\u003cbr\u003e11.7 Notification of New Chemical Substances in Australia\u003cbr\u003e11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme\u003cbr\u003e11.7.2 Inventory\u003cbr\u003e11.7.3 Data Requirements for Notification\u003cbr\u003e11.7.4 Existing Substances\u003cbr\u003e11.7.5 Hazard Communication\u003cbr\u003e11.8 Chemical Control in Korea\u003cbr\u003e11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification\u003cbr\u003e11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination\u003cbr\u003e11.8.3 Hazard Communication\u003cbr\u003e11.9 Chemical Control in the Philippines\u003cbr\u003e11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act\u003cbr\u003e11.9.2 Inventory\u003cbr\u003e11.9.3 Data Requirements for Notification\u003cbr\u003e11.9.4 Administration\u003cbr\u003e11.9.5 Priority Chemicals List (PCL)\u003cbr\u003e11.10 Chemical Control in The People’s Republic of China\u003cbr\u003e11.10.1 Latest Developments\u003cbr\u003e11.10.2 First Import and Toxic Chemicals Regulations\u003cbr\u003e11.10.3 Inventory\u003cbr\u003e11.10.4 Hazard Communication\u003cbr\u003e11.11 Chemical Control in New Zealand\u003cbr\u003e11.11.1 Toxic Substances Act\u003cbr\u003e11.11.2 Resource Management Act\u003cbr\u003e11.11.3 Hazardous Substances and New Organisms Act\u003cbr\u003e11.11.4 Data Requirements for Notification\u003cbr\u003e11.11.5 Hazard Communication\u003cbr\u003e11.12 Mexico\u003cbr\u003e11.12.1 Legislation\u003cbr\u003e11.12.2 Safety Data Sheets\u003cbr\u003e11.13 Singapore\u003cbr\u003e11.14 Malaysia\u003cbr\u003e11.15 Thailand\u003cbr\u003e11.16 Indonesia\u003cbr\u003e11.17 Taiwan\u003cbr\u003e11.18 HPV Programmes\u003cbr\u003e11.18.1 OECD\u003cbr\u003e11.18.2 International Council of Chemical Associations Global Initiative\u003cbr\u003e11.19 Useful Web Sites \u003cbr\u003e12 Notification of Polymers Worldwide\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 North America\u003cbr\u003e12.2.1 USA\u003cbr\u003e12.2.2 Canada\u003cbr\u003e12.3 Asia Pacific\u003cbr\u003e12.3.1 Japan\u003cbr\u003e12.3.2 Australia\u003cbr\u003e12.3.3 New Zealand\u003cbr\u003e12.3.4 Korea\u003cbr\u003e12.3.5 Philippines\u003cbr\u003e12.3.6 China\u003cbr\u003e12.4 Europe\u003cbr\u003e12.4.1 EU\u003cbr\u003e12.4.2 Switzerland\u003cbr\u003e12.5 Overall Comparison of the Nine Polymer Notification Schemes \u003cbr\u003e13 Medical Device Regulation\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 European Economic Area\u003cbr\u003e13.2.1 Background\u003cbr\u003e13.2.2 Before Marketing\u003cbr\u003e13.2.3 After Marketing\u003cbr\u003e13.3 United States of America\u003cbr\u003e13.3.1 Background\u003cbr\u003e13.3.2 Before Marketing\u003cbr\u003e13.3.3 After Marketing\u003cbr\u003e13.4 Japan\u003cbr\u003e13.4.1 Background\u003cbr\u003e13.4.2 Before Marketing\u003cbr\u003e13.4.3 After Marketing\u003cbr\u003e13.5 Conclusion \u003cbr\u003e14 Regulation of Food Packaging in the EU and US\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Control of Food Packaging in the EU\u003cbr\u003e14.2.1 EU Framework Directive\u003cbr\u003e14.2.2 Food Contact Plastics in the EU\u003cbr\u003e14.2.3 Future Developments for Food Plastics in the EU\u003cbr\u003e14.2.4 Other EU Food Packaging Measures\u003cbr\u003e14.2.5 Strategy for Food Contact Plastic Approval in the EU\u003cbr\u003e14.3 National Controls on Food Packaging in EU Countries\u003cbr\u003e14.3.1 Germany\u003cbr\u003e14.3.2 France\u003cbr\u003e14.3.3 The Netherlands\u003cbr\u003e14.3.4 Belgium\u003cbr\u003e14.3.5 Italy\u003cbr\u003e14.4 Council of Europe Work on Food Packaging\u003cbr\u003e14.4.1 Introduction\u003cbr\u003e14.4.2 Completed Council of Europe Resolutions\u003cbr\u003e14.4.3 Council of Europe Ongoing Work\u003cbr\u003e14.5 Food Packaging in the USA\u003cbr\u003e14.5.1 Introduction\u003cbr\u003e14.5.2 History and Development of US Food Packaging Legislation\u003cbr\u003e14.5.3 The FDA Petition\u003cbr\u003e14.5.4 Threshold of Regulation Process\u003cbr\u003e14.5.5 The Pre-Marketing Notification Scheme \u003cbr\u003e15 Regulation of Biocides\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 Control of Biocides in the EU\u003cbr\u003e15.2.1 Introduction\u003cbr\u003e15.2.2 Main Features of the Directive\u003cbr\u003e15.2.3 System of Approval\u003cbr\u003e15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive\u003cbr\u003e15.2.5 Authorisation of Biocidal Products\u003cbr\u003e15.2.6 Hazard Communication\u003cbr\u003e15.2.7 The Review Programme for Existing Active Substances\u003cbr\u003e15.2.8 Technical Guidance\u003cbr\u003e15.3 Control of Biocides in the USA\u003cbr\u003e15.3.1 Introduction\u003cbr\u003e15.3.2 Data Requirements for Registration\u003cbr\u003e15.3.3 Registration Applications\u003cbr\u003e15.3.4 Data Compensation\u003cbr\u003e15.3.5 Re-Registration of Existing Pesticides\u003cbr\u003e15.3.6 Petition for a Pesticide Tolerance\u003cbr\u003e15.3.7 Regulation of Food Contact Biocides\u003cbr\u003e15.4 Regulation of Biocides in Other Countries\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides. \u003cbr\u003e\u003cbr\u003eMike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Hig...
$130.00
{"id":11242251332,"title":"Practical Guide to High Performance Engineering Plastics","handle":"9781843755768","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David J. Kemmish \u003cbr\u003eISBN 9781843755768 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003ePages:134\u003cbr\u003eHard-cover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHigh-performance engineering plastics are used in a vast range of applications and environments. They are becoming increasingly important because of trends towards more reliable and higher performance machines and devices.\u003cbr\u003e\u003cbr\u003eThis book gives readers a working knowledge and understanding of high performance engineering plastics. It starts with a simple, practical overview of key properties and principles. In each of the chapters, there are sections on production chemistry, product forms, properties, processing, and applications. There is a strong bias towards materials and concepts which are used in practice. The materials covered include high performance Polyethersulfones, Polyetherimides, Polyphthalamides, Polyphenylene Sulfide, Polyaryletherketones, Polyamideimides, Polyimides, Polybenzimidazole, Liquid Crystalline Polyesters, and Perfluoropolymers.\u003cbr\u003e\u003cbr\u003eThe reader will develop the ability to understand why materials are chosen for certain applications, why those materials have particular properties and how those properties can be modified. This will facilitate conversations with both materials suppliers and end users. It will help to identify the best and most cost-effective solutions.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:19-04:00","created_at":"2017-06-22T21:15:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","applications","book","High Performance Engineering Plastics","material","processing","properties"],"price":13000,"price_min":13000,"price_max":13000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378477956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to High Performance Engineering Plastics","public_title":null,"options":["Default Title"],"price":13000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781843755768","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781843755768.jpg?v=1504014086"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781843755768.jpg?v=1504014086","options":["Title"],"media":[{"alt":null,"id":412797665373,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781843755768.jpg?v=1504014086"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781843755768.jpg?v=1504014086","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David J. Kemmish \u003cbr\u003eISBN 9781843755768 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003ePages:134\u003cbr\u003eHard-cover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHigh-performance engineering plastics are used in a vast range of applications and environments. They are becoming increasingly important because of trends towards more reliable and higher performance machines and devices.\u003cbr\u003e\u003cbr\u003eThis book gives readers a working knowledge and understanding of high performance engineering plastics. It starts with a simple, practical overview of key properties and principles. In each of the chapters, there are sections on production chemistry, product forms, properties, processing, and applications. There is a strong bias towards materials and concepts which are used in practice. The materials covered include high performance Polyethersulfones, Polyetherimides, Polyphthalamides, Polyphenylene Sulfide, Polyaryletherketones, Polyamideimides, Polyimides, Polybenzimidazole, Liquid Crystalline Polyesters, and Perfluoropolymers.\u003cbr\u003e\u003cbr\u003eThe reader will develop the ability to understand why materials are chosen for certain applications, why those materials have particular properties and how those properties can be modified. This will facilitate conversations with both materials suppliers and end users. It will help to identify the best and most cost-effective solutions.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Pol...
$90.00
{"id":11242212996,"title":"Practical Guide to Polyethylene","handle":"978-1-85957-493-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Cornelia Vasile and Mihaela Pascu \u003cbr\u003eISBN 978-1-85957-493-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyethylene is probably the most commonly used polymer in everyday life. It is the polymer that is used to make grocery bags, shampoo bottles, children's toys, and even bullet-proof vests. This Practical Guide provides information about every aspect of polyethylene production and uses in a reader-friendly form. It discusses the advantages and disadvantages of working with polyethylene, offering practical comment on the available types of polyethylene, properties and in-service performance, and processing. \u003cbr\u003e\u003cbr\u003eThe Practical Guide begins with the general background to the polyethylene family, with price, production and market share information. It describes the basic types of polyethylene including virgin \u0026amp; filled polyethylene, copolymers, block and graft polymers and composites, and reviews the types of additives used in polyethylene.Polyethylenes offer a wide range of properties due to differences in structure and molecular weight, and the Practical Guide gives the low down on the properties, including, amongst others, rheological, mechanical, chemical, thermal, and electrical properties. \u003cbr\u003e\u003cbr\u003eDesign of a polymeric product for a certain application is a complex task, and this is particularly true for polyethylene with its variety of forms and available processing methods. This Practical Guide describes the processing issues and conditions for the wide range of techniques used for polyethylene, and also considers post-processing and assembly issues. It.offers guidance on product design and development issues, including materials selection. \u003cbr\u003e\u003cbr\u003eThe Practical Guide to Polyethylene is an indispensable resource for everyone working with this material.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003eProvides a general introduction to the subject and gives information on price, production and market share. \u003cbr\u003e\u003cbr\u003e2 Basic Types\u003cbr\u003eDescribes the basic types of PE available including filled PE, copolymers, blocka nd graft polymers and composites. \u003cbr\u003e\u003cbr\u003e3 Properties\u003cbr\u003eGives the low down on the properties of PE. This section includes: density, molecular weight and molecular weight distribution, crystallinity, thermal properties, mechanical properties, electrical properties, optical properties, surface properties, hardness and scratch resistance, abrasion resitaence, friction, acoustic properties, degradation, biological behaviour, biocompatibility, wear, molecular properties, performance in service, permeability, and crosslinking. \u003cbr\u003e\u003cbr\u003e4 Additives\u003cbr\u003eLists information about the types of additives used with PE including: antioxidants, inhibitors, stabilisers, masterbatches, antistatic agents, EMI\/radiofrequency shielding, antifogging agents, biocides, blowing agents, biosensitisers, coupling agents, crosslinking agents, flame retardants, fillers\/reinforcements\/slip and antiblocking agents, metals deactivators, nucleating agents, and pigments and colorants. \u003cbr\u003e\u003cbr\u003e5 Rheological Behaviour\u003cbr\u003eCovers rheological behaviour including molar mass effects, steady flow properties, melt flow rates\/index, viscosity\/shear rate, dynamic rheological properties, chain structure effects and multiphase systems\/inhomogenous products. \u003cbr\u003e\u003cbr\u003e6 Processing of Polyethylene \u003cbr\u003eDescribes processing of PE including, injection moulding, extrusion, blow and stretched moulding, compression moulding, sintering and coating, thermoforming\/vacuum forming, rotational moulding, transfer moulding, casting, and recycling and recyclates. \u003cbr\u003e\u003cbr\u003e7 Considerations of Product Design and Development\u003cbr\u003eCovers product design and development, including: materials selection, processing techniques, film blowing thermoforming, blow moulding, rotational moulding compression moulding and injection moulding. \u003cbr\u003e\u003cbr\u003e8 Post-Processing and Assembly\u003cbr\u003eCovers post processing and assembly. This includes: joining, assembly\/fabrication, machining, joints, mechanical fastening, and decorating.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCornelia Vasile is a senior researcher at the Romanian Academy, ‘P. Poni’ Institute of Macromolecular Chemistry, and Head of Department of Physical Chemistry of Polymers. Cornelia is also an Associate Professor at Laval University - Quebec Canada, at the ‘Gh. Asachi’ Technical University of Iasi and ‘Al. I. Cuza’ University of Iasi. She is the author or co-author of eight books, 300 scientific papers, and holder of 38 patents.","published_at":"2017-06-22T21:13:17-04:00","created_at":"2017-06-22T21:13:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","abrasion","additives","antiblocking","antifoggings","antioxidants","antistatic","biocides","biosensitisers","blow","blowing","blowing agents","book","chemical","compression","coupling","crosslinking","crystallinity","electrical","EMI\/radiofrequency shielding","fillers","film","flame retardants","flow","hardness","inhibitors","injection","masterbatches","mechanical","melt","molding","moulding","optical","p-chemistry","poly","polyethylene","properties","reinforcemnets","rheological","rotational","scratch","slip","stabilisers","surface","thermal","thermoforming"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378345284,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Polyethylene","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":-3,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-493-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571","options":["Title"],"media":[{"alt":null,"id":358718275677,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Cornelia Vasile and Mihaela Pascu \u003cbr\u003eISBN 978-1-85957-493-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyethylene is probably the most commonly used polymer in everyday life. It is the polymer that is used to make grocery bags, shampoo bottles, children's toys, and even bullet-proof vests. This Practical Guide provides information about every aspect of polyethylene production and uses in a reader-friendly form. It discusses the advantages and disadvantages of working with polyethylene, offering practical comment on the available types of polyethylene, properties and in-service performance, and processing. \u003cbr\u003e\u003cbr\u003eThe Practical Guide begins with the general background to the polyethylene family, with price, production and market share information. It describes the basic types of polyethylene including virgin \u0026amp; filled polyethylene, copolymers, block and graft polymers and composites, and reviews the types of additives used in polyethylene.Polyethylenes offer a wide range of properties due to differences in structure and molecular weight, and the Practical Guide gives the low down on the properties, including, amongst others, rheological, mechanical, chemical, thermal, and electrical properties. \u003cbr\u003e\u003cbr\u003eDesign of a polymeric product for a certain application is a complex task, and this is particularly true for polyethylene with its variety of forms and available processing methods. This Practical Guide describes the processing issues and conditions for the wide range of techniques used for polyethylene, and also considers post-processing and assembly issues. It.offers guidance on product design and development issues, including materials selection. \u003cbr\u003e\u003cbr\u003eThe Practical Guide to Polyethylene is an indispensable resource for everyone working with this material.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003eProvides a general introduction to the subject and gives information on price, production and market share. \u003cbr\u003e\u003cbr\u003e2 Basic Types\u003cbr\u003eDescribes the basic types of PE available including filled PE, copolymers, blocka nd graft polymers and composites. \u003cbr\u003e\u003cbr\u003e3 Properties\u003cbr\u003eGives the low down on the properties of PE. This section includes: density, molecular weight and molecular weight distribution, crystallinity, thermal properties, mechanical properties, electrical properties, optical properties, surface properties, hardness and scratch resistance, abrasion resitaence, friction, acoustic properties, degradation, biological behaviour, biocompatibility, wear, molecular properties, performance in service, permeability, and crosslinking. \u003cbr\u003e\u003cbr\u003e4 Additives\u003cbr\u003eLists information about the types of additives used with PE including: antioxidants, inhibitors, stabilisers, masterbatches, antistatic agents, EMI\/radiofrequency shielding, antifogging agents, biocides, blowing agents, biosensitisers, coupling agents, crosslinking agents, flame retardants, fillers\/reinforcements\/slip and antiblocking agents, metals deactivators, nucleating agents, and pigments and colorants. \u003cbr\u003e\u003cbr\u003e5 Rheological Behaviour\u003cbr\u003eCovers rheological behaviour including molar mass effects, steady flow properties, melt flow rates\/index, viscosity\/shear rate, dynamic rheological properties, chain structure effects and multiphase systems\/inhomogenous products. \u003cbr\u003e\u003cbr\u003e6 Processing of Polyethylene \u003cbr\u003eDescribes processing of PE including, injection moulding, extrusion, blow and stretched moulding, compression moulding, sintering and coating, thermoforming\/vacuum forming, rotational moulding, transfer moulding, casting, and recycling and recyclates. \u003cbr\u003e\u003cbr\u003e7 Considerations of Product Design and Development\u003cbr\u003eCovers product design and development, including: materials selection, processing techniques, film blowing thermoforming, blow moulding, rotational moulding compression moulding and injection moulding. \u003cbr\u003e\u003cbr\u003e8 Post-Processing and Assembly\u003cbr\u003eCovers post processing and assembly. This includes: joining, assembly\/fabrication, machining, joints, mechanical fastening, and decorating.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCornelia Vasile is a senior researcher at the Romanian Academy, ‘P. Poni’ Institute of Macromolecular Chemistry, and Head of Department of Physical Chemistry of Polymers. Cornelia is also an Associate Professor at Laval University - Quebec Canada, at the ‘Gh. Asachi’ Technical University of Iasi and ‘Al. I. Cuza’ University of Iasi. She is the author or co-author of eight books, 300 scientific papers, and holder of 38 patents."}
Practical Guide to Pol...
$90.00
{"id":11242228932,"title":"Practical Guide to Polyvinyl Chloride","handle":"978-1-85957-511-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S. Patrick \u003cbr\u003eISBN 978-1-85957-511-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 162\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyvinyl chloride (PVC) has been around since the late part of the 19th century, although it was not produced commercially until the 1920s; it is the second largest consumed plastic material after polyethylene. PVC products can be rigid or flexible, opaque or transparent, coloured, and insulating or conducting. There is not just one PVC but a whole family of products tailor-made to suit the needs of each application. \u003cbr\u003e\u003cbr\u003eRapra's Practical Guide to PVC is packed with information for everyone working with PVC. It provides a comprehensive background on the resins and additives, their properties and processing characteristics, as well as discussion of product design and development issues. \u003cbr\u003e\u003cbr\u003ePVC is extremely cost effective in comparison to other plastics with a high degree of versatility in end-use and processing possibilities, as the reader will note from this book. It is durable, easily maintained, and can be produced in a large range of colours. As a result, PVC finds use in an extensive range of applications in virtually all areas of human activity, including medical equipment, construction applications such as flexible roof membranes, pipes and window profiles, toys, automotive parts and electrical cabling. \u003cbr\u003e\u003cbr\u003eThe PVC industry has also started to tackle some of its end-of-life issues. \u003cbr\u003eThere have been, and still are, issues and perceptions over environmental and health acceptance covering vinyl chloride monomer, dioxins, phthalate plasticisers, and lead (and cadmium) based heat stabilisers and these are discussed in depth in this book. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to raw materials suppliers and processors or end-users of PVC, as well as anyone with a general interest in this versatile material: resins and additives properties and testing design issues processing, including post processing and assembly property enhancement sustainable development.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 History\u003cbr\u003e1.3 Major Advantages and Limitations\u003cbr\u003e1.3.1 Major Advantages\u003cbr\u003e1.3.2 Limitations\u003cbr\u003e1.4 Applications\u003cbr\u003e1.5 Competitive Materials\u003cbr\u003e1.6 Market Share and Consumption Trend\u003cbr\u003e1.7 Industry Outline and Major Suppliers\u003cbr\u003e1.8 Material Pricing\u003cbr\u003e1.9 Safety, Health, and Environmental Issues\u003cbr\u003e1.9.1 Phthalate Plasticisers\u003cbr\u003e1.9.2 Heat Stabilisers\u003cbr\u003e1.9.3 Bisphenol A\/Alkylphenols\u003cbr\u003e1.9.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e1.9.5 Green Product Procurement Policies\/Eco-labelling\u003cbr\u003e1.9.6 End-of-life Issues\u003cbr\u003e1.9.7 Fire Performance \u003cbr\u003e2 PVC RESINS\u003cbr\u003e2.1 Raw Starting Materials\u003cbr\u003e2.2 Vinyl Chloride Manufacture\u003cbr\u003e2.3 Polymerisation\u003cbr\u003e2.3.1 Homopolymers\u003cbr\u003e2.3.2 Copolymers and Terpolymers\u003cbr\u003e2.3.3 Chlorinated PVC (C-PVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.4.4 Porosity\u003cbr\u003e2.5 Storage and Transportation\u003cbr\u003e2.6 Role of Additives\u003cbr\u003e2.7 Identification \u003cbr\u003e3 PVC ADDITIVES\u003cbr\u003e3.1 Heat Stabilisers\u003cbr\u003e3.1.1 Solid Form\u003cbr\u003e3.1.2 Liquid Stabilisers\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 PVC\/Plasticiser Compatibility\u003cbr\u003e3.2.2 Plasticisation Process\u003cbr\u003e3.2.3 Plasticiser Influence on Physical Properties\u003cbr\u003e3.2.4 Plasticiser Choice and Selection\u003cbr\u003e3.2.5 Plasticiser Types\u003cbr\u003e3.3 Impact Modifiers\u003cbr\u003e3.4 Process Aids\u003cbr\u003e3.5 Lubricants\u003cbr\u003e3.6 Fillers\u003cbr\u003e3.6.1 Calcium Carbonate\u003cbr\u003e3.6.2 Other Fillers\u003cbr\u003e3.7 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e3.8 Pigments\u003cbr\u003e3.8.1 Titanium Dioxide (TiO2)\u003cbr\u003e3.8.2 Other Inorganic Pigments\u003cbr\u003e3.8.3 Organic Pigments\u003cbr\u003e3.8.4 Pigment Concentrates and Masterbatches\u003cbr\u003e3.9 Microbiocides\u003cbr\u003e3.10 Blowing Agents\u003cbr\u003e3.11 Antioxidants and Light Stabilisers\u003cbr\u003e3.12 Other PVC-P Additives\u003cbr\u003e3.12.1 Antistatic Agents\u003cbr\u003e3.12.2 Viscosity and Rheology Modifiers\u003cbr\u003e3.12.3 Bonding Agents\/Adhesion Promoters \u003cbr\u003e4 TESTING AND PROPERTIES\u003cbr\u003e4.1 Density\u003cbr\u003e4.2 Water Absorption\u003cbr\u003e4.3 Mechanical Properties\u003cbr\u003e4.3.1 Hardness\u003cbr\u003e4.3.2 Tensile Properties\u003cbr\u003e4.3.3 Flexural Properties\u003cbr\u003e4.3.4 Impact Properties\u003cbr\u003e4.3.5 Fatigue\u003cbr\u003e4.4 Thermal Properties\u003cbr\u003e4.4.1 Thermal Conductivity\u003cbr\u003e4.4.2 Heat Deflection Temperature\u003cbr\u003e4.4.3 Vicat Softening Point\u003cbr\u003e4.4.4 Linear Expansion Coefficient\u003cbr\u003e4.4.5 Specific Heat Capacity\u003cbr\u003e4.4.6 Cold Flex Temperature\u003cbr\u003e4.5 Electrical Properties\u003cbr\u003e4.5.1 Volume Resistivity\u003cbr\u003e4.5.2 Dielectric Constant or Relative Permittivity\u003cbr\u003e4.5.3 Loss Modulus or Dissipation Factor\u003cbr\u003e4.5.4 Breakdown Voltage or Dielectric Strength\u003cbr\u003e4.5.5 Arc Resistance\u003cbr\u003e4.6 Fire Properties\u003cbr\u003e4.6.1 Self-ignition Temperature\u003cbr\u003e4.6.2 Flame Ignition Temperature\u003cbr\u003e4.6.3 Limiting Oxygen Index (LOI)\u003cbr\u003e4.6.4 NBS Cone Calorimeter\u003cbr\u003e4.6.5 Smoke Evolution\u003cbr\u003e4.6.6 Fire Performance of PVC\u003cbr\u003e4.6.7 Fire Testing in the EU\u003cbr\u003e4.7 Optical Properties\u003cbr\u003e4.7.1 Transparency\u003cbr\u003e4.7.2 Gloss Level\u003cbr\u003e4.7.3 Colour\u003cbr\u003e4.8 Surface Properties\u003cbr\u003e4.8.1 Abrasion Resistance\u003cbr\u003e4.8.2 Surface Resistivity\u003cbr\u003e4.9 Biological Behaviour\u003cbr\u003e4.9.1 Assessment under Food and Water Legislation\u003cbr\u003e4.9.2 Assessment under Medical Legislation\u003cbr\u003e4.9.3 Sterilisation\u003cbr\u003e4.10 Resistance to Micro-organisms\u003cbr\u003e4.11 Performance in Service\u003cbr\u003e4.11.1 Maximum Continuous Use Temperature\u003cbr\u003e4.11.2 Stability to Light, UV Radiation, and Weathering\u003cbr\u003e4.11.4 Permeability \u003cbr\u003e5 DESIGN\u003cbr\u003e5.1 Design Considerations for PVC-U Materials\u003cbr\u003e5.1.1 Pipe\u003cbr\u003e5.1.2 Exterior Construction Applications\u003cbr\u003e5.1.3 Interior Construction Applications\u003cbr\u003e5.2 Design Considerations for PVC-P Materials\u003cbr\u003e5.2.1 Electrical Cable\u003cbr\u003e5.2.2 Resilient Flooring\u003cbr\u003e5.2.3 Wall Covering\u003cbr\u003e5.2.4 Roofing Membranes\u003cbr\u003e5.2.5 Coated Metal\u003cbr\u003e5.2.6 Toys and Baby Care Items\u003cbr\u003e5.2.7 Safety and Personal Protection\u003cbr\u003e5.2.8 Automotive and Transport\u003cbr\u003e5.2.9 Advertising Banners \u003cbr\u003e6 PROCESSING OF PVC\u003cbr\u003e6.1 Dry Blend Mixing\u003cbr\u003e6.1.1 High Intensity\u003cbr\u003e6.1.2 Low Intensity\u003cbr\u003e6.2 Liquid PVC Blending\u003cbr\u003e6.3 Gelation\u003cbr\u003e6.4 Melt Processing\u003cbr\u003e6.4.1 Melt Compounding\u003cbr\u003e6.4.2 Extrusion\u003cbr\u003e6.5 Injection Moulding\u003cbr\u003e6.6 Extrusion Blow Moulding\u003cbr\u003e6.7 Calendering\u003cbr\u003e6.8 Plastisol Moulding Processes\u003cbr\u003e6.8.1 Rheology\u003cbr\u003e6.8.2 Spreading or Coating\u003cbr\u003e6.8.3 Rotational, Slush, and Dip Moulding\u003cbr\u003e6.9 Powder Moulding Processes\u003cbr\u003e6.9.1 Fluidised Bed \u003cbr\u003e7 PROPERTY ENHANCEMENT OF PVC\u003cbr\u003e7.1 Crosslinked PVC\u003cbr\u003e7.1.1 Chemical Crosslinking\u003cbr\u003e7.1.2 Irradiation Crosslinking\u003cbr\u003e7.2 Orientation\u003cbr\u003e7.2.1 Pipe\u003cbr\u003e7.2.2 Sheet\u003cbr\u003e7.3 Blends and Alloys\u003cbr\u003e7.3.1 Flexibilisers\/Internal Plasticisers\u003cbr\u003e7.3.2 Ultrahigh Molecular Weight (UHMW) PVC\u003cbr\u003e7.4 Nanocomposites\u003cbr\u003e7.4.1 Melt Intercalation\u003cbr\u003e7.4.2 Solvent Method\u003cbr\u003e7.4.3 In Situ Polymerisation\u003cbr\u003e7.5 Wood Composites \u003cbr\u003e8 POST-PROCESSING AND ASSEMBLY\u003cbr\u003e8.1 Post-processing\u003cbr\u003e8.1.1 Thermoforming\u003cbr\u003e8.1.2 Printing and Coating\u003cbr\u003e8.2 Assembly Techniques\u003cbr\u003e8.2.1 Welding\u003cbr\u003e8.2.2 Adhesion\u003cbr\u003e8.3 Mechanical Assembly\u003cbr\u003e8.3.1 Machining, Cutting, and Fastening \u003cbr\u003e9 SUSTAINABLE DEVELOPMENT\u003cbr\u003e9.1 Environmental Attack and Response\u003cbr\u003e9.2 Vinyl 2010\/Chlorine Industry Sustainability Commitments\u003cbr\u003e9.2.1 Chlorine Generation\u003cbr\u003e9.2.2 PVC Production Industry Charters\u003cbr\u003e9.2.3 Conversion with Additives\u003cbr\u003e9.3 End of Life and Waste Management\u003cbr\u003e9.3.1 PVC-rich Waste: Mechanical Recycling\u003cbr\u003e9.3.2 PVC Feedstock Recycling\u003cbr\u003e9.3.3 Incineration\/Energy Recovery\u003cbr\u003e9.3.4 Controlled Landfill\u003cbr\u003e9.4 Life Cycle Assessments\u003cbr\u003e9.4.1 Eco-profiles\u003cbr\u003e9.5 Social Factors \u003cbr\u003e10 CAUSES OF FAILURE\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick has worked extensively in the PVC and additives business and been involved in both market and technical developments in this competitive field. Before retirement, he was Global R\u0026amp;D Manager with Akzo Nobel \/ Akcros Chemicals. He is now utilising his experience as a part-time lecturer at IPTME, Loughborough University and as a coordinator for a Research Network established to improve the sustainable use of PVC. Stuart is a Fellow Institute of Materials, Minerals, and Mining, Chartered Scientist, Chartered Chemist, Member of the Royal Society of Chemistry.","published_at":"2017-06-22T21:14:09-04:00","created_at":"2017-06-22T21:14:09-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","A\/Alkylphenols","additives","afety","bisphenol","blow molding","blow moulding","book","calendering","environmental","epoxidised","ESBO","extrusion","fillers","health","injection molding","injection moulding","molecular weight","p-chemistry","particle","phthalate","pipe","plasticisers","plasticizers","plastics","polymer","polyvinyl chloride","porosity","powder","pvc","resines","rheology","sheet","soya bean oil","storage","transportation"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378397700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Polyvinyl Chloride","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-511-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592","options":["Title"],"media":[{"alt":null,"id":358719488093,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S. Patrick \u003cbr\u003eISBN 978-1-85957-511-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 162\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyvinyl chloride (PVC) has been around since the late part of the 19th century, although it was not produced commercially until the 1920s; it is the second largest consumed plastic material after polyethylene. PVC products can be rigid or flexible, opaque or transparent, coloured, and insulating or conducting. There is not just one PVC but a whole family of products tailor-made to suit the needs of each application. \u003cbr\u003e\u003cbr\u003eRapra's Practical Guide to PVC is packed with information for everyone working with PVC. It provides a comprehensive background on the resins and additives, their properties and processing characteristics, as well as discussion of product design and development issues. \u003cbr\u003e\u003cbr\u003ePVC is extremely cost effective in comparison to other plastics with a high degree of versatility in end-use and processing possibilities, as the reader will note from this book. It is durable, easily maintained, and can be produced in a large range of colours. As a result, PVC finds use in an extensive range of applications in virtually all areas of human activity, including medical equipment, construction applications such as flexible roof membranes, pipes and window profiles, toys, automotive parts and electrical cabling. \u003cbr\u003e\u003cbr\u003eThe PVC industry has also started to tackle some of its end-of-life issues. \u003cbr\u003eThere have been, and still are, issues and perceptions over environmental and health acceptance covering vinyl chloride monomer, dioxins, phthalate plasticisers, and lead (and cadmium) based heat stabilisers and these are discussed in depth in this book. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to raw materials suppliers and processors or end-users of PVC, as well as anyone with a general interest in this versatile material: resins and additives properties and testing design issues processing, including post processing and assembly property enhancement sustainable development.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 History\u003cbr\u003e1.3 Major Advantages and Limitations\u003cbr\u003e1.3.1 Major Advantages\u003cbr\u003e1.3.2 Limitations\u003cbr\u003e1.4 Applications\u003cbr\u003e1.5 Competitive Materials\u003cbr\u003e1.6 Market Share and Consumption Trend\u003cbr\u003e1.7 Industry Outline and Major Suppliers\u003cbr\u003e1.8 Material Pricing\u003cbr\u003e1.9 Safety, Health, and Environmental Issues\u003cbr\u003e1.9.1 Phthalate Plasticisers\u003cbr\u003e1.9.2 Heat Stabilisers\u003cbr\u003e1.9.3 Bisphenol A\/Alkylphenols\u003cbr\u003e1.9.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e1.9.5 Green Product Procurement Policies\/Eco-labelling\u003cbr\u003e1.9.6 End-of-life Issues\u003cbr\u003e1.9.7 Fire Performance \u003cbr\u003e2 PVC RESINS\u003cbr\u003e2.1 Raw Starting Materials\u003cbr\u003e2.2 Vinyl Chloride Manufacture\u003cbr\u003e2.3 Polymerisation\u003cbr\u003e2.3.1 Homopolymers\u003cbr\u003e2.3.2 Copolymers and Terpolymers\u003cbr\u003e2.3.3 Chlorinated PVC (C-PVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.4.4 Porosity\u003cbr\u003e2.5 Storage and Transportation\u003cbr\u003e2.6 Role of Additives\u003cbr\u003e2.7 Identification \u003cbr\u003e3 PVC ADDITIVES\u003cbr\u003e3.1 Heat Stabilisers\u003cbr\u003e3.1.1 Solid Form\u003cbr\u003e3.1.2 Liquid Stabilisers\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 PVC\/Plasticiser Compatibility\u003cbr\u003e3.2.2 Plasticisation Process\u003cbr\u003e3.2.3 Plasticiser Influence on Physical Properties\u003cbr\u003e3.2.4 Plasticiser Choice and Selection\u003cbr\u003e3.2.5 Plasticiser Types\u003cbr\u003e3.3 Impact Modifiers\u003cbr\u003e3.4 Process Aids\u003cbr\u003e3.5 Lubricants\u003cbr\u003e3.6 Fillers\u003cbr\u003e3.6.1 Calcium Carbonate\u003cbr\u003e3.6.2 Other Fillers\u003cbr\u003e3.7 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e3.8 Pigments\u003cbr\u003e3.8.1 Titanium Dioxide (TiO2)\u003cbr\u003e3.8.2 Other Inorganic Pigments\u003cbr\u003e3.8.3 Organic Pigments\u003cbr\u003e3.8.4 Pigment Concentrates and Masterbatches\u003cbr\u003e3.9 Microbiocides\u003cbr\u003e3.10 Blowing Agents\u003cbr\u003e3.11 Antioxidants and Light Stabilisers\u003cbr\u003e3.12 Other PVC-P Additives\u003cbr\u003e3.12.1 Antistatic Agents\u003cbr\u003e3.12.2 Viscosity and Rheology Modifiers\u003cbr\u003e3.12.3 Bonding Agents\/Adhesion Promoters \u003cbr\u003e4 TESTING AND PROPERTIES\u003cbr\u003e4.1 Density\u003cbr\u003e4.2 Water Absorption\u003cbr\u003e4.3 Mechanical Properties\u003cbr\u003e4.3.1 Hardness\u003cbr\u003e4.3.2 Tensile Properties\u003cbr\u003e4.3.3 Flexural Properties\u003cbr\u003e4.3.4 Impact Properties\u003cbr\u003e4.3.5 Fatigue\u003cbr\u003e4.4 Thermal Properties\u003cbr\u003e4.4.1 Thermal Conductivity\u003cbr\u003e4.4.2 Heat Deflection Temperature\u003cbr\u003e4.4.3 Vicat Softening Point\u003cbr\u003e4.4.4 Linear Expansion Coefficient\u003cbr\u003e4.4.5 Specific Heat Capacity\u003cbr\u003e4.4.6 Cold Flex Temperature\u003cbr\u003e4.5 Electrical Properties\u003cbr\u003e4.5.1 Volume Resistivity\u003cbr\u003e4.5.2 Dielectric Constant or Relative Permittivity\u003cbr\u003e4.5.3 Loss Modulus or Dissipation Factor\u003cbr\u003e4.5.4 Breakdown Voltage or Dielectric Strength\u003cbr\u003e4.5.5 Arc Resistance\u003cbr\u003e4.6 Fire Properties\u003cbr\u003e4.6.1 Self-ignition Temperature\u003cbr\u003e4.6.2 Flame Ignition Temperature\u003cbr\u003e4.6.3 Limiting Oxygen Index (LOI)\u003cbr\u003e4.6.4 NBS Cone Calorimeter\u003cbr\u003e4.6.5 Smoke Evolution\u003cbr\u003e4.6.6 Fire Performance of PVC\u003cbr\u003e4.6.7 Fire Testing in the EU\u003cbr\u003e4.7 Optical Properties\u003cbr\u003e4.7.1 Transparency\u003cbr\u003e4.7.2 Gloss Level\u003cbr\u003e4.7.3 Colour\u003cbr\u003e4.8 Surface Properties\u003cbr\u003e4.8.1 Abrasion Resistance\u003cbr\u003e4.8.2 Surface Resistivity\u003cbr\u003e4.9 Biological Behaviour\u003cbr\u003e4.9.1 Assessment under Food and Water Legislation\u003cbr\u003e4.9.2 Assessment under Medical Legislation\u003cbr\u003e4.9.3 Sterilisation\u003cbr\u003e4.10 Resistance to Micro-organisms\u003cbr\u003e4.11 Performance in Service\u003cbr\u003e4.11.1 Maximum Continuous Use Temperature\u003cbr\u003e4.11.2 Stability to Light, UV Radiation, and Weathering\u003cbr\u003e4.11.4 Permeability \u003cbr\u003e5 DESIGN\u003cbr\u003e5.1 Design Considerations for PVC-U Materials\u003cbr\u003e5.1.1 Pipe\u003cbr\u003e5.1.2 Exterior Construction Applications\u003cbr\u003e5.1.3 Interior Construction Applications\u003cbr\u003e5.2 Design Considerations for PVC-P Materials\u003cbr\u003e5.2.1 Electrical Cable\u003cbr\u003e5.2.2 Resilient Flooring\u003cbr\u003e5.2.3 Wall Covering\u003cbr\u003e5.2.4 Roofing Membranes\u003cbr\u003e5.2.5 Coated Metal\u003cbr\u003e5.2.6 Toys and Baby Care Items\u003cbr\u003e5.2.7 Safety and Personal Protection\u003cbr\u003e5.2.8 Automotive and Transport\u003cbr\u003e5.2.9 Advertising Banners \u003cbr\u003e6 PROCESSING OF PVC\u003cbr\u003e6.1 Dry Blend Mixing\u003cbr\u003e6.1.1 High Intensity\u003cbr\u003e6.1.2 Low Intensity\u003cbr\u003e6.2 Liquid PVC Blending\u003cbr\u003e6.3 Gelation\u003cbr\u003e6.4 Melt Processing\u003cbr\u003e6.4.1 Melt Compounding\u003cbr\u003e6.4.2 Extrusion\u003cbr\u003e6.5 Injection Moulding\u003cbr\u003e6.6 Extrusion Blow Moulding\u003cbr\u003e6.7 Calendering\u003cbr\u003e6.8 Plastisol Moulding Processes\u003cbr\u003e6.8.1 Rheology\u003cbr\u003e6.8.2 Spreading or Coating\u003cbr\u003e6.8.3 Rotational, Slush, and Dip Moulding\u003cbr\u003e6.9 Powder Moulding Processes\u003cbr\u003e6.9.1 Fluidised Bed \u003cbr\u003e7 PROPERTY ENHANCEMENT OF PVC\u003cbr\u003e7.1 Crosslinked PVC\u003cbr\u003e7.1.1 Chemical Crosslinking\u003cbr\u003e7.1.2 Irradiation Crosslinking\u003cbr\u003e7.2 Orientation\u003cbr\u003e7.2.1 Pipe\u003cbr\u003e7.2.2 Sheet\u003cbr\u003e7.3 Blends and Alloys\u003cbr\u003e7.3.1 Flexibilisers\/Internal Plasticisers\u003cbr\u003e7.3.2 Ultrahigh Molecular Weight (UHMW) PVC\u003cbr\u003e7.4 Nanocomposites\u003cbr\u003e7.4.1 Melt Intercalation\u003cbr\u003e7.4.2 Solvent Method\u003cbr\u003e7.4.3 In Situ Polymerisation\u003cbr\u003e7.5 Wood Composites \u003cbr\u003e8 POST-PROCESSING AND ASSEMBLY\u003cbr\u003e8.1 Post-processing\u003cbr\u003e8.1.1 Thermoforming\u003cbr\u003e8.1.2 Printing and Coating\u003cbr\u003e8.2 Assembly Techniques\u003cbr\u003e8.2.1 Welding\u003cbr\u003e8.2.2 Adhesion\u003cbr\u003e8.3 Mechanical Assembly\u003cbr\u003e8.3.1 Machining, Cutting, and Fastening \u003cbr\u003e9 SUSTAINABLE DEVELOPMENT\u003cbr\u003e9.1 Environmental Attack and Response\u003cbr\u003e9.2 Vinyl 2010\/Chlorine Industry Sustainability Commitments\u003cbr\u003e9.2.1 Chlorine Generation\u003cbr\u003e9.2.2 PVC Production Industry Charters\u003cbr\u003e9.2.3 Conversion with Additives\u003cbr\u003e9.3 End of Life and Waste Management\u003cbr\u003e9.3.1 PVC-rich Waste: Mechanical Recycling\u003cbr\u003e9.3.2 PVC Feedstock Recycling\u003cbr\u003e9.3.3 Incineration\/Energy Recovery\u003cbr\u003e9.3.4 Controlled Landfill\u003cbr\u003e9.4 Life Cycle Assessments\u003cbr\u003e9.4.1 Eco-profiles\u003cbr\u003e9.5 Social Factors \u003cbr\u003e10 CAUSES OF FAILURE\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick has worked extensively in the PVC and additives business and been involved in both market and technical developments in this competitive field. Before retirement, he was Global R\u0026amp;D Manager with Akzo Nobel \/ Akcros Chemicals. He is now utilising his experience as a part-time lecturer at IPTME, Loughborough University and as a coordinator for a Research Network established to improve the sustainable use of PVC. Stuart is a Fellow Institute of Materials, Minerals, and Mining, Chartered Scientist, Chartered Chemist, Member of the Royal Society of Chemistry."}
Practical Guide to Rot...
$90.00
{"id":11242209156,"title":"Practical Guide to Rotational Molding","handle":"978-1-85957-387-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford and M.P. Kearns \u003cbr\u003eISBN 978-1-85957-387-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRotational molding is a low pressure, a high temperature manufacturing method for producing hollow one-piece plastic parts. The molding process dates back hundreds of years to the Swiss use of the method to make hollow chocolate eggs. The technology involves aspects ranging from mould design to mould heating and cooling, and remolding methods. Not all materials are suitable for the process - resin and additive selection are critical. \u003cbr\u003e\u003cbr\u003eRotational moulding is a very competitive alternative to blow molding, thermoforming and injection molding for the manufacture of hollow plastic parts. It offers designers the chance to produce stress-free articles, with uniform wall thickness and complex shapes. Typical molded parts include bulk containers, tanks, canoes, toys, medical equipment, automotive parts, and ducts. \u003cbr\u003e\u003cbr\u003eThere are many advantages associated with rotational molding. Firstly, the moulds are relatively simple and cheap, because the process is low pressure, unlike injection molding. The wall thickness of parts is more uniform and it is possible to alter the wall thickness without changing the mould. Complex parts with undercuts ad intricate contours can be manufactured relatively easily. There is also very little waste as the required weight of plastic to produce the part is placed inside the mould. \u003cbr\u003e\u003cbr\u003eThis book – A Practical Guide to Rotational Molding – describes the basic aspects of rotational molding and includes information on the latest state of the art developments in the industry. A key feature of the approach is to use photographs wherever possible to illustrate the points that are being made. This book will be useful to those new to the industry, as well as those who are experienced in some aspects of the process. \u003cbr\u003e\u003cbr\u003eThe ever-changing nature of this industry means that it is very important for those involved in the manufacturing operation to keep abreast of the advances that are being made. The industry is becoming more competitive and customers are making increasing demands in terms of part quality and performance. \u003cbr\u003e\u003cbr\u003eRotational molding is becoming a highly sophisticated manufacturing method for plastic parts. New mould and machine features, and advanced process control technologies, are being developed. This gives designers, and end users, access to new opportunities to create novel and innovative plastic moldings. New technologies such as mould internal air temperature measurement, mould pressurization, and one shot foaming are now available.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003eChapter 1 – Introduction to the Rotational Molding Process\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 The Rotational Molding Process\u003cbr\u003e1.3 Overview of Rotational Molding\u003cbr\u003e1.4 Special Nature of Rotational Molding\u003cbr\u003e1.5 Advantages of Rotational Molding\u003cbr\u003e1.6 Disadvantages of Rotational Molding\u003cbr\u003e1.7 Common Applications for Rotomoulded Products\u003cbr\u003e1.7.1 Material Handling Products\u003cbr\u003e1.7.2 Industrial Products\u003cbr\u003e1.7.3 Environmental Products\u003cbr\u003e1.7.4 Leisure Products\u003cbr\u003e1.7.5 Marine Products\u003cbr\u003e1.7.6 Road Signage\u003cbr\u003eBibliography \u003cbr\u003eChapter 2 – Moulds\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Mould Materials\u003cbr\u003e2.3 Sheet Steel\u003cbr\u003e2.4 Aluminium\u003cbr\u003e2.5 Electroformed Nickel\u003cbr\u003e2.6 Comparison Between Mould Materials\u003cbr\u003e2.7 Mould Design\u003cbr\u003e2.7.1 Mould Frame\u003cbr\u003e2.7.2 Molded-in Inserts\u003cbr\u003e2.7.3 Molded-in Handles\u003cbr\u003e2.7.4 Temporary Inserts\u003cbr\u003e2.7.5 Movable Cores\u003cbr\u003e2.7.6 Threads\u003cbr\u003e2.7.7 Mould Venting\u003cbr\u003e2.7.8 Mould Surface Finish\u003cbr\u003e2.8 Mould Release\u003cbr\u003e2.8.1 Mould Preparation for Release Agent\u003cbr\u003e2.8.2 Reactive Systems\u003cbr\u003e2.8.2.1 Spray-on Zinc Stearates\u003cbr\u003e2.8.2.2 Silicones\u003cbr\u003e2.8.2.3 Disiloxanes\u003cbr\u003e2.8.3 Conventional Systems\u003cbr\u003e2.8.4 Permanent Systems\u003cbr\u003e2.8.5 Hybrid Systems\u003cbr\u003e2.9 Mould Cooling\u003cbr\u003e2.10 Mould Ancillaries\u003cbr\u003e2.11 Molding Aids\u003cbr\u003e2.12 Kiss-Offs\u003cbr\u003e2.13 Calculation of Charge Weight \u003cbr\u003eChapter 3 - Rotational Molding Machinery\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Types of Rotational Molding Machines\u003cbr\u003e3.2.1 Carousel Machines\u003cbr\u003e3.2.2 Shuttle Machines\u003cbr\u003e3.2.3 Clamshell Machines\u003cbr\u003e3.2.4 Rock and Roll Machines\u003cbr\u003e3.2.5 Other Types of Machines\u003cbr\u003e3.3 Mould Swing\u003cbr\u003e3.4 Mould Speed\u003cbr\u003e3.5 Speed Ratio\u003cbr\u003e3.6 Oven Air Flow Amplification\u003cbr\u003e3.7 Cooling\u003cbr\u003e3.8 Developments in Machine Control\u003cbr\u003e3.9 Internal Air Temperature Measurement in Rotational Molding\u003cbr\u003e3.10 Preparation of Rotolog for Molding Trials\u003cbr\u003e3.11 Monitoring Pressure Inside a Mould\u003cbr\u003eBibliography \u003cbr\u003eChapter 4 – Materials for Rotational Molding\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Typical Characteristics of Rotationally Molded Plastics\u003cbr\u003e4.3 Materials Used in Rotational Molding\u003cbr\u003e4.4 Polyethylene\u003cbr\u003e4.4.1 Low Density Polyethylene (LDPE)\u003cbr\u003e4.4.2 High Density Polyethylene (HDPE)\u003cbr\u003e4.4.3 Medium Density Polyethylene (MDPE)\u003cbr\u003e4.4.4 Linear Low Density Polyethylene (LLDPE)\u003cbr\u003e4.4.5 Metallocene Polyethylene\u003cbr\u003e4.4.6 Ethylene-Vinyl Acetate (EVA)\u003cbr\u003e4.4.7 Ethylene-Butyl Acrylate (EBA)\u003cbr\u003e4.5 Polypropylene (PP)\u003cbr\u003e4.6 Polyamides (Nylons)\u003cbr\u003e4.6.1 Nylon 6\u003cbr\u003e4.6.2 Nylon 11 and Nylon 12\u003cbr\u003e4.6.3 Reaction Injection Molding (RIM) Nylon\u003cbr\u003e4.7 Amorphous Materials\u003cbr\u003e4.7.1 Polyvinyl Chloride (PVC)\u003cbr\u003e4.7.2 Fluoropolymers\u003cbr\u003e4.8 Other Plastics\u003cbr\u003e4.9 Additives Used in Rotational Molding Materials\u003cbr\u003e4.9.1 Fillers\u003cbr\u003e4.9.2 Plasticizers\u003cbr\u003e4.9.3 Lubricants\u003cbr\u003e4.9.4 Stabilizers\u003cbr\u003e4.9.5 Anti-Oxidants\u003cbr\u003e4.9.6 Ultraviolet Stabilizers\u003cbr\u003e4.9.7 Flame Retardants\u003cbr\u003e4.9.8 Crosslinking Agents\u003cbr\u003e4.9.9 Foaming Agents\u003cbr\u003e4.9.10 Pigments\u003cbr\u003e4.10 Powders for Rotational Molding - Grinding or Pulverizing\u003cbr\u003e4.10.1 Introduction\u003cbr\u003e4.11 Particle Size Distribution\u003cbr\u003e4.12 Dry Flow\u003cbr\u003e4.13 Bulk Density\u003cbr\u003e4.14 Factors Affecting Powder Quality\u003cbr\u003e4.14.1 Gap Size\u003cbr\u003e4.14.2 Number of Mill Teeth\u003cbr\u003e4.14.3 Grinding Temperature\u003cbr\u003e4.15 Micropelletising\u003cbr\u003e4.16 Coloring of Plastics for Rotational Molding\u003cbr\u003e4.17 Types of Pigments\u003cbr\u003eBibliography \u003cbr\u003eChapter 5 – Quality Control in Rotational Molding\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Wall Thickness Distribution\u003cbr\u003e5.3 Shrinkage\u003cbr\u003e5.3.1 Shrinkage Guidelines\u003cbr\u003e5.3.2 Control of Shrinkage\u003cbr\u003e5.3.2.1 Effect of Release Point on Shrinkage\u003cbr\u003e5.3.2.2 Other Factors Affecting Shrinkage\u003cbr\u003e5.4 Warpage\u003cbr\u003e5.4.1 Control of Warpage\u003cbr\u003e5.5 Residual Stress\u003cbr\u003e5.5.1 Short-Term Effects of Residual Stresses\u003cbr\u003e5.5.2 Long-Term Effects of Residual Stresses\u003cbr\u003e5.5.3 Cures for Residual Stress Problems\u003cbr\u003e5.6 Surface Decoration\u003cbr\u003e5.6.1 Painting\u003cbr\u003e5.6.2 Hot Stamping\u003cbr\u003e5.6.3 Adhesives\u003cbr\u003e5.6.4 In-Mould Decoration\u003cbr\u003e5.6.5 Post Molding Decoration\u003cbr\u003e5.7 Foaming in Rotational Molding\u003cbr\u003e5.7.1 Chemical Blowing Agent Technology\u003cbr\u003e5.7.2 Design of Foamed Sections\u003cbr\u003e5.7.3 Solid\/Foam Cross-Sections\u003cbr\u003e5.7.4 Solid\/Foam\/Solid Cross-Sections\u003cbr\u003eBibliography \u003cbr\u003eChapter 6 – The Future for Rotational Molding\u003cbr\u003e6.1 Materials\u003cbr\u003e6.2 Moulds\u003cbr\u003e6.3 Molding Equipment\u003cbr\u003e6.4 The Challenges\u003cbr\u003e6.5 The Role that the Molder Must Play\u003cbr\u003e6.6 The Role that the Suppliers Must Play\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eProfessor Roy J.CRAWFORD\u003c\/strong\u003e FREng B.Sc., Ph.D., D.Sc., FIMechE., FIM\u003cbr\u003eQueen's University, Belfast \u003cbr\u003eProfessor Roy Crawford obtained a first-class honors degree in Mechanical Engineering from the Queen's University of Belfast in 1970. He went on to obtain a Ph.D. degree relating to the processing and properties of plastics in 1973. He obtained a DSc degree for research work on plastics in 1987. Over the past 30 years, he has concentrated on studying the processing behavior of plastics. He has published over 250 papers in learned journals and conferences during this time. He is the author of 7 textbooks on plastics and engineering materials. \u003cbr\u003e\u003cbr\u003eRoy Crawford is currently Pro Vice-Chancellor for Research and Development and Professor of Engineering Materials at Queen's University Belfast. From 1997 to 1999 he was Director of the Polymer Processing Research Centre at Queen's University. This Centre was established on the basis of the international reputation of the Rotational Molding Research Centre that he initiated at the University. \u003cbr\u003e\u003cbr\u003eHe has been awarded a number of prizes for the high quality of his research work. In 1996 he received the prestigious Netlon Medal from the Institute of Materials for innovative contributions to the molding of plastics. He is Technical Director for the Association of Rotational Molders in Chicago, USA and Technical Editor for the Rotation Magazine, published in the USA. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eM. P. KEARNS\u003c\/strong\u003e B.Eng., M.Phil., C.Eng., MIChemE\u003cbr\u003eQueen's University, Belfast \u003cbr\u003eMark Kearns is the Rotational Molding Research Manager of the Polymer Processing Research Centre at Queen’s University, Belfast. He is a Chartered Chemical Engineer with an M.Phil Degree in Rotational Molding. He manages rotational molding research and development projects for companies and institutions across Europe, Australasia, and North America, and organizes the Association of Rotational Molders - sponsored, ‘Advanced Rotational Molding Training Seminars’ both in Belfast and North America. Mark has spent over ten years in rotational molding research, initially in Industry as a Development Engineer and Deputy Production Manager. He has published over 50 papers and conference proceedings on rotational molding and has delivered lectures on rotational molding in North America, Asia, Africa and Europe.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:05-04:00","created_at":"2017-06-22T21:13:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","additives","agent","ancillaries","automotive","book","canoes","containers","cooling","cores","disiloxanes","ducts","frame","heating","inserts","low pressure molding","machinery","manufacturing","medical equipment","moulding","p-processing","parts","polyethylene","polymer","release","rotational","rotational molding","silicones","speed","tanks","technology","toys","venting","Zinc Stearates"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378329732,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Rotational Molding","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-387-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/51jQip1cC5L._SX400_BO1_204_203_200.jpg?v=1499953613"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/51jQip1cC5L._SX400_BO1_204_203_200.jpg?v=1499953613","options":["Title"],"media":[{"alt":null,"id":358721978461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/51jQip1cC5L._SX400_BO1_204_203_200.jpg?v=1499953613"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/51jQip1cC5L._SX400_BO1_204_203_200.jpg?v=1499953613","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford and M.P. Kearns \u003cbr\u003eISBN 978-1-85957-387-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRotational molding is a low pressure, a high temperature manufacturing method for producing hollow one-piece plastic parts. The molding process dates back hundreds of years to the Swiss use of the method to make hollow chocolate eggs. The technology involves aspects ranging from mould design to mould heating and cooling, and remolding methods. Not all materials are suitable for the process - resin and additive selection are critical. \u003cbr\u003e\u003cbr\u003eRotational moulding is a very competitive alternative to blow molding, thermoforming and injection molding for the manufacture of hollow plastic parts. It offers designers the chance to produce stress-free articles, with uniform wall thickness and complex shapes. Typical molded parts include bulk containers, tanks, canoes, toys, medical equipment, automotive parts, and ducts. \u003cbr\u003e\u003cbr\u003eThere are many advantages associated with rotational molding. Firstly, the moulds are relatively simple and cheap, because the process is low pressure, unlike injection molding. The wall thickness of parts is more uniform and it is possible to alter the wall thickness without changing the mould. Complex parts with undercuts ad intricate contours can be manufactured relatively easily. There is also very little waste as the required weight of plastic to produce the part is placed inside the mould. \u003cbr\u003e\u003cbr\u003eThis book – A Practical Guide to Rotational Molding – describes the basic aspects of rotational molding and includes information on the latest state of the art developments in the industry. A key feature of the approach is to use photographs wherever possible to illustrate the points that are being made. This book will be useful to those new to the industry, as well as those who are experienced in some aspects of the process. \u003cbr\u003e\u003cbr\u003eThe ever-changing nature of this industry means that it is very important for those involved in the manufacturing operation to keep abreast of the advances that are being made. The industry is becoming more competitive and customers are making increasing demands in terms of part quality and performance. \u003cbr\u003e\u003cbr\u003eRotational molding is becoming a highly sophisticated manufacturing method for plastic parts. New mould and machine features, and advanced process control technologies, are being developed. This gives designers, and end users, access to new opportunities to create novel and innovative plastic moldings. New technologies such as mould internal air temperature measurement, mould pressurization, and one shot foaming are now available.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003eChapter 1 – Introduction to the Rotational Molding Process\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 The Rotational Molding Process\u003cbr\u003e1.3 Overview of Rotational Molding\u003cbr\u003e1.4 Special Nature of Rotational Molding\u003cbr\u003e1.5 Advantages of Rotational Molding\u003cbr\u003e1.6 Disadvantages of Rotational Molding\u003cbr\u003e1.7 Common Applications for Rotomoulded Products\u003cbr\u003e1.7.1 Material Handling Products\u003cbr\u003e1.7.2 Industrial Products\u003cbr\u003e1.7.3 Environmental Products\u003cbr\u003e1.7.4 Leisure Products\u003cbr\u003e1.7.5 Marine Products\u003cbr\u003e1.7.6 Road Signage\u003cbr\u003eBibliography \u003cbr\u003eChapter 2 – Moulds\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Mould Materials\u003cbr\u003e2.3 Sheet Steel\u003cbr\u003e2.4 Aluminium\u003cbr\u003e2.5 Electroformed Nickel\u003cbr\u003e2.6 Comparison Between Mould Materials\u003cbr\u003e2.7 Mould Design\u003cbr\u003e2.7.1 Mould Frame\u003cbr\u003e2.7.2 Molded-in Inserts\u003cbr\u003e2.7.3 Molded-in Handles\u003cbr\u003e2.7.4 Temporary Inserts\u003cbr\u003e2.7.5 Movable Cores\u003cbr\u003e2.7.6 Threads\u003cbr\u003e2.7.7 Mould Venting\u003cbr\u003e2.7.8 Mould Surface Finish\u003cbr\u003e2.8 Mould Release\u003cbr\u003e2.8.1 Mould Preparation for Release Agent\u003cbr\u003e2.8.2 Reactive Systems\u003cbr\u003e2.8.2.1 Spray-on Zinc Stearates\u003cbr\u003e2.8.2.2 Silicones\u003cbr\u003e2.8.2.3 Disiloxanes\u003cbr\u003e2.8.3 Conventional Systems\u003cbr\u003e2.8.4 Permanent Systems\u003cbr\u003e2.8.5 Hybrid Systems\u003cbr\u003e2.9 Mould Cooling\u003cbr\u003e2.10 Mould Ancillaries\u003cbr\u003e2.11 Molding Aids\u003cbr\u003e2.12 Kiss-Offs\u003cbr\u003e2.13 Calculation of Charge Weight \u003cbr\u003eChapter 3 - Rotational Molding Machinery\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Types of Rotational Molding Machines\u003cbr\u003e3.2.1 Carousel Machines\u003cbr\u003e3.2.2 Shuttle Machines\u003cbr\u003e3.2.3 Clamshell Machines\u003cbr\u003e3.2.4 Rock and Roll Machines\u003cbr\u003e3.2.5 Other Types of Machines\u003cbr\u003e3.3 Mould Swing\u003cbr\u003e3.4 Mould Speed\u003cbr\u003e3.5 Speed Ratio\u003cbr\u003e3.6 Oven Air Flow Amplification\u003cbr\u003e3.7 Cooling\u003cbr\u003e3.8 Developments in Machine Control\u003cbr\u003e3.9 Internal Air Temperature Measurement in Rotational Molding\u003cbr\u003e3.10 Preparation of Rotolog for Molding Trials\u003cbr\u003e3.11 Monitoring Pressure Inside a Mould\u003cbr\u003eBibliography \u003cbr\u003eChapter 4 – Materials for Rotational Molding\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Typical Characteristics of Rotationally Molded Plastics\u003cbr\u003e4.3 Materials Used in Rotational Molding\u003cbr\u003e4.4 Polyethylene\u003cbr\u003e4.4.1 Low Density Polyethylene (LDPE)\u003cbr\u003e4.4.2 High Density Polyethylene (HDPE)\u003cbr\u003e4.4.3 Medium Density Polyethylene (MDPE)\u003cbr\u003e4.4.4 Linear Low Density Polyethylene (LLDPE)\u003cbr\u003e4.4.5 Metallocene Polyethylene\u003cbr\u003e4.4.6 Ethylene-Vinyl Acetate (EVA)\u003cbr\u003e4.4.7 Ethylene-Butyl Acrylate (EBA)\u003cbr\u003e4.5 Polypropylene (PP)\u003cbr\u003e4.6 Polyamides (Nylons)\u003cbr\u003e4.6.1 Nylon 6\u003cbr\u003e4.6.2 Nylon 11 and Nylon 12\u003cbr\u003e4.6.3 Reaction Injection Molding (RIM) Nylon\u003cbr\u003e4.7 Amorphous Materials\u003cbr\u003e4.7.1 Polyvinyl Chloride (PVC)\u003cbr\u003e4.7.2 Fluoropolymers\u003cbr\u003e4.8 Other Plastics\u003cbr\u003e4.9 Additives Used in Rotational Molding Materials\u003cbr\u003e4.9.1 Fillers\u003cbr\u003e4.9.2 Plasticizers\u003cbr\u003e4.9.3 Lubricants\u003cbr\u003e4.9.4 Stabilizers\u003cbr\u003e4.9.5 Anti-Oxidants\u003cbr\u003e4.9.6 Ultraviolet Stabilizers\u003cbr\u003e4.9.7 Flame Retardants\u003cbr\u003e4.9.8 Crosslinking Agents\u003cbr\u003e4.9.9 Foaming Agents\u003cbr\u003e4.9.10 Pigments\u003cbr\u003e4.10 Powders for Rotational Molding - Grinding or Pulverizing\u003cbr\u003e4.10.1 Introduction\u003cbr\u003e4.11 Particle Size Distribution\u003cbr\u003e4.12 Dry Flow\u003cbr\u003e4.13 Bulk Density\u003cbr\u003e4.14 Factors Affecting Powder Quality\u003cbr\u003e4.14.1 Gap Size\u003cbr\u003e4.14.2 Number of Mill Teeth\u003cbr\u003e4.14.3 Grinding Temperature\u003cbr\u003e4.15 Micropelletising\u003cbr\u003e4.16 Coloring of Plastics for Rotational Molding\u003cbr\u003e4.17 Types of Pigments\u003cbr\u003eBibliography \u003cbr\u003eChapter 5 – Quality Control in Rotational Molding\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Wall Thickness Distribution\u003cbr\u003e5.3 Shrinkage\u003cbr\u003e5.3.1 Shrinkage Guidelines\u003cbr\u003e5.3.2 Control of Shrinkage\u003cbr\u003e5.3.2.1 Effect of Release Point on Shrinkage\u003cbr\u003e5.3.2.2 Other Factors Affecting Shrinkage\u003cbr\u003e5.4 Warpage\u003cbr\u003e5.4.1 Control of Warpage\u003cbr\u003e5.5 Residual Stress\u003cbr\u003e5.5.1 Short-Term Effects of Residual Stresses\u003cbr\u003e5.5.2 Long-Term Effects of Residual Stresses\u003cbr\u003e5.5.3 Cures for Residual Stress Problems\u003cbr\u003e5.6 Surface Decoration\u003cbr\u003e5.6.1 Painting\u003cbr\u003e5.6.2 Hot Stamping\u003cbr\u003e5.6.3 Adhesives\u003cbr\u003e5.6.4 In-Mould Decoration\u003cbr\u003e5.6.5 Post Molding Decoration\u003cbr\u003e5.7 Foaming in Rotational Molding\u003cbr\u003e5.7.1 Chemical Blowing Agent Technology\u003cbr\u003e5.7.2 Design of Foamed Sections\u003cbr\u003e5.7.3 Solid\/Foam Cross-Sections\u003cbr\u003e5.7.4 Solid\/Foam\/Solid Cross-Sections\u003cbr\u003eBibliography \u003cbr\u003eChapter 6 – The Future for Rotational Molding\u003cbr\u003e6.1 Materials\u003cbr\u003e6.2 Moulds\u003cbr\u003e6.3 Molding Equipment\u003cbr\u003e6.4 The Challenges\u003cbr\u003e6.5 The Role that the Molder Must Play\u003cbr\u003e6.6 The Role that the Suppliers Must Play\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eProfessor Roy J.CRAWFORD\u003c\/strong\u003e FREng B.Sc., Ph.D., D.Sc., FIMechE., FIM\u003cbr\u003eQueen's University, Belfast \u003cbr\u003eProfessor Roy Crawford obtained a first-class honors degree in Mechanical Engineering from the Queen's University of Belfast in 1970. He went on to obtain a Ph.D. degree relating to the processing and properties of plastics in 1973. He obtained a DSc degree for research work on plastics in 1987. Over the past 30 years, he has concentrated on studying the processing behavior of plastics. He has published over 250 papers in learned journals and conferences during this time. He is the author of 7 textbooks on plastics and engineering materials. \u003cbr\u003e\u003cbr\u003eRoy Crawford is currently Pro Vice-Chancellor for Research and Development and Professor of Engineering Materials at Queen's University Belfast. From 1997 to 1999 he was Director of the Polymer Processing Research Centre at Queen's University. This Centre was established on the basis of the international reputation of the Rotational Molding Research Centre that he initiated at the University. \u003cbr\u003e\u003cbr\u003eHe has been awarded a number of prizes for the high quality of his research work. In 1996 he received the prestigious Netlon Medal from the Institute of Materials for innovative contributions to the molding of plastics. He is Technical Director for the Association of Rotational Molders in Chicago, USA and Technical Editor for the Rotation Magazine, published in the USA. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eM. P. KEARNS\u003c\/strong\u003e B.Eng., M.Phil., C.Eng., MIChemE\u003cbr\u003eQueen's University, Belfast \u003cbr\u003eMark Kearns is the Rotational Molding Research Manager of the Polymer Processing Research Centre at Queen’s University, Belfast. He is a Chartered Chemical Engineer with an M.Phil Degree in Rotational Molding. He manages rotational molding research and development projects for companies and institutions across Europe, Australasia, and North America, and organizes the Association of Rotational Molders - sponsored, ‘Advanced Rotational Molding Training Seminars’ both in Belfast and North America. Mark has spent over ten years in rotational molding research, initially in Industry as a Development Engineer and Deputy Production Manager. He has published over 50 papers and conference proceedings on rotational molding and has delivered lectures on rotational molding in North America, Asia, Africa and Europe.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Smo...
$130.00
{"id":11242255172,"title":"Practical Guide to Smoke and Combustion Products from Burning PolymersGeneration, Assessment and Control","handle":"978-1-84735-442-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sergei Levchik, Marcelo Hirschler and Edward Weil \u003cbr\u003eISBN 978-1-84735-442-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Practical Guide presents one of the complete overviews of this important topic, covering smoke generation (including obscuration, toxicity, corrosivity), small and large scale smoke assessment, regulation of smoke, and methods of controlling smoke by plastics formulation. In particular, this book focuses on the assessment of fire hazard and fire risks from combustion products and is an important book for plastics processors, regulatory personnel, and fire research and safety engineers. \u003cbr\u003e\u003cbr\u003eThis book presents a state of the art overview of smoke formation from natural and synthetic polymeric materials. Also presented is a discussion on why different commercial polymers have different intrinsic tendencies to generate smoke and ways in which smoke generation can be assessed. Mechanisms and general approaches for decreasing smoke formation are examined.\u003cbr\u003e\u003cbr\u003eThis book also gives an overview of flammability tests for measuring smoke formation. In particular, the criticality of assessing smoke formation in realistic scale is discussed. An overview is provided of regulations, codes, and standards for critical application of polymeric materials where smoke generation is controlled. Common commercial approaches to decrease smoke formation in specific polymer systems and for specific applications are also presented. Finally, a balanced opinion on the controversial issue of smoke and associated combustion gases is given.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:30-04:00","created_at":"2017-06-22T21:15:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","combustion","corrosivity","flammability","hazard","p-testing","plastics","polymer","smoke","toxicity"],"price":13000,"price_min":13000,"price_max":13000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378490692,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Smoke and Combustion Products from Burning PolymersGeneration, Assessment and Control","public_title":null,"options":["Default Title"],"price":13000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-442-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061","options":["Title"],"media":[{"alt":null,"id":358722928733,"position":1,"preview_image":{"aspect_ratio":0.667,"height":499,"width":333,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061"},"aspect_ratio":0.667,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061","width":333}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sergei Levchik, Marcelo Hirschler and Edward Weil \u003cbr\u003eISBN 978-1-84735-442-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Practical Guide presents one of the complete overviews of this important topic, covering smoke generation (including obscuration, toxicity, corrosivity), small and large scale smoke assessment, regulation of smoke, and methods of controlling smoke by plastics formulation. In particular, this book focuses on the assessment of fire hazard and fire risks from combustion products and is an important book for plastics processors, regulatory personnel, and fire research and safety engineers. \u003cbr\u003e\u003cbr\u003eThis book presents a state of the art overview of smoke formation from natural and synthetic polymeric materials. Also presented is a discussion on why different commercial polymers have different intrinsic tendencies to generate smoke and ways in which smoke generation can be assessed. Mechanisms and general approaches for decreasing smoke formation are examined.\u003cbr\u003e\u003cbr\u003eThis book also gives an overview of flammability tests for measuring smoke formation. In particular, the criticality of assessing smoke formation in realistic scale is discussed. An overview is provided of regulations, codes, and standards for critical application of polymeric materials where smoke generation is controlled. Common commercial approaches to decrease smoke formation in specific polymer systems and for specific applications are also presented. Finally, a balanced opinion on the controversial issue of smoke and associated combustion gases is given.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to the...
$350.00
{"id":11242209412,"title":"Practical Guide to the Assessment of the Useful Life of Plastics","handle":"978-1-85957-312-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown and J.H. Greenwood \u003cbr\u003eISBN 978-1-85957-312-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e\u003cspan\u003e \u003cbr\u003e\u003c\/span\u003epages 180\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' Lifetime expectancy is often many years, the service conditions may be complex, and there is a scarcity of definitive data on durability. The situation is complicated by the fact that there are a vast number of degradation agents, service conditions, properties of importance and different plastics. \u003cbr\u003e\u003cbr\u003eThere are many inherent difficulties in designing durability tests. In many cases, the time scale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003e\u003cbr\u003eMost assessments of the lifetime of plastics are made by considering some measure of performance, such as impact strength, and specifying some lower limit for the property, which is taken as the endpoint. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as the number of cycles of use.\u003cbr\u003e\u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of plastics. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximise the effectiveness of a durability-testing programme. \u003cbr\u003e\u003cbr\u003eThis guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation. The test procedures used are outlined and the relevant textbooks and international standards are well referenced. Examples of lifetime testing studies are cited.\u003cbr\u003e\u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing plastic components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Definition of the Polymer\u003cbr\u003e3. What is Failure?\u003cbr\u003e4. Agents and Mechanisms of Degradation\u003cbr\u003e5. Real and Simulated Service Conditions\u003cbr\u003e6. Accelerated Tests\u003cbr\u003e7. Parameters to Monitor Degradation\u003cbr\u003e8. Prediction Techniques\u003cbr\u003e9. Limitations, Pitfalls, and Uncertainties\u003cbr\u003e10. Condition Monitoring and Residual Life Assessment\u003cbr\u003e11. Data Available\u003cbr\u003e12. Examples of Current Practice\u003cbr\u003e13. Conclusion\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eRoger Brown\u003c\/strong\u003e is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. John Greenwood\u003c\/strong\u003e studied at Cambridge and has worked for over thirty years on non-metallic materials for companies in America and Europe. He is an authority on mechanical testing and lifetime prediction of polymer and composite materials including pipes and geosynthetics. He has published extensively, including patents, and is the convenor of working groups for the\u003cbr\u003estandardisation of geotextiles and fuel pipes. He is currently non-metals\u003cbr\u003econsultant at ERA.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:06-04:00","created_at":"2017-06-22T21:13:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","accelerated tests","book","conditions","degradation","durability","durability-testing","failure","p-testing","plastics","polymer","testing","weathering"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378329924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to the Assessment of the Useful Life of Plastics","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-312-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651","options":["Title"],"media":[{"alt":null,"id":358723780701,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown and J.H. Greenwood \u003cbr\u003eISBN 978-1-85957-312-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e\u003cspan\u003e \u003cbr\u003e\u003c\/span\u003epages 180\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' Lifetime expectancy is often many years, the service conditions may be complex, and there is a scarcity of definitive data on durability. The situation is complicated by the fact that there are a vast number of degradation agents, service conditions, properties of importance and different plastics. \u003cbr\u003e\u003cbr\u003eThere are many inherent difficulties in designing durability tests. In many cases, the time scale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003e\u003cbr\u003eMost assessments of the lifetime of plastics are made by considering some measure of performance, such as impact strength, and specifying some lower limit for the property, which is taken as the endpoint. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as the number of cycles of use.\u003cbr\u003e\u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of plastics. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximise the effectiveness of a durability-testing programme. \u003cbr\u003e\u003cbr\u003eThis guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation. The test procedures used are outlined and the relevant textbooks and international standards are well referenced. Examples of lifetime testing studies are cited.\u003cbr\u003e\u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing plastic components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Definition of the Polymer\u003cbr\u003e3. What is Failure?\u003cbr\u003e4. Agents and Mechanisms of Degradation\u003cbr\u003e5. Real and Simulated Service Conditions\u003cbr\u003e6. Accelerated Tests\u003cbr\u003e7. Parameters to Monitor Degradation\u003cbr\u003e8. Prediction Techniques\u003cbr\u003e9. Limitations, Pitfalls, and Uncertainties\u003cbr\u003e10. Condition Monitoring and Residual Life Assessment\u003cbr\u003e11. Data Available\u003cbr\u003e12. Examples of Current Practice\u003cbr\u003e13. Conclusion\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eRoger Brown\u003c\/strong\u003e is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. John Greenwood\u003c\/strong\u003e studied at Cambridge and has worked for over thirty years on non-metallic materials for companies in America and Europe. He is an authority on mechanical testing and lifetime prediction of polymer and composite materials including pipes and geosynthetics. He has published extensively, including patents, and is the convenor of working groups for the\u003cbr\u003estandardisation of geotextiles and fuel pipes. He is currently non-metals\u003cbr\u003econsultant at ERA.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to the...
$144.00
{"id":11242227652,"title":"Practical Guide to the Assessment of the Useful Life of Rubbers","handle":"978-1-85957-260-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown \u003cbr\u003eISBN 978-1-85957-260-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 150 , Figures: 23 , Tables: 5\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' This is usually a very difficult question to answer for rubber products because the expected lifetime is often in tens of years, the service conditions may be complex, and there is a scarcity of definitive data on durability. There is a vast matrix of degradation agents, service conditions, properties of importance and different rubbers. \u003cbr\u003eThere are also many inherent difficulties in designing tests. In many cases, the timescale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003eMost assessments of a lifetime of rubbers are made by considering some measure of performance, such as tensile strength, and specifying some lower limit for the property, which is taken as the end point. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as number of cycles of use. \u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of rubbers. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximize the effectiveness of a durability testing program. \u003cbr\u003eThis Guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation and the most important mechanical properties of rubbers. The test procedures used are outlined and the relevant textbooks and International standards are referenced. \u003cbr\u003eRapra Technology Limited has just completed a 40 year natural ageing program and an accelerated testing program, both on the same set of rubber compounds. The results have been drawn on in this Guide to indicate the limiting factors for particular test methods. \u003cbr\u003eThis publication is an output from the Weathering of Elastomers and Sealants project which forms part of the UK government's Department of Trade and Industry's Degradation of Materials in Aggressive Environments Program. \u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing rubber components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In\u003cbr\u003eaddition, he is editor of the journal Polymer Testing. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees and is leader of the\u003cbr\u003eBritish delegation to ISO Technical Committee 45.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:05-04:00","created_at":"2017-06-22T21:14:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","book","degradation","mechanical properties","physical testing","quality control","r-testing","rubber","rubbers","tensile strength","testing","weathering"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378395204,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to the Assessment of the Useful Life of Rubbers","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-260-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-260-3.jpg?v=1499953671"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-260-3.jpg?v=1499953671","options":["Title"],"media":[{"alt":null,"id":358724304989,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-260-3.jpg?v=1499953671"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-260-3.jpg?v=1499953671","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown \u003cbr\u003eISBN 978-1-85957-260-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 150 , Figures: 23 , Tables: 5\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' This is usually a very difficult question to answer for rubber products because the expected lifetime is often in tens of years, the service conditions may be complex, and there is a scarcity of definitive data on durability. There is a vast matrix of degradation agents, service conditions, properties of importance and different rubbers. \u003cbr\u003eThere are also many inherent difficulties in designing tests. In many cases, the timescale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003eMost assessments of a lifetime of rubbers are made by considering some measure of performance, such as tensile strength, and specifying some lower limit for the property, which is taken as the end point. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as number of cycles of use. \u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of rubbers. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximize the effectiveness of a durability testing program. \u003cbr\u003eThis Guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation and the most important mechanical properties of rubbers. The test procedures used are outlined and the relevant textbooks and International standards are referenced. \u003cbr\u003eRapra Technology Limited has just completed a 40 year natural ageing program and an accelerated testing program, both on the same set of rubber compounds. The results have been drawn on in this Guide to indicate the limiting factors for particular test methods. \u003cbr\u003eThis publication is an output from the Weathering of Elastomers and Sealants project which forms part of the UK government's Department of Trade and Industry's Degradation of Materials in Aggressive Environments Program. \u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing rubber components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In\u003cbr\u003eaddition, he is editor of the journal Polymer Testing. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees and is leader of the\u003cbr\u003eBritish delegation to ISO Technical Committee 45.\u003cbr\u003e\u003cbr\u003e"}
Processing and Propert...
$125.00
{"id":11242238340,"title":"Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends","handle":"1-895198-04-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. D. Acierno, Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-04-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-04-1\u003c\/span\u003e\u003cbr\u003eUniversity of Salerno and University of Palermo, Italy\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e230 pages, 11 tables, 152 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nLiquid crystalline polymers receive a great deal of attention for their impact on polymer structure and morphology understanding and their practical applications. \u003cbr\u003ePractical benefits of LPCs use are numerous:\u003cbr\u003e\u003cbr\u003eA small addition (5%) reduces blend viscosity they are excellent processing aids LCPs can be blended with common thermoplasts using the existing process technology in situ composites produced in simple process small additions act as a reinforcing phase ultra-high moduli, characteristic for high performance materials, are due to a high degree of crystallinity and molecular orientation materials of high mechanical stiffness result LCP particles elongate into fibrils, oriented in machine direction LCPs lower polymer melting temperature that allows to process polymers whose high processing temperature represents severe restriction.\u003cbr\u003eThe above mentioned and other important phenomena are discussed and illustrated by numerous examples in this book.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStructure and rheology of Aramid solutions: relation to the Aramid fiber modulus. S. J. Picken, M. G. Northold, and S. van der Zwaag \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMechanical\/thermal pretreatment of LCP melts and its influence on the rheological behavior of these polymers. K. Geiger \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSynthesis, processing, and properties of semirigid, thermotropic LC copolymers. U. Pedretti, A. Roggero, V. Citta, E. Montani, F. P. La Mantia, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe rheology of LCP blends. M. Hawksworth, J. B. Hull, and A. A. Collyer \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMulticomponent blends based of LCP. V. Kulichikhin, A. Bilibin, M. Zabugina, A. Semakov, and R. Zakharyan \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMelt rheology and morphology of in situ composites. M. Kozlowski \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThermotropic polymer composites. E. Suokas, P. Jarvela, and P. Tormala \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eCharacterization of blends of poly(phenylene sulfide) with LC copolyesteramide. L. I. Minkova, S. De Petris, M. Paci, M. Pracella, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of polycarbonate with LCP. A. Valenza, V. Citta, U. Pedretti, F. P. La Mantia, M. Paci, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends based on engineering polymers: the effect of the inclusion of thermotropic LCPs on the physical properties of the matrix. M. R. Nobile, L. Incarnato, G. Marino, and D. Acierno \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eFormation and stability of LCP fibers in a thermoplastic elastomeric matrix. H. Verhoogt, C. R. J. Willems, H. C. Langelaan, J. van Dam, and A. Posthuma de Boer \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","applications","blends","book","crystalline","crystallinity","fibers","fibrils","LCP","liquid","melts","morphology","p-structural","polymer","polymerization","polymers","process","rheology","stability","stiffness","structure","viscosity"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428100,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-04-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768","options":["Title"],"media":[{"alt":null,"id":412803629149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. D. Acierno, Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-04-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-04-1\u003c\/span\u003e\u003cbr\u003eUniversity of Salerno and University of Palermo, Italy\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e230 pages, 11 tables, 152 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nLiquid crystalline polymers receive a great deal of attention for their impact on polymer structure and morphology understanding and their practical applications. \u003cbr\u003ePractical benefits of LPCs use are numerous:\u003cbr\u003e\u003cbr\u003eA small addition (5%) reduces blend viscosity they are excellent processing aids LCPs can be blended with common thermoplasts using the existing process technology in situ composites produced in simple process small additions act as a reinforcing phase ultra-high moduli, characteristic for high performance materials, are due to a high degree of crystallinity and molecular orientation materials of high mechanical stiffness result LCP particles elongate into fibrils, oriented in machine direction LCPs lower polymer melting temperature that allows to process polymers whose high processing temperature represents severe restriction.\u003cbr\u003eThe above mentioned and other important phenomena are discussed and illustrated by numerous examples in this book.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStructure and rheology of Aramid solutions: relation to the Aramid fiber modulus. S. J. Picken, M. G. Northold, and S. van der Zwaag \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMechanical\/thermal pretreatment of LCP melts and its influence on the rheological behavior of these polymers. K. Geiger \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSynthesis, processing, and properties of semirigid, thermotropic LC copolymers. U. Pedretti, A. Roggero, V. Citta, E. Montani, F. P. La Mantia, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe rheology of LCP blends. M. Hawksworth, J. B. Hull, and A. A. Collyer \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMulticomponent blends based of LCP. V. Kulichikhin, A. Bilibin, M. Zabugina, A. Semakov, and R. Zakharyan \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMelt rheology and morphology of in situ composites. M. Kozlowski \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThermotropic polymer composites. E. Suokas, P. Jarvela, and P. Tormala \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eCharacterization of blends of poly(phenylene sulfide) with LC copolyesteramide. L. I. Minkova, S. De Petris, M. Paci, M. Pracella, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of polycarbonate with LCP. A. Valenza, V. Citta, U. Pedretti, F. P. La Mantia, M. Paci, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends based on engineering polymers: the effect of the inclusion of thermotropic LCPs on the physical properties of the matrix. M. R. Nobile, L. Incarnato, G. Marino, and D. Acierno \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eFormation and stability of LCP fibers in a thermoplastic elastomeric matrix. H. Verhoogt, C. R. J. Willems, H. C. Langelaan, J. van Dam, and A. Posthuma de Boer \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Progress in Understand...
$135.00
{"id":11242242756,"title":"Progress in Understanding of Polymer Crystallization","handle":"978-3-540-47305-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds.: Günter Reiter, Gert R. Strobl \u003cbr\u003eISBN 978-3-540-47305-3 \u003cbr\u003e\u003cbr\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003epages 506, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel general views and concepts which help to advance our understanding of polymer crystallisation\u003c\/li\u003e\n\u003cli\u003enucleation phenomena\u003c\/li\u003e\n\u003cli\u003elong living melt structures affecting crystallization\u003c\/li\u003e\n\u003cli\u003econfinement effects on crystallization\u003c\/li\u003e\n\u003cli\u003ecrystallization in flowing melts\u003c\/li\u003e\n\u003cli\u003efluid mobility restrictions caused by crystallites\u003c\/li\u003e\n\u003cli\u003ethe role of mesophases in the crystal formation\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eand presents new ideas in a connected and accessible way.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Shifting Paradigms in Polymer Crystallization.\u003cbr\u003e2. Theoretical aspects of the Equilibrium State of Chain Crystals.\u003cbr\u003e3. Intramolecular Crystal Nucleation.\u003cbr\u003e4. Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation.\u003cbr\u003e5. Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow.\u003cbr\u003e6. Structure Formation and Glass Transition in Oriented Poly(ethylene terephthalate).\u003cbr\u003e7. How Do Orientation Fluctuations Evolve to Crystals?.\u003cbr\u003e8. Role of Chain Entanglement Network on Formation of FlowInduced Crystallization Precursor Structure.\u003cbr\u003e9. Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol.\u003cbr\u003e10. Small Angle Scattering Study of Polyethylene Crystallization from Solutions.\u003cbr\u003e11. Morphologies of Polymer Crystals in Thin Films.\u003cbr\u003e12. Crystallization of Frustrated Alkyl Groups in Polymeric Systems Containing Octadecylmethacrylate.\u003cbr\u003e13. Crystallization in Block Copolymers with More than one Crystallizable Block.\u003cbr\u003e14. Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and CrystalMelt Interface.\u003cbr\u003e15. The Role of the Interphase on the Chain Mobility and Melting of SemiCrystalline Polymers; a Study on Polyethylenes.\u003cbr\u003e16. Polymer Crystallization under High Cooling Rate and Pressure: a Step Towards Polymer Processing Conditions.\u003cbr\u003e17. StressInduced Phase Transitions in MetalloceneMade Isotactic Polypropylene.\u003cbr\u003e18. Insights into Polymer Crystallization from InSitu Atomic Force Microscopy.\u003cbr\u003e19. Temperature and Molecular Weight Dependencies of Polymer Crystallization.\u003cbr\u003e20. StepScan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene.\u003cbr\u003e21.Order and Segmental Mobility in Crystallizing Polymers.\u003cbr\u003e22. Atomistic Simulation of Polymer Melt Crystallization by Molecular Dynamics.\u003cbr\u003e23. A Multiphase Model Describing Polymer","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","acrylic polymers","anti-corrosion polymers","application polymer blends and composite","block copolymers","book","confinement effects","crystallization","eemicrystalline","flowing melts","fluid mobility","melt structures","mesophases","Monte Carlo","morphologies","nucleation phenomena","p-testing","polyamide 4.6","polyamide 6","polyethylene","polymer","polymer crystals","simulations","solutions","thin films"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Progress in Understanding of Polymer Crystallization","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-47305-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953","options":["Title"],"media":[{"alt":null,"id":358724567133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds.: Günter Reiter, Gert R. Strobl \u003cbr\u003eISBN 978-3-540-47305-3 \u003cbr\u003e\u003cbr\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003epages 506, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel general views and concepts which help to advance our understanding of polymer crystallisation\u003c\/li\u003e\n\u003cli\u003enucleation phenomena\u003c\/li\u003e\n\u003cli\u003elong living melt structures affecting crystallization\u003c\/li\u003e\n\u003cli\u003econfinement effects on crystallization\u003c\/li\u003e\n\u003cli\u003ecrystallization in flowing melts\u003c\/li\u003e\n\u003cli\u003efluid mobility restrictions caused by crystallites\u003c\/li\u003e\n\u003cli\u003ethe role of mesophases in the crystal formation\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eand presents new ideas in a connected and accessible way.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Shifting Paradigms in Polymer Crystallization.\u003cbr\u003e2. Theoretical aspects of the Equilibrium State of Chain Crystals.\u003cbr\u003e3. Intramolecular Crystal Nucleation.\u003cbr\u003e4. Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation.\u003cbr\u003e5. Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow.\u003cbr\u003e6. Structure Formation and Glass Transition in Oriented Poly(ethylene terephthalate).\u003cbr\u003e7. How Do Orientation Fluctuations Evolve to Crystals?.\u003cbr\u003e8. Role of Chain Entanglement Network on Formation of FlowInduced Crystallization Precursor Structure.\u003cbr\u003e9. Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol.\u003cbr\u003e10. Small Angle Scattering Study of Polyethylene Crystallization from Solutions.\u003cbr\u003e11. Morphologies of Polymer Crystals in Thin Films.\u003cbr\u003e12. Crystallization of Frustrated Alkyl Groups in Polymeric Systems Containing Octadecylmethacrylate.\u003cbr\u003e13. Crystallization in Block Copolymers with More than one Crystallizable Block.\u003cbr\u003e14. Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and CrystalMelt Interface.\u003cbr\u003e15. The Role of the Interphase on the Chain Mobility and Melting of SemiCrystalline Polymers; a Study on Polyethylenes.\u003cbr\u003e16. Polymer Crystallization under High Cooling Rate and Pressure: a Step Towards Polymer Processing Conditions.\u003cbr\u003e17. StressInduced Phase Transitions in MetalloceneMade Isotactic Polypropylene.\u003cbr\u003e18. Insights into Polymer Crystallization from InSitu Atomic Force Microscopy.\u003cbr\u003e19. Temperature and Molecular Weight Dependencies of Polymer Crystallization.\u003cbr\u003e20. StepScan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene.\u003cbr\u003e21.Order and Segmental Mobility in Crystallizing Polymers.\u003cbr\u003e22. Atomistic Simulation of Polymer Melt Crystallization by Molecular Dynamics.\u003cbr\u003e23. A Multiphase Model Describing Polymer"}
Properties and Behavio...
$545.00
{"id":11242231300,"title":"Properties and Behavior of Polymers, 2 Volume Set","handle":"978-0-470-59670-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nJohn Wiley \u0026amp; Sons Ltd \u003cbr\u003eISBN 978-0-470-59670-8 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eHardcover\u003c\/div\u003e\n\u003cdiv\u003e1616 pages\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book provides comprehensive, up-to-date information on the physical properties of polymers including, viscoelasticity, flammability, miscibility, optical properties, surface properties and more. Containing carefully selected reprints from Wiley's renowned Encyclopedia of Polymer Science and Technology, this reference features the same breadth and quality of coverage and clarity of presentation found in the original.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVolume 1.\u003c\/b\u003e Acoustic Properties.\u003cbr\u003eAdhesion.\u003cbr\u003eAdsorption.\u003cbr\u003eAging, Physical.\u003cbr\u003eConformation and Configuration.\u003cbr\u003eCryogenic properties.\u003cbr\u003eDegradation.\u003cbr\u003eDepolymerization.\u003cbr\u003eDrag Reduction.\u003cbr\u003eElasticity, Rubber-like.\u003cbr\u003eElectrical Active Polymers.\u003cbr\u003eFlammability.\u003cbr\u003eGlass Transition.\u003cbr\u003eHardness.\u003cbr\u003eImpact Resistance.\u003cbr\u003eMagnetic Polymers.\u003cbr\u003eMechanical Performance of Plastics.\u003cbr\u003eMicromechanical Properties.\u003cbr\u003eMicrostructure.\u003cbr\u003eMiscibility.\u003cbr\u003eModeling of Polymer Processing and Properties.\u003cbr\u003e\u003cb\u003eVolume 2.\u003c\/b\u003e\u003cbr\u003eNetworks, Elastomeric.\u003cbr\u003eNonlinear Optical Properties.\u003cbr\u003eOptical Properties.\u003cbr\u003eOrientation.\u003cbr\u003ePhotorefraction.\u003cbr\u003eRheology and Rheological Measurements.\u003cbr\u003eScratch Behavior of Polymers.\u003cbr\u003eSelf-healing polymers.\u003cbr\u003eSolubility of Polymers.\u003cbr\u003eSurface Mechanical Damage and Wear of Polymers.\u003cbr\u003eSurface Properties.\u003cbr\u003eThermal Properties.\u003cbr\u003eThermodynamic Properties of Polymers.\u003cbr\u003eTransitions and Relaxations.\u003cbr\u003eTransport Properties.\u003cbr\u003eViscoelasticity.\u003cbr\u003eWeathering.\u003cbr\u003eYield and Crazing. \u003cbr\u003eIndex.","published_at":"2017-06-22T21:14:17-04:00","created_at":"2017-06-22T21:14:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","acoustic properties","aging","degradation","elasticity","elastomeric","flammability","magnetic polymers","optical","polymers","rheology","surface","thermal","weathering","wiley"],"price":54500,"price_min":54500,"price_max":54500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378406276,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Properties and Behavior of Polymers, 2 Volume Set","public_title":null,"options":["Default Title"],"price":54500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-59670-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-59670-8.jpg?v=1499953727"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-59670-8.jpg?v=1499953727","options":["Title"],"media":[{"alt":null,"id":358724862045,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-59670-8.jpg?v=1499953727"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-59670-8.jpg?v=1499953727","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nJohn Wiley \u0026amp; Sons Ltd \u003cbr\u003eISBN 978-0-470-59670-8 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eHardcover\u003c\/div\u003e\n\u003cdiv\u003e1616 pages\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book provides comprehensive, up-to-date information on the physical properties of polymers including, viscoelasticity, flammability, miscibility, optical properties, surface properties and more. Containing carefully selected reprints from Wiley's renowned Encyclopedia of Polymer Science and Technology, this reference features the same breadth and quality of coverage and clarity of presentation found in the original.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVolume 1.\u003c\/b\u003e Acoustic Properties.\u003cbr\u003eAdhesion.\u003cbr\u003eAdsorption.\u003cbr\u003eAging, Physical.\u003cbr\u003eConformation and Configuration.\u003cbr\u003eCryogenic properties.\u003cbr\u003eDegradation.\u003cbr\u003eDepolymerization.\u003cbr\u003eDrag Reduction.\u003cbr\u003eElasticity, Rubber-like.\u003cbr\u003eElectrical Active Polymers.\u003cbr\u003eFlammability.\u003cbr\u003eGlass Transition.\u003cbr\u003eHardness.\u003cbr\u003eImpact Resistance.\u003cbr\u003eMagnetic Polymers.\u003cbr\u003eMechanical Performance of Plastics.\u003cbr\u003eMicromechanical Properties.\u003cbr\u003eMicrostructure.\u003cbr\u003eMiscibility.\u003cbr\u003eModeling of Polymer Processing and Properties.\u003cbr\u003e\u003cb\u003eVolume 2.\u003c\/b\u003e\u003cbr\u003eNetworks, Elastomeric.\u003cbr\u003eNonlinear Optical Properties.\u003cbr\u003eOptical Properties.\u003cbr\u003eOrientation.\u003cbr\u003ePhotorefraction.\u003cbr\u003eRheology and Rheological Measurements.\u003cbr\u003eScratch Behavior of Polymers.\u003cbr\u003eSelf-healing polymers.\u003cbr\u003eSolubility of Polymers.\u003cbr\u003eSurface Mechanical Damage and Wear of Polymers.\u003cbr\u003eSurface Properties.\u003cbr\u003eThermal Properties.\u003cbr\u003eThermodynamic Properties of Polymers.\u003cbr\u003eTransitions and Relaxations.\u003cbr\u003eTransport Properties.\u003cbr\u003eViscoelasticity.\u003cbr\u003eWeathering.\u003cbr\u003eYield and Crazing. \u003cbr\u003eIndex."}
Protection of Material...
$329.00
{"id":11242233412,"title":"Protection of Materials and Structures from the Space Environment","handle":"978-1-4020-4281-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Jacob I. Kleiman \u003cbr\u003eISBN 978-1-4020-4281-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 462, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition, the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on the development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour are continued from the past meetings.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction. Acknowledgements. Organization. \u003cbr\u003e\u003cstrong\u003eSection A. \u003c\/strong\u003eRadiation effects of protons and electrons on Back-field silicon solar cells; \u003cem\u003eZ. Hu, S. He, D. Yang\u003c\/em\u003e. Solar array arcing in LEO: how much charge is discharged? \u003cem\u003eD.C. Ferguson, B.V. Vayner, J.T. Galofaro. \u003c\/em\u003eSelf-restoration as SEU protection mechanism for re-configurable on-board computing platform; \u003cem\u003eL. Kirischian, et al\u003c\/em\u003e. Synergistic effects of protons and electrons on radiation damage of methyl silicone rubber; \u003cem\u003eL. Zhang et al\u003c\/em\u003e. Influence of electron radiation on outgassing of spacecraft materials; \u003cem\u003eR. H. Khassanchineet al\u003c\/em\u003e. Effect of surface charging on the erosion rate of polyimide under 5 eV atomic oxygen beam exposure; \u003cem\u003eM. Tagawa et al\u003c\/em\u003e. Influence of space environment on spectral optical properties of thermal control coatings; \u003cem\u003eV.M. Prosvirikov, et al.\u003c\/em\u003e Mitigation of thruster plume-induced erosion of ISS sensitive hardware; \u003cem\u003eC. Pankop, J. Alred, P. Boeder\u003c\/em\u003e. Degradation of thermal control coatings under influence of proton irradiation; \u003cem\u003eL.S. Noviko et al\u003c\/em\u003e. Mitigation of damage to the international space station (ISS) from water dumps; \u003cem\u003eW. Schmidl, J. Visentine, R. Mikatarian\u003c\/em\u003e. Investigation of synergistic effects of proton and electron radiation on the dyeing of optical quartz glass; \u003cem\u003eH. Liu et al\u003c\/em\u003e. The role of \"abnormal\" electron fluxes with energy \u0026lt; 1 MeV in the surface charging dose of spacecraft; \u003cem\u003eO.R. Grigoryan et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection B. \u003c\/strong\u003eVacuum ultraviolet radiation effects on DC93-500 silicone film; \u003cem\u003eJ.A. Dever, B.A. Banks, L. Yan\u003c\/em\u003e. Enhancement of atomic oxygen-induced erosion of spacecraft polymeric materials by simultaneous ultraviolet exposure; \u003cem\u003eK. Yokota, N. Ohmae, M. Tagawa.\u003c\/em\u003e Ground simulation of hypervelocity space debris impacts on polymers; \u003cem\u003eR. Verker et al. \u003c\/em\u003eTesting of spacecraft materials for long duration flights in low earth orbit; \u003cem\u003eL.S. Novikov et al. \u003c\/em\u003eM\/OD impacts on the multi-purpose logistics module: post-flight inspection results; \u003cem\u003eJ.L. Hyde, R.P. Bernhard, E.L. Christiansen. \u003c\/em\u003eFuel oxidizer reaction products (FORP) contamination of service module and release of N-nitrosodimethylamine in a humid environment from crew EVA suits contaminated with FORP; \u003cem\u003eW. Schmidt et al. \u003c\/em\u003eEffect of vacuum thermocycling on properties of unidirectional M40J\/AG-80 Composites; \u003cem\u003eY. Gao et al. \u003c\/em\u003eDamage characteristics of Zr\u003csub\u003e41\u003c\/sub\u003eTi\u003csub\u003e14\u003c\/sub\u003eCu\u003csub\u003e12.5\u003c\/sub\u003eNi\u003csub\u003e10\u003c\/sub\u003eBe\u003csub\u003e22.5 \u003c\/sub\u003ebulk metallic glass impacted by hypervelocity projectiles; \u003cem\u003eC. Yang et al\u003c\/em\u003e. Effect of VUV radiation on properties and chemical structure of polyethylene terephthalate film; \u003cem\u003eG. Peng, D. Yang, S. Y. He. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection C. \u003c\/strong\u003eStatus of solar sail material characterization at NASA’s Marshall Space Flight Center; \u003cem\u003eD. Edwards et al. \u003c\/em\u003eAtomic oxygen durability evaluation of a UV curable ceramer protective coating ; \u003cem\u003eB.A. Banks et al\u003c\/em\u003e. Cermet thermal conversion coatings for space applications; \u003cem\u003eB. W. Woods et al. \u003c\/em\u003eMulti-function smart coatings for space applications; \u003cem\u003eR.V. Kruzelecky et al. \u003c\/em\u003eEffects of space environment exposure on the blocking force of silicone adhesive; \u003cem\u003eP. Boeder et al. \u003c\/em\u003eDry sliding wear of Ti-6Al-4V Alloy at low temperature in vacuum; \u003cem\u003eY. Liu et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection D. \u003c\/strong\u003eErosion of Kapton H by hyperthermal atomic oxygen: Dependence on O-atom fluence and surface temperature; \u003cem\u003eD.M. Buczala, T. K. Minton. \u003c\/em\u003eTransparent arc-proof protective coatings - performance and manufacturability issues; \u003cem\u003eJ. Griffin et al. \u003c\/em\u003eThe study of the effects of atomic oxygen erosion on the microstructure and property of VO\u003csub\u003e2\u003c\/sub\u003e thermochromic coating using CSA’s space simulation apparatus; \u003cem\u003eX.X. Jiang et al.\u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection E. \u003c\/strong\u003eDamage kinetics of quartz glass by proton radiation; \u003cem\u003eQ. Wei, S.Y. He, D. Yang.\u003c\/em\u003e Microscopic mechanisms and dynamics simulations of O\u003csup\u003e+\u003c\/sup\u003e(\u003csup\u003e4\u003c\/sup\u003eS\u003csub\u003e3\/2\u003c\/sub\u003e) reacting with methane; \u003cem\u003eL. Sun, G. Schatz. \u003c\/em\u003eTheoretical study of reactions of hyperthermal O(\u003csup\u003e3\u003c\/sup\u003eP) with perfluorinated hydrocarbons; \u003cem\u003eD. Troya, G.C. Schatz.\u003c\/em\u003e Simulation of UV influence on outgassing of polymer composites; \u003cem\u003eR.H. Khassanchine et al. \u003c\/em\u003eThe impact of high-velocity particles on thermal pipelines in spacecraft; \u003cem\u003eN.D. Semkin, K.E. Voronov, L.S. Novikov. \u003c\/em\u003ePhysical mechanism of solar cell shunting under the high-velocity impact of solid particles; \u003cem\u003eV.A. Letin, A.B. Nadiradze, L.S. Novikov. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection F. \u003c\/strong\u003eDetermination of round-laboratory to in-space effective atomic oxygen fluence for DC 93-500 silicone; \u003cem\u003eK.K. DeGroh, B.A. Banks, D. Ma.\u003c\/em\u003e Atomic oxygen concentration using reflecting mirrors; \u003cem\u003eM. Tagawa et al. \u003c\/em\u003eAtomic oxygen source calibration issues: A universal approach; \u003cem\u003eC. White et al. \u003c\/em\u003eLow-cost space missions for scientific and technological investigations; \u003cem\u003eD. Rankin et al. \u003cbr\u003e\u003c\/em\u003eSubject index. Author index.\u003c\/p\u003e","published_at":"2017-06-22T21:14:23-04:00","created_at":"2017-06-22T21:14:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","atomic oxygen","back-field","book","ceramer","charging","curable","durability","effects","environment","erosion of spacecraft","meteoroid showers","micrometeoroids","p-properties","polyethylene terephthalate","polymer","polymer composites","polymeric materials","protective coatings","radiation","silicon","silicone film","solar cells","space","ultraviolet","UV","vacuum ultraviolet radiation","weathering"],"price":32900,"price_min":32900,"price_max":32900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Protection of Materials and Structures from the Space Environment","public_title":null,"options":["Default Title"],"price":32900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4020-4281-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142","options":["Title"],"media":[{"alt":null,"id":358725419101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Jacob I. Kleiman \u003cbr\u003eISBN 978-1-4020-4281-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 462, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition, the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on the development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour are continued from the past meetings.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction. Acknowledgements. Organization. \u003cbr\u003e\u003cstrong\u003eSection A. \u003c\/strong\u003eRadiation effects of protons and electrons on Back-field silicon solar cells; \u003cem\u003eZ. Hu, S. He, D. Yang\u003c\/em\u003e. Solar array arcing in LEO: how much charge is discharged? \u003cem\u003eD.C. Ferguson, B.V. Vayner, J.T. Galofaro. \u003c\/em\u003eSelf-restoration as SEU protection mechanism for re-configurable on-board computing platform; \u003cem\u003eL. Kirischian, et al\u003c\/em\u003e. Synergistic effects of protons and electrons on radiation damage of methyl silicone rubber; \u003cem\u003eL. Zhang et al\u003c\/em\u003e. Influence of electron radiation on outgassing of spacecraft materials; \u003cem\u003eR. H. Khassanchineet al\u003c\/em\u003e. Effect of surface charging on the erosion rate of polyimide under 5 eV atomic oxygen beam exposure; \u003cem\u003eM. Tagawa et al\u003c\/em\u003e. Influence of space environment on spectral optical properties of thermal control coatings; \u003cem\u003eV.M. Prosvirikov, et al.\u003c\/em\u003e Mitigation of thruster plume-induced erosion of ISS sensitive hardware; \u003cem\u003eC. Pankop, J. Alred, P. Boeder\u003c\/em\u003e. Degradation of thermal control coatings under influence of proton irradiation; \u003cem\u003eL.S. Noviko et al\u003c\/em\u003e. Mitigation of damage to the international space station (ISS) from water dumps; \u003cem\u003eW. Schmidl, J. Visentine, R. Mikatarian\u003c\/em\u003e. Investigation of synergistic effects of proton and electron radiation on the dyeing of optical quartz glass; \u003cem\u003eH. Liu et al\u003c\/em\u003e. The role of \"abnormal\" electron fluxes with energy \u0026lt; 1 MeV in the surface charging dose of spacecraft; \u003cem\u003eO.R. Grigoryan et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection B. \u003c\/strong\u003eVacuum ultraviolet radiation effects on DC93-500 silicone film; \u003cem\u003eJ.A. Dever, B.A. Banks, L. Yan\u003c\/em\u003e. Enhancement of atomic oxygen-induced erosion of spacecraft polymeric materials by simultaneous ultraviolet exposure; \u003cem\u003eK. Yokota, N. Ohmae, M. Tagawa.\u003c\/em\u003e Ground simulation of hypervelocity space debris impacts on polymers; \u003cem\u003eR. Verker et al. \u003c\/em\u003eTesting of spacecraft materials for long duration flights in low earth orbit; \u003cem\u003eL.S. Novikov et al. \u003c\/em\u003eM\/OD impacts on the multi-purpose logistics module: post-flight inspection results; \u003cem\u003eJ.L. Hyde, R.P. Bernhard, E.L. Christiansen. \u003c\/em\u003eFuel oxidizer reaction products (FORP) contamination of service module and release of N-nitrosodimethylamine in a humid environment from crew EVA suits contaminated with FORP; \u003cem\u003eW. Schmidt et al. \u003c\/em\u003eEffect of vacuum thermocycling on properties of unidirectional M40J\/AG-80 Composites; \u003cem\u003eY. Gao et al. \u003c\/em\u003eDamage characteristics of Zr\u003csub\u003e41\u003c\/sub\u003eTi\u003csub\u003e14\u003c\/sub\u003eCu\u003csub\u003e12.5\u003c\/sub\u003eNi\u003csub\u003e10\u003c\/sub\u003eBe\u003csub\u003e22.5 \u003c\/sub\u003ebulk metallic glass impacted by hypervelocity projectiles; \u003cem\u003eC. Yang et al\u003c\/em\u003e. Effect of VUV radiation on properties and chemical structure of polyethylene terephthalate film; \u003cem\u003eG. Peng, D. Yang, S. Y. He. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection C. \u003c\/strong\u003eStatus of solar sail material characterization at NASA’s Marshall Space Flight Center; \u003cem\u003eD. Edwards et al. \u003c\/em\u003eAtomic oxygen durability evaluation of a UV curable ceramer protective coating ; \u003cem\u003eB.A. Banks et al\u003c\/em\u003e. Cermet thermal conversion coatings for space applications; \u003cem\u003eB. W. Woods et al. \u003c\/em\u003eMulti-function smart coatings for space applications; \u003cem\u003eR.V. Kruzelecky et al. \u003c\/em\u003eEffects of space environment exposure on the blocking force of silicone adhesive; \u003cem\u003eP. Boeder et al. \u003c\/em\u003eDry sliding wear of Ti-6Al-4V Alloy at low temperature in vacuum; \u003cem\u003eY. Liu et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection D. \u003c\/strong\u003eErosion of Kapton H by hyperthermal atomic oxygen: Dependence on O-atom fluence and surface temperature; \u003cem\u003eD.M. Buczala, T. K. Minton. \u003c\/em\u003eTransparent arc-proof protective coatings - performance and manufacturability issues; \u003cem\u003eJ. Griffin et al. \u003c\/em\u003eThe study of the effects of atomic oxygen erosion on the microstructure and property of VO\u003csub\u003e2\u003c\/sub\u003e thermochromic coating using CSA’s space simulation apparatus; \u003cem\u003eX.X. Jiang et al.\u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection E. \u003c\/strong\u003eDamage kinetics of quartz glass by proton radiation; \u003cem\u003eQ. Wei, S.Y. He, D. Yang.\u003c\/em\u003e Microscopic mechanisms and dynamics simulations of O\u003csup\u003e+\u003c\/sup\u003e(\u003csup\u003e4\u003c\/sup\u003eS\u003csub\u003e3\/2\u003c\/sub\u003e) reacting with methane; \u003cem\u003eL. Sun, G. Schatz. \u003c\/em\u003eTheoretical study of reactions of hyperthermal O(\u003csup\u003e3\u003c\/sup\u003eP) with perfluorinated hydrocarbons; \u003cem\u003eD. Troya, G.C. Schatz.\u003c\/em\u003e Simulation of UV influence on outgassing of polymer composites; \u003cem\u003eR.H. Khassanchine et al. \u003c\/em\u003eThe impact of high-velocity particles on thermal pipelines in spacecraft; \u003cem\u003eN.D. Semkin, K.E. Voronov, L.S. Novikov. \u003c\/em\u003ePhysical mechanism of solar cell shunting under the high-velocity impact of solid particles; \u003cem\u003eV.A. Letin, A.B. Nadiradze, L.S. Novikov. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection F. \u003c\/strong\u003eDetermination of round-laboratory to in-space effective atomic oxygen fluence for DC 93-500 silicone; \u003cem\u003eK.K. DeGroh, B.A. Banks, D. Ma.\u003c\/em\u003e Atomic oxygen concentration using reflecting mirrors; \u003cem\u003eM. Tagawa et al. \u003c\/em\u003eAtomic oxygen source calibration issues: A universal approach; \u003cem\u003eC. White et al. \u003c\/em\u003eLow-cost space missions for scientific and technological investigations; \u003cem\u003eD. Rankin et al. \u003cbr\u003e\u003c\/em\u003eSubject index. Author index.\u003c\/p\u003e"}
PVC - Compounds, Proce...
$72.00
{"id":11242256068,"title":"PVC - Compounds, Processing and Applications","handle":"978-1-85957-029-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Leadbitter, J.A. Day, J.L. Ryan \u003cbr\u003eISBN 978-1-85957-029-6 \u003cbr\u003e\u003cbr\u003eHydro Polymer Ltd.\u003cbr\u003eReview Report\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e120 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report reviews the composition and synthesis of PVC, composition and formulation technology, compounding and manufacturing technology, materials obtained by blending. 500 abstracts outlines suggested references which contain required data. \u003cbr\u003e\u003cbr\u003eFrom the Table of Contents: \u003cbr\u003ePVC Resins \u003cbr\u003eHomopolymers \u003cbr\u003eCopolymers \u003cbr\u003eTerpolymers \u003cbr\u003eChlorinated PVC \u003cbr\u003eCommercial Aspects of PVC \u003cbr\u003eComparison of Formulation Technology \u003cbr\u003eCompounding Technology \u003cbr\u003eProcess Technology \u003cbr\u003ePVC Blends and Alloys\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:32-04:00","created_at":"2017-06-22T21:15:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","alloys","blends","book","composition","copolymer","copolymers","homopolymers","p-chemistry","polymer","PVC compounds","pvc processing"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC - Compounds, Processing and Applications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-029-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574","options":["Title"],"media":[{"alt":null,"id":412810444893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Leadbitter, J.A. Day, J.L. Ryan \u003cbr\u003eISBN 978-1-85957-029-6 \u003cbr\u003e\u003cbr\u003eHydro Polymer Ltd.\u003cbr\u003eReview Report\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e120 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report reviews the composition and synthesis of PVC, composition and formulation technology, compounding and manufacturing technology, materials obtained by blending. 500 abstracts outlines suggested references which contain required data. \u003cbr\u003e\u003cbr\u003eFrom the Table of Contents: \u003cbr\u003ePVC Resins \u003cbr\u003eHomopolymers \u003cbr\u003eCopolymers \u003cbr\u003eTerpolymers \u003cbr\u003eChlorinated PVC \u003cbr\u003eCommercial Aspects of PVC \u003cbr\u003eComparison of Formulation Technology \u003cbr\u003eCompounding Technology \u003cbr\u003eProcess Technology \u003cbr\u003ePVC Blends and Alloys\u003cbr\u003e\u003cbr\u003e"}
PVC - World Markets an...
$430.00
{"id":11242226052,"title":"PVC - World Markets and Prospects","handle":"978-1-85957-311-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002, G. Pritchard, Emeritus Professor of Kingston University, Surrey, UK \u003cbr\u003eISBN 978-1-85957-311-2 \u003cbr\u003e\u003cbr\u003eKingston University, Surrey, UK\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 200\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n20% of all the resin sold in the world today, 26 million tonnes, consists of PVC. It is the second most used plastics material in the world. \u003cbr\u003e\u003cbr\u003eThis report discusses PVC from a business perspective, looking at its supply and demand, price, markets and applications, environmental issues and the future prospects of the industry. \u003cbr\u003e\u003cbr\u003eProfessor Pritchard is an exceptional author. He has successfully covered the broad sweep of the PVC industry, describing raw materials and synthesis, additives and compounding, and processing. Current issues have been highlighted including new technology and market forces. \u003cbr\u003e\u003cbr\u003eApplications are dealt with by sector with emphasis on the building and construction industry, the predominant user of PVC in applications such as window profiles. Other key application areas include medical, wire and cable and packaging. The trends in different global regions are addressed to indicate where markets are mature and where they are likely to expand. \u003cbr\u003e\u003cbr\u003eThere is also an extensive section describing individual global regions, including North America, Europe and China, and indicating areas of over-capacity and of growth. Population size, local legislation, free trade areas and degree of industrialization are all relevant factors here. \u003cbr\u003e\u003cbr\u003eThe individual companies in the PVC industry are diverse in their range of activities. Besides listings in appropriate sections of the book, there is a chapter giving individual company descriptions, citing useful information such as capacity and prospects. \u003cbr\u003e\u003cbr\u003eThere have been campaigns by environmentalists against the use of PVC. There are also concerns about the safety of some of the additives, which have been used in plastics to date, primarily heavy metal stabilisers and phthalate plasticisers. This report outlines these concerns, the effects on the industry and the efforts of PVC manufacturers to address these issues. \u003cbr\u003e\u003cbr\u003eRecycling of plastics is a major issue for all resins, particularly those used in packaging and vehicles, which are increasingly being targeted by legislation. End-of-life PVC is discussed here. \u003cbr\u003e\u003cbr\u003eThis report is accessible to both technical and non-technical personnel with an interest in the PVC industry. It will provide an excellent overview for market researchers, and analysts, whilst providing key information on the marketplace and prospects to those in the industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. About this Report \u003cbr\u003e2. Executive Summary \u003cbr\u003e3. Brief History of the PVC Industry \u003cbr\u003e4. Advantages and Disadvantages of PVC \u003cbr\u003e5. World Consumption of PVC \u003cbr\u003e6. The Price of PVC \u003cbr\u003e7. How PVC is Made \u003cbr\u003e8. Additives for PVC formulations \u003cbr\u003e9. Compounding and Shaping \u003cbr\u003e10. Environmental Issues \u003cbr\u003e11. End-of-Life Disposal of PVC Products \u003cbr\u003e12. PVC in Building and Construction \u003cbr\u003e13. Floorcoverings \u003cbr\u003e14. Packaging \u003cbr\u003e15. Wire and Cable \u003cbr\u003e16. Medical Products \u003cbr\u003e17. Toys and Other Children's Products \u003cbr\u003e18. Gloves \u003cbr\u003e19. Footwear \u003cbr\u003e20. Automotive Applications of PVC \u003cbr\u003e21. Coatings, Paints and Coated Substrates \u003cbr\u003e22. Other Applications of PVC \u003cbr\u003e23. The PVC Industry in Key Global Regions \u003cbr\u003e24. Some Representative Companies in the PVC Industry \u003cbr\u003e25. Prospects for PVC - A Brief Summary \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eReferences \u003cbr\u003eAppendix: Additional Sources of Information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Geoff Pritchard is Emeritus Professor of Kingston University in Surrey, UK. He has extensive knowledge of the PVC industry. He is the editor of several books on plastics and is also the editor of the monthly newsletter Focus on Polyvinyl Chloride, which provides regular updates of events in the PVC industry worldwide, as well as of Rapra's Focus on Plastics Additives, much of which relates to PVC.","published_at":"2017-06-22T21:14:01-04:00","created_at":"2017-06-22T21:14:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","additives","automotive","book","building","cable","coatings","compounding","construction","copolymers","disposal","emulsion","environment","floorcoverings","footwear","global production","gloves","market","marketing","medical","packaging","paints","price","PVC","report","shaping","solution","suspension","toys","wire"],"price":43000,"price_min":43000,"price_max":43000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC - World Markets and Prospects","public_title":null,"options":["Default Title"],"price":43000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-311-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197","options":["Title"],"media":[{"alt":null,"id":358725943389,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002, G. Pritchard, Emeritus Professor of Kingston University, Surrey, UK \u003cbr\u003eISBN 978-1-85957-311-2 \u003cbr\u003e\u003cbr\u003eKingston University, Surrey, UK\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 200\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n20% of all the resin sold in the world today, 26 million tonnes, consists of PVC. It is the second most used plastics material in the world. \u003cbr\u003e\u003cbr\u003eThis report discusses PVC from a business perspective, looking at its supply and demand, price, markets and applications, environmental issues and the future prospects of the industry. \u003cbr\u003e\u003cbr\u003eProfessor Pritchard is an exceptional author. He has successfully covered the broad sweep of the PVC industry, describing raw materials and synthesis, additives and compounding, and processing. Current issues have been highlighted including new technology and market forces. \u003cbr\u003e\u003cbr\u003eApplications are dealt with by sector with emphasis on the building and construction industry, the predominant user of PVC in applications such as window profiles. Other key application areas include medical, wire and cable and packaging. The trends in different global regions are addressed to indicate where markets are mature and where they are likely to expand. \u003cbr\u003e\u003cbr\u003eThere is also an extensive section describing individual global regions, including North America, Europe and China, and indicating areas of over-capacity and of growth. Population size, local legislation, free trade areas and degree of industrialization are all relevant factors here. \u003cbr\u003e\u003cbr\u003eThe individual companies in the PVC industry are diverse in their range of activities. Besides listings in appropriate sections of the book, there is a chapter giving individual company descriptions, citing useful information such as capacity and prospects. \u003cbr\u003e\u003cbr\u003eThere have been campaigns by environmentalists against the use of PVC. There are also concerns about the safety of some of the additives, which have been used in plastics to date, primarily heavy metal stabilisers and phthalate plasticisers. This report outlines these concerns, the effects on the industry and the efforts of PVC manufacturers to address these issues. \u003cbr\u003e\u003cbr\u003eRecycling of plastics is a major issue for all resins, particularly those used in packaging and vehicles, which are increasingly being targeted by legislation. End-of-life PVC is discussed here. \u003cbr\u003e\u003cbr\u003eThis report is accessible to both technical and non-technical personnel with an interest in the PVC industry. It will provide an excellent overview for market researchers, and analysts, whilst providing key information on the marketplace and prospects to those in the industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. About this Report \u003cbr\u003e2. Executive Summary \u003cbr\u003e3. Brief History of the PVC Industry \u003cbr\u003e4. Advantages and Disadvantages of PVC \u003cbr\u003e5. World Consumption of PVC \u003cbr\u003e6. The Price of PVC \u003cbr\u003e7. How PVC is Made \u003cbr\u003e8. Additives for PVC formulations \u003cbr\u003e9. Compounding and Shaping \u003cbr\u003e10. Environmental Issues \u003cbr\u003e11. End-of-Life Disposal of PVC Products \u003cbr\u003e12. PVC in Building and Construction \u003cbr\u003e13. Floorcoverings \u003cbr\u003e14. Packaging \u003cbr\u003e15. Wire and Cable \u003cbr\u003e16. Medical Products \u003cbr\u003e17. Toys and Other Children's Products \u003cbr\u003e18. Gloves \u003cbr\u003e19. Footwear \u003cbr\u003e20. Automotive Applications of PVC \u003cbr\u003e21. Coatings, Paints and Coated Substrates \u003cbr\u003e22. Other Applications of PVC \u003cbr\u003e23. The PVC Industry in Key Global Regions \u003cbr\u003e24. Some Representative Companies in the PVC Industry \u003cbr\u003e25. Prospects for PVC - A Brief Summary \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eReferences \u003cbr\u003eAppendix: Additional Sources of Information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Geoff Pritchard is Emeritus Professor of Kingston University in Surrey, UK. He has extensive knowledge of the PVC industry. He is the editor of several books on plastics and is also the editor of the monthly newsletter Focus on Polyvinyl Chloride, which provides regular updates of events in the PVC industry worldwide, as well as of Rapra's Focus on Plastics Additives, much of which relates to PVC."}
PVC Compound and Proce...
$125.00
{"id":11242228996,"title":"PVC Compound and Processing","handle":"978-1-85957-472-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Stuart G. Patrick \u003cbr\u003eISBN 978-1-85957-472-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003epages: 176\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe PVC global market size in 2000 was around 25,400 kt. Pipes and fittings constitute the largest volume application at 36% of the marketplace with profiles at 13%. Thus, PVC is one of the most widely used plastics in the world. This overview covers the basics of PVC formulation and processing, while extending the information to include the latest developments in materials and technology. This makes the report accessible and useful to all levels of the industry. \u003cbr\u003e\u003cbr\u003ePVC is of low thermal stability and high melt viscosity. Therefore, it is combined with a number of additives to varying properties to suit different end-use applications. PVC formulation is key to processing a success. This review looks at the different additive types available, their uses and new developments. The main groups of additives are: heat stabilisers, plasticisers, impact modifiers, process aids, lubricants, fillers, flame retardants, pigments, blowing agents, biocides, viscosity modifiers, antistatic agents, antioxidants, UV absorbers, antifogging agents and bonding agents. Formulation changes are being driven by legislation banning heavy metals and possible health risks from additives such as phthalate plasticisers. \u003cbr\u003e\u003cbr\u003ePVC compounding methods are considered here. There are many different ways of processing PVC: extrusion, calendering, injection moulding, extrusion\/stretch blow moulding, spreading\/coating, rotational moulding, dip moulding and slush moulding. The technology is covered in this report. Fabrication and treatment of PVC are also reviewed, for example, surface modification to enhance biocompatibility and reduce plasticiser migration. \u003cbr\u003e\u003cbr\u003eThe PVC industry has been under intense scrutiny in recent years due to health and environmental safety concerns. The industry has responded proactively to these pressures by reviewing practice and undertaking research into ways of reducing all types of risk. Sustainability issues have also been addressed and many different recycling projects have been set up. The legislation is driving this work forward with EU Directives on such issues as disposal of end-of-life vehicles. \u003cbr\u003e\u003cbr\u003eOver 400 references from recent literature are cited in the review, which is accompanied by abstracts from the Rapra Polymer Library database, to facilitate further reading. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Polyvinyl Chloride\u003cbr\u003e1.2 PVC Compounds\u003cbr\u003e1.3 History \u003cbr\u003e2 PVC Industry\u003cbr\u003e2.1 PVC Resin\u003cbr\u003e2.1.1 Vinyl Chloride Manufacture\u003cbr\u003e2.1.2 Homopolymers\u003cbr\u003e2.2 Copolymers and Terpolymers\u003cbr\u003e2.3 Chlorinated PVC (CPVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.5 Key Additives\u003cbr\u003e2.6 Processing Techniques\u003cbr\u003e2.7 Industry Outline\u003cbr\u003e2.7.1 PVC Resin Producers\u003cbr\u003e2.7.2 PVC Compounders\u003cbr\u003e2.7.3 Global Market by Application \u003cbr\u003e3 Health and Environmental Aspects of PVC\u003cbr\u003e3.1 VCM and PVC Production\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 Phthalates\u003cbr\u003e3.2.2 Adipates\u003cbr\u003e3.3 Heat Stabilisers\u003cbr\u003e3.3.1 Lead Based Stabilisers\u003cbr\u003e3.3.2 Organotin Stabilisers\u003cbr\u003e3.3.3 Bisphenol A\/Alkylphenols\u003cbr\u003e3.3.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e3.4 Waste Management\u003cbr\u003e3.4.1 Incineration\u003cbr\u003e3.4.2 Landfill\u003cbr\u003e3.4.3 Recycling \u003cbr\u003e4 Additives, Formulations, and Applications\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Heat Stabilisers\u003cbr\u003e4.2.1 Solid Stabilisers\u003cbr\u003e4.3 Plasticisers\u003cbr\u003e4.3.1 Phthalate Alternatives\u003cbr\u003e4.3.2 Polymeric Plasticisers\u003cbr\u003e4.4 Multifunctional Additives\u003cbr\u003e4.5 Property Modifiers\u003cbr\u003e4.5.1 Process Aids\u003cbr\u003e4.5.2 Impact Modifiers\u003cbr\u003e4.5.3 Heat Distortion Temperature Modification\u003cbr\u003e4.5.4 Modifiers for Semi-Rigid and Plasticised Applications\u003cbr\u003e4.6 Lubricants\u003cbr\u003e4.7 Fillers\u003cbr\u003e4.7.1 Calcium Carbonate\u003cbr\u003e4.7.2 Wood Fillers\/Fibres\/Flour Composites\u003cbr\u003e4.7.3 Glass Beads\/Glass Fibre\u003cbr\u003e4.7.4 Conductive and Magnetic Fillers\u003cbr\u003e4.7.5 Other Fillers\u003cbr\u003e4.7.6 Nanocomposites\u003cbr\u003e4.8 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e4.9 Pigments\u003cbr\u003e4.10 Biocides\u003cbr\u003e4.11 Blowing Agents\u003cbr\u003e4.12 Antioxidants and Light Stabilisers\u003cbr\u003e4.13 Other Additives for PVC-P\u003cbr\u003e4.13.1 Antistatic Agents\u003cbr\u003e4.13.2 Viscosity Modifiers\u003cbr\u003e4.13.3 Antifogging Agents\u003cbr\u003e4.13.4 Bonding Agents\u003cbr\u003e4.14 Formulations\u003cbr\u003e4.14.1 PVC-U Compounds and Testing\u003cbr\u003e4.14.2 Crosslinked PVC\u003cbr\u003e4.14.3 Medical and Food Contact Use\u003cbr\u003e4.14.4 Membranes \u003cbr\u003e5 Compounding and Processing Technology\u003cbr\u003e5.1 Compounding\u003cbr\u003e5.1.1 Dry Blend Mixing\u003cbr\u003e5.1.2 Melt Compounding\u003cbr\u003e5.1.3 Liquid PVC Blending\u003cbr\u003e5.2 Processing\u003cbr\u003e5.2.1 Gelation\u003cbr\u003e5.2.2 Extrusion\u003cbr\u003e5.2.3 Injection Moulding\u003cbr\u003e5.2.4. Extrusion Blow Moulding\u003cbr\u003e5.2.5 Orientation\u003cbr\u003e5.2.6 Calendering\u003cbr\u003e5.2.7 Moulding Processes for Plastisols and Pastes \u003cbr\u003e6 Fabrication and Treatment\u003cbr\u003e6.1 Thermoforming\u003cbr\u003e6.2 Surface Modification Processes\u003cbr\u003e6.3 Coatings\u003cbr\u003e6.4 Adhesion \u003cbr\u003e7 PVC and Sustainable Development\u003cbr\u003e7.1 Waste Management\u003cbr\u003e7.1.1 PVC Rich Waste - Mechanical Recycling\u003cbr\u003e7.1.2 PVC Feedstock Recycling\u003cbr\u003e7.1.3 Incineration\/Energy Recovery \u003cbr\u003e8 Conclusions \u003cbr\u003eAcknowledgement\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick is a Chartered Chemist and a Member of the Royal Society of Chemistry. He is chairman of the PVC Committee of the IOM3. His career has included 23 years in the PVC Additives business of Akzo Nobel\/Akcros Chemicals, where he has been involved in technical services, research, and development. From 2001 to 2003, he was the Global Research and Development Manager. Current projects include sustainability research at IPTME, Loughborough.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:10-04:00","created_at":"2017-06-22T21:14:10-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","additives","antioxidants","antistatic","beads","biocides","blow moulding","blowing agents","book","calcium carbonate","calendering","coating","composites","compounds","conductive","extrusion","fibres","fillers","flame retardants","glass","injection moulding","magnetic","melt","modifiers","nanocomposites","orientation","p-chemistry","phthalate","pigments","plasticisers","plasticizers","polymer","polymeric","process aids","processing","PVC","smoke suppressants","stabilisers","stability","viscosity","waste","wood"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378397956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Compound and Processing","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-472-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830","options":["Title"],"media":[{"alt":null,"id":358726664285,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Stuart G. Patrick \u003cbr\u003eISBN 978-1-85957-472-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003epages: 176\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe PVC global market size in 2000 was around 25,400 kt. Pipes and fittings constitute the largest volume application at 36% of the marketplace with profiles at 13%. Thus, PVC is one of the most widely used plastics in the world. This overview covers the basics of PVC formulation and processing, while extending the information to include the latest developments in materials and technology. This makes the report accessible and useful to all levels of the industry. \u003cbr\u003e\u003cbr\u003ePVC is of low thermal stability and high melt viscosity. Therefore, it is combined with a number of additives to varying properties to suit different end-use applications. PVC formulation is key to processing a success. This review looks at the different additive types available, their uses and new developments. The main groups of additives are: heat stabilisers, plasticisers, impact modifiers, process aids, lubricants, fillers, flame retardants, pigments, blowing agents, biocides, viscosity modifiers, antistatic agents, antioxidants, UV absorbers, antifogging agents and bonding agents. Formulation changes are being driven by legislation banning heavy metals and possible health risks from additives such as phthalate plasticisers. \u003cbr\u003e\u003cbr\u003ePVC compounding methods are considered here. There are many different ways of processing PVC: extrusion, calendering, injection moulding, extrusion\/stretch blow moulding, spreading\/coating, rotational moulding, dip moulding and slush moulding. The technology is covered in this report. Fabrication and treatment of PVC are also reviewed, for example, surface modification to enhance biocompatibility and reduce plasticiser migration. \u003cbr\u003e\u003cbr\u003eThe PVC industry has been under intense scrutiny in recent years due to health and environmental safety concerns. The industry has responded proactively to these pressures by reviewing practice and undertaking research into ways of reducing all types of risk. Sustainability issues have also been addressed and many different recycling projects have been set up. The legislation is driving this work forward with EU Directives on such issues as disposal of end-of-life vehicles. \u003cbr\u003e\u003cbr\u003eOver 400 references from recent literature are cited in the review, which is accompanied by abstracts from the Rapra Polymer Library database, to facilitate further reading. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Polyvinyl Chloride\u003cbr\u003e1.2 PVC Compounds\u003cbr\u003e1.3 History \u003cbr\u003e2 PVC Industry\u003cbr\u003e2.1 PVC Resin\u003cbr\u003e2.1.1 Vinyl Chloride Manufacture\u003cbr\u003e2.1.2 Homopolymers\u003cbr\u003e2.2 Copolymers and Terpolymers\u003cbr\u003e2.3 Chlorinated PVC (CPVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.5 Key Additives\u003cbr\u003e2.6 Processing Techniques\u003cbr\u003e2.7 Industry Outline\u003cbr\u003e2.7.1 PVC Resin Producers\u003cbr\u003e2.7.2 PVC Compounders\u003cbr\u003e2.7.3 Global Market by Application \u003cbr\u003e3 Health and Environmental Aspects of PVC\u003cbr\u003e3.1 VCM and PVC Production\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 Phthalates\u003cbr\u003e3.2.2 Adipates\u003cbr\u003e3.3 Heat Stabilisers\u003cbr\u003e3.3.1 Lead Based Stabilisers\u003cbr\u003e3.3.2 Organotin Stabilisers\u003cbr\u003e3.3.3 Bisphenol A\/Alkylphenols\u003cbr\u003e3.3.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e3.4 Waste Management\u003cbr\u003e3.4.1 Incineration\u003cbr\u003e3.4.2 Landfill\u003cbr\u003e3.4.3 Recycling \u003cbr\u003e4 Additives, Formulations, and Applications\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Heat Stabilisers\u003cbr\u003e4.2.1 Solid Stabilisers\u003cbr\u003e4.3 Plasticisers\u003cbr\u003e4.3.1 Phthalate Alternatives\u003cbr\u003e4.3.2 Polymeric Plasticisers\u003cbr\u003e4.4 Multifunctional Additives\u003cbr\u003e4.5 Property Modifiers\u003cbr\u003e4.5.1 Process Aids\u003cbr\u003e4.5.2 Impact Modifiers\u003cbr\u003e4.5.3 Heat Distortion Temperature Modification\u003cbr\u003e4.5.4 Modifiers for Semi-Rigid and Plasticised Applications\u003cbr\u003e4.6 Lubricants\u003cbr\u003e4.7 Fillers\u003cbr\u003e4.7.1 Calcium Carbonate\u003cbr\u003e4.7.2 Wood Fillers\/Fibres\/Flour Composites\u003cbr\u003e4.7.3 Glass Beads\/Glass Fibre\u003cbr\u003e4.7.4 Conductive and Magnetic Fillers\u003cbr\u003e4.7.5 Other Fillers\u003cbr\u003e4.7.6 Nanocomposites\u003cbr\u003e4.8 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e4.9 Pigments\u003cbr\u003e4.10 Biocides\u003cbr\u003e4.11 Blowing Agents\u003cbr\u003e4.12 Antioxidants and Light Stabilisers\u003cbr\u003e4.13 Other Additives for PVC-P\u003cbr\u003e4.13.1 Antistatic Agents\u003cbr\u003e4.13.2 Viscosity Modifiers\u003cbr\u003e4.13.3 Antifogging Agents\u003cbr\u003e4.13.4 Bonding Agents\u003cbr\u003e4.14 Formulations\u003cbr\u003e4.14.1 PVC-U Compounds and Testing\u003cbr\u003e4.14.2 Crosslinked PVC\u003cbr\u003e4.14.3 Medical and Food Contact Use\u003cbr\u003e4.14.4 Membranes \u003cbr\u003e5 Compounding and Processing Technology\u003cbr\u003e5.1 Compounding\u003cbr\u003e5.1.1 Dry Blend Mixing\u003cbr\u003e5.1.2 Melt Compounding\u003cbr\u003e5.1.3 Liquid PVC Blending\u003cbr\u003e5.2 Processing\u003cbr\u003e5.2.1 Gelation\u003cbr\u003e5.2.2 Extrusion\u003cbr\u003e5.2.3 Injection Moulding\u003cbr\u003e5.2.4. Extrusion Blow Moulding\u003cbr\u003e5.2.5 Orientation\u003cbr\u003e5.2.6 Calendering\u003cbr\u003e5.2.7 Moulding Processes for Plastisols and Pastes \u003cbr\u003e6 Fabrication and Treatment\u003cbr\u003e6.1 Thermoforming\u003cbr\u003e6.2 Surface Modification Processes\u003cbr\u003e6.3 Coatings\u003cbr\u003e6.4 Adhesion \u003cbr\u003e7 PVC and Sustainable Development\u003cbr\u003e7.1 Waste Management\u003cbr\u003e7.1.1 PVC Rich Waste - Mechanical Recycling\u003cbr\u003e7.1.2 PVC Feedstock Recycling\u003cbr\u003e7.1.3 Incineration\/Energy Recovery \u003cbr\u003e8 Conclusions \u003cbr\u003eAcknowledgement\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick is a Chartered Chemist and a Member of the Royal Society of Chemistry. He is chairman of the PVC Committee of the IOM3. His career has included 23 years in the PVC Additives business of Akzo Nobel\/Akcros Chemicals, where he has been involved in technical services, research, and development. From 2001 to 2003, he was the Global Research and Development Manager. Current projects include sustainability research at IPTME, Loughborough.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
PVC Degradation and St...
$275.00
{"id":11242219972,"title":"PVC Degradation and Stabilization","handle":"978-1-895198-39-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-39-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003eSecond edition\u003cbr\u003ePages: 442\u003cbr\u003eFigures: 275 \u003cbr\u003eTables: 66\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the global renewal of interest in PVC, this book is well timed, considering that PVC stabilization is the most important aspect of its formulation and performance.\n\u003cp\u003eOnly four books have been published on PVC degradation and stabilization (the last one in the 1980s), and two of them are by the author of this book.\u003c\/p\u003e\n\u003cp\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, and UV, gamma, and other forms of radiation, mechanodegradation, chemical degradation, analytic methods used in studying of degradative and stabilization processes, stabilization, and effect of PVC and its additives on health, safety and environment.\u003c\/p\u003e\n\u003cp\u003eThis book contains an analysis of all essential papers published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found.\u003c\/p\u003e\n\u003cp\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003ePVC has a long history of development which began nearly 100 years ago with the patenting of the concepts of emulsion and suspension polymerization, the development of the industrial process of vinyl chloride synthesis, and patents on its plasticization, followed by the development of stabilization about 75 years ago. PVC has known rapid growth to utmost prominence and dramatic downfall almost to elimination, and it finally has regained a deserved, second position among commercial polymers.\u003cbr\u003ePVC owes both its prominence and its downfall to research: meticulous, cutting-edge studies and unscrupulous bad science which stops progress and derails achievements.\u003cbr\u003ePVC degradation during processing and use was always one of the essential elements of PVC science and technology. Many approaches to stabilization changed and some groups of stabilizers are not used in new production. This book was written to show new trends and directions. It also contains clearly indicated information about past stabilizers, which is needed in order to understand the principles of stabilization and effective recycling.\u003cbr\u003eFor me, it has been an interesting experience to actively participate in the growth of this branch of science and summarize its achievements and the directions which it faces now, here and in my two previous books, written 25 years ago. I hope the clarity and completeness of the description of research findings as we know them today will help in further research and, most importantly, lead to successful and responsible practical applications of additives in PVC processing and applications.\u003cbr\u003e\u003cbr\u003eGeorge Wypych\u003cbr\u003eToronto, May 8, 2008\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr\u003e1 Chemical Structure of PVC\u003c\/strong\u003e\u003cbr\u003e1.1 Repeat structures and their basic organic chemistry \u003cbr\u003e1.1.1 Bronsted acid source with controllable emission \u003cbr\u003e1.2 Molecular weight and its distribution \u003cbr\u003e1.2.1 Kuhn-Mark-Houwink-Sakurada \u003cbr\u003e1.2.2 Fikentscher K number \u003cbr\u003e1.2.3 Chain length \u003cbr\u003e1.3 Prediction of formation of irregular segments \u003cbr\u003e1.3.1 Ab initio \u003cbr\u003e1.3.2 Monte Carlo \u003cbr\u003e1.4 Irregular segments \u003cbr\u003e1.4.1 Branches \u003cbr\u003e1.4.2 Tertiary chlorine \u003cbr\u003e1.4.3 Unsaturations \u003cbr\u003e1.4.4 Oxygen containing groups \u003cbr\u003e1.4.4.1 Ketochloroallyl groups \u003cbr\u003e1.4.4.2 a- and b-carbonyl groups \u003cbr\u003e1.4.5 Head-to-head structures \u003cbr\u003e1.4.5 Initiator rests \u003cbr\u003e1.4.6 Transfer agent rests \u003cbr\u003e1.4.8 Defects introduced during processing \u003cbr\u003e1.4.9 PVC having increased stability \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PVC Manufacture Technology \u003c\/strong\u003e\u003cbr\u003e2.1 Monomer \u003cbr\u003e2.2 Basic Steps of Radical Polymerization \u003cbr\u003e2.2.1 Initiation \u003cbr\u003e2.2.2 Propagation \u003cbr\u003e2.2.3 Termination \u003cbr\u003e2.2.4 Chain transfer to monomer \u003cbr\u003e2.3 Polymerization technology \u003cbr\u003e2.3.1 Suspension \u003cbr\u003e2.3.2 Paste resin manufacturing processes \u003cbr\u003e2.3.3 Bulk \u003cbr\u003e2.3.4 Solution \u003cbr\u003e2.4 Polymerization conditions and PVC properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 PVC Morphology\u003c\/strong\u003e\u003cbr\u003e3.1. Molecular weight of polymer (chain length) \u003cbr\u003e3.2. Configuration and conformation \u003cbr\u003e3.3. Chain folds \u003cbr\u003e3.4. Chain thickness \u003cbr\u003e3.5 Entanglements \u003cbr\u003e3.6 Crystalline structure \u003cbr\u003e3.7 Grain morphology \u003cbr\u003e3.7.1 Stages of morphology development during manufacture \u003cbr\u003e3.7.1.1 Suspension polymerization \u003cbr\u003e3.7.1.2 Paste grades manufacture \u003cbr\u003e3.7.1.3 Bulk polymerization \u003cbr\u003e3.7.2 Effect of morphology on degradation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Principles of Thermal Degradation\u003c\/strong\u003e\u003cbr\u003e4.1 The reasons for polymer instability \u003cbr\u003e4.1.1 Structural defects \u003cbr\u003e4.1.1.1 Branches \u003cbr\u003e4.1.1.2 Tertiary chlorine \u003cbr\u003e4.1.1.3 Unstaturations \u003cbr\u003e4.1.1.4 Oxygen containing groups \u003cbr\u003e4.1.1.5 Head-to-head structures \u003cbr\u003e4.1.1.6 Morphology \u003cbr\u003e4.1.2 Polymerization residue \u003cbr\u003e4.1.2.1 Initiator rests \u003cbr\u003e4.1.2.2 Transfer agent rests \u003cbr\u003e4.1.2.3 Polymerization additives \u003cbr\u003e4.1.3 Metal derivatives \u003cbr\u003e4.1.3.1 Metal chlorides \u003cbr\u003e4.1.3.2 Copper and its oxide \u003cbr\u003e4.1.4 Hydrogen chloride 14 \u003cbr\u003e4.1.5 Impurities \u003cbr\u003e4.1.6 Shear \u003cbr\u003e4.1.7 Temperature \u003cbr\u003e4.1.8 Surrounding atmosphere \u003cbr\u003e4.1.9 Additives \u003cbr\u003e4.2 Mechanisms of thermal degradation \u003cbr\u003e4.2.1 Molecular mechanism \u003cbr\u003e4.2.2 Amer-Shapiro mechanism \u003cbr\u003e4.2.3 Six-center concerted mechanism \u003cbr\u003e4.2.4 Activation enthalpy \u003cbr\u003e4.2.5 Radical-chain theory \u003cbr\u003e4.2.6 Ionic \u003cbr\u003e4.2.7 Polaron \u003cbr\u003e4.2.8 Degenerated branching \u003cbr\u003e4.2.9 Transition state theory \u003cbr\u003e4.2.10 Recapitulation \u003cbr\u003e4.3 Kinetics \u003cbr\u003e4.3.1 Initiation \u003cbr\u003e4.3.2 Propagation \u003cbr\u003e4.3.3 Termination \u003cbr\u003e4.4 Results of thermal degradation \u003cbr\u003e4.4.1 Volatiles \u003cbr\u003e4.4.2 Weight loss \u003cbr\u003e4.4.3 Char formation \u003cbr\u003e4.4.4 Ash content \u003cbr\u003e4.4.5 Thermal lifetime \u003cbr\u003e4.4.6 Optical properties \u003cbr\u003e4.4.6.1 Color change \u003cbr\u003e4.4.6.2 Extinction coefficient \u003cbr\u003e4.4.6.3 Absorbance \u003cbr\u003e4.4.7 Molecular weight \u003cbr\u003e4.4.8 Mechanical properties \u003cbr\u003e4.4.9 Electric properties \u003cbr\u003e4.5 Effect of additives \u003cbr\u003e4.5.1 Blend polymers \u003cbr\u003e4.5.1.1 ABS \u003cbr\u003e4.5.1.2 Chlorinated polyethylene, CPE \u003cbr\u003e4.5.1.3 Epoxidized butadiene\/styrene block copolymer \u003cbr\u003e4.5.1.4 Epoxidized natural rubber \u003cbr\u003e4.5.1.5 Ethylene vinyl acetate, EVA \u003cbr\u003e4.5.1.6 High impact polystyrene, HIPS \u003cbr\u003e4.5.1.7 Methylmethacrylate-butadiene-styrene \u003cbr\u003e4.5.1.8 Nitrile rubber, NBR \u003cbr\u003e4.5.1.9 Oxidized polyethylene, OPE \u003cbr\u003e4.5.1.10 Polyacrylate \u003cbr\u003e4.5.1.11 Polyacrylonitrile \u003cbr\u003e4.5.1.12 Polyamide \u003cbr\u003e4.5.1.13 Polyaniline, PANI \u003cbr\u003e4.5.1.13 Polycarbonate, PC \u003cbr\u003e4.5.1.14 Polyethylene, PE \u003cbr\u003e4.5.1.15 Poly(methyl methacrylate), PMMA \u003cbr\u003e4.5.1.16 Poly(N-vinyl-2-pyrrolidone), PVP \u003cbr\u003e4.5.1.17 Polysiloxane \u003cbr\u003e4.5.1.18 Polystyrene, PS \u003cbr\u003e4.5.1.19 Polythiophene \u003cbr\u003e4.5.1.20 Polyurethane \u003cbr\u003e4.5.1.21 Poly(vinyl acetate), PVAc \u003cbr\u003e4.5.1.22 Poly(vinyl alcohol), PVA \u003cbr\u003e4.5.1.23 Poly(vinyl butyral), PVB \u003cbr\u003e4.5.1.24 SAN \u003cbr\u003e4.5.2 Antiblocking \u003cbr\u003e4.5.3 Antistatics agents \u003cbr\u003e4.5.4 Biocides and fungicides \u003cbr\u003e4.5.5 Blowing agents \u003cbr\u003e4.5.6 Fillers \u003cbr\u003e4.5.7 Flame retardants \u003cbr\u003e4.5.8 Impact modifiers \u003cbr\u003e4.5.9 Lubricants \u003cbr\u003e4.5.10 Pigments \u003cbr\u003e4.5.11 Plasticizers \u003cbr\u003e4.5.12 Process aids \u003cbr\u003e4.5.13 Solvents \u003cbr\u003e4.5.14 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Principles of UV Degradation\u003c\/strong\u003e\u003cbr\u003e5.1 Reasons for polymer instability \u003cbr\u003e5.1.1 Radiative energy \u003cbr\u003e5.1.2 Radiation intensity \u003cbr\u003e5.1.3 Radiation incidence \u003cbr\u003e5.1.4 Absorption of radiation by materials \u003cbr\u003e5.1.5 Bond structure \u003cbr\u003e5.1.6 Thermal history \u003cbr\u003e5.1.7 Photosensitizers \u003cbr\u003e5.1.8 Wavelength sensitivity \u003cbr\u003e5.1.9 Thermal variability \u003cbr\u003e5.1.10 Pollutants \u003cbr\u003e5.1.11 Laboratory degradation conditions \u003cbr\u003e5.2 Mechanisms of degradation \u003cbr\u003e5.2.1 Radical mechanism \u003cbr\u003e5.2.1.1 Photooxidation mechanism \u003cbr\u003e5.2.1.2 Mechanistic scheme \u003cbr\u003e5.2.1.3 Conformational mechanism \u003cbr\u003e5.2.1.4 Electronic-to-vibrational energy transfer \u003cbr\u003e5.2.1.5 Other contributions to the mechanism of photodegradation \u003cbr\u003e5.3 Kinetics \u003cbr\u003e5.3.1 Initiation \u003cbr\u003e5.3.2 Propagation \u003cbr\u003e5.3.3 Termination \u003cbr\u003e5.4 Results of UV degradation \u003cbr\u003e5.4.1 Photodiscoloration \u003cbr\u003e5.4.2 Mechanical properties \u003cbr\u003e5.4.3 Other properties \u003cbr\u003e5.5 Effect of additives \u003cbr\u003e5.5.1 Biocides and fungicides \u003cbr\u003e5.5.2 Fillers \u003cbr\u003e5.5.3 Flame retardants \u003cbr\u003e5.5.4 Impact modifiers \u003cbr\u003e5.5.5 Lubricants \u003cbr\u003e5.5.6 Pigments and colorants \u003cbr\u003e5.5.6.1 Titanium dioxide \u003cbr\u003e5.5.6.2 Zinc oxide \u003cbr\u003e5.5.6.3 Iron-containing pigments \u003cbr\u003e5.5.7 Plasticizers \u003cbr\u003e5.5.8 Polymer blends \u003cbr\u003e5.5.9 Solvents \u003cbr\u003e5.5.10 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Principles of Degradation by γ-Radiation\u003c\/strong\u003e\u003cbr\u003e6.1 The reasons for polymer instability \u003cbr\u003e6.2 Mechanisms \u003cbr\u003e6.3 Kinetics \u003cbr\u003e6.4 Results \u003cbr\u003e6.5 Effect of additives \u003cbr\u003e6.5.1 Plasticizers \u003cbr\u003e6.5.2 Fillers \u003cbr\u003e6.5.3 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Degradation by Other Forms of Radiation\u003c\/strong\u003e\u003cbr\u003e7.1 Argon plasma \u003cbr\u003e7.2 b-radiation (electron beam) \u003cbr\u003e7.3 Corona discharge \u003cbr\u003e7.4 Ion (proton) beam \u003cbr\u003e7.5 Laser \u003cbr\u003e7.6 Metallization \u003cbr\u003e7.7 Microwave \u003cbr\u003e7.8 Neutron irradiation \u003cbr\u003e7.9 Oxygen plasma \u003cbr\u003e7.10 X-rays \u003cbr\u003e7.11 Ultrasonic \u003cbr\u003eReferences \u003cbr\u003e8 Mechanodegradation \u003cbr\u003eReferences \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e9 Chemical Degradation\u003c\/strong\u003e\u003cbr\u003e9.1 methods of chemical dehydrochlorination \u003cbr\u003e9.2. Kinetics and mechanisms of reaction \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Analytical Methods\u003c\/strong\u003e\u003cbr\u003e10.1 Heat stability test \u003cbr\u003e10.1.1 Sample preparation \u003cbr\u003e10.1.2 Kinetic studies of dehydrochlorination \u003cbr\u003e10.1.3 Dehydrochlorination rate and optical changes \u003cbr\u003e10.1.4 Degradation in solution \u003cbr\u003e10.2 Thermogravimetric analysis \u003cbr\u003e10.2.1 Differential scanning calorimetry, DSC \u003cbr\u003e10.2.2 Mass loss \u003cbr\u003e10.3 Combustion \u003cbr\u003e10.4 Optical properties \u003cbr\u003e10.5 Spectroscopic methods \u003cbr\u003e10.5.1 Atomic absorption, AAS \u003cbr\u003e10.5.2 Auger \u003cbr\u003e10.5.3 Electron spin resonance, ESR \u003cbr\u003e10.5.4 Fourier transform infrared, FTIR \u003cbr\u003e10.5.5 Laser photopyroelectric effect spectrometry \u003cbr\u003e10.5.6 Mass, MS \u003cbr\u003e10.5.7 Mossbauer \u003cbr\u003e10.5.8 Near-infrared, NIR \u003cbr\u003e10.5.9 Nuclear magnetic resonance, NMR \u003cbr\u003e10.5.10 Positron annihilation lifetime spectroscopy, PAS \u003cbr\u003e10.5.11 Raman \u003cbr\u003e10.5.12 Time-of-flight secondary ion mass spectrometry, ToF-SIMS \u003cbr\u003e10.5.13 X-ray analysis \u003cbr\u003e10.5.13.1 Small angle light scattering, SAXS \u003cbr\u003e10.5.13.2 Wide angle light scattering, WAXS or WAXD \u003cbr\u003e10.5.14 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e10.5.15 UV-visible \u003cbr\u003e10.6 Chromatographic methods \u003cbr\u003e10.1 Gas chromatography \u003cbr\u003e10.6.2 Liquid chromatography \u003cbr\u003e10.7 Mechanical properties \u003cbr\u003e10.8 Other essential methods of testing \u003cbr\u003e10.8.1 Action spectrum \u003cbr\u003e10.8.2 Coulter counter \u003cbr\u003e10.8.3 Gel content \u003cbr\u003e10.8.4 Ozonolysis \u003cbr\u003e10.8.5 Peroxide titration \u003cbr\u003e10.8.6 Rheological studies \u003cbr\u003e10.9 International standards \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 Principles of Stabilization \u003c\/strong\u003e\u003cbr\u003e11.1 Functions of PVC stabilizers\u003cbr\u003e11.1.1 Hydrogen chloride binding\u003cbr\u003e11.1.2 Removal of reactive chlorine\u003cbr\u003e11.1.3 Reactions with metal chlorides\u003cbr\u003e11.1.4 Reactions with isolated unsaturations\u003cbr\u003e11.1.5 Reaction with conjugated unsaturations\u003cbr\u003e11.1.6 Decomposition of hydroperoxides\u003cbr\u003e11.1.7 Removal of reactive radicals (chain breaking function)\u003cbr\u003e11.1.8 UV screening\u003cbr\u003e11.2 Theories\u003cbr\u003e11.2.1 Frye and Horst\u003cbr\u003e11.2.2 Application of the Debye-Hückel theory\u003cbr\u003e11.2.3 Kinetic model of PVC stabilization\u003cbr\u003e11.3 Stabilizer groups\u003cbr\u003e11.3.1 Metal soaps\u003cbr\u003e(The groups of stabilizers below are discussed according to the following breakdown: Properties and applications of commercial stabilizers Mechanisms of action Costabilizers Research findings)\u003cbr\u003e11.3.1.1 Barium\/zinc\u003cbr\u003e11.3.1.2 Calcium\/zinc\u003cbr\u003e11.3.1.3 Magnesium\/zinc\u003cbr\u003e11.3.1.4 Potassium\/zinc\u003cbr\u003e11.3.1.5 Barium\/cadmium\u003cbr\u003e11.3.1.6 Barium\/cadmium\/zinc\u003cbr\u003e11.3.2 Lead stabilizers\u003cbr\u003e11.3.3 Organotin stabilizers\u003cbr\u003e11.3.4 Organic stabilizers\u003cbr\u003e11.3.4.1 Epoxidized compounds\u003cbr\u003e11.3.4.3 Phenolic antioxidants\u003cbr\u003e11.3.4.4 Multiketones\u003cbr\u003e11.3.4.5 Other costabilizers\u003cbr\u003e11.3.5 UV stabilizers\u003cbr\u003e11.3.5.1 Organic UV absorbers\u003cbr\u003e11.3.5.2 Inorganic UV absorbers\u003cbr\u003e11.3.5.3 Hindered amine light stabilizers, HALS\u003cbr\u003e11.3.6 Lubricants \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 Health and safety and environmental impact\u003c\/strong\u003e\u003cbr\u003e12.1 Toxic substance control \u003cbr\u003e12.2. Carcinogenic effect \u003cbr\u003e12.3 Teratogenic and mutagenic effect \u003cbr\u003e12.4 Workplace exposure limits \u003cbr\u003e12.5 Exposure from consumer products \u003cbr\u003e12.6 Drinking water \u003cbr\u003e12.7 Food regulatory acts \u003cbr\u003e12.8 Toxicity of stabilizers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:41-04:00","created_at":"2017-06-22T21:13:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","chemical structure of PVC","mechanical properties","morphology","p-chemistry","polymer","PVC UV degradation","PVC additives","PVC chemical degradation","PVC compounding","PVC formulation","PVC mechanodegradation","PVC stabilization","PVC thermal degradation","stability of PVC"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-39-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619","options":["Title"],"media":[{"alt":null,"id":358726893661,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-39-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003eSecond edition\u003cbr\u003ePages: 442\u003cbr\u003eFigures: 275 \u003cbr\u003eTables: 66\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the global renewal of interest in PVC, this book is well timed, considering that PVC stabilization is the most important aspect of its formulation and performance.\n\u003cp\u003eOnly four books have been published on PVC degradation and stabilization (the last one in the 1980s), and two of them are by the author of this book.\u003c\/p\u003e\n\u003cp\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, and UV, gamma, and other forms of radiation, mechanodegradation, chemical degradation, analytic methods used in studying of degradative and stabilization processes, stabilization, and effect of PVC and its additives on health, safety and environment.\u003c\/p\u003e\n\u003cp\u003eThis book contains an analysis of all essential papers published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found.\u003c\/p\u003e\n\u003cp\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003ePVC has a long history of development which began nearly 100 years ago with the patenting of the concepts of emulsion and suspension polymerization, the development of the industrial process of vinyl chloride synthesis, and patents on its plasticization, followed by the development of stabilization about 75 years ago. PVC has known rapid growth to utmost prominence and dramatic downfall almost to elimination, and it finally has regained a deserved, second position among commercial polymers.\u003cbr\u003ePVC owes both its prominence and its downfall to research: meticulous, cutting-edge studies and unscrupulous bad science which stops progress and derails achievements.\u003cbr\u003ePVC degradation during processing and use was always one of the essential elements of PVC science and technology. Many approaches to stabilization changed and some groups of stabilizers are not used in new production. This book was written to show new trends and directions. It also contains clearly indicated information about past stabilizers, which is needed in order to understand the principles of stabilization and effective recycling.\u003cbr\u003eFor me, it has been an interesting experience to actively participate in the growth of this branch of science and summarize its achievements and the directions which it faces now, here and in my two previous books, written 25 years ago. I hope the clarity and completeness of the description of research findings as we know them today will help in further research and, most importantly, lead to successful and responsible practical applications of additives in PVC processing and applications.\u003cbr\u003e\u003cbr\u003eGeorge Wypych\u003cbr\u003eToronto, May 8, 2008\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr\u003e1 Chemical Structure of PVC\u003c\/strong\u003e\u003cbr\u003e1.1 Repeat structures and their basic organic chemistry \u003cbr\u003e1.1.1 Bronsted acid source with controllable emission \u003cbr\u003e1.2 Molecular weight and its distribution \u003cbr\u003e1.2.1 Kuhn-Mark-Houwink-Sakurada \u003cbr\u003e1.2.2 Fikentscher K number \u003cbr\u003e1.2.3 Chain length \u003cbr\u003e1.3 Prediction of formation of irregular segments \u003cbr\u003e1.3.1 Ab initio \u003cbr\u003e1.3.2 Monte Carlo \u003cbr\u003e1.4 Irregular segments \u003cbr\u003e1.4.1 Branches \u003cbr\u003e1.4.2 Tertiary chlorine \u003cbr\u003e1.4.3 Unsaturations \u003cbr\u003e1.4.4 Oxygen containing groups \u003cbr\u003e1.4.4.1 Ketochloroallyl groups \u003cbr\u003e1.4.4.2 a- and b-carbonyl groups \u003cbr\u003e1.4.5 Head-to-head structures \u003cbr\u003e1.4.5 Initiator rests \u003cbr\u003e1.4.6 Transfer agent rests \u003cbr\u003e1.4.8 Defects introduced during processing \u003cbr\u003e1.4.9 PVC having increased stability \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PVC Manufacture Technology \u003c\/strong\u003e\u003cbr\u003e2.1 Monomer \u003cbr\u003e2.2 Basic Steps of Radical Polymerization \u003cbr\u003e2.2.1 Initiation \u003cbr\u003e2.2.2 Propagation \u003cbr\u003e2.2.3 Termination \u003cbr\u003e2.2.4 Chain transfer to monomer \u003cbr\u003e2.3 Polymerization technology \u003cbr\u003e2.3.1 Suspension \u003cbr\u003e2.3.2 Paste resin manufacturing processes \u003cbr\u003e2.3.3 Bulk \u003cbr\u003e2.3.4 Solution \u003cbr\u003e2.4 Polymerization conditions and PVC properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 PVC Morphology\u003c\/strong\u003e\u003cbr\u003e3.1. Molecular weight of polymer (chain length) \u003cbr\u003e3.2. Configuration and conformation \u003cbr\u003e3.3. Chain folds \u003cbr\u003e3.4. Chain thickness \u003cbr\u003e3.5 Entanglements \u003cbr\u003e3.6 Crystalline structure \u003cbr\u003e3.7 Grain morphology \u003cbr\u003e3.7.1 Stages of morphology development during manufacture \u003cbr\u003e3.7.1.1 Suspension polymerization \u003cbr\u003e3.7.1.2 Paste grades manufacture \u003cbr\u003e3.7.1.3 Bulk polymerization \u003cbr\u003e3.7.2 Effect of morphology on degradation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Principles of Thermal Degradation\u003c\/strong\u003e\u003cbr\u003e4.1 The reasons for polymer instability \u003cbr\u003e4.1.1 Structural defects \u003cbr\u003e4.1.1.1 Branches \u003cbr\u003e4.1.1.2 Tertiary chlorine \u003cbr\u003e4.1.1.3 Unstaturations \u003cbr\u003e4.1.1.4 Oxygen containing groups \u003cbr\u003e4.1.1.5 Head-to-head structures \u003cbr\u003e4.1.1.6 Morphology \u003cbr\u003e4.1.2 Polymerization residue \u003cbr\u003e4.1.2.1 Initiator rests \u003cbr\u003e4.1.2.2 Transfer agent rests \u003cbr\u003e4.1.2.3 Polymerization additives \u003cbr\u003e4.1.3 Metal derivatives \u003cbr\u003e4.1.3.1 Metal chlorides \u003cbr\u003e4.1.3.2 Copper and its oxide \u003cbr\u003e4.1.4 Hydrogen chloride 14 \u003cbr\u003e4.1.5 Impurities \u003cbr\u003e4.1.6 Shear \u003cbr\u003e4.1.7 Temperature \u003cbr\u003e4.1.8 Surrounding atmosphere \u003cbr\u003e4.1.9 Additives \u003cbr\u003e4.2 Mechanisms of thermal degradation \u003cbr\u003e4.2.1 Molecular mechanism \u003cbr\u003e4.2.2 Amer-Shapiro mechanism \u003cbr\u003e4.2.3 Six-center concerted mechanism \u003cbr\u003e4.2.4 Activation enthalpy \u003cbr\u003e4.2.5 Radical-chain theory \u003cbr\u003e4.2.6 Ionic \u003cbr\u003e4.2.7 Polaron \u003cbr\u003e4.2.8 Degenerated branching \u003cbr\u003e4.2.9 Transition state theory \u003cbr\u003e4.2.10 Recapitulation \u003cbr\u003e4.3 Kinetics \u003cbr\u003e4.3.1 Initiation \u003cbr\u003e4.3.2 Propagation \u003cbr\u003e4.3.3 Termination \u003cbr\u003e4.4 Results of thermal degradation \u003cbr\u003e4.4.1 Volatiles \u003cbr\u003e4.4.2 Weight loss \u003cbr\u003e4.4.3 Char formation \u003cbr\u003e4.4.4 Ash content \u003cbr\u003e4.4.5 Thermal lifetime \u003cbr\u003e4.4.6 Optical properties \u003cbr\u003e4.4.6.1 Color change \u003cbr\u003e4.4.6.2 Extinction coefficient \u003cbr\u003e4.4.6.3 Absorbance \u003cbr\u003e4.4.7 Molecular weight \u003cbr\u003e4.4.8 Mechanical properties \u003cbr\u003e4.4.9 Electric properties \u003cbr\u003e4.5 Effect of additives \u003cbr\u003e4.5.1 Blend polymers \u003cbr\u003e4.5.1.1 ABS \u003cbr\u003e4.5.1.2 Chlorinated polyethylene, CPE \u003cbr\u003e4.5.1.3 Epoxidized butadiene\/styrene block copolymer \u003cbr\u003e4.5.1.4 Epoxidized natural rubber \u003cbr\u003e4.5.1.5 Ethylene vinyl acetate, EVA \u003cbr\u003e4.5.1.6 High impact polystyrene, HIPS \u003cbr\u003e4.5.1.7 Methylmethacrylate-butadiene-styrene \u003cbr\u003e4.5.1.8 Nitrile rubber, NBR \u003cbr\u003e4.5.1.9 Oxidized polyethylene, OPE \u003cbr\u003e4.5.1.10 Polyacrylate \u003cbr\u003e4.5.1.11 Polyacrylonitrile \u003cbr\u003e4.5.1.12 Polyamide \u003cbr\u003e4.5.1.13 Polyaniline, PANI \u003cbr\u003e4.5.1.13 Polycarbonate, PC \u003cbr\u003e4.5.1.14 Polyethylene, PE \u003cbr\u003e4.5.1.15 Poly(methyl methacrylate), PMMA \u003cbr\u003e4.5.1.16 Poly(N-vinyl-2-pyrrolidone), PVP \u003cbr\u003e4.5.1.17 Polysiloxane \u003cbr\u003e4.5.1.18 Polystyrene, PS \u003cbr\u003e4.5.1.19 Polythiophene \u003cbr\u003e4.5.1.20 Polyurethane \u003cbr\u003e4.5.1.21 Poly(vinyl acetate), PVAc \u003cbr\u003e4.5.1.22 Poly(vinyl alcohol), PVA \u003cbr\u003e4.5.1.23 Poly(vinyl butyral), PVB \u003cbr\u003e4.5.1.24 SAN \u003cbr\u003e4.5.2 Antiblocking \u003cbr\u003e4.5.3 Antistatics agents \u003cbr\u003e4.5.4 Biocides and fungicides \u003cbr\u003e4.5.5 Blowing agents \u003cbr\u003e4.5.6 Fillers \u003cbr\u003e4.5.7 Flame retardants \u003cbr\u003e4.5.8 Impact modifiers \u003cbr\u003e4.5.9 Lubricants \u003cbr\u003e4.5.10 Pigments \u003cbr\u003e4.5.11 Plasticizers \u003cbr\u003e4.5.12 Process aids \u003cbr\u003e4.5.13 Solvents \u003cbr\u003e4.5.14 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Principles of UV Degradation\u003c\/strong\u003e\u003cbr\u003e5.1 Reasons for polymer instability \u003cbr\u003e5.1.1 Radiative energy \u003cbr\u003e5.1.2 Radiation intensity \u003cbr\u003e5.1.3 Radiation incidence \u003cbr\u003e5.1.4 Absorption of radiation by materials \u003cbr\u003e5.1.5 Bond structure \u003cbr\u003e5.1.6 Thermal history \u003cbr\u003e5.1.7 Photosensitizers \u003cbr\u003e5.1.8 Wavelength sensitivity \u003cbr\u003e5.1.9 Thermal variability \u003cbr\u003e5.1.10 Pollutants \u003cbr\u003e5.1.11 Laboratory degradation conditions \u003cbr\u003e5.2 Mechanisms of degradation \u003cbr\u003e5.2.1 Radical mechanism \u003cbr\u003e5.2.1.1 Photooxidation mechanism \u003cbr\u003e5.2.1.2 Mechanistic scheme \u003cbr\u003e5.2.1.3 Conformational mechanism \u003cbr\u003e5.2.1.4 Electronic-to-vibrational energy transfer \u003cbr\u003e5.2.1.5 Other contributions to the mechanism of photodegradation \u003cbr\u003e5.3 Kinetics \u003cbr\u003e5.3.1 Initiation \u003cbr\u003e5.3.2 Propagation \u003cbr\u003e5.3.3 Termination \u003cbr\u003e5.4 Results of UV degradation \u003cbr\u003e5.4.1 Photodiscoloration \u003cbr\u003e5.4.2 Mechanical properties \u003cbr\u003e5.4.3 Other properties \u003cbr\u003e5.5 Effect of additives \u003cbr\u003e5.5.1 Biocides and fungicides \u003cbr\u003e5.5.2 Fillers \u003cbr\u003e5.5.3 Flame retardants \u003cbr\u003e5.5.4 Impact modifiers \u003cbr\u003e5.5.5 Lubricants \u003cbr\u003e5.5.6 Pigments and colorants \u003cbr\u003e5.5.6.1 Titanium dioxide \u003cbr\u003e5.5.6.2 Zinc oxide \u003cbr\u003e5.5.6.3 Iron-containing pigments \u003cbr\u003e5.5.7 Plasticizers \u003cbr\u003e5.5.8 Polymer blends \u003cbr\u003e5.5.9 Solvents \u003cbr\u003e5.5.10 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Principles of Degradation by γ-Radiation\u003c\/strong\u003e\u003cbr\u003e6.1 The reasons for polymer instability \u003cbr\u003e6.2 Mechanisms \u003cbr\u003e6.3 Kinetics \u003cbr\u003e6.4 Results \u003cbr\u003e6.5 Effect of additives \u003cbr\u003e6.5.1 Plasticizers \u003cbr\u003e6.5.2 Fillers \u003cbr\u003e6.5.3 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Degradation by Other Forms of Radiation\u003c\/strong\u003e\u003cbr\u003e7.1 Argon plasma \u003cbr\u003e7.2 b-radiation (electron beam) \u003cbr\u003e7.3 Corona discharge \u003cbr\u003e7.4 Ion (proton) beam \u003cbr\u003e7.5 Laser \u003cbr\u003e7.6 Metallization \u003cbr\u003e7.7 Microwave \u003cbr\u003e7.8 Neutron irradiation \u003cbr\u003e7.9 Oxygen plasma \u003cbr\u003e7.10 X-rays \u003cbr\u003e7.11 Ultrasonic \u003cbr\u003eReferences \u003cbr\u003e8 Mechanodegradation \u003cbr\u003eReferences \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e9 Chemical Degradation\u003c\/strong\u003e\u003cbr\u003e9.1 methods of chemical dehydrochlorination \u003cbr\u003e9.2. Kinetics and mechanisms of reaction \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Analytical Methods\u003c\/strong\u003e\u003cbr\u003e10.1 Heat stability test \u003cbr\u003e10.1.1 Sample preparation \u003cbr\u003e10.1.2 Kinetic studies of dehydrochlorination \u003cbr\u003e10.1.3 Dehydrochlorination rate and optical changes \u003cbr\u003e10.1.4 Degradation in solution \u003cbr\u003e10.2 Thermogravimetric analysis \u003cbr\u003e10.2.1 Differential scanning calorimetry, DSC \u003cbr\u003e10.2.2 Mass loss \u003cbr\u003e10.3 Combustion \u003cbr\u003e10.4 Optical properties \u003cbr\u003e10.5 Spectroscopic methods \u003cbr\u003e10.5.1 Atomic absorption, AAS \u003cbr\u003e10.5.2 Auger \u003cbr\u003e10.5.3 Electron spin resonance, ESR \u003cbr\u003e10.5.4 Fourier transform infrared, FTIR \u003cbr\u003e10.5.5 Laser photopyroelectric effect spectrometry \u003cbr\u003e10.5.6 Mass, MS \u003cbr\u003e10.5.7 Mossbauer \u003cbr\u003e10.5.8 Near-infrared, NIR \u003cbr\u003e10.5.9 Nuclear magnetic resonance, NMR \u003cbr\u003e10.5.10 Positron annihilation lifetime spectroscopy, PAS \u003cbr\u003e10.5.11 Raman \u003cbr\u003e10.5.12 Time-of-flight secondary ion mass spectrometry, ToF-SIMS \u003cbr\u003e10.5.13 X-ray analysis \u003cbr\u003e10.5.13.1 Small angle light scattering, SAXS \u003cbr\u003e10.5.13.2 Wide angle light scattering, WAXS or WAXD \u003cbr\u003e10.5.14 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e10.5.15 UV-visible \u003cbr\u003e10.6 Chromatographic methods \u003cbr\u003e10.1 Gas chromatography \u003cbr\u003e10.6.2 Liquid chromatography \u003cbr\u003e10.7 Mechanical properties \u003cbr\u003e10.8 Other essential methods of testing \u003cbr\u003e10.8.1 Action spectrum \u003cbr\u003e10.8.2 Coulter counter \u003cbr\u003e10.8.3 Gel content \u003cbr\u003e10.8.4 Ozonolysis \u003cbr\u003e10.8.5 Peroxide titration \u003cbr\u003e10.8.6 Rheological studies \u003cbr\u003e10.9 International standards \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 Principles of Stabilization \u003c\/strong\u003e\u003cbr\u003e11.1 Functions of PVC stabilizers\u003cbr\u003e11.1.1 Hydrogen chloride binding\u003cbr\u003e11.1.2 Removal of reactive chlorine\u003cbr\u003e11.1.3 Reactions with metal chlorides\u003cbr\u003e11.1.4 Reactions with isolated unsaturations\u003cbr\u003e11.1.5 Reaction with conjugated unsaturations\u003cbr\u003e11.1.6 Decomposition of hydroperoxides\u003cbr\u003e11.1.7 Removal of reactive radicals (chain breaking function)\u003cbr\u003e11.1.8 UV screening\u003cbr\u003e11.2 Theories\u003cbr\u003e11.2.1 Frye and Horst\u003cbr\u003e11.2.2 Application of the Debye-Hückel theory\u003cbr\u003e11.2.3 Kinetic model of PVC stabilization\u003cbr\u003e11.3 Stabilizer groups\u003cbr\u003e11.3.1 Metal soaps\u003cbr\u003e(The groups of stabilizers below are discussed according to the following breakdown: Properties and applications of commercial stabilizers Mechanisms of action Costabilizers Research findings)\u003cbr\u003e11.3.1.1 Barium\/zinc\u003cbr\u003e11.3.1.2 Calcium\/zinc\u003cbr\u003e11.3.1.3 Magnesium\/zinc\u003cbr\u003e11.3.1.4 Potassium\/zinc\u003cbr\u003e11.3.1.5 Barium\/cadmium\u003cbr\u003e11.3.1.6 Barium\/cadmium\/zinc\u003cbr\u003e11.3.2 Lead stabilizers\u003cbr\u003e11.3.3 Organotin stabilizers\u003cbr\u003e11.3.4 Organic stabilizers\u003cbr\u003e11.3.4.1 Epoxidized compounds\u003cbr\u003e11.3.4.3 Phenolic antioxidants\u003cbr\u003e11.3.4.4 Multiketones\u003cbr\u003e11.3.4.5 Other costabilizers\u003cbr\u003e11.3.5 UV stabilizers\u003cbr\u003e11.3.5.1 Organic UV absorbers\u003cbr\u003e11.3.5.2 Inorganic UV absorbers\u003cbr\u003e11.3.5.3 Hindered amine light stabilizers, HALS\u003cbr\u003e11.3.6 Lubricants \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 Health and safety and environmental impact\u003c\/strong\u003e\u003cbr\u003e12.1 Toxic substance control \u003cbr\u003e12.2. Carcinogenic effect \u003cbr\u003e12.3 Teratogenic and mutagenic effect \u003cbr\u003e12.4 Workplace exposure limits \u003cbr\u003e12.5 Exposure from consumer products \u003cbr\u003e12.6 Drinking water \u003cbr\u003e12.7 Food regulatory acts \u003cbr\u003e12.8 Toxicity of stabilizers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}