- Grid List
Filter
Progress in Understand...
$135.00
{"id":11242242756,"title":"Progress in Understanding of Polymer Crystallization","handle":"978-3-540-47305-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds.: Günter Reiter, Gert R. Strobl \u003cbr\u003eISBN 978-3-540-47305-3 \u003cbr\u003e\u003cbr\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003epages 506, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel general views and concepts which help to advance our understanding of polymer crystallisation\u003c\/li\u003e\n\u003cli\u003enucleation phenomena\u003c\/li\u003e\n\u003cli\u003elong living melt structures affecting crystallization\u003c\/li\u003e\n\u003cli\u003econfinement effects on crystallization\u003c\/li\u003e\n\u003cli\u003ecrystallization in flowing melts\u003c\/li\u003e\n\u003cli\u003efluid mobility restrictions caused by crystallites\u003c\/li\u003e\n\u003cli\u003ethe role of mesophases in the crystal formation\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eand presents new ideas in a connected and accessible way.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Shifting Paradigms in Polymer Crystallization.\u003cbr\u003e2. Theoretical aspects of the Equilibrium State of Chain Crystals.\u003cbr\u003e3. Intramolecular Crystal Nucleation.\u003cbr\u003e4. Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation.\u003cbr\u003e5. Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow.\u003cbr\u003e6. Structure Formation and Glass Transition in Oriented Poly(ethylene terephthalate).\u003cbr\u003e7. How Do Orientation Fluctuations Evolve to Crystals?.\u003cbr\u003e8. Role of Chain Entanglement Network on Formation of FlowInduced Crystallization Precursor Structure.\u003cbr\u003e9. Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol.\u003cbr\u003e10. Small Angle Scattering Study of Polyethylene Crystallization from Solutions.\u003cbr\u003e11. Morphologies of Polymer Crystals in Thin Films.\u003cbr\u003e12. Crystallization of Frustrated Alkyl Groups in Polymeric Systems Containing Octadecylmethacrylate.\u003cbr\u003e13. Crystallization in Block Copolymers with More than one Crystallizable Block.\u003cbr\u003e14. Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and CrystalMelt Interface.\u003cbr\u003e15. The Role of the Interphase on the Chain Mobility and Melting of SemiCrystalline Polymers; a Study on Polyethylenes.\u003cbr\u003e16. Polymer Crystallization under High Cooling Rate and Pressure: a Step Towards Polymer Processing Conditions.\u003cbr\u003e17. StressInduced Phase Transitions in MetalloceneMade Isotactic Polypropylene.\u003cbr\u003e18. Insights into Polymer Crystallization from InSitu Atomic Force Microscopy.\u003cbr\u003e19. Temperature and Molecular Weight Dependencies of Polymer Crystallization.\u003cbr\u003e20. StepScan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene.\u003cbr\u003e21.Order and Segmental Mobility in Crystallizing Polymers.\u003cbr\u003e22. Atomistic Simulation of Polymer Melt Crystallization by Molecular Dynamics.\u003cbr\u003e23. A Multiphase Model Describing Polymer","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","acrylic polymers","anti-corrosion polymers","application polymer blends and composite","block copolymers","book","confinement effects","crystallization","eemicrystalline","flowing melts","fluid mobility","melt structures","mesophases","Monte Carlo","morphologies","nucleation phenomena","p-testing","polyamide 4.6","polyamide 6","polyethylene","polymer","polymer crystals","simulations","solutions","thin films"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443780,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Progress in Understanding of Polymer Crystallization","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-47305-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953","options":["Title"],"media":[{"alt":null,"id":358724567133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-47305-3.jpg?v=1499724953","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eds.: Günter Reiter, Gert R. Strobl \u003cbr\u003eISBN 978-3-540-47305-3 \u003cbr\u003e\u003cbr\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003epages 506, hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eIn the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003enovel general views and concepts which help to advance our understanding of polymer crystallisation\u003c\/li\u003e\n\u003cli\u003enucleation phenomena\u003c\/li\u003e\n\u003cli\u003elong living melt structures affecting crystallization\u003c\/li\u003e\n\u003cli\u003econfinement effects on crystallization\u003c\/li\u003e\n\u003cli\u003ecrystallization in flowing melts\u003c\/li\u003e\n\u003cli\u003efluid mobility restrictions caused by crystallites\u003c\/li\u003e\n\u003cli\u003ethe role of mesophases in the crystal formation\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eand presents new ideas in a connected and accessible way.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Shifting Paradigms in Polymer Crystallization.\u003cbr\u003e2. Theoretical aspects of the Equilibrium State of Chain Crystals.\u003cbr\u003e3. Intramolecular Crystal Nucleation.\u003cbr\u003e4. Kinetic Theory of Crystal Nucleation Under Transient Molecular Orientation.\u003cbr\u003e5. Precursor of Primary Nucleation in Isotactic Polystyrene Induced by Shear Flow.\u003cbr\u003e6. Structure Formation and Glass Transition in Oriented Poly(ethylene terephthalate).\u003cbr\u003e7. How Do Orientation Fluctuations Evolve to Crystals?.\u003cbr\u003e8. Role of Chain Entanglement Network on Formation of FlowInduced Crystallization Precursor Structure.\u003cbr\u003e9. Full Dissolution and Crystallization of Polyamide 6 and Polyamide 4.6 in Water and Ethanol.\u003cbr\u003e10. Small Angle Scattering Study of Polyethylene Crystallization from Solutions.\u003cbr\u003e11. Morphologies of Polymer Crystals in Thin Films.\u003cbr\u003e12. Crystallization of Frustrated Alkyl Groups in Polymeric Systems Containing Octadecylmethacrylate.\u003cbr\u003e13. Crystallization in Block Copolymers with More than one Crystallizable Block.\u003cbr\u003e14. Monte Carlo Simulations of Semicrystalline Polyethylene: Interlamellar Domain and CrystalMelt Interface.\u003cbr\u003e15. The Role of the Interphase on the Chain Mobility and Melting of SemiCrystalline Polymers; a Study on Polyethylenes.\u003cbr\u003e16. Polymer Crystallization under High Cooling Rate and Pressure: a Step Towards Polymer Processing Conditions.\u003cbr\u003e17. StressInduced Phase Transitions in MetalloceneMade Isotactic Polypropylene.\u003cbr\u003e18. Insights into Polymer Crystallization from InSitu Atomic Force Microscopy.\u003cbr\u003e19. Temperature and Molecular Weight Dependencies of Polymer Crystallization.\u003cbr\u003e20. StepScan Alternating Differential Scanning Calorimetry Studies on the Crystallisation Behaviour of Low Molecular Weight Polyethylene.\u003cbr\u003e21.Order and Segmental Mobility in Crystallizing Polymers.\u003cbr\u003e22. Atomistic Simulation of Polymer Melt Crystallization by Molecular Dynamics.\u003cbr\u003e23. A Multiphase Model Describing Polymer"}
Properties and Behavio...
$545.00
{"id":11242231300,"title":"Properties and Behavior of Polymers, 2 Volume Set","handle":"978-0-470-59670-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nJohn Wiley \u0026amp; Sons Ltd \u003cbr\u003eISBN 978-0-470-59670-8 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eHardcover\u003c\/div\u003e\n\u003cdiv\u003e1616 pages\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book provides comprehensive, up-to-date information on the physical properties of polymers including, viscoelasticity, flammability, miscibility, optical properties, surface properties and more. Containing carefully selected reprints from Wiley's renowned Encyclopedia of Polymer Science and Technology, this reference features the same breadth and quality of coverage and clarity of presentation found in the original.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVolume 1.\u003c\/b\u003e Acoustic Properties.\u003cbr\u003eAdhesion.\u003cbr\u003eAdsorption.\u003cbr\u003eAging, Physical.\u003cbr\u003eConformation and Configuration.\u003cbr\u003eCryogenic properties.\u003cbr\u003eDegradation.\u003cbr\u003eDepolymerization.\u003cbr\u003eDrag Reduction.\u003cbr\u003eElasticity, Rubber-like.\u003cbr\u003eElectrical Active Polymers.\u003cbr\u003eFlammability.\u003cbr\u003eGlass Transition.\u003cbr\u003eHardness.\u003cbr\u003eImpact Resistance.\u003cbr\u003eMagnetic Polymers.\u003cbr\u003eMechanical Performance of Plastics.\u003cbr\u003eMicromechanical Properties.\u003cbr\u003eMicrostructure.\u003cbr\u003eMiscibility.\u003cbr\u003eModeling of Polymer Processing and Properties.\u003cbr\u003e\u003cb\u003eVolume 2.\u003c\/b\u003e\u003cbr\u003eNetworks, Elastomeric.\u003cbr\u003eNonlinear Optical Properties.\u003cbr\u003eOptical Properties.\u003cbr\u003eOrientation.\u003cbr\u003ePhotorefraction.\u003cbr\u003eRheology and Rheological Measurements.\u003cbr\u003eScratch Behavior of Polymers.\u003cbr\u003eSelf-healing polymers.\u003cbr\u003eSolubility of Polymers.\u003cbr\u003eSurface Mechanical Damage and Wear of Polymers.\u003cbr\u003eSurface Properties.\u003cbr\u003eThermal Properties.\u003cbr\u003eThermodynamic Properties of Polymers.\u003cbr\u003eTransitions and Relaxations.\u003cbr\u003eTransport Properties.\u003cbr\u003eViscoelasticity.\u003cbr\u003eWeathering.\u003cbr\u003eYield and Crazing. \u003cbr\u003eIndex.","published_at":"2017-06-22T21:14:17-04:00","created_at":"2017-06-22T21:14:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","acoustic properties","aging","degradation","elasticity","elastomeric","flammability","magnetic polymers","optical","polymers","rheology","surface","thermal","weathering","wiley"],"price":54500,"price_min":54500,"price_max":54500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378406276,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Properties and Behavior of Polymers, 2 Volume Set","public_title":null,"options":["Default Title"],"price":54500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-0-470-59670-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-59670-8.jpg?v=1499953727"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-59670-8.jpg?v=1499953727","options":["Title"],"media":[{"alt":null,"id":358724862045,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-59670-8.jpg?v=1499953727"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-0-470-59670-8.jpg?v=1499953727","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nJohn Wiley \u0026amp; Sons Ltd \u003cbr\u003eISBN 978-0-470-59670-8 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eHardcover\u003c\/div\u003e\n\u003cdiv\u003e1616 pages\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book provides comprehensive, up-to-date information on the physical properties of polymers including, viscoelasticity, flammability, miscibility, optical properties, surface properties and more. Containing carefully selected reprints from Wiley's renowned Encyclopedia of Polymer Science and Technology, this reference features the same breadth and quality of coverage and clarity of presentation found in the original.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eVolume 1.\u003c\/b\u003e Acoustic Properties.\u003cbr\u003eAdhesion.\u003cbr\u003eAdsorption.\u003cbr\u003eAging, Physical.\u003cbr\u003eConformation and Configuration.\u003cbr\u003eCryogenic properties.\u003cbr\u003eDegradation.\u003cbr\u003eDepolymerization.\u003cbr\u003eDrag Reduction.\u003cbr\u003eElasticity, Rubber-like.\u003cbr\u003eElectrical Active Polymers.\u003cbr\u003eFlammability.\u003cbr\u003eGlass Transition.\u003cbr\u003eHardness.\u003cbr\u003eImpact Resistance.\u003cbr\u003eMagnetic Polymers.\u003cbr\u003eMechanical Performance of Plastics.\u003cbr\u003eMicromechanical Properties.\u003cbr\u003eMicrostructure.\u003cbr\u003eMiscibility.\u003cbr\u003eModeling of Polymer Processing and Properties.\u003cbr\u003e\u003cb\u003eVolume 2.\u003c\/b\u003e\u003cbr\u003eNetworks, Elastomeric.\u003cbr\u003eNonlinear Optical Properties.\u003cbr\u003eOptical Properties.\u003cbr\u003eOrientation.\u003cbr\u003ePhotorefraction.\u003cbr\u003eRheology and Rheological Measurements.\u003cbr\u003eScratch Behavior of Polymers.\u003cbr\u003eSelf-healing polymers.\u003cbr\u003eSolubility of Polymers.\u003cbr\u003eSurface Mechanical Damage and Wear of Polymers.\u003cbr\u003eSurface Properties.\u003cbr\u003eThermal Properties.\u003cbr\u003eThermodynamic Properties of Polymers.\u003cbr\u003eTransitions and Relaxations.\u003cbr\u003eTransport Properties.\u003cbr\u003eViscoelasticity.\u003cbr\u003eWeathering.\u003cbr\u003eYield and Crazing. \u003cbr\u003eIndex."}
Protection of Material...
$329.00
{"id":11242233412,"title":"Protection of Materials and Structures from the Space Environment","handle":"978-1-4020-4281-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Jacob I. Kleiman \u003cbr\u003eISBN 978-1-4020-4281-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 462, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition, the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on the development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour are continued from the past meetings.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction. Acknowledgements. Organization. \u003cbr\u003e\u003cstrong\u003eSection A. \u003c\/strong\u003eRadiation effects of protons and electrons on Back-field silicon solar cells; \u003cem\u003eZ. Hu, S. He, D. Yang\u003c\/em\u003e. Solar array arcing in LEO: how much charge is discharged? \u003cem\u003eD.C. Ferguson, B.V. Vayner, J.T. Galofaro. \u003c\/em\u003eSelf-restoration as SEU protection mechanism for re-configurable on-board computing platform; \u003cem\u003eL. Kirischian, et al\u003c\/em\u003e. Synergistic effects of protons and electrons on radiation damage of methyl silicone rubber; \u003cem\u003eL. Zhang et al\u003c\/em\u003e. Influence of electron radiation on outgassing of spacecraft materials; \u003cem\u003eR. H. Khassanchineet al\u003c\/em\u003e. Effect of surface charging on the erosion rate of polyimide under 5 eV atomic oxygen beam exposure; \u003cem\u003eM. Tagawa et al\u003c\/em\u003e. Influence of space environment on spectral optical properties of thermal control coatings; \u003cem\u003eV.M. Prosvirikov, et al.\u003c\/em\u003e Mitigation of thruster plume-induced erosion of ISS sensitive hardware; \u003cem\u003eC. Pankop, J. Alred, P. Boeder\u003c\/em\u003e. Degradation of thermal control coatings under influence of proton irradiation; \u003cem\u003eL.S. Noviko et al\u003c\/em\u003e. Mitigation of damage to the international space station (ISS) from water dumps; \u003cem\u003eW. Schmidl, J. Visentine, R. Mikatarian\u003c\/em\u003e. Investigation of synergistic effects of proton and electron radiation on the dyeing of optical quartz glass; \u003cem\u003eH. Liu et al\u003c\/em\u003e. The role of \"abnormal\" electron fluxes with energy \u0026lt; 1 MeV in the surface charging dose of spacecraft; \u003cem\u003eO.R. Grigoryan et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection B. \u003c\/strong\u003eVacuum ultraviolet radiation effects on DC93-500 silicone film; \u003cem\u003eJ.A. Dever, B.A. Banks, L. Yan\u003c\/em\u003e. Enhancement of atomic oxygen-induced erosion of spacecraft polymeric materials by simultaneous ultraviolet exposure; \u003cem\u003eK. Yokota, N. Ohmae, M. Tagawa.\u003c\/em\u003e Ground simulation of hypervelocity space debris impacts on polymers; \u003cem\u003eR. Verker et al. \u003c\/em\u003eTesting of spacecraft materials for long duration flights in low earth orbit; \u003cem\u003eL.S. Novikov et al. \u003c\/em\u003eM\/OD impacts on the multi-purpose logistics module: post-flight inspection results; \u003cem\u003eJ.L. Hyde, R.P. Bernhard, E.L. Christiansen. \u003c\/em\u003eFuel oxidizer reaction products (FORP) contamination of service module and release of N-nitrosodimethylamine in a humid environment from crew EVA suits contaminated with FORP; \u003cem\u003eW. Schmidt et al. \u003c\/em\u003eEffect of vacuum thermocycling on properties of unidirectional M40J\/AG-80 Composites; \u003cem\u003eY. Gao et al. \u003c\/em\u003eDamage characteristics of Zr\u003csub\u003e41\u003c\/sub\u003eTi\u003csub\u003e14\u003c\/sub\u003eCu\u003csub\u003e12.5\u003c\/sub\u003eNi\u003csub\u003e10\u003c\/sub\u003eBe\u003csub\u003e22.5 \u003c\/sub\u003ebulk metallic glass impacted by hypervelocity projectiles; \u003cem\u003eC. Yang et al\u003c\/em\u003e. Effect of VUV radiation on properties and chemical structure of polyethylene terephthalate film; \u003cem\u003eG. Peng, D. Yang, S. Y. He. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection C. \u003c\/strong\u003eStatus of solar sail material characterization at NASA’s Marshall Space Flight Center; \u003cem\u003eD. Edwards et al. \u003c\/em\u003eAtomic oxygen durability evaluation of a UV curable ceramer protective coating ; \u003cem\u003eB.A. Banks et al\u003c\/em\u003e. Cermet thermal conversion coatings for space applications; \u003cem\u003eB. W. Woods et al. \u003c\/em\u003eMulti-function smart coatings for space applications; \u003cem\u003eR.V. Kruzelecky et al. \u003c\/em\u003eEffects of space environment exposure on the blocking force of silicone adhesive; \u003cem\u003eP. Boeder et al. \u003c\/em\u003eDry sliding wear of Ti-6Al-4V Alloy at low temperature in vacuum; \u003cem\u003eY. Liu et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection D. \u003c\/strong\u003eErosion of Kapton H by hyperthermal atomic oxygen: Dependence on O-atom fluence and surface temperature; \u003cem\u003eD.M. Buczala, T. K. Minton. \u003c\/em\u003eTransparent arc-proof protective coatings - performance and manufacturability issues; \u003cem\u003eJ. Griffin et al. \u003c\/em\u003eThe study of the effects of atomic oxygen erosion on the microstructure and property of VO\u003csub\u003e2\u003c\/sub\u003e thermochromic coating using CSA’s space simulation apparatus; \u003cem\u003eX.X. Jiang et al.\u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection E. \u003c\/strong\u003eDamage kinetics of quartz glass by proton radiation; \u003cem\u003eQ. Wei, S.Y. He, D. Yang.\u003c\/em\u003e Microscopic mechanisms and dynamics simulations of O\u003csup\u003e+\u003c\/sup\u003e(\u003csup\u003e4\u003c\/sup\u003eS\u003csub\u003e3\/2\u003c\/sub\u003e) reacting with methane; \u003cem\u003eL. Sun, G. Schatz. \u003c\/em\u003eTheoretical study of reactions of hyperthermal O(\u003csup\u003e3\u003c\/sup\u003eP) with perfluorinated hydrocarbons; \u003cem\u003eD. Troya, G.C. Schatz.\u003c\/em\u003e Simulation of UV influence on outgassing of polymer composites; \u003cem\u003eR.H. Khassanchine et al. \u003c\/em\u003eThe impact of high-velocity particles on thermal pipelines in spacecraft; \u003cem\u003eN.D. Semkin, K.E. Voronov, L.S. Novikov. \u003c\/em\u003ePhysical mechanism of solar cell shunting under the high-velocity impact of solid particles; \u003cem\u003eV.A. Letin, A.B. Nadiradze, L.S. Novikov. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection F. \u003c\/strong\u003eDetermination of round-laboratory to in-space effective atomic oxygen fluence for DC 93-500 silicone; \u003cem\u003eK.K. DeGroh, B.A. Banks, D. Ma.\u003c\/em\u003e Atomic oxygen concentration using reflecting mirrors; \u003cem\u003eM. Tagawa et al. \u003c\/em\u003eAtomic oxygen source calibration issues: A universal approach; \u003cem\u003eC. White et al. \u003c\/em\u003eLow-cost space missions for scientific and technological investigations; \u003cem\u003eD. Rankin et al. \u003cbr\u003e\u003c\/em\u003eSubject index. Author index.\u003c\/p\u003e","published_at":"2017-06-22T21:14:23-04:00","created_at":"2017-06-22T21:14:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","atomic oxygen","back-field","book","ceramer","charging","curable","durability","effects","environment","erosion of spacecraft","meteoroid showers","micrometeoroids","p-properties","polyethylene terephthalate","polymer","polymer composites","polymeric materials","protective coatings","radiation","silicon","silicone film","solar cells","space","ultraviolet","UV","vacuum ultraviolet radiation","weathering"],"price":32900,"price_min":32900,"price_max":32900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378413700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Protection of Materials and Structures from the Space Environment","public_title":null,"options":["Default Title"],"price":32900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4020-4281-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142","options":["Title"],"media":[{"alt":null,"id":358725419101,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4020-4281-2.jpg?v=1499726142","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Jacob I. Kleiman \u003cbr\u003eISBN 978-1-4020-4281-2 \u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003e\u003c\/span\u003epages 462, Hardcover\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe effects of various space environment factors like atomic oxygen, vacuum ultraviolet radiation, charging, micrometeoroids, meteoroid showers, etc. on materials and structures in various orbits are discussed. In addition, the ways to prevent these effects or reduce them through protection by coatings or modification of affected surfaces are considered in the book. The discussions on the development of predictive models of material erosion that will allow the materials engineers and designers of future spacecraft to evaluate materials' behaviour are continued from the past meetings.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003eIntroduction. Acknowledgements. Organization. \u003cbr\u003e\u003cstrong\u003eSection A. \u003c\/strong\u003eRadiation effects of protons and electrons on Back-field silicon solar cells; \u003cem\u003eZ. Hu, S. He, D. Yang\u003c\/em\u003e. Solar array arcing in LEO: how much charge is discharged? \u003cem\u003eD.C. Ferguson, B.V. Vayner, J.T. Galofaro. \u003c\/em\u003eSelf-restoration as SEU protection mechanism for re-configurable on-board computing platform; \u003cem\u003eL. Kirischian, et al\u003c\/em\u003e. Synergistic effects of protons and electrons on radiation damage of methyl silicone rubber; \u003cem\u003eL. Zhang et al\u003c\/em\u003e. Influence of electron radiation on outgassing of spacecraft materials; \u003cem\u003eR. H. Khassanchineet al\u003c\/em\u003e. Effect of surface charging on the erosion rate of polyimide under 5 eV atomic oxygen beam exposure; \u003cem\u003eM. Tagawa et al\u003c\/em\u003e. Influence of space environment on spectral optical properties of thermal control coatings; \u003cem\u003eV.M. Prosvirikov, et al.\u003c\/em\u003e Mitigation of thruster plume-induced erosion of ISS sensitive hardware; \u003cem\u003eC. Pankop, J. Alred, P. Boeder\u003c\/em\u003e. Degradation of thermal control coatings under influence of proton irradiation; \u003cem\u003eL.S. Noviko et al\u003c\/em\u003e. Mitigation of damage to the international space station (ISS) from water dumps; \u003cem\u003eW. Schmidl, J. Visentine, R. Mikatarian\u003c\/em\u003e. Investigation of synergistic effects of proton and electron radiation on the dyeing of optical quartz glass; \u003cem\u003eH. Liu et al\u003c\/em\u003e. The role of \"abnormal\" electron fluxes with energy \u0026lt; 1 MeV in the surface charging dose of spacecraft; \u003cem\u003eO.R. Grigoryan et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection B. \u003c\/strong\u003eVacuum ultraviolet radiation effects on DC93-500 silicone film; \u003cem\u003eJ.A. Dever, B.A. Banks, L. Yan\u003c\/em\u003e. Enhancement of atomic oxygen-induced erosion of spacecraft polymeric materials by simultaneous ultraviolet exposure; \u003cem\u003eK. Yokota, N. Ohmae, M. Tagawa.\u003c\/em\u003e Ground simulation of hypervelocity space debris impacts on polymers; \u003cem\u003eR. Verker et al. \u003c\/em\u003eTesting of spacecraft materials for long duration flights in low earth orbit; \u003cem\u003eL.S. Novikov et al. \u003c\/em\u003eM\/OD impacts on the multi-purpose logistics module: post-flight inspection results; \u003cem\u003eJ.L. Hyde, R.P. Bernhard, E.L. Christiansen. \u003c\/em\u003eFuel oxidizer reaction products (FORP) contamination of service module and release of N-nitrosodimethylamine in a humid environment from crew EVA suits contaminated with FORP; \u003cem\u003eW. Schmidt et al. \u003c\/em\u003eEffect of vacuum thermocycling on properties of unidirectional M40J\/AG-80 Composites; \u003cem\u003eY. Gao et al. \u003c\/em\u003eDamage characteristics of Zr\u003csub\u003e41\u003c\/sub\u003eTi\u003csub\u003e14\u003c\/sub\u003eCu\u003csub\u003e12.5\u003c\/sub\u003eNi\u003csub\u003e10\u003c\/sub\u003eBe\u003csub\u003e22.5 \u003c\/sub\u003ebulk metallic glass impacted by hypervelocity projectiles; \u003cem\u003eC. Yang et al\u003c\/em\u003e. Effect of VUV radiation on properties and chemical structure of polyethylene terephthalate film; \u003cem\u003eG. Peng, D. Yang, S. Y. He. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection C. \u003c\/strong\u003eStatus of solar sail material characterization at NASA’s Marshall Space Flight Center; \u003cem\u003eD. Edwards et al. \u003c\/em\u003eAtomic oxygen durability evaluation of a UV curable ceramer protective coating ; \u003cem\u003eB.A. Banks et al\u003c\/em\u003e. Cermet thermal conversion coatings for space applications; \u003cem\u003eB. W. Woods et al. \u003c\/em\u003eMulti-function smart coatings for space applications; \u003cem\u003eR.V. Kruzelecky et al. \u003c\/em\u003eEffects of space environment exposure on the blocking force of silicone adhesive; \u003cem\u003eP. Boeder et al. \u003c\/em\u003eDry sliding wear of Ti-6Al-4V Alloy at low temperature in vacuum; \u003cem\u003eY. Liu et al. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection D. \u003c\/strong\u003eErosion of Kapton H by hyperthermal atomic oxygen: Dependence on O-atom fluence and surface temperature; \u003cem\u003eD.M. Buczala, T. K. Minton. \u003c\/em\u003eTransparent arc-proof protective coatings - performance and manufacturability issues; \u003cem\u003eJ. Griffin et al. \u003c\/em\u003eThe study of the effects of atomic oxygen erosion on the microstructure and property of VO\u003csub\u003e2\u003c\/sub\u003e thermochromic coating using CSA’s space simulation apparatus; \u003cem\u003eX.X. Jiang et al.\u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection E. \u003c\/strong\u003eDamage kinetics of quartz glass by proton radiation; \u003cem\u003eQ. Wei, S.Y. He, D. Yang.\u003c\/em\u003e Microscopic mechanisms and dynamics simulations of O\u003csup\u003e+\u003c\/sup\u003e(\u003csup\u003e4\u003c\/sup\u003eS\u003csub\u003e3\/2\u003c\/sub\u003e) reacting with methane; \u003cem\u003eL. Sun, G. Schatz. \u003c\/em\u003eTheoretical study of reactions of hyperthermal O(\u003csup\u003e3\u003c\/sup\u003eP) with perfluorinated hydrocarbons; \u003cem\u003eD. Troya, G.C. Schatz.\u003c\/em\u003e Simulation of UV influence on outgassing of polymer composites; \u003cem\u003eR.H. Khassanchine et al. \u003c\/em\u003eThe impact of high-velocity particles on thermal pipelines in spacecraft; \u003cem\u003eN.D. Semkin, K.E. Voronov, L.S. Novikov. \u003c\/em\u003ePhysical mechanism of solar cell shunting under the high-velocity impact of solid particles; \u003cem\u003eV.A. Letin, A.B. Nadiradze, L.S. Novikov. \u003cbr\u003e\u003c\/em\u003e\u003cstrong\u003eSection F. \u003c\/strong\u003eDetermination of round-laboratory to in-space effective atomic oxygen fluence for DC 93-500 silicone; \u003cem\u003eK.K. DeGroh, B.A. Banks, D. Ma.\u003c\/em\u003e Atomic oxygen concentration using reflecting mirrors; \u003cem\u003eM. Tagawa et al. \u003c\/em\u003eAtomic oxygen source calibration issues: A universal approach; \u003cem\u003eC. White et al. \u003c\/em\u003eLow-cost space missions for scientific and technological investigations; \u003cem\u003eD. Rankin et al. \u003cbr\u003e\u003c\/em\u003eSubject index. Author index.\u003c\/p\u003e"}
PVC - Compounds, Proce...
$72.00
{"id":11242256068,"title":"PVC - Compounds, Processing and Applications","handle":"978-1-85957-029-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Leadbitter, J.A. Day, J.L. Ryan \u003cbr\u003eISBN 978-1-85957-029-6 \u003cbr\u003e\u003cbr\u003eHydro Polymer Ltd.\u003cbr\u003eReview Report\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e120 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report reviews the composition and synthesis of PVC, composition and formulation technology, compounding and manufacturing technology, materials obtained by blending. 500 abstracts outlines suggested references which contain required data. \u003cbr\u003e\u003cbr\u003eFrom the Table of Contents: \u003cbr\u003ePVC Resins \u003cbr\u003eHomopolymers \u003cbr\u003eCopolymers \u003cbr\u003eTerpolymers \u003cbr\u003eChlorinated PVC \u003cbr\u003eCommercial Aspects of PVC \u003cbr\u003eComparison of Formulation Technology \u003cbr\u003eCompounding Technology \u003cbr\u003eProcess Technology \u003cbr\u003ePVC Blends and Alloys\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:32-04:00","created_at":"2017-06-22T21:15:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","alloys","blends","book","composition","copolymer","copolymers","homopolymers","p-chemistry","polymer","PVC compounds","pvc processing"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC - Compounds, Processing and Applications","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-029-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574","options":["Title"],"media":[{"alt":null,"id":412810444893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-029-6.jpg?v=1504015574","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: J. Leadbitter, J.A. Day, J.L. Ryan \u003cbr\u003eISBN 978-1-85957-029-6 \u003cbr\u003e\u003cbr\u003eHydro Polymer Ltd.\u003cbr\u003eReview Report\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e120 pages, softbound\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report reviews the composition and synthesis of PVC, composition and formulation technology, compounding and manufacturing technology, materials obtained by blending. 500 abstracts outlines suggested references which contain required data. \u003cbr\u003e\u003cbr\u003eFrom the Table of Contents: \u003cbr\u003ePVC Resins \u003cbr\u003eHomopolymers \u003cbr\u003eCopolymers \u003cbr\u003eTerpolymers \u003cbr\u003eChlorinated PVC \u003cbr\u003eCommercial Aspects of PVC \u003cbr\u003eComparison of Formulation Technology \u003cbr\u003eCompounding Technology \u003cbr\u003eProcess Technology \u003cbr\u003ePVC Blends and Alloys\u003cbr\u003e\u003cbr\u003e"}
PVC - World Markets an...
$430.00
{"id":11242226052,"title":"PVC - World Markets and Prospects","handle":"978-1-85957-311-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002, G. Pritchard, Emeritus Professor of Kingston University, Surrey, UK \u003cbr\u003eISBN 978-1-85957-311-2 \u003cbr\u003e\u003cbr\u003eKingston University, Surrey, UK\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 200\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n20% of all the resin sold in the world today, 26 million tonnes, consists of PVC. It is the second most used plastics material in the world. \u003cbr\u003e\u003cbr\u003eThis report discusses PVC from a business perspective, looking at its supply and demand, price, markets and applications, environmental issues and the future prospects of the industry. \u003cbr\u003e\u003cbr\u003eProfessor Pritchard is an exceptional author. He has successfully covered the broad sweep of the PVC industry, describing raw materials and synthesis, additives and compounding, and processing. Current issues have been highlighted including new technology and market forces. \u003cbr\u003e\u003cbr\u003eApplications are dealt with by sector with emphasis on the building and construction industry, the predominant user of PVC in applications such as window profiles. Other key application areas include medical, wire and cable and packaging. The trends in different global regions are addressed to indicate where markets are mature and where they are likely to expand. \u003cbr\u003e\u003cbr\u003eThere is also an extensive section describing individual global regions, including North America, Europe and China, and indicating areas of over-capacity and of growth. Population size, local legislation, free trade areas and degree of industrialization are all relevant factors here. \u003cbr\u003e\u003cbr\u003eThe individual companies in the PVC industry are diverse in their range of activities. Besides listings in appropriate sections of the book, there is a chapter giving individual company descriptions, citing useful information such as capacity and prospects. \u003cbr\u003e\u003cbr\u003eThere have been campaigns by environmentalists against the use of PVC. There are also concerns about the safety of some of the additives, which have been used in plastics to date, primarily heavy metal stabilisers and phthalate plasticisers. This report outlines these concerns, the effects on the industry and the efforts of PVC manufacturers to address these issues. \u003cbr\u003e\u003cbr\u003eRecycling of plastics is a major issue for all resins, particularly those used in packaging and vehicles, which are increasingly being targeted by legislation. End-of-life PVC is discussed here. \u003cbr\u003e\u003cbr\u003eThis report is accessible to both technical and non-technical personnel with an interest in the PVC industry. It will provide an excellent overview for market researchers, and analysts, whilst providing key information on the marketplace and prospects to those in the industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. About this Report \u003cbr\u003e2. Executive Summary \u003cbr\u003e3. Brief History of the PVC Industry \u003cbr\u003e4. Advantages and Disadvantages of PVC \u003cbr\u003e5. World Consumption of PVC \u003cbr\u003e6. The Price of PVC \u003cbr\u003e7. How PVC is Made \u003cbr\u003e8. Additives for PVC formulations \u003cbr\u003e9. Compounding and Shaping \u003cbr\u003e10. Environmental Issues \u003cbr\u003e11. End-of-Life Disposal of PVC Products \u003cbr\u003e12. PVC in Building and Construction \u003cbr\u003e13. Floorcoverings \u003cbr\u003e14. Packaging \u003cbr\u003e15. Wire and Cable \u003cbr\u003e16. Medical Products \u003cbr\u003e17. Toys and Other Children's Products \u003cbr\u003e18. Gloves \u003cbr\u003e19. Footwear \u003cbr\u003e20. Automotive Applications of PVC \u003cbr\u003e21. Coatings, Paints and Coated Substrates \u003cbr\u003e22. Other Applications of PVC \u003cbr\u003e23. The PVC Industry in Key Global Regions \u003cbr\u003e24. Some Representative Companies in the PVC Industry \u003cbr\u003e25. Prospects for PVC - A Brief Summary \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eReferences \u003cbr\u003eAppendix: Additional Sources of Information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Geoff Pritchard is Emeritus Professor of Kingston University in Surrey, UK. He has extensive knowledge of the PVC industry. He is the editor of several books on plastics and is also the editor of the monthly newsletter Focus on Polyvinyl Chloride, which provides regular updates of events in the PVC industry worldwide, as well as of Rapra's Focus on Plastics Additives, much of which relates to PVC.","published_at":"2017-06-22T21:14:01-04:00","created_at":"2017-06-22T21:14:01-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","additives","automotive","book","building","cable","coatings","compounding","construction","copolymers","disposal","emulsion","environment","floorcoverings","footwear","global production","gloves","market","marketing","medical","packaging","paints","price","PVC","report","shaping","solution","suspension","toys","wire"],"price":43000,"price_min":43000,"price_max":43000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378391684,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC - World Markets and Prospects","public_title":null,"options":["Default Title"],"price":43000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-311-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197","options":["Title"],"media":[{"alt":null,"id":358725943389,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-311-2.jpg?v=1499726197","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Market Report, 2002, G. Pritchard, Emeritus Professor of Kingston University, Surrey, UK \u003cbr\u003eISBN 978-1-85957-311-2 \u003cbr\u003e\u003cbr\u003eKingston University, Surrey, UK\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003cbr\u003e\u003c\/span\u003epages: 200\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n20% of all the resin sold in the world today, 26 million tonnes, consists of PVC. It is the second most used plastics material in the world. \u003cbr\u003e\u003cbr\u003eThis report discusses PVC from a business perspective, looking at its supply and demand, price, markets and applications, environmental issues and the future prospects of the industry. \u003cbr\u003e\u003cbr\u003eProfessor Pritchard is an exceptional author. He has successfully covered the broad sweep of the PVC industry, describing raw materials and synthesis, additives and compounding, and processing. Current issues have been highlighted including new technology and market forces. \u003cbr\u003e\u003cbr\u003eApplications are dealt with by sector with emphasis on the building and construction industry, the predominant user of PVC in applications such as window profiles. Other key application areas include medical, wire and cable and packaging. The trends in different global regions are addressed to indicate where markets are mature and where they are likely to expand. \u003cbr\u003e\u003cbr\u003eThere is also an extensive section describing individual global regions, including North America, Europe and China, and indicating areas of over-capacity and of growth. Population size, local legislation, free trade areas and degree of industrialization are all relevant factors here. \u003cbr\u003e\u003cbr\u003eThe individual companies in the PVC industry are diverse in their range of activities. Besides listings in appropriate sections of the book, there is a chapter giving individual company descriptions, citing useful information such as capacity and prospects. \u003cbr\u003e\u003cbr\u003eThere have been campaigns by environmentalists against the use of PVC. There are also concerns about the safety of some of the additives, which have been used in plastics to date, primarily heavy metal stabilisers and phthalate plasticisers. This report outlines these concerns, the effects on the industry and the efforts of PVC manufacturers to address these issues. \u003cbr\u003e\u003cbr\u003eRecycling of plastics is a major issue for all resins, particularly those used in packaging and vehicles, which are increasingly being targeted by legislation. End-of-life PVC is discussed here. \u003cbr\u003e\u003cbr\u003eThis report is accessible to both technical and non-technical personnel with an interest in the PVC industry. It will provide an excellent overview for market researchers, and analysts, whilst providing key information on the marketplace and prospects to those in the industry.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. About this Report \u003cbr\u003e2. Executive Summary \u003cbr\u003e3. Brief History of the PVC Industry \u003cbr\u003e4. Advantages and Disadvantages of PVC \u003cbr\u003e5. World Consumption of PVC \u003cbr\u003e6. The Price of PVC \u003cbr\u003e7. How PVC is Made \u003cbr\u003e8. Additives for PVC formulations \u003cbr\u003e9. Compounding and Shaping \u003cbr\u003e10. Environmental Issues \u003cbr\u003e11. End-of-Life Disposal of PVC Products \u003cbr\u003e12. PVC in Building and Construction \u003cbr\u003e13. Floorcoverings \u003cbr\u003e14. Packaging \u003cbr\u003e15. Wire and Cable \u003cbr\u003e16. Medical Products \u003cbr\u003e17. Toys and Other Children's Products \u003cbr\u003e18. Gloves \u003cbr\u003e19. Footwear \u003cbr\u003e20. Automotive Applications of PVC \u003cbr\u003e21. Coatings, Paints and Coated Substrates \u003cbr\u003e22. Other Applications of PVC \u003cbr\u003e23. The PVC Industry in Key Global Regions \u003cbr\u003e24. Some Representative Companies in the PVC Industry \u003cbr\u003e25. Prospects for PVC - A Brief Summary \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eReferences \u003cbr\u003eAppendix: Additional Sources of Information\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Geoff Pritchard is Emeritus Professor of Kingston University in Surrey, UK. He has extensive knowledge of the PVC industry. He is the editor of several books on plastics and is also the editor of the monthly newsletter Focus on Polyvinyl Chloride, which provides regular updates of events in the PVC industry worldwide, as well as of Rapra's Focus on Plastics Additives, much of which relates to PVC."}
PVC Compound and Proce...
$125.00
{"id":11242228996,"title":"PVC Compound and Processing","handle":"978-1-85957-472-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Stuart G. Patrick \u003cbr\u003eISBN 978-1-85957-472-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003epages: 176\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe PVC global market size in 2000 was around 25,400 kt. Pipes and fittings constitute the largest volume application at 36% of the marketplace with profiles at 13%. Thus, PVC is one of the most widely used plastics in the world. This overview covers the basics of PVC formulation and processing, while extending the information to include the latest developments in materials and technology. This makes the report accessible and useful to all levels of the industry. \u003cbr\u003e\u003cbr\u003ePVC is of low thermal stability and high melt viscosity. Therefore, it is combined with a number of additives to varying properties to suit different end-use applications. PVC formulation is key to processing a success. This review looks at the different additive types available, their uses and new developments. The main groups of additives are: heat stabilisers, plasticisers, impact modifiers, process aids, lubricants, fillers, flame retardants, pigments, blowing agents, biocides, viscosity modifiers, antistatic agents, antioxidants, UV absorbers, antifogging agents and bonding agents. Formulation changes are being driven by legislation banning heavy metals and possible health risks from additives such as phthalate plasticisers. \u003cbr\u003e\u003cbr\u003ePVC compounding methods are considered here. There are many different ways of processing PVC: extrusion, calendering, injection moulding, extrusion\/stretch blow moulding, spreading\/coating, rotational moulding, dip moulding and slush moulding. The technology is covered in this report. Fabrication and treatment of PVC are also reviewed, for example, surface modification to enhance biocompatibility and reduce plasticiser migration. \u003cbr\u003e\u003cbr\u003eThe PVC industry has been under intense scrutiny in recent years due to health and environmental safety concerns. The industry has responded proactively to these pressures by reviewing practice and undertaking research into ways of reducing all types of risk. Sustainability issues have also been addressed and many different recycling projects have been set up. The legislation is driving this work forward with EU Directives on such issues as disposal of end-of-life vehicles. \u003cbr\u003e\u003cbr\u003eOver 400 references from recent literature are cited in the review, which is accompanied by abstracts from the Rapra Polymer Library database, to facilitate further reading. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Polyvinyl Chloride\u003cbr\u003e1.2 PVC Compounds\u003cbr\u003e1.3 History \u003cbr\u003e2 PVC Industry\u003cbr\u003e2.1 PVC Resin\u003cbr\u003e2.1.1 Vinyl Chloride Manufacture\u003cbr\u003e2.1.2 Homopolymers\u003cbr\u003e2.2 Copolymers and Terpolymers\u003cbr\u003e2.3 Chlorinated PVC (CPVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.5 Key Additives\u003cbr\u003e2.6 Processing Techniques\u003cbr\u003e2.7 Industry Outline\u003cbr\u003e2.7.1 PVC Resin Producers\u003cbr\u003e2.7.2 PVC Compounders\u003cbr\u003e2.7.3 Global Market by Application \u003cbr\u003e3 Health and Environmental Aspects of PVC\u003cbr\u003e3.1 VCM and PVC Production\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 Phthalates\u003cbr\u003e3.2.2 Adipates\u003cbr\u003e3.3 Heat Stabilisers\u003cbr\u003e3.3.1 Lead Based Stabilisers\u003cbr\u003e3.3.2 Organotin Stabilisers\u003cbr\u003e3.3.3 Bisphenol A\/Alkylphenols\u003cbr\u003e3.3.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e3.4 Waste Management\u003cbr\u003e3.4.1 Incineration\u003cbr\u003e3.4.2 Landfill\u003cbr\u003e3.4.3 Recycling \u003cbr\u003e4 Additives, Formulations, and Applications\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Heat Stabilisers\u003cbr\u003e4.2.1 Solid Stabilisers\u003cbr\u003e4.3 Plasticisers\u003cbr\u003e4.3.1 Phthalate Alternatives\u003cbr\u003e4.3.2 Polymeric Plasticisers\u003cbr\u003e4.4 Multifunctional Additives\u003cbr\u003e4.5 Property Modifiers\u003cbr\u003e4.5.1 Process Aids\u003cbr\u003e4.5.2 Impact Modifiers\u003cbr\u003e4.5.3 Heat Distortion Temperature Modification\u003cbr\u003e4.5.4 Modifiers for Semi-Rigid and Plasticised Applications\u003cbr\u003e4.6 Lubricants\u003cbr\u003e4.7 Fillers\u003cbr\u003e4.7.1 Calcium Carbonate\u003cbr\u003e4.7.2 Wood Fillers\/Fibres\/Flour Composites\u003cbr\u003e4.7.3 Glass Beads\/Glass Fibre\u003cbr\u003e4.7.4 Conductive and Magnetic Fillers\u003cbr\u003e4.7.5 Other Fillers\u003cbr\u003e4.7.6 Nanocomposites\u003cbr\u003e4.8 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e4.9 Pigments\u003cbr\u003e4.10 Biocides\u003cbr\u003e4.11 Blowing Agents\u003cbr\u003e4.12 Antioxidants and Light Stabilisers\u003cbr\u003e4.13 Other Additives for PVC-P\u003cbr\u003e4.13.1 Antistatic Agents\u003cbr\u003e4.13.2 Viscosity Modifiers\u003cbr\u003e4.13.3 Antifogging Agents\u003cbr\u003e4.13.4 Bonding Agents\u003cbr\u003e4.14 Formulations\u003cbr\u003e4.14.1 PVC-U Compounds and Testing\u003cbr\u003e4.14.2 Crosslinked PVC\u003cbr\u003e4.14.3 Medical and Food Contact Use\u003cbr\u003e4.14.4 Membranes \u003cbr\u003e5 Compounding and Processing Technology\u003cbr\u003e5.1 Compounding\u003cbr\u003e5.1.1 Dry Blend Mixing\u003cbr\u003e5.1.2 Melt Compounding\u003cbr\u003e5.1.3 Liquid PVC Blending\u003cbr\u003e5.2 Processing\u003cbr\u003e5.2.1 Gelation\u003cbr\u003e5.2.2 Extrusion\u003cbr\u003e5.2.3 Injection Moulding\u003cbr\u003e5.2.4. Extrusion Blow Moulding\u003cbr\u003e5.2.5 Orientation\u003cbr\u003e5.2.6 Calendering\u003cbr\u003e5.2.7 Moulding Processes for Plastisols and Pastes \u003cbr\u003e6 Fabrication and Treatment\u003cbr\u003e6.1 Thermoforming\u003cbr\u003e6.2 Surface Modification Processes\u003cbr\u003e6.3 Coatings\u003cbr\u003e6.4 Adhesion \u003cbr\u003e7 PVC and Sustainable Development\u003cbr\u003e7.1 Waste Management\u003cbr\u003e7.1.1 PVC Rich Waste - Mechanical Recycling\u003cbr\u003e7.1.2 PVC Feedstock Recycling\u003cbr\u003e7.1.3 Incineration\/Energy Recovery \u003cbr\u003e8 Conclusions \u003cbr\u003eAcknowledgement\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick is a Chartered Chemist and a Member of the Royal Society of Chemistry. He is chairman of the PVC Committee of the IOM3. His career has included 23 years in the PVC Additives business of Akzo Nobel\/Akcros Chemicals, where he has been involved in technical services, research, and development. From 2001 to 2003, he was the Global Research and Development Manager. Current projects include sustainability research at IPTME, Loughborough.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:10-04:00","created_at":"2017-06-22T21:14:10-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","additives","antioxidants","antistatic","beads","biocides","blow moulding","blowing agents","book","calcium carbonate","calendering","coating","composites","compounds","conductive","extrusion","fibres","fillers","flame retardants","glass","injection moulding","magnetic","melt","modifiers","nanocomposites","orientation","p-chemistry","phthalate","pigments","plasticisers","plasticizers","polymer","polymeric","process aids","processing","PVC","smoke suppressants","stabilisers","stability","viscosity","waste","wood"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378397956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Compound and Processing","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-472-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830","options":["Title"],"media":[{"alt":null,"id":358726664285,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-472-0.jpg?v=1499953830","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Stuart G. Patrick \u003cbr\u003eISBN 978-1-85957-472-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003epages: 176\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe PVC global market size in 2000 was around 25,400 kt. Pipes and fittings constitute the largest volume application at 36% of the marketplace with profiles at 13%. Thus, PVC is one of the most widely used plastics in the world. This overview covers the basics of PVC formulation and processing, while extending the information to include the latest developments in materials and technology. This makes the report accessible and useful to all levels of the industry. \u003cbr\u003e\u003cbr\u003ePVC is of low thermal stability and high melt viscosity. Therefore, it is combined with a number of additives to varying properties to suit different end-use applications. PVC formulation is key to processing a success. This review looks at the different additive types available, their uses and new developments. The main groups of additives are: heat stabilisers, plasticisers, impact modifiers, process aids, lubricants, fillers, flame retardants, pigments, blowing agents, biocides, viscosity modifiers, antistatic agents, antioxidants, UV absorbers, antifogging agents and bonding agents. Formulation changes are being driven by legislation banning heavy metals and possible health risks from additives such as phthalate plasticisers. \u003cbr\u003e\u003cbr\u003ePVC compounding methods are considered here. There are many different ways of processing PVC: extrusion, calendering, injection moulding, extrusion\/stretch blow moulding, spreading\/coating, rotational moulding, dip moulding and slush moulding. The technology is covered in this report. Fabrication and treatment of PVC are also reviewed, for example, surface modification to enhance biocompatibility and reduce plasticiser migration. \u003cbr\u003e\u003cbr\u003eThe PVC industry has been under intense scrutiny in recent years due to health and environmental safety concerns. The industry has responded proactively to these pressures by reviewing practice and undertaking research into ways of reducing all types of risk. Sustainability issues have also been addressed and many different recycling projects have been set up. The legislation is driving this work forward with EU Directives on such issues as disposal of end-of-life vehicles. \u003cbr\u003e\u003cbr\u003eOver 400 references from recent literature are cited in the review, which is accompanied by abstracts from the Rapra Polymer Library database, to facilitate further reading. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Polyvinyl Chloride\u003cbr\u003e1.2 PVC Compounds\u003cbr\u003e1.3 History \u003cbr\u003e2 PVC Industry\u003cbr\u003e2.1 PVC Resin\u003cbr\u003e2.1.1 Vinyl Chloride Manufacture\u003cbr\u003e2.1.2 Homopolymers\u003cbr\u003e2.2 Copolymers and Terpolymers\u003cbr\u003e2.3 Chlorinated PVC (CPVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.5 Key Additives\u003cbr\u003e2.6 Processing Techniques\u003cbr\u003e2.7 Industry Outline\u003cbr\u003e2.7.1 PVC Resin Producers\u003cbr\u003e2.7.2 PVC Compounders\u003cbr\u003e2.7.3 Global Market by Application \u003cbr\u003e3 Health and Environmental Aspects of PVC\u003cbr\u003e3.1 VCM and PVC Production\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 Phthalates\u003cbr\u003e3.2.2 Adipates\u003cbr\u003e3.3 Heat Stabilisers\u003cbr\u003e3.3.1 Lead Based Stabilisers\u003cbr\u003e3.3.2 Organotin Stabilisers\u003cbr\u003e3.3.3 Bisphenol A\/Alkylphenols\u003cbr\u003e3.3.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e3.4 Waste Management\u003cbr\u003e3.4.1 Incineration\u003cbr\u003e3.4.2 Landfill\u003cbr\u003e3.4.3 Recycling \u003cbr\u003e4 Additives, Formulations, and Applications\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Heat Stabilisers\u003cbr\u003e4.2.1 Solid Stabilisers\u003cbr\u003e4.3 Plasticisers\u003cbr\u003e4.3.1 Phthalate Alternatives\u003cbr\u003e4.3.2 Polymeric Plasticisers\u003cbr\u003e4.4 Multifunctional Additives\u003cbr\u003e4.5 Property Modifiers\u003cbr\u003e4.5.1 Process Aids\u003cbr\u003e4.5.2 Impact Modifiers\u003cbr\u003e4.5.3 Heat Distortion Temperature Modification\u003cbr\u003e4.5.4 Modifiers for Semi-Rigid and Plasticised Applications\u003cbr\u003e4.6 Lubricants\u003cbr\u003e4.7 Fillers\u003cbr\u003e4.7.1 Calcium Carbonate\u003cbr\u003e4.7.2 Wood Fillers\/Fibres\/Flour Composites\u003cbr\u003e4.7.3 Glass Beads\/Glass Fibre\u003cbr\u003e4.7.4 Conductive and Magnetic Fillers\u003cbr\u003e4.7.5 Other Fillers\u003cbr\u003e4.7.6 Nanocomposites\u003cbr\u003e4.8 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e4.9 Pigments\u003cbr\u003e4.10 Biocides\u003cbr\u003e4.11 Blowing Agents\u003cbr\u003e4.12 Antioxidants and Light Stabilisers\u003cbr\u003e4.13 Other Additives for PVC-P\u003cbr\u003e4.13.1 Antistatic Agents\u003cbr\u003e4.13.2 Viscosity Modifiers\u003cbr\u003e4.13.3 Antifogging Agents\u003cbr\u003e4.13.4 Bonding Agents\u003cbr\u003e4.14 Formulations\u003cbr\u003e4.14.1 PVC-U Compounds and Testing\u003cbr\u003e4.14.2 Crosslinked PVC\u003cbr\u003e4.14.3 Medical and Food Contact Use\u003cbr\u003e4.14.4 Membranes \u003cbr\u003e5 Compounding and Processing Technology\u003cbr\u003e5.1 Compounding\u003cbr\u003e5.1.1 Dry Blend Mixing\u003cbr\u003e5.1.2 Melt Compounding\u003cbr\u003e5.1.3 Liquid PVC Blending\u003cbr\u003e5.2 Processing\u003cbr\u003e5.2.1 Gelation\u003cbr\u003e5.2.2 Extrusion\u003cbr\u003e5.2.3 Injection Moulding\u003cbr\u003e5.2.4. Extrusion Blow Moulding\u003cbr\u003e5.2.5 Orientation\u003cbr\u003e5.2.6 Calendering\u003cbr\u003e5.2.7 Moulding Processes for Plastisols and Pastes \u003cbr\u003e6 Fabrication and Treatment\u003cbr\u003e6.1 Thermoforming\u003cbr\u003e6.2 Surface Modification Processes\u003cbr\u003e6.3 Coatings\u003cbr\u003e6.4 Adhesion \u003cbr\u003e7 PVC and Sustainable Development\u003cbr\u003e7.1 Waste Management\u003cbr\u003e7.1.1 PVC Rich Waste - Mechanical Recycling\u003cbr\u003e7.1.2 PVC Feedstock Recycling\u003cbr\u003e7.1.3 Incineration\/Energy Recovery \u003cbr\u003e8 Conclusions \u003cbr\u003eAcknowledgement\u003cbr\u003eAdditional References\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick is a Chartered Chemist and a Member of the Royal Society of Chemistry. He is chairman of the PVC Committee of the IOM3. His career has included 23 years in the PVC Additives business of Akzo Nobel\/Akcros Chemicals, where he has been involved in technical services, research, and development. From 2001 to 2003, he was the Global Research and Development Manager. Current projects include sustainability research at IPTME, Loughborough.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
PVC Degradation and St...
$275.00
{"id":11242219972,"title":"PVC Degradation and Stabilization","handle":"978-1-895198-39-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-39-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003eSecond edition\u003cbr\u003ePages: 442\u003cbr\u003eFigures: 275 \u003cbr\u003eTables: 66\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the global renewal of interest in PVC, this book is well timed, considering that PVC stabilization is the most important aspect of its formulation and performance.\n\u003cp\u003eOnly four books have been published on PVC degradation and stabilization (the last one in the 1980s), and two of them are by the author of this book.\u003c\/p\u003e\n\u003cp\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, and UV, gamma, and other forms of radiation, mechanodegradation, chemical degradation, analytic methods used in studying of degradative and stabilization processes, stabilization, and effect of PVC and its additives on health, safety and environment.\u003c\/p\u003e\n\u003cp\u003eThis book contains an analysis of all essential papers published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found.\u003c\/p\u003e\n\u003cp\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003ePVC has a long history of development which began nearly 100 years ago with the patenting of the concepts of emulsion and suspension polymerization, the development of the industrial process of vinyl chloride synthesis, and patents on its plasticization, followed by the development of stabilization about 75 years ago. PVC has known rapid growth to utmost prominence and dramatic downfall almost to elimination, and it finally has regained a deserved, second position among commercial polymers.\u003cbr\u003ePVC owes both its prominence and its downfall to research: meticulous, cutting-edge studies and unscrupulous bad science which stops progress and derails achievements.\u003cbr\u003ePVC degradation during processing and use was always one of the essential elements of PVC science and technology. Many approaches to stabilization changed and some groups of stabilizers are not used in new production. This book was written to show new trends and directions. It also contains clearly indicated information about past stabilizers, which is needed in order to understand the principles of stabilization and effective recycling.\u003cbr\u003eFor me, it has been an interesting experience to actively participate in the growth of this branch of science and summarize its achievements and the directions which it faces now, here and in my two previous books, written 25 years ago. I hope the clarity and completeness of the description of research findings as we know them today will help in further research and, most importantly, lead to successful and responsible practical applications of additives in PVC processing and applications.\u003cbr\u003e\u003cbr\u003eGeorge Wypych\u003cbr\u003eToronto, May 8, 2008\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr\u003e1 Chemical Structure of PVC\u003c\/strong\u003e\u003cbr\u003e1.1 Repeat structures and their basic organic chemistry \u003cbr\u003e1.1.1 Bronsted acid source with controllable emission \u003cbr\u003e1.2 Molecular weight and its distribution \u003cbr\u003e1.2.1 Kuhn-Mark-Houwink-Sakurada \u003cbr\u003e1.2.2 Fikentscher K number \u003cbr\u003e1.2.3 Chain length \u003cbr\u003e1.3 Prediction of formation of irregular segments \u003cbr\u003e1.3.1 Ab initio \u003cbr\u003e1.3.2 Monte Carlo \u003cbr\u003e1.4 Irregular segments \u003cbr\u003e1.4.1 Branches \u003cbr\u003e1.4.2 Tertiary chlorine \u003cbr\u003e1.4.3 Unsaturations \u003cbr\u003e1.4.4 Oxygen containing groups \u003cbr\u003e1.4.4.1 Ketochloroallyl groups \u003cbr\u003e1.4.4.2 a- and b-carbonyl groups \u003cbr\u003e1.4.5 Head-to-head structures \u003cbr\u003e1.4.5 Initiator rests \u003cbr\u003e1.4.6 Transfer agent rests \u003cbr\u003e1.4.8 Defects introduced during processing \u003cbr\u003e1.4.9 PVC having increased stability \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PVC Manufacture Technology \u003c\/strong\u003e\u003cbr\u003e2.1 Monomer \u003cbr\u003e2.2 Basic Steps of Radical Polymerization \u003cbr\u003e2.2.1 Initiation \u003cbr\u003e2.2.2 Propagation \u003cbr\u003e2.2.3 Termination \u003cbr\u003e2.2.4 Chain transfer to monomer \u003cbr\u003e2.3 Polymerization technology \u003cbr\u003e2.3.1 Suspension \u003cbr\u003e2.3.2 Paste resin manufacturing processes \u003cbr\u003e2.3.3 Bulk \u003cbr\u003e2.3.4 Solution \u003cbr\u003e2.4 Polymerization conditions and PVC properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 PVC Morphology\u003c\/strong\u003e\u003cbr\u003e3.1. Molecular weight of polymer (chain length) \u003cbr\u003e3.2. Configuration and conformation \u003cbr\u003e3.3. Chain folds \u003cbr\u003e3.4. Chain thickness \u003cbr\u003e3.5 Entanglements \u003cbr\u003e3.6 Crystalline structure \u003cbr\u003e3.7 Grain morphology \u003cbr\u003e3.7.1 Stages of morphology development during manufacture \u003cbr\u003e3.7.1.1 Suspension polymerization \u003cbr\u003e3.7.1.2 Paste grades manufacture \u003cbr\u003e3.7.1.3 Bulk polymerization \u003cbr\u003e3.7.2 Effect of morphology on degradation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Principles of Thermal Degradation\u003c\/strong\u003e\u003cbr\u003e4.1 The reasons for polymer instability \u003cbr\u003e4.1.1 Structural defects \u003cbr\u003e4.1.1.1 Branches \u003cbr\u003e4.1.1.2 Tertiary chlorine \u003cbr\u003e4.1.1.3 Unstaturations \u003cbr\u003e4.1.1.4 Oxygen containing groups \u003cbr\u003e4.1.1.5 Head-to-head structures \u003cbr\u003e4.1.1.6 Morphology \u003cbr\u003e4.1.2 Polymerization residue \u003cbr\u003e4.1.2.1 Initiator rests \u003cbr\u003e4.1.2.2 Transfer agent rests \u003cbr\u003e4.1.2.3 Polymerization additives \u003cbr\u003e4.1.3 Metal derivatives \u003cbr\u003e4.1.3.1 Metal chlorides \u003cbr\u003e4.1.3.2 Copper and its oxide \u003cbr\u003e4.1.4 Hydrogen chloride 14 \u003cbr\u003e4.1.5 Impurities \u003cbr\u003e4.1.6 Shear \u003cbr\u003e4.1.7 Temperature \u003cbr\u003e4.1.8 Surrounding atmosphere \u003cbr\u003e4.1.9 Additives \u003cbr\u003e4.2 Mechanisms of thermal degradation \u003cbr\u003e4.2.1 Molecular mechanism \u003cbr\u003e4.2.2 Amer-Shapiro mechanism \u003cbr\u003e4.2.3 Six-center concerted mechanism \u003cbr\u003e4.2.4 Activation enthalpy \u003cbr\u003e4.2.5 Radical-chain theory \u003cbr\u003e4.2.6 Ionic \u003cbr\u003e4.2.7 Polaron \u003cbr\u003e4.2.8 Degenerated branching \u003cbr\u003e4.2.9 Transition state theory \u003cbr\u003e4.2.10 Recapitulation \u003cbr\u003e4.3 Kinetics \u003cbr\u003e4.3.1 Initiation \u003cbr\u003e4.3.2 Propagation \u003cbr\u003e4.3.3 Termination \u003cbr\u003e4.4 Results of thermal degradation \u003cbr\u003e4.4.1 Volatiles \u003cbr\u003e4.4.2 Weight loss \u003cbr\u003e4.4.3 Char formation \u003cbr\u003e4.4.4 Ash content \u003cbr\u003e4.4.5 Thermal lifetime \u003cbr\u003e4.4.6 Optical properties \u003cbr\u003e4.4.6.1 Color change \u003cbr\u003e4.4.6.2 Extinction coefficient \u003cbr\u003e4.4.6.3 Absorbance \u003cbr\u003e4.4.7 Molecular weight \u003cbr\u003e4.4.8 Mechanical properties \u003cbr\u003e4.4.9 Electric properties \u003cbr\u003e4.5 Effect of additives \u003cbr\u003e4.5.1 Blend polymers \u003cbr\u003e4.5.1.1 ABS \u003cbr\u003e4.5.1.2 Chlorinated polyethylene, CPE \u003cbr\u003e4.5.1.3 Epoxidized butadiene\/styrene block copolymer \u003cbr\u003e4.5.1.4 Epoxidized natural rubber \u003cbr\u003e4.5.1.5 Ethylene vinyl acetate, EVA \u003cbr\u003e4.5.1.6 High impact polystyrene, HIPS \u003cbr\u003e4.5.1.7 Methylmethacrylate-butadiene-styrene \u003cbr\u003e4.5.1.8 Nitrile rubber, NBR \u003cbr\u003e4.5.1.9 Oxidized polyethylene, OPE \u003cbr\u003e4.5.1.10 Polyacrylate \u003cbr\u003e4.5.1.11 Polyacrylonitrile \u003cbr\u003e4.5.1.12 Polyamide \u003cbr\u003e4.5.1.13 Polyaniline, PANI \u003cbr\u003e4.5.1.13 Polycarbonate, PC \u003cbr\u003e4.5.1.14 Polyethylene, PE \u003cbr\u003e4.5.1.15 Poly(methyl methacrylate), PMMA \u003cbr\u003e4.5.1.16 Poly(N-vinyl-2-pyrrolidone), PVP \u003cbr\u003e4.5.1.17 Polysiloxane \u003cbr\u003e4.5.1.18 Polystyrene, PS \u003cbr\u003e4.5.1.19 Polythiophene \u003cbr\u003e4.5.1.20 Polyurethane \u003cbr\u003e4.5.1.21 Poly(vinyl acetate), PVAc \u003cbr\u003e4.5.1.22 Poly(vinyl alcohol), PVA \u003cbr\u003e4.5.1.23 Poly(vinyl butyral), PVB \u003cbr\u003e4.5.1.24 SAN \u003cbr\u003e4.5.2 Antiblocking \u003cbr\u003e4.5.3 Antistatics agents \u003cbr\u003e4.5.4 Biocides and fungicides \u003cbr\u003e4.5.5 Blowing agents \u003cbr\u003e4.5.6 Fillers \u003cbr\u003e4.5.7 Flame retardants \u003cbr\u003e4.5.8 Impact modifiers \u003cbr\u003e4.5.9 Lubricants \u003cbr\u003e4.5.10 Pigments \u003cbr\u003e4.5.11 Plasticizers \u003cbr\u003e4.5.12 Process aids \u003cbr\u003e4.5.13 Solvents \u003cbr\u003e4.5.14 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Principles of UV Degradation\u003c\/strong\u003e\u003cbr\u003e5.1 Reasons for polymer instability \u003cbr\u003e5.1.1 Radiative energy \u003cbr\u003e5.1.2 Radiation intensity \u003cbr\u003e5.1.3 Radiation incidence \u003cbr\u003e5.1.4 Absorption of radiation by materials \u003cbr\u003e5.1.5 Bond structure \u003cbr\u003e5.1.6 Thermal history \u003cbr\u003e5.1.7 Photosensitizers \u003cbr\u003e5.1.8 Wavelength sensitivity \u003cbr\u003e5.1.9 Thermal variability \u003cbr\u003e5.1.10 Pollutants \u003cbr\u003e5.1.11 Laboratory degradation conditions \u003cbr\u003e5.2 Mechanisms of degradation \u003cbr\u003e5.2.1 Radical mechanism \u003cbr\u003e5.2.1.1 Photooxidation mechanism \u003cbr\u003e5.2.1.2 Mechanistic scheme \u003cbr\u003e5.2.1.3 Conformational mechanism \u003cbr\u003e5.2.1.4 Electronic-to-vibrational energy transfer \u003cbr\u003e5.2.1.5 Other contributions to the mechanism of photodegradation \u003cbr\u003e5.3 Kinetics \u003cbr\u003e5.3.1 Initiation \u003cbr\u003e5.3.2 Propagation \u003cbr\u003e5.3.3 Termination \u003cbr\u003e5.4 Results of UV degradation \u003cbr\u003e5.4.1 Photodiscoloration \u003cbr\u003e5.4.2 Mechanical properties \u003cbr\u003e5.4.3 Other properties \u003cbr\u003e5.5 Effect of additives \u003cbr\u003e5.5.1 Biocides and fungicides \u003cbr\u003e5.5.2 Fillers \u003cbr\u003e5.5.3 Flame retardants \u003cbr\u003e5.5.4 Impact modifiers \u003cbr\u003e5.5.5 Lubricants \u003cbr\u003e5.5.6 Pigments and colorants \u003cbr\u003e5.5.6.1 Titanium dioxide \u003cbr\u003e5.5.6.2 Zinc oxide \u003cbr\u003e5.5.6.3 Iron-containing pigments \u003cbr\u003e5.5.7 Plasticizers \u003cbr\u003e5.5.8 Polymer blends \u003cbr\u003e5.5.9 Solvents \u003cbr\u003e5.5.10 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Principles of Degradation by γ-Radiation\u003c\/strong\u003e\u003cbr\u003e6.1 The reasons for polymer instability \u003cbr\u003e6.2 Mechanisms \u003cbr\u003e6.3 Kinetics \u003cbr\u003e6.4 Results \u003cbr\u003e6.5 Effect of additives \u003cbr\u003e6.5.1 Plasticizers \u003cbr\u003e6.5.2 Fillers \u003cbr\u003e6.5.3 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Degradation by Other Forms of Radiation\u003c\/strong\u003e\u003cbr\u003e7.1 Argon plasma \u003cbr\u003e7.2 b-radiation (electron beam) \u003cbr\u003e7.3 Corona discharge \u003cbr\u003e7.4 Ion (proton) beam \u003cbr\u003e7.5 Laser \u003cbr\u003e7.6 Metallization \u003cbr\u003e7.7 Microwave \u003cbr\u003e7.8 Neutron irradiation \u003cbr\u003e7.9 Oxygen plasma \u003cbr\u003e7.10 X-rays \u003cbr\u003e7.11 Ultrasonic \u003cbr\u003eReferences \u003cbr\u003e8 Mechanodegradation \u003cbr\u003eReferences \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e9 Chemical Degradation\u003c\/strong\u003e\u003cbr\u003e9.1 methods of chemical dehydrochlorination \u003cbr\u003e9.2. Kinetics and mechanisms of reaction \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Analytical Methods\u003c\/strong\u003e\u003cbr\u003e10.1 Heat stability test \u003cbr\u003e10.1.1 Sample preparation \u003cbr\u003e10.1.2 Kinetic studies of dehydrochlorination \u003cbr\u003e10.1.3 Dehydrochlorination rate and optical changes \u003cbr\u003e10.1.4 Degradation in solution \u003cbr\u003e10.2 Thermogravimetric analysis \u003cbr\u003e10.2.1 Differential scanning calorimetry, DSC \u003cbr\u003e10.2.2 Mass loss \u003cbr\u003e10.3 Combustion \u003cbr\u003e10.4 Optical properties \u003cbr\u003e10.5 Spectroscopic methods \u003cbr\u003e10.5.1 Atomic absorption, AAS \u003cbr\u003e10.5.2 Auger \u003cbr\u003e10.5.3 Electron spin resonance, ESR \u003cbr\u003e10.5.4 Fourier transform infrared, FTIR \u003cbr\u003e10.5.5 Laser photopyroelectric effect spectrometry \u003cbr\u003e10.5.6 Mass, MS \u003cbr\u003e10.5.7 Mossbauer \u003cbr\u003e10.5.8 Near-infrared, NIR \u003cbr\u003e10.5.9 Nuclear magnetic resonance, NMR \u003cbr\u003e10.5.10 Positron annihilation lifetime spectroscopy, PAS \u003cbr\u003e10.5.11 Raman \u003cbr\u003e10.5.12 Time-of-flight secondary ion mass spectrometry, ToF-SIMS \u003cbr\u003e10.5.13 X-ray analysis \u003cbr\u003e10.5.13.1 Small angle light scattering, SAXS \u003cbr\u003e10.5.13.2 Wide angle light scattering, WAXS or WAXD \u003cbr\u003e10.5.14 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e10.5.15 UV-visible \u003cbr\u003e10.6 Chromatographic methods \u003cbr\u003e10.1 Gas chromatography \u003cbr\u003e10.6.2 Liquid chromatography \u003cbr\u003e10.7 Mechanical properties \u003cbr\u003e10.8 Other essential methods of testing \u003cbr\u003e10.8.1 Action spectrum \u003cbr\u003e10.8.2 Coulter counter \u003cbr\u003e10.8.3 Gel content \u003cbr\u003e10.8.4 Ozonolysis \u003cbr\u003e10.8.5 Peroxide titration \u003cbr\u003e10.8.6 Rheological studies \u003cbr\u003e10.9 International standards \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 Principles of Stabilization \u003c\/strong\u003e\u003cbr\u003e11.1 Functions of PVC stabilizers\u003cbr\u003e11.1.1 Hydrogen chloride binding\u003cbr\u003e11.1.2 Removal of reactive chlorine\u003cbr\u003e11.1.3 Reactions with metal chlorides\u003cbr\u003e11.1.4 Reactions with isolated unsaturations\u003cbr\u003e11.1.5 Reaction with conjugated unsaturations\u003cbr\u003e11.1.6 Decomposition of hydroperoxides\u003cbr\u003e11.1.7 Removal of reactive radicals (chain breaking function)\u003cbr\u003e11.1.8 UV screening\u003cbr\u003e11.2 Theories\u003cbr\u003e11.2.1 Frye and Horst\u003cbr\u003e11.2.2 Application of the Debye-Hückel theory\u003cbr\u003e11.2.3 Kinetic model of PVC stabilization\u003cbr\u003e11.3 Stabilizer groups\u003cbr\u003e11.3.1 Metal soaps\u003cbr\u003e(The groups of stabilizers below are discussed according to the following breakdown: Properties and applications of commercial stabilizers Mechanisms of action Costabilizers Research findings)\u003cbr\u003e11.3.1.1 Barium\/zinc\u003cbr\u003e11.3.1.2 Calcium\/zinc\u003cbr\u003e11.3.1.3 Magnesium\/zinc\u003cbr\u003e11.3.1.4 Potassium\/zinc\u003cbr\u003e11.3.1.5 Barium\/cadmium\u003cbr\u003e11.3.1.6 Barium\/cadmium\/zinc\u003cbr\u003e11.3.2 Lead stabilizers\u003cbr\u003e11.3.3 Organotin stabilizers\u003cbr\u003e11.3.4 Organic stabilizers\u003cbr\u003e11.3.4.1 Epoxidized compounds\u003cbr\u003e11.3.4.3 Phenolic antioxidants\u003cbr\u003e11.3.4.4 Multiketones\u003cbr\u003e11.3.4.5 Other costabilizers\u003cbr\u003e11.3.5 UV stabilizers\u003cbr\u003e11.3.5.1 Organic UV absorbers\u003cbr\u003e11.3.5.2 Inorganic UV absorbers\u003cbr\u003e11.3.5.3 Hindered amine light stabilizers, HALS\u003cbr\u003e11.3.6 Lubricants \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 Health and safety and environmental impact\u003c\/strong\u003e\u003cbr\u003e12.1 Toxic substance control \u003cbr\u003e12.2. Carcinogenic effect \u003cbr\u003e12.3 Teratogenic and mutagenic effect \u003cbr\u003e12.4 Workplace exposure limits \u003cbr\u003e12.5 Exposure from consumer products \u003cbr\u003e12.6 Drinking water \u003cbr\u003e12.7 Food regulatory acts \u003cbr\u003e12.8 Toxicity of stabilizers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:41-04:00","created_at":"2017-06-22T21:13:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","book","chemical structure of PVC","mechanical properties","morphology","p-chemistry","polymer","PVC UV degradation","PVC additives","PVC chemical degradation","PVC compounding","PVC formulation","PVC mechanodegradation","PVC stabilization","PVC thermal degradation","stability of PVC"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371396,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-39-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619","options":["Title"],"media":[{"alt":null,"id":358726893661,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-39-3.jpg?v=1499887619","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-39-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2008\u003cbr\u003e\u003c\/span\u003eSecond edition\u003cbr\u003ePages: 442\u003cbr\u003eFigures: 275 \u003cbr\u003eTables: 66\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the global renewal of interest in PVC, this book is well timed, considering that PVC stabilization is the most important aspect of its formulation and performance.\n\u003cp\u003eOnly four books have been published on PVC degradation and stabilization (the last one in the 1980s), and two of them are by the author of this book.\u003c\/p\u003e\n\u003cp\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, and UV, gamma, and other forms of radiation, mechanodegradation, chemical degradation, analytic methods used in studying of degradative and stabilization processes, stabilization, and effect of PVC and its additives on health, safety and environment.\u003c\/p\u003e\n\u003cp\u003eThis book contains an analysis of all essential papers published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found.\u003c\/p\u003e\n\u003cp\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003ePreface\u003c\/strong\u003e\u003cbr\u003ePVC has a long history of development which began nearly 100 years ago with the patenting of the concepts of emulsion and suspension polymerization, the development of the industrial process of vinyl chloride synthesis, and patents on its plasticization, followed by the development of stabilization about 75 years ago. PVC has known rapid growth to utmost prominence and dramatic downfall almost to elimination, and it finally has regained a deserved, second position among commercial polymers.\u003cbr\u003ePVC owes both its prominence and its downfall to research: meticulous, cutting-edge studies and unscrupulous bad science which stops progress and derails achievements.\u003cbr\u003ePVC degradation during processing and use was always one of the essential elements of PVC science and technology. Many approaches to stabilization changed and some groups of stabilizers are not used in new production. This book was written to show new trends and directions. It also contains clearly indicated information about past stabilizers, which is needed in order to understand the principles of stabilization and effective recycling.\u003cbr\u003eFor me, it has been an interesting experience to actively participate in the growth of this branch of science and summarize its achievements and the directions which it faces now, here and in my two previous books, written 25 years ago. I hope the clarity and completeness of the description of research findings as we know them today will help in further research and, most importantly, lead to successful and responsible practical applications of additives in PVC processing and applications.\u003cbr\u003e\u003cbr\u003eGeorge Wypych\u003cbr\u003eToronto, May 8, 2008\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cstrong\u003e\u003cbr\u003e1 Chemical Structure of PVC\u003c\/strong\u003e\u003cbr\u003e1.1 Repeat structures and their basic organic chemistry \u003cbr\u003e1.1.1 Bronsted acid source with controllable emission \u003cbr\u003e1.2 Molecular weight and its distribution \u003cbr\u003e1.2.1 Kuhn-Mark-Houwink-Sakurada \u003cbr\u003e1.2.2 Fikentscher K number \u003cbr\u003e1.2.3 Chain length \u003cbr\u003e1.3 Prediction of formation of irregular segments \u003cbr\u003e1.3.1 Ab initio \u003cbr\u003e1.3.2 Monte Carlo \u003cbr\u003e1.4 Irregular segments \u003cbr\u003e1.4.1 Branches \u003cbr\u003e1.4.2 Tertiary chlorine \u003cbr\u003e1.4.3 Unsaturations \u003cbr\u003e1.4.4 Oxygen containing groups \u003cbr\u003e1.4.4.1 Ketochloroallyl groups \u003cbr\u003e1.4.4.2 a- and b-carbonyl groups \u003cbr\u003e1.4.5 Head-to-head structures \u003cbr\u003e1.4.5 Initiator rests \u003cbr\u003e1.4.6 Transfer agent rests \u003cbr\u003e1.4.8 Defects introduced during processing \u003cbr\u003e1.4.9 PVC having increased stability \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e2 PVC Manufacture Technology \u003c\/strong\u003e\u003cbr\u003e2.1 Monomer \u003cbr\u003e2.2 Basic Steps of Radical Polymerization \u003cbr\u003e2.2.1 Initiation \u003cbr\u003e2.2.2 Propagation \u003cbr\u003e2.2.3 Termination \u003cbr\u003e2.2.4 Chain transfer to monomer \u003cbr\u003e2.3 Polymerization technology \u003cbr\u003e2.3.1 Suspension \u003cbr\u003e2.3.2 Paste resin manufacturing processes \u003cbr\u003e2.3.3 Bulk \u003cbr\u003e2.3.4 Solution \u003cbr\u003e2.4 Polymerization conditions and PVC properties \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3 PVC Morphology\u003c\/strong\u003e\u003cbr\u003e3.1. Molecular weight of polymer (chain length) \u003cbr\u003e3.2. Configuration and conformation \u003cbr\u003e3.3. Chain folds \u003cbr\u003e3.4. Chain thickness \u003cbr\u003e3.5 Entanglements \u003cbr\u003e3.6 Crystalline structure \u003cbr\u003e3.7 Grain morphology \u003cbr\u003e3.7.1 Stages of morphology development during manufacture \u003cbr\u003e3.7.1.1 Suspension polymerization \u003cbr\u003e3.7.1.2 Paste grades manufacture \u003cbr\u003e3.7.1.3 Bulk polymerization \u003cbr\u003e3.7.2 Effect of morphology on degradation \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4 Principles of Thermal Degradation\u003c\/strong\u003e\u003cbr\u003e4.1 The reasons for polymer instability \u003cbr\u003e4.1.1 Structural defects \u003cbr\u003e4.1.1.1 Branches \u003cbr\u003e4.1.1.2 Tertiary chlorine \u003cbr\u003e4.1.1.3 Unstaturations \u003cbr\u003e4.1.1.4 Oxygen containing groups \u003cbr\u003e4.1.1.5 Head-to-head structures \u003cbr\u003e4.1.1.6 Morphology \u003cbr\u003e4.1.2 Polymerization residue \u003cbr\u003e4.1.2.1 Initiator rests \u003cbr\u003e4.1.2.2 Transfer agent rests \u003cbr\u003e4.1.2.3 Polymerization additives \u003cbr\u003e4.1.3 Metal derivatives \u003cbr\u003e4.1.3.1 Metal chlorides \u003cbr\u003e4.1.3.2 Copper and its oxide \u003cbr\u003e4.1.4 Hydrogen chloride 14 \u003cbr\u003e4.1.5 Impurities \u003cbr\u003e4.1.6 Shear \u003cbr\u003e4.1.7 Temperature \u003cbr\u003e4.1.8 Surrounding atmosphere \u003cbr\u003e4.1.9 Additives \u003cbr\u003e4.2 Mechanisms of thermal degradation \u003cbr\u003e4.2.1 Molecular mechanism \u003cbr\u003e4.2.2 Amer-Shapiro mechanism \u003cbr\u003e4.2.3 Six-center concerted mechanism \u003cbr\u003e4.2.4 Activation enthalpy \u003cbr\u003e4.2.5 Radical-chain theory \u003cbr\u003e4.2.6 Ionic \u003cbr\u003e4.2.7 Polaron \u003cbr\u003e4.2.8 Degenerated branching \u003cbr\u003e4.2.9 Transition state theory \u003cbr\u003e4.2.10 Recapitulation \u003cbr\u003e4.3 Kinetics \u003cbr\u003e4.3.1 Initiation \u003cbr\u003e4.3.2 Propagation \u003cbr\u003e4.3.3 Termination \u003cbr\u003e4.4 Results of thermal degradation \u003cbr\u003e4.4.1 Volatiles \u003cbr\u003e4.4.2 Weight loss \u003cbr\u003e4.4.3 Char formation \u003cbr\u003e4.4.4 Ash content \u003cbr\u003e4.4.5 Thermal lifetime \u003cbr\u003e4.4.6 Optical properties \u003cbr\u003e4.4.6.1 Color change \u003cbr\u003e4.4.6.2 Extinction coefficient \u003cbr\u003e4.4.6.3 Absorbance \u003cbr\u003e4.4.7 Molecular weight \u003cbr\u003e4.4.8 Mechanical properties \u003cbr\u003e4.4.9 Electric properties \u003cbr\u003e4.5 Effect of additives \u003cbr\u003e4.5.1 Blend polymers \u003cbr\u003e4.5.1.1 ABS \u003cbr\u003e4.5.1.2 Chlorinated polyethylene, CPE \u003cbr\u003e4.5.1.3 Epoxidized butadiene\/styrene block copolymer \u003cbr\u003e4.5.1.4 Epoxidized natural rubber \u003cbr\u003e4.5.1.5 Ethylene vinyl acetate, EVA \u003cbr\u003e4.5.1.6 High impact polystyrene, HIPS \u003cbr\u003e4.5.1.7 Methylmethacrylate-butadiene-styrene \u003cbr\u003e4.5.1.8 Nitrile rubber, NBR \u003cbr\u003e4.5.1.9 Oxidized polyethylene, OPE \u003cbr\u003e4.5.1.10 Polyacrylate \u003cbr\u003e4.5.1.11 Polyacrylonitrile \u003cbr\u003e4.5.1.12 Polyamide \u003cbr\u003e4.5.1.13 Polyaniline, PANI \u003cbr\u003e4.5.1.13 Polycarbonate, PC \u003cbr\u003e4.5.1.14 Polyethylene, PE \u003cbr\u003e4.5.1.15 Poly(methyl methacrylate), PMMA \u003cbr\u003e4.5.1.16 Poly(N-vinyl-2-pyrrolidone), PVP \u003cbr\u003e4.5.1.17 Polysiloxane \u003cbr\u003e4.5.1.18 Polystyrene, PS \u003cbr\u003e4.5.1.19 Polythiophene \u003cbr\u003e4.5.1.20 Polyurethane \u003cbr\u003e4.5.1.21 Poly(vinyl acetate), PVAc \u003cbr\u003e4.5.1.22 Poly(vinyl alcohol), PVA \u003cbr\u003e4.5.1.23 Poly(vinyl butyral), PVB \u003cbr\u003e4.5.1.24 SAN \u003cbr\u003e4.5.2 Antiblocking \u003cbr\u003e4.5.3 Antistatics agents \u003cbr\u003e4.5.4 Biocides and fungicides \u003cbr\u003e4.5.5 Blowing agents \u003cbr\u003e4.5.6 Fillers \u003cbr\u003e4.5.7 Flame retardants \u003cbr\u003e4.5.8 Impact modifiers \u003cbr\u003e4.5.9 Lubricants \u003cbr\u003e4.5.10 Pigments \u003cbr\u003e4.5.11 Plasticizers \u003cbr\u003e4.5.12 Process aids \u003cbr\u003e4.5.13 Solvents \u003cbr\u003e4.5.14 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5 Principles of UV Degradation\u003c\/strong\u003e\u003cbr\u003e5.1 Reasons for polymer instability \u003cbr\u003e5.1.1 Radiative energy \u003cbr\u003e5.1.2 Radiation intensity \u003cbr\u003e5.1.3 Radiation incidence \u003cbr\u003e5.1.4 Absorption of radiation by materials \u003cbr\u003e5.1.5 Bond structure \u003cbr\u003e5.1.6 Thermal history \u003cbr\u003e5.1.7 Photosensitizers \u003cbr\u003e5.1.8 Wavelength sensitivity \u003cbr\u003e5.1.9 Thermal variability \u003cbr\u003e5.1.10 Pollutants \u003cbr\u003e5.1.11 Laboratory degradation conditions \u003cbr\u003e5.2 Mechanisms of degradation \u003cbr\u003e5.2.1 Radical mechanism \u003cbr\u003e5.2.1.1 Photooxidation mechanism \u003cbr\u003e5.2.1.2 Mechanistic scheme \u003cbr\u003e5.2.1.3 Conformational mechanism \u003cbr\u003e5.2.1.4 Electronic-to-vibrational energy transfer \u003cbr\u003e5.2.1.5 Other contributions to the mechanism of photodegradation \u003cbr\u003e5.3 Kinetics \u003cbr\u003e5.3.1 Initiation \u003cbr\u003e5.3.2 Propagation \u003cbr\u003e5.3.3 Termination \u003cbr\u003e5.4 Results of UV degradation \u003cbr\u003e5.4.1 Photodiscoloration \u003cbr\u003e5.4.2 Mechanical properties \u003cbr\u003e5.4.3 Other properties \u003cbr\u003e5.5 Effect of additives \u003cbr\u003e5.5.1 Biocides and fungicides \u003cbr\u003e5.5.2 Fillers \u003cbr\u003e5.5.3 Flame retardants \u003cbr\u003e5.5.4 Impact modifiers \u003cbr\u003e5.5.5 Lubricants \u003cbr\u003e5.5.6 Pigments and colorants \u003cbr\u003e5.5.6.1 Titanium dioxide \u003cbr\u003e5.5.6.2 Zinc oxide \u003cbr\u003e5.5.6.3 Iron-containing pigments \u003cbr\u003e5.5.7 Plasticizers \u003cbr\u003e5.5.8 Polymer blends \u003cbr\u003e5.5.9 Solvents \u003cbr\u003e5.5.10 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6 Principles of Degradation by γ-Radiation\u003c\/strong\u003e\u003cbr\u003e6.1 The reasons for polymer instability \u003cbr\u003e6.2 Mechanisms \u003cbr\u003e6.3 Kinetics \u003cbr\u003e6.4 Results \u003cbr\u003e6.5 Effect of additives \u003cbr\u003e6.5.1 Plasticizers \u003cbr\u003e6.5.2 Fillers \u003cbr\u003e6.5.3 Stabilizers \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7 Degradation by Other Forms of Radiation\u003c\/strong\u003e\u003cbr\u003e7.1 Argon plasma \u003cbr\u003e7.2 b-radiation (electron beam) \u003cbr\u003e7.3 Corona discharge \u003cbr\u003e7.4 Ion (proton) beam \u003cbr\u003e7.5 Laser \u003cbr\u003e7.6 Metallization \u003cbr\u003e7.7 Microwave \u003cbr\u003e7.8 Neutron irradiation \u003cbr\u003e7.9 Oxygen plasma \u003cbr\u003e7.10 X-rays \u003cbr\u003e7.11 Ultrasonic \u003cbr\u003eReferences \u003cbr\u003e8 Mechanodegradation \u003cbr\u003eReferences \u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e9 Chemical Degradation\u003c\/strong\u003e\u003cbr\u003e9.1 methods of chemical dehydrochlorination \u003cbr\u003e9.2. Kinetics and mechanisms of reaction \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10 Analytical Methods\u003c\/strong\u003e\u003cbr\u003e10.1 Heat stability test \u003cbr\u003e10.1.1 Sample preparation \u003cbr\u003e10.1.2 Kinetic studies of dehydrochlorination \u003cbr\u003e10.1.3 Dehydrochlorination rate and optical changes \u003cbr\u003e10.1.4 Degradation in solution \u003cbr\u003e10.2 Thermogravimetric analysis \u003cbr\u003e10.2.1 Differential scanning calorimetry, DSC \u003cbr\u003e10.2.2 Mass loss \u003cbr\u003e10.3 Combustion \u003cbr\u003e10.4 Optical properties \u003cbr\u003e10.5 Spectroscopic methods \u003cbr\u003e10.5.1 Atomic absorption, AAS \u003cbr\u003e10.5.2 Auger \u003cbr\u003e10.5.3 Electron spin resonance, ESR \u003cbr\u003e10.5.4 Fourier transform infrared, FTIR \u003cbr\u003e10.5.5 Laser photopyroelectric effect spectrometry \u003cbr\u003e10.5.6 Mass, MS \u003cbr\u003e10.5.7 Mossbauer \u003cbr\u003e10.5.8 Near-infrared, NIR \u003cbr\u003e10.5.9 Nuclear magnetic resonance, NMR \u003cbr\u003e10.5.10 Positron annihilation lifetime spectroscopy, PAS \u003cbr\u003e10.5.11 Raman \u003cbr\u003e10.5.12 Time-of-flight secondary ion mass spectrometry, ToF-SIMS \u003cbr\u003e10.5.13 X-ray analysis \u003cbr\u003e10.5.13.1 Small angle light scattering, SAXS \u003cbr\u003e10.5.13.2 Wide angle light scattering, WAXS or WAXD \u003cbr\u003e10.5.14 X-ray photoelectron spectroscopy, XPS \u003cbr\u003e10.5.15 UV-visible \u003cbr\u003e10.6 Chromatographic methods \u003cbr\u003e10.1 Gas chromatography \u003cbr\u003e10.6.2 Liquid chromatography \u003cbr\u003e10.7 Mechanical properties \u003cbr\u003e10.8 Other essential methods of testing \u003cbr\u003e10.8.1 Action spectrum \u003cbr\u003e10.8.2 Coulter counter \u003cbr\u003e10.8.3 Gel content \u003cbr\u003e10.8.4 Ozonolysis \u003cbr\u003e10.8.5 Peroxide titration \u003cbr\u003e10.8.6 Rheological studies \u003cbr\u003e10.9 International standards \u003cbr\u003eReferences\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e11 Principles of Stabilization \u003c\/strong\u003e\u003cbr\u003e11.1 Functions of PVC stabilizers\u003cbr\u003e11.1.1 Hydrogen chloride binding\u003cbr\u003e11.1.2 Removal of reactive chlorine\u003cbr\u003e11.1.3 Reactions with metal chlorides\u003cbr\u003e11.1.4 Reactions with isolated unsaturations\u003cbr\u003e11.1.5 Reaction with conjugated unsaturations\u003cbr\u003e11.1.6 Decomposition of hydroperoxides\u003cbr\u003e11.1.7 Removal of reactive radicals (chain breaking function)\u003cbr\u003e11.1.8 UV screening\u003cbr\u003e11.2 Theories\u003cbr\u003e11.2.1 Frye and Horst\u003cbr\u003e11.2.2 Application of the Debye-Hückel theory\u003cbr\u003e11.2.3 Kinetic model of PVC stabilization\u003cbr\u003e11.3 Stabilizer groups\u003cbr\u003e11.3.1 Metal soaps\u003cbr\u003e(The groups of stabilizers below are discussed according to the following breakdown: Properties and applications of commercial stabilizers Mechanisms of action Costabilizers Research findings)\u003cbr\u003e11.3.1.1 Barium\/zinc\u003cbr\u003e11.3.1.2 Calcium\/zinc\u003cbr\u003e11.3.1.3 Magnesium\/zinc\u003cbr\u003e11.3.1.4 Potassium\/zinc\u003cbr\u003e11.3.1.5 Barium\/cadmium\u003cbr\u003e11.3.1.6 Barium\/cadmium\/zinc\u003cbr\u003e11.3.2 Lead stabilizers\u003cbr\u003e11.3.3 Organotin stabilizers\u003cbr\u003e11.3.4 Organic stabilizers\u003cbr\u003e11.3.4.1 Epoxidized compounds\u003cbr\u003e11.3.4.3 Phenolic antioxidants\u003cbr\u003e11.3.4.4 Multiketones\u003cbr\u003e11.3.4.5 Other costabilizers\u003cbr\u003e11.3.5 UV stabilizers\u003cbr\u003e11.3.5.1 Organic UV absorbers\u003cbr\u003e11.3.5.2 Inorganic UV absorbers\u003cbr\u003e11.3.5.3 Hindered amine light stabilizers, HALS\u003cbr\u003e11.3.6 Lubricants \u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e12 Health and safety and environmental impact\u003c\/strong\u003e\u003cbr\u003e12.1 Toxic substance control \u003cbr\u003e12.2. Carcinogenic effect \u003cbr\u003e12.3 Teratogenic and mutagenic effect \u003cbr\u003e12.4 Workplace exposure limits \u003cbr\u003e12.5 Exposure from consumer products \u003cbr\u003e12.6 Drinking water \u003cbr\u003e12.7 Food regulatory acts \u003cbr\u003e12.8 Toxicity of stabilizers\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
PVC Degradation and St...
$315.00
{"id":4534954426461,"title":"PVC Degradation and Stabilization","handle":"pvc-degradation-and-stabilization","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-61-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 510 + x\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 67\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFourth Edition of PVC Degradation and Stabilization is a wholly updated monographic source based on the most recent papers and patent literature. PVC stabilization, the most critical aspect of formulation and performance of this polymer, is discussed in detail. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains an analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by γ-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:17:36-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","PVC","PVC UV degradation"],"price":31500,"price_min":31500,"price_max":31500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943870808157,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization","public_title":null,"options":["Default Title"],"price":31500,"weight":1000,"compare_at_price":null,"inventory_quantity":-2,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-61-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885611-Case.png?v=1581110423"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885611-Case.png?v=1581110423","options":["Title"],"media":[{"alt":null,"id":6968063197277,"position":1,"preview_image":{"aspect_ratio":0.66,"height":450,"width":297,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885611-Case.png?v=1581110423"},"aspect_ratio":0.66,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885611-Case.png?v=1581110423","width":297}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-61-1\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eFourth Edition\u003cbr\u003ePages: 510 + x\u003cbr\u003eFigures: 320\u003cbr\u003eTables: 67\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eFourth Edition of PVC Degradation and Stabilization is a wholly updated monographic source based on the most recent papers and patent literature. PVC stabilization, the most critical aspect of formulation and performance of this polymer, is discussed in detail. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains an analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by γ-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
PVC Degradation and St...
$285.00
{"id":11242220292,"title":"PVC Degradation and Stabilization, 3rd Edition","handle":"978-1-895198-85-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-85-0 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 488\u003c\/div\u003e\n\u003cdiv\u003eFigures: 283\u003c\/div\u003e\n\u003cdiv\u003eTables: 67\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPVC stabilization, the most important aspect of formulation and performance of this polymer, is discussed in details. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying of degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains the analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by ?-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:42-04:00","created_at":"2017-06-22T21:13:42-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","chemical structure of PVC","health and safety","morphology","p-chemistry","polymer","PVC UV degradation","PVC additives","PVC chemical degradation","PVC compounding","PVC formulation","PVC mechanodegradation","PVC stabilization","PVC thermal degradation","stability of PVC"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378371716,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Degradation and Stabilization, 3rd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-85-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309","options":["Title"],"media":[{"alt":null,"id":358727221341,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-85-0.jpg?v=1499887309","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-85-0 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003e\n\u003cmeta charset=\"utf-8\"\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 488\u003c\/div\u003e\n\u003cdiv\u003eFigures: 283\u003c\/div\u003e\n\u003cdiv\u003eTables: 67\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPVC stabilization, the most important aspect of formulation and performance of this polymer, is discussed in details. This book contains all information required to design successful stabilization formula for any product made out of PVC.\u003cbr\u003e\u003cbr\u003eOnly four books have ever been published on PVC degradation and stabilization, and two of them are by this author. The book is the only current source of information on the subject of PVC degradation and stabilization.\u003cbr\u003e\u003cbr\u003eSeparate chapters review information on chemical structure, PVC manufacturing technology, morphology, degradation by thermal energy, UV, gamma, other forms of radiation, mechanodegradation, and chemical degradation. The chapter on analytical methods used in studying of degradative and stabilization processes helps in establishing a system of checking results of stabilization with different stabilizing systems. Stabilization and stabilizers are discussed in full detail in the most important chapter of this book. The final chapter contains information on the effects of PVC and its additives on health, safety, and environment. \u003cbr\u003e\u003cbr\u003eThis book contains the analysis of all essential papers and patents published until recently on the above subject. It either locates the answers to relevant questions and offers solutions or gives references in which such answers can be found. \u003cbr\u003e\u003cbr\u003eMany new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more.\u003cbr\u003e\u003cbr\u003ePVC Degradation and Stabilization is must have for chemists, engineers, scientists, university teachers and students, designers, material scientists, environmental chemists, and lawyers who work with polyvinyl chloride and its additives or have any interest in these products. This book is the one authoritative source on the subject.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Chemical Structure of PVC \u003cbr\u003e2 PVC Manufacture Technology \u003cbr\u003e3 PVC Morphology\u003cbr\u003e4 Thermal Degradation\u003cbr\u003e5 UV Degradation\u003cbr\u003e6 Degradation by ?-Radiation\u003cbr\u003e7 Degradation by Other Forms of Radiation\u003cbr\u003e8 Mechanodegradation \u003cbr\u003e9 Chemical Degradation\u003cbr\u003e10 Analytical Methods\u003cbr\u003e11 PVC Stabilization \u003cbr\u003e12 Health and safety and environmental impact\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 14 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st and 2nd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives, PVC Degradation \u0026amp; Stabilization, The PVC Formulary (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
PVC Formulary
$275.00
{"id":11242220676,"title":"PVC Formulary","handle":"978-1-895198-40-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-40-9 \u003cbr\u003e\u003cbr\u003eFirst edition\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2015\u003cbr\u003e\u003c\/span\u003ePages: 324\u003cbr\u003eFigures: 125\u003cbr\u003eTables: 401\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book has four chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first chapter, polymer properties determining its proper selection are discussed. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe second chapter contains information aiding in the selection of any required additives. Twenty- three groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader.\u003cbr\u003eThe third chapter contains 500 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from recent patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousand of research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use and application information. The data are based on information contained in over 1200 research papers and present the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (\u003ca href=\"http:\/\/chemtec.org\/proddetail.php?prod=978-1-895198-39-3\"\u003ePVC Degradation \u0026amp; Stabilization\u003c\/a\u003e) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate his formulations on the background of formulations used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 25 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers. \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: \u003ca href=\"http:\/\/chemtec.org\/proddetail.php?prod=978-1-895198-39-3\"\u003ePVC Degradation \u0026amp; Stabilization\u003c\/a\u003e and The PVC Formulary, which were written with the goal to give the most current information to those who need it today.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 PVC Properties\u003c\/b\u003e\u003cbr\u003e1.1 Commercial types and grades \u003cbr\u003e1.1.1 General purpose resins \u003cbr\u003e1.1.1.1 Suspension \u003cbr\u003e1.1.1.2 Mass \u003cbr\u003e1.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e1.1.3 Specialty resins \u003cbr\u003e1.1.3.1 Powder process resins \u003cbr\u003e1.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e1.1.3.3 Absorptive resins \u003cbr\u003e1.1.3.4 Deglossing resins \u003cbr\u003e1.1.3.4 Extender resins \u003cbr\u003e1.1.4 Copolymers \u003cbr\u003e1.1.4.1 VC\/VAc copolymers \u003cbr\u003e1.1.4.2 Grafted copolymers \u003cbr\u003e1.2 Forms ready for processing \u003cbr\u003e1.2.1 Powder \u003cbr\u003e1.2.2 Dryblend and pellets \u003cbr\u003e1.2.3 Paste and solution \u003cbr\u003e1.2.4 Latex \u003cbr\u003e1.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e1.3.1 Molecular weight and its distribution \u003cbr\u003e1.3.2 Particle size and shape \u003cbr\u003e1.3.3 Porosity \u003cbr\u003e1.3.4 Purity \u003cbr\u003e1.3.5 Density \u003cbr\u003e1.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e1.3.7 Thermal properties \u003cbr\u003e1.3.8 Electrical properties \u003cbr\u003e1.3.9 Optical and spectral properties \u003cbr\u003e1.3.10 Shrinkage \u003cbr\u003e1.3.11 Chemical resistance \u003cbr\u003e1.3.12 Environmental stress cracking \u003cbr\u003e1.3.13 Mechanical properties \u003cbr\u003e1.3.14 Other properties of PVC \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 PVC Additives\u003c\/b\u003e \u003cbr\u003e2.1 Plasticizers \u003cbr\u003e2.2 Fillers \u003cbr\u003e2.3 Pigments and dyes \u003cbr\u003e2.4 Thermal stabilizers \u003cbr\u003e2.5 UV stabilizers \u003cbr\u003e2.6 Impact modifiers \u003cbr\u003e2.7 Antiblocking agents \u003cbr\u003e2.8 Release agents \u003cbr\u003e2.9 Slip agents \u003cbr\u003e2.10 Antistatics \u003cbr\u003e2.11 Flame retardants \u003cbr\u003e2.12 Smoke suppressants \u003cbr\u003e2.13 Lubricants \u003cbr\u003e2.14 Process aids \u003cbr\u003e2.15 Vicat\/HDT modifiers \u003cbr\u003e2.16 Foaming agents and promoters \u003cbr\u003e2.17 Antifog agents \u003cbr\u003e2.18 Crosslinking agents \u003cbr\u003e2.19 Adhesion promoters \u003cbr\u003e2.20 Brighteners \u003cbr\u003e2.21 Biocides and fungicides \u003cbr\u003e2.22 Magnetic additives \u003cbr\u003e2.23 Flexibilizers \u003cbr\u003e2.24 Nucleating agents \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cb\u003e3 The PVC Formulations\u003c\/b\u003e \u003cbr\u003e3.1 Blow molding \u003cbr\u003e3.1.1 Bottles and containers \u003cbr\u003e3.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e3.2 Calendering \u003cbr\u003e3.2.2 Floor coverings \u003cbr\u003e3.2.3 Pool liner \u003cbr\u003e3.2.4 Roofing membrane \u003cbr\u003e3.2.5 Sheet \u003cbr\u003e3.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e3.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e3.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e3.5 Extrusion \u003cbr\u003e3.5.1 General section \u003cbr\u003e3.5.2 Blinds \u003cbr\u003e3.5.3 Clear compound \u003cbr\u003e3.5.4 Gaskets \u003cbr\u003e3.5.5 Fencing \u003cbr\u003e3.5.6 Interior profiles \u003cbr\u003e3.5.7 Pipes \u003cbr\u003e3.5.8 Planks \u003cbr\u003e3.5.9 Rigid articles \u003cbr\u003e3.5.10 Sheet \u003cbr\u003e3.5.11 Siding \u003cbr\u003e3.5.12 Tubing \u003cbr\u003e3.5.13 Water stop seal \u003cbr\u003e3.5.14 Window and door profile \u003cbr\u003e3.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e3.6 Fiber and thread coating \u003cbr\u003e3.7 Film production \u003cbr\u003e3.7.1 Film \u003cbr\u003e3.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e3.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e3.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e3.10 Injection molding \u003cbr\u003e3.10.1 General \u003cbr\u003e3.10.2 Fittings \u003cbr\u003e3.10.3 Toys \u003cbr\u003e3.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e3.11 Joining and assembly \u003cbr\u003e3.12 Lamination \u003cbr\u003e3.13 Metallization \u003cbr\u003e3.14 Powder coating \u003cbr\u003e3.15 Printing \u003cbr\u003e3.16 Rotational molding \u003cbr\u003e3.17 Sintering \u003cbr\u003e3.18 Slush molding \u003cbr\u003e3.19 Solvent casting \u003cbr\u003e3.20 Spraying \u003cbr\u003e3.21 Thermoforming \u003cbr\u003e3.22 Web coating \u003cbr\u003e3.22.1 General \u003cbr\u003e3.22.2 Coated fabrics \u003cbr\u003e3.22.3 Conveyor belts \u003cbr\u003e3.22.4 Flooring \u003cbr\u003e3.22.5 Swimming pool liners \u003cbr\u003e3.22.6 Tarpaulin \u003cbr\u003e3.22.7 Upholstery \u003cbr\u003e3.22.8 Wallcovering \u003cbr\u003e3.22.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e3.23 Wire \u0026amp; cable \u003cbr\u003e3.23.1 ExxonMobil wire insulation formulas \u003cbr\u003e3.23.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e3.24 General remarks \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 Data\u003c\/b\u003e \u003cbr\u003e4.1 General data and nomenclature \u003cbr\u003e4.2 Chemical composition and properties \u003cbr\u003e4.3 Physical properties \u003cbr\u003e4.4 Mechanical properties \u003cbr\u003e4.5 Health and safety \u003cbr\u003e4.6 Environmental data \u003cbr\u003e4.7 Use and application data \u003cbr\u003e\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2018-02-15T09:12:45-05:00","created_at":"2017-06-22T21:13:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","George Wypych","PVC additives","PVC compounding","PVC compounds","PVC compounds and processing","PVC formulary","PVC formulations","PVC processing","PVC stabbilization","the compounding of PVC"],"price":27500,"price_min":27500,"price_max":27500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378372356,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Formulary","public_title":null,"options":["Default Title"],"price":27500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-40-9.jpg?v=1499887343"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-40-9.jpg?v=1499887343","options":["Title"],"media":[{"alt":null,"id":358727778397,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-40-9.jpg?v=1499887343"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-40-9.jpg?v=1499887343","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-40-9 \u003cbr\u003e\u003cbr\u003eFirst edition\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2015\u003cbr\u003e\u003c\/span\u003ePages: 324\u003cbr\u003eFigures: 125\u003cbr\u003eTables: 401\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book has four chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first chapter, polymer properties determining its proper selection are discussed. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe second chapter contains information aiding in the selection of any required additives. Twenty- three groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader.\u003cbr\u003eThe third chapter contains 500 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from recent patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousand of research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use and application information. The data are based on information contained in over 1200 research papers and present the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (\u003ca href=\"http:\/\/chemtec.org\/proddetail.php?prod=978-1-895198-39-3\"\u003ePVC Degradation \u0026amp; Stabilization\u003c\/a\u003e) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate his formulations on the background of formulations used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 25 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers. \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: \u003ca href=\"http:\/\/chemtec.org\/proddetail.php?prod=978-1-895198-39-3\"\u003ePVC Degradation \u0026amp; Stabilization\u003c\/a\u003e and The PVC Formulary, which were written with the goal to give the most current information to those who need it today.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003e1 PVC Properties\u003c\/b\u003e\u003cbr\u003e1.1 Commercial types and grades \u003cbr\u003e1.1.1 General purpose resins \u003cbr\u003e1.1.1.1 Suspension \u003cbr\u003e1.1.1.2 Mass \u003cbr\u003e1.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e1.1.3 Specialty resins \u003cbr\u003e1.1.3.1 Powder process resins \u003cbr\u003e1.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e1.1.3.3 Absorptive resins \u003cbr\u003e1.1.3.4 Deglossing resins \u003cbr\u003e1.1.3.4 Extender resins \u003cbr\u003e1.1.4 Copolymers \u003cbr\u003e1.1.4.1 VC\/VAc copolymers \u003cbr\u003e1.1.4.2 Grafted copolymers \u003cbr\u003e1.2 Forms ready for processing \u003cbr\u003e1.2.1 Powder \u003cbr\u003e1.2.2 Dryblend and pellets \u003cbr\u003e1.2.3 Paste and solution \u003cbr\u003e1.2.4 Latex \u003cbr\u003e1.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e1.3.1 Molecular weight and its distribution \u003cbr\u003e1.3.2 Particle size and shape \u003cbr\u003e1.3.3 Porosity \u003cbr\u003e1.3.4 Purity \u003cbr\u003e1.3.5 Density \u003cbr\u003e1.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e1.3.7 Thermal properties \u003cbr\u003e1.3.8 Electrical properties \u003cbr\u003e1.3.9 Optical and spectral properties \u003cbr\u003e1.3.10 Shrinkage \u003cbr\u003e1.3.11 Chemical resistance \u003cbr\u003e1.3.12 Environmental stress cracking \u003cbr\u003e1.3.13 Mechanical properties \u003cbr\u003e1.3.14 Other properties of PVC \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cb\u003e2 PVC Additives\u003c\/b\u003e \u003cbr\u003e2.1 Plasticizers \u003cbr\u003e2.2 Fillers \u003cbr\u003e2.3 Pigments and dyes \u003cbr\u003e2.4 Thermal stabilizers \u003cbr\u003e2.5 UV stabilizers \u003cbr\u003e2.6 Impact modifiers \u003cbr\u003e2.7 Antiblocking agents \u003cbr\u003e2.8 Release agents \u003cbr\u003e2.9 Slip agents \u003cbr\u003e2.10 Antistatics \u003cbr\u003e2.11 Flame retardants \u003cbr\u003e2.12 Smoke suppressants \u003cbr\u003e2.13 Lubricants \u003cbr\u003e2.14 Process aids \u003cbr\u003e2.15 Vicat\/HDT modifiers \u003cbr\u003e2.16 Foaming agents and promoters \u003cbr\u003e2.17 Antifog agents \u003cbr\u003e2.18 Crosslinking agents \u003cbr\u003e2.19 Adhesion promoters \u003cbr\u003e2.20 Brighteners \u003cbr\u003e2.21 Biocides and fungicides \u003cbr\u003e2.22 Magnetic additives \u003cbr\u003e2.23 Flexibilizers \u003cbr\u003e2.24 Nucleating agents \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e\u003cb\u003e3 The PVC Formulations\u003c\/b\u003e \u003cbr\u003e3.1 Blow molding \u003cbr\u003e3.1.1 Bottles and containers \u003cbr\u003e3.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e3.2 Calendering \u003cbr\u003e3.2.2 Floor coverings \u003cbr\u003e3.2.3 Pool liner \u003cbr\u003e3.2.4 Roofing membrane \u003cbr\u003e3.2.5 Sheet \u003cbr\u003e3.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e3.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e3.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e3.5 Extrusion \u003cbr\u003e3.5.1 General section \u003cbr\u003e3.5.2 Blinds \u003cbr\u003e3.5.3 Clear compound \u003cbr\u003e3.5.4 Gaskets \u003cbr\u003e3.5.5 Fencing \u003cbr\u003e3.5.6 Interior profiles \u003cbr\u003e3.5.7 Pipes \u003cbr\u003e3.5.8 Planks \u003cbr\u003e3.5.9 Rigid articles \u003cbr\u003e3.5.10 Sheet \u003cbr\u003e3.5.11 Siding \u003cbr\u003e3.5.12 Tubing \u003cbr\u003e3.5.13 Water stop seal \u003cbr\u003e3.5.14 Window and door profile \u003cbr\u003e3.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e3.6 Fiber and thread coating \u003cbr\u003e3.7 Film production \u003cbr\u003e3.7.1 Film \u003cbr\u003e3.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e3.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e3.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e3.10 Injection molding \u003cbr\u003e3.10.1 General \u003cbr\u003e3.10.2 Fittings \u003cbr\u003e3.10.3 Toys \u003cbr\u003e3.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e3.11 Joining and assembly \u003cbr\u003e3.12 Lamination \u003cbr\u003e3.13 Metallization \u003cbr\u003e3.14 Powder coating \u003cbr\u003e3.15 Printing \u003cbr\u003e3.16 Rotational molding \u003cbr\u003e3.17 Sintering \u003cbr\u003e3.18 Slush molding \u003cbr\u003e3.19 Solvent casting \u003cbr\u003e3.20 Spraying \u003cbr\u003e3.21 Thermoforming \u003cbr\u003e3.22 Web coating \u003cbr\u003e3.22.1 General \u003cbr\u003e3.22.2 Coated fabrics \u003cbr\u003e3.22.3 Conveyor belts \u003cbr\u003e3.22.4 Flooring \u003cbr\u003e3.22.5 Swimming pool liners \u003cbr\u003e3.22.6 Tarpaulin \u003cbr\u003e3.22.7 Upholstery \u003cbr\u003e3.22.8 Wallcovering \u003cbr\u003e3.22.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e3.23 Wire \u0026amp; cable \u003cbr\u003e3.23.1 ExxonMobil wire insulation formulas \u003cbr\u003e3.23.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e3.24 General remarks \u003cbr\u003e\u003cbr\u003e\u003cb\u003e4 Data\u003c\/b\u003e \u003cbr\u003e4.1 General data and nomenclature \u003cbr\u003e4.2 Chemical composition and properties \u003cbr\u003e4.3 Physical properties \u003cbr\u003e4.4 Mechanical properties \u003cbr\u003e4.5 Health and safety \u003cbr\u003e4.6 Environmental data \u003cbr\u003e4.7 Use and application data \u003cbr\u003e\u003cbr\u003eIndex \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
PVC Formulary
$300.00
{"id":4534955769949,"title":"PVC Formulary","handle":"pvc-formulary","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-63-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird edition\u003cbr\u003ePages: 410+x\u003cbr\u003eFigures: 132\u003cbr\u003eTables: 544\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In addition to the content of the previous edition, the book provides many new formulations which were introduced in the last six years. In the first introductory chapter, the new product development, product re-engineering tools and market for PVC products have been discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear way in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics needed by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains more than 600 formulations of products belonging to over 20 categories derived from typical methods of production. Formulations come from patents, publications in journals, and from the suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most critical parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This section results from a review of thousands of patents and research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, and use and application information. The data are based on information contained in over 1450 research papers, and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization also published in 2020) is to provide the reader with complete information and data required to formulate successful and durable products and\/or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Pharmaceutical products\u003cbr\u003e4.15 Powder coating \u003cbr\u003e4.16 Printing \u003cbr\u003e4.17 Rotational molding \u003cbr\u003e4.18 Sintering \u003cbr\u003e4.19 Slush molding \u003cbr\u003e4.20 Solvent casting \u003cbr\u003e4.21 Spraying \u003cbr\u003e4.22 Thermoforming \u003cbr\u003e4.23 Web coating \u003cbr\u003e4.23.1 General \u003cbr\u003e4.23.2 Coated fabrics \u003cbr\u003e4.23.3 Conveyor belts \u003cbr\u003e4.23.4 Flooring \u003cbr\u003e4.23.5 Swimming pool liners \u003cbr\u003e4.23.6 Tarpaulins \u003cbr\u003e4.23.7 Upholstery \u003cbr\u003e4.23.8 Wallcovering \u003cbr\u003e4.23.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 Wire \u0026amp; cable \u003cbr\u003e4.24.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.24.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.25 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T12:20:07-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","PVC"],"price":30000,"price_min":30000,"price_max":30000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943878705245,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Formulary","public_title":null,"options":["Default Title"],"price":30000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-63-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885635-Case.png?v=1581110471"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885635-Case.png?v=1581110471","options":["Title"],"media":[{"alt":null,"id":6968064540765,"position":1,"preview_image":{"aspect_ratio":0.658,"height":450,"width":296,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885635-Case.png?v=1581110471"},"aspect_ratio":0.658,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885635-Case.png?v=1581110471","width":296}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-63-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003eThird edition\u003cbr\u003ePages: 410+x\u003cbr\u003eFigures: 132\u003cbr\u003eTables: 544\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In addition to the content of the previous edition, the book provides many new formulations which were introduced in the last six years. In the first introductory chapter, the new product development, product re-engineering tools and market for PVC products have been discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear way in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics needed by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains more than 600 formulations of products belonging to over 20 categories derived from typical methods of production. Formulations come from patents, publications in journals, and from the suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most critical parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This section results from a review of thousands of patents and research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, and use and application information. The data are based on information contained in over 1450 research papers, and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization also published in 2020) is to provide the reader with complete information and data required to formulate successful and durable products and\/or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Pharmaceutical products\u003cbr\u003e4.15 Powder coating \u003cbr\u003e4.16 Printing \u003cbr\u003e4.17 Rotational molding \u003cbr\u003e4.18 Sintering \u003cbr\u003e4.19 Slush molding \u003cbr\u003e4.20 Solvent casting \u003cbr\u003e4.21 Spraying \u003cbr\u003e4.22 Thermoforming \u003cbr\u003e4.23 Web coating \u003cbr\u003e4.23.1 General \u003cbr\u003e4.23.2 Coated fabrics \u003cbr\u003e4.23.3 Conveyor belts \u003cbr\u003e4.23.4 Flooring \u003cbr\u003e4.23.5 Swimming pool liners \u003cbr\u003e4.23.6 Tarpaulins \u003cbr\u003e4.23.7 Upholstery \u003cbr\u003e4.23.8 Wallcovering \u003cbr\u003e4.23.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 Wire \u0026amp; cable \u003cbr\u003e4.24.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.24.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.25 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
PVC Formulary, 2nd Edi...
$285.00
{"id":11242221700,"title":"PVC Formulary, 2nd Edition","handle":"978-1-895198-84-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-84-3 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eSecond edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eFigures: 130\u003c\/div\u003e\n\u003cdiv\u003eTables: 450\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first introductory chapter, the new product development and product re-engineering tools and the market for PVC products are discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains about 600 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousands of research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use, and application information. The data are based on information contained in over 1450 research papers and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization, the new edition will be published in 2015) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Powder coating \u003cbr\u003e4.15 Printing \u003cbr\u003e4.16 Rotational molding \u003cbr\u003e4.17 Sintering \u003cbr\u003e4.18 Slush molding \u003cbr\u003e4.19 Solvent casting \u003cbr\u003e4.20 Spraying \u003cbr\u003e4.21 Thermoforming \u003cbr\u003e4.22 Web coating \u003cbr\u003e4.22.1 General \u003cbr\u003e4.22.2 Coated fabrics \u003cbr\u003e4.22.3 Conveyor belts \u003cbr\u003e4.22.4 Flooring \u003cbr\u003e4.22.5 Swimming pool liners \u003cbr\u003e4.22.6 Tarpaulin \u003cbr\u003e4.22.7 Upholstery \u003cbr\u003e4.22.8 Wallcovering \u003cbr\u003e4.22.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.23 Wire \u0026amp; cable \u003cbr\u003e4.23.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.23.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:13:47-04:00","created_at":"2017-06-22T21:13:47-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2015","book","George Wypych","p-chemistry","polymer","PVC additives","PVC compounding","PVC compounds","PVC compounds and processing","PVC formulary","PVC formulations","PVC processing","PVC stabbilization","the compounding of PVC"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378374724,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"PVC Formulary, 2nd Edition","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-84-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386","options":["Title"],"media":[{"alt":null,"id":358727909469,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-84-3.jpg?v=1499887386","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych \u003cbr\u003eISBN 978-1-895198-84-3 \u003cbr\u003e\u003cbr\u003e\n\u003cdiv\u003eSecond edition\u003c\/div\u003e\n\u003cdiv\u003e\n\u003cspan\u003ePublished: 2015\u003c\/span\u003e\u003cbr\u003ePages: 370\u003c\/div\u003e\n\u003cdiv\u003eFigures: 130\u003c\/div\u003e\n\u003cdiv\u003eTables: 450\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first introductory chapter, the new product development and product re-engineering tools and the market for PVC products are discussed. \u003cbr\u003e\u003cbr\u003eIn the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data.\u003cbr\u003e\u003cbr\u003eThe third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation.\u003cbr\u003e\u003cbr\u003eThe fourth chapter contains about 600 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousands of research papers, and information available from manufacturers of polymers and additives.\u003cbr\u003e\u003cbr\u003eThe final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use, and application information. The data are based on information contained in over 1450 research papers and it presents the most comprehensive set of data on PVC ever assembled.\u003cbr\u003e\u003cbr\u003eThe concept of this and a companion book (PVC Degradation \u0026amp; Stabilization, the new edition will be published in 2015) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.\u003cbr\u003e\u003cbr\u003eRegulatory agencies, consumer groups, and law enforcement agencies will also find this book invaluable because it contains a realistic composition of products produced today, based on broad research of information which no other available source offers.\u003cbr\u003e \u003cbr\u003eThere were many good books published on PVC in the past which are still in use today. Their main drawback is that they contain information which frequently does not apply to today’s products and thus creates confusion which is avoided with these two books: PVC Degradation \u0026amp; Stabilization and PVC Formulary, which were written with the goal to give the most current information to those who need it today.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 PVC Properties\u003cbr\u003e2.1 Commercial types and grades \u003cbr\u003e2.1.1 General purpose resins \u003cbr\u003e2.1.1.1 Suspension \u003cbr\u003e2.1.1.2 Mass \u003cbr\u003e2.1.2 Dispersion resins (emulsion, microsuspension) \u003cbr\u003e2.1.3 Specialty resins \u003cbr\u003e2.1.3.1 Powder process resins \u003cbr\u003e2.1.3.2 Ultrahigh molecular weight resins \u003cbr\u003e2.1.3.3 Absorptive resins \u003cbr\u003e2.1.3.4 Deglossing resins \u003cbr\u003e2.1.3.4 Extender resins \u003cbr\u003e2.1.4 Copolymers \u003cbr\u003e2.1.4.1 VC\/VAc copolymers \u003cbr\u003e2.1.4.2 Grafted copolymers \u003cbr\u003e2.2 Forms ready for processing \u003cbr\u003e2.2.1 Powder \u003cbr\u003e2.2.2 Dryblend and pellets \u003cbr\u003e2.2.3 Paste and solution \u003cbr\u003e2.2.4 Latex \u003cbr\u003e2.3 Physical-chemical properties of pure and compounded PVC \u003cbr\u003e2.3.1 Molecular weight and its distribution \u003cbr\u003e2.3.2 Particle size and shape \u003cbr\u003e2.3.3 Porosity \u003cbr\u003e2.3.4 Purity \u003cbr\u003e2.3.5 Density \u003cbr\u003e2.3.6 Crystalline structure, crystallinity, morphology \u003cbr\u003e2.3.7 Thermal properties \u003cbr\u003e2.3.8 Electrical properties \u003cbr\u003e2.3.9 Optical and spectral properties \u003cbr\u003e2.3.10 Shrinkage \u003cbr\u003e2.3.11 Chemical resistance \u003cbr\u003e2.3.12 Environmental stress cracking \u003cbr\u003e2.3.13 Mechanical properties \u003cbr\u003e2.3.14 Other properties of PVC \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 PVC Additives \u003cbr\u003e3.1 Plasticizers \u003cbr\u003e3.2 Fillers \u003cbr\u003e3.3 Pigments and dyes \u003cbr\u003e3.4 Thermal stabilizers \u003cbr\u003e3.5 UV stabilizers \u003cbr\u003e3.6 Impact modifiers \u003cbr\u003e3.7 Antiblocking agents \u003cbr\u003e3.8 Release agents \u003cbr\u003e3.9 Slip agents \u003cbr\u003e3.10 Antistatics \u003cbr\u003e3.11 Flame retardants \u003cbr\u003e3.12 Smoke suppressants \u003cbr\u003e3.13 Lubricants \u003cbr\u003e3.14 Process aids \u003cbr\u003e3.15 Vicat\/HDT modifiers \u003cbr\u003e3.16 Foaming agents and promoters \u003cbr\u003e3.17 Antifog agents \u003cbr\u003e3.18 Crosslinking agents \u003cbr\u003e3.19 Adhesion promoters \u003cbr\u003e3.20 Brighteners \u003cbr\u003e3.21 Biocides and fungicides \u003cbr\u003e3.22 Magnetic additives \u003cbr\u003e3.23 Flexibilizers \u003cbr\u003e3.24 Nucleating agents \u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e4 The PVC Formulations \u003cbr\u003e4.1 Blow molding \u003cbr\u003e4.1.1 Bottles and containers \u003cbr\u003e4.1.2 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.2 Calendering \u003cbr\u003e4.2.2 Floor coverings \u003cbr\u003e4.2.3 Pool liner \u003cbr\u003e4.2.4 Roofing membrane \u003cbr\u003e4.2.5 Sheet \u003cbr\u003e4.2.6 Sponged leather \u003cbr\u003eConclusive remarks \u003cbr\u003e4.3 Composites \u003cbr\u003eConclusive remarks 8\u003cbr\u003e4.4 Dip coating \u003cbr\u003eConclusive remarks \u003cbr\u003e4.5 Extrusion \u003cbr\u003e4.5.1 General section \u003cbr\u003e4.5.2 Blinds \u003cbr\u003e4.5.3 Clear compound \u003cbr\u003e4.5.4 Gaskets \u003cbr\u003e4.5.5 Fencing \u003cbr\u003e4.5.6 Interior profiles \u003cbr\u003e4.5.7 Pipes \u003cbr\u003e4.5.8 Planks \u003cbr\u003e4.5.9 Rigid articles \u003cbr\u003e4.5.10 Sheet \u003cbr\u003e4.5.11 Siding \u003cbr\u003e4.5.12 Tubing \u003cbr\u003e4.5.13 Water stop seal \u003cbr\u003e4.5.14 Window and door profile \u003cbr\u003e4.5.15 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.6 Fiber and thread coating \u003cbr\u003e4.7 Film production \u003cbr\u003e4.7.1 Film \u003cbr\u003e4.7.2 Food wrap \u003cbr\u003eConclusive remarks \u003cbr\u003e4.8 Foaming and foam extrusion \u003cbr\u003eConclusive remarks \u003cbr\u003e4.9 Gel \u0026amp; sealant formulations \u003cbr\u003eConclusive remarks \u003cbr\u003e4.10 Injection molding \u003cbr\u003e4.10.1 General \u003cbr\u003e4.10.2 Fittings \u003cbr\u003e4.10.3 Toys \u003cbr\u003e4.10.4 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.11 Joining and assembly \u003cbr\u003e4.12 Lamination \u003cbr\u003e4.13 Metallization \u003cbr\u003e4.14 Powder coating \u003cbr\u003e4.15 Printing \u003cbr\u003e4.16 Rotational molding \u003cbr\u003e4.17 Sintering \u003cbr\u003e4.18 Slush molding \u003cbr\u003e4.19 Solvent casting \u003cbr\u003e4.20 Spraying \u003cbr\u003e4.21 Thermoforming \u003cbr\u003e4.22 Web coating \u003cbr\u003e4.22.1 General \u003cbr\u003e4.22.2 Coated fabrics \u003cbr\u003e4.22.3 Conveyor belts \u003cbr\u003e4.22.4 Flooring \u003cbr\u003e4.22.5 Swimming pool liners \u003cbr\u003e4.22.6 Tarpaulin \u003cbr\u003e4.22.7 Upholstery \u003cbr\u003e4.22.8 Wallcovering \u003cbr\u003e4.22.9 Other products \u003cbr\u003eConclusive remarks \u003cbr\u003e4.23 Wire \u0026amp; cable \u003cbr\u003e4.23.1 ExxonMobil wire insulation formulas \u003cbr\u003e4.23.2 Traditional lead stabilizers in wire and cable \u003cbr\u003eConclusive remarks \u003cbr\u003e4.24 General remarks \u003cbr\u003e\u003cbr\u003e5 Data \u003cbr\u003e5.1 General data and nomenclature \u003cbr\u003e5.2 Chemical composition and properties \u003cbr\u003e5.3 Physical properties \u003cbr\u003e5.4 Mechanical properties \u003cbr\u003e5.5 Health and safety \u003cbr\u003e5.6 Environmental data \u003cbr\u003e5.7 Use and application data \u003cbr\u003e\u003cbr\u003eIndex\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Radiation Curing
$125.00
{"id":11242217668,"title":"Radiation Curing","handle":"978-1-85957-288-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.S. Davidson \u003cbr\u003eISBN 978-1-85957-288-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003epages 124\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is a very readable review on the exciting, advancing technology of radiation curing. The principles upon which the technology is based, the equipment that is used and the materials which make up a radiation curable formulation are described. The applications of radiation curing are set to expand. Currently, the technology is used in coatings, graphic arts, printing inks, packaging, adhesives, optical and optoelectronic applications, composite production, rapid prototyping, electronics, with liquid crystals, in nanotechnology, for controlled-permeability membranes and hydrogels (including contact lenses), and for the vulcanisation of natural and synthetic rubber. These are all discussed in this review, with principle material types outlined. The review is well referenced to facilitate further reading. It is accompanied by around 400 abstracts from the Rapra Abstracts database, most of which are cited in the text. \u003cbr\u003e\u003cbr\u003eThere are many possibilities for future developments in radiation curing. The technology permits extensive control over crosslinking, including reversal of the process of adhesion in some cases. This allows the production of release coatings and provides an easy method of removing expensive components at the end-of-life stage. It is also developing a role in medical applications. The prospects for functional and aesthetic coating applications are abundant with pearlescent coatings, liquid crystals in coatings and high gloss coatings, to name but a few. Radiation curing is generally environmentally friendly - dry powder coatings can eliminate the need for solvent-based products, and reversible adhesives can facilitate recycling. This legislation is fuelling the drive towards this technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eWhat is Radiation Curing? Use of the Terms ‘Drying’ and ‘Curing’ Why Consider Radiation Curing? \u003cbr\u003eThe Chemical Processes Used in Radiation Curing \u003cbr\u003eProcesses Involving Radicals Processes Involving Carbanions - Anionic Curing Systems \u003cbr\u003eEquipment \u003cbr\u003eApplications of Curable Coatings Radiation Sources for UV Curing \u003cbr\u003eGeneral Formulations \u003cbr\u003eInitiation of Cure by Photoinitiators Prepolymers Reactive Diluents Pigments Additives \u003cbr\u003eComponents of Cationically Cured Formulations Other than Photoinitiators \u003cbr\u003eReactive Diluents Prepolymers Combinations of Cationic- and Radical-Cured Materials \u003cbr\u003eApplications of Radiation Curing \u003cbr\u003eWood coating Graphic arts Printing inks Packaging Adhesives Optical Components and Optoelectronic Applications Production of Composites Rapid Prototyping Nanotechnology and Microstructures Liquid Crystals Electronics Powder Coatings Radiation Cured Coatings for Outdoor Use \u003cbr\u003e\u003cbr\u003eWater-Based Formulations\u003cbr\u003eWater Resistance, Permeability, and Hydrogels\u003cbr\u003eVulcanisation\u003cbr\u003eRadiation Curing in the 21st Century\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. R Stephen Davidson is Emeritus Professor of Applied Chemistry (University of Kent, UK) and Emeritus Professor of Organic Chemistry (City University, London, UK). He has published over 200 research papers as well as being a regular contributor to RadTech meetings. He is a Chartered Chemist (C.Chem.), a Member of the Royal Society of Chemistry (MRSC) and holds two postgraduate degrees. \u003cbr\u003e\u003cbr\u003eDr. Davidson has accumulated knowledge in the general field of radiation curing, relating to free radical and cationic curing systems, the synthesis of photoinitiators, diluents and prepolymers and the development of methods for determining the degree of cure. The development of the analytical methods was crucial for developing an understanding of the mechanism of curing and hence producing simple guidelines for formulators operating with this technology. He has worked with industry on projects such as the UV curing of inks. He is currently a consultant in this field.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:33-04:00","created_at":"2017-06-22T21:13:34-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","additives","book","coatings","curing","graphic","inks","p-formulation","packaging","permeability","pigments","polymer","radiation","resistance","UV","vulcanisation","wood coating"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378361092,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Radiation Curing","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-288-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-288-7.jpg?v=1499953964"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-288-7.jpg?v=1499953964","options":["Title"],"media":[{"alt":null,"id":358728958045,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-288-7.jpg?v=1499953964"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-288-7.jpg?v=1499953964","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.S. Davidson \u003cbr\u003eISBN 978-1-85957-288-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003epages 124\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis is a very readable review on the exciting, advancing technology of radiation curing. The principles upon which the technology is based, the equipment that is used and the materials which make up a radiation curable formulation are described. The applications of radiation curing are set to expand. Currently, the technology is used in coatings, graphic arts, printing inks, packaging, adhesives, optical and optoelectronic applications, composite production, rapid prototyping, electronics, with liquid crystals, in nanotechnology, for controlled-permeability membranes and hydrogels (including contact lenses), and for the vulcanisation of natural and synthetic rubber. These are all discussed in this review, with principle material types outlined. The review is well referenced to facilitate further reading. It is accompanied by around 400 abstracts from the Rapra Abstracts database, most of which are cited in the text. \u003cbr\u003e\u003cbr\u003eThere are many possibilities for future developments in radiation curing. The technology permits extensive control over crosslinking, including reversal of the process of adhesion in some cases. This allows the production of release coatings and provides an easy method of removing expensive components at the end-of-life stage. It is also developing a role in medical applications. The prospects for functional and aesthetic coating applications are abundant with pearlescent coatings, liquid crystals in coatings and high gloss coatings, to name but a few. Radiation curing is generally environmentally friendly - dry powder coatings can eliminate the need for solvent-based products, and reversible adhesives can facilitate recycling. This legislation is fuelling the drive towards this technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction \u003cbr\u003eWhat is Radiation Curing? Use of the Terms ‘Drying’ and ‘Curing’ Why Consider Radiation Curing? \u003cbr\u003eThe Chemical Processes Used in Radiation Curing \u003cbr\u003eProcesses Involving Radicals Processes Involving Carbanions - Anionic Curing Systems \u003cbr\u003eEquipment \u003cbr\u003eApplications of Curable Coatings Radiation Sources for UV Curing \u003cbr\u003eGeneral Formulations \u003cbr\u003eInitiation of Cure by Photoinitiators Prepolymers Reactive Diluents Pigments Additives \u003cbr\u003eComponents of Cationically Cured Formulations Other than Photoinitiators \u003cbr\u003eReactive Diluents Prepolymers Combinations of Cationic- and Radical-Cured Materials \u003cbr\u003eApplications of Radiation Curing \u003cbr\u003eWood coating Graphic arts Printing inks Packaging Adhesives Optical Components and Optoelectronic Applications Production of Composites Rapid Prototyping Nanotechnology and Microstructures Liquid Crystals Electronics Powder Coatings Radiation Cured Coatings for Outdoor Use \u003cbr\u003e\u003cbr\u003eWater-Based Formulations\u003cbr\u003eWater Resistance, Permeability, and Hydrogels\u003cbr\u003eVulcanisation\u003cbr\u003eRadiation Curing in the 21st Century\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. R Stephen Davidson is Emeritus Professor of Applied Chemistry (University of Kent, UK) and Emeritus Professor of Organic Chemistry (City University, London, UK). He has published over 200 research papers as well as being a regular contributor to RadTech meetings. He is a Chartered Chemist (C.Chem.), a Member of the Royal Society of Chemistry (MRSC) and holds two postgraduate degrees. \u003cbr\u003e\u003cbr\u003eDr. Davidson has accumulated knowledge in the general field of radiation curing, relating to free radical and cationic curing systems, the synthesis of photoinitiators, diluents and prepolymers and the development of methods for determining the degree of cure. The development of the analytical methods was crucial for developing an understanding of the mechanism of curing and hence producing simple guidelines for formulators operating with this technology. He has worked with industry on projects such as the UV curing of inks. He is currently a consultant in this field.\u003cbr\u003e\u003cbr\u003e"}
Rapra Collection of In...
$396.00
{"id":11242215556,"title":"Rapra Collection of Infrared Spectra of Rubbers, Plastics and Thermoplastic Elastomers, Third Edition (The)","handle":"978-1-84735-023-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M. Forrest, Y. Davies and J. Davies \u003cbr\u003eISBN 978-1-84735-023-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e420 pages, Wire bound\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor the 3rd Edition of this popular, authoritative and respected book, the collection has been completely revised and enlarged, with the addition of around 200 new spectra bringing the total number in the library to around 800. A number of improvements in the layout and design of the collection have been made. Some of these, such as a simpler classification system, clearer headings for the spectra, and the insertion of material indexes at the end of each section has been designed to make the library quicker and easier to use. It is also the case that, whereas the previous two editions were comprised of only four separate sub-libraries, covering the transmission and pyrolysate spectra of both rubber and plastic materials, another major improvement for this edition has been the incorporation of an additional, comprehensive library produced using a single bounce attenuated total reflectance (ATR) accessory. This is a very useful development, as since the publication of the second edition of this library in 1997, this type of ATR technique has acquired a high degree of popularity due to its many attributes, including speed and ease of use, the need for only small amounts of sample, and its virtually non-destructive nature.\u003cbr\u003e\u003cbr\u003eAll the spectra in the collection have been collected and stored at a resolution of 4 cm-1 and are plotted as percentage transmittance against wavenumber. For the transmission and pyrolyate spectra, the wavenumber range shown is 400 to 4000 cm-1, whereas, for the single bounce, diamond window ATR spectra the range is 650 to 4000 cm-1.\u003cbr\u003e\u003cbr\u003eThe layout of the spectra has been changed for this edition - within each of the five sub-libraries spectra are listed in alphabetical order according to material type, which is displayed in the main heading above each spectrum. A number of polymer blends are represented in these sub-libraries, and the proportions of the polymers in the blend are also shown in this main heading. There is also a secondary heading for each spectrum, where as much additional information as possible has been provided, e.g., the trade name of the material, its manufacturer, compositional information, (e.g., fillers present), and the method of preparing the sample, (e.g., film cast from chloroform) for the recording of the spectrum.\u003cbr\u003e\u003cbr\u003eAs mentioned above, transmission, pyrolysate, and ATR spectra are all present in the library. Two different approaches were used to produce the sample films that were used for the recording of the transmission spectra: hot pressing, and casting from a polymer solution. The pyrolysate spectra of the polymers were recorded from collected pyrolysis condensates. Where necessary, samples for pyrolysate work were cleaned up by an initial solvent extraction step. The spectra for the ATR part of the library were recorded using a single bounce, diamond window ATR accessory.\u003cbr\u003e\u003cbr\u003eThis library represents one of the most comprehensive, independent collections of infrared spectra that are commercially available. Drawing on Rapras international reputation as a centre of excellence and compiled by polymer analysts for polymer analysts it has proved, since the first edition appeared in 1992, to be of immense value to users from both academia and industry. The many improvements in this edition, particularly the inclusion of an ATR section and the enlargement of the range of polymer blends that are covered, will ensure that this library continues to be a must have acquisition for all those concerned with the analysis of polymers and polymer systems.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction\u003cbr\u003eAbbreviations\u003cbr\u003e1 Rubber Transmission Spectra\u003cbr\u003e2 Rubber Pyrolysate Spectra\u003cbr\u003e3 Plastics Transmission Spectra\u003cbr\u003e4 Plastics Pyrolysate Spectra\u003cbr\u003e5 Attenuated Total Reflection (ATR) Spectra\u003cbr\u003e6 Materials Index\u003cbr\u003e7 Tradename Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest started his career in 1977 with James Walkers \u0026amp; Co. Ltd, and during this time he progressed to the position of Rubber Technologist, having obtained his first degree in Polymer Technology at the London School of Polymer Technology (LSPT). In 1983 he started a full time Master of Science course in Polymer Science and Technology at the LSPT. After being awarded his MSc in 1984, he completed a Ph.D. in Polymer Chemistry at Loughborough University in 1988.","published_at":"2017-06-22T21:13:26-04:00","created_at":"2017-06-22T21:13:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","ATR","book","elastomers","p-chemical","plastics","polymer","pyrolysate spectra","rubbers","thermoplastic","transmission spectra"],"price":39600,"price_min":39600,"price_max":39600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378355524,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rapra Collection of Infrared Spectra of Rubbers, Plastics and Thermoplastic Elastomers, Third Edition (The)","public_title":null,"options":["Default Title"],"price":39600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"Published: 2001","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-023-7.jpg?v=1499953982"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-023-7.jpg?v=1499953982","options":["Title"],"media":[{"alt":null,"id":358728990813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-023-7.jpg?v=1499953982"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-023-7.jpg?v=1499953982","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: M. Forrest, Y. Davies and J. Davies \u003cbr\u003eISBN 978-1-84735-023-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e420 pages, Wire bound\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor the 3rd Edition of this popular, authoritative and respected book, the collection has been completely revised and enlarged, with the addition of around 200 new spectra bringing the total number in the library to around 800. A number of improvements in the layout and design of the collection have been made. Some of these, such as a simpler classification system, clearer headings for the spectra, and the insertion of material indexes at the end of each section has been designed to make the library quicker and easier to use. It is also the case that, whereas the previous two editions were comprised of only four separate sub-libraries, covering the transmission and pyrolysate spectra of both rubber and plastic materials, another major improvement for this edition has been the incorporation of an additional, comprehensive library produced using a single bounce attenuated total reflectance (ATR) accessory. This is a very useful development, as since the publication of the second edition of this library in 1997, this type of ATR technique has acquired a high degree of popularity due to its many attributes, including speed and ease of use, the need for only small amounts of sample, and its virtually non-destructive nature.\u003cbr\u003e\u003cbr\u003eAll the spectra in the collection have been collected and stored at a resolution of 4 cm-1 and are plotted as percentage transmittance against wavenumber. For the transmission and pyrolyate spectra, the wavenumber range shown is 400 to 4000 cm-1, whereas, for the single bounce, diamond window ATR spectra the range is 650 to 4000 cm-1.\u003cbr\u003e\u003cbr\u003eThe layout of the spectra has been changed for this edition - within each of the five sub-libraries spectra are listed in alphabetical order according to material type, which is displayed in the main heading above each spectrum. A number of polymer blends are represented in these sub-libraries, and the proportions of the polymers in the blend are also shown in this main heading. There is also a secondary heading for each spectrum, where as much additional information as possible has been provided, e.g., the trade name of the material, its manufacturer, compositional information, (e.g., fillers present), and the method of preparing the sample, (e.g., film cast from chloroform) for the recording of the spectrum.\u003cbr\u003e\u003cbr\u003eAs mentioned above, transmission, pyrolysate, and ATR spectra are all present in the library. Two different approaches were used to produce the sample films that were used for the recording of the transmission spectra: hot pressing, and casting from a polymer solution. The pyrolysate spectra of the polymers were recorded from collected pyrolysis condensates. Where necessary, samples for pyrolysate work were cleaned up by an initial solvent extraction step. The spectra for the ATR part of the library were recorded using a single bounce, diamond window ATR accessory.\u003cbr\u003e\u003cbr\u003eThis library represents one of the most comprehensive, independent collections of infrared spectra that are commercially available. Drawing on Rapras international reputation as a centre of excellence and compiled by polymer analysts for polymer analysts it has proved, since the first edition appeared in 1992, to be of immense value to users from both academia and industry. The many improvements in this edition, particularly the inclusion of an ATR section and the enlargement of the range of polymer blends that are covered, will ensure that this library continues to be a must have acquisition for all those concerned with the analysis of polymers and polymer systems.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nIntroduction\u003cbr\u003eAbbreviations\u003cbr\u003e1 Rubber Transmission Spectra\u003cbr\u003e2 Rubber Pyrolysate Spectra\u003cbr\u003e3 Plastics Transmission Spectra\u003cbr\u003e4 Plastics Pyrolysate Spectra\u003cbr\u003e5 Attenuated Total Reflection (ATR) Spectra\u003cbr\u003e6 Materials Index\u003cbr\u003e7 Tradename Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Martin Forrest started his career in 1977 with James Walkers \u0026amp; Co. Ltd, and during this time he progressed to the position of Rubber Technologist, having obtained his first degree in Polymer Technology at the London School of Polymer Technology (LSPT). In 1983 he started a full time Master of Science course in Polymer Science and Technology at the LSPT. After being awarded his MSc in 1984, he completed a Ph.D. in Polymer Chemistry at Loughborough University in 1988."}
Rate of Equation for P...
$120.00
{"id":738272051300,"title":"Rate of Equation for Polymerization","handle":"rate-of-equation-for-polymerization","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cdiv\u003eAuthors: Reiji Mezaki, Guang Hui Ma\u003c\/div\u003e\n\u003cdiv\u003eISBN \u003cspan\u003e978-1-895198-16-4\u003c\/span\u003e\n\u003c\/div\u003e\n\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThis book is a compilation of rate expressions for industrially important polymerization reactions which have appeared in major technical journals in both chemistry and chemical engineering. In this text we have selected only homo- polymer systems with the exception of polycondensation systems although co- polymers are more widely used. It is our intention to compile and publish the rate expressions for copolymerization reactions in a subsequent volume. In the polymer industry rate expressions are vital for the analysis optimal design and optimal operation of polymerization reactors. In reacting systems other than polymerization reaction comprehensive summaries of kinetic data have been published on may occasions. For polymerization reactions however no extensive compilation of rate expressions has been attempted even though many useful textbooks have been published for the study of polymerization kinetics. It is true that computer aided searches of pertinent databases assist chemists and chemical engineers in finding rate expressions needed for their studies. Yet computer surveys of data bases are sometimes time consuming and often costly. We hope that this book will be of service for those who wish to conduct an efficient survey of the rate expressions of interest to them. The contents of the book can be used in a variety of ways. For example chemists and chemical engineers can estimate polymerization rates for desired polymerization conditions by using the rate expressions assembled here. comparison of the rates thus estimated against rates determined for a newly developed initiator or catalyst furnishes a useful evaluation of the initiator or catalyst. For the development of polymerization rate models, we recommend that investigators modified models on the basis of their own data. In the area of polymerization reactions, it is generally recognized that rate expressions are totally different if the polymerization occurs in the region where diffusion process of reactants and\/or products are rate- determining. On some occasions needless to say rate expressions reported in the past can be used without modifying the form of the rate equations. However, the rate parameters contained in the equations must be reevaluated by using the experimental data gathered by the investigators themselves. The use of uniform units might be convenient for users of this book.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eNo attempts were made to have such uniformity in order to avoid errors that we might introduce during the process of converting the units. It should be noted that many important journals issued in Russia in Eastern Europe and in the People’s Republic of China were excluded in our search for rate expressions. This is mainly because some difficulties were experienced in obtaining both the original and the English versions of these journals. However, the authors sincerely hope that the publication of this book will encourage other interested persons to collect rate expressions published in the geographical regions mentioned above. Perhaps in this way, some collaborative efforts will result in a substantially more complete collection of rate expressions for polymerization reactions.\u003c\/div\u003e\n\u003cspan\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.General Mechanism of Template Polymerization \u003cbr\u003e2.1 Template Polycondensation\u003cbr\u003e2.2 Chain Template Polymerization\u003cbr\u003e2.3 Template Copolymerization \u003cbr\u003e3.Templates and Orientation of Substrates on Template \u003cbr\u003e4.Examples of Template Polymerization\u003cbr\u003e4.1 Polyacids as Templates\u003cbr\u003e4.2 Polyimines and Polyamines as Templates\u003cbr\u003e4.3 Polybase Ionenes as Templates\u003cbr\u003e4.4 Poly(ethylene oxide) and Poly(vinyl pyrrolidone) as Templates\u003cbr\u003e4.5 Poly(methyl methacrylate) as Template\u003cbr\u003e4.6 Poly(vinylopyridines) as Templates\u003cbr\u003e4.7 Other Templates\u003cbr\u003e4.8 Multimonomers as Templates\u003cbr\u003e4.9 Ring-opening Polymerization\u003cbr\u003e5.Examples of Template Copolymerization\u003cbr\u003e5.1 Template Copolycondensation\u003cbr\u003e5.2 Ring Opening Template Copolymerization\u003cbr\u003e5.3 Radical Template Copolymerization\u003cbr\u003e5.3.1 Copolymerization with Participation of Multimonomers\u003cbr\u003e5.3.2 Copolymerization of Two Different Multimonomers \u003cbr\u003e5.3.3 Copolymerization without Multimonomers\u003cbr\u003e6.Examples of Template Polycondensation \u003cbr\u003e7.Secondary Reactions in Template Polymerization \u003cbr\u003e8.Kinetics of Template Polymerization \u003cbr\u003e8.2 Template Ring-opening Polymerization Kinetics \u003cbr\u003e8.3 Template Radical Polymerization Kinetics\u003cbr\u003e8.4 Kinetics of Multimonomer Polymerization 9.Products of Template Polymerization \u003cbr\u003e9.1 Polymers with Ladder-type Structure\u003cbr\u003e9.2 Polymer Complexes\u003cbr\u003e10.Potential Applications \u003cbr\u003e11.Experimental Techniques Used in the Study of Template Polymerization\u003cbr\u003e11.1 Methods of Examination of Polymerization Process\u003cbr\u003e11.2 Methods of Examination of Template Polymerization Products\u003cbr\u003e11.2.1 Polymeric Complexes\u003cbr\u003e11.2.2 Ladder Polymers","published_at":"2017-06-22T21:13:20-04:00","created_at":"2018-04-05T20:38:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1985","alloys","blends","book","japan","japanese patent","polymer","polymers"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":8103396311140,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Rate of Equation for Polymerization","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-16-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-16-4.jpg?v=1522975454"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-16-4.jpg?v=1522975454","options":["Title"],"media":[{"alt":null,"id":810376101981,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-16-4.jpg?v=1522975454"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-16-4.jpg?v=1522975454","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cdiv\u003eAuthors: Reiji Mezaki, Guang Hui Ma\u003c\/div\u003e\n\u003cdiv\u003eISBN \u003cspan\u003e978-1-895198-16-4\u003c\/span\u003e\n\u003c\/div\u003e\n\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cdiv\u003eThis book is a compilation of rate expressions for industrially important polymerization reactions which have appeared in major technical journals in both chemistry and chemical engineering. In this text we have selected only homo- polymer systems with the exception of polycondensation systems although co- polymers are more widely used. It is our intention to compile and publish the rate expressions for copolymerization reactions in a subsequent volume. In the polymer industry rate expressions are vital for the analysis optimal design and optimal operation of polymerization reactors. In reacting systems other than polymerization reaction comprehensive summaries of kinetic data have been published on may occasions. For polymerization reactions however no extensive compilation of rate expressions has been attempted even though many useful textbooks have been published for the study of polymerization kinetics. It is true that computer aided searches of pertinent databases assist chemists and chemical engineers in finding rate expressions needed for their studies. Yet computer surveys of data bases are sometimes time consuming and often costly. We hope that this book will be of service for those who wish to conduct an efficient survey of the rate expressions of interest to them. The contents of the book can be used in a variety of ways. For example chemists and chemical engineers can estimate polymerization rates for desired polymerization conditions by using the rate expressions assembled here. comparison of the rates thus estimated against rates determined for a newly developed initiator or catalyst furnishes a useful evaluation of the initiator or catalyst. For the development of polymerization rate models, we recommend that investigators modified models on the basis of their own data. In the area of polymerization reactions, it is generally recognized that rate expressions are totally different if the polymerization occurs in the region where diffusion process of reactants and\/or products are rate- determining. On some occasions needless to say rate expressions reported in the past can be used without modifying the form of the rate equations. However, the rate parameters contained in the equations must be reevaluated by using the experimental data gathered by the investigators themselves. The use of uniform units might be convenient for users of this book.\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003eNo attempts were made to have such uniformity in order to avoid errors that we might introduce during the process of converting the units. It should be noted that many important journals issued in Russia in Eastern Europe and in the People’s Republic of China were excluded in our search for rate expressions. This is mainly because some difficulties were experienced in obtaining both the original and the English versions of these journals. However, the authors sincerely hope that the publication of this book will encourage other interested persons to collect rate expressions published in the geographical regions mentioned above. Perhaps in this way, some collaborative efforts will result in a substantially more complete collection of rate expressions for polymerization reactions.\u003c\/div\u003e\n\u003cspan\u003e\u003cbr\u003e\u003cbr\u003e\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1.Introduction \u003cbr\u003e2.General Mechanism of Template Polymerization \u003cbr\u003e2.1 Template Polycondensation\u003cbr\u003e2.2 Chain Template Polymerization\u003cbr\u003e2.3 Template Copolymerization \u003cbr\u003e3.Templates and Orientation of Substrates on Template \u003cbr\u003e4.Examples of Template Polymerization\u003cbr\u003e4.1 Polyacids as Templates\u003cbr\u003e4.2 Polyimines and Polyamines as Templates\u003cbr\u003e4.3 Polybase Ionenes as Templates\u003cbr\u003e4.4 Poly(ethylene oxide) and Poly(vinyl pyrrolidone) as Templates\u003cbr\u003e4.5 Poly(methyl methacrylate) as Template\u003cbr\u003e4.6 Poly(vinylopyridines) as Templates\u003cbr\u003e4.7 Other Templates\u003cbr\u003e4.8 Multimonomers as Templates\u003cbr\u003e4.9 Ring-opening Polymerization\u003cbr\u003e5.Examples of Template Copolymerization\u003cbr\u003e5.1 Template Copolycondensation\u003cbr\u003e5.2 Ring Opening Template Copolymerization\u003cbr\u003e5.3 Radical Template Copolymerization\u003cbr\u003e5.3.1 Copolymerization with Participation of Multimonomers\u003cbr\u003e5.3.2 Copolymerization of Two Different Multimonomers \u003cbr\u003e5.3.3 Copolymerization without Multimonomers\u003cbr\u003e6.Examples of Template Polycondensation \u003cbr\u003e7.Secondary Reactions in Template Polymerization \u003cbr\u003e8.Kinetics of Template Polymerization \u003cbr\u003e8.2 Template Ring-opening Polymerization Kinetics \u003cbr\u003e8.3 Template Radical Polymerization Kinetics\u003cbr\u003e8.4 Kinetics of Multimonomer Polymerization 9.Products of Template Polymerization \u003cbr\u003e9.1 Polymers with Ladder-type Structure\u003cbr\u003e9.2 Polymer Complexes\u003cbr\u003e10.Potential Applications \u003cbr\u003e11.Experimental Techniques Used in the Study of Template Polymerization\u003cbr\u003e11.1 Methods of Examination of Polymerization Process\u003cbr\u003e11.2 Methods of Examination of Template Polymerization Products\u003cbr\u003e11.2.1 Polymeric Complexes\u003cbr\u003e11.2.2 Ladder Polymers"}
REACH for the Polymer ...
$125.00
{"id":11242240836,"title":"REACH for the Polymer Industry - A Practical Guide","handle":"9781847356208","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Polymer REACH Consortium \u003cbr\u003eISBN 9781847356208 \u003cbr\u003e\u003cbr\u003ePublished: 2012\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book has been produced by the EU Leonardo Project called Polymer REACH. The overall objective of Polymer REACH was to develop an e-learning platform and training materials for the European polymer industry to learn and understand how to manage their obligations under the European legislation - Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). \u003cbr\u003e\u003cbr\u003eThis book forms part of the training materials which will complement the industry-specific e-learning platform to enable the polymer industry to learn how to manage their obligations under REACH. The overall impact will be an increase in the knowledge base of the polymer industry on REACH, which will in turn help to increase competitiveness and sustainability of the sector.\u003cbr\u003e\u003cbr\u003eThis book will be useful to anyone who works with polymers or the chemicals that are used to make polymers, whether they are end-users or suppliers. REACH is affecting everyone concerned with the polymer industry and this book will help them to prepare for the impact and consequences of the REACH legislation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Mechanical Properties of Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Tensile Strength\u003cbr\u003e1.2.1 Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3 Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1 Torsion Test\u003cbr\u003e1.3.2 Hand Test\u003cbr\u003e1.4 Elongation at Break\u003cbr\u003e1.4.1 Basic Creep Data\u003cbr\u003e1.5 Strain at Yield\u003cbr\u003e1.5.1 Isochronous Stress-strain Curves\u003cbr\u003e1.5.2 Stress-time Curves\u003cbr\u003e1.5.3 Stress-temperature Curves\u003cbr\u003e1.5.4 Extrapolation Techniques\u003cbr\u003e1.5.5 Basic Parameters\u003cbr\u003e1.5.6 Recovery in Stress Phenomena\u003cbr\u003e1.5.7 Stress Relaxation\u003cbr\u003e1.5.8 Rupture Data\u003cbr\u003e1.5.9 Long-term Strain-time Data\u003cbr\u003e1.6 Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1 Notched Izod Impact Strength\u003cbr\u003e1.6.2 Falling Weight Impact Test\u003cbr\u003e1.6.3 Notch Sensitivity\u003cbr\u003e1.6.4 Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5 Effect of Molecular Parameters\u003cbr\u003e1.7 Shear Strength\u003cbr\u003e1.8 Elongation in Tension\u003cbr\u003e1.9 Deformation Under Load\u003cbr\u003e1.10 Compressive Set (Permanent Deformation)\u003cbr\u003e1.11 Mould Shrinkage\u003cbr\u003e1.12 Coefficient of Friction\u003cbr\u003e1.13 Fatigue Index\u003cbr\u003e1.14 Toughness\u003cbr\u003e1.15 Abrasion Resistance or Wear\u003cbr\u003e1.16 Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1 Glass Fibres\u003cbr\u003e1.16.1.1 Poly Tetrafluoroethylene\u003cbr\u003e1.16.2 Polyethylene Terephthalate\u003cbr\u003e1.16.2.1 Polyether Ether Ketone\u003cbr\u003e1.16.2.2 Polyimide\u003cbr\u003e1.16.2.3 Polyamide Imide\u003cbr\u003e1.16.3 Calcium Carbonate\u003cbr\u003e1.16.4 Modified Clays\u003cbr\u003e1.16.5 Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6 Carbon Fibres\u003cbr\u003e1.16.7 Carbon Nanotubes\u003cbr\u003e1.16.8 Miscellaneous Fillers\/Reinforcing Agents.\u003cbr\u003e1.16.9 Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17 Application of Dynamic Mechanical Analysis.\u003cbr\u003e1.17.1 Theory\u003cbr\u003e1.17.2 Instrumentation (Appendix 1)\u003cbr\u003e1.17.3 Fixed Frequency Mode\u003cbr\u003e1.17.3.1 Resonant Frequency Mode\u003cbr\u003e1.17.3.2 Stress Relaxation Mode\u003cbr\u003e1.17.3.3 Creep Mode\u003cbr\u003e1.17.3.4 Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5 Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6 Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7 Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8 Storage Modulus\u003cbr\u003e1.17.3.9 Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10 Elastomer Low-Temperature Properties\u003cbr\u003e1.17.3.11 Tensile Modulus\u003cbr\u003e1.17.3.12 Stress-strain Relationships\u003cbr\u003e1.17.3.13 Viscosity\u003cbr\u003e1.17.3.14 Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18 Rheology and Viscoelasticity\u003cbr\u003e1.19 Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1 Measurement of Rheological Properties\u003cbr\u003e1.19.2 Viscosity and Elasticity\u003cbr\u003e1.19.3 Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4 Flexing Test\u003cbr\u003e1.19.5 Deformation\u003cbr\u003e1.19.6 Tensile Properties\u003cbr\u003e1.19.7 Mechanical Stability of Natural and Synthetic Lattices\u003cbr\u003e1.19.8 Abrasion Test\u003cbr\u003e1.19.9 Peel Adhesion Test\u003cbr\u003e1.19.10 Ozone Resistance Test\u003cbr\u003e1.20 Physical Testing of Polymer Powders\u003cbr\u003e1.20.1 Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2 Artificial Weathering\u003cbr\u003e1.20.3 Natural Weathering\u003cbr\u003e1.20.4 Reactivity\u003cbr\u003e1.20.5 Melt Viscosity\u003cbr\u003e1.20.6 Loss on Stoving\u003cbr\u003e1.20.7 True Density\u003cbr\u003e1.20.8 Bulk Density\u003cbr\u003e1.20.9 Powder Flow\u003cbr\u003e1.20.10 Test for Cure\u003cbr\u003e1.20.11 Electrical Properties\u003cbr\u003e1.20.12 Thermal Analysis\u003cbr\u003e1.20.13 Particle-size Distribution\u003cbr\u003e1.20.13.1 Methods Based on Electrical Sensing Zone (Coulter Principle)\u003cbr\u003e1.20.13.2 Laser Particle Size Analysers\u003cbr\u003e1.20.13.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4 Sedimentation.\u003cbr\u003e1.20.13.5 Acoustic Spectroscopy\u003cbr\u003e1.20.13.6 Capillary Hydrodynamic Fractionation\u003cbr\u003e1.20.13.7 Small-angle Light Scattering\u003cbr\u003e1.21 Plastic Pipe Materials\u003cbr\u003e1.22 Plastic Film\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Thermal Properties of Polymers\u003cbr\u003e2.1 Linear Co-efficient of Expansion\u003cbr\u003e2.2 Mould Shrinkage\u003cbr\u003e2.3 Distortion Temperature\u003cbr\u003e2.3.1 Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2 Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4 Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5 Melting Temperature\u003cbr\u003e2.6 Maximum Operating Temperature\u003cbr\u003e2.7 Melt Flow Index\u003cbr\u003e2.8 VICAT Softening Point\u003cbr\u003e2.9 Thermal Conductivity\u003cbr\u003e2.10 Specific Heat\u003cbr\u003e2.10.1 Hot-wire Techniques\u003cbr\u003e2.10.2 Transient Plane Source Technique\u003cbr\u003e2.10.3 Laser Flash Technique\u003cbr\u003e2.10.4 Thermal Diffusivity\u003cbr\u003e2.11 Maximum Filming Temperature\u003cbr\u003e2.12 Heat at Volatilisation\u003cbr\u003e2.13 Glass Transition Temperature\u003cbr\u003e2.13.1 Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1 Theory\u003cbr\u003e2.14 Thermomechanical Analysis\u003cbr\u003e2.14.1 Theory\u003cbr\u003e2.15 Dynamic Mechanical Analysis\u003cbr\u003e2.16 Differential Thermal Analysis and \u003cbr\u003eThermogravimetric Analysis\u003cbr\u003e2.17 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18 Dielectric Thermal Analysis\u003cbr\u003e2.19 Inverse Gas Chromatography\u003cbr\u003e2.20 Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1 Differential Thermal Analysis\u003cbr\u003e2.20.2 Dynamic Mechanical Analysis\u003cbr\u003e2.20.3 Dielectric Thermal Analysis\u003cbr\u003e2.20.4 Thermomechanical Analysis\u003cbr\u003e2.20.5 Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Electrical Properties\u003cbr\u003e3.1 Volume Resistivity\u003cbr\u003e3.2 Dielectric Strength\u003cbr\u003e3.3 Dielectric Constant\u003cbr\u003e3.4 Dissipation Factor\u003cbr\u003e3.5 Surface Arc Resistance\u003cbr\u003e3.6 Tracking Resistance\u003cbr\u003e3.7 Electrical Resistance and Resistivity\u003cbr\u003e3.8 Electrical Conductivity\u003cbr\u003e3.9 Electronically Conducting Polymers\u003cbr\u003e3.10 Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Other Physical Properties\u003cbr\u003e4.1 Surface Hardness\u003cbr\u003e4.2 Specific Gravity and Bulk Density\u003cbr\u003e4.3 Gas Barrier Properties\u003cbr\u003e4.4 Optical Properties\u003cbr\u003e4.4.1 Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2 Light Scattering\u003cbr\u003e4.4.3 Optical Properties\u003cbr\u003e4.4.4 Electro-optical Effect\u003cbr\u003e4.4.5 Infrared Optical Properties\u003cbr\u003e4.5 Monitoring of Resin Cure\u003cbr\u003e4.5.1 Thermally Cured Resins\u003cbr\u003e4.5.1.1 Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2 Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3 Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4 Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5 Thermal Conductivity\u003cbr\u003e4.5.2 Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1 Differential Photo-calorimetry\u003cbr\u003e4.5.2.2 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3 Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4 Gas Chromatography-based Methods\u003cbr\u003e4.6 Adhesion Studies\u003cbr\u003e4.7 Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1 Dynamic Mechanical Analysis\u003cbr\u003e4.7.2 Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Thermal Stability\u003cbr\u003e5.1 Thermogravimetric Analysis\u003cbr\u003e5.2 Differential Thermal Analysis\u003cbr\u003e5.3 Differential Scanning Calorimetry\u003cbr\u003e5.4 Thermal Volatilisation Analysis\u003cbr\u003e5.5 Evolved Gas Analysis\u003cbr\u003e5.6 Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7 Mass Spectroscopy\u003cbr\u003e5.8 Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9 Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Thermo-oxidative Stability\u003cbr\u003e6.1 Thermogravimetric Analysis\u003cbr\u003e6.2 Differential Scanning Calorimetry\u003cbr\u003e6.3 Evolved Gas Analysis\u003cbr\u003e6.4 Infrared Spectroscopy\u003cbr\u003e6.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6 Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7 Imaging Chemiluminescence\u003cbr\u003e6.8 Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Assessment of Polymer Stability\u003cbr\u003e7.1 Light Stability\u003cbr\u003e7.1.1 Ultraviolet Light Weathering\u003cbr\u003e7.1.2 Natural Weathering Tests\u003cbr\u003e7.2 Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1 Effect of Pigments\u003cbr\u003e7.2.2 Effect of Carbon Black\u003cbr\u003e7.2.3 Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4 Effect of Thickness\u003cbr\u003e7.2.5 Effect of Stress during Exposure\u003cbr\u003e7.3 Gamma Radiation\u003cbr\u003e7.4 Electron Irradiation\u003cbr\u003e7.5 Irradiation by Carbon Ion Beam\u003cbr\u003e7.6 Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7 Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8 Water Absorption\u003cbr\u003e7.9 Chemical Resistance\u003cbr\u003e7.9.1 Detergent Resistance\u003cbr\u003e7.10 Hydrolytic Stability\u003cbr\u003e7.11 Resistance to Gases\u003cbr\u003e7.12 Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Selecting a Suitable Polymer\u003cbr\u003e8.1 Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2 Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3 Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers\u003cbr\u003eAppendix 2 – Mechanical properties of polymers\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:45-04:00","created_at":"2017-06-22T21:14:45-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2012","adhesion","book","electrical properties","elongation","mechanical propertis","p-properties","polymer REACH","polymer stability","properties of polymer","REACH legislation","thermal properties","thermal stability","thermo-oxidative stability"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378435140,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"REACH for the Polymer Industry - A Practical Guide","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781847356208","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947","options":["Title"],"media":[{"alt":null,"id":358729023581,"position":1,"preview_image":{"aspect_ratio":0.665,"height":499,"width":332,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947"},"aspect_ratio":0.665,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847356208.jpg?v=1499644947","width":332}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Polymer REACH Consortium \u003cbr\u003eISBN 9781847356208 \u003cbr\u003e\u003cbr\u003ePublished: 2012\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book has been produced by the EU Leonardo Project called Polymer REACH. The overall objective of Polymer REACH was to develop an e-learning platform and training materials for the European polymer industry to learn and understand how to manage their obligations under the European legislation - Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH). \u003cbr\u003e\u003cbr\u003eThis book forms part of the training materials which will complement the industry-specific e-learning platform to enable the polymer industry to learn how to manage their obligations under REACH. The overall impact will be an increase in the knowledge base of the polymer industry on REACH, which will in turn help to increase competitiveness and sustainability of the sector.\u003cbr\u003e\u003cbr\u003eThis book will be useful to anyone who works with polymers or the chemicals that are used to make polymers, whether they are end-users or suppliers. REACH is affecting everyone concerned with the polymer industry and this book will help them to prepare for the impact and consequences of the REACH legislation.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Mechanical Properties of Polymers\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Tensile Strength\u003cbr\u003e1.2.1 Electronic Dynamometer Testing of Tensile Properties\u003cbr\u003e1.3 Flexural Modulus (Modulus of Elasticity)\u003cbr\u003e1.3.1 Torsion Test\u003cbr\u003e1.3.2 Hand Test\u003cbr\u003e1.4 Elongation at Break\u003cbr\u003e1.4.1 Basic Creep Data\u003cbr\u003e1.5 Strain at Yield\u003cbr\u003e1.5.1 Isochronous Stress-strain Curves\u003cbr\u003e1.5.2 Stress-time Curves\u003cbr\u003e1.5.3 Stress-temperature Curves\u003cbr\u003e1.5.4 Extrapolation Techniques\u003cbr\u003e1.5.5 Basic Parameters\u003cbr\u003e1.5.6 Recovery in Stress Phenomena\u003cbr\u003e1.5.7 Stress Relaxation\u003cbr\u003e1.5.8 Rupture Data\u003cbr\u003e1.5.9 Long-term Strain-time Data\u003cbr\u003e1.6 Impact Strength Characteristics of Polymers\u003cbr\u003e1.6.1 Notched Izod Impact Strength\u003cbr\u003e1.6.2 Falling Weight Impact Test\u003cbr\u003e1.6.3 Notch Sensitivity\u003cbr\u003e1.6.4 Falling Weight Impact Tests: Further Discussion\u003cbr\u003e1.6.5 Effect of Molecular Parameters\u003cbr\u003e1.7 Shear Strength\u003cbr\u003e1.8 Elongation in Tension\u003cbr\u003e1.9 Deformation Under Load\u003cbr\u003e1.10 Compressive Set (Permanent Deformation)\u003cbr\u003e1.11 Mould Shrinkage\u003cbr\u003e1.12 Coefficient of Friction\u003cbr\u003e1.13 Fatigue Index\u003cbr\u003e1.14 Toughness\u003cbr\u003e1.15 Abrasion Resistance or Wear\u003cbr\u003e1.16 Effect of Reinforcing Agents and Fillers on Mechanical Properties\u003cbr\u003e1.16.1 Glass Fibres\u003cbr\u003e1.16.1.1 Poly Tetrafluoroethylene\u003cbr\u003e1.16.2 Polyethylene Terephthalate\u003cbr\u003e1.16.2.1 Polyether Ether Ketone\u003cbr\u003e1.16.2.2 Polyimide\u003cbr\u003e1.16.2.3 Polyamide Imide\u003cbr\u003e1.16.3 Calcium Carbonate\u003cbr\u003e1.16.4 Modified Clays\u003cbr\u003e1.16.5 Polymer-silicon Nanocomposites\u003cbr\u003e1.16.6 Carbon Fibres\u003cbr\u003e1.16.7 Carbon Nanotubes\u003cbr\u003e1.16.8 Miscellaneous Fillers\/Reinforcing Agents.\u003cbr\u003e1.16.9 Test Methods for Fibre Reinforced Plastics\u003cbr\u003e1.17 Application of Dynamic Mechanical Analysis.\u003cbr\u003e1.17.1 Theory\u003cbr\u003e1.17.2 Instrumentation (Appendix 1)\u003cbr\u003e1.17.3 Fixed Frequency Mode\u003cbr\u003e1.17.3.1 Resonant Frequency Mode\u003cbr\u003e1.17.3.2 Stress Relaxation Mode\u003cbr\u003e1.17.3.3 Creep Mode\u003cbr\u003e1.17.3.4 Projection of Material Behaviour using Superpositioning\u003cbr\u003e1.17.3.5 Prediction of Polymer Impact Resistance\u003cbr\u003e1.17.3.6 Effect of Processing on Loss Modulus\u003cbr\u003e1.17.3.7 Material Selection for Elevated-temperature Applications\u003cbr\u003e1.17.3.8 Storage Modulus\u003cbr\u003e1.17.3.9 Frequency Dependence of Modulation and Elasticity\u003cbr\u003e1.17.3.10 Elastomer Low-Temperature Properties\u003cbr\u003e1.17.3.11 Tensile Modulus\u003cbr\u003e1.17.3.12 Stress-strain Relationships\u003cbr\u003e1.17.3.13 Viscosity\u003cbr\u003e1.17.3.14 Miscellaneous Applications of Dynamic Mechanical Analysis\u003cbr\u003e1.18 Rheology and Viscoelasticity\u003cbr\u003e1.19 Physical Testing of Rubbers and Elastomers\u003cbr\u003e1.19.1 Measurement of Rheological Properties\u003cbr\u003e1.19.2 Viscosity and Elasticity\u003cbr\u003e1.19.3 Brittleness Point (Low-temperature Crystallisation)\u003cbr\u003e1.19.4 Flexing Test\u003cbr\u003e1.19.5 Deformation\u003cbr\u003e1.19.6 Tensile Properties\u003cbr\u003e1.19.7 Mechanical Stability of Natural and Synthetic Lattices\u003cbr\u003e1.19.8 Abrasion Test\u003cbr\u003e1.19.9 Peel Adhesion Test\u003cbr\u003e1.19.10 Ozone Resistance Test\u003cbr\u003e1.20 Physical Testing of Polymer Powders\u003cbr\u003e1.20.1 Ultraviolet and Outdoor Resistance\u003cbr\u003e1.20.2 Artificial Weathering\u003cbr\u003e1.20.3 Natural Weathering\u003cbr\u003e1.20.4 Reactivity\u003cbr\u003e1.20.5 Melt Viscosity\u003cbr\u003e1.20.6 Loss on Stoving\u003cbr\u003e1.20.7 True Density\u003cbr\u003e1.20.8 Bulk Density\u003cbr\u003e1.20.9 Powder Flow\u003cbr\u003e1.20.10 Test for Cure\u003cbr\u003e1.20.11 Electrical Properties\u003cbr\u003e1.20.12 Thermal Analysis\u003cbr\u003e1.20.13 Particle-size Distribution\u003cbr\u003e1.20.13.1 Methods Based on Electrical Sensing Zone (Coulter Principle)\u003cbr\u003e1.20.13.2 Laser Particle Size Analysers\u003cbr\u003e1.20.13.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e1.20.13.4 Sedimentation.\u003cbr\u003e1.20.13.5 Acoustic Spectroscopy\u003cbr\u003e1.20.13.6 Capillary Hydrodynamic Fractionation\u003cbr\u003e1.20.13.7 Small-angle Light Scattering\u003cbr\u003e1.21 Plastic Pipe Materials\u003cbr\u003e1.22 Plastic Film\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e2 Thermal Properties of Polymers\u003cbr\u003e2.1 Linear Co-efficient of Expansion\u003cbr\u003e2.2 Mould Shrinkage\u003cbr\u003e2.3 Distortion Temperature\u003cbr\u003e2.3.1 Heat Distortion Temperature at 0.45 MPa (°C)\u003cbr\u003e2.3.2 Heat Distortion Temperature at 1.80 MPa (°C)\u003cbr\u003e2.4 Brittleness Temperature (Low-temperature Embrittlement Temperature)\u003cbr\u003e2.5 Melting Temperature\u003cbr\u003e2.6 Maximum Operating Temperature\u003cbr\u003e2.7 Melt Flow Index\u003cbr\u003e2.8 VICAT Softening Point\u003cbr\u003e2.9 Thermal Conductivity\u003cbr\u003e2.10 Specific Heat\u003cbr\u003e2.10.1 Hot-wire Techniques\u003cbr\u003e2.10.2 Transient Plane Source Technique\u003cbr\u003e2.10.3 Laser Flash Technique\u003cbr\u003e2.10.4 Thermal Diffusivity\u003cbr\u003e2.11 Maximum Filming Temperature\u003cbr\u003e2.12 Heat at Volatilisation\u003cbr\u003e2.13 Glass Transition Temperature\u003cbr\u003e2.13.1 Differential Scanning Calorimetry\u003cbr\u003e2.13.1.1 Theory\u003cbr\u003e2.14 Thermomechanical Analysis\u003cbr\u003e2.14.1 Theory\u003cbr\u003e2.15 Dynamic Mechanical Analysis\u003cbr\u003e2.16 Differential Thermal Analysis and \u003cbr\u003eThermogravimetric Analysis\u003cbr\u003e2.17 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e2.18 Dielectric Thermal Analysis\u003cbr\u003e2.19 Inverse Gas Chromatography\u003cbr\u003e2.20 Alpha, Beta and Gamma Transitions\u003cbr\u003e2.20.1 Differential Thermal Analysis\u003cbr\u003e2.20.2 Dynamic Mechanical Analysis\u003cbr\u003e2.20.3 Dielectric Thermal Analysis\u003cbr\u003e2.20.4 Thermomechanical Analysis\u003cbr\u003e2.20.5 Infrared Spectroscopy\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e3 Electrical Properties\u003cbr\u003e3.1 Volume Resistivity\u003cbr\u003e3.2 Dielectric Strength\u003cbr\u003e3.3 Dielectric Constant\u003cbr\u003e3.4 Dissipation Factor\u003cbr\u003e3.5 Surface Arc Resistance\u003cbr\u003e3.6 Tracking Resistance\u003cbr\u003e3.7 Electrical Resistance and Resistivity\u003cbr\u003e3.8 Electrical Conductivity\u003cbr\u003e3.9 Electronically Conducting Polymers\u003cbr\u003e3.10 Applications of Dielectric Thermal Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e4 Other Physical Properties\u003cbr\u003e4.1 Surface Hardness\u003cbr\u003e4.2 Specific Gravity and Bulk Density\u003cbr\u003e4.3 Gas Barrier Properties\u003cbr\u003e4.4 Optical Properties\u003cbr\u003e4.4.1 Haze, Glass and Surface Roughness\u003cbr\u003e4.4.2 Light Scattering\u003cbr\u003e4.4.3 Optical Properties\u003cbr\u003e4.4.4 Electro-optical Effect\u003cbr\u003e4.4.5 Infrared Optical Properties\u003cbr\u003e4.5 Monitoring of Resin Cure\u003cbr\u003e4.5.1 Thermally Cured Resins\u003cbr\u003e4.5.1.1 Dynamic Mechanical Thermal \u003cbr\u003eAnalysis Application in Resin Curing\u003cbr\u003e4.5.1.2 Dielectric Thermal Analysis\u003cbr\u003e4.5.1.3 Differential Scanning Calorimetry\u003cbr\u003e4.5.1.4 Fibreoptic Sensors to Monitor Resin Cure\u003cbr\u003e4.5.1.5 Thermal Conductivity\u003cbr\u003e4.5.2 Photo-chemically Cured Resins\u003cbr\u003e4.5.2.1 Differential Photo-calorimetry\u003cbr\u003e4.5.2.2 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e4.5.2.3 Dynamic Mechanical Analysis\u003cbr\u003e4.5.2.4 Gas Chromatography-based Methods\u003cbr\u003e4.6 Adhesion Studies\u003cbr\u003e4.7 Viscoelastic and Rheological Properties\u003cbr\u003e4.7.1 Dynamic Mechanical Analysis\u003cbr\u003e4.7.2 Thermomechanical Analysis\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e5 Thermal Stability\u003cbr\u003e5.1 Thermogravimetric Analysis\u003cbr\u003e5.2 Differential Thermal Analysis\u003cbr\u003e5.3 Differential Scanning Calorimetry\u003cbr\u003e5.4 Thermal Volatilisation Analysis\u003cbr\u003e5.5 Evolved Gas Analysis\u003cbr\u003e5.6 Fourier-transform Infrared Spectroscopy and Differential Scanning Calorimetry Fourier-transform Infrared Spectroscopy\u003cbr\u003e5.7 Mass Spectroscopy\u003cbr\u003e5.8 Pyrolysis-Mass Spectrometry\u003cbr\u003e5.9 Effect of Metals on Heat Stability\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e6 Thermo-oxidative Stability\u003cbr\u003e6.1 Thermogravimetric Analysis\u003cbr\u003e6.2 Differential Scanning Calorimetry\u003cbr\u003e6.3 Evolved Gas Analysis\u003cbr\u003e6.4 Infrared Spectroscopy\u003cbr\u003e6.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e6.6 Matrix-assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e6.7 Imaging Chemiluminescence\u003cbr\u003e6.8 Pyrolysis-based Techniques\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e7 Assessment of Polymer Stability\u003cbr\u003e7.1 Light Stability\u003cbr\u003e7.1.1 Ultraviolet Light Weathering\u003cbr\u003e7.1.2 Natural Weathering Tests\u003cbr\u003e7.2 Protective Action of Pigments and Stabilisers\u003cbr\u003e7.2.1 Effect of Pigments\u003cbr\u003e7.2.2 Effect of Carbon Black\u003cbr\u003e7.2.3 Effect of Sunlight on Impact Strength\u003cbr\u003e7.2.4 Effect of Thickness\u003cbr\u003e7.2.5 Effect of Stress during Exposure\u003cbr\u003e7.3 Gamma Radiation\u003cbr\u003e7.4 Electron Irradiation\u003cbr\u003e7.5 Irradiation by Carbon Ion Beam\u003cbr\u003e7.6 Irradiation by Alpha Particles and Protons\u003cbr\u003e7.7 Prediction of the Service Lifetimes of Polymers\u003cbr\u003e7.8 Water Absorption\u003cbr\u003e7.9 Chemical Resistance\u003cbr\u003e7.9.1 Detergent Resistance\u003cbr\u003e7.10 Hydrolytic Stability\u003cbr\u003e7.11 Resistance to Gases\u003cbr\u003e7.12 Resistance to Solvents\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e8 Selecting a Suitable Polymer\u003cbr\u003e8.1 Selection of a Polymer to be used in the Manufacture of a Battery Case\u003cbr\u003e8.2 Selection of a Polymer that will be in Continuous use at High Temperatures\u003cbr\u003e8.3 Selection of a Polymer with Excellent \u003cbr\u003eUltraviolet Stability\u003cbr\u003eAppendix 1 – Instrument Suppliers\u003cbr\u003eAppendix 2 – Mechanical properties of polymers\u003cbr\u003eAppendix 3 – Thermal properties of polymers\u003cbr\u003eAppendix 4 – Electrical properties of polymers\u003cbr\u003eAppendix 5 – Other physical properties\u003cbr\u003eAppendix 6 – Assessment of polymer stability\u003cbr\u003eAbbreviations\u003cbr\u003eIndex"}
REACH USA 2011
$165.00
{"id":11242231812,"title":"REACH USA 2011","handle":"978-1-84735-629-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-629-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e9th International Conference on the Registration, Evaluation, and Authorisation of Chemicals and its Impact on US Trade\n\u003ch5\u003eSummary\u003c\/h5\u003e\n30 November 2010 marked the deadline for chemical producers and importers to register all high volume and potentially toxic substances. Chemicals that have not been registered with the requisite safety information by this date are to be withdrawn from the market under the \"no data, no market\" ruling, giving the potential to cause untold chaos in chemical supply chains. Indeed, successes and failures from this first set of REACH registrations in 2010 are expected to impact the use of products on the EU market and beyond, as well as influence chemical legislation initiatives across the globe. In particular, industry and regulators will become engaged with Evaluation during 2011, where data submitted in registration dossiers are reviewed and potentially challenged.\u003cbr\u003e\u003cbr\u003eIn 2011 customers in the EU will begin facing the knock-on requirements of registrations from 2010, changes in classification under the EU implementation of the Globally Harmonised System (GHS), conditions imposed by Exposure Scenarios and even 'uses advised against'. Not only are there widespread concerns over the EU's implementation of the GHS for the classification, labelling, and packaging of substances (CLP), but 2011 also brings new obligations, such as the need to notify substances of very high concern (SVHC) to the European Chemicals Agency (ECHA). In the US plans to introduce the GHS will undoubtedly cause similar fears.\u003cbr\u003e\u003cbr\u003eAt the same time, the next registration deadline is only 2 ½ years away. This second phase of Registration presents additional management hurdles, as it involves a large number of substances that may be relatively 'data poor' compared with substances registered in 2010. Companies must already begin planning, in particular with regards to budgeting for this next step in REACH.\u003cbr\u003e\u003cbr\u003e2011, therefore, presents industry and regulators with a critical year for gaining experience with how REACH actually works in practice. In turn, changes in official guidance and a legislative review in 2012 offer the possibility of improvements to the workability of REACH.\u003cbr\u003e\u003cbr\u003eWhether you're a cosmetics company, an aerospace manufacturer or a raw material supplier, REACH applies to you. These proceedings cover all the presentations from the conference which enveloped some of the vital lessons that have been learned, how the next deadlines in 2013 will affect the way you do business and what damage limitation controls can be put in place for 2011 when many fail to meet their obligations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 1: REACH – Experiences \u0026amp; Updates \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 1 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eKeynote Presentation REACH update and progress on registration \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 2 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eManaging dossiers – deadlines and updates \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Steffen Erler, Smithers Viscient, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 3 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eLessons learned from REACH implementation and thoughts for going forward to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eThomas G Grumbles, Cardno ENTRIX, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 2: Technical Complexities \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 4 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eNavigating REACH from a small business perspective \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eApril A Cesaretti, The HallStar Company, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 5 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eUse of science in REACH regulatory affairs \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Robbie Waites, SABIC Innovative Plastics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 6 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eConsortium Management – How will best practice evolve in the period to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaul Ashford, Caleb Management Services Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 3: Tools \u0026amp; Methods \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 7 Legal interpretations and challenges Ruxandra Cana, Field Fisher Waterhouse LLP, Belgium PAPER UNAVAILABLE \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 8 Sens-it-iv: in vitro methods for sensitisation Erwin Roggen, Novozymes AS, Denmark \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 9 Exposure in the supply chain: from development to implementation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eTine Vandenbrouck \u0026amp; Elke Van Asbroeck, Apeiron-Team NV, Belgium \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 10 The extended safety datasheet – challenges and opportunities \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Mark Pemberton, Lucite International UK Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 4: Safe Use, Restriction, and Authorisation \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 11 From use descriptors to safe use - one more step in the REACH journey \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Clayton, Reichhold Inc, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 12 SVHC duties as we move towards notification and authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 13 SIN list, restriction \u0026amp; authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJerker Ligthart \u0026amp;, Nardono Nimpuno International Chemical Secretariat, Sweden \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 5: Managing SVHCs \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 14 SVHCs in articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDave Bender, Tyco Electronics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 15 Managing substances of very high concern in the retail sector \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 16 Impact of REACH and CLP for manufacturers of articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Podd, Kimberly-Clark Europe, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 6: Chemicals Policy \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 17 EU chemicals policy – beyond REACH \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eMamta Patel, Chemical Watch, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 18 TSCA reform: Learning hard lessons from REACH experience \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Herb Estreicher, Keller \u0026amp; Heckman LLP, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 19 REACH and the interplay of state and federal chemicals policy in the US: Lessons Learned \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eProf Joel A Tickner, University of Massachusetts Lowell, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 7: GHS and CLP \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 20 CLP: The harmonisation process and the C\u0026amp;L inventory \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 21 US OSHA implementation of the GHS \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJennifer Silk, Retired from OSHA, currently Consultant \u0026amp; UNITAR Training Advisor on GHS, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 22 Managing CLP compliance: the essentials for business \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:18-04:00","created_at":"2017-06-22T21:14:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","chemical policy","legal interpretations","OSHA","p-properties","packaging","polymer","raw materials","REACH implementation","safety","safety datasheet"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378411268,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"REACH USA 2011","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-629-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-629-1.jpg?v=1499954018"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-629-1.jpg?v=1499954018","options":["Title"],"media":[{"alt":null,"id":358730596445,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-629-1.jpg?v=1499954018"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-629-1.jpg?v=1499954018","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-629-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003e9th International Conference on the Registration, Evaluation, and Authorisation of Chemicals and its Impact on US Trade\n\u003ch5\u003eSummary\u003c\/h5\u003e\n30 November 2010 marked the deadline for chemical producers and importers to register all high volume and potentially toxic substances. Chemicals that have not been registered with the requisite safety information by this date are to be withdrawn from the market under the \"no data, no market\" ruling, giving the potential to cause untold chaos in chemical supply chains. Indeed, successes and failures from this first set of REACH registrations in 2010 are expected to impact the use of products on the EU market and beyond, as well as influence chemical legislation initiatives across the globe. In particular, industry and regulators will become engaged with Evaluation during 2011, where data submitted in registration dossiers are reviewed and potentially challenged.\u003cbr\u003e\u003cbr\u003eIn 2011 customers in the EU will begin facing the knock-on requirements of registrations from 2010, changes in classification under the EU implementation of the Globally Harmonised System (GHS), conditions imposed by Exposure Scenarios and even 'uses advised against'. Not only are there widespread concerns over the EU's implementation of the GHS for the classification, labelling, and packaging of substances (CLP), but 2011 also brings new obligations, such as the need to notify substances of very high concern (SVHC) to the European Chemicals Agency (ECHA). In the US plans to introduce the GHS will undoubtedly cause similar fears.\u003cbr\u003e\u003cbr\u003eAt the same time, the next registration deadline is only 2 ½ years away. This second phase of Registration presents additional management hurdles, as it involves a large number of substances that may be relatively 'data poor' compared with substances registered in 2010. Companies must already begin planning, in particular with regards to budgeting for this next step in REACH.\u003cbr\u003e\u003cbr\u003e2011, therefore, presents industry and regulators with a critical year for gaining experience with how REACH actually works in practice. In turn, changes in official guidance and a legislative review in 2012 offer the possibility of improvements to the workability of REACH.\u003cbr\u003e\u003cbr\u003eWhether you're a cosmetics company, an aerospace manufacturer or a raw material supplier, REACH applies to you. These proceedings cover all the presentations from the conference which enveloped some of the vital lessons that have been learned, how the next deadlines in 2013 will affect the way you do business and what damage limitation controls can be put in place for 2011 when many fail to meet their obligations.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 1: REACH – Experiences \u0026amp; Updates \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 1 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eKeynote Presentation REACH update and progress on registration \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 2 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eManaging dossiers – deadlines and updates \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Steffen Erler, Smithers Viscient, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 3 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eLessons learned from REACH implementation and thoughts for going forward to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eThomas G Grumbles, Cardno ENTRIX, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 2: Technical Complexities \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 4 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eNavigating REACH from a small business perspective \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eApril A Cesaretti, The HallStar Company, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 5 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eUse of science in REACH regulatory affairs \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Robbie Waites, SABIC Innovative Plastics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 6 \u003cspan class=\"Apple-tab-span\"\u003e\u003c\/span\u003eConsortium Management – How will best practice evolve in the period to 2013 \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaul Ashford, Caleb Management Services Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 3: Tools \u0026amp; Methods \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 7 Legal interpretations and challenges Ruxandra Cana, Field Fisher Waterhouse LLP, Belgium PAPER UNAVAILABLE \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 8 Sens-it-iv: in vitro methods for sensitisation Erwin Roggen, Novozymes AS, Denmark \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 9 Exposure in the supply chain: from development to implementation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eTine Vandenbrouck \u0026amp; Elke Van Asbroeck, Apeiron-Team NV, Belgium \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 10 The extended safety datasheet – challenges and opportunities \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Mark Pemberton, Lucite International UK Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 4: Safe Use, Restriction, and Authorisation \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 11 From use descriptors to safe use - one more step in the REACH journey \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Clayton, Reichhold Inc, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 12 SVHC duties as we move towards notification and authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 13 SIN list, restriction \u0026amp; authorisation \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJerker Ligthart \u0026amp;, Nardono Nimpuno International Chemical Secretariat, Sweden \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 5: Managing SVHCs \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 14 SVHCs in articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDave Bender, Tyco Electronics, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 15 Managing substances of very high concern in the retail sector \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 16 Impact of REACH and CLP for manufacturers of articles \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eBarry Podd, Kimberly-Clark Europe, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 6: Chemicals Policy \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 17 EU chemicals policy – beyond REACH \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eMamta Patel, Chemical Watch, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 18 TSCA reform: Learning hard lessons from REACH experience \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eDr. Herb Estreicher, Keller \u0026amp; Heckman LLP, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 19 REACH and the interplay of state and federal chemicals policy in the US: Lessons Learned \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eProf Joel A Tickner, University of Massachusetts Lowell, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003e\u003cb\u003eSession 7: GHS and CLP \u003c\/b\u003e\u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 20 CLP: The harmonisation process and the C\u0026amp;L inventory \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eEva Sandberg, European Chemicals Agency (ECHA), Finland \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 21 US OSHA implementation of the GHS \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eJennifer Silk, Retired from OSHA, currently Consultant \u0026amp; UNITAR Training Advisor on GHS, USA \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p2\"\u003ePaper 22 Managing CLP compliance: the essentials for business \u003c\/p\u003e\n\u003cp class=\"p2\"\u003eSimon Brearley, The REACH Centre Ltd, UK \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp class=\"p1\"\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Reactive Polymers Fund...
$270.00
{"id":11242217540,"title":"Reactive Polymers Fundamentals and Applications, 2nd Edition","handle":"978-1-4557-3149-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Johannes Karl Fink \u003cbr\u003eISBN 978-1-4557-3149-7 \u003cbr\u003e\u003cbr\u003ePublished: 2013\u003cbr\u003eA Concise Guide to Industrial Polymers\n\u003cdiv\u003eHardbound, 576 Pages\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of reactive polymers enables manufacturers to make chemical changes at a late stage in the production process - these in turn cause changes in performance and properties. In order to achieve optimal performance, material selection and the control of the reaction are essential. In this handbook, Dr. Fink introduces engineers and scientists to the range of reactive polymers available, explains the reactions that take place, and details applications and performance benefits.\u003cbr\u003e\u003cbr\u003eFor each class of reactive resin (Thermoset) basic principles and industrial processes are described as well as additives, the curing process, and applications and uses. The initial chapters are devoted to individual resin types, e.g. epoxides, cyanoacrylates etc. Then more general chapters, e.g. reactive extrusion, and special topics, e.g. dental applications, follow. Additionally, the new edition will include information on the most recent developments, applications, and commercial products for each chemical class of Thermosets as well as sections on fabrication methods, reactive biopolymers, recycling of reactive polymers, and case studies. A chapter about injection molding of reactive polymers, and sections on radiation curing, Thermosetting elastomers, and reactive extrusion equipment will be included.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Unsaturated Polyester Resins\u003cbr\u003e\u003cbr\u003e2 Polyurethanes\u003cbr\u003e\u003cbr\u003e3 Epoxy Resins\u003cbr\u003e\u003cbr\u003e4 Phenol\/formaldehyde Resins\u003cbr\u003e\u003cbr\u003e5 Urea\/formaldehyde Resins\u003cbr\u003e\u003cbr\u003e6 Melamine Resins\u003cbr\u003e\u003cbr\u003e7 Furan Resins\u003cbr\u003e\u003cbr\u003e8 Silicones\u003cbr\u003e\u003cbr\u003e9 Acrylic Resins\u003cbr\u003e\u003cbr\u003e10 Cyanate Ester Resins\u003cbr\u003e\u003cbr\u003e11 Bismaleimide Resins\u003cbr\u003e\u003cbr\u003e12 Terpene Resins\u003cbr\u003e\u003cbr\u003e13 Cyanoacrylates\u003cbr\u003e\u003cbr\u003e14 Benzocyclobutene Resins\u003cbr\u003e\u003cbr\u003e15 Reactive Extrusion\u003cbr\u003e\u003cbr\u003e16 Compatibilization\u003cbr\u003e\u003cbr\u003e17 Rheology Control\u003cbr\u003e\u003cbr\u003e18 Grafting\u003cbr\u003e\u003cbr\u003e19 Acrylic Dental Fillers\u003cbr\u003e\u003cbr\u003e20 Toners\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Johannes Karl Fink, Montanuniversität Leoben, Austria","published_at":"2017-06-22T21:13:33-04:00","created_at":"2017-06-22T21:13:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","extrusion","fillers","fluorosilicones","grafting","industrial polymers","injection molding","material","nanocomposites","reactive biopolymers","reactive polymers","recycling","resins","rheology","silicones"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378360964,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Reactive Polymers Fundamentals and Applications, 2nd Edition","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-3149-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-3149-7.jpg?v=1499954053"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-3149-7.jpg?v=1499954053","options":["Title"],"media":[{"alt":null,"id":358731579485,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-3149-7.jpg?v=1499954053"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-3149-7.jpg?v=1499954053","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Johannes Karl Fink \u003cbr\u003eISBN 978-1-4557-3149-7 \u003cbr\u003e\u003cbr\u003ePublished: 2013\u003cbr\u003eA Concise Guide to Industrial Polymers\n\u003cdiv\u003eHardbound, 576 Pages\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of reactive polymers enables manufacturers to make chemical changes at a late stage in the production process - these in turn cause changes in performance and properties. In order to achieve optimal performance, material selection and the control of the reaction are essential. In this handbook, Dr. Fink introduces engineers and scientists to the range of reactive polymers available, explains the reactions that take place, and details applications and performance benefits.\u003cbr\u003e\u003cbr\u003eFor each class of reactive resin (Thermoset) basic principles and industrial processes are described as well as additives, the curing process, and applications and uses. The initial chapters are devoted to individual resin types, e.g. epoxides, cyanoacrylates etc. Then more general chapters, e.g. reactive extrusion, and special topics, e.g. dental applications, follow. Additionally, the new edition will include information on the most recent developments, applications, and commercial products for each chemical class of Thermosets as well as sections on fabrication methods, reactive biopolymers, recycling of reactive polymers, and case studies. A chapter about injection molding of reactive polymers, and sections on radiation curing, Thermosetting elastomers, and reactive extrusion equipment will be included.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Unsaturated Polyester Resins\u003cbr\u003e\u003cbr\u003e2 Polyurethanes\u003cbr\u003e\u003cbr\u003e3 Epoxy Resins\u003cbr\u003e\u003cbr\u003e4 Phenol\/formaldehyde Resins\u003cbr\u003e\u003cbr\u003e5 Urea\/formaldehyde Resins\u003cbr\u003e\u003cbr\u003e6 Melamine Resins\u003cbr\u003e\u003cbr\u003e7 Furan Resins\u003cbr\u003e\u003cbr\u003e8 Silicones\u003cbr\u003e\u003cbr\u003e9 Acrylic Resins\u003cbr\u003e\u003cbr\u003e10 Cyanate Ester Resins\u003cbr\u003e\u003cbr\u003e11 Bismaleimide Resins\u003cbr\u003e\u003cbr\u003e12 Terpene Resins\u003cbr\u003e\u003cbr\u003e13 Cyanoacrylates\u003cbr\u003e\u003cbr\u003e14 Benzocyclobutene Resins\u003cbr\u003e\u003cbr\u003e15 Reactive Extrusion\u003cbr\u003e\u003cbr\u003e16 Compatibilization\u003cbr\u003e\u003cbr\u003e17 Rheology Control\u003cbr\u003e\u003cbr\u003e18 Grafting\u003cbr\u003e\u003cbr\u003e19 Acrylic Dental Fillers\u003cbr\u003e\u003cbr\u003e20 Toners\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Johannes Karl Fink, Montanuniversität Leoben, Austria"}
Reactive Processing of...
$165.00
{"id":11242232324,"title":"Reactive Processing of Polymers","handle":"1-895198-20-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V P Begishev and A Ya Malkin \u003cbr\u003e10-ISBN 1-895198-20-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 987-1-895198-20-1 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999\u003cbr\u003e\u003c\/span\u003e225 pages, 118 figures, 6 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe main goal of this book is to discuss various technological methods of reactive processing of polymers with a special emphasis on production of large size articles. The book also shows methods of scaling up from laboratory to production stage by a combination of process modeling and application of modern analytical techniques to evaluate the similarity of production on different scales. \u003cbr\u003e\u003cbr\u003eThis approach allows to shorten introduction of new products and design the energy efficient (environmentally-friendly) processes. The combination of physical analysis of process kinetics to elucidate data for evaluation of process similarities on different scales is very useful in setting process parameters on the most energy-efficient level and having a high production output. The proposed method allows to maximize throughput, minimize cost and ensure required quality of the final products. \u003cbr\u003e\u003cbr\u003eThis unique approach not only gives objective results required for precise evaluation of process kinetics but it is applied in the book to real systems used as examples of model application. To fulfill the above goals, the book begins with a discussion of the chemistry of reactive processes which are then discussed from the point of view of their modeling. The modeling considers that reactive processing is impacted by various opposing requirements of flow, polymerization rate, crystallization rate, heat flow, etc. This is the main advantage of the approach when used for process optimization. In the next section, analytical control methods are evaluated for their usefulness in process monitoring. The final (and the largest chapter) discusses details of various technological methods of reactive processing by means of 70 diagrams clearly discussed and thus easy to understand. This interesting monograph is addressed to process engineers and scientists developing new products since both have to optimize their processes to obtain the most economical solution. But it also goes beyond reactive processing since problems of scale-up are common in entire chemical industry and this book shows the way how to control them, introduce new processes without long trials, and design technology which is cost-efficient and environmentally-friendly. All explained in easy to understand language.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003eThe Method of Reactive Processing of Polymers\u003c\/em\u003e (Lactam polymerization, Polymerization of monomers and oligomers with double bonds, Curing of unsaturated polyester resins, Curing of epoxy resins, Curing of phenolic-based compositions, Synthesis of polyurethane compounds, Curing of liquid rubbers and oligomers with functional groups, Curing of polysulphide oligomers, Curing of silicon-organic oligomers, Processing of oligomer-monomer mixtures, Processing of filled compositions) Modelling Reactive Processing of Polymers (Objectives of mathematical modeling, Kinetics of polymer synthesis, Kinetic models of lactam polymerization, General kinetic equation, Isothermal polymerization of -caprolactam, Polymerization of -dodecalactam, Synthesis of polybutenamide, Kinetic models of polyurethane synthesis, Kinetic models of curing of epoxy-based compounds, Kinetic models of curing of unsaturated polyesters, Non-isothermal polymerization in a batch-process reactor, Non-isothermal crystallization, Superimposed processes of polymerization and crystallization, Inverse kinetic problems, Changes in rheological properties of a reactive medium, Changes in rheological properties in the process of synthesis, Influence of shear rate on induction period in oligomer curing, Flow of reactive liquids, Residual stresses an strains, Physics of residual stresses in uniform materials, Modeling residual stresses in reactive processing, Residual stresses in amorphous materials, Residual stresses in crystallizable materials)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003eResearch and Control Methods for Reactive Molding Processes\u003c\/i\u003e (Control of relaxation properties in oligomer curing, Viscometric studies, Calorimetric methods, Thermal probe method)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003ePrinciples of Technology of Reactive Molding Technology \u003c\/i\u003e(Preparing components (Preliminary operations), Engineering for open mold processes, General layout of a production unit, Component metering, Component mixing, Polymerization or solidification stage, Modeling processes in a mold during solidification, Casting into rotary molds, Technological basis, Hydrodynamic phenomena during molding in a rotary mold, Polymerization in a tube reactor, Flow without transition to the solid state, The role of radial distributions, \"Hydrodynamic\" molecular weight distribution, Polymer coating by spraying, Devices for spraying liquids, Reactive extrusion of profile parts, Frontal processes, Principles, Front development in superimposed processes, Reactive injection molding, General requirements for a composition used in the RIM-process, Plant layout for the process, Processing of reinforced composites, Modeling mold filling, Processability diagrams) \u003c\/p\u003e\n\u003cp\u003e\u003cem\u003eThe Method of Reactive Processing of Polymers\u003c\/em\u003e (Lactam polymerization, Polymerization of monomers and oligomers with double bonds, Curing of unsaturated polyester resins, Curing of epoxy resins, Curing of phenolic-based compositions, Synthesis of polyurethane compounds, Curing of liquid rubbers and oligomers with functional groups, Curing of polysulphide oligomers, Curing of silicon-organic oligomers, Processing of oligomer-monomer mixtures, Processing of filled compositions) Modelling Reactive Processing of Polymers (Objectives of mathematical modeling, Kinetics of polymer synthesis, Kinetic models of lactam polymerization, General kinetic equation, Isothermal polymerization of -caprolactam, Polymerization of -dodecalactam, Synthesis of polybutenamide, Kinetic models of polyurethane synthesis, Kinetic models of curing of epoxy-based compounds, Kinetic models of curing of unsaturated polyesters, Non-isothermal polymerization in a batch-process reactor, Non-isothermal crystallization, Superimposed processes of polymerization and crystallization, Inverse kinetic problems, Changes in rheological properties of a reactive medium, Changes in rheological properties in the process of synthesis, Influence of shear rate on induction period in oligomer curing, Flow of reactive liquids, Residual stresses an strains, Physics of residual stresses in uniform materials, Modeling residual stresses in reactive processing, Residual stresses in amorphous materials, Residual stresses in crystallizable materials)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003eResearch and Control Methods for Reactive Molding Processes\u003c\/i\u003e (Control of relaxation properties in oligomer curing, Viscometric studies, Calorimetric methods, Thermal probe method)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003ePrinciples of Technology of Reactive Molding Technology \u003c\/i\u003e(Preparing components (Preliminary operations), Engineering for open mold processes, General layout of a production unit, Component metering, Component mixing, Polymerization or solidification stage, Modeling processes in a mold during solidification, Casting into rotary molds, Technological basis, Hydrodynamic phenomena during molding in a rotary mold, Polymerization in a tube reactor, Flow without transition to the solid state, The role of radial distributions, \"Hydrodynamic\" molecular weight distribution, Polymer coating by spraying, Devices for spraying liquids, Reactive extrusion of profile parts, Frontal processes, Principles, Front development in superimposed processes, Reactive injection molding, General requirements for a composition used in the RIM-process, Plant layout for the process, Processing of reinforced composites, Modeling mold filling, Processability diagrams)\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:20-04:00","created_at":"2017-06-22T21:14:20-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1999","book","control methods","curing","flow","oligomer","oligomers","p-formulation","phenolic","polymer","polymerization","polymers","processes","processing","production","reactive molding","rheological properties","strains"," epoxy resins"," isothermal"," kinetics"," lactam"," polybutenamide"," polyester resins"," polysulphide"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378412612,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Reactive Processing of Polymers","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V P Begishev and A Ya Malkin \u003cbr\u003e10-ISBN 1-895198-20-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 987-1-895198-20-1 \u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1999\u003cbr\u003e\u003c\/span\u003e225 pages, 118 figures, 6 tables\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe main goal of this book is to discuss various technological methods of reactive processing of polymers with a special emphasis on production of large size articles. The book also shows methods of scaling up from laboratory to production stage by a combination of process modeling and application of modern analytical techniques to evaluate the similarity of production on different scales. \u003cbr\u003e\u003cbr\u003eThis approach allows to shorten introduction of new products and design the energy efficient (environmentally-friendly) processes. The combination of physical analysis of process kinetics to elucidate data for evaluation of process similarities on different scales is very useful in setting process parameters on the most energy-efficient level and having a high production output. The proposed method allows to maximize throughput, minimize cost and ensure required quality of the final products. \u003cbr\u003e\u003cbr\u003eThis unique approach not only gives objective results required for precise evaluation of process kinetics but it is applied in the book to real systems used as examples of model application. To fulfill the above goals, the book begins with a discussion of the chemistry of reactive processes which are then discussed from the point of view of their modeling. The modeling considers that reactive processing is impacted by various opposing requirements of flow, polymerization rate, crystallization rate, heat flow, etc. This is the main advantage of the approach when used for process optimization. In the next section, analytical control methods are evaluated for their usefulness in process monitoring. The final (and the largest chapter) discusses details of various technological methods of reactive processing by means of 70 diagrams clearly discussed and thus easy to understand. This interesting monograph is addressed to process engineers and scientists developing new products since both have to optimize their processes to obtain the most economical solution. But it also goes beyond reactive processing since problems of scale-up are common in entire chemical industry and this book shows the way how to control them, introduce new processes without long trials, and design technology which is cost-efficient and environmentally-friendly. All explained in easy to understand language.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cp\u003e\u003cem\u003eThe Method of Reactive Processing of Polymers\u003c\/em\u003e (Lactam polymerization, Polymerization of monomers and oligomers with double bonds, Curing of unsaturated polyester resins, Curing of epoxy resins, Curing of phenolic-based compositions, Synthesis of polyurethane compounds, Curing of liquid rubbers and oligomers with functional groups, Curing of polysulphide oligomers, Curing of silicon-organic oligomers, Processing of oligomer-monomer mixtures, Processing of filled compositions) Modelling Reactive Processing of Polymers (Objectives of mathematical modeling, Kinetics of polymer synthesis, Kinetic models of lactam polymerization, General kinetic equation, Isothermal polymerization of -caprolactam, Polymerization of -dodecalactam, Synthesis of polybutenamide, Kinetic models of polyurethane synthesis, Kinetic models of curing of epoxy-based compounds, Kinetic models of curing of unsaturated polyesters, Non-isothermal polymerization in a batch-process reactor, Non-isothermal crystallization, Superimposed processes of polymerization and crystallization, Inverse kinetic problems, Changes in rheological properties of a reactive medium, Changes in rheological properties in the process of synthesis, Influence of shear rate on induction period in oligomer curing, Flow of reactive liquids, Residual stresses an strains, Physics of residual stresses in uniform materials, Modeling residual stresses in reactive processing, Residual stresses in amorphous materials, Residual stresses in crystallizable materials)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003eResearch and Control Methods for Reactive Molding Processes\u003c\/i\u003e (Control of relaxation properties in oligomer curing, Viscometric studies, Calorimetric methods, Thermal probe method)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003ePrinciples of Technology of Reactive Molding Technology \u003c\/i\u003e(Preparing components (Preliminary operations), Engineering for open mold processes, General layout of a production unit, Component metering, Component mixing, Polymerization or solidification stage, Modeling processes in a mold during solidification, Casting into rotary molds, Technological basis, Hydrodynamic phenomena during molding in a rotary mold, Polymerization in a tube reactor, Flow without transition to the solid state, The role of radial distributions, \"Hydrodynamic\" molecular weight distribution, Polymer coating by spraying, Devices for spraying liquids, Reactive extrusion of profile parts, Frontal processes, Principles, Front development in superimposed processes, Reactive injection molding, General requirements for a composition used in the RIM-process, Plant layout for the process, Processing of reinforced composites, Modeling mold filling, Processability diagrams) \u003c\/p\u003e\n\u003cp\u003e\u003cem\u003eThe Method of Reactive Processing of Polymers\u003c\/em\u003e (Lactam polymerization, Polymerization of monomers and oligomers with double bonds, Curing of unsaturated polyester resins, Curing of epoxy resins, Curing of phenolic-based compositions, Synthesis of polyurethane compounds, Curing of liquid rubbers and oligomers with functional groups, Curing of polysulphide oligomers, Curing of silicon-organic oligomers, Processing of oligomer-monomer mixtures, Processing of filled compositions) Modelling Reactive Processing of Polymers (Objectives of mathematical modeling, Kinetics of polymer synthesis, Kinetic models of lactam polymerization, General kinetic equation, Isothermal polymerization of -caprolactam, Polymerization of -dodecalactam, Synthesis of polybutenamide, Kinetic models of polyurethane synthesis, Kinetic models of curing of epoxy-based compounds, Kinetic models of curing of unsaturated polyesters, Non-isothermal polymerization in a batch-process reactor, Non-isothermal crystallization, Superimposed processes of polymerization and crystallization, Inverse kinetic problems, Changes in rheological properties of a reactive medium, Changes in rheological properties in the process of synthesis, Influence of shear rate on induction period in oligomer curing, Flow of reactive liquids, Residual stresses an strains, Physics of residual stresses in uniform materials, Modeling residual stresses in reactive processing, Residual stresses in amorphous materials, Residual stresses in crystallizable materials)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003eResearch and Control Methods for Reactive Molding Processes\u003c\/i\u003e (Control of relaxation properties in oligomer curing, Viscometric studies, Calorimetric methods, Thermal probe method)\u003c\/p\u003e\n\u003cp\u003e\u003ci\u003ePrinciples of Technology of Reactive Molding Technology \u003c\/i\u003e(Preparing components (Preliminary operations), Engineering for open mold processes, General layout of a production unit, Component metering, Component mixing, Polymerization or solidification stage, Modeling processes in a mold during solidification, Casting into rotary molds, Technological basis, Hydrodynamic phenomena during molding in a rotary mold, Polymerization in a tube reactor, Flow without transition to the solid state, The role of radial distributions, \"Hydrodynamic\" molecular weight distribution, Polymer coating by spraying, Devices for spraying liquids, Reactive extrusion of profile parts, Frontal processes, Principles, Front development in superimposed processes, Reactive injection molding, General requirements for a composition used in the RIM-process, Plant layout for the process, Processing of reinforced composites, Modeling mold filling, Processability diagrams)\u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Reactive Processing of...
$72.00
{"id":11242255940,"title":"Reactive Processing of Polymers, 1994","handle":"978-1-85957-011-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.F. Johnson, P.D. Coates, M.W.R. Brown \u003cbr\u003eISBN 978-1-85957-011-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e136 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors survey progress made in the two types of reactive processing: batch and continuous. Developments in machinery, materials, and applications are outlined in the context of commercial considerations and advances in fundamental understanding. The principles and benefits of polymer modification and blending via reactive extrusion are explained. A number of novel techniques are also described. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eReaction Injection molding\u003c\/li\u003e\n\u003cli\u003eReinforced Reaction Injection Molding\u003c\/li\u003e\n\u003cli\u003eStructural Reaction Injection Molding\u003c\/li\u003e\n\u003cli\u003eResin Transfer Molding\u003c\/li\u003e\n\u003cli\u003eReactive Extrusion\u003c\/li\u003e\n\u003cli\u003eMachinery\u003c\/li\u003e\n\u003cli\u003eMaterials\u003c\/li\u003e\n\u003cli\u003eBlends\u003c\/li\u003e\n\u003cli\u003ePolymerization\u003c\/li\u003e\n\u003cli\u003eOther Reactive Processing Technologies\u003c\/li\u003e\n\u003cli\u003eConcluding Comments\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2017-06-22T21:15:32-04:00","created_at":"2017-06-22T21:15:32-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1994","blends","book","chain","crosslinking","extension","extrusion","injection molding","p-processing","poly","polymerisation","polymerization","polymers","processes","processing","production","reactions","resin"],"price":7200,"price_min":7200,"price_max":7200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378496260,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Reactive Processing of Polymers, 1994","public_title":null,"options":["Default Title"],"price":7200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-011-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: A.F. Johnson, P.D. Coates, M.W.R. Brown \u003cbr\u003eISBN 978-1-85957-011-1 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1994\u003cbr\u003e\u003c\/span\u003e136 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe authors survey progress made in the two types of reactive processing: batch and continuous. Developments in machinery, materials, and applications are outlined in the context of commercial considerations and advances in fundamental understanding. The principles and benefits of polymer modification and blending via reactive extrusion are explained. A number of novel techniques are also described. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eFrom the Table of Contents:\u003c\/strong\u003e \u003cbr\u003e\n\u003cul\u003e\n\u003cli\u003eReaction Injection molding\u003c\/li\u003e\n\u003cli\u003eReinforced Reaction Injection Molding\u003c\/li\u003e\n\u003cli\u003eStructural Reaction Injection Molding\u003c\/li\u003e\n\u003cli\u003eResin Transfer Molding\u003c\/li\u003e\n\u003cli\u003eReactive Extrusion\u003c\/li\u003e\n\u003cli\u003eMachinery\u003c\/li\u003e\n\u003cli\u003eMaterials\u003c\/li\u003e\n\u003cli\u003eBlends\u003c\/li\u003e\n\u003cli\u003ePolymerization\u003c\/li\u003e\n\u003cli\u003eOther Reactive Processing Technologies\u003c\/li\u003e\n\u003cli\u003eConcluding Comments\u003c\/li\u003e\n\u003c\/ul\u003e"}