- Grid List
Filter
Polymers in Building a...
$450.00
{"id":11242223108,"title":"Polymers in Building and Construction","handle":"978-1-85957-332-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Market Report, 2002 \u003cbr\u003eISBN 978-1-85957-332-7 \u003cbr\u003e\u003cbr\u003ePublished: 2002\u003cbr\u003epages: 124, tables: 3, figures: 9\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBuilding and construction form a large part of the global economy and this industry showed a growth rate of 1.8% worldwide in 2001. Polymer materials have been steadily replacing traditional materials in this sector. Construction applications of plastics include pipes and guttering, window and door profiles, glazing, roofing, sealants and adhesives, cement, insulation, flooring and building panels. Civil engineering applications include geomembranes, road and sports surfaces, building reinforcement and bridge building. \u003cbr\u003e\u003cbr\u003eThis is a critical market for plastics. Around 60% of all PVC production is now used in this sector, applications include profiles for windows and doors, fascias, pipes and pipe fittings. Polystyrene is also used extensively, primarily in insulation applications. Around 1.85 million tons of high density polyethylene are used annually in construction, amounting to roughly 10% of total global consumption. Low density polyethylene, polyurethane, and polypropylene are also used extensively. \u003cbr\u003e\u003cbr\u003eIn Western Europe alone in 1998 6.4 million tonnes of plastics were used in construction. The value of the plastics pipes market in the same year was estimated at 11 million euros and the growth rate is predicted to be 4% per annum in Europe. PVC accounts for 60% of the pipe market with polyolefins at 27% and growing. Alternative materials such as ABS and polyvinylidene fluoride are also being used, particularly in industrial sectors. \u003cbr\u003e\u003cbr\u003eThe growth rate for plastics consumption in building and construction in the US averaged 8% per annum from 1995 to 1998. Figures for the US housing industry showed an increase in the number of new housing starts in June 2001 at 1.658 million units, 6.3% higher than in June 2000. Other factors that influence plastics consumption are refurbishment and DIY projects. \u003cbr\u003e\u003cbr\u003eComposite materials are being used for load bearing in construction applications. Foamed wood\/plastic composites are a growing market in applications such as decking in North America. Demand is projected to be around 600,000 tons in 2005. There is potential for using recycled materials in composites. Plastic lumber decking is commonly made using recycled HDPE. Recycled plastics are also being used in a cement matrix. Polymeric fibres can also be used to reinforce cement and materials are being developed with ductility values equal to those of metals for applications such as runway surfaces, floors, and pavements. \u003cbr\u003e\u003cbr\u003eEnvironmental concerns are affecting the building industry in many ways. Recycling methods are being developed for plastic building components. Methods of using recycled material in construction are under trial. The housing itself is being redesigned to minimise usage of fossil fuels, which is leading to an increased requirement for insulation and the development of alternative means of heating such as solar panels and geothermal heating. \u003cbr\u003e\u003cbr\u003ePolymers in Building and Construction examines the extensive markets for polymers by material and also by application, listing key players in these fields and new developments. A selection of companies operating in this sector is described in greater depth in Chapter 7.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Background \u003cbr\u003e1.2 World Markets \u003cbr\u003e1.3 Scope \u003cbr\u003e1.4 Geographical Focus \u003cbr\u003e1.5 Methodology \u003cbr\u003eReference \u003cbr\u003e2 Executive Summary \u003cbr\u003e\u003cbr\u003e2.1 Global Construction Industry \u003cbr\u003e2.2 Materials \u003cbr\u003e2.2.1 Resins \u003cbr\u003e2.2.2 Composites \u003cbr\u003e2.3 Applications \u003cbr\u003e2.3.1 Plastic Pipes \u003cbr\u003e2.3.2 Profile \u003cbr\u003e2.3.3 Cladding \u003cbr\u003e2.3.4 Roofing \u003cbr\u003e2.3.5 Adhesives \u003cbr\u003e2.3.6 Glazing \u003cbr\u003e2.3.7 Insulation \u003cbr\u003e2.3.8 Flooring \u003cbr\u003e2.3.9 Civil Engineering Applications \u003cbr\u003e2.4 Recycling \u003cbr\u003e2.5 Material Suppliers \u003cbr\u003eReference \u003cbr\u003e3 Review of Material Types and Properties \u003cbr\u003e\u003cbr\u003eIntroduction \u003cbr\u003e3.1 PVC \u003cbr\u003e3.1.1 Overview \u003cbr\u003e3.1.2 PVC in Pipes \u003cbr\u003e3.1.3 PVC in Profile \u003cbr\u003e3.1.4 Compounds and Additives \u003cbr\u003e3.1.5 Foamed PVC \u003cbr\u003e3.2 Polyvinyl Butyral (PVB) \u003cbr\u003e3.3 Polyethylene \u003cbr\u003e3.3.1 Overview \u003cbr\u003e3.3.2 Polyethylene for Pipe \u003cbr\u003e3.3.3 Other Uses \u003cbr\u003e3.4 Polyethylene Terephthalate \u003cbr\u003e3.5 Polypropylene (PP) \u003cbr\u003e3.5.1 Overview \u003cbr\u003e3.5.2 Polypropylene for Pipe \u003cbr\u003e3.5.3 Other Uses \u003cbr\u003e3.6 Acrylonitrile-Butadiene-Styrene (ABS) \u003cbr\u003e3.7 Polystyrene (PS) \u003cbr\u003e3.7.1 Overview \u003cbr\u003e3.7.2 Expanded Polystyrene \u003cbr\u003e3.7.3 Other Uses \u003cbr\u003e3.8 Acrylic \u003cbr\u003e3.9 Polycarbonate \u003cbr\u003e3.10 Polyamide (PA) \u003cbr\u003e3.10.2 Polyphthalamide (PPA) \u003cbr\u003e3.11 Polyphenylene Oxide (PPO) \u003cbr\u003e3.12 Unsaturated Polyesters \u003cbr\u003e3.13 Phenolic Resins \u003cbr\u003e3.14 Epoxy Resin \u003cbr\u003e3.15 Polyurethane \u003cbr\u003e3.15.1 Overview \u003cbr\u003e3.15.2 Polyurethane Foam \u003cbr\u003e3.15.3 Blowing Agent Replacements \u003cbr\u003e3.15.4 Other Uses \u003cbr\u003e3.16 Thermoplastic Elastomers (TPE) \u003cbr\u003e3.17 Thermoset Elastomers \u003cbr\u003e3.18 Composite Materials \u003cbr\u003e3.18.1 Glass Fibre Composites \u003cbr\u003e3.18.2 Carbon Fibre Composites \u003cbr\u003e3.18.3 Wood\/Plastic Composites \u003cbr\u003e3.18.4 Other Natural Fibre Composites \u003cbr\u003e3.18.5 Cement-Based Composites \u003cbr\u003eReferences \u003cbr\u003e4 Overview of Polymer Usage in the Building and Construction Sector \u003cbr\u003e\u003cbr\u003e4.1 Windows and Doors \u003cbr\u003e4.2 Glazing \u003cbr\u003e4.2.1 Glazing Film \u003cbr\u003e4.3 Cladding and Fascias \u003cbr\u003e4.3.1 Coving, Skirting and Other Interior Items \u003cbr\u003e4.3.2 Exterior Cladding, Shuttering and Panels \u003cbr\u003e4.3.3 Other Profiles and Interior Panels \u003cbr\u003e4.4 Insulation \u003cbr\u003e4.4.1 Thermal Insulation \u003cbr\u003e4.4.1.1 Building Regulations \u003cbr\u003e4.4.1.2 Polystyrene Foam Insulation \u003cbr\u003e4.4.1.3 Polyurethane Foam Insulation \u003cbr\u003e4.4.2 Acoustic Insulation \u003cbr\u003e4.5 Sealing \u003cbr\u003e4.5.1 Seals and Gaskets \u003cbr\u003e4.5.2 Sealants \u003cbr\u003e4.6 Flooring \u003cbr\u003e4.6.1 Sheets \u003cbr\u003e4.6.2 Tiles \u003cbr\u003e4.6.3 Carpet \u003cbr\u003e4.6.5 Wall Covering \u003cbr\u003e4.7 Pipe and Conduit \u003cbr\u003e4.7.1 Overview \u003cbr\u003e4.7.2 Renovation of Water and Sewerage Pipelines \u003cbr\u003e4.7.3 Gas Pipes \u003cbr\u003e4.7.4 Pipe Coatings \u003cbr\u003e4.8 Roofing \u003cbr\u003e4.9 Houses and Shelters \u003cbr\u003e4.9.1 Hurricane-Proof Shelters \u003cbr\u003e4.9.2 Storm Shelters \u003cbr\u003e4.9.3 Emergency Shelters \u003cbr\u003e4.10 Adhesives \u003cbr\u003e4.11 Fencing and Decking \u003cbr\u003e4.12 Recycled Plastic Lumber \u003cbr\u003e4.13 Building Stone Restoration \u003cbr\u003e5 Civil Engineering Applications of Polymers \u003cbr\u003e\u003cbr\u003e5.1 Bridges \u003cbr\u003e5.1.1 Construction \u003cbr\u003e5.1.2 Repair and Reinforcement \u003cbr\u003e5.1.3 Glulams \u003cbr\u003e5.2 Seismic Damage \u003cbr\u003e5.3 Membranes \u003cbr\u003e5.4 Road and Paving Applications \u003cbr\u003e5.5 Railway Applications \u003cbr\u003e5.6 Sport and Leisure Surfaces \u003cbr\u003e6 Key Trends \u003cbr\u003e\u003cbr\u003e6.1 The Economy \u003cbr\u003e6.1.1 North America \u003cbr\u003e6.1.2 Europe \u003cbr\u003e6.2 Regional Differences in the Market for Construction Products made from Plastics \u003cbr\u003e6.3 Polymer Pricing \u003cbr\u003e6.4 Internet Trading \u003cbr\u003e6.5 Global Warming \u003cbr\u003e6.6 European Union Action Against Ozone Depleting Substances \u003cbr\u003e6.7 Recycling and Use of Recycled Materials \u003cbr\u003e6.8 Synthetic Building Materials from Solid Waste \u003cbr\u003e6.9 Trends in Housing \u003cbr\u003e6.9.1 Environmentally Friendly Housing \u003cbr\u003e6.9.2 Modular Housing \u003cbr\u003e6.9.3 Floating Houses \u003cbr\u003e6.9.4 Plastic Space House \u003cbr\u003e6.10 Solar Heating \u003cbr\u003e6.11 Geothermal Heating \u003cbr\u003e6.12 Development of Dense Plastic Foam \u003cbr\u003e7 Company Profiles \u003cbr\u003e\u003cbr\u003e7.1 Introduction - Competitive Situation \u003cbr\u003e7.2 Advanced Elastomer Systems, L.P. \u003cbr\u003e7.3 Atofina \u003cbr\u003e7.4 Barlo Plastics Europe N.V. \u003cbr\u003e7.5 BASF AG \u003cbr\u003e7.6 Bayer AG \u003cbr\u003e7.7 Borealis Holding A\/S \u003cbr\u003e7.8 BP \u003cbr\u003e7.9 British Vita PLC \u003cbr\u003e7.10 CRH PLC \u003cbr\u003e7.11 Crompton Vinyl Additives GmbH \u003cbr\u003e7.12 Deceuninck NV \u003cbr\u003e7.13 The Dow Chemical Company \u003cbr\u003e7.14 DSM \u003cbr\u003e7.15 DuPont de Nemours International SA \u003cbr\u003e7.16 European Vinyls Corporation (EVC) \u003cbr\u003e7.17 Heywood Williams Group PLC \u003cbr\u003e7.18 HT Troplast AG \u003cbr\u003e7.19 Huntsman Corporation \u003cbr\u003e7.20 Hydro Polymers \u003cbr\u003e7.21 Icopal Holding \u003cbr\u003e7.22 IMI plc \u003cbr\u003e7.23 Palram Industries Limited \u003cbr\u003e7.24 Royal Group Technologies Limited \u003cbr\u003e7.25 Solvay S.A. \u003cbr\u003e7.26 Spartech Corporation \u003cbr\u003e7.27 Tarkett Sommer Vertriebs GmbH \u0026amp; Co. KG \u003cbr\u003e7.28 Uponor Oyj \u003cbr\u003e7.29 Wavin Plastics Ltd. \u003cbr\u003e8 Future Outlook \u003cbr\u003e\u003cbr\u003e8.1 Polymers in the Third Millennium \u003cbr\u003e8.2 Technology \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University in Engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. \u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:52-04:00","created_at":"2017-06-22T21:13:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","building","construction","polymers","report"],"price":45000,"price_min":45000,"price_max":45000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378377604,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Building and Construction","public_title":null,"options":["Default Title"],"price":45000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-332-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273","options":["Title"],"media":[{"alt":null,"id":358703202397,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Market Report, 2002 \u003cbr\u003eISBN 978-1-85957-332-7 \u003cbr\u003e\u003cbr\u003ePublished: 2002\u003cbr\u003epages: 124, tables: 3, figures: 9\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBuilding and construction form a large part of the global economy and this industry showed a growth rate of 1.8% worldwide in 2001. Polymer materials have been steadily replacing traditional materials in this sector. Construction applications of plastics include pipes and guttering, window and door profiles, glazing, roofing, sealants and adhesives, cement, insulation, flooring and building panels. Civil engineering applications include geomembranes, road and sports surfaces, building reinforcement and bridge building. \u003cbr\u003e\u003cbr\u003eThis is a critical market for plastics. Around 60% of all PVC production is now used in this sector, applications include profiles for windows and doors, fascias, pipes and pipe fittings. Polystyrene is also used extensively, primarily in insulation applications. Around 1.85 million tons of high density polyethylene are used annually in construction, amounting to roughly 10% of total global consumption. Low density polyethylene, polyurethane, and polypropylene are also used extensively. \u003cbr\u003e\u003cbr\u003eIn Western Europe alone in 1998 6.4 million tonnes of plastics were used in construction. The value of the plastics pipes market in the same year was estimated at 11 million euros and the growth rate is predicted to be 4% per annum in Europe. PVC accounts for 60% of the pipe market with polyolefins at 27% and growing. Alternative materials such as ABS and polyvinylidene fluoride are also being used, particularly in industrial sectors. \u003cbr\u003e\u003cbr\u003eThe growth rate for plastics consumption in building and construction in the US averaged 8% per annum from 1995 to 1998. Figures for the US housing industry showed an increase in the number of new housing starts in June 2001 at 1.658 million units, 6.3% higher than in June 2000. Other factors that influence plastics consumption are refurbishment and DIY projects. \u003cbr\u003e\u003cbr\u003eComposite materials are being used for load bearing in construction applications. Foamed wood\/plastic composites are a growing market in applications such as decking in North America. Demand is projected to be around 600,000 tons in 2005. There is potential for using recycled materials in composites. Plastic lumber decking is commonly made using recycled HDPE. Recycled plastics are also being used in a cement matrix. Polymeric fibres can also be used to reinforce cement and materials are being developed with ductility values equal to those of metals for applications such as runway surfaces, floors, and pavements. \u003cbr\u003e\u003cbr\u003eEnvironmental concerns are affecting the building industry in many ways. Recycling methods are being developed for plastic building components. Methods of using recycled material in construction are under trial. The housing itself is being redesigned to minimise usage of fossil fuels, which is leading to an increased requirement for insulation and the development of alternative means of heating such as solar panels and geothermal heating. \u003cbr\u003e\u003cbr\u003ePolymers in Building and Construction examines the extensive markets for polymers by material and also by application, listing key players in these fields and new developments. A selection of companies operating in this sector is described in greater depth in Chapter 7.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Background \u003cbr\u003e1.2 World Markets \u003cbr\u003e1.3 Scope \u003cbr\u003e1.4 Geographical Focus \u003cbr\u003e1.5 Methodology \u003cbr\u003eReference \u003cbr\u003e2 Executive Summary \u003cbr\u003e\u003cbr\u003e2.1 Global Construction Industry \u003cbr\u003e2.2 Materials \u003cbr\u003e2.2.1 Resins \u003cbr\u003e2.2.2 Composites \u003cbr\u003e2.3 Applications \u003cbr\u003e2.3.1 Plastic Pipes \u003cbr\u003e2.3.2 Profile \u003cbr\u003e2.3.3 Cladding \u003cbr\u003e2.3.4 Roofing \u003cbr\u003e2.3.5 Adhesives \u003cbr\u003e2.3.6 Glazing \u003cbr\u003e2.3.7 Insulation \u003cbr\u003e2.3.8 Flooring \u003cbr\u003e2.3.9 Civil Engineering Applications \u003cbr\u003e2.4 Recycling \u003cbr\u003e2.5 Material Suppliers \u003cbr\u003eReference \u003cbr\u003e3 Review of Material Types and Properties \u003cbr\u003e\u003cbr\u003eIntroduction \u003cbr\u003e3.1 PVC \u003cbr\u003e3.1.1 Overview \u003cbr\u003e3.1.2 PVC in Pipes \u003cbr\u003e3.1.3 PVC in Profile \u003cbr\u003e3.1.4 Compounds and Additives \u003cbr\u003e3.1.5 Foamed PVC \u003cbr\u003e3.2 Polyvinyl Butyral (PVB) \u003cbr\u003e3.3 Polyethylene \u003cbr\u003e3.3.1 Overview \u003cbr\u003e3.3.2 Polyethylene for Pipe \u003cbr\u003e3.3.3 Other Uses \u003cbr\u003e3.4 Polyethylene Terephthalate \u003cbr\u003e3.5 Polypropylene (PP) \u003cbr\u003e3.5.1 Overview \u003cbr\u003e3.5.2 Polypropylene for Pipe \u003cbr\u003e3.5.3 Other Uses \u003cbr\u003e3.6 Acrylonitrile-Butadiene-Styrene (ABS) \u003cbr\u003e3.7 Polystyrene (PS) \u003cbr\u003e3.7.1 Overview \u003cbr\u003e3.7.2 Expanded Polystyrene \u003cbr\u003e3.7.3 Other Uses \u003cbr\u003e3.8 Acrylic \u003cbr\u003e3.9 Polycarbonate \u003cbr\u003e3.10 Polyamide (PA) \u003cbr\u003e3.10.2 Polyphthalamide (PPA) \u003cbr\u003e3.11 Polyphenylene Oxide (PPO) \u003cbr\u003e3.12 Unsaturated Polyesters \u003cbr\u003e3.13 Phenolic Resins \u003cbr\u003e3.14 Epoxy Resin \u003cbr\u003e3.15 Polyurethane \u003cbr\u003e3.15.1 Overview \u003cbr\u003e3.15.2 Polyurethane Foam \u003cbr\u003e3.15.3 Blowing Agent Replacements \u003cbr\u003e3.15.4 Other Uses \u003cbr\u003e3.16 Thermoplastic Elastomers (TPE) \u003cbr\u003e3.17 Thermoset Elastomers \u003cbr\u003e3.18 Composite Materials \u003cbr\u003e3.18.1 Glass Fibre Composites \u003cbr\u003e3.18.2 Carbon Fibre Composites \u003cbr\u003e3.18.3 Wood\/Plastic Composites \u003cbr\u003e3.18.4 Other Natural Fibre Composites \u003cbr\u003e3.18.5 Cement-Based Composites \u003cbr\u003eReferences \u003cbr\u003e4 Overview of Polymer Usage in the Building and Construction Sector \u003cbr\u003e\u003cbr\u003e4.1 Windows and Doors \u003cbr\u003e4.2 Glazing \u003cbr\u003e4.2.1 Glazing Film \u003cbr\u003e4.3 Cladding and Fascias \u003cbr\u003e4.3.1 Coving, Skirting and Other Interior Items \u003cbr\u003e4.3.2 Exterior Cladding, Shuttering and Panels \u003cbr\u003e4.3.3 Other Profiles and Interior Panels \u003cbr\u003e4.4 Insulation \u003cbr\u003e4.4.1 Thermal Insulation \u003cbr\u003e4.4.1.1 Building Regulations \u003cbr\u003e4.4.1.2 Polystyrene Foam Insulation \u003cbr\u003e4.4.1.3 Polyurethane Foam Insulation \u003cbr\u003e4.4.2 Acoustic Insulation \u003cbr\u003e4.5 Sealing \u003cbr\u003e4.5.1 Seals and Gaskets \u003cbr\u003e4.5.2 Sealants \u003cbr\u003e4.6 Flooring \u003cbr\u003e4.6.1 Sheets \u003cbr\u003e4.6.2 Tiles \u003cbr\u003e4.6.3 Carpet \u003cbr\u003e4.6.5 Wall Covering \u003cbr\u003e4.7 Pipe and Conduit \u003cbr\u003e4.7.1 Overview \u003cbr\u003e4.7.2 Renovation of Water and Sewerage Pipelines \u003cbr\u003e4.7.3 Gas Pipes \u003cbr\u003e4.7.4 Pipe Coatings \u003cbr\u003e4.8 Roofing \u003cbr\u003e4.9 Houses and Shelters \u003cbr\u003e4.9.1 Hurricane-Proof Shelters \u003cbr\u003e4.9.2 Storm Shelters \u003cbr\u003e4.9.3 Emergency Shelters \u003cbr\u003e4.10 Adhesives \u003cbr\u003e4.11 Fencing and Decking \u003cbr\u003e4.12 Recycled Plastic Lumber \u003cbr\u003e4.13 Building Stone Restoration \u003cbr\u003e5 Civil Engineering Applications of Polymers \u003cbr\u003e\u003cbr\u003e5.1 Bridges \u003cbr\u003e5.1.1 Construction \u003cbr\u003e5.1.2 Repair and Reinforcement \u003cbr\u003e5.1.3 Glulams \u003cbr\u003e5.2 Seismic Damage \u003cbr\u003e5.3 Membranes \u003cbr\u003e5.4 Road and Paving Applications \u003cbr\u003e5.5 Railway Applications \u003cbr\u003e5.6 Sport and Leisure Surfaces \u003cbr\u003e6 Key Trends \u003cbr\u003e\u003cbr\u003e6.1 The Economy \u003cbr\u003e6.1.1 North America \u003cbr\u003e6.1.2 Europe \u003cbr\u003e6.2 Regional Differences in the Market for Construction Products made from Plastics \u003cbr\u003e6.3 Polymer Pricing \u003cbr\u003e6.4 Internet Trading \u003cbr\u003e6.5 Global Warming \u003cbr\u003e6.6 European Union Action Against Ozone Depleting Substances \u003cbr\u003e6.7 Recycling and Use of Recycled Materials \u003cbr\u003e6.8 Synthetic Building Materials from Solid Waste \u003cbr\u003e6.9 Trends in Housing \u003cbr\u003e6.9.1 Environmentally Friendly Housing \u003cbr\u003e6.9.2 Modular Housing \u003cbr\u003e6.9.3 Floating Houses \u003cbr\u003e6.9.4 Plastic Space House \u003cbr\u003e6.10 Solar Heating \u003cbr\u003e6.11 Geothermal Heating \u003cbr\u003e6.12 Development of Dense Plastic Foam \u003cbr\u003e7 Company Profiles \u003cbr\u003e\u003cbr\u003e7.1 Introduction - Competitive Situation \u003cbr\u003e7.2 Advanced Elastomer Systems, L.P. \u003cbr\u003e7.3 Atofina \u003cbr\u003e7.4 Barlo Plastics Europe N.V. \u003cbr\u003e7.5 BASF AG \u003cbr\u003e7.6 Bayer AG \u003cbr\u003e7.7 Borealis Holding A\/S \u003cbr\u003e7.8 BP \u003cbr\u003e7.9 British Vita PLC \u003cbr\u003e7.10 CRH PLC \u003cbr\u003e7.11 Crompton Vinyl Additives GmbH \u003cbr\u003e7.12 Deceuninck NV \u003cbr\u003e7.13 The Dow Chemical Company \u003cbr\u003e7.14 DSM \u003cbr\u003e7.15 DuPont de Nemours International SA \u003cbr\u003e7.16 European Vinyls Corporation (EVC) \u003cbr\u003e7.17 Heywood Williams Group PLC \u003cbr\u003e7.18 HT Troplast AG \u003cbr\u003e7.19 Huntsman Corporation \u003cbr\u003e7.20 Hydro Polymers \u003cbr\u003e7.21 Icopal Holding \u003cbr\u003e7.22 IMI plc \u003cbr\u003e7.23 Palram Industries Limited \u003cbr\u003e7.24 Royal Group Technologies Limited \u003cbr\u003e7.25 Solvay S.A. \u003cbr\u003e7.26 Spartech Corporation \u003cbr\u003e7.27 Tarkett Sommer Vertriebs GmbH \u0026amp; Co. KG \u003cbr\u003e7.28 Uponor Oyj \u003cbr\u003e7.29 Wavin Plastics Ltd. \u003cbr\u003e8 Future Outlook \u003cbr\u003e\u003cbr\u003e8.1 Polymers in the Third Millennium \u003cbr\u003e8.2 Technology \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University in Engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. \u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003cbr\u003e\u003cbr\u003e"}
Polymers in Defence an...
$125.00
{"id":11242237636,"title":"Polymers in Defence and Aerospace Applications 2010","handle":"978-1-84735-398-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-398-6 \u003cbr\u003e\u003cbr\u003ePublished: 2010\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the aerospace and defence industries poised for growth in virtually every segment; the commercial, general aviation, military and space sectors are a ‘must watch’ area for businesses seeking new business and technology opportunities. Accompanying this growth, polymers will play an increasing role, with, for example, a near doubling of the aerocomposites market is predicted by 2016.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003ePolymers in Defence and Aerospace Applications took an in-depth look at how polymers are increasingly being used to meet the developing demands of this industry in areas such as weight minimisation, increased strength, and enhanced affordability. Both defence and aerospace are industries where the performance requirements of polymer-based materials are continually being pushed to the limits of what is possible in order to help achieve these goals, and where there is a constant demand for new and improved materials for a wide range of existing and new applications. \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis conference covered all of the important polymer related areas specific to the defence and aerospace industries, from state-of-the-art R\u0026amp;D to characterisation, fabrication, technology development and many new and emerging applications. \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003ePolymers in Defence \u0026amp; Aerospace Applications featured presentations from key defence and aerospace industry experts, as well as from polymer manufacturers and those developing new polymer-based materials, technologies and applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: NOVEL MATERIALS \u0026amp; PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 1: Team MAST – Delivering materials and structures R \u0026amp; D to UK MOD\u003cbr\u003e\u003cbr\u003eDr. Dan Kells, BAE Systems, UK \u0026amp; Dr Eoin O’Keefe, QinetiQ Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 2: Phosphazene elastomer use in defence and aerospace\u003cbr\u003e\u003cbr\u003eBill Goodwin \u0026amp; Raymond E Stiles, Materials Science Technology, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 3: Formulation and properties of rigid polyurethane foams\u003cbr\u003e\u003cbr\u003eKaren J Foster, K N Hunt, C N Warriner, D R Harbron \u0026amp; D A Broughton, AWE plc, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 4: Inkjet printing as a fabrication tool and its potential in defence \u0026amp; aerospace applications\u003cbr\u003e\u003cbr\u003eDr. Kay Yeong, Xennia Technology, UK\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: ELECTRONIC MATERIALS \u0026amp; APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 5: Development of a thermoplastic printed circuit board for applications in the aviation industry\u003cbr\u003e\u003cbr\u003eDipl-Ing Thomas Apeldorn, Universität Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 6: Synthesis and characterization of novel conducting monomer showing chimeric polymerisation behaviour: Versatile applications in defence and aerospace research\u003cbr\u003e\u003cbr\u003eDr Dhana Lakshmi, Cranfield University, UK et al\u003cbr\u003e\u003cbr\u003ePaper 7: Use of fluoropolymers in aerospace and defence: new applications and advantages\u003cbr\u003e\u003cbr\u003eStefano Mortara, P Toniolo, M Gebert, A Marrani \u0026amp; M Bassi, Solvay Solexis SPA, Italy\u003cbr\u003e\u003cbr\u003ePaper 8: Rapid manufacturing of syntactic foams\u003cbr\u003e\u003cbr\u003eA.K. Walmsley, M. Carne, M. Swan, C. Warriner, K. Hunt AWE plc, UK, G.J. Gibbons, The University of Warwick, UK \u0026amp; S. Bubb, 3T RPD, UK\u003cbr\u003e\u003cbr\u003ePaper 9: Design for manufacture and reliability of polymer-based electronics\u003cbr\u003e\u003cbr\u003eChris Bailey, Tim Tilford \u0026amp; Hua Lu, University of Greenwich, UK \u0026amp; Marc Desmulliez, Heriot-Watt University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: COMPOSITES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10: Rapid manufacture of structural thermoplastic composite components for aerospace and defence applications\u003cbr\u003e\u003cbr\u003eCharlotte Vacogne \u0026amp; Museok Kwak TWI, UK\u003cbr\u003e\u003cbr\u003ePaper 11: Novel high temperature polymers for demanding composite applications\u003cbr\u003e\u003cbr\u003eDr.Theo Dingemans, Delft University of Technology, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 12: Microfocus X-ray diffraction and its application to high-performance polymers and composites\u003cbr\u003e\u003cbr\u003eRichard Davies, C Riekel \u0026amp; M Burghammer, European Synchrotron Radiation Facility, France \u0026amp; S J Eichhorn \u0026amp; R J Young, University of Manchester, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4: CARBON NANO FIBRE-BASED MATERIALS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 13: Development of multifunctional advanced composites with polymer nanocomposite matrices for aerospace applications\u003cbr\u003e\u003cbr\u003eMarco Monti, Luigi Torre, R Petrucci \u0026amp; Prof Jose Kenny, University of Perugia, Italy\u003cbr\u003e\u003cbr\u003ePaper 14: Manufacture and evaluation of hybrid carbon nanofiber containing nonwoven papers\u003cbr\u003e\u003cbr\u003eAndrew Austin, Napier University, UK and J Haaland, Michael Jeschke \u0026amp; D Jhaveri, Technical Fibre Products, USA\u003cbr\u003e\u003cbr\u003ePaper 15: New generation of multifunctional composites with carbon nanotubes for aerospace applications\u003cbr\u003e\u003cbr\u003eProf Dr Sergio H Pezzin \u0026amp; L A F Coelho, Santa Catrina State University, Brazil \u0026amp; S Amico, UFRGS, Brazil\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: INORGANIC NANO-MATERIALS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 16: Development of phenolic based nanocomposites for ablative rocket combustion chambers\u003cbr\u003e\u003cbr\u003eLuigi Torre, M Natali \u0026amp; J Kenny, University of Perugia, Italy\u003cbr\u003e\u003cbr\u003ePaper 17: High-performance polyurethane shape - memory polymer and its composites\u003cbr\u003e\u003cbr\u003eDr. W M Huang \u0026amp; Y Zhao, Nanyang Technological University, Singapore and Y Q Fu, Heriot-Watt University, UK\u003cbr\u003e\u003cbr\u003ePaper 18: Ageing and performance predictions of polymer nanocomposites for exterior defence and aerospace applications\u003cbr\u003e\u003cbr\u003eDr. James Njuguna, Cranfield University, UK \u0026amp; K Pielichowski, Cracow University of Technology, Poland\u003cbr\u003e\u003cbr\u003ePaper 19: UK strategic focus: The Materials and Structures National Technical Committee\u003cbr\u003e\u003cbr\u003eDr. Dan Kells, BAE Systems, UK \u003cbr\u003e\u003cbr\u003ePaper 20: The role of micro and nanofillers on mechanical and tribological behaviour of polymer matrix composites for aerospace and automotive applications\u003cbr\u003e\u003cbr\u003eProf B Suresha \u0026amp; Prof Mohammed Ismail, The National Institute of Engineering, India\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6: COATINGS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21: Engineered coatings for composites and polymers used in defence \u0026amp; aerospace: Now and the future\u003cbr\u003e\u003cbr\u003eGraham Armstrong, Indestructible Paint Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 22: Silicone based coatings for aircraft applications\u003cbr\u003e\u003cbr\u003eBill Riegler, B Burkitt \u0026amp; R Thomaier, Nusil Technology, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:36-04:00","created_at":"2017-06-22T21:14:36-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","aerospace","application","book","carbon nanofibers","coatings","composite","electronic materials","formulation","inorganic","material","nano-materials","polymer","Polymers"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378425220,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Defence and Aerospace Applications 2010","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-398-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-398-6.jpg?v=1499953296"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-398-6.jpg?v=1499953296","options":["Title"],"media":[{"alt":null,"id":358705070173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-398-6.jpg?v=1499953296"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-398-6.jpg?v=1499953296","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-398-6 \u003cbr\u003e\u003cbr\u003ePublished: 2010\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the aerospace and defence industries poised for growth in virtually every segment; the commercial, general aviation, military and space sectors are a ‘must watch’ area for businesses seeking new business and technology opportunities. Accompanying this growth, polymers will play an increasing role, with, for example, a near doubling of the aerocomposites market is predicted by 2016.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003ePolymers in Defence and Aerospace Applications took an in-depth look at how polymers are increasingly being used to meet the developing demands of this industry in areas such as weight minimisation, increased strength, and enhanced affordability. Both defence and aerospace are industries where the performance requirements of polymer-based materials are continually being pushed to the limits of what is possible in order to help achieve these goals, and where there is a constant demand for new and improved materials for a wide range of existing and new applications. \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis conference covered all of the important polymer related areas specific to the defence and aerospace industries, from state-of-the-art R\u0026amp;D to characterisation, fabrication, technology development and many new and emerging applications. \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003ePolymers in Defence \u0026amp; Aerospace Applications featured presentations from key defence and aerospace industry experts, as well as from polymer manufacturers and those developing new polymer-based materials, technologies and applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: NOVEL MATERIALS \u0026amp; PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 1: Team MAST – Delivering materials and structures R \u0026amp; D to UK MOD\u003cbr\u003e\u003cbr\u003eDr. Dan Kells, BAE Systems, UK \u0026amp; Dr Eoin O’Keefe, QinetiQ Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 2: Phosphazene elastomer use in defence and aerospace\u003cbr\u003e\u003cbr\u003eBill Goodwin \u0026amp; Raymond E Stiles, Materials Science Technology, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 3: Formulation and properties of rigid polyurethane foams\u003cbr\u003e\u003cbr\u003eKaren J Foster, K N Hunt, C N Warriner, D R Harbron \u0026amp; D A Broughton, AWE plc, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 4: Inkjet printing as a fabrication tool and its potential in defence \u0026amp; aerospace applications\u003cbr\u003e\u003cbr\u003eDr. Kay Yeong, Xennia Technology, UK\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: ELECTRONIC MATERIALS \u0026amp; APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 5: Development of a thermoplastic printed circuit board for applications in the aviation industry\u003cbr\u003e\u003cbr\u003eDipl-Ing Thomas Apeldorn, Universität Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 6: Synthesis and characterization of novel conducting monomer showing chimeric polymerisation behaviour: Versatile applications in defence and aerospace research\u003cbr\u003e\u003cbr\u003eDr Dhana Lakshmi, Cranfield University, UK et al\u003cbr\u003e\u003cbr\u003ePaper 7: Use of fluoropolymers in aerospace and defence: new applications and advantages\u003cbr\u003e\u003cbr\u003eStefano Mortara, P Toniolo, M Gebert, A Marrani \u0026amp; M Bassi, Solvay Solexis SPA, Italy\u003cbr\u003e\u003cbr\u003ePaper 8: Rapid manufacturing of syntactic foams\u003cbr\u003e\u003cbr\u003eA.K. Walmsley, M. Carne, M. Swan, C. Warriner, K. Hunt AWE plc, UK, G.J. Gibbons, The University of Warwick, UK \u0026amp; S. Bubb, 3T RPD, UK\u003cbr\u003e\u003cbr\u003ePaper 9: Design for manufacture and reliability of polymer-based electronics\u003cbr\u003e\u003cbr\u003eChris Bailey, Tim Tilford \u0026amp; Hua Lu, University of Greenwich, UK \u0026amp; Marc Desmulliez, Heriot-Watt University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: COMPOSITES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10: Rapid manufacture of structural thermoplastic composite components for aerospace and defence applications\u003cbr\u003e\u003cbr\u003eCharlotte Vacogne \u0026amp; Museok Kwak TWI, UK\u003cbr\u003e\u003cbr\u003ePaper 11: Novel high temperature polymers for demanding composite applications\u003cbr\u003e\u003cbr\u003eDr.Theo Dingemans, Delft University of Technology, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 12: Microfocus X-ray diffraction and its application to high-performance polymers and composites\u003cbr\u003e\u003cbr\u003eRichard Davies, C Riekel \u0026amp; M Burghammer, European Synchrotron Radiation Facility, France \u0026amp; S J Eichhorn \u0026amp; R J Young, University of Manchester, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4: CARBON NANO FIBRE-BASED MATERIALS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 13: Development of multifunctional advanced composites with polymer nanocomposite matrices for aerospace applications\u003cbr\u003e\u003cbr\u003eMarco Monti, Luigi Torre, R Petrucci \u0026amp; Prof Jose Kenny, University of Perugia, Italy\u003cbr\u003e\u003cbr\u003ePaper 14: Manufacture and evaluation of hybrid carbon nanofiber containing nonwoven papers\u003cbr\u003e\u003cbr\u003eAndrew Austin, Napier University, UK and J Haaland, Michael Jeschke \u0026amp; D Jhaveri, Technical Fibre Products, USA\u003cbr\u003e\u003cbr\u003ePaper 15: New generation of multifunctional composites with carbon nanotubes for aerospace applications\u003cbr\u003e\u003cbr\u003eProf Dr Sergio H Pezzin \u0026amp; L A F Coelho, Santa Catrina State University, Brazil \u0026amp; S Amico, UFRGS, Brazil\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: INORGANIC NANO-MATERIALS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 16: Development of phenolic based nanocomposites for ablative rocket combustion chambers\u003cbr\u003e\u003cbr\u003eLuigi Torre, M Natali \u0026amp; J Kenny, University of Perugia, Italy\u003cbr\u003e\u003cbr\u003ePaper 17: High-performance polyurethane shape - memory polymer and its composites\u003cbr\u003e\u003cbr\u003eDr. W M Huang \u0026amp; Y Zhao, Nanyang Technological University, Singapore and Y Q Fu, Heriot-Watt University, UK\u003cbr\u003e\u003cbr\u003ePaper 18: Ageing and performance predictions of polymer nanocomposites for exterior defence and aerospace applications\u003cbr\u003e\u003cbr\u003eDr. James Njuguna, Cranfield University, UK \u0026amp; K Pielichowski, Cracow University of Technology, Poland\u003cbr\u003e\u003cbr\u003ePaper 19: UK strategic focus: The Materials and Structures National Technical Committee\u003cbr\u003e\u003cbr\u003eDr. Dan Kells, BAE Systems, UK \u003cbr\u003e\u003cbr\u003ePaper 20: The role of micro and nanofillers on mechanical and tribological behaviour of polymer matrix composites for aerospace and automotive applications\u003cbr\u003e\u003cbr\u003eProf B Suresha \u0026amp; Prof Mohammed Ismail, The National Institute of Engineering, India\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6: COATINGS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21: Engineered coatings for composites and polymers used in defence \u0026amp; aerospace: Now and the future\u003cbr\u003e\u003cbr\u003eGraham Armstrong, Indestructible Paint Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 22: Silicone based coatings for aircraft applications\u003cbr\u003e\u003cbr\u003eBill Riegler, B Burkitt \u0026amp; R Thomaier, Nusil Technology, USA\u003cbr\u003e\u003cbr\u003e"}
Polymers in Defence an...
$185.00
{"id":11242250308,"title":"Polymers in Defence and Aerospace Applications, 2007","handle":"978-1-84735-019-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-019-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eToulouse, France, 18-19 September 2007\u003cbr\u003eRapra Conference Proceedings, 2007\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers play a vital role in many defence and aerospace applications and there is a huge amount of activity underway globally to produce new polymers and polymeric materials that can enhance these applications. Composites are one such example where materials have revolutionised performance capabilities and, with the emergence of nanomaterials, the world of composites is set to be further extended. Many new nanocomposites have been developed, each with interesting and novel properties and new potential applications. \u003cbr\u003e\u003cbr\u003eA significant part of the conference was therefore devoted to presentations detailing composites, nanocomposites, and their novel applications. The conference also covered many of the other key novel polymers, processes, and applications, including high-temperature thermoplastics, elastomers, and rubbers. These proceedings will appeal to all those seeking to gain insights into the crucial role that polymers play in many critical aerospace and defence applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1. COMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 1 Composite Applications and Challenges for Lightweight Design of Aircraft Structure \u003cbr\u003eDave Wood, BAE SYSTEMS – Military Air Solutions, UK \u003cbr\u003e\u003cbr\u003ePaper 2 Quickstep curing technology: an out of – autoclave technology for prepegs and dry fibre reinforced laminates \u003cbr\u003eDr. J. Schlimbach, A. Ogale, D. Brosius \u0026amp; N. Noble, Quickstep GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION 2. NANOCOMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 3 Polymer nanocomposites with carbon nanotubes in aerospace and defence \u003cbr\u003eDr. James Njuguna, Cranefield University, UK \u003cbr\u003e\u003cbr\u003ePaper 4 Nylon-12 nanocomposite thin films as protective barriers \u003cbr\u003eDr. Celia Stevens, M. Gnatowski \u0026amp; S. Duncan, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 5 Thermal conductivity of ethylene vinyl acetate copolymer\/carbon nanofiller blends \u003cbr\u003eDr. Sayata Ghose, K.A. Watson, D.C. Working, J.W. Connell, J.G. Smith Jr, Y. Lin \u0026amp; Y.P. Sun, National Institute of Aerospace, USA \u003cbr\u003e\u003cbr\u003ePaper 6 Nanoscopically controlled polymer containing gadolinium atoms for shielding against radiation \u003cbr\u003eJoseph D Lichtenhan, J.P. Spratt, S. Aghara, P.A. Wheeler \u0026amp; R. Leadon, Hybrid Plastics, USA \u003cbr\u003e\u003cbr\u003ePaper 7 Conducting polymer nanofibres obtained by electrospinning \u003cbr\u003eDr. Lucie Robitaille \u0026amp; A. Laforgue, National Research Council Canada, Canada \u003cbr\u003e\u003cbr\u003ePaper 8 Influence of space radiation on nano adhesive bonding of high-performance polymer \u003cbr\u003eDr. Shantanu Bhowmik, Delft University of Technology, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION 3. NOVEL POLYMER SYSTEMS \u003cbr\u003e\u003cbr\u003ePaper 9 Electrically conductive shape memory polymer with anisotropic electro-thermo-mechanical properties \u003cbr\u003eW.M. Huang, N. Liu, S.Y. Phoo \u0026amp; C.S. Chan, Nanyang Technological University, Singapore \u003cbr\u003e\u003cbr\u003ePaper 10 Development of new, conductive and microwave-lossy materials involving conducting polymer coatings \u003cbr\u003eDr. Jamshid Avloni, Eeonyx Corp, USA \u0026amp; Dr. A. Henn, Marktek Inc, USA \u003cbr\u003e\u003cbr\u003ePaper 11 Incorporating functional fillers into silicone elastomer systems \u003cbr\u003eBrian Burkitt, B. Riegler \u0026amp; S. Bruner, NuSil Technology Europe, UK \u003cbr\u003e\u003cbr\u003eSESSION 4. ELASTOMERS AND RUBBERS \u003cbr\u003e\u003cbr\u003ePaper 12 Elastomeric solutions to seal jet oils at high temperature with fluoroelastomers and perfluoroelastomers \u003cbr\u003eJean-Luc Matoux, EW Thomas \u0026amp; R.W. Schnell, DuPont Performance Elastomers SA, Switzerland \u003cbr\u003e\u003cbr\u003ePaper 13 Novel nylon\/halogenated butyl rubber blends in protection against warfare agents \u003cbr\u003eDr. Marek Gnatowski, J.D. Van Dyke \u0026amp; A. Burczyk, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 14 Development of wider performance range rubber seal materials and the utility of FEA modeling \u003cbr\u003eDr. Robert Keller, Freudenberg-NOK General Partnership, USA \u003cbr\u003e\u003cbr\u003eSESSION 5 OTHER MATERIALS AND ASSESSMENT \u003cbr\u003e\u003cbr\u003ePaper 15 New PEEK™ products and process technology developments for lightweight aerospace components \u003cbr\u003eDidier Padey, John Walling \u0026amp; Alan Wood, Victrex plc, France \u003cbr\u003e\u003cbr\u003ePaper 16 Polymerisation, compound and elastomeric modified ETFE in aerospace and defence applications \u003cbr\u003ePhil Spencer, AGC Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePaper 17 Lifetime prediction and assessment of metal-polymer laminates \u003cbr\u003eJulie Etheridge, AWE plc, UK \u003cbr\u003e\u003cbr\u003eSESSION 6 POLYMER PROCESSES AND APPLICATIONS \u003cbr\u003e\u003cbr\u003ePaper 18 Sonochemical surface modification for advanced electronic materials \u003cbr\u003eDr. Andy Cobley \u0026amp; Prof T. Mason, The Sonochemistry Centre at Coventry University, UK \u003cbr\u003e\u003cbr\u003ePaper 19 Polymers for exo-atmospheric supersonic vehicles: a tough life \u003cbr\u003eDr. Duncan Broughton, AWEplc, UK \u003cbr\u003e\u003cbr\u003ePaper 20 The role of polymeric materials for effective structural damping \u003cbr\u003eJohn R. House MIOA, QinetiQ, UK \u003cbr\u003e\u003cbr\u003ePaper 21 Liquid Crystal Polymer (LCP): the ultimate solution for low-cost RF flexible electronics and antennae \u003cbr\u003eRushi Vyas, A. Ride, S. Bhattacharya \u0026amp; M.M. Tentzeris, Georgia Institute of Technology, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:15-04:00","created_at":"2017-06-22T21:15:15-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","aerospace","book","p-applications","polymer","polymer applications","polymeric materials","polymers"],"price":18500,"price_min":18500,"price_max":18500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471428,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Defence and Aerospace Applications, 2007","public_title":null,"options":["Default Title"],"price":18500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-019-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847350190.jpg?v=1503691452"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847350190.jpg?v=1503691452","options":["Title"],"media":[{"alt":null,"id":410062422109,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847350190.jpg?v=1503691452"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847350190.jpg?v=1503691452","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-019-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eToulouse, France, 18-19 September 2007\u003cbr\u003eRapra Conference Proceedings, 2007\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers play a vital role in many defence and aerospace applications and there is a huge amount of activity underway globally to produce new polymers and polymeric materials that can enhance these applications. Composites are one such example where materials have revolutionised performance capabilities and, with the emergence of nanomaterials, the world of composites is set to be further extended. Many new nanocomposites have been developed, each with interesting and novel properties and new potential applications. \u003cbr\u003e\u003cbr\u003eA significant part of the conference was therefore devoted to presentations detailing composites, nanocomposites, and their novel applications. The conference also covered many of the other key novel polymers, processes, and applications, including high-temperature thermoplastics, elastomers, and rubbers. These proceedings will appeal to all those seeking to gain insights into the crucial role that polymers play in many critical aerospace and defence applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1. COMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 1 Composite Applications and Challenges for Lightweight Design of Aircraft Structure \u003cbr\u003eDave Wood, BAE SYSTEMS – Military Air Solutions, UK \u003cbr\u003e\u003cbr\u003ePaper 2 Quickstep curing technology: an out of – autoclave technology for prepegs and dry fibre reinforced laminates \u003cbr\u003eDr. J. Schlimbach, A. Ogale, D. Brosius \u0026amp; N. Noble, Quickstep GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION 2. NANOCOMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 3 Polymer nanocomposites with carbon nanotubes in aerospace and defence \u003cbr\u003eDr. James Njuguna, Cranefield University, UK \u003cbr\u003e\u003cbr\u003ePaper 4 Nylon-12 nanocomposite thin films as protective barriers \u003cbr\u003eDr. Celia Stevens, M. Gnatowski \u0026amp; S. Duncan, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 5 Thermal conductivity of ethylene vinyl acetate copolymer\/carbon nanofiller blends \u003cbr\u003eDr. Sayata Ghose, K.A. Watson, D.C. Working, J.W. Connell, J.G. Smith Jr, Y. Lin \u0026amp; Y.P. Sun, National Institute of Aerospace, USA \u003cbr\u003e\u003cbr\u003ePaper 6 Nanoscopically controlled polymer containing gadolinium atoms for shielding against radiation \u003cbr\u003eJoseph D Lichtenhan, J.P. Spratt, S. Aghara, P.A. Wheeler \u0026amp; R. Leadon, Hybrid Plastics, USA \u003cbr\u003e\u003cbr\u003ePaper 7 Conducting polymer nanofibres obtained by electrospinning \u003cbr\u003eDr. Lucie Robitaille \u0026amp; A. Laforgue, National Research Council Canada, Canada \u003cbr\u003e\u003cbr\u003ePaper 8 Influence of space radiation on nano adhesive bonding of high-performance polymer \u003cbr\u003eDr. Shantanu Bhowmik, Delft University of Technology, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION 3. NOVEL POLYMER SYSTEMS \u003cbr\u003e\u003cbr\u003ePaper 9 Electrically conductive shape memory polymer with anisotropic electro-thermo-mechanical properties \u003cbr\u003eW.M. Huang, N. Liu, S.Y. Phoo \u0026amp; C.S. Chan, Nanyang Technological University, Singapore \u003cbr\u003e\u003cbr\u003ePaper 10 Development of new, conductive and microwave-lossy materials involving conducting polymer coatings \u003cbr\u003eDr. Jamshid Avloni, Eeonyx Corp, USA \u0026amp; Dr. A. Henn, Marktek Inc, USA \u003cbr\u003e\u003cbr\u003ePaper 11 Incorporating functional fillers into silicone elastomer systems \u003cbr\u003eBrian Burkitt, B. Riegler \u0026amp; S. Bruner, NuSil Technology Europe, UK \u003cbr\u003e\u003cbr\u003eSESSION 4. ELASTOMERS AND RUBBERS \u003cbr\u003e\u003cbr\u003ePaper 12 Elastomeric solutions to seal jet oils at high temperature with fluoroelastomers and perfluoroelastomers \u003cbr\u003eJean-Luc Matoux, EW Thomas \u0026amp; R.W. Schnell, DuPont Performance Elastomers SA, Switzerland \u003cbr\u003e\u003cbr\u003ePaper 13 Novel nylon\/halogenated butyl rubber blends in protection against warfare agents \u003cbr\u003eDr. Marek Gnatowski, J.D. Van Dyke \u0026amp; A. Burczyk, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 14 Development of wider performance range rubber seal materials and the utility of FEA modeling \u003cbr\u003eDr. Robert Keller, Freudenberg-NOK General Partnership, USA \u003cbr\u003e\u003cbr\u003eSESSION 5 OTHER MATERIALS AND ASSESSMENT \u003cbr\u003e\u003cbr\u003ePaper 15 New PEEK™ products and process technology developments for lightweight aerospace components \u003cbr\u003eDidier Padey, John Walling \u0026amp; Alan Wood, Victrex plc, France \u003cbr\u003e\u003cbr\u003ePaper 16 Polymerisation, compound and elastomeric modified ETFE in aerospace and defence applications \u003cbr\u003ePhil Spencer, AGC Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePaper 17 Lifetime prediction and assessment of metal-polymer laminates \u003cbr\u003eJulie Etheridge, AWE plc, UK \u003cbr\u003e\u003cbr\u003eSESSION 6 POLYMER PROCESSES AND APPLICATIONS \u003cbr\u003e\u003cbr\u003ePaper 18 Sonochemical surface modification for advanced electronic materials \u003cbr\u003eDr. Andy Cobley \u0026amp; Prof T. Mason, The Sonochemistry Centre at Coventry University, UK \u003cbr\u003e\u003cbr\u003ePaper 19 Polymers for exo-atmospheric supersonic vehicles: a tough life \u003cbr\u003eDr. Duncan Broughton, AWEplc, UK \u003cbr\u003e\u003cbr\u003ePaper 20 The role of polymeric materials for effective structural damping \u003cbr\u003eJohn R. House MIOA, QinetiQ, UK \u003cbr\u003e\u003cbr\u003ePaper 21 Liquid Crystal Polymer (LCP): the ultimate solution for low-cost RF flexible electronics and antennae \u003cbr\u003eRushi Vyas, A. Ride, S. Bhattacharya \u0026amp; M.M. Tentzeris, Georgia Institute of Technology, USA\u003cbr\u003e\u003cbr\u003e"}
Polymers in Electronics
$490.00
{"id":11242223236,"title":"Polymers in Electronics","handle":"978-1-84735-006-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-84735-006-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e120 pages, Soft-backed, Rapra market report\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDesigners of electrical and electronic components have a wide choice of polymers at their disposal - cost is a prime consideration but competition in the market place is imposing ever more stringent specification criteria on the equipment designer who, in turn, is demanding significantly improved performance from his polymer supplier. This report lists the most commonly used polymers with brief notes on their properties.\u003cbr\u003e\u003cbr\u003eThis report seeks to provide an overall picture of the varied use of polymers in the manufacture of electronic components. It has endeavoured to identify trends and future movements of the market.\u003cbr\u003e\u003cbr\u003eThe pattern of polymer usage has changed and material formulations have had to be modified to conform with new European Union (EU) legislation relating to the use of hazardous materials in components. Furthermore, there is now far more emphasis on recycling rather than landfill disposal and these are issues covered in the report.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to all those involved in using polymers to produce electronic components and to those who provide the raw materials for the production.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Executive Summary\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3. Review of Materials and Properties\u003c\/strong\u003e\u003cstrong\u003e\u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction\u003cbr\u003e3.2 Polymers for Components\u003cbr\u003e3.2.1 Acrylonitrile-Butadiene-Styrene (ABS)\u003cbr\u003e3.2.2 Acetal Copolymers (Polyoxymethylene; POM)\u003cbr\u003e3.2.3 IXEF Polyarylamide\u003cbr\u003e3.2.4 Liquid Crystalline Polymers (LCP)\u003cbr\u003e3.2.5 Polyamide (Nylon; PA)\u003cbr\u003e3.2.6 Polybutylene Terephthalate (PBT)\u003cbr\u003e3.2.7 Polycarbonate (PC)\u003cbr\u003e3.2.8 Poly Ether Ether Ketone (PEEK)\u003cbr\u003e3.2.9 Polyetherimide (PEI)\u003cbr\u003e3.2.10 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.2.11 Polyethylene Terephthalate (PET)\u003cbr\u003e3.2.12 Polyparaphenylene Terephthalamide\u003cbr\u003e3.2.13 Polyimide (PI)\u003cbr\u003e3.2.14 Polypropylene (PP)\u003cbr\u003e3.2.15 Polyphthalamides (PPA)\u003cbr\u003e3.2.16 Polyphenylene Sulfide (PPS)\u003cbr\u003e3.2.17 Polystyrene (PS)\u003cbr\u003e3.2.18 PS-Modified Polyphenylene Oxide (PPO)\u003cbr\u003e3.2.19 Polysulfone (PSU)\u003cbr\u003e3.2.20 Polytetrafluoroethylene (PTFE)\u003cbr\u003e3.2.21 Polyurethane (PU)\u003cbr\u003e3.2.22 Polyvinyl Chloride (PVC)\u003cbr\u003e3.2.23 Polyvinylidene Fluoride (PVDF)\u003cbr\u003e3.2.24 Styrene\/Acrylonitrile (SAN)\u003cbr\u003e3.2.25 Elastomers\u003cbr\u003e3.2.26 Conductive Materials\u003cbr\u003e3.2.27 Additives\u003cbr\u003e3.3 Component Characteristics\u003cbr\u003e3.4 Polymers for Enclosures\u003cbr\u003e3.5 Electronic Components - Polymers Typically Employed\u003cbr\u003e3.5.1 Batteries including Lithium Polymer Types\u003cbr\u003e3.5.2 Capacitors\u003cbr\u003e3.5.3 Coil Formers\u003cbr\u003e3.5.4 Connectors\u003cbr\u003e3.5.5 Membrane Keypads\u003cbr\u003e3.5.6 Plugs and Sockets\u003cbr\u003e3.5.7 Printed Circuit Boards (PCB)\u003cbr\u003e3.5.8 Relays\u003cbr\u003e3.5.9 Resistors\u003cbr\u003e3.5.10 RFI Screening\u003cbr\u003e3.5.11 Sensors\u003cbr\u003e3.5.12 Switches\u003cbr\u003e3.5.13 Terminals\u003cbr\u003e3.5.14 Touch Screens\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Overview of European Electronic Component Markets\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Market Analysis\u003cbr\u003e4.3 Mobile Communications\u003cbr\u003e4.4 Automotive Applications\u003cbr\u003e4.5 Fuel Cells\u003cbr\u003e4.6 Computers\u003cbr\u003e4.7 Contract Electronic Manufacturing\u003cbr\u003e4.8 Component Distribution\u003cbr\u003e4.9 European Markets - Germany\u003cbr\u003e4.10 European Markets - France\u003cbr\u003e4.11 European Markets - Italy\u003cbr\u003e4.12 Other European Markets\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Key Trends and Developments\u003c\/strong\u003e\u003cbr\u003e5.1 Bluetooth Technology\u003cbr\u003e5.2 Organic and Other Polymer Developments\u003cbr\u003e5.3 Supercapacitors\u003cbr\u003e5.4 Solar Cells\u003cbr\u003e5.5 Flat Panel Displays\u003cbr\u003e5.6 Other New Technologies\u003cbr\u003e5.7 Recycling\u003cbr\u003e5.8 Chemical Safety\u003cbr\u003e5.9 Compliance with European RoHS and WEEE Directives\u003cbr\u003e5.10 Nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Company Profiles\u003c\/strong\u003e\u003cbr\u003eArkema\u003cbr\u003eBasell BV\u003cbr\u003eBASF AG\u003cbr\u003eBayer AG\u003cbr\u003eBorealis A\/S\u003cbr\u003eBP Plc\u003cbr\u003eCDT Limited\u003cbr\u003eDegussa AG\u003cbr\u003eDow Europe GmbH\u003cbr\u003eDSM Engineering Plastics BV\u003cbr\u003eDupont (UK) Limited\u003cbr\u003eEMS-chemie (UK) Limited\u003cbr\u003eEpcos AG\u003cbr\u003eGeneral Electric Company\u003cbr\u003eHuntsman Corporation\u003cbr\u003eLG Chem\u003cbr\u003ePlastic Logic Limited\u003cbr\u003eRogers Corporation\u003cbr\u003eSABIC Europe\u003cbr\u003eSamsung Electronics\u003cbr\u003eSolutia Inc.\u003cbr\u003eSolvay Chemicals Limited\u003cbr\u003eTeijin\u003cbr\u003eTicona GmbH\u003cbr\u003eToray Europe Limited (TEL)\u003cbr\u003eTotal SA\u003cbr\u003eTT Electronics plc\u003cbr\u003eTyco Electronics UK Limited\u003cbr\u003eVictrex Plc\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Future Outlook\u003c\/strong\u003e\u003cbr\u003e7.1 Optical Applications\u003cbr\u003e7.2 Search for New Products\u003cbr\u003e7.3 Superconducting Plastics\u003cbr\u003e7.4 Asia - Opportunity or Threat\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Abbreviations and Acronyms\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University with an Engineering Science degree and followed a graduate apprenticeship with one of the forerunners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery.\u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately commissioned studies.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:52-04:00","created_at":"2017-06-22T21:13:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","book","chemical and structural properties","components","electronics","formulations","hazardous materials","polymers","report"],"price":49000,"price_min":49000,"price_max":49000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378378308,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Electronics","public_title":null,"options":["Default Title"],"price":49000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-006-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333","options":["Title"],"media":[{"alt":null,"id":358705889373,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-84735-006-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e120 pages, Soft-backed, Rapra market report\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDesigners of electrical and electronic components have a wide choice of polymers at their disposal - cost is a prime consideration but competition in the market place is imposing ever more stringent specification criteria on the equipment designer who, in turn, is demanding significantly improved performance from his polymer supplier. This report lists the most commonly used polymers with brief notes on their properties.\u003cbr\u003e\u003cbr\u003eThis report seeks to provide an overall picture of the varied use of polymers in the manufacture of electronic components. It has endeavoured to identify trends and future movements of the market.\u003cbr\u003e\u003cbr\u003eThe pattern of polymer usage has changed and material formulations have had to be modified to conform with new European Union (EU) legislation relating to the use of hazardous materials in components. Furthermore, there is now far more emphasis on recycling rather than landfill disposal and these are issues covered in the report.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to all those involved in using polymers to produce electronic components and to those who provide the raw materials for the production.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Executive Summary\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3. Review of Materials and Properties\u003c\/strong\u003e\u003cstrong\u003e\u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction\u003cbr\u003e3.2 Polymers for Components\u003cbr\u003e3.2.1 Acrylonitrile-Butadiene-Styrene (ABS)\u003cbr\u003e3.2.2 Acetal Copolymers (Polyoxymethylene; POM)\u003cbr\u003e3.2.3 IXEF Polyarylamide\u003cbr\u003e3.2.4 Liquid Crystalline Polymers (LCP)\u003cbr\u003e3.2.5 Polyamide (Nylon; PA)\u003cbr\u003e3.2.6 Polybutylene Terephthalate (PBT)\u003cbr\u003e3.2.7 Polycarbonate (PC)\u003cbr\u003e3.2.8 Poly Ether Ether Ketone (PEEK)\u003cbr\u003e3.2.9 Polyetherimide (PEI)\u003cbr\u003e3.2.10 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.2.11 Polyethylene Terephthalate (PET)\u003cbr\u003e3.2.12 Polyparaphenylene Terephthalamide\u003cbr\u003e3.2.13 Polyimide (PI)\u003cbr\u003e3.2.14 Polypropylene (PP)\u003cbr\u003e3.2.15 Polyphthalamides (PPA)\u003cbr\u003e3.2.16 Polyphenylene Sulfide (PPS)\u003cbr\u003e3.2.17 Polystyrene (PS)\u003cbr\u003e3.2.18 PS-Modified Polyphenylene Oxide (PPO)\u003cbr\u003e3.2.19 Polysulfone (PSU)\u003cbr\u003e3.2.20 Polytetrafluoroethylene (PTFE)\u003cbr\u003e3.2.21 Polyurethane (PU)\u003cbr\u003e3.2.22 Polyvinyl Chloride (PVC)\u003cbr\u003e3.2.23 Polyvinylidene Fluoride (PVDF)\u003cbr\u003e3.2.24 Styrene\/Acrylonitrile (SAN)\u003cbr\u003e3.2.25 Elastomers\u003cbr\u003e3.2.26 Conductive Materials\u003cbr\u003e3.2.27 Additives\u003cbr\u003e3.3 Component Characteristics\u003cbr\u003e3.4 Polymers for Enclosures\u003cbr\u003e3.5 Electronic Components - Polymers Typically Employed\u003cbr\u003e3.5.1 Batteries including Lithium Polymer Types\u003cbr\u003e3.5.2 Capacitors\u003cbr\u003e3.5.3 Coil Formers\u003cbr\u003e3.5.4 Connectors\u003cbr\u003e3.5.5 Membrane Keypads\u003cbr\u003e3.5.6 Plugs and Sockets\u003cbr\u003e3.5.7 Printed Circuit Boards (PCB)\u003cbr\u003e3.5.8 Relays\u003cbr\u003e3.5.9 Resistors\u003cbr\u003e3.5.10 RFI Screening\u003cbr\u003e3.5.11 Sensors\u003cbr\u003e3.5.12 Switches\u003cbr\u003e3.5.13 Terminals\u003cbr\u003e3.5.14 Touch Screens\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Overview of European Electronic Component Markets\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Market Analysis\u003cbr\u003e4.3 Mobile Communications\u003cbr\u003e4.4 Automotive Applications\u003cbr\u003e4.5 Fuel Cells\u003cbr\u003e4.6 Computers\u003cbr\u003e4.7 Contract Electronic Manufacturing\u003cbr\u003e4.8 Component Distribution\u003cbr\u003e4.9 European Markets - Germany\u003cbr\u003e4.10 European Markets - France\u003cbr\u003e4.11 European Markets - Italy\u003cbr\u003e4.12 Other European Markets\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Key Trends and Developments\u003c\/strong\u003e\u003cbr\u003e5.1 Bluetooth Technology\u003cbr\u003e5.2 Organic and Other Polymer Developments\u003cbr\u003e5.3 Supercapacitors\u003cbr\u003e5.4 Solar Cells\u003cbr\u003e5.5 Flat Panel Displays\u003cbr\u003e5.6 Other New Technologies\u003cbr\u003e5.7 Recycling\u003cbr\u003e5.8 Chemical Safety\u003cbr\u003e5.9 Compliance with European RoHS and WEEE Directives\u003cbr\u003e5.10 Nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Company Profiles\u003c\/strong\u003e\u003cbr\u003eArkema\u003cbr\u003eBasell BV\u003cbr\u003eBASF AG\u003cbr\u003eBayer AG\u003cbr\u003eBorealis A\/S\u003cbr\u003eBP Plc\u003cbr\u003eCDT Limited\u003cbr\u003eDegussa AG\u003cbr\u003eDow Europe GmbH\u003cbr\u003eDSM Engineering Plastics BV\u003cbr\u003eDupont (UK) Limited\u003cbr\u003eEMS-chemie (UK) Limited\u003cbr\u003eEpcos AG\u003cbr\u003eGeneral Electric Company\u003cbr\u003eHuntsman Corporation\u003cbr\u003eLG Chem\u003cbr\u003ePlastic Logic Limited\u003cbr\u003eRogers Corporation\u003cbr\u003eSABIC Europe\u003cbr\u003eSamsung Electronics\u003cbr\u003eSolutia Inc.\u003cbr\u003eSolvay Chemicals Limited\u003cbr\u003eTeijin\u003cbr\u003eTicona GmbH\u003cbr\u003eToray Europe Limited (TEL)\u003cbr\u003eTotal SA\u003cbr\u003eTT Electronics plc\u003cbr\u003eTyco Electronics UK Limited\u003cbr\u003eVictrex Plc\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Future Outlook\u003c\/strong\u003e\u003cbr\u003e7.1 Optical Applications\u003cbr\u003e7.2 Search for New Products\u003cbr\u003e7.3 Superconducting Plastics\u003cbr\u003e7.4 Asia - Opportunity or Threat\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Abbreviations and Acronyms\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University with an Engineering Science degree and followed a graduate apprenticeship with one of the forerunners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery.\u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately commissioned studies.\u003cbr\u003e\u003cbr\u003e"}
Polymers in Electronic...
$135.00
{"id":11242231236,"title":"Polymers in Electronics 2007","handle":"978-1-84735-009-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-009-1 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 30-31 January 2007\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis conference saw presentations from all parts of the electronics industry’s materials supply chain, from raw materials to finished products and offered an opportunity to learn more about both traditional and new polymer materials, their markets, manufacturing processes, and applications. It also covered the impact of legislation, the need to recycle and other polymer-related challenges and opportunities for the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1. TRENDS AND GROWTH \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 1: Plastics in Electronics - the CEE market \u003cbr\u003eKalman Wappel, Eastern, and Central European Business Development Ltd., Hungary\u003c\/p\u003e\n\u003cb\u003eSESSION 2. CONDUCTIVE POLYMERS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 2: Electrically conductive polymer blends filled with low melting metal alloys \u003cbr\u003eProf. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli \u0026amp; Dipl.-Ing. Tobias Pfefferkorn, Institute of Plastics Processing at RWTH Aachen University (IKV), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 3: Development and applications of nano- and microscale layers of conductive polymers applied to various surfaces\u003c\/b\u003e \u003cbr\u003eDr. Jamshid Avloni \u0026amp; Ryan Lau, Eeonyx Corporation \u0026amp; Dr. Arthur Henn, Marktek Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 4: Conducting polymer nanocomposites in EMI shielding\/radar absorption applications\u003c\/b\u003e \u003cbr\u003eMatt Aldissi, Fractal Systems Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 5: Inherently conductive polyaniline for electronics applications\u003c\/b\u003e \u003cbr\u003eJukka Perento, Panipol, Finland\u003c\/p\u003e\n\u003cb\u003eSESSION 3. NEW DEVELOPMENTS IN FLAME RETARDED POLYMERS FOR ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 6: Sustainable flame retardants – beyond fire safety, RoHS, and WEEE compliance \u003cbr\u003eTroy DeSoto \u0026amp; Veronique Steukers, Albemarle Corporation, Belgium \u0026amp; Kumar Kumar, Albemarle Corporation, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 7: Phosphinates, the flame retardants for polymers in electronics\u003c\/b\u003e \u003cbr\u003eDr. Sebastian Hörold, lmar Schmitt, Mathias Dietz, Jerome De Boysere, Clariant Produkte GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 8: Fire retardancy of polymers in electronics, a scientific approach\u003c\/b\u003e \u003cbr\u003eR. Borms, S. Goebelbecker \u0026amp; L. Tange, Eurobrom B.V. ICL-IP \u0026amp; P. Georlette \u0026amp; Y. Bar Yaakov, ICL-IP, The Netherlands\u003c\/p\u003e\n\u003cb\u003eSESSION 4. POLYMERS IN SUBSTRATES, ASSEMBLY AND RELIABILITY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 9: An overview of polymers as key enablers in electronics assembly \u003cbr\u003eProf. Martin Goosey, IeMRC, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 10: New epoxy resins for printed wiring board application\u003c\/b\u003e \u003cbr\u003eDr. Bernd Hoevel, Dr. Ludovic Valette \u0026amp; Dr. Joseph Gan, Dow Deutschland Anlagengesellschaft mbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 11: Printed circuit boards for lead-free soldering, materials and failure mechanisms\u003c\/b\u003e \u003cbr\u003ePer Johander, Per-Erik Tegehall, Abelrahim Ahmed Osman, Göran Wetter \u0026amp; Dag Andersson, IVF Industrial Research \u0026amp; Development Corporation, Sweden\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 12: Selection and qualification of polymers for rigid and flexible interconnect applications\u003c\/b\u003e \u003cbr\u003eFlorian Schuessler, Prof. Dr.-Ing. Klaus Feldmann \u0026amp; Thomas Bigl, Institute for Manufacturing Automation and Production Systems (FAPS), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 13: Macromelt molding - low-pressure adhesive injection molding\u003c\/b\u003e \u003cbr\u003eOlaf Muendelein, Henkel GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 14: Conformal coating resistance to organic and inorganic contaminants\u003c\/b\u003e \u003cbr\u003eDr. Christopher Hunt, National Physical Laboratory, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 5. POLYMER FORMULATION AND RECYCLING FOR ELECTRONICS APPLICATIONS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 15: Additives: the way to tailor-made plastics for E\u0026amp;E applications \u003cbr\u003eDr. Markus C. Grob, Eelco Dekker \u0026amp; Dr. Wolfgang Diegritz, Ciba Specialty Chemicals Inc., Switzerland\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 16: Polymer recycling from WEEE - rapid assessment of electronic product enclosure plastics for improved resource management\u003c\/b\u003e \u003cbr\u003eProf. Gary Stevens et al, Gnosys\/Surrey University, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 17: Polymers in WEEE – A ‘sustainable’ raw material resource\u003c\/b\u003e \u003cbr\u003eKeith Freegard, Axion Recycling Ltd, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 6. POLYMERS AND PRINTED ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 18: Printed electronics: market opportunities and technical challenges \u003cbr\u003eMark Hutton \u0026amp; Nick Pearne, BPA Consulting, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 19: Inkjet printing of electronics\u003c\/b\u003e \u003cbr\u003eSteve Jones, Printed Electronics Limited, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 20: Flexible printing process for bespoke film based FCBs on polymer foil by combining laser technology, printing technology and electroplating \"Flextronic\"\u003c\/b\u003e \u003cbr\u003eFrits Feenstra, TNO Science \u0026amp; Industry, The Netherlands \u0026amp; Juergen Hackert, Vipem GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 21: Printed interconnects and batteries\u003c\/b\u003e \u003cbr\u003eDarren Southee, Gareth Hay, Peter Evans \u0026amp; David Harrison, Brunel University, UK\u003c\/p\u003e","published_at":"2017-06-22T21:14:16-04:00","created_at":"2017-06-22T21:14:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additive","application","batteries","blends","book","circuit boards","coating resistance","conductive polymer","electronics","epoxy resins","flame retardants","ink jet printing","interconnects","metal alloys","molding","nanocomposites","p-applications","phosphinates","plastics","polyaniline","polymer","polymers","printed wiring board","recycling"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378405380,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Electronics 2007","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-009-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353","options":["Title"],"media":[{"alt":null,"id":358706872413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-009-1 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 30-31 January 2007\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis conference saw presentations from all parts of the electronics industry’s materials supply chain, from raw materials to finished products and offered an opportunity to learn more about both traditional and new polymer materials, their markets, manufacturing processes, and applications. It also covered the impact of legislation, the need to recycle and other polymer-related challenges and opportunities for the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1. TRENDS AND GROWTH \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 1: Plastics in Electronics - the CEE market \u003cbr\u003eKalman Wappel, Eastern, and Central European Business Development Ltd., Hungary\u003c\/p\u003e\n\u003cb\u003eSESSION 2. CONDUCTIVE POLYMERS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 2: Electrically conductive polymer blends filled with low melting metal alloys \u003cbr\u003eProf. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli \u0026amp; Dipl.-Ing. Tobias Pfefferkorn, Institute of Plastics Processing at RWTH Aachen University (IKV), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 3: Development and applications of nano- and microscale layers of conductive polymers applied to various surfaces\u003c\/b\u003e \u003cbr\u003eDr. Jamshid Avloni \u0026amp; Ryan Lau, Eeonyx Corporation \u0026amp; Dr. Arthur Henn, Marktek Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 4: Conducting polymer nanocomposites in EMI shielding\/radar absorption applications\u003c\/b\u003e \u003cbr\u003eMatt Aldissi, Fractal Systems Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 5: Inherently conductive polyaniline for electronics applications\u003c\/b\u003e \u003cbr\u003eJukka Perento, Panipol, Finland\u003c\/p\u003e\n\u003cb\u003eSESSION 3. NEW DEVELOPMENTS IN FLAME RETARDED POLYMERS FOR ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 6: Sustainable flame retardants – beyond fire safety, RoHS, and WEEE compliance \u003cbr\u003eTroy DeSoto \u0026amp; Veronique Steukers, Albemarle Corporation, Belgium \u0026amp; Kumar Kumar, Albemarle Corporation, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 7: Phosphinates, the flame retardants for polymers in electronics\u003c\/b\u003e \u003cbr\u003eDr. Sebastian Hörold, lmar Schmitt, Mathias Dietz, Jerome De Boysere, Clariant Produkte GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 8: Fire retardancy of polymers in electronics, a scientific approach\u003c\/b\u003e \u003cbr\u003eR. Borms, S. Goebelbecker \u0026amp; L. Tange, Eurobrom B.V. ICL-IP \u0026amp; P. Georlette \u0026amp; Y. Bar Yaakov, ICL-IP, The Netherlands\u003c\/p\u003e\n\u003cb\u003eSESSION 4. POLYMERS IN SUBSTRATES, ASSEMBLY AND RELIABILITY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 9: An overview of polymers as key enablers in electronics assembly \u003cbr\u003eProf. Martin Goosey, IeMRC, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 10: New epoxy resins for printed wiring board application\u003c\/b\u003e \u003cbr\u003eDr. Bernd Hoevel, Dr. Ludovic Valette \u0026amp; Dr. Joseph Gan, Dow Deutschland Anlagengesellschaft mbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 11: Printed circuit boards for lead-free soldering, materials and failure mechanisms\u003c\/b\u003e \u003cbr\u003ePer Johander, Per-Erik Tegehall, Abelrahim Ahmed Osman, Göran Wetter \u0026amp; Dag Andersson, IVF Industrial Research \u0026amp; Development Corporation, Sweden\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 12: Selection and qualification of polymers for rigid and flexible interconnect applications\u003c\/b\u003e \u003cbr\u003eFlorian Schuessler, Prof. Dr.-Ing. Klaus Feldmann \u0026amp; Thomas Bigl, Institute for Manufacturing Automation and Production Systems (FAPS), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 13: Macromelt molding - low-pressure adhesive injection molding\u003c\/b\u003e \u003cbr\u003eOlaf Muendelein, Henkel GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 14: Conformal coating resistance to organic and inorganic contaminants\u003c\/b\u003e \u003cbr\u003eDr. Christopher Hunt, National Physical Laboratory, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 5. POLYMER FORMULATION AND RECYCLING FOR ELECTRONICS APPLICATIONS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 15: Additives: the way to tailor-made plastics for E\u0026amp;E applications \u003cbr\u003eDr. Markus C. Grob, Eelco Dekker \u0026amp; Dr. Wolfgang Diegritz, Ciba Specialty Chemicals Inc., Switzerland\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 16: Polymer recycling from WEEE - rapid assessment of electronic product enclosure plastics for improved resource management\u003c\/b\u003e \u003cbr\u003eProf. Gary Stevens et al, Gnosys\/Surrey University, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 17: Polymers in WEEE – A ‘sustainable’ raw material resource\u003c\/b\u003e \u003cbr\u003eKeith Freegard, Axion Recycling Ltd, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 6. POLYMERS AND PRINTED ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 18: Printed electronics: market opportunities and technical challenges \u003cbr\u003eMark Hutton \u0026amp; Nick Pearne, BPA Consulting, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 19: Inkjet printing of electronics\u003c\/b\u003e \u003cbr\u003eSteve Jones, Printed Electronics Limited, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 20: Flexible printing process for bespoke film based FCBs on polymer foil by combining laser technology, printing technology and electroplating \"Flextronic\"\u003c\/b\u003e \u003cbr\u003eFrits Feenstra, TNO Science \u0026amp; Industry, The Netherlands \u0026amp; Juergen Hackert, Vipem GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 21: Printed interconnects and batteries\u003c\/b\u003e \u003cbr\u003eDarren Southee, Gareth Hay, Peter Evans \u0026amp; David Harrison, Brunel University, UK\u003c\/p\u003e"}
Polymers in Organic El...
$350.00
{"id":4534925295709,"title":"Polymers in Organic Electronics. Polymer Selection for Electronic, Mechatronic \u0026 Optoelectronic Systems","handle":"polymers-in-organic-electronics","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sulaiman Khalifeh\u003cbr\u003eISBN 978-1-927885-67-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages: 606+x\u003cbr\u003eFigures: 189\u003cbr\u003eTables: 76\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eElectronics (including micro, nano, and quantum systems); mechanics (including MEMS, NEMS, MOEMS, and NOEMS); mechatronics (including robots, artificial muscles, and automated air vehicles); informatics (including software, hardware, and communication); materials science (including conjugated polymers, smart materials, and conducting small molecules); and optoelectronics (optical fibers and lenses) are the critical elements of development in science today. An integration is the practical concept by which these elements are combined and implemented; so that a new high performance, low cost, and lightweight organic electronic components (devices or systems) can be produced with shorter lead time.\u003c\/p\u003e\n\u003cp\u003eOrganic electronics or polymer electronics represent the important branch of material science dealing with electrically conductive polymers and small conductive molecules of carbon-based nature. This branch focuses on optimizing the semi-conductivity, conductivity, light emitting properties of organic materials (polymers, oligomers, and small molecules), and hybrid composites having organic-inorganic structures. That is because organic (p-conjugated) polymers exhibit the following attractive advantages:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003ecan be formed and shaped from solution depending on high-tech processes such as spin coating or inkjet printing at room temperature due to their lightweight and flexibility.\u003c\/li\u003e\n\u003cli\u003ethe capability of acting as electron donors and acceptors for structuring organic photovoltaics such as large scale, micro-, and nano-solar cells.\u003c\/li\u003e\n\u003cli\u003ethe ability to control their low band gaps energy levels makes them promising for fabricating developed organic electronic systems such as field-effect transistors, solar cells, light-emitting diodes, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eEvery year new conducting polymers, small molecules, composites, and complexes are being developed. Parallel to such development, the opportunities for additional electronic applications have increased. Included in this book are polymeric structures of the most familiar electronic devices (micro, opto, nano, etc.).\u003c\/p\u003e\n\u003cp\u003eThe main objective of this book is to help designers to optimize their design of organic electronic systems built out of novel polymers. For example, it is not enough to calculate the optical constants of an optoelectronic light-emitting diode LED using Afromowitz dielectric model starting from the calculation of real and imaginary part of the dielectric function, but its optical performance must be optimized by applying optical modeling of thin layers on a polymeric substrate.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 1\u003c\/strong\u003e is an introduction to polymers for electronic engineers. It provides identifications of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers. The chapter contains a classification of polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules. Several optimized ideas have been introduced to make this book a practical reference source.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 2\u003c\/strong\u003e is also introductory but explaining the principles of electronics to polymer engineers. It provides information on electronic theories of polymers. The theories are very important for undergraduate students in understanding mechanisms of polymer conductivity and studying theories governing electrical conductivity of polymers. This chapter was also illustrated with optimized ideas to facilitate practical applications.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains information on concepts and optimized types of electronic (polymers, small molecules, organic complexes, and elastomers). It contains a classification system of electronic polymers such as piezoelectric and pyroelectric, optoelectronic, electroactive, and mechatronics, and electronic small molecules, organic electronic complexes, and electronic elastomers. The chapter helps in the selection of the optimized electronic polymers, small molecules, complexes, and elastomers for structuring organic electronic systems.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e covers the most common properties of electronic polymers, such as electrical, electronic, and optical properties. The methods of optimization of electrical, electronic, and optical properties-dependent organic electronic structures are critical components of the chapter. For example, high occupied molecular orbital HOMO, low unoccupied molecular orbital LUMO, band gap, are essential concepts for understanding the electronic properties of electronic polymers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e is the location of discussion on polymeric structured printed circuit boards (PCBs). Here the reader may start building his own experience in creating polymer-based PCBs. Advanced PCBs and rapid PCB prototyping (a state of the art) are discussed. Optimizing the polymeric structures of organic printed circuit boards is broadly discussed here.\u003c\/p\u003e\n\u003cp\u003eBoth \u003cstrong\u003echapters 6 and 7\u003c\/strong\u003e are based on two crucial and advanced types of electronic components (polymer-based active and passive electronic components). Chapter 6 focuses on optimizing the polymeric structures of organic active electronic components, and chapter 7 on optimizing the polymeric structures of organic passive electronic components. The most critical systems listed in chapter 6 include integrated circuits ICs, organic thin-film transistors OTFT, organic light-emitting diodes OLEDs, optoelectronic devices, photovoltaic (or photo-electronic) systems, tandem or multi-junction organic solar cells, display technologies, discharge devices, organic thermo-electric generators, etc. The most important systems listed in chapter 7 include thin-film resistors, tantalum capacitors, axial inductor, fiber optic cable (fiber optic networks), optical sensors, flexible-skin contact antenna, flexible elastomeric actuators, etc.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 8\u003c\/strong\u003e describes the polymeric structures of optoelectronics and photonics supplied with the main optical and physical properties of conjugated polymers used for structuring the most developed optoelectronic devices and their optimization. Optoelectronic polymers such as optical electroactive conjugated polymers, optical organic photovoltaic polymers, and electro-phosphorescence polymers are used to emphasize the high efficiencies of the used optoelectronic devices.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 9\u003c\/strong\u003e has been designed to show the importance of polymeric structures for packaging of electronic devices, namely nanoelectronic packaging such as nanoelectronic circuits packaging and nanoelectromechanical packaging NEMS. Optimized polymeric structures of organic electronic packages are the subject of this chapter.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction to Polymers for Electronic Engineers\u003cbr\u003e1.1 Overview \u003cbr\u003e1.2 Synthetic electronic polymers\u003cbr\u003e1.3 Chemistry of electronic polymers \u003cbr\u003e1.3.1 Electronic resins\u003cbr\u003e1.3.2 Hydrocarbons (nature and electronic applications) \u003cbr\u003e1.4 Concepts of electronic polymers \u003cbr\u003e1. 4.1 Bond type of polymer\u003cbr\u003e1. 4.2 Chain geometry of polymers\u003cbr\u003e1. 4.3 Characteristics and properties of polymers \u003cbr\u003e1.4.4 Polymer morphology \u003cbr\u003e1.5 Classification of polymer families and types \u003cbr\u003e1.5.1 Electronic thermoplastic polymers \u003cbr\u003e1.5.2 Electronic thermosetting polymers \u003cbr\u003e1.5.3 Electronic elastomers \u003cbr\u003e1.6 Micro- and nano-electronic polymers \u003cbr\u003e1.7 Electronic copolymers and copolymerization \u003cbr\u003e1.8 Electronic oligomers\u003cbr\u003e1.9 Electronic polymer-based compounds \u003cbr\u003e1.9.1 Electronic inorganic polymers \u003cbr\u003e1.9.2 Electronic organometallic polymers \u003cbr\u003e1.9.3 Electronic complex polymers \u003cbr\u003e1.9.4 Electronic small molecules \u003cbr\u003e1.9.5 Electronic nanocomposites \u003cbr\u003e\u003cbr\u003e2 Electronics for Polymer Engineers\u003cbr\u003e2.1 Electrical conductivity of electronic polymers\u003cbr\u003e2.2 Electronic polymers “electrical conductivity” theory \u003cbr\u003e2.3 Electronic polymers “charge transport and charge transfer” theory \u003cbr\u003e2.4 Electronic polymers “molecular orbital” theory \u003cbr\u003e2.5 Electronic polymers “valence bond and Lewis structure” theory \u003cbr\u003e2.6 Electronic polymers “electroluminescent” theory \u003cbr\u003e2.7 Electronic polymers “piezoelectricity” theory \u003cbr\u003e2.8 Electronic polymers “electroactivity” theory \u003cbr\u003e2.9 Fundamentals of microelectronics for polymers \u003cbr\u003e2.10 Fundamentals of nanoelectronics for polymers \u003cbr\u003e2.11 Fundamentals of optoelectronics for polymers \u003cbr\u003e\u003cbr\u003e3 Optimized Electronic Polymers, Small Molecules, Complexes, \u003cbr\u003e and Elastomers for Organic Electronic Systems \u003cbr\u003e3.1 Electronic polymers \u003cbr\u003e3.2 Electroactive polymers \u003cbr\u003e3.2.1 Electronic-electroactive polymers \u003cbr\u003e3.2.2 Ionic-electroactive polymers \u003cbr\u003e3.3 Non-electroactive polymers \u003cbr\u003e3.3.1 Chemically activated polymers\u003cbr\u003e3.3.2 Shape memory polymers \u003cbr\u003e3.3.3 Electronic inflatable structure polymers \u003cbr\u003e3.3.4 Electronic light-activated polymers \u003cbr\u003e3.3.5 Magnetically activated polymers \u003cbr\u003e3.3.6 Electronic thermally activated gels \u003cbr\u003e3.4 Electronic conductive (conjugated and doped) polymers \u003cbr\u003e3.4.1 Electronic extrinsically conductive polymers \u003cbr\u003e3.4.2 Electronic intrinsically (inherently) conductive polymers \u003cbr\u003e3.5 Electronic piezoelectric and pyroelectric polymers \u003cbr\u003e3.5.1 Electronic bulk piezoelectric polymers \u003cbr\u003e3.5.2 Electronic piezoelectric\/polymeric composites \u003cbr\u003e3.5.3 Electronic voided charged piezoelectric polymers \u003cbr\u003e3.6 Microelectronic polymers \u003cbr\u003e3.6.1 Microelectronic three-dimensional conjugated macromolecules \u003cbr\u003e3.6.2 Microelectronic low-k polymers in microelectronics \u003cbr\u003e3.6.3 Organic\/inorganic hybrid nanocomposites for microelectronics \u003cbr\u003e3.7 Nanoelectronic polymers (nanopolymers) \u003cbr\u003e3.7.1 Electroactive nanostructured polymers \u003cbr\u003e3.7.2 Self-assembled nanostructured polymers \u003cbr\u003e3.7.3 Non-self-assembled nanostructured polymers \u003cbr\u003e3.7.4 Numbered nanoscale dimension polymers\u003cbr\u003e3.8 Optoelectronic polymers \u003cbr\u003e3.8.1 Optoelectronic light-emitting polymers \u003cbr\u003e3.8.2 Optoelectronic light transporting polymers \u003cbr\u003e3.8.3 Optoelectronic light receiving (absorbing) polymers \u003cbr\u003e3.9 Actuation polymers \u003cbr\u003e3.9.1 Stretchable electronic polymers \u003cbr\u003e3.9.2 Robotic polymers \u003cbr\u003e3.10 Electronic small molecules \u003cbr\u003e3.10.1 Electronic small molecules based on polycyclic aromatics \u003cbr\u003e3.10.2 Solution-processable electronic small molecules \u003cbr\u003e3.10.3 Electronic small molecule dyes \u003cbr\u003e3.10.4 Donor-p-acceptor structure electronic small molecules \u003cbr\u003e3.10.5 Optoelectronic small molecules \u003cbr\u003e3.10.6 Organic p-conjugated electronic small molecules \u003cbr\u003e3.11 Organic electronic complexes \u003cbr\u003e3.11.1 Polymeric metal complexes \u003cbr\u003e3.11.2 Small molecule complexes \u003cbr\u003e3.11.3 Heavy-metal complexes \u003cbr\u003e3.12 Electronic elastomers \u003cbr\u003e3.12.1 Electronic liquid crystalline elastomers \u003cbr\u003e3.12.2 Ferroelectric elastomers \u003cbr\u003e3.12.3 Electrostrictive grafted elastomers \u003cbr\u003e3.12.4 Optoelectronic elastomers \u003cbr\u003e3.12.5 Electrostatic elastomers \u003cbr\u003e3.12.6 Electroviscoelastic elastomers \u003cbr\u003e3.12.7 Electromagnetic-interference-shielding elastomers \u003cbr\u003e3.12.8 Electronic stretchable elastomers \u003cbr\u003e\u003cbr\u003e4 Optimization of Electrical, Electronic and Optical Properties of Organic Electronic Structures \u003cbr\u003e4.1 Overview \u003cbr\u003e4.2 Electrical properties \u003cbr\u003e4.3 Electronic properties \u003cbr\u003e4.3.1 HOMO-LUMO energy (band) gaps\u003cbr\u003e4.3.2 Electronic excitation energy \u003cbr\u003e4.3.3 Absorption wavelength \u003cbr\u003e4.4 Optical properties \u003cbr\u003e4.4.1 Transparency and colorlessness \u003cbr\u003e4.4.2 Refractive index \u003cbr\u003e4.4.3 Optical absorption \u003cbr\u003e4.4.4 Birefringence \u003cbr\u003e4.4.5 Optical transmission \u003cbr\u003e4.4.6 Polarizability\u003cbr\u003e4.4.7 Haze \u003cbr\u003e4.4.8 Photoconductivity \u003cbr\u003e4.4.9 Optical emission \u003cbr\u003e4.4.10 Luminescence \u003cbr\u003e\u003cbr\u003e5 Optimization of Polymeric Structures of Organic Printed Circuit Boards \u003cbr\u003e5.1 Overview \u003cbr\u003e5.2 Polymers for conventional printed circuit boards \u003cbr\u003e5.2.1 Dielectric substrate-based polymeric printed circuit boards \u003cbr\u003e5.2.2 Prepreg polymeric printed circuit boards \u003cbr\u003e5.2.3 Polymeric single-sided printed circuit boards \u003cbr\u003e5.2.4 Polymeric structures of double-sided printed circuit boards \u003cbr\u003e5.2.5 Polymeric structures of multilayered printed circuit boards\u003cbr\u003e5.3 Polymeric structures of flexible printed circuit boards \u003cbr\u003e5.3.1 Polymeric structures of single-sided flexible printed circuit boards \u003cbr\u003e5.3.2 Polymeric structures of double-sided flexible printed circuit boards \u003cbr\u003e5.3.3 Polymeric structures of multilayer flexible printed circuit boards \u003cbr\u003e5.3.4 Polymeric structures of rigid-flexible printed circuit boards \u003cbr\u003e5.3.5 Polymeric structures of dual access (back-bared) flexible printed circuit boards \u003cbr\u003e5.3.6 Polymeric structures of polymer thick-film flexible printed circuit boards \u003cbr\u003e5.4 Polymeric structures of ultra-multilayer printed circuit boards \u003cbr\u003e5.5 Polymeric structure of three-dimensional printed circuit boards \u003cbr\u003e5.5.1 Polymers in molded interconnected devices \u003cbr\u003e5.5.2 Combination of molded interconnected device polymers \u003cbr\u003e5.5.3 Manufacturing methods of molded interconnected devices \u003cbr\u003e5.6 Functions of advanced printed circuit boards optimized \u003cbr\u003e5.6.1 Printed circuit boards embedded in a polymeric substrate \u003cbr\u003e5.6.2 Polymeric microelectronic printed circuit boards \u003cbr\u003e5.6.3 Polymeric nanoelectronic printed circuit boards \u003cbr\u003e5.6.4 Polymeric optoelectronic printed circuit boards \u003cbr\u003e5.6.5 Polymeric structures of smart-textile printed circuit boards \u003cbr\u003e5.7 Polymeric structures of rapid printed circuit boards (state of the art) \u003cbr\u003e\u003cbr\u003e6 Optimized Polymeric Structures of Organic Active Electronic Components \u003cbr\u003e6.1 Overview \u003cbr\u003e6.2 Polymeric structures of organic semiconductors \u003cbr\u003e6.2.1 Polymeric structures of organic integrated circuits \u003cbr\u003e6.2.2 Polymeric structures of organic transistors \u003cbr\u003e6.2.3 Polymeric structures of organic diodes \u003cbr\u003e6.2.4 Polymeric structures of organic optoelectronic systems \u003cbr\u003e6.3 Polymeric structures of organic display technologies \u003cbr\u003e6.4 Polymeric structures of organic discharge devices \u003cbr\u003e6.5 Polymeric structures of organic power sources \u003cbr\u003e6.5.1 Polymeric structures of organic batteries \u003cbr\u003e6.5.2 Polymeric structures of organic fuel cells \u003cbr\u003e6.5.3 Polymeric structures of organic thermoelectric generators \u003cbr\u003e6.5.4 Polymeric structures for organic piezoelectric pressure \u003cbr\u003e\u003cbr\u003e7 Polymeric Structures Optimized for Organic Passive Electronic Components \u003cbr\u003e7.1 Overview \u003cbr\u003e7.2 Organic film resistors \u003cbr\u003e7.2.1 Thin film resistors \u003cbr\u003e7.2.2 Thick film resistors \u003cbr\u003e7.3 Organic capacitors \u003cbr\u003e7.3.1 Organic film capacitors \u003cbr\u003e7.3.2 Aluminum polymer capacitors \u003cbr\u003e7.3.3 Tantalum polymer capacitors \u003cbr\u003e7.3.4 Functional polymer capacitor \u003cbr\u003e7.4 Organic magnetic systems \u003cbr\u003e7.4.1 Magnetic polymers \u003cbr\u003e7.4.2 Organic\/polymeric magnets \u003cbr\u003e7.5 Organic networks \u003cbr\u003e7.6 Organic transducers \u003cbr\u003e7.6.1 Piezoelectric polymer transducers \u003cbr\u003e7.6.2 Ionic polymer transducers \u003cbr\u003e7.6.3 Elastomeric transducers \u003cbr\u003e7.7 Organic sensors \u003cbr\u003e7.7.1 Organic gas sensors \u003cbr\u003e7.7.2 Organic optical sensors \u003cbr\u003e7.7.3 Organic fiber optic-sensors \u003cbr\u003e7.7.4 Organic, flexible sensors \u003cbr\u003e7.8 Organic antennas \u003cbr\u003e7.9 Organic actuators \u003cbr\u003e7.9.1 All-organic\/polymeric actuators \u003cbr\u003e7.9.2 Conducting polymer actuators \u003cbr\u003e7.9.3 Ionomeric polymer-metal composite actuators \u003cbr\u003e7.9.4 Piezoelectric polymer actuators \u003cbr\u003e7.9.5 Flexible elastomeric actuators \u003cbr\u003e7.9.6 Conjugated polymer actuators \u003cbr\u003e7.9.7 Polymeric microactuators \u003cbr\u003e\u003cbr\u003e8 Optimizing Polymeric Structures in Organic Optoelectronics \u003cbr\u003e8.1 Overview \u003cbr\u003e8.2 Optical polymers\u003cbr\u003e8.2.1 Optical electroactive conjugated polymers \u003cbr\u003e8.2.2 Transparent (photonic) polymers \u003cbr\u003e8.2.3 Optical organic photovoltaic polymers \u003cbr\u003e8.2.4 Electroluminescent polymers \u003cbr\u003e8.2.5 Electro-phosphorescent polymers \u003cbr\u003e8.3 Properties of optical polymers \u003cbr\u003e8.4 Physical properties of optical polymers \u003cbr\u003e8.5 Organic optoelectronic systems \u003cbr\u003e8.5.1 Optical polymers for forming organic optoelectronic emitters \u003cbr\u003e8.5.2 Optical polymers for organic electroluminescent systems \u003cbr\u003e8.5.3 Organic photonics \u003cbr\u003e8.5.4 Organic optical amplifiers \u003cbr\u003e8.5.5 Organic optical detectors and receivers \u003cbr\u003e8.5.6 Organic optoelectronic thin-films \u003cbr\u003e8.5.7 Organic electro-optic modulators \u003cbr\u003e\u003cbr\u003e9 Optimizing Polymeric Structures of Organic Electronic Packages \u003cbr\u003e9.1 Overview \u003cbr\u003e9.2 Polymers in organic electronic packaging \u003cbr\u003e9.3 Polymeric structures of packaging systems \u003cbr\u003e9.3.1 Polymeric dual in-line package \u003cbr\u003e9.3.2 Polymeric single in-line package \u003cbr\u003e9.3.3 Polymeric zig-zag in-line package\u003cbr\u003e9.4 Structures of organic microelectronic packaging \u003cbr\u003e9.4.1 Practical concept of organic microelectronic packaging \u003cbr\u003e9.4.2 Organic microelectronic packages \u003cbr\u003e9.5 Electrically and thermally conductive polymer adhesives \u003cbr\u003e9.6 Organic microelectromechanical packaging \u003cbr\u003e9.6.1 Polymeric thin-film multilayer packaging \u003cbr\u003e9.6.2 Microelectromechanical packaging \u003cbr\u003e9.6.3 Vacuum and air cavity packaged organic microelectromechanical systems \u003cbr\u003e9.6.4 Organic encapsulation gels \u003cbr\u003e9.6.5 Organic near-hermetic (quasi-hermetic) materials \u003cbr\u003e9.7 Organic nanoelectronic packaging \u003cbr\u003e9.7.1 Polymeric system-on a-chip (or nanochip) \u003cbr\u003e9.7.2 Polymeric nanoscaled systems \u003cbr\u003e9.7.3 Nanoelectronic circuit packaging (nanopackaging) \u003cbr\u003e9.7.4 Organic nanoelectromechanical packaging \u003cbr\u003e9.8 Organic optoelectronic packaging \u003cbr\u003e9.8.1 Polymeric optoelectronic waveguides \u003cbr\u003e9.8.2 Organic optocoupler (optoisolator) packaging \u003cbr\u003e9.8.3 Organic microoptoelectromechanical systems packaging\u003cbr\u003e9.9 Polymeric packages \u003cbr\u003e9.10 Polymeric adhesive packages \u003cbr\u003e\u003cbr\u003e Index\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T11:44:58-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","electronics"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943766605917,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Organic Electronics. Polymer Selection for Electronic, Mechatronic \u0026 Optoelectronic Systems","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-67-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372","options":["Title"],"media":[{"alt":null,"id":6968062345309,"position":1,"preview_image":{"aspect_ratio":0.664,"height":450,"width":299,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372"},"aspect_ratio":0.664,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372","width":299}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sulaiman Khalifeh\u003cbr\u003eISBN 978-1-927885-67-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages: 606+x\u003cbr\u003eFigures: 189\u003cbr\u003eTables: 76\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eElectronics (including micro, nano, and quantum systems); mechanics (including MEMS, NEMS, MOEMS, and NOEMS); mechatronics (including robots, artificial muscles, and automated air vehicles); informatics (including software, hardware, and communication); materials science (including conjugated polymers, smart materials, and conducting small molecules); and optoelectronics (optical fibers and lenses) are the critical elements of development in science today. An integration is the practical concept by which these elements are combined and implemented; so that a new high performance, low cost, and lightweight organic electronic components (devices or systems) can be produced with shorter lead time.\u003c\/p\u003e\n\u003cp\u003eOrganic electronics or polymer electronics represent the important branch of material science dealing with electrically conductive polymers and small conductive molecules of carbon-based nature. This branch focuses on optimizing the semi-conductivity, conductivity, light emitting properties of organic materials (polymers, oligomers, and small molecules), and hybrid composites having organic-inorganic structures. That is because organic (p-conjugated) polymers exhibit the following attractive advantages:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003ecan be formed and shaped from solution depending on high-tech processes such as spin coating or inkjet printing at room temperature due to their lightweight and flexibility.\u003c\/li\u003e\n\u003cli\u003ethe capability of acting as electron donors and acceptors for structuring organic photovoltaics such as large scale, micro-, and nano-solar cells.\u003c\/li\u003e\n\u003cli\u003ethe ability to control their low band gaps energy levels makes them promising for fabricating developed organic electronic systems such as field-effect transistors, solar cells, light-emitting diodes, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eEvery year new conducting polymers, small molecules, composites, and complexes are being developed. Parallel to such development, the opportunities for additional electronic applications have increased. Included in this book are polymeric structures of the most familiar electronic devices (micro, opto, nano, etc.).\u003c\/p\u003e\n\u003cp\u003eThe main objective of this book is to help designers to optimize their design of organic electronic systems built out of novel polymers. For example, it is not enough to calculate the optical constants of an optoelectronic light-emitting diode LED using Afromowitz dielectric model starting from the calculation of real and imaginary part of the dielectric function, but its optical performance must be optimized by applying optical modeling of thin layers on a polymeric substrate.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 1\u003c\/strong\u003e is an introduction to polymers for electronic engineers. It provides identifications of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers. The chapter contains a classification of polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules. Several optimized ideas have been introduced to make this book a practical reference source.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 2\u003c\/strong\u003e is also introductory but explaining the principles of electronics to polymer engineers. It provides information on electronic theories of polymers. The theories are very important for undergraduate students in understanding mechanisms of polymer conductivity and studying theories governing electrical conductivity of polymers. This chapter was also illustrated with optimized ideas to facilitate practical applications.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains information on concepts and optimized types of electronic (polymers, small molecules, organic complexes, and elastomers). It contains a classification system of electronic polymers such as piezoelectric and pyroelectric, optoelectronic, electroactive, and mechatronics, and electronic small molecules, organic electronic complexes, and electronic elastomers. The chapter helps in the selection of the optimized electronic polymers, small molecules, complexes, and elastomers for structuring organic electronic systems.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e covers the most common properties of electronic polymers, such as electrical, electronic, and optical properties. The methods of optimization of electrical, electronic, and optical properties-dependent organic electronic structures are critical components of the chapter. For example, high occupied molecular orbital HOMO, low unoccupied molecular orbital LUMO, band gap, are essential concepts for understanding the electronic properties of electronic polymers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e is the location of discussion on polymeric structured printed circuit boards (PCBs). Here the reader may start building his own experience in creating polymer-based PCBs. Advanced PCBs and rapid PCB prototyping (a state of the art) are discussed. Optimizing the polymeric structures of organic printed circuit boards is broadly discussed here.\u003c\/p\u003e\n\u003cp\u003eBoth \u003cstrong\u003echapters 6 and 7\u003c\/strong\u003e are based on two crucial and advanced types of electronic components (polymer-based active and passive electronic components). Chapter 6 focuses on optimizing the polymeric structures of organic active electronic components, and chapter 7 on optimizing the polymeric structures of organic passive electronic components. The most critical systems listed in chapter 6 include integrated circuits ICs, organic thin-film transistors OTFT, organic light-emitting diodes OLEDs, optoelectronic devices, photovoltaic (or photo-electronic) systems, tandem or multi-junction organic solar cells, display technologies, discharge devices, organic thermo-electric generators, etc. The most important systems listed in chapter 7 include thin-film resistors, tantalum capacitors, axial inductor, fiber optic cable (fiber optic networks), optical sensors, flexible-skin contact antenna, flexible elastomeric actuators, etc.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 8\u003c\/strong\u003e describes the polymeric structures of optoelectronics and photonics supplied with the main optical and physical properties of conjugated polymers used for structuring the most developed optoelectronic devices and their optimization. Optoelectronic polymers such as optical electroactive conjugated polymers, optical organic photovoltaic polymers, and electro-phosphorescence polymers are used to emphasize the high efficiencies of the used optoelectronic devices.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 9\u003c\/strong\u003e has been designed to show the importance of polymeric structures for packaging of electronic devices, namely nanoelectronic packaging such as nanoelectronic circuits packaging and nanoelectromechanical packaging NEMS. Optimized polymeric structures of organic electronic packages are the subject of this chapter.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction to Polymers for Electronic Engineers\u003cbr\u003e1.1 Overview \u003cbr\u003e1.2 Synthetic electronic polymers\u003cbr\u003e1.3 Chemistry of electronic polymers \u003cbr\u003e1.3.1 Electronic resins\u003cbr\u003e1.3.2 Hydrocarbons (nature and electronic applications) \u003cbr\u003e1.4 Concepts of electronic polymers \u003cbr\u003e1. 4.1 Bond type of polymer\u003cbr\u003e1. 4.2 Chain geometry of polymers\u003cbr\u003e1. 4.3 Characteristics and properties of polymers \u003cbr\u003e1.4.4 Polymer morphology \u003cbr\u003e1.5 Classification of polymer families and types \u003cbr\u003e1.5.1 Electronic thermoplastic polymers \u003cbr\u003e1.5.2 Electronic thermosetting polymers \u003cbr\u003e1.5.3 Electronic elastomers \u003cbr\u003e1.6 Micro- and nano-electronic polymers \u003cbr\u003e1.7 Electronic copolymers and copolymerization \u003cbr\u003e1.8 Electronic oligomers\u003cbr\u003e1.9 Electronic polymer-based compounds \u003cbr\u003e1.9.1 Electronic inorganic polymers \u003cbr\u003e1.9.2 Electronic organometallic polymers \u003cbr\u003e1.9.3 Electronic complex polymers \u003cbr\u003e1.9.4 Electronic small molecules \u003cbr\u003e1.9.5 Electronic nanocomposites \u003cbr\u003e\u003cbr\u003e2 Electronics for Polymer Engineers\u003cbr\u003e2.1 Electrical conductivity of electronic polymers\u003cbr\u003e2.2 Electronic polymers “electrical conductivity” theory \u003cbr\u003e2.3 Electronic polymers “charge transport and charge transfer” theory \u003cbr\u003e2.4 Electronic polymers “molecular orbital” theory \u003cbr\u003e2.5 Electronic polymers “valence bond and Lewis structure” theory \u003cbr\u003e2.6 Electronic polymers “electroluminescent” theory \u003cbr\u003e2.7 Electronic polymers “piezoelectricity” theory \u003cbr\u003e2.8 Electronic polymers “electroactivity” theory \u003cbr\u003e2.9 Fundamentals of microelectronics for polymers \u003cbr\u003e2.10 Fundamentals of nanoelectronics for polymers \u003cbr\u003e2.11 Fundamentals of optoelectronics for polymers \u003cbr\u003e\u003cbr\u003e3 Optimized Electronic Polymers, Small Molecules, Complexes, \u003cbr\u003e and Elastomers for Organic Electronic Systems \u003cbr\u003e3.1 Electronic polymers \u003cbr\u003e3.2 Electroactive polymers \u003cbr\u003e3.2.1 Electronic-electroactive polymers \u003cbr\u003e3.2.2 Ionic-electroactive polymers \u003cbr\u003e3.3 Non-electroactive polymers \u003cbr\u003e3.3.1 Chemically activated polymers\u003cbr\u003e3.3.2 Shape memory polymers \u003cbr\u003e3.3.3 Electronic inflatable structure polymers \u003cbr\u003e3.3.4 Electronic light-activated polymers \u003cbr\u003e3.3.5 Magnetically activated polymers \u003cbr\u003e3.3.6 Electronic thermally activated gels \u003cbr\u003e3.4 Electronic conductive (conjugated and doped) polymers \u003cbr\u003e3.4.1 Electronic extrinsically conductive polymers \u003cbr\u003e3.4.2 Electronic intrinsically (inherently) conductive polymers \u003cbr\u003e3.5 Electronic piezoelectric and pyroelectric polymers \u003cbr\u003e3.5.1 Electronic bulk piezoelectric polymers \u003cbr\u003e3.5.2 Electronic piezoelectric\/polymeric composites \u003cbr\u003e3.5.3 Electronic voided charged piezoelectric polymers \u003cbr\u003e3.6 Microelectronic polymers \u003cbr\u003e3.6.1 Microelectronic three-dimensional conjugated macromolecules \u003cbr\u003e3.6.2 Microelectronic low-k polymers in microelectronics \u003cbr\u003e3.6.3 Organic\/inorganic hybrid nanocomposites for microelectronics \u003cbr\u003e3.7 Nanoelectronic polymers (nanopolymers) \u003cbr\u003e3.7.1 Electroactive nanostructured polymers \u003cbr\u003e3.7.2 Self-assembled nanostructured polymers \u003cbr\u003e3.7.3 Non-self-assembled nanostructured polymers \u003cbr\u003e3.7.4 Numbered nanoscale dimension polymers\u003cbr\u003e3.8 Optoelectronic polymers \u003cbr\u003e3.8.1 Optoelectronic light-emitting polymers \u003cbr\u003e3.8.2 Optoelectronic light transporting polymers \u003cbr\u003e3.8.3 Optoelectronic light receiving (absorbing) polymers \u003cbr\u003e3.9 Actuation polymers \u003cbr\u003e3.9.1 Stretchable electronic polymers \u003cbr\u003e3.9.2 Robotic polymers \u003cbr\u003e3.10 Electronic small molecules \u003cbr\u003e3.10.1 Electronic small molecules based on polycyclic aromatics \u003cbr\u003e3.10.2 Solution-processable electronic small molecules \u003cbr\u003e3.10.3 Electronic small molecule dyes \u003cbr\u003e3.10.4 Donor-p-acceptor structure electronic small molecules \u003cbr\u003e3.10.5 Optoelectronic small molecules \u003cbr\u003e3.10.6 Organic p-conjugated electronic small molecules \u003cbr\u003e3.11 Organic electronic complexes \u003cbr\u003e3.11.1 Polymeric metal complexes \u003cbr\u003e3.11.2 Small molecule complexes \u003cbr\u003e3.11.3 Heavy-metal complexes \u003cbr\u003e3.12 Electronic elastomers \u003cbr\u003e3.12.1 Electronic liquid crystalline elastomers \u003cbr\u003e3.12.2 Ferroelectric elastomers \u003cbr\u003e3.12.3 Electrostrictive grafted elastomers \u003cbr\u003e3.12.4 Optoelectronic elastomers \u003cbr\u003e3.12.5 Electrostatic elastomers \u003cbr\u003e3.12.6 Electroviscoelastic elastomers \u003cbr\u003e3.12.7 Electromagnetic-interference-shielding elastomers \u003cbr\u003e3.12.8 Electronic stretchable elastomers \u003cbr\u003e\u003cbr\u003e4 Optimization of Electrical, Electronic and Optical Properties of Organic Electronic Structures \u003cbr\u003e4.1 Overview \u003cbr\u003e4.2 Electrical properties \u003cbr\u003e4.3 Electronic properties \u003cbr\u003e4.3.1 HOMO-LUMO energy (band) gaps\u003cbr\u003e4.3.2 Electronic excitation energy \u003cbr\u003e4.3.3 Absorption wavelength \u003cbr\u003e4.4 Optical properties \u003cbr\u003e4.4.1 Transparency and colorlessness \u003cbr\u003e4.4.2 Refractive index \u003cbr\u003e4.4.3 Optical absorption \u003cbr\u003e4.4.4 Birefringence \u003cbr\u003e4.4.5 Optical transmission \u003cbr\u003e4.4.6 Polarizability\u003cbr\u003e4.4.7 Haze \u003cbr\u003e4.4.8 Photoconductivity \u003cbr\u003e4.4.9 Optical emission \u003cbr\u003e4.4.10 Luminescence \u003cbr\u003e\u003cbr\u003e5 Optimization of Polymeric Structures of Organic Printed Circuit Boards \u003cbr\u003e5.1 Overview \u003cbr\u003e5.2 Polymers for conventional printed circuit boards \u003cbr\u003e5.2.1 Dielectric substrate-based polymeric printed circuit boards \u003cbr\u003e5.2.2 Prepreg polymeric printed circuit boards \u003cbr\u003e5.2.3 Polymeric single-sided printed circuit boards \u003cbr\u003e5.2.4 Polymeric structures of double-sided printed circuit boards \u003cbr\u003e5.2.5 Polymeric structures of multilayered printed circuit boards\u003cbr\u003e5.3 Polymeric structures of flexible printed circuit boards \u003cbr\u003e5.3.1 Polymeric structures of single-sided flexible printed circuit boards \u003cbr\u003e5.3.2 Polymeric structures of double-sided flexible printed circuit boards \u003cbr\u003e5.3.3 Polymeric structures of multilayer flexible printed circuit boards \u003cbr\u003e5.3.4 Polymeric structures of rigid-flexible printed circuit boards \u003cbr\u003e5.3.5 Polymeric structures of dual access (back-bared) flexible printed circuit boards \u003cbr\u003e5.3.6 Polymeric structures of polymer thick-film flexible printed circuit boards \u003cbr\u003e5.4 Polymeric structures of ultra-multilayer printed circuit boards \u003cbr\u003e5.5 Polymeric structure of three-dimensional printed circuit boards \u003cbr\u003e5.5.1 Polymers in molded interconnected devices \u003cbr\u003e5.5.2 Combination of molded interconnected device polymers \u003cbr\u003e5.5.3 Manufacturing methods of molded interconnected devices \u003cbr\u003e5.6 Functions of advanced printed circuit boards optimized \u003cbr\u003e5.6.1 Printed circuit boards embedded in a polymeric substrate \u003cbr\u003e5.6.2 Polymeric microelectronic printed circuit boards \u003cbr\u003e5.6.3 Polymeric nanoelectronic printed circuit boards \u003cbr\u003e5.6.4 Polymeric optoelectronic printed circuit boards \u003cbr\u003e5.6.5 Polymeric structures of smart-textile printed circuit boards \u003cbr\u003e5.7 Polymeric structures of rapid printed circuit boards (state of the art) \u003cbr\u003e\u003cbr\u003e6 Optimized Polymeric Structures of Organic Active Electronic Components \u003cbr\u003e6.1 Overview \u003cbr\u003e6.2 Polymeric structures of organic semiconductors \u003cbr\u003e6.2.1 Polymeric structures of organic integrated circuits \u003cbr\u003e6.2.2 Polymeric structures of organic transistors \u003cbr\u003e6.2.3 Polymeric structures of organic diodes \u003cbr\u003e6.2.4 Polymeric structures of organic optoelectronic systems \u003cbr\u003e6.3 Polymeric structures of organic display technologies \u003cbr\u003e6.4 Polymeric structures of organic discharge devices \u003cbr\u003e6.5 Polymeric structures of organic power sources \u003cbr\u003e6.5.1 Polymeric structures of organic batteries \u003cbr\u003e6.5.2 Polymeric structures of organic fuel cells \u003cbr\u003e6.5.3 Polymeric structures of organic thermoelectric generators \u003cbr\u003e6.5.4 Polymeric structures for organic piezoelectric pressure \u003cbr\u003e\u003cbr\u003e7 Polymeric Structures Optimized for Organic Passive Electronic Components \u003cbr\u003e7.1 Overview \u003cbr\u003e7.2 Organic film resistors \u003cbr\u003e7.2.1 Thin film resistors \u003cbr\u003e7.2.2 Thick film resistors \u003cbr\u003e7.3 Organic capacitors \u003cbr\u003e7.3.1 Organic film capacitors \u003cbr\u003e7.3.2 Aluminum polymer capacitors \u003cbr\u003e7.3.3 Tantalum polymer capacitors \u003cbr\u003e7.3.4 Functional polymer capacitor \u003cbr\u003e7.4 Organic magnetic systems \u003cbr\u003e7.4.1 Magnetic polymers \u003cbr\u003e7.4.2 Organic\/polymeric magnets \u003cbr\u003e7.5 Organic networks \u003cbr\u003e7.6 Organic transducers \u003cbr\u003e7.6.1 Piezoelectric polymer transducers \u003cbr\u003e7.6.2 Ionic polymer transducers \u003cbr\u003e7.6.3 Elastomeric transducers \u003cbr\u003e7.7 Organic sensors \u003cbr\u003e7.7.1 Organic gas sensors \u003cbr\u003e7.7.2 Organic optical sensors \u003cbr\u003e7.7.3 Organic fiber optic-sensors \u003cbr\u003e7.7.4 Organic, flexible sensors \u003cbr\u003e7.8 Organic antennas \u003cbr\u003e7.9 Organic actuators \u003cbr\u003e7.9.1 All-organic\/polymeric actuators \u003cbr\u003e7.9.2 Conducting polymer actuators \u003cbr\u003e7.9.3 Ionomeric polymer-metal composite actuators \u003cbr\u003e7.9.4 Piezoelectric polymer actuators \u003cbr\u003e7.9.5 Flexible elastomeric actuators \u003cbr\u003e7.9.6 Conjugated polymer actuators \u003cbr\u003e7.9.7 Polymeric microactuators \u003cbr\u003e\u003cbr\u003e8 Optimizing Polymeric Structures in Organic Optoelectronics \u003cbr\u003e8.1 Overview \u003cbr\u003e8.2 Optical polymers\u003cbr\u003e8.2.1 Optical electroactive conjugated polymers \u003cbr\u003e8.2.2 Transparent (photonic) polymers \u003cbr\u003e8.2.3 Optical organic photovoltaic polymers \u003cbr\u003e8.2.4 Electroluminescent polymers \u003cbr\u003e8.2.5 Electro-phosphorescent polymers \u003cbr\u003e8.3 Properties of optical polymers \u003cbr\u003e8.4 Physical properties of optical polymers \u003cbr\u003e8.5 Organic optoelectronic systems \u003cbr\u003e8.5.1 Optical polymers for forming organic optoelectronic emitters \u003cbr\u003e8.5.2 Optical polymers for organic electroluminescent systems \u003cbr\u003e8.5.3 Organic photonics \u003cbr\u003e8.5.4 Organic optical amplifiers \u003cbr\u003e8.5.5 Organic optical detectors and receivers \u003cbr\u003e8.5.6 Organic optoelectronic thin-films \u003cbr\u003e8.5.7 Organic electro-optic modulators \u003cbr\u003e\u003cbr\u003e9 Optimizing Polymeric Structures of Organic Electronic Packages \u003cbr\u003e9.1 Overview \u003cbr\u003e9.2 Polymers in organic electronic packaging \u003cbr\u003e9.3 Polymeric structures of packaging systems \u003cbr\u003e9.3.1 Polymeric dual in-line package \u003cbr\u003e9.3.2 Polymeric single in-line package \u003cbr\u003e9.3.3 Polymeric zig-zag in-line package\u003cbr\u003e9.4 Structures of organic microelectronic packaging \u003cbr\u003e9.4.1 Practical concept of organic microelectronic packaging \u003cbr\u003e9.4.2 Organic microelectronic packages \u003cbr\u003e9.5 Electrically and thermally conductive polymer adhesives \u003cbr\u003e9.6 Organic microelectromechanical packaging \u003cbr\u003e9.6.1 Polymeric thin-film multilayer packaging \u003cbr\u003e9.6.2 Microelectromechanical packaging \u003cbr\u003e9.6.3 Vacuum and air cavity packaged organic microelectromechanical systems \u003cbr\u003e9.6.4 Organic encapsulation gels \u003cbr\u003e9.6.5 Organic near-hermetic (quasi-hermetic) materials \u003cbr\u003e9.7 Organic nanoelectronic packaging \u003cbr\u003e9.7.1 Polymeric system-on a-chip (or nanochip) \u003cbr\u003e9.7.2 Polymeric nanoscaled systems \u003cbr\u003e9.7.3 Nanoelectronic circuit packaging (nanopackaging) \u003cbr\u003e9.7.4 Organic nanoelectromechanical packaging \u003cbr\u003e9.8 Organic optoelectronic packaging \u003cbr\u003e9.8.1 Polymeric optoelectronic waveguides \u003cbr\u003e9.8.2 Organic optocoupler (optoisolator) packaging \u003cbr\u003e9.8.3 Organic microoptoelectromechanical systems packaging\u003cbr\u003e9.9 Polymeric packages \u003cbr\u003e9.10 Polymeric adhesive packages \u003cbr\u003e\u003cbr\u003e Index\u003cbr\u003e"}
Polyolefin Foams
$125.00
{"id":11242224644,"title":"Polyolefin Foams","handle":"978-1-85957-434-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N.J. Mills \u003cbr\u003eISBN 978-1-85957-434-8 \u003cbr\u003e\u003cbr\u003ePublished: 2004\u003cbr\u003epages 138\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer Foams are used in many different types of applications and it is hard to find an area where they are not utilised. Polyolefin Foams are a relatively recent development compared to the other types of foam. The Polyolefin foam processes were developed in the 1960s and 1970s.\u003cbr\u003eThis Review starts with a brief history of the subject and then reports on the current situation regarding Polyolefin Foams. The section on processing discusses the properties required for successful foam production. The polymer section then describes the molecular structures necessary to produce the required properties and then considers novel polymer that can be used for foams. The properties section covers the mechanical and thermal properties and how these can be used to best advantage, while the applications section discusses how these properties can be used.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Polymers\u003cbr\u003e2.1 Polyethylenes\u003cbr\u003e2.1.1 Blends\u003cbr\u003e2.2 Ethylene-Styrene ‘Interpolymers’\u003cbr\u003e2.3 EPDM\u003cbr\u003e2.4 Polypropylenes \u003cbr\u003e3 Processing\u003cbr\u003e3.1 Melt Rheology Suitable for Foaming\u003cbr\u003e3.2 Foam Expansion\u003cbr\u003e3.2.1 Control of Cell Size and Cell Stability\u003cbr\u003e3.2.2 Control of Density\u003cbr\u003e3.3 Post-Extrusion Shrinkage\u003cbr\u003e3.4 Rotomoulding\u003cbr\u003e3.5 Microcellular Foams\u003cbr\u003e3.6 Oriented PP Foams – Strandfoam \u0026lt; \u003cbr\u003e4 Mechanical Properties\u003cbr\u003e4.1 Initial Response in Compression\u003cbr\u003e4.2 Bulk Modulus\u003cbr\u003e4.3 Compressive Collapse\u003cbr\u003e4.4 High Strain Compressive Response\u003cbr\u003e4.5 Heat Transfer from Gas to Polymer During High Strain Compression\u003cbr\u003e4.6 Creep Response and Air Loss from Cells\u003cbr\u003e4.7 Recovery After Creep\u003cbr\u003e4.8 Fatigue\u003cbr\u003e4.9 Cushion Curves for Impact Response\u003cbr\u003e4.10 Impact Response in Shear or Shear Plus Compression\u003cbr\u003e4.11 Recovery After Impact\u003cbr\u003e4.12 Multiple Impacts \u003cbr\u003e5 Thermal Properties\u003cbr\u003e5.1 Dynamic Mechanical Thermal Analysis (DMTA)\u003cbr\u003e5.2 Thermal Expansion\u003cbr\u003e5.3 Thermal Conductivity \u003cbr\u003e6 Applications\u003cbr\u003e6.1 Packaging Against Impact Damage\u003cbr\u003e6.2 EVA in Running Shoe Midsoles\u003cbr\u003e6.3 Body Armour\u003cbr\u003e6.4 Helmets\u003cbr\u003e6.5 Soccer Shin Protectors\u003cbr\u003e6.6 Automotive \u003cbr\u003e7 Market Growth\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNigel Mills, D.Eng., Ph. D, F.I.M. graduated in Natural Sciences from Kings College, Cambridge, and then worked for ICI Petrochemical and Polymer Laboratory in Runcorn from 1964 to 1970. Since then he has been at Birmingham University, where he is currently Reader in Polymer Engineering, in the Metallurgy and Materials Department. His research interests include modeling and testing the mechanical properties of polymer foams, and the testing and design of protective helmets, clothing, and shoes. The latter involves linking injury criteria to product performance tests. His research group is equipped for impact, creep and fracture testing of foams and plastics, and testing of helmets and sports equipment. He is chairman of the British Standards committee for motorcycle helmets. He has published 140 papers on foam and polymer properties and applications.","published_at":"2017-06-22T21:13:56-04:00","created_at":"2017-06-22T21:13:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","automotive","blends","book","cells","conductivity","creep","expansion","fatigue","foams","helmets","impact","market growth","p-structural","packaging","polymer","polymers","polyolefin","response","shear","soccer","thermal"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378386180,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polyolefin Foams","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-434-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381","options":["Title"],"media":[{"alt":null,"id":358708510813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N.J. Mills \u003cbr\u003eISBN 978-1-85957-434-8 \u003cbr\u003e\u003cbr\u003ePublished: 2004\u003cbr\u003epages 138\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer Foams are used in many different types of applications and it is hard to find an area where they are not utilised. Polyolefin Foams are a relatively recent development compared to the other types of foam. The Polyolefin foam processes were developed in the 1960s and 1970s.\u003cbr\u003eThis Review starts with a brief history of the subject and then reports on the current situation regarding Polyolefin Foams. The section on processing discusses the properties required for successful foam production. The polymer section then describes the molecular structures necessary to produce the required properties and then considers novel polymer that can be used for foams. The properties section covers the mechanical and thermal properties and how these can be used to best advantage, while the applications section discusses how these properties can be used.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Polymers\u003cbr\u003e2.1 Polyethylenes\u003cbr\u003e2.1.1 Blends\u003cbr\u003e2.2 Ethylene-Styrene ‘Interpolymers’\u003cbr\u003e2.3 EPDM\u003cbr\u003e2.4 Polypropylenes \u003cbr\u003e3 Processing\u003cbr\u003e3.1 Melt Rheology Suitable for Foaming\u003cbr\u003e3.2 Foam Expansion\u003cbr\u003e3.2.1 Control of Cell Size and Cell Stability\u003cbr\u003e3.2.2 Control of Density\u003cbr\u003e3.3 Post-Extrusion Shrinkage\u003cbr\u003e3.4 Rotomoulding\u003cbr\u003e3.5 Microcellular Foams\u003cbr\u003e3.6 Oriented PP Foams – Strandfoam \u0026lt; \u003cbr\u003e4 Mechanical Properties\u003cbr\u003e4.1 Initial Response in Compression\u003cbr\u003e4.2 Bulk Modulus\u003cbr\u003e4.3 Compressive Collapse\u003cbr\u003e4.4 High Strain Compressive Response\u003cbr\u003e4.5 Heat Transfer from Gas to Polymer During High Strain Compression\u003cbr\u003e4.6 Creep Response and Air Loss from Cells\u003cbr\u003e4.7 Recovery After Creep\u003cbr\u003e4.8 Fatigue\u003cbr\u003e4.9 Cushion Curves for Impact Response\u003cbr\u003e4.10 Impact Response in Shear or Shear Plus Compression\u003cbr\u003e4.11 Recovery After Impact\u003cbr\u003e4.12 Multiple Impacts \u003cbr\u003e5 Thermal Properties\u003cbr\u003e5.1 Dynamic Mechanical Thermal Analysis (DMTA)\u003cbr\u003e5.2 Thermal Expansion\u003cbr\u003e5.3 Thermal Conductivity \u003cbr\u003e6 Applications\u003cbr\u003e6.1 Packaging Against Impact Damage\u003cbr\u003e6.2 EVA in Running Shoe Midsoles\u003cbr\u003e6.3 Body Armour\u003cbr\u003e6.4 Helmets\u003cbr\u003e6.5 Soccer Shin Protectors\u003cbr\u003e6.6 Automotive \u003cbr\u003e7 Market Growth\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNigel Mills, D.Eng., Ph. D, F.I.M. graduated in Natural Sciences from Kings College, Cambridge, and then worked for ICI Petrochemical and Polymer Laboratory in Runcorn from 1964 to 1970. Since then he has been at Birmingham University, where he is currently Reader in Polymer Engineering, in the Metallurgy and Materials Department. His research interests include modeling and testing the mechanical properties of polymer foams, and the testing and design of protective helmets, clothing, and shoes. The latter involves linking injury criteria to product performance tests. His research group is equipped for impact, creep and fracture testing of foams and plastics, and testing of helmets and sports equipment. He is chairman of the British Standards committee for motorcycle helmets. He has published 140 papers on foam and polymer properties and applications."}
Polypropylene
$361.00
{"id":11242244036,"title":"Polypropylene","handle":"1-884207-58-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Clive Maier, Teresa Calafut \u003cbr\u003e10-ISBN 1-884207-58-8 \u003cbr\u003e13-\u003cspan\u003eISBN 978-1-884207-58-7\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 425, Figures: 315 , Tables: 115\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolypropylene, The Definitive User's Guide and Databook present in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect - science, technology, engineering, properties, design, processing, applications - of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use.\u003cbr\u003eDespite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene, The Definitive User's Guide, and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene, The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChemical Properties\u003cbr\u003eMorphology\u003cbr\u003eCommercial Forms\u003cbr\u003eAdditives\u003cbr\u003eData Sheet Properties\u003cbr\u003eDesign\u003cbr\u003eFilms, Sheets, Fibers \u0026amp; Foams\u003cbr\u003e\u003cstrong\u003eExtensive Processing Data On\u003c\/strong\u003e\u003cbr\u003ePre-Processing\u003cbr\u003eInjection Extrusion \u0026amp; Blow Molding\u003cbr\u003eThermoforming\u003cbr\u003eCalendering\u003cbr\u003eCompression\u003cbr\u003eMachining\u003cbr\u003eJoining\u003cbr\u003eDecorating\u003cbr\u003e\u003cstrong\u003eFunctions Including\u003c\/strong\u003e\u003cbr\u003eMechanical, Thermal \u0026amp; Electrical Properties\u003cbr\u003ePermeability\u003cbr\u003eUV Light and Weathering\u003cbr\u003eSterilization\u003cbr\u003eViscosity\u003cbr\u003eChemical Resistance\u003cbr\u003eFlammability\u003cbr\u003eToxicity\u003cbr\u003eAlso Included\u003cbr\u003eEnvironmental Considerations\u003cbr\u003eAgency Approvals\u003cbr\u003eApplications\u003cbr\u003eCommercial Suppliers\u003cbr\u003eAvailable Grades\u003cbr\u003e\u003cstrong\u003eInformation Presented As\u003c\/strong\u003e\u003cbr\u003eTextual\u003cbr\u003eDiscussions\u003cbr\u003eImages\u003cbr\u003eGraphs\u003cbr\u003eTables","published_at":"2017-06-22T21:14:56-04:00","created_at":"2017-06-22T21:14:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1998","additives","blow molding","book","calendering","chemical resistance","compression","decorating","electrical","Environment","extrusion","fibers","films","flammability","foams","injection","joining","mechanical","morphology","moulding","p-chemistry","permeability","polymer","polypropylene","processing","properties","sheets","sterilization","thermal","thermoforming","thermoplastic","toxicity","UV","viscosity","weathering"],"price":36100,"price_min":36100,"price_max":36100,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378446532,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polypropylene","public_title":null,"options":["Default Title"],"price":36100,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-884207-58-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990","options":["Title"],"media":[{"alt":null,"id":358710083677,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-884207-58-8.jpg?v=1499725990","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Clive Maier, Teresa Calafut \u003cbr\u003e10-ISBN 1-884207-58-8 \u003cbr\u003e13-\u003cspan\u003eISBN 978-1-884207-58-7\u003c\/span\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1998\u003cbr\u003e\u003c\/span\u003ePages: 425, Figures: 315 , Tables: 115\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolypropylene, The Definitive User's Guide and Databook present in a single volume a panoramic and up-to-the-minute user's guide for today's most important thermoplastic. The book examines every aspect - science, technology, engineering, properties, design, processing, applications - of the continuing development and use of polypropylene. The unique treatment means that specialists can not only find what they want but for the first time can relate to and understand the needs and requirements of others in the product development chain. The entire work is underpinned by very extensive collections of property data that allow the reader to put the information to real industrial and commercial use.\u003cbr\u003eDespite the preeminence and unrivaled versatility of polypropylene as a thermoplastic material to manufacture, relatively few books have been devoted to its study. Polypropylene, The Definitive User's Guide, and Databook not only fills the gap but breaks new ground in doing so. Polypropylene is the most popular thermoplastic in use today, and still one of the fastest growing. Polypropylene, The Definitive User's Guide and Databook is the complete workbook and reference resource for all those who work with the material. Its comprehensive scope uniquely caters to polymer scientists, plastics engineers, processing technologists, product designers, machinery and mold makers, product managers, end users, researchers and students alike.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nChemical Properties\u003cbr\u003eMorphology\u003cbr\u003eCommercial Forms\u003cbr\u003eAdditives\u003cbr\u003eData Sheet Properties\u003cbr\u003eDesign\u003cbr\u003eFilms, Sheets, Fibers \u0026amp; Foams\u003cbr\u003e\u003cstrong\u003eExtensive Processing Data On\u003c\/strong\u003e\u003cbr\u003ePre-Processing\u003cbr\u003eInjection Extrusion \u0026amp; Blow Molding\u003cbr\u003eThermoforming\u003cbr\u003eCalendering\u003cbr\u003eCompression\u003cbr\u003eMachining\u003cbr\u003eJoining\u003cbr\u003eDecorating\u003cbr\u003e\u003cstrong\u003eFunctions Including\u003c\/strong\u003e\u003cbr\u003eMechanical, Thermal \u0026amp; Electrical Properties\u003cbr\u003ePermeability\u003cbr\u003eUV Light and Weathering\u003cbr\u003eSterilization\u003cbr\u003eViscosity\u003cbr\u003eChemical Resistance\u003cbr\u003eFlammability\u003cbr\u003eToxicity\u003cbr\u003eAlso Included\u003cbr\u003eEnvironmental Considerations\u003cbr\u003eAgency Approvals\u003cbr\u003eApplications\u003cbr\u003eCommercial Suppliers\u003cbr\u003eAvailable Grades\u003cbr\u003e\u003cstrong\u003eInformation Presented As\u003c\/strong\u003e\u003cbr\u003eTextual\u003cbr\u003eDiscussions\u003cbr\u003eImages\u003cbr\u003eGraphs\u003cbr\u003eTables"}
Polysaccharides in Med...
$265.00
{"id":11242255108,"title":"Polysaccharides in Medicinal and Pharmaceutical Applications","handle":"978-1-84735-436-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Valentin Popa \u003cbr\u003eISBN 978-1-84735-436-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book presents new and specific aspects in the field of polysaccharides and their derivatives recommended for use in medicine and pharmacy. At the same time, the aspects developed in this book will be useful to design new systems for drugs delivery, immunomodulation, and new materials based on polysaccharides isolated from different sources and their derivatives.\u003cbr\u003e\u003cbr\u003eThe structure and properties of polysaccharides from different sources with potential applications in the fields of medicine and pharmacy are discussed. Thus, the structural aspects concerning hyaluronic acids, fungal extracellular polysaccharides, celluloses, alginates, hemicelluloses, dextran, glyconjugates, and cyclodextrins are covered. The applications are described both for nonmodified and modified forms of polysaccharides for drug delivery, immunomodulation, tissue engineering and hydrogel preparation.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:29-04:00","created_at":"2017-06-22T21:15:29-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","appilcation","book","drug delivery","hydrogel","immunomodulation","p-applications","polysaccharides","tissue"],"price":26500,"price_min":26500,"price_max":26500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378490628,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polysaccharides in Medicinal and Pharmaceutical Applications","public_title":null,"options":["Default Title"],"price":26500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-436-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-436-5.jpg?v=1499953417"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-436-5.jpg?v=1499953417","options":["Title"],"media":[{"alt":null,"id":358712016989,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-436-5.jpg?v=1499953417"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-436-5.jpg?v=1499953417","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Edited by Valentin Popa \u003cbr\u003eISBN 978-1-84735-436-5\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book presents new and specific aspects in the field of polysaccharides and their derivatives recommended for use in medicine and pharmacy. At the same time, the aspects developed in this book will be useful to design new systems for drugs delivery, immunomodulation, and new materials based on polysaccharides isolated from different sources and their derivatives.\u003cbr\u003e\u003cbr\u003eThe structure and properties of polysaccharides from different sources with potential applications in the fields of medicine and pharmacy are discussed. Thus, the structural aspects concerning hyaluronic acids, fungal extracellular polysaccharides, celluloses, alginates, hemicelluloses, dextran, glyconjugates, and cyclodextrins are covered. The applications are described both for nonmodified and modified forms of polysaccharides for drug delivery, immunomodulation, tissue engineering and hydrogel preparation.\u003cbr\u003e\u003cbr\u003e"}
Polyvinyl Alcohol: Mat...
$125.00
{"id":11242216260,"title":"Polyvinyl Alcohol: Materials, Processing and Applications","handle":"978-1-84735-095-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-095-4 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2009\u003cbr\u003e\u003c\/span\u003eRapra Review Report 191, Vol. 16, No. 11, 2009\u003c\/p\u003e\n\u003cp\u003ePages: 142\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor a number of years, plastic wastes have been accumulating at such a rate that there are now huge environmental concerns with their disposal. Options such as landfill and incineration have not been well received by the public, or indeed government legislation, and focus is now firmly upon the use of biodegradable alternatives for mass applications.\u003cbr\u003e\u003cbr\u003eOne material that has been considered for mass application has been polyvinyl alcohol (PVOH). To date, the use of this material has been confined to comparatively low technology applications such as paper coatings and fibre sizing, which rely upon its inherently poor resistance to moisture to initiate degradation and ultimate disposal.\u003cbr\u003e\u003cbr\u003ePolyvinyl Alcohol: Materials, Processing, and Applications provide a concise introduction to PVOH - the material itself, the processing and applications, and also potential future directions for PVOH. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. \u003cbr\u003e\u003cbr\u003eShe has now worked in the field of polymer processing for over twenty four years and has published work on a variety of plastic related subjects.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:28-04:00","created_at":"2017-06-22T21:13:28-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","applications","book","p-chemistry","polymer","polyvinyl alcohol","processing","PVOH"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378356548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polyvinyl Alcohol: Materials, Processing and Applications","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-095-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482","options":["Title"],"media":[{"alt":null,"id":358715424861,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-095-4.jpg?v=1499953482","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Vannessa Goodship \u003cbr\u003eISBN 978-1-84735-095-4 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2009\u003cbr\u003e\u003c\/span\u003eRapra Review Report 191, Vol. 16, No. 11, 2009\u003c\/p\u003e\n\u003cp\u003ePages: 142\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nFor a number of years, plastic wastes have been accumulating at such a rate that there are now huge environmental concerns with their disposal. Options such as landfill and incineration have not been well received by the public, or indeed government legislation, and focus is now firmly upon the use of biodegradable alternatives for mass applications.\u003cbr\u003e\u003cbr\u003eOne material that has been considered for mass application has been polyvinyl alcohol (PVOH). To date, the use of this material has been confined to comparatively low technology applications such as paper coatings and fibre sizing, which rely upon its inherently poor resistance to moisture to initiate degradation and ultimate disposal.\u003cbr\u003e\u003cbr\u003ePolyvinyl Alcohol: Materials, Processing, and Applications provide a concise introduction to PVOH - the material itself, the processing and applications, and also potential future directions for PVOH. \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Vannessa Goodship is a Senior Research Fellow at The University of Warwick. She worked in the plastics industry for fourteen years prior to working at Warwick and has acted as coordinator for the UK Polymer Recycling Network. \u003cbr\u003e\u003cbr\u003eShe has now worked in the field of polymer processing for over twenty four years and has published work on a variety of plastic related subjects.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Blo...
$90.00
{"id":11242224772,"title":"Practical Guide to Blow Moulding","handle":"978-1-85957-513-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. C. Lee \u003cbr\u003eISBN 978-1-85957-513-0 \u003cbr\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003ePages: 204\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlow moulding is a manufacturing process used to form hollow plastic parts. It evolved from the ancient art of glass blowing and it is used to particular advantage with plastic materials. Celluloid was used first to blow mould baby rattles and novelties in the 1930s, linear low-density polyethylene was used in the 1940s for high production bottles and these days polyethylene terephthalate is used to make anything from soda bottles to highly sophisticated multilayered containers and automotive fuel tanks in the last decade. \u003cbr\u003e\u003cbr\u003eWhen designing a product it is important to consider aspects such as a material's characteristics, the processing methods available, the assembly and finishing procedures, and the life cycle and expected performance of the product. This book presents the basics of blow moulding as well as the latest state-of-the-art and science of the industry. A key feature is the approach of discussing the ‘basics’ and then taking the reader through the entire process from design development through to final production. \u003cbr\u003e\u003cbr\u003eIt is very important for those involved in the manufacturing operation to keep abreast of the advances that are being made. This book will be of interest to those already using the blow moulding process and those who are interested in the potential offered by this versatile technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 What is Blow Moulding?\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.1.1 Definition\u003cbr\u003e1.1.2 Basic Process\u003cbr\u003e1.1.3 History and Development\u003cbr\u003e1.2 Types of Blow Moulding\u003cbr\u003e1.2.1 Introduction\u003cbr\u003e1.2.2 Stretch Blow Moulding\u003cbr\u003e1.2.3 Extrusion Blow Moulding\u003cbr\u003e1.3 Material Considerations\u003cbr\u003e1.3.1 Materials Selection\u003cbr\u003e1.3.2 Product Properties and Market Usage\u003cbr\u003eReferences \u003cbr\u003e2 Design and Engineering\u003cbr\u003e2.1 Design\u003cbr\u003e2.1.1 Product Design and Development System\u003cbr\u003e2.1.2 Process Management Tracking Systems\u003cbr\u003e2.2 Basic Design\u003cbr\u003e2.2.1 Basic Design Considerations\u003cbr\u003e2.2.2 Bottle and Container Design\u003cbr\u003e2.2.3 Structural Design\u003cbr\u003e2.2.4 Design Details\u003cbr\u003e2.3 Selection of Materials\u003cbr\u003e2.3.1 Polymer Principles\u003cbr\u003e2.3.2 Types of Polymers\u003cbr\u003e2.3.3 Amorphous and Crystalline\u003cbr\u003e2.3.4 Fundamental Properties\u003cbr\u003e2.4 Characteristics For Blow Moulding\u003cbr\u003e2.4.1 HDPE\u003cbr\u003e2.4.2 Acrylonitrile Butadiene Styrene (ABS)\u003cbr\u003e2.4.3 Polycarbonate (PC)\u003cbr\u003e2.4.4 Polypropylene\u003cbr\u003e2.4.5 Polyphenylene Oxide\u003cbr\u003e2.5 Colouring Plastic Materials\u003cbr\u003e2.6 Regrind\u003cbr\u003e2.6.1 Re-grind Specifications\u003cbr\u003e2.6.2 Process Performance\u003cbr\u003e2.6.3 Physical Properties\u003cbr\u003e2.7 Post Consumer and Industrial Recycled Materials\u003cbr\u003eReferences\u003cbr\u003eGeneral Reading \u003cbr\u003e3 Mould Design and Engineering\u003cbr\u003e3.1 Main Characteristics of the Mould\u003cbr\u003e3.2 Basic Design and Construction Considerations\u003cbr\u003e3.2.1 Mould Materials\u003cbr\u003e3.2.2 Selection of Materials\u003cbr\u003e3.2.3 Characteristics of Mould Materials\u003cbr\u003e3.3 Cut Mould versus Cast Moulds\u003cbr\u003e3.3.1 Cast Aluminium Moulds\u003cbr\u003e3.3.2 Cut Moulds\u003cbr\u003e3.3.3 Cast and Cut Moulds\u003cbr\u003e3.4 Importance of Fast Mould Cooling\u003cbr\u003e3.4.1 Fast Heat Transfer Material Considerations\u003cbr\u003e3.4.2 Manifolds\u003cbr\u003e3.4.3 Control of Flash\u003cbr\u003e3.4.4 Rate of Cooling\u003cbr\u003e3.4.5 Remedies for Flash\u003cbr\u003e3.5 The Pinch Off\u003cbr\u003e3.5.1 Importance\u003cbr\u003e3.6 High Quality, Undamaged Mould Cavity Finish\u003cbr\u003e3.6.1 Mould Cavity Finish\u003cbr\u003e3.7 Effects of Air and Moisture Trapped in the Mould\u003cbr\u003e3.7.1 Polished Moulds\u003cbr\u003e3.7.2 Moisture\u003cbr\u003e3.8 Injection of the Blowing Air\u003cbr\u003e3.8.1 Injection Blowing Air\u003cbr\u003e3.8.2 Blowing Devices\u003cbr\u003e3.9 Ejection of the Piece from the Mould\u003cbr\u003e3.9.1 Ejection Methods\u003cbr\u003e3.9.2 Manual Ejection\u003cbr\u003e3.9.3 Automatic Ejection\u003cbr\u003e3.9.4 Hydraulic Systems\u003cbr\u003e3.10 Pre-Pinch Bars\u003cbr\u003e3.10.1 Top Pinch\u003cbr\u003e3.10.2 Bottom Pinch\u003cbr\u003e3.11 Bottle Moulds\u003cbr\u003e3.11.1 Neck Ring and Blow Pin Design\u003cbr\u003e3.12 Dome Systems\u003cbr\u003e3.12.1 Dome Blow Pin\u003cbr\u003e3.12.2 Trimming Types\u003cbr\u003e3.13 Pre-Finished System\u003cbr\u003e3.13.1 Pre-Finished Neck Rings\u003cbr\u003e3.14 Unusual Problems\u003cbr\u003e3.14.1 Special Features\u003cbr\u003e3.14.2 Irregular Shaped Parts\u003cbr\u003e3.15 Computer Aided Design and Engineering for Mould Making\u003cbr\u003e3.15.1 Application in Mould Making\u003cbr\u003e3.15.2 Systems and Methods\u003cbr\u003e3.16 General Mould Buying Practices\u003cbr\u003e3.16.1 Mould Procurement\u003cbr\u003e3.16.2 Request for Quotation\u003cbr\u003e3.17 Mould Maintenance Program\u003cbr\u003e3.17.1 The Moulds Used to Produce Polyvinyl Chloride (PVC) and Polyethylene Terephthalate\u003cbr\u003e3.17.2 Moulds for PE\u003cbr\u003e3.17.3 Mould Cooling Lines\u003cbr\u003e3.17.4 Guide Pins and Bushings\u003cbr\u003e3.17.5 Striker Plates and Blow Pin Plates\u003cbr\u003e3.17.6 Pinch off\u003cbr\u003e3.17.7 Shut Down\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e4 The Extrusion Blow Moulding System\u003cbr\u003e4.1 Extruder\u003cbr\u003e4.2 Drive\u003cbr\u003e4.2.1 Motors\u003cbr\u003e4.3 Gear Box\u003cbr\u003e4.4 Screw Support Bearings\u003cbr\u003e4.4.1 Life of Thrust Bearings\u003cbr\u003e4.5 Extruder Feed\u003cbr\u003e4.5.1 Feed\u003cbr\u003e4.6 Hopper\u003cbr\u003e4.6.2 Feed Throat\u003cbr\u003e4.7 Single-Screw Extruder\u003cbr\u003e4.7.1 Barrel Construction\u003cbr\u003e4.7.2 Zone Heating\u003cbr\u003e4.7.3 Venting\u003cbr\u003e4.7.4 Wear Resistant Barrels\u003cbr\u003e4.7.5 Grooved Barrels\u003cbr\u003e4.7.6 Pressure Generation\u003cbr\u003e4.8 Melt Filtration\u003cbr\u003e4.9 The Screw\u003cbr\u003e4.9.1 General-Purpose Screw\u003cbr\u003e4.9.2 Screw Zones\u003cbr\u003e4.9.3 Dedicated Screws\u003cbr\u003e4.9.4 Barrier Screws\u003cbr\u003e4.9.5 Wear-Resistant Screws\u003cbr\u003e4.9.6 Mixing Pins and Sections\u003cbr\u003e4.9.7 Distributive and Dispersive Mixing\u003cbr\u003e4.10 The Extrusion Blow Moulding Head and Die Unit\u003cbr\u003e4.10.1 Centre-Feed Die\u003cbr\u003e4.10.2 Side-Feed Dies\u003cbr\u003e4.10.3 Wall Thickness\u003cbr\u003e4.10.4 Accumulator Head\u003cbr\u003e4.10.5 Die and Mandrel\u003cbr\u003e4.10.6 Die Swell\u003cbr\u003e4.10.7 Parison Adjustment\u003cbr\u003e4.10.8 Die Shaping\u003cbr\u003e4.10.9 Parison Programming\u003cbr\u003e4.10.10 Blow-up Ratio\u003cbr\u003e4.11 Mould Clamping Systems\u003cbr\u003e4.11.2 Clamping System Requirements\u003cbr\u003e4.11.3 Clamp Operation\u003cbr\u003e4.11.4 Press Types \u003cbr\u003e5 Extrusion Blow Moulding Advanced Systems\u003cbr\u003e5.1 Co-Extrusion Blow Moulding\u003cbr\u003e5.1.1 Arrangement of Extruders for Co-Extrusion\u003cbr\u003e5.1.2 Multi-Layered Structures\u003cbr\u003e5.1.3 Co-Extrusion Systems\u003cbr\u003e5.2 Three-Dimensional Blow Moulding\u003cbr\u003e5.2.1 Introduction to 3-D\u003cbr\u003e5.2.2 3-D Extrusion Processes\u003cbr\u003e5.2.3 Suction Blow Moulding\u003cbr\u003e5.2.4 Parison Manipulation\u003cbr\u003e5.2.5 3-D Extrusion Systems\u003cbr\u003e5.2.6 Head Adapter Radial Wall System\u003cbr\u003e5.3 Double Walled Parts and Containers \u003cbr\u003e6 Injection and Stretch Blow Moulding Machines\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.1.1 Injection Moulding Process\u003cbr\u003e6.2 Process Characteristics\u003cbr\u003e6.2.1 One step Machine\u003cbr\u003e6.2.2 Two Step Process\u003cbr\u003e6.2.3 Moulding Process\u003cbr\u003e6.3 Tooling\u003cbr\u003e6.3.1 Introduction\u003cbr\u003e6.4 Stretch Blow Moulding\u003cbr\u003e6.4.1 Introduction\u003cbr\u003eReferences \u003cbr\u003e7 Safe and Efficient Set-up, Start-up, Operation, Shutdown Procedures and Safety\u003cbr\u003e7.1 Start-up\u003cbr\u003e7.1.1 Start-Up Preparations\u003cbr\u003e7.1.2 Melt Temperature\u003cbr\u003e7.1.3 Warming up an Empty Machine\u003cbr\u003e7.1.4 Warming up a Full Machine\u003cbr\u003e7.1.5 Initial Operation and Purging\u003cbr\u003e7.1.6 Commencing Moulding – Manual Operation\u003cbr\u003e7.1.7 Commencing Moulding – Automatic Operation\u003cbr\u003e7.1.8 Changing Conditions and Dimension Verification\u003cbr\u003e7.1.9 Recording Production Conditions\u003cbr\u003e7.2 Safety in Normal Machine Operation\u003cbr\u003e7.2.1 Operation\u003cbr\u003e7.2.2 Safety Considerations\u003cbr\u003e7.3 Shutting Down\u003cbr\u003e7.3.1 Temporary Stops\u003cbr\u003e7.3.2 Overnight Stops\u003cbr\u003e7.3.3 High Temperature Work\u003cbr\u003e7.3.4 Heat-Sensitive Materials\u003cbr\u003e7.3.5 Purge Materials\u003cbr\u003e7.3.6 Shutting Down an Injection Blow Moulding Machine\u003cbr\u003e7.3.7 Check Recommendations\u003cbr\u003eReferences \u003cbr\u003e8 Fault Finding – Causes and Effects\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Troubleshooting\u003cbr\u003e8.3 Brainstorming\u003cbr\u003e8.4 Problems and Causes\u003cbr\u003e8.4.1 Background Sounds of the Plant\u003cbr\u003e8.4.2 Quality Problems\u003cbr\u003e8.4.3 Machine and Equipment Problems\u003cbr\u003e8.4.4 Importance of Consistent Material\u003cbr\u003e8.4.5 Process Settings\u003cbr\u003e8.4.6 Ambient Conditions\u003cbr\u003e8.5 Preventive and Corrective Actions\u003cbr\u003e8.5.1 Corrective Actions\u003cbr\u003e8.5.2 Corrective-Action Team\u003cbr\u003e8.5.3 Root Cause\u003cbr\u003e8.6 Packaging\u003cbr\u003e8.7 Scrap\u003cbr\u003e8.7.1 Contaminated Material\u003cbr\u003e8.7.2 Reworked Parts \u003cbr\u003e9 Auxiliary Equipment: Design, Function, Operation, and Safety\u003cbr\u003e9.1 Bulk Material Handling Systems\u003cbr\u003e9.2 Dryer\u003cbr\u003e9.2.1 Hot Air Dryers\u003cbr\u003e9.2.2 Dryer Operation\u003cbr\u003e9.2.3 Dryer Safety\u003cbr\u003e9.3 Blenders and Metering Equipment (Feeders)\u003cbr\u003e9.3.1 A Volumetric Blender\u003cbr\u003e9.3.2 Gravimetric Systems\u003cbr\u003e9.3.3 Metering and Blending Equipment\u003cbr\u003e9.3.4 Machine Operation\u003cbr\u003e9.4 Machine Safety\u003cbr\u003e9.5 Hopper Loader\u003cbr\u003e9.5.1 Loader Operation\u003cbr\u003e9.6 Water Temperature Controllers\u003cbr\u003e9.6.1 Operation\u003cbr\u003e9.7 In-line Inspection and Testing Equipment\u003cbr\u003e9.7.1 Laser Measurement\u003cbr\u003e9.7.2 Ultrasonic Testing\u003cbr\u003e9.7.3 Vision Systems\u003cbr\u003e9.7.4 Mechanical\u003cbr\u003e9.8 Conveyors\u003cbr\u003e9.9 Granulators\u003cbr\u003e9.10 Safety \u003cbr\u003e10 Finishing\u003cbr\u003e10.1 Planning for the Finishing of a Blow Moulded Part\u003cbr\u003e10.1.1 Product Design\u003cbr\u003e10.1.2 Mould Engineering\u003cbr\u003e10.1.3 Process Planning\u003cbr\u003e10.2 Removing Domes and Other Sections\u003cbr\u003e10.3 Flash Removal\u003cbr\u003e10.3.1 The Cutting Machine – Round Parts versus Parts with Corners \u003cbr\u003e11 Decoration of Blow Moulded Products\u003cbr\u003e11.1 Testing Surface Treated Parts\u003cbr\u003e11.2 Spray Painting\u003cbr\u003e11.3 Screen Printing\u003cbr\u003e11.4 Hot Stamping\u003cbr\u003e11.5 Pad Printing\u003cbr\u003e11.6 Labels and Decals \u003cbr\u003e12 Glossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNorman Lee has held various positions in the plastics industry in product and process design and development, in a career of over forty years culminating as Vice President of Research and Development with Zarn, Inc., USA. He has been active in the SPE in the Plastic Environmental (Recycling), Blow Molding and Product Development Divisions. He has written several technical reference books and been granted 20 patents in the field of blow moulding. Mr. Lee is now directing his own consulting services, offering seminars and in-plant training programs for the blow moulding industry and conducting expert witness work.","published_at":"2017-06-22T21:13:56-04:00","created_at":"2017-06-22T21:13:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","barrel","blow moulding","book","co-extrusion","die","drive","extruder","feed","gear box","hopper","mandrel","materials","motors","moulding","p-processing","PE","plastics","polyethylene","polymer","polyvinyl chloride","PVC","screw","terephthalate","wear"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378389892,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Blow Moulding","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-513-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-513-0.jpg?v=1499953510"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-513-0.jpg?v=1499953510","options":["Title"],"media":[{"alt":null,"id":358716244061,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-513-0.jpg?v=1499953510"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-513-0.jpg?v=1499953510","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N. C. Lee \u003cbr\u003eISBN 978-1-85957-513-0 \u003cbr\u003e\u003cbr\u003ePublished: 2006\u003cbr\u003ePages: 204\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBlow moulding is a manufacturing process used to form hollow plastic parts. It evolved from the ancient art of glass blowing and it is used to particular advantage with plastic materials. Celluloid was used first to blow mould baby rattles and novelties in the 1930s, linear low-density polyethylene was used in the 1940s for high production bottles and these days polyethylene terephthalate is used to make anything from soda bottles to highly sophisticated multilayered containers and automotive fuel tanks in the last decade. \u003cbr\u003e\u003cbr\u003eWhen designing a product it is important to consider aspects such as a material's characteristics, the processing methods available, the assembly and finishing procedures, and the life cycle and expected performance of the product. This book presents the basics of blow moulding as well as the latest state-of-the-art and science of the industry. A key feature is the approach of discussing the ‘basics’ and then taking the reader through the entire process from design development through to final production. \u003cbr\u003e\u003cbr\u003eIt is very important for those involved in the manufacturing operation to keep abreast of the advances that are being made. This book will be of interest to those already using the blow moulding process and those who are interested in the potential offered by this versatile technology.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 What is Blow Moulding?\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.1.1 Definition\u003cbr\u003e1.1.2 Basic Process\u003cbr\u003e1.1.3 History and Development\u003cbr\u003e1.2 Types of Blow Moulding\u003cbr\u003e1.2.1 Introduction\u003cbr\u003e1.2.2 Stretch Blow Moulding\u003cbr\u003e1.2.3 Extrusion Blow Moulding\u003cbr\u003e1.3 Material Considerations\u003cbr\u003e1.3.1 Materials Selection\u003cbr\u003e1.3.2 Product Properties and Market Usage\u003cbr\u003eReferences \u003cbr\u003e2 Design and Engineering\u003cbr\u003e2.1 Design\u003cbr\u003e2.1.1 Product Design and Development System\u003cbr\u003e2.1.2 Process Management Tracking Systems\u003cbr\u003e2.2 Basic Design\u003cbr\u003e2.2.1 Basic Design Considerations\u003cbr\u003e2.2.2 Bottle and Container Design\u003cbr\u003e2.2.3 Structural Design\u003cbr\u003e2.2.4 Design Details\u003cbr\u003e2.3 Selection of Materials\u003cbr\u003e2.3.1 Polymer Principles\u003cbr\u003e2.3.2 Types of Polymers\u003cbr\u003e2.3.3 Amorphous and Crystalline\u003cbr\u003e2.3.4 Fundamental Properties\u003cbr\u003e2.4 Characteristics For Blow Moulding\u003cbr\u003e2.4.1 HDPE\u003cbr\u003e2.4.2 Acrylonitrile Butadiene Styrene (ABS)\u003cbr\u003e2.4.3 Polycarbonate (PC)\u003cbr\u003e2.4.4 Polypropylene\u003cbr\u003e2.4.5 Polyphenylene Oxide\u003cbr\u003e2.5 Colouring Plastic Materials\u003cbr\u003e2.6 Regrind\u003cbr\u003e2.6.1 Re-grind Specifications\u003cbr\u003e2.6.2 Process Performance\u003cbr\u003e2.6.3 Physical Properties\u003cbr\u003e2.7 Post Consumer and Industrial Recycled Materials\u003cbr\u003eReferences\u003cbr\u003eGeneral Reading \u003cbr\u003e3 Mould Design and Engineering\u003cbr\u003e3.1 Main Characteristics of the Mould\u003cbr\u003e3.2 Basic Design and Construction Considerations\u003cbr\u003e3.2.1 Mould Materials\u003cbr\u003e3.2.2 Selection of Materials\u003cbr\u003e3.2.3 Characteristics of Mould Materials\u003cbr\u003e3.3 Cut Mould versus Cast Moulds\u003cbr\u003e3.3.1 Cast Aluminium Moulds\u003cbr\u003e3.3.2 Cut Moulds\u003cbr\u003e3.3.3 Cast and Cut Moulds\u003cbr\u003e3.4 Importance of Fast Mould Cooling\u003cbr\u003e3.4.1 Fast Heat Transfer Material Considerations\u003cbr\u003e3.4.2 Manifolds\u003cbr\u003e3.4.3 Control of Flash\u003cbr\u003e3.4.4 Rate of Cooling\u003cbr\u003e3.4.5 Remedies for Flash\u003cbr\u003e3.5 The Pinch Off\u003cbr\u003e3.5.1 Importance\u003cbr\u003e3.6 High Quality, Undamaged Mould Cavity Finish\u003cbr\u003e3.6.1 Mould Cavity Finish\u003cbr\u003e3.7 Effects of Air and Moisture Trapped in the Mould\u003cbr\u003e3.7.1 Polished Moulds\u003cbr\u003e3.7.2 Moisture\u003cbr\u003e3.8 Injection of the Blowing Air\u003cbr\u003e3.8.1 Injection Blowing Air\u003cbr\u003e3.8.2 Blowing Devices\u003cbr\u003e3.9 Ejection of the Piece from the Mould\u003cbr\u003e3.9.1 Ejection Methods\u003cbr\u003e3.9.2 Manual Ejection\u003cbr\u003e3.9.3 Automatic Ejection\u003cbr\u003e3.9.4 Hydraulic Systems\u003cbr\u003e3.10 Pre-Pinch Bars\u003cbr\u003e3.10.1 Top Pinch\u003cbr\u003e3.10.2 Bottom Pinch\u003cbr\u003e3.11 Bottle Moulds\u003cbr\u003e3.11.1 Neck Ring and Blow Pin Design\u003cbr\u003e3.12 Dome Systems\u003cbr\u003e3.12.1 Dome Blow Pin\u003cbr\u003e3.12.2 Trimming Types\u003cbr\u003e3.13 Pre-Finished System\u003cbr\u003e3.13.1 Pre-Finished Neck Rings\u003cbr\u003e3.14 Unusual Problems\u003cbr\u003e3.14.1 Special Features\u003cbr\u003e3.14.2 Irregular Shaped Parts\u003cbr\u003e3.15 Computer Aided Design and Engineering for Mould Making\u003cbr\u003e3.15.1 Application in Mould Making\u003cbr\u003e3.15.2 Systems and Methods\u003cbr\u003e3.16 General Mould Buying Practices\u003cbr\u003e3.16.1 Mould Procurement\u003cbr\u003e3.16.2 Request for Quotation\u003cbr\u003e3.17 Mould Maintenance Program\u003cbr\u003e3.17.1 The Moulds Used to Produce Polyvinyl Chloride (PVC) and Polyethylene Terephthalate\u003cbr\u003e3.17.2 Moulds for PE\u003cbr\u003e3.17.3 Mould Cooling Lines\u003cbr\u003e3.17.4 Guide Pins and Bushings\u003cbr\u003e3.17.5 Striker Plates and Blow Pin Plates\u003cbr\u003e3.17.6 Pinch off\u003cbr\u003e3.17.7 Shut Down\u003cbr\u003eAcknowledgements\u003cbr\u003eReferences\u003cbr\u003eFurther Reading \u003cbr\u003e4 The Extrusion Blow Moulding System\u003cbr\u003e4.1 Extruder\u003cbr\u003e4.2 Drive\u003cbr\u003e4.2.1 Motors\u003cbr\u003e4.3 Gear Box\u003cbr\u003e4.4 Screw Support Bearings\u003cbr\u003e4.4.1 Life of Thrust Bearings\u003cbr\u003e4.5 Extruder Feed\u003cbr\u003e4.5.1 Feed\u003cbr\u003e4.6 Hopper\u003cbr\u003e4.6.2 Feed Throat\u003cbr\u003e4.7 Single-Screw Extruder\u003cbr\u003e4.7.1 Barrel Construction\u003cbr\u003e4.7.2 Zone Heating\u003cbr\u003e4.7.3 Venting\u003cbr\u003e4.7.4 Wear Resistant Barrels\u003cbr\u003e4.7.5 Grooved Barrels\u003cbr\u003e4.7.6 Pressure Generation\u003cbr\u003e4.8 Melt Filtration\u003cbr\u003e4.9 The Screw\u003cbr\u003e4.9.1 General-Purpose Screw\u003cbr\u003e4.9.2 Screw Zones\u003cbr\u003e4.9.3 Dedicated Screws\u003cbr\u003e4.9.4 Barrier Screws\u003cbr\u003e4.9.5 Wear-Resistant Screws\u003cbr\u003e4.9.6 Mixing Pins and Sections\u003cbr\u003e4.9.7 Distributive and Dispersive Mixing\u003cbr\u003e4.10 The Extrusion Blow Moulding Head and Die Unit\u003cbr\u003e4.10.1 Centre-Feed Die\u003cbr\u003e4.10.2 Side-Feed Dies\u003cbr\u003e4.10.3 Wall Thickness\u003cbr\u003e4.10.4 Accumulator Head\u003cbr\u003e4.10.5 Die and Mandrel\u003cbr\u003e4.10.6 Die Swell\u003cbr\u003e4.10.7 Parison Adjustment\u003cbr\u003e4.10.8 Die Shaping\u003cbr\u003e4.10.9 Parison Programming\u003cbr\u003e4.10.10 Blow-up Ratio\u003cbr\u003e4.11 Mould Clamping Systems\u003cbr\u003e4.11.2 Clamping System Requirements\u003cbr\u003e4.11.3 Clamp Operation\u003cbr\u003e4.11.4 Press Types \u003cbr\u003e5 Extrusion Blow Moulding Advanced Systems\u003cbr\u003e5.1 Co-Extrusion Blow Moulding\u003cbr\u003e5.1.1 Arrangement of Extruders for Co-Extrusion\u003cbr\u003e5.1.2 Multi-Layered Structures\u003cbr\u003e5.1.3 Co-Extrusion Systems\u003cbr\u003e5.2 Three-Dimensional Blow Moulding\u003cbr\u003e5.2.1 Introduction to 3-D\u003cbr\u003e5.2.2 3-D Extrusion Processes\u003cbr\u003e5.2.3 Suction Blow Moulding\u003cbr\u003e5.2.4 Parison Manipulation\u003cbr\u003e5.2.5 3-D Extrusion Systems\u003cbr\u003e5.2.6 Head Adapter Radial Wall System\u003cbr\u003e5.3 Double Walled Parts and Containers \u003cbr\u003e6 Injection and Stretch Blow Moulding Machines\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.1.1 Injection Moulding Process\u003cbr\u003e6.2 Process Characteristics\u003cbr\u003e6.2.1 One step Machine\u003cbr\u003e6.2.2 Two Step Process\u003cbr\u003e6.2.3 Moulding Process\u003cbr\u003e6.3 Tooling\u003cbr\u003e6.3.1 Introduction\u003cbr\u003e6.4 Stretch Blow Moulding\u003cbr\u003e6.4.1 Introduction\u003cbr\u003eReferences \u003cbr\u003e7 Safe and Efficient Set-up, Start-up, Operation, Shutdown Procedures and Safety\u003cbr\u003e7.1 Start-up\u003cbr\u003e7.1.1 Start-Up Preparations\u003cbr\u003e7.1.2 Melt Temperature\u003cbr\u003e7.1.3 Warming up an Empty Machine\u003cbr\u003e7.1.4 Warming up a Full Machine\u003cbr\u003e7.1.5 Initial Operation and Purging\u003cbr\u003e7.1.6 Commencing Moulding – Manual Operation\u003cbr\u003e7.1.7 Commencing Moulding – Automatic Operation\u003cbr\u003e7.1.8 Changing Conditions and Dimension Verification\u003cbr\u003e7.1.9 Recording Production Conditions\u003cbr\u003e7.2 Safety in Normal Machine Operation\u003cbr\u003e7.2.1 Operation\u003cbr\u003e7.2.2 Safety Considerations\u003cbr\u003e7.3 Shutting Down\u003cbr\u003e7.3.1 Temporary Stops\u003cbr\u003e7.3.2 Overnight Stops\u003cbr\u003e7.3.3 High Temperature Work\u003cbr\u003e7.3.4 Heat-Sensitive Materials\u003cbr\u003e7.3.5 Purge Materials\u003cbr\u003e7.3.6 Shutting Down an Injection Blow Moulding Machine\u003cbr\u003e7.3.7 Check Recommendations\u003cbr\u003eReferences \u003cbr\u003e8 Fault Finding – Causes and Effects\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Troubleshooting\u003cbr\u003e8.3 Brainstorming\u003cbr\u003e8.4 Problems and Causes\u003cbr\u003e8.4.1 Background Sounds of the Plant\u003cbr\u003e8.4.2 Quality Problems\u003cbr\u003e8.4.3 Machine and Equipment Problems\u003cbr\u003e8.4.4 Importance of Consistent Material\u003cbr\u003e8.4.5 Process Settings\u003cbr\u003e8.4.6 Ambient Conditions\u003cbr\u003e8.5 Preventive and Corrective Actions\u003cbr\u003e8.5.1 Corrective Actions\u003cbr\u003e8.5.2 Corrective-Action Team\u003cbr\u003e8.5.3 Root Cause\u003cbr\u003e8.6 Packaging\u003cbr\u003e8.7 Scrap\u003cbr\u003e8.7.1 Contaminated Material\u003cbr\u003e8.7.2 Reworked Parts \u003cbr\u003e9 Auxiliary Equipment: Design, Function, Operation, and Safety\u003cbr\u003e9.1 Bulk Material Handling Systems\u003cbr\u003e9.2 Dryer\u003cbr\u003e9.2.1 Hot Air Dryers\u003cbr\u003e9.2.2 Dryer Operation\u003cbr\u003e9.2.3 Dryer Safety\u003cbr\u003e9.3 Blenders and Metering Equipment (Feeders)\u003cbr\u003e9.3.1 A Volumetric Blender\u003cbr\u003e9.3.2 Gravimetric Systems\u003cbr\u003e9.3.3 Metering and Blending Equipment\u003cbr\u003e9.3.4 Machine Operation\u003cbr\u003e9.4 Machine Safety\u003cbr\u003e9.5 Hopper Loader\u003cbr\u003e9.5.1 Loader Operation\u003cbr\u003e9.6 Water Temperature Controllers\u003cbr\u003e9.6.1 Operation\u003cbr\u003e9.7 In-line Inspection and Testing Equipment\u003cbr\u003e9.7.1 Laser Measurement\u003cbr\u003e9.7.2 Ultrasonic Testing\u003cbr\u003e9.7.3 Vision Systems\u003cbr\u003e9.7.4 Mechanical\u003cbr\u003e9.8 Conveyors\u003cbr\u003e9.9 Granulators\u003cbr\u003e9.10 Safety \u003cbr\u003e10 Finishing\u003cbr\u003e10.1 Planning for the Finishing of a Blow Moulded Part\u003cbr\u003e10.1.1 Product Design\u003cbr\u003e10.1.2 Mould Engineering\u003cbr\u003e10.1.3 Process Planning\u003cbr\u003e10.2 Removing Domes and Other Sections\u003cbr\u003e10.3 Flash Removal\u003cbr\u003e10.3.1 The Cutting Machine – Round Parts versus Parts with Corners \u003cbr\u003e11 Decoration of Blow Moulded Products\u003cbr\u003e11.1 Testing Surface Treated Parts\u003cbr\u003e11.2 Spray Painting\u003cbr\u003e11.3 Screen Printing\u003cbr\u003e11.4 Hot Stamping\u003cbr\u003e11.5 Pad Printing\u003cbr\u003e11.6 Labels and Decals \u003cbr\u003e12 Glossary\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNorman Lee has held various positions in the plastics industry in product and process design and development, in a career of over forty years culminating as Vice President of Research and Development with Zarn, Inc., USA. He has been active in the SPE in the Plastic Environmental (Recycling), Blow Molding and Product Development Divisions. He has written several technical reference books and been granted 20 patents in the field of blow moulding. Mr. Lee is now directing his own consulting services, offering seminars and in-plant training programs for the blow moulding industry and conducting expert witness work."}
Practical Guide to Che...
$180.00
{"id":11242214724,"title":"Practical Guide to Chemical Safety Testing","handle":"978-1-85957-372-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.J. Knight and M.B. Thomas \u003cbr\u003eISBN 978-1-85957-372-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances. \u003cbr\u003e\u003cbr\u003eHealth and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R\u0026amp;D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required. \u003cbr\u003e\u003cbr\u003eA Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results. \u003cbr\u003e\u003cbr\u003eThere is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment. \u003cbr\u003e\u003cbr\u003eEcotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals. \u003cbr\u003e\u003cbr\u003eRegulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers. \u003cbr\u003e\u003cbr\u003eThis book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Purpose of the Book\u003cbr\u003e1.2 Purpose of Safety Evaluation\u003cbr\u003e1.3 Safety Studies\u003cbr\u003e1.4 Risk Assessment and Safety Data\u003cbr\u003e1.5 Regulatory Schemes\u003cbr\u003e1.6 Summary \u003cbr\u003e2 Mammalian Toxicology\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Acute Toxicity Studies\u003cbr\u003e2.2.1 Nature and Relevance of Tests\u003cbr\u003e2.2.2 Methodology\u003cbr\u003e2.2.3 Acute Oral Toxicity Studies\u003cbr\u003e2.2.4 Dermal Toxicity Studies\u003cbr\u003e2.2.5 Inhalation Toxicity Studies\u003cbr\u003e2.2.6 Alternative Acute Oral Toxicity Methods\u003cbr\u003e2.2.7 Local Tolerance Tests\u003cbr\u003e2.2.8 Contact Sensitisation\u003cbr\u003e2.3 Repeated Dose Toxicity Studies\u003cbr\u003e2.3.1 Nature and Relevance of Tests\u003cbr\u003e2.3.2 Importance of Repeated Dose Toxicity\u003cbr\u003e2.3.3 Methodology\u003cbr\u003e2.4 Reproduction Toxicology\u003cbr\u003e2.4.1 Nature and Relevance of Tests\u003cbr\u003e2.4.2 Methodology\u003cbr\u003e2.4.3 Alternative Approaches\u003cbr\u003e2.5 Carcinogenicity\u003cbr\u003e2.5.1 Nature and Relevance of Tests\u003cbr\u003e2.5.2 Methodology\u003cbr\u003e2.5.3 Dose Levels\u003cbr\u003e2.5.4 Conduct of Study\u003cbr\u003e2.5.5 Data Evaluation\u003cbr\u003e2.5.6 Risk Assessment\u003cbr\u003e2.5.7 Alternative Approaches\u003cbr\u003e2.6 Medical Device Testing\u003cbr\u003e2.6.1 Exposure Routes\u003cbr\u003e2.6.2 Dose Preparation\u003cbr\u003e2.6.3 Cytotoxicity Testing of Medical Devices \u003cbr\u003e3 Genetic Toxicology\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Mechanisms of Mutation – Genes and Chromosomes\u003cbr\u003e3.3 Standard Genetic Toxicology Assays\u003cbr\u003e3.4 Bacterial Mutagenicity Assays\u003cbr\u003e3.5 Chromosome Aberration Tests In Vitro\u003cbr\u003e3.6 Mammalian Cell Gene Mutation Assays In Vitro\u003cbr\u003e3.7 The In Vivo Micronucleus Test\u003cbr\u003e3.8 The Unscheduled DNA Synthesis Assay\u003cbr\u003e3.9 Conclusions \u003cbr\u003e4 Ecotoxicology\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Bacterial Toxicity Testing\u003cbr\u003e4.3 Biodegradation Tests\u003cbr\u003e4.3.1 Ready Biodegradation Tests\u003cbr\u003e4.3.2 Inherent Biodegradation Tests\u003cbr\u003e4.3.3 Simulation Tests\u003cbr\u003e4.3.4 Anaerobic Biodegradation Tests\u003cbr\u003e4.4 Aquatic Toxicity Testing\u003cbr\u003e4.4.1 Acute Tests\u003cbr\u003e4.4.2 Analytical Measurements\u003cbr\u003e4.4.3 Difficult Substances\u003cbr\u003e4.4.4 Chronic Tests\u003cbr\u003e4.5 Fish Bioaccumulation Test\u003cbr\u003e4.6 Sediment Toxicity Tests\u003cbr\u003e4.7 Terrestrial Toxicity Tests\u003cbr\u003e4.7.1 Earthworms\u003cbr\u003e4.7.2 Bees and Beneficial\u003cbr\u003e4.7.3 Plant Growth Tests\u003cbr\u003e4.8 Microcosm and Mesocosm Studies\u003cbr\u003e4.9 Conclusion \u003cbr\u003e5 Physico-Chemical Properties\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Performance of the General Physico-Chemical Tests\u003cbr\u003e5.2.1 Melting Temperature\/Melting Range (OECD Test Guideline 102)\u003cbr\u003e5.2.2 Boiling Point (OECD Test Guideline 103)\u003cbr\u003e5.2.3 Vapour Pressure (OECD Test Guideline 104)\u003cbr\u003e5.2.4 Water Solubility (OECD Test Guideline 105)\u003cbr\u003e5.2.5 Partition Coefficient (OECD Test Guidelines and 117)\u003cbr\u003e5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)\u003cbr\u003e5.2.7 Density\/Relative Density (OECD Test Guideline 109)\u003cbr\u003e5.2.8 Particle Size Distribution (OECD Test Guideline 110)\u003cbr\u003e5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)\u003cbr\u003e5.2.10 Dissociation Constant (OECD Test Guideline 112)\u003cbr\u003e5.2.11 Surface Tension (OECD Test Guideline 115)\u003cbr\u003e5.2.12 Fat Solubility (OECD Test Guideline 116)\u003cbr\u003e5.3 Performance of the Polymer Specific Physico-Chemical Tests\u003cbr\u003e5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)\u003cbr\u003e5.3.2 Solution\/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)\u003cbr\u003e5.4 Performance of the Hazardous Physico-Chemical Tests\u003cbr\u003e5.4.1 Flash Point (EC Method A9)\u003cbr\u003e5.4.2 Flammable Solids (EC Method A10)\u003cbr\u003e5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)\u003cbr\u003e5.4.4 Explosive Properties (EC Method A14)\u003cbr\u003e5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)\u003cbr\u003e5.4.6 Oxidising Properties (EC Method A17)\u003cbr\u003e5.5 Order in which Physico-Chemical Tests are Performed\u003cbr\u003e5.6 Conclusion \u003cbr\u003e6 Alternatives to Animal Testing for Safety Evaluation\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Validation of Alternative Methods\u003cbr\u003e6.3 Aspects of Human Toxicity Targeted By In Vitro Assays\u003cbr\u003e6.3.1 Systemic Toxicological Properties\u003cbr\u003e6.3.2 Validated Tests Currently in Use in the EU\u003cbr\u003e6.4 Structure-Activity Relationships and Prediction of Properties\u003cbr\u003e6.5 Strategies to Minimise Use of Animals\u003cbr\u003e6.6 Future Developments and Conclusions \u003cbr\u003e7 Toxicological Assessment within a Risk Assessment Framework\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Definitions and Concepts\u003cbr\u003e7.2.1 Risk\u003cbr\u003e7.2.2 Toxicology\u003cbr\u003e7.3 Exposure Scenarios\u003cbr\u003e7.3.1 Routes of Administration\u003cbr\u003e7.3.2 Exposure Prediction\u003cbr\u003e7.4 Judgements\u003cbr\u003e7.4.1 The ‘Precautionary Principle’\u003cbr\u003e7.4.2 What Test and When?\u003cbr\u003e7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes\u003cbr\u003e7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity\u003cbr\u003e7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity\u003cbr\u003e7.5 Risk Management\u003cbr\u003e7.6 Final Word \u003cbr\u003e8 Environmental Risk Assessment\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Exposure Assessment\u003cbr\u003e8.2.1 Identification of the Target Compartments\u003cbr\u003e8.2.2 Estimation of Emissions or Releases\u003cbr\u003e8.2.3 Distribution and Degradation in the Environment (Environmental Fate)\u003cbr\u003e8.2.4 Predicted Environmental Concentrations\u003cbr\u003e8.3 Effects Assessment\u003cbr\u003e8.3.1 Estimating PNECs by Applying Uncertainty Factors\u003cbr\u003e8.3.2 The Statistical Extrapolation Method\u003cbr\u003e8.4 Risk Characterisation\u003cbr\u003e8.5 Conclusion \u003cbr\u003ePART 2: REGULATORY FRAMEWORK \u003cbr\u003e9 EU Chemical Legislation\u003cbr\u003e9.1 EU Legislation within the European Economic Area and Europe\u003cbr\u003e9.2 Notification of New Substances\u003cbr\u003e9.2.1 History of the Notification Process\u003cbr\u003e9.2.2 Data Sharing\u003cbr\u003e9.2.3 Base Set Studies for Full Notification\u003cbr\u003e9.2.4 Reduced Notification Studies\u003cbr\u003e9.2.5 Level 1 and Level 2 Notification Studies\u003cbr\u003e9.2.6 The Notification Summary Form\u003cbr\u003e9.2.7 The Sole-Representative Facility\u003cbr\u003e9.2.8 Polymers\u003cbr\u003e9.2.9 Derogations\/Exemptions from Notification\u003cbr\u003e9.2.10 Confidentiality\u003cbr\u003e9.3 Risk Assessment\u003cbr\u003e9.3.1 Human Health Risk Assessment\u003cbr\u003e9.3.2 Environment Risk Assessment\u003cbr\u003e9.4 Existing Chemicals Regulation\u003cbr\u003e9.4.1 Data Collection\u003cbr\u003e9.4.2 Priority Setting\u003cbr\u003e9.4.3 Risk Assessment\u003cbr\u003e9.5 Chemical Hazard Communication\u003cbr\u003e9.5.1 Classification and Labelling of Dangerous Substances\u003cbr\u003e9.5.2 Classification and Labelling of Dangerous Preparations\u003cbr\u003e9.5.3 Safety Data Sheets\u003cbr\u003e9.6 Transport Regulations\u003cbr\u003e9.6.1 Introduction\u003cbr\u003e9.6.2 The United Nations Transportation Classification Scheme\u003cbr\u003e9.6.3 Transport of Marine Pollutants\u003cbr\u003e9.7 National Chemical Control Measures\u003cbr\u003e9.7.1 National Product Registers\u003cbr\u003e9.7.2 German Water Hazard Classification Scheme\u003cbr\u003e9.8 Other EU Legislation for Specific Product Types\u003cbr\u003e9.8.1 Control of Cosmetics in the EU\u003cbr\u003e9.8.2 Detergents\u003cbr\u003e9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic\u003cbr\u003e9.9 Summary and Future Developments \u003cbr\u003e10 Chemical Control in Japan\u003cbr\u003e10.1 Introduction to the Japanese Regulatory Culture\u003cbr\u003e10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law\u003cbr\u003e10.2.1 Introduction\u003cbr\u003e10.2.2 The Inventory of Existing Substances\u003cbr\u003e10.2.3 Exemptions from Notification\u003cbr\u003e10.2.4 Standard Notification\u003cbr\u003e10.2.5 Polymer Notification\u003cbr\u003e10.2.6 Class I and II Specified and Designated Substances\u003cbr\u003e10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law\u003cbr\u003e10.4 Hazard Communication and Product Liability\u003cbr\u003e10.5 Other Chemical Legislation\u003cbr\u003e10.6 Summary \u003cbr\u003e11 Chemical Control in the US and the Rest of the World\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)\u003cbr\u003e11.2.1 Key Objectives of TSCA\u003cbr\u003e11.2.2 The TSCA Inventory\u003cbr\u003e11.2.3 Testing of Existing Substances\u003cbr\u003e11.2.4 Manufacturing and Processing Notices\u003cbr\u003e11.2.5 PMN Requirements\u003cbr\u003e11.2.6 Significant New Use Rules (SNURs)\u003cbr\u003e11.2.7 Exemptions from PMN\u003cbr\u003e11.3 US Occupational Safety and Health Act (OSHA)\u003cbr\u003e11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals\u003cbr\u003e11.4.1 Voluntary Challenge Programme\u003cbr\u003e11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals\u003cbr\u003e11.4.3 US Voluntary Children’s Chemical Evaluation Program\u003cbr\u003e11.5 Chemical Control Legislation in Canada\u003cbr\u003e11.5.1 The Canadian Environmental Protection Act\u003cbr\u003e11.5.2 Inventories\u003cbr\u003e11.5.3 Environmental Assessment Regulations\u003cbr\u003e11.5.4 Data Requirements for Notification\u003cbr\u003e11.5.5 Significant New Activity Notice\u003cbr\u003e11.5.6 Administration\u003cbr\u003e11.5.7 Inspection, Enforcement and Penalties\u003cbr\u003e11.5.8 Future Changes\u003cbr\u003e11.5.9 The Workplace Hazardous Materials Information System\u003cbr\u003e11.6 Chemical Control Legislation in Switzerland\u003cbr\u003e11.6.1 The Federal Law on Trade in Toxic Substances\u003cbr\u003e11.6.2 The Federal Law on Environmental Protection\u003cbr\u003e11.7 Notification of New Chemical Substances in Australia\u003cbr\u003e11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme\u003cbr\u003e11.7.2 Inventory\u003cbr\u003e11.7.3 Data Requirements for Notification\u003cbr\u003e11.7.4 Existing Substances\u003cbr\u003e11.7.5 Hazard Communication\u003cbr\u003e11.8 Chemical Control in Korea\u003cbr\u003e11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification\u003cbr\u003e11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination\u003cbr\u003e11.8.3 Hazard Communication\u003cbr\u003e11.9 Chemical Control in the Philippines\u003cbr\u003e11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act\u003cbr\u003e11.9.2 Inventory\u003cbr\u003e11.9.3 Data Requirements for Notification\u003cbr\u003e11.9.4 Administration\u003cbr\u003e11.9.5 Priority Chemicals List (PCL)\u003cbr\u003e11.10 Chemical Control in The People’s Republic of China\u003cbr\u003e11.10.1 Latest Developments\u003cbr\u003e11.10.2 First Import and Toxic Chemicals Regulations\u003cbr\u003e11.10.3 Inventory\u003cbr\u003e11.10.4 Hazard Communication\u003cbr\u003e11.11 Chemical Control in New Zealand\u003cbr\u003e11.11.1 Toxic Substances Act\u003cbr\u003e11.11.2 Resource Management Act\u003cbr\u003e11.11.3 Hazardous Substances and New Organisms Act\u003cbr\u003e11.11.4 Data Requirements for Notification\u003cbr\u003e11.11.5 Hazard Communication\u003cbr\u003e11.12 Mexico\u003cbr\u003e11.12.1 Legislation\u003cbr\u003e11.12.2 Safety Data Sheets\u003cbr\u003e11.13 Singapore\u003cbr\u003e11.14 Malaysia\u003cbr\u003e11.15 Thailand\u003cbr\u003e11.16 Indonesia\u003cbr\u003e11.17 Taiwan\u003cbr\u003e11.18 HPV Programmes\u003cbr\u003e11.18.1 OECD\u003cbr\u003e11.18.2 International Council of Chemical Associations Global Initiative\u003cbr\u003e11.19 Useful Web Sites \u003cbr\u003e12 Notification of Polymers Worldwide\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 North America\u003cbr\u003e12.2.1 USA\u003cbr\u003e12.2.2 Canada\u003cbr\u003e12.3 Asia Pacific\u003cbr\u003e12.3.1 Japan\u003cbr\u003e12.3.2 Australia\u003cbr\u003e12.3.3 New Zealand\u003cbr\u003e12.3.4 Korea\u003cbr\u003e12.3.5 Philippines\u003cbr\u003e12.3.6 China\u003cbr\u003e12.4 Europe\u003cbr\u003e12.4.1 EU\u003cbr\u003e12.4.2 Switzerland\u003cbr\u003e12.5 Overall Comparison of the Nine Polymer Notification Schemes \u003cbr\u003e13 Medical Device Regulation\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 European Economic Area\u003cbr\u003e13.2.1 Background\u003cbr\u003e13.2.2 Before Marketing\u003cbr\u003e13.2.3 After Marketing\u003cbr\u003e13.3 United States of America\u003cbr\u003e13.3.1 Background\u003cbr\u003e13.3.2 Before Marketing\u003cbr\u003e13.3.3 After Marketing\u003cbr\u003e13.4 Japan\u003cbr\u003e13.4.1 Background\u003cbr\u003e13.4.2 Before Marketing\u003cbr\u003e13.4.3 After Marketing\u003cbr\u003e13.5 Conclusion \u003cbr\u003e14 Regulation of Food Packaging in the EU and US\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Control of Food Packaging in the EU\u003cbr\u003e14.2.1 EU Framework Directive\u003cbr\u003e14.2.2 Food Contact Plastics in the EU\u003cbr\u003e14.2.3 Future Developments for Food Plastics in the EU\u003cbr\u003e14.2.4 Other EU Food Packaging Measures\u003cbr\u003e14.2.5 Strategy for Food Contact Plastic Approval in the EU\u003cbr\u003e14.3 National Controls on Food Packaging in EU Countries\u003cbr\u003e14.3.1 Germany\u003cbr\u003e14.3.2 France\u003cbr\u003e14.3.3 The Netherlands\u003cbr\u003e14.3.4 Belgium\u003cbr\u003e14.3.5 Italy\u003cbr\u003e14.4 Council of Europe Work on Food Packaging\u003cbr\u003e14.4.1 Introduction\u003cbr\u003e14.4.2 Completed Council of Europe Resolutions\u003cbr\u003e14.4.3 Council of Europe Ongoing Work\u003cbr\u003e14.5 Food Packaging in the USA\u003cbr\u003e14.5.1 Introduction\u003cbr\u003e14.5.2 History and Development of US Food Packaging Legislation\u003cbr\u003e14.5.3 The FDA Petition\u003cbr\u003e14.5.4 Threshold of Regulation Process\u003cbr\u003e14.5.5 The Pre-Marketing Notification Scheme \u003cbr\u003e15 Regulation of Biocides\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 Control of Biocides in the EU\u003cbr\u003e15.2.1 Introduction\u003cbr\u003e15.2.2 Main Features of the Directive\u003cbr\u003e15.2.3 System of Approval\u003cbr\u003e15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive\u003cbr\u003e15.2.5 Authorisation of Biocidal Products\u003cbr\u003e15.2.6 Hazard Communication\u003cbr\u003e15.2.7 The Review Programme for Existing Active Substances\u003cbr\u003e15.2.8 Technical Guidance\u003cbr\u003e15.3 Control of Biocides in the USA\u003cbr\u003e15.3.1 Introduction\u003cbr\u003e15.3.2 Data Requirements for Registration\u003cbr\u003e15.3.3 Registration Applications\u003cbr\u003e15.3.4 Data Compensation\u003cbr\u003e15.3.5 Re-Registration of Existing Pesticides\u003cbr\u003e15.3.6 Petition for a Pesticide Tolerance\u003cbr\u003e15.3.7 Regulation of Food Contact Biocides\u003cbr\u003e15.4 Regulation of Biocides in Other Countries\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides. \u003cbr\u003e\u003cbr\u003eMike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:23-04:00","created_at":"2017-06-22T21:13:23-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","acute","air monitoring","book","classification","dose","environment","food","hazard","health","inhalation","labelling","legislation","marine","medical","methodology","oral","p-testing","packaging","pesticide","plastics","pollutants","polymer","rubber","safety","substances control","toxic","toxicity","transport","TSCA","UN"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Chemical Safety Testing","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-372-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043","options":["Title"],"media":[{"alt":null,"id":358716768349,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-372-3.jpg?v=1499726043","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: D.J. Knight and M.B. Thomas \u003cbr\u003eISBN 978-1-85957-372-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 474\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThere are many different chemicals and materials in use today. These are subject to stringent regulations, which include a requirement for physicochemical and toxicity testing. In some countries, existing chemicals are also undergoing safety checks. The aim is to determine their hazardous properties and the risks involved in using substances. \u003cbr\u003e\u003cbr\u003eHealth and safety of the environment and the individual are becoming of prime importance to society and extensive legislation has been developed. To the R\u0026amp;D chemist, this is a maze to negotiate when trying to introduce a new material or chemical into a different marketplace. What tests are required and for which markets? What do the test results mean? Who are the key organisations in each global region? Legislation varies between applications and often the quantity of chemical in use is critical to determining the level of testing required. \u003cbr\u003e\u003cbr\u003eA Practical Guide to Chemical Safety Testing describes the different tests that must be performed on new chemicals and other materials to demonstrate to the regulatory authorities that they are safe for use. Tests vary from physico-chemical, measuring properties such as melting point and density, through genetic toxicity studies, to mammalian toxicology and studies to investigate effects on the environment. Animal testing is carried out to look for potential irritants, harmful substances, corrosive agents, allergens, cancer causing potential, etc. Each test type is described here and the validity of the test methods is debated. For example, there are sometimes major differences between simple model systems using cell lines or bacteria, effects in laboratory animals and, most importantly, with effects on humans. This can give rise to a misleading interpretation of results. \u003cbr\u003e\u003cbr\u003eThere is a chapter devoted to alternatives to animal testing for safety evaluation. Many non-animal screening tests are available. It is also becoming increasingly possible to cross-match many new chemicals with existing toxicity data to predict potential carcinogenicity, allergenicity, etc. These approaches can reduce the test requirements for the chemical, although a structural alert showing the presence of a suspect chemical moiety can trigger definitive toxicological assessment. \u003cbr\u003e\u003cbr\u003eEcotoxicological testing is carried out to determine the level of hazard to organisms in the environment. Important properties used to estimate environmental fate include the solubility of the test material in water, its ability to adsorb to soil and its potential for accumulation in animals. \u003cbr\u003e\u003cbr\u003eRegulations vary depending on the intended purpose of a material, and this book describes the requirements for general chemicals, polymers, food contact materials, medical devices, and biocides. Often the quantity imported into a region determines the stringency of the testing required. The EU, the USA, Japan and other geographical regions each have its own set of regulations. These are outlined here. In some instances, approval of a chemical in one country will lead to automatic approval in a second country. In other cases, new testing is required. This is a very complex situation. The second half of this book sets out to untangle the web of legal issues facing manufacturers and suppliers. \u003cbr\u003e\u003cbr\u003eThis book is essential reading for chemical and material manufacturers and suppliers. It describes clearly the process of obtaining approval for use in a variety of global regions and across different applications. It also explains why different tests are performed and the implications of the results.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Purpose of the Book\u003cbr\u003e1.2 Purpose of Safety Evaluation\u003cbr\u003e1.3 Safety Studies\u003cbr\u003e1.4 Risk Assessment and Safety Data\u003cbr\u003e1.5 Regulatory Schemes\u003cbr\u003e1.6 Summary \u003cbr\u003e2 Mammalian Toxicology\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Acute Toxicity Studies\u003cbr\u003e2.2.1 Nature and Relevance of Tests\u003cbr\u003e2.2.2 Methodology\u003cbr\u003e2.2.3 Acute Oral Toxicity Studies\u003cbr\u003e2.2.4 Dermal Toxicity Studies\u003cbr\u003e2.2.5 Inhalation Toxicity Studies\u003cbr\u003e2.2.6 Alternative Acute Oral Toxicity Methods\u003cbr\u003e2.2.7 Local Tolerance Tests\u003cbr\u003e2.2.8 Contact Sensitisation\u003cbr\u003e2.3 Repeated Dose Toxicity Studies\u003cbr\u003e2.3.1 Nature and Relevance of Tests\u003cbr\u003e2.3.2 Importance of Repeated Dose Toxicity\u003cbr\u003e2.3.3 Methodology\u003cbr\u003e2.4 Reproduction Toxicology\u003cbr\u003e2.4.1 Nature and Relevance of Tests\u003cbr\u003e2.4.2 Methodology\u003cbr\u003e2.4.3 Alternative Approaches\u003cbr\u003e2.5 Carcinogenicity\u003cbr\u003e2.5.1 Nature and Relevance of Tests\u003cbr\u003e2.5.2 Methodology\u003cbr\u003e2.5.3 Dose Levels\u003cbr\u003e2.5.4 Conduct of Study\u003cbr\u003e2.5.5 Data Evaluation\u003cbr\u003e2.5.6 Risk Assessment\u003cbr\u003e2.5.7 Alternative Approaches\u003cbr\u003e2.6 Medical Device Testing\u003cbr\u003e2.6.1 Exposure Routes\u003cbr\u003e2.6.2 Dose Preparation\u003cbr\u003e2.6.3 Cytotoxicity Testing of Medical Devices \u003cbr\u003e3 Genetic Toxicology\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Mechanisms of Mutation – Genes and Chromosomes\u003cbr\u003e3.3 Standard Genetic Toxicology Assays\u003cbr\u003e3.4 Bacterial Mutagenicity Assays\u003cbr\u003e3.5 Chromosome Aberration Tests In Vitro\u003cbr\u003e3.6 Mammalian Cell Gene Mutation Assays In Vitro\u003cbr\u003e3.7 The In Vivo Micronucleus Test\u003cbr\u003e3.8 The Unscheduled DNA Synthesis Assay\u003cbr\u003e3.9 Conclusions \u003cbr\u003e4 Ecotoxicology\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Bacterial Toxicity Testing\u003cbr\u003e4.3 Biodegradation Tests\u003cbr\u003e4.3.1 Ready Biodegradation Tests\u003cbr\u003e4.3.2 Inherent Biodegradation Tests\u003cbr\u003e4.3.3 Simulation Tests\u003cbr\u003e4.3.4 Anaerobic Biodegradation Tests\u003cbr\u003e4.4 Aquatic Toxicity Testing\u003cbr\u003e4.4.1 Acute Tests\u003cbr\u003e4.4.2 Analytical Measurements\u003cbr\u003e4.4.3 Difficult Substances\u003cbr\u003e4.4.4 Chronic Tests\u003cbr\u003e4.5 Fish Bioaccumulation Test\u003cbr\u003e4.6 Sediment Toxicity Tests\u003cbr\u003e4.7 Terrestrial Toxicity Tests\u003cbr\u003e4.7.1 Earthworms\u003cbr\u003e4.7.2 Bees and Beneficial\u003cbr\u003e4.7.3 Plant Growth Tests\u003cbr\u003e4.8 Microcosm and Mesocosm Studies\u003cbr\u003e4.9 Conclusion \u003cbr\u003e5 Physico-Chemical Properties\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Performance of the General Physico-Chemical Tests\u003cbr\u003e5.2.1 Melting Temperature\/Melting Range (OECD Test Guideline 102)\u003cbr\u003e5.2.2 Boiling Point (OECD Test Guideline 103)\u003cbr\u003e5.2.3 Vapour Pressure (OECD Test Guideline 104)\u003cbr\u003e5.2.4 Water Solubility (OECD Test Guideline 105)\u003cbr\u003e5.2.5 Partition Coefficient (OECD Test Guidelines and 117)\u003cbr\u003e5.2.6 Adsorption Coefficient (OECD Test Guidelines 106 and 121)\u003cbr\u003e5.2.7 Density\/Relative Density (OECD Test Guideline 109)\u003cbr\u003e5.2.8 Particle Size Distribution (OECD Test Guideline 110)\u003cbr\u003e5.2.9 Hydrolysis as a Function of pH (OECD Test Guideline 111)\u003cbr\u003e5.2.10 Dissociation Constant (OECD Test Guideline 112)\u003cbr\u003e5.2.11 Surface Tension (OECD Test Guideline 115)\u003cbr\u003e5.2.12 Fat Solubility (OECD Test Guideline 116)\u003cbr\u003e5.3 Performance of the Polymer Specific Physico-Chemical Tests\u003cbr\u003e5.3.1 Number-Average Molecular Weight and Molecular Weight Distribution of Polymers (OECD Test Guideline 118)\u003cbr\u003e5.3.2 Solution\/Extraction Behaviour of Polymers in Water (OECD Test Guideline 120)\u003cbr\u003e5.4 Performance of the Hazardous Physico-Chemical Tests\u003cbr\u003e5.4.1 Flash Point (EC Method A9)\u003cbr\u003e5.4.2 Flammable Solids (EC Method A10)\u003cbr\u003e5.4.3 Flammable Gases (EC Method A11), Flammable Substances on Contact with Water (EC Method A12) and Substances Liable to Spontaneous Combustion (EC Method A13)\u003cbr\u003e5.4.4 Explosive Properties (EC Method A14)\u003cbr\u003e5.4.5 Auto-ignition Temperature, Liquids and Gases (EC Method A15) and Relative Self–ignition Temperature, Solids (EC Method A16)\u003cbr\u003e5.4.6 Oxidising Properties (EC Method A17)\u003cbr\u003e5.5 Order in which Physico-Chemical Tests are Performed\u003cbr\u003e5.6 Conclusion \u003cbr\u003e6 Alternatives to Animal Testing for Safety Evaluation\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Validation of Alternative Methods\u003cbr\u003e6.3 Aspects of Human Toxicity Targeted By In Vitro Assays\u003cbr\u003e6.3.1 Systemic Toxicological Properties\u003cbr\u003e6.3.2 Validated Tests Currently in Use in the EU\u003cbr\u003e6.4 Structure-Activity Relationships and Prediction of Properties\u003cbr\u003e6.5 Strategies to Minimise Use of Animals\u003cbr\u003e6.6 Future Developments and Conclusions \u003cbr\u003e7 Toxicological Assessment within a Risk Assessment Framework\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Definitions and Concepts\u003cbr\u003e7.2.1 Risk\u003cbr\u003e7.2.2 Toxicology\u003cbr\u003e7.3 Exposure Scenarios\u003cbr\u003e7.3.1 Routes of Administration\u003cbr\u003e7.3.2 Exposure Prediction\u003cbr\u003e7.4 Judgements\u003cbr\u003e7.4.1 The ‘Precautionary Principle’\u003cbr\u003e7.4.2 What Test and When?\u003cbr\u003e7.4.3 The Interpretation of Toxicity Test Results for Classification and Labelling Purposes\u003cbr\u003e7.4.4 Risk Assessment and Risk Evaluation – Interpretation of General Toxicity\u003cbr\u003e7.4.5 Mutagenicity, Carcinogenicity and Reproductive Toxicity\u003cbr\u003e7.5 Risk Management\u003cbr\u003e7.6 Final Word \u003cbr\u003e8 Environmental Risk Assessment\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Exposure Assessment\u003cbr\u003e8.2.1 Identification of the Target Compartments\u003cbr\u003e8.2.2 Estimation of Emissions or Releases\u003cbr\u003e8.2.3 Distribution and Degradation in the Environment (Environmental Fate)\u003cbr\u003e8.2.4 Predicted Environmental Concentrations\u003cbr\u003e8.3 Effects Assessment\u003cbr\u003e8.3.1 Estimating PNECs by Applying Uncertainty Factors\u003cbr\u003e8.3.2 The Statistical Extrapolation Method\u003cbr\u003e8.4 Risk Characterisation\u003cbr\u003e8.5 Conclusion \u003cbr\u003ePART 2: REGULATORY FRAMEWORK \u003cbr\u003e9 EU Chemical Legislation\u003cbr\u003e9.1 EU Legislation within the European Economic Area and Europe\u003cbr\u003e9.2 Notification of New Substances\u003cbr\u003e9.2.1 History of the Notification Process\u003cbr\u003e9.2.2 Data Sharing\u003cbr\u003e9.2.3 Base Set Studies for Full Notification\u003cbr\u003e9.2.4 Reduced Notification Studies\u003cbr\u003e9.2.5 Level 1 and Level 2 Notification Studies\u003cbr\u003e9.2.6 The Notification Summary Form\u003cbr\u003e9.2.7 The Sole-Representative Facility\u003cbr\u003e9.2.8 Polymers\u003cbr\u003e9.2.9 Derogations\/Exemptions from Notification\u003cbr\u003e9.2.10 Confidentiality\u003cbr\u003e9.3 Risk Assessment\u003cbr\u003e9.3.1 Human Health Risk Assessment\u003cbr\u003e9.3.2 Environment Risk Assessment\u003cbr\u003e9.4 Existing Chemicals Regulation\u003cbr\u003e9.4.1 Data Collection\u003cbr\u003e9.4.2 Priority Setting\u003cbr\u003e9.4.3 Risk Assessment\u003cbr\u003e9.5 Chemical Hazard Communication\u003cbr\u003e9.5.1 Classification and Labelling of Dangerous Substances\u003cbr\u003e9.5.2 Classification and Labelling of Dangerous Preparations\u003cbr\u003e9.5.3 Safety Data Sheets\u003cbr\u003e9.6 Transport Regulations\u003cbr\u003e9.6.1 Introduction\u003cbr\u003e9.6.2 The United Nations Transportation Classification Scheme\u003cbr\u003e9.6.3 Transport of Marine Pollutants\u003cbr\u003e9.7 National Chemical Control Measures\u003cbr\u003e9.7.1 National Product Registers\u003cbr\u003e9.7.2 German Water Hazard Classification Scheme\u003cbr\u003e9.8 Other EU Legislation for Specific Product Types\u003cbr\u003e9.8.1 Control of Cosmetics in the EU\u003cbr\u003e9.8.2 Detergents\u003cbr\u003e9.8.3Offshore Chemical Notification Scheme: Oslo and Paris Convention for the Protection of the North East Atlantic\u003cbr\u003e9.9 Summary and Future Developments \u003cbr\u003e10 Chemical Control in Japan\u003cbr\u003e10.1 Introduction to the Japanese Regulatory Culture\u003cbr\u003e10.2 The Ministry of Economy, Trade and Industry and Ministry of Health, Labour and Welfare Chemical Substances Control Law\u003cbr\u003e10.2.1 Introduction\u003cbr\u003e10.2.2 The Inventory of Existing Substances\u003cbr\u003e10.2.3 Exemptions from Notification\u003cbr\u003e10.2.4 Standard Notification\u003cbr\u003e10.2.5 Polymer Notification\u003cbr\u003e10.2.6 Class I and II Specified and Designated Substances\u003cbr\u003e10.3 The Ministry of Health, Labour and Welfare Industrial Safety and Health Law\u003cbr\u003e10.4 Hazard Communication and Product Liability\u003cbr\u003e10.5 Other Chemical Legislation\u003cbr\u003e10.6 Summary \u003cbr\u003e11 Chemical Control in the US and the Rest of the World\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 US Chemical Legislation: The Toxic Substances Control Act (TSCA)\u003cbr\u003e11.2.1 Key Objectives of TSCA\u003cbr\u003e11.2.2 The TSCA Inventory\u003cbr\u003e11.2.3 Testing of Existing Substances\u003cbr\u003e11.2.4 Manufacturing and Processing Notices\u003cbr\u003e11.2.5 PMN Requirements\u003cbr\u003e11.2.6 Significant New Use Rules (SNURs)\u003cbr\u003e11.2.7 Exemptions from PMN\u003cbr\u003e11.3 US Occupational Safety and Health Act (OSHA)\u003cbr\u003e11.4 The US Chemical Right-to-Know Initiative for High Production Volume Chemicals\u003cbr\u003e11.4.1 Voluntary Challenge Programme\u003cbr\u003e11.4.2 Persistent Bioaccumulative Toxic (PBT) Chemicals\u003cbr\u003e11.4.3 US Voluntary Children’s Chemical Evaluation Program\u003cbr\u003e11.5 Chemical Control Legislation in Canada\u003cbr\u003e11.5.1 The Canadian Environmental Protection Act\u003cbr\u003e11.5.2 Inventories\u003cbr\u003e11.5.3 Environmental Assessment Regulations\u003cbr\u003e11.5.4 Data Requirements for Notification\u003cbr\u003e11.5.5 Significant New Activity Notice\u003cbr\u003e11.5.6 Administration\u003cbr\u003e11.5.7 Inspection, Enforcement and Penalties\u003cbr\u003e11.5.8 Future Changes\u003cbr\u003e11.5.9 The Workplace Hazardous Materials Information System\u003cbr\u003e11.6 Chemical Control Legislation in Switzerland\u003cbr\u003e11.6.1 The Federal Law on Trade in Toxic Substances\u003cbr\u003e11.6.2 The Federal Law on Environmental Protection\u003cbr\u003e11.7 Notification of New Chemical Substances in Australia\u003cbr\u003e11.7.1 National Industrial Chemicals (Notification and Assessment) Scheme\u003cbr\u003e11.7.2 Inventory\u003cbr\u003e11.7.3 Data Requirements for Notification\u003cbr\u003e11.7.4 Existing Substances\u003cbr\u003e11.7.5 Hazard Communication\u003cbr\u003e11.8 Chemical Control in Korea\u003cbr\u003e11.8.1 The Toxic Chemicals Control Law and Ministry of Environment Notification\u003cbr\u003e11.8.2 The Industrial Safety and Health Law and Ministry of Labour Toxicity Examination\u003cbr\u003e11.8.3 Hazard Communication\u003cbr\u003e11.9 Chemical Control in the Philippines\u003cbr\u003e11.9.1 The Toxic Substances and Hazardous and Nuclear Wastes Control Act\u003cbr\u003e11.9.2 Inventory\u003cbr\u003e11.9.3 Data Requirements for Notification\u003cbr\u003e11.9.4 Administration\u003cbr\u003e11.9.5 Priority Chemicals List (PCL)\u003cbr\u003e11.10 Chemical Control in The People’s Republic of China\u003cbr\u003e11.10.1 Latest Developments\u003cbr\u003e11.10.2 First Import and Toxic Chemicals Regulations\u003cbr\u003e11.10.3 Inventory\u003cbr\u003e11.10.4 Hazard Communication\u003cbr\u003e11.11 Chemical Control in New Zealand\u003cbr\u003e11.11.1 Toxic Substances Act\u003cbr\u003e11.11.2 Resource Management Act\u003cbr\u003e11.11.3 Hazardous Substances and New Organisms Act\u003cbr\u003e11.11.4 Data Requirements for Notification\u003cbr\u003e11.11.5 Hazard Communication\u003cbr\u003e11.12 Mexico\u003cbr\u003e11.12.1 Legislation\u003cbr\u003e11.12.2 Safety Data Sheets\u003cbr\u003e11.13 Singapore\u003cbr\u003e11.14 Malaysia\u003cbr\u003e11.15 Thailand\u003cbr\u003e11.16 Indonesia\u003cbr\u003e11.17 Taiwan\u003cbr\u003e11.18 HPV Programmes\u003cbr\u003e11.18.1 OECD\u003cbr\u003e11.18.2 International Council of Chemical Associations Global Initiative\u003cbr\u003e11.19 Useful Web Sites \u003cbr\u003e12 Notification of Polymers Worldwide\u003cbr\u003e12.1 Introduction\u003cbr\u003e12.2 North America\u003cbr\u003e12.2.1 USA\u003cbr\u003e12.2.2 Canada\u003cbr\u003e12.3 Asia Pacific\u003cbr\u003e12.3.1 Japan\u003cbr\u003e12.3.2 Australia\u003cbr\u003e12.3.3 New Zealand\u003cbr\u003e12.3.4 Korea\u003cbr\u003e12.3.5 Philippines\u003cbr\u003e12.3.6 China\u003cbr\u003e12.4 Europe\u003cbr\u003e12.4.1 EU\u003cbr\u003e12.4.2 Switzerland\u003cbr\u003e12.5 Overall Comparison of the Nine Polymer Notification Schemes \u003cbr\u003e13 Medical Device Regulation\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 European Economic Area\u003cbr\u003e13.2.1 Background\u003cbr\u003e13.2.2 Before Marketing\u003cbr\u003e13.2.3 After Marketing\u003cbr\u003e13.3 United States of America\u003cbr\u003e13.3.1 Background\u003cbr\u003e13.3.2 Before Marketing\u003cbr\u003e13.3.3 After Marketing\u003cbr\u003e13.4 Japan\u003cbr\u003e13.4.1 Background\u003cbr\u003e13.4.2 Before Marketing\u003cbr\u003e13.4.3 After Marketing\u003cbr\u003e13.5 Conclusion \u003cbr\u003e14 Regulation of Food Packaging in the EU and US\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Control of Food Packaging in the EU\u003cbr\u003e14.2.1 EU Framework Directive\u003cbr\u003e14.2.2 Food Contact Plastics in the EU\u003cbr\u003e14.2.3 Future Developments for Food Plastics in the EU\u003cbr\u003e14.2.4 Other EU Food Packaging Measures\u003cbr\u003e14.2.5 Strategy for Food Contact Plastic Approval in the EU\u003cbr\u003e14.3 National Controls on Food Packaging in EU Countries\u003cbr\u003e14.3.1 Germany\u003cbr\u003e14.3.2 France\u003cbr\u003e14.3.3 The Netherlands\u003cbr\u003e14.3.4 Belgium\u003cbr\u003e14.3.5 Italy\u003cbr\u003e14.4 Council of Europe Work on Food Packaging\u003cbr\u003e14.4.1 Introduction\u003cbr\u003e14.4.2 Completed Council of Europe Resolutions\u003cbr\u003e14.4.3 Council of Europe Ongoing Work\u003cbr\u003e14.5 Food Packaging in the USA\u003cbr\u003e14.5.1 Introduction\u003cbr\u003e14.5.2 History and Development of US Food Packaging Legislation\u003cbr\u003e14.5.3 The FDA Petition\u003cbr\u003e14.5.4 Threshold of Regulation Process\u003cbr\u003e14.5.5 The Pre-Marketing Notification Scheme \u003cbr\u003e15 Regulation of Biocides\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 Control of Biocides in the EU\u003cbr\u003e15.2.1 Introduction\u003cbr\u003e15.2.2 Main Features of the Directive\u003cbr\u003e15.2.3 System of Approval\u003cbr\u003e15.2.4 Assessment for the Inclusion of Active Substances in Annex I of the Biocidal Products Directive\u003cbr\u003e15.2.5 Authorisation of Biocidal Products\u003cbr\u003e15.2.6 Hazard Communication\u003cbr\u003e15.2.7 The Review Programme for Existing Active Substances\u003cbr\u003e15.2.8 Technical Guidance\u003cbr\u003e15.3 Control of Biocides in the USA\u003cbr\u003e15.3.1 Introduction\u003cbr\u003e15.3.2 Data Requirements for Registration\u003cbr\u003e15.3.3 Registration Applications\u003cbr\u003e15.3.4 Data Compensation\u003cbr\u003e15.3.5 Re-Registration of Existing Pesticides\u003cbr\u003e15.3.6 Petition for a Pesticide Tolerance\u003cbr\u003e15.3.7 Regulation of Food Contact Biocides\u003cbr\u003e15.4 Regulation of Biocides in Other Countries\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Derek Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd. He is an expert in regulatory requirements, providing advice on testing and document submission to regulatory authorities. He has a doctorate in chemistry from Oxford University and is a Fellow of the Royal Society of Chemistry and the British Institute of Regulatory Affairs. He has published extensively on regulatory issues, alternatives to animal testing, food contact materials, and biocides. \u003cbr\u003e\u003cbr\u003eMike Thomas is the Marketing Director for Safepharm Laboratories. He graduated in zoology and chemistry from London University and went on to a career in toxicity testing, including working on a wide range of toxicity studies. Prior to joining Safepharm, he was Director of Biological Services at International Consulting and Laboratory Services Ltd., of London.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Hig...
$130.00
{"id":11242251332,"title":"Practical Guide to High Performance Engineering Plastics","handle":"9781843755768","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David J. Kemmish \u003cbr\u003eISBN 9781843755768 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003ePages:134\u003cbr\u003eHard-cover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHigh-performance engineering plastics are used in a vast range of applications and environments. They are becoming increasingly important because of trends towards more reliable and higher performance machines and devices.\u003cbr\u003e\u003cbr\u003eThis book gives readers a working knowledge and understanding of high performance engineering plastics. It starts with a simple, practical overview of key properties and principles. In each of the chapters, there are sections on production chemistry, product forms, properties, processing, and applications. There is a strong bias towards materials and concepts which are used in practice. The materials covered include high performance Polyethersulfones, Polyetherimides, Polyphthalamides, Polyphenylene Sulfide, Polyaryletherketones, Polyamideimides, Polyimides, Polybenzimidazole, Liquid Crystalline Polyesters, and Perfluoropolymers.\u003cbr\u003e\u003cbr\u003eThe reader will develop the ability to understand why materials are chosen for certain applications, why those materials have particular properties and how those properties can be modified. This will facilitate conversations with both materials suppliers and end users. It will help to identify the best and most cost-effective solutions.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:19-04:00","created_at":"2017-06-22T21:15:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","applications","book","High Performance Engineering Plastics","material","processing","properties"],"price":13000,"price_min":13000,"price_max":13000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378477956,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to High Performance Engineering Plastics","public_title":null,"options":["Default Title"],"price":13000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781843755768","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781843755768.jpg?v=1504014086"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781843755768.jpg?v=1504014086","options":["Title"],"media":[{"alt":null,"id":412797665373,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781843755768.jpg?v=1504014086"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781843755768.jpg?v=1504014086","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David J. Kemmish \u003cbr\u003eISBN 9781843755768 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2011\u003cbr\u003e\u003c\/span\u003ePages:134\u003cbr\u003eHard-cover\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nHigh-performance engineering plastics are used in a vast range of applications and environments. They are becoming increasingly important because of trends towards more reliable and higher performance machines and devices.\u003cbr\u003e\u003cbr\u003eThis book gives readers a working knowledge and understanding of high performance engineering plastics. It starts with a simple, practical overview of key properties and principles. In each of the chapters, there are sections on production chemistry, product forms, properties, processing, and applications. There is a strong bias towards materials and concepts which are used in practice. The materials covered include high performance Polyethersulfones, Polyetherimides, Polyphthalamides, Polyphenylene Sulfide, Polyaryletherketones, Polyamideimides, Polyimides, Polybenzimidazole, Liquid Crystalline Polyesters, and Perfluoropolymers.\u003cbr\u003e\u003cbr\u003eThe reader will develop the ability to understand why materials are chosen for certain applications, why those materials have particular properties and how those properties can be modified. This will facilitate conversations with both materials suppliers and end users. It will help to identify the best and most cost-effective solutions.\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Pol...
$90.00
{"id":11242212996,"title":"Practical Guide to Polyethylene","handle":"978-1-85957-493-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Cornelia Vasile and Mihaela Pascu \u003cbr\u003eISBN 978-1-85957-493-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyethylene is probably the most commonly used polymer in everyday life. It is the polymer that is used to make grocery bags, shampoo bottles, children's toys, and even bullet-proof vests. This Practical Guide provides information about every aspect of polyethylene production and uses in a reader-friendly form. It discusses the advantages and disadvantages of working with polyethylene, offering practical comment on the available types of polyethylene, properties and in-service performance, and processing. \u003cbr\u003e\u003cbr\u003eThe Practical Guide begins with the general background to the polyethylene family, with price, production and market share information. It describes the basic types of polyethylene including virgin \u0026amp; filled polyethylene, copolymers, block and graft polymers and composites, and reviews the types of additives used in polyethylene.Polyethylenes offer a wide range of properties due to differences in structure and molecular weight, and the Practical Guide gives the low down on the properties, including, amongst others, rheological, mechanical, chemical, thermal, and electrical properties. \u003cbr\u003e\u003cbr\u003eDesign of a polymeric product for a certain application is a complex task, and this is particularly true for polyethylene with its variety of forms and available processing methods. This Practical Guide describes the processing issues and conditions for the wide range of techniques used for polyethylene, and also considers post-processing and assembly issues. It.offers guidance on product design and development issues, including materials selection. \u003cbr\u003e\u003cbr\u003eThe Practical Guide to Polyethylene is an indispensable resource for everyone working with this material.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003eProvides a general introduction to the subject and gives information on price, production and market share. \u003cbr\u003e\u003cbr\u003e2 Basic Types\u003cbr\u003eDescribes the basic types of PE available including filled PE, copolymers, blocka nd graft polymers and composites. \u003cbr\u003e\u003cbr\u003e3 Properties\u003cbr\u003eGives the low down on the properties of PE. This section includes: density, molecular weight and molecular weight distribution, crystallinity, thermal properties, mechanical properties, electrical properties, optical properties, surface properties, hardness and scratch resistance, abrasion resitaence, friction, acoustic properties, degradation, biological behaviour, biocompatibility, wear, molecular properties, performance in service, permeability, and crosslinking. \u003cbr\u003e\u003cbr\u003e4 Additives\u003cbr\u003eLists information about the types of additives used with PE including: antioxidants, inhibitors, stabilisers, masterbatches, antistatic agents, EMI\/radiofrequency shielding, antifogging agents, biocides, blowing agents, biosensitisers, coupling agents, crosslinking agents, flame retardants, fillers\/reinforcements\/slip and antiblocking agents, metals deactivators, nucleating agents, and pigments and colorants. \u003cbr\u003e\u003cbr\u003e5 Rheological Behaviour\u003cbr\u003eCovers rheological behaviour including molar mass effects, steady flow properties, melt flow rates\/index, viscosity\/shear rate, dynamic rheological properties, chain structure effects and multiphase systems\/inhomogenous products. \u003cbr\u003e\u003cbr\u003e6 Processing of Polyethylene \u003cbr\u003eDescribes processing of PE including, injection moulding, extrusion, blow and stretched moulding, compression moulding, sintering and coating, thermoforming\/vacuum forming, rotational moulding, transfer moulding, casting, and recycling and recyclates. \u003cbr\u003e\u003cbr\u003e7 Considerations of Product Design and Development\u003cbr\u003eCovers product design and development, including: materials selection, processing techniques, film blowing thermoforming, blow moulding, rotational moulding compression moulding and injection moulding. \u003cbr\u003e\u003cbr\u003e8 Post-Processing and Assembly\u003cbr\u003eCovers post processing and assembly. This includes: joining, assembly\/fabrication, machining, joints, mechanical fastening, and decorating.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCornelia Vasile is a senior researcher at the Romanian Academy, ‘P. Poni’ Institute of Macromolecular Chemistry, and Head of Department of Physical Chemistry of Polymers. Cornelia is also an Associate Professor at Laval University - Quebec Canada, at the ‘Gh. Asachi’ Technical University of Iasi and ‘Al. I. Cuza’ University of Iasi. She is the author or co-author of eight books, 300 scientific papers, and holder of 38 patents.","published_at":"2017-06-22T21:13:17-04:00","created_at":"2017-06-22T21:13:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","abrasion","additives","antiblocking","antifoggings","antioxidants","antistatic","biocides","biosensitisers","blow","blowing","blowing agents","book","chemical","compression","coupling","crosslinking","crystallinity","electrical","EMI\/radiofrequency shielding","fillers","film","flame retardants","flow","hardness","inhibitors","injection","masterbatches","mechanical","melt","molding","moulding","optical","p-chemistry","poly","polyethylene","properties","reinforcemnets","rheological","rotational","scratch","slip","stabilisers","surface","thermal","thermoforming"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378345284,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Polyethylene","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":-3,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-493-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571","options":["Title"],"media":[{"alt":null,"id":358718275677,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-493-5.jpg?v=1499953571","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Cornelia Vasile and Mihaela Pascu \u003cbr\u003eISBN 978-1-85957-493-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyethylene is probably the most commonly used polymer in everyday life. It is the polymer that is used to make grocery bags, shampoo bottles, children's toys, and even bullet-proof vests. This Practical Guide provides information about every aspect of polyethylene production and uses in a reader-friendly form. It discusses the advantages and disadvantages of working with polyethylene, offering practical comment on the available types of polyethylene, properties and in-service performance, and processing. \u003cbr\u003e\u003cbr\u003eThe Practical Guide begins with the general background to the polyethylene family, with price, production and market share information. It describes the basic types of polyethylene including virgin \u0026amp; filled polyethylene, copolymers, block and graft polymers and composites, and reviews the types of additives used in polyethylene.Polyethylenes offer a wide range of properties due to differences in structure and molecular weight, and the Practical Guide gives the low down on the properties, including, amongst others, rheological, mechanical, chemical, thermal, and electrical properties. \u003cbr\u003e\u003cbr\u003eDesign of a polymeric product for a certain application is a complex task, and this is particularly true for polyethylene with its variety of forms and available processing methods. This Practical Guide describes the processing issues and conditions for the wide range of techniques used for polyethylene, and also considers post-processing and assembly issues. It.offers guidance on product design and development issues, including materials selection. \u003cbr\u003e\u003cbr\u003eThe Practical Guide to Polyethylene is an indispensable resource for everyone working with this material.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003eProvides a general introduction to the subject and gives information on price, production and market share. \u003cbr\u003e\u003cbr\u003e2 Basic Types\u003cbr\u003eDescribes the basic types of PE available including filled PE, copolymers, blocka nd graft polymers and composites. \u003cbr\u003e\u003cbr\u003e3 Properties\u003cbr\u003eGives the low down on the properties of PE. This section includes: density, molecular weight and molecular weight distribution, crystallinity, thermal properties, mechanical properties, electrical properties, optical properties, surface properties, hardness and scratch resistance, abrasion resitaence, friction, acoustic properties, degradation, biological behaviour, biocompatibility, wear, molecular properties, performance in service, permeability, and crosslinking. \u003cbr\u003e\u003cbr\u003e4 Additives\u003cbr\u003eLists information about the types of additives used with PE including: antioxidants, inhibitors, stabilisers, masterbatches, antistatic agents, EMI\/radiofrequency shielding, antifogging agents, biocides, blowing agents, biosensitisers, coupling agents, crosslinking agents, flame retardants, fillers\/reinforcements\/slip and antiblocking agents, metals deactivators, nucleating agents, and pigments and colorants. \u003cbr\u003e\u003cbr\u003e5 Rheological Behaviour\u003cbr\u003eCovers rheological behaviour including molar mass effects, steady flow properties, melt flow rates\/index, viscosity\/shear rate, dynamic rheological properties, chain structure effects and multiphase systems\/inhomogenous products. \u003cbr\u003e\u003cbr\u003e6 Processing of Polyethylene \u003cbr\u003eDescribes processing of PE including, injection moulding, extrusion, blow and stretched moulding, compression moulding, sintering and coating, thermoforming\/vacuum forming, rotational moulding, transfer moulding, casting, and recycling and recyclates. \u003cbr\u003e\u003cbr\u003e7 Considerations of Product Design and Development\u003cbr\u003eCovers product design and development, including: materials selection, processing techniques, film blowing thermoforming, blow moulding, rotational moulding compression moulding and injection moulding. \u003cbr\u003e\u003cbr\u003e8 Post-Processing and Assembly\u003cbr\u003eCovers post processing and assembly. This includes: joining, assembly\/fabrication, machining, joints, mechanical fastening, and decorating.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nCornelia Vasile is a senior researcher at the Romanian Academy, ‘P. Poni’ Institute of Macromolecular Chemistry, and Head of Department of Physical Chemistry of Polymers. Cornelia is also an Associate Professor at Laval University - Quebec Canada, at the ‘Gh. Asachi’ Technical University of Iasi and ‘Al. I. Cuza’ University of Iasi. She is the author or co-author of eight books, 300 scientific papers, and holder of 38 patents."}
Practical Guide to Pol...
$90.00
{"id":11242228932,"title":"Practical Guide to Polyvinyl Chloride","handle":"978-1-85957-511-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S. Patrick \u003cbr\u003eISBN 978-1-85957-511-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 162\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyvinyl chloride (PVC) has been around since the late part of the 19th century, although it was not produced commercially until the 1920s; it is the second largest consumed plastic material after polyethylene. PVC products can be rigid or flexible, opaque or transparent, coloured, and insulating or conducting. There is not just one PVC but a whole family of products tailor-made to suit the needs of each application. \u003cbr\u003e\u003cbr\u003eRapra's Practical Guide to PVC is packed with information for everyone working with PVC. It provides a comprehensive background on the resins and additives, their properties and processing characteristics, as well as discussion of product design and development issues. \u003cbr\u003e\u003cbr\u003ePVC is extremely cost effective in comparison to other plastics with a high degree of versatility in end-use and processing possibilities, as the reader will note from this book. It is durable, easily maintained, and can be produced in a large range of colours. As a result, PVC finds use in an extensive range of applications in virtually all areas of human activity, including medical equipment, construction applications such as flexible roof membranes, pipes and window profiles, toys, automotive parts and electrical cabling. \u003cbr\u003e\u003cbr\u003eThe PVC industry has also started to tackle some of its end-of-life issues. \u003cbr\u003eThere have been, and still are, issues and perceptions over environmental and health acceptance covering vinyl chloride monomer, dioxins, phthalate plasticisers, and lead (and cadmium) based heat stabilisers and these are discussed in depth in this book. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to raw materials suppliers and processors or end-users of PVC, as well as anyone with a general interest in this versatile material: resins and additives properties and testing design issues processing, including post processing and assembly property enhancement sustainable development.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 History\u003cbr\u003e1.3 Major Advantages and Limitations\u003cbr\u003e1.3.1 Major Advantages\u003cbr\u003e1.3.2 Limitations\u003cbr\u003e1.4 Applications\u003cbr\u003e1.5 Competitive Materials\u003cbr\u003e1.6 Market Share and Consumption Trend\u003cbr\u003e1.7 Industry Outline and Major Suppliers\u003cbr\u003e1.8 Material Pricing\u003cbr\u003e1.9 Safety, Health, and Environmental Issues\u003cbr\u003e1.9.1 Phthalate Plasticisers\u003cbr\u003e1.9.2 Heat Stabilisers\u003cbr\u003e1.9.3 Bisphenol A\/Alkylphenols\u003cbr\u003e1.9.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e1.9.5 Green Product Procurement Policies\/Eco-labelling\u003cbr\u003e1.9.6 End-of-life Issues\u003cbr\u003e1.9.7 Fire Performance \u003cbr\u003e2 PVC RESINS\u003cbr\u003e2.1 Raw Starting Materials\u003cbr\u003e2.2 Vinyl Chloride Manufacture\u003cbr\u003e2.3 Polymerisation\u003cbr\u003e2.3.1 Homopolymers\u003cbr\u003e2.3.2 Copolymers and Terpolymers\u003cbr\u003e2.3.3 Chlorinated PVC (C-PVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.4.4 Porosity\u003cbr\u003e2.5 Storage and Transportation\u003cbr\u003e2.6 Role of Additives\u003cbr\u003e2.7 Identification \u003cbr\u003e3 PVC ADDITIVES\u003cbr\u003e3.1 Heat Stabilisers\u003cbr\u003e3.1.1 Solid Form\u003cbr\u003e3.1.2 Liquid Stabilisers\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 PVC\/Plasticiser Compatibility\u003cbr\u003e3.2.2 Plasticisation Process\u003cbr\u003e3.2.3 Plasticiser Influence on Physical Properties\u003cbr\u003e3.2.4 Plasticiser Choice and Selection\u003cbr\u003e3.2.5 Plasticiser Types\u003cbr\u003e3.3 Impact Modifiers\u003cbr\u003e3.4 Process Aids\u003cbr\u003e3.5 Lubricants\u003cbr\u003e3.6 Fillers\u003cbr\u003e3.6.1 Calcium Carbonate\u003cbr\u003e3.6.2 Other Fillers\u003cbr\u003e3.7 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e3.8 Pigments\u003cbr\u003e3.8.1 Titanium Dioxide (TiO2)\u003cbr\u003e3.8.2 Other Inorganic Pigments\u003cbr\u003e3.8.3 Organic Pigments\u003cbr\u003e3.8.4 Pigment Concentrates and Masterbatches\u003cbr\u003e3.9 Microbiocides\u003cbr\u003e3.10 Blowing Agents\u003cbr\u003e3.11 Antioxidants and Light Stabilisers\u003cbr\u003e3.12 Other PVC-P Additives\u003cbr\u003e3.12.1 Antistatic Agents\u003cbr\u003e3.12.2 Viscosity and Rheology Modifiers\u003cbr\u003e3.12.3 Bonding Agents\/Adhesion Promoters \u003cbr\u003e4 TESTING AND PROPERTIES\u003cbr\u003e4.1 Density\u003cbr\u003e4.2 Water Absorption\u003cbr\u003e4.3 Mechanical Properties\u003cbr\u003e4.3.1 Hardness\u003cbr\u003e4.3.2 Tensile Properties\u003cbr\u003e4.3.3 Flexural Properties\u003cbr\u003e4.3.4 Impact Properties\u003cbr\u003e4.3.5 Fatigue\u003cbr\u003e4.4 Thermal Properties\u003cbr\u003e4.4.1 Thermal Conductivity\u003cbr\u003e4.4.2 Heat Deflection Temperature\u003cbr\u003e4.4.3 Vicat Softening Point\u003cbr\u003e4.4.4 Linear Expansion Coefficient\u003cbr\u003e4.4.5 Specific Heat Capacity\u003cbr\u003e4.4.6 Cold Flex Temperature\u003cbr\u003e4.5 Electrical Properties\u003cbr\u003e4.5.1 Volume Resistivity\u003cbr\u003e4.5.2 Dielectric Constant or Relative Permittivity\u003cbr\u003e4.5.3 Loss Modulus or Dissipation Factor\u003cbr\u003e4.5.4 Breakdown Voltage or Dielectric Strength\u003cbr\u003e4.5.5 Arc Resistance\u003cbr\u003e4.6 Fire Properties\u003cbr\u003e4.6.1 Self-ignition Temperature\u003cbr\u003e4.6.2 Flame Ignition Temperature\u003cbr\u003e4.6.3 Limiting Oxygen Index (LOI)\u003cbr\u003e4.6.4 NBS Cone Calorimeter\u003cbr\u003e4.6.5 Smoke Evolution\u003cbr\u003e4.6.6 Fire Performance of PVC\u003cbr\u003e4.6.7 Fire Testing in the EU\u003cbr\u003e4.7 Optical Properties\u003cbr\u003e4.7.1 Transparency\u003cbr\u003e4.7.2 Gloss Level\u003cbr\u003e4.7.3 Colour\u003cbr\u003e4.8 Surface Properties\u003cbr\u003e4.8.1 Abrasion Resistance\u003cbr\u003e4.8.2 Surface Resistivity\u003cbr\u003e4.9 Biological Behaviour\u003cbr\u003e4.9.1 Assessment under Food and Water Legislation\u003cbr\u003e4.9.2 Assessment under Medical Legislation\u003cbr\u003e4.9.3 Sterilisation\u003cbr\u003e4.10 Resistance to Micro-organisms\u003cbr\u003e4.11 Performance in Service\u003cbr\u003e4.11.1 Maximum Continuous Use Temperature\u003cbr\u003e4.11.2 Stability to Light, UV Radiation, and Weathering\u003cbr\u003e4.11.4 Permeability \u003cbr\u003e5 DESIGN\u003cbr\u003e5.1 Design Considerations for PVC-U Materials\u003cbr\u003e5.1.1 Pipe\u003cbr\u003e5.1.2 Exterior Construction Applications\u003cbr\u003e5.1.3 Interior Construction Applications\u003cbr\u003e5.2 Design Considerations for PVC-P Materials\u003cbr\u003e5.2.1 Electrical Cable\u003cbr\u003e5.2.2 Resilient Flooring\u003cbr\u003e5.2.3 Wall Covering\u003cbr\u003e5.2.4 Roofing Membranes\u003cbr\u003e5.2.5 Coated Metal\u003cbr\u003e5.2.6 Toys and Baby Care Items\u003cbr\u003e5.2.7 Safety and Personal Protection\u003cbr\u003e5.2.8 Automotive and Transport\u003cbr\u003e5.2.9 Advertising Banners \u003cbr\u003e6 PROCESSING OF PVC\u003cbr\u003e6.1 Dry Blend Mixing\u003cbr\u003e6.1.1 High Intensity\u003cbr\u003e6.1.2 Low Intensity\u003cbr\u003e6.2 Liquid PVC Blending\u003cbr\u003e6.3 Gelation\u003cbr\u003e6.4 Melt Processing\u003cbr\u003e6.4.1 Melt Compounding\u003cbr\u003e6.4.2 Extrusion\u003cbr\u003e6.5 Injection Moulding\u003cbr\u003e6.6 Extrusion Blow Moulding\u003cbr\u003e6.7 Calendering\u003cbr\u003e6.8 Plastisol Moulding Processes\u003cbr\u003e6.8.1 Rheology\u003cbr\u003e6.8.2 Spreading or Coating\u003cbr\u003e6.8.3 Rotational, Slush, and Dip Moulding\u003cbr\u003e6.9 Powder Moulding Processes\u003cbr\u003e6.9.1 Fluidised Bed \u003cbr\u003e7 PROPERTY ENHANCEMENT OF PVC\u003cbr\u003e7.1 Crosslinked PVC\u003cbr\u003e7.1.1 Chemical Crosslinking\u003cbr\u003e7.1.2 Irradiation Crosslinking\u003cbr\u003e7.2 Orientation\u003cbr\u003e7.2.1 Pipe\u003cbr\u003e7.2.2 Sheet\u003cbr\u003e7.3 Blends and Alloys\u003cbr\u003e7.3.1 Flexibilisers\/Internal Plasticisers\u003cbr\u003e7.3.2 Ultrahigh Molecular Weight (UHMW) PVC\u003cbr\u003e7.4 Nanocomposites\u003cbr\u003e7.4.1 Melt Intercalation\u003cbr\u003e7.4.2 Solvent Method\u003cbr\u003e7.4.3 In Situ Polymerisation\u003cbr\u003e7.5 Wood Composites \u003cbr\u003e8 POST-PROCESSING AND ASSEMBLY\u003cbr\u003e8.1 Post-processing\u003cbr\u003e8.1.1 Thermoforming\u003cbr\u003e8.1.2 Printing and Coating\u003cbr\u003e8.2 Assembly Techniques\u003cbr\u003e8.2.1 Welding\u003cbr\u003e8.2.2 Adhesion\u003cbr\u003e8.3 Mechanical Assembly\u003cbr\u003e8.3.1 Machining, Cutting, and Fastening \u003cbr\u003e9 SUSTAINABLE DEVELOPMENT\u003cbr\u003e9.1 Environmental Attack and Response\u003cbr\u003e9.2 Vinyl 2010\/Chlorine Industry Sustainability Commitments\u003cbr\u003e9.2.1 Chlorine Generation\u003cbr\u003e9.2.2 PVC Production Industry Charters\u003cbr\u003e9.2.3 Conversion with Additives\u003cbr\u003e9.3 End of Life and Waste Management\u003cbr\u003e9.3.1 PVC-rich Waste: Mechanical Recycling\u003cbr\u003e9.3.2 PVC Feedstock Recycling\u003cbr\u003e9.3.3 Incineration\/Energy Recovery\u003cbr\u003e9.3.4 Controlled Landfill\u003cbr\u003e9.4 Life Cycle Assessments\u003cbr\u003e9.4.1 Eco-profiles\u003cbr\u003e9.5 Social Factors \u003cbr\u003e10 CAUSES OF FAILURE\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick has worked extensively in the PVC and additives business and been involved in both market and technical developments in this competitive field. Before retirement, he was Global R\u0026amp;D Manager with Akzo Nobel \/ Akcros Chemicals. He is now utilising his experience as a part-time lecturer at IPTME, Loughborough University and as a coordinator for a Research Network established to improve the sustainable use of PVC. Stuart is a Fellow Institute of Materials, Minerals, and Mining, Chartered Scientist, Chartered Chemist, Member of the Royal Society of Chemistry.","published_at":"2017-06-22T21:14:09-04:00","created_at":"2017-06-22T21:14:09-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","A\/Alkylphenols","additives","afety","bisphenol","blow molding","blow moulding","book","calendering","environmental","epoxidised","ESBO","extrusion","fillers","health","injection molding","injection moulding","molecular weight","p-chemistry","particle","phthalate","pipe","plasticisers","plasticizers","plastics","polymer","polyvinyl chloride","porosity","powder","pvc","resines","rheology","sheet","soya bean oil","storage","transportation"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378397700,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Polyvinyl Chloride","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-511-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592","options":["Title"],"media":[{"alt":null,"id":358719488093,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-511-6.jpg?v=1499953592","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S. Patrick \u003cbr\u003eISBN 978-1-85957-511-6 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005\u003cbr\u003e\u003c\/span\u003ePages 162\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolyvinyl chloride (PVC) has been around since the late part of the 19th century, although it was not produced commercially until the 1920s; it is the second largest consumed plastic material after polyethylene. PVC products can be rigid or flexible, opaque or transparent, coloured, and insulating or conducting. There is not just one PVC but a whole family of products tailor-made to suit the needs of each application. \u003cbr\u003e\u003cbr\u003eRapra's Practical Guide to PVC is packed with information for everyone working with PVC. It provides a comprehensive background on the resins and additives, their properties and processing characteristics, as well as discussion of product design and development issues. \u003cbr\u003e\u003cbr\u003ePVC is extremely cost effective in comparison to other plastics with a high degree of versatility in end-use and processing possibilities, as the reader will note from this book. It is durable, easily maintained, and can be produced in a large range of colours. As a result, PVC finds use in an extensive range of applications in virtually all areas of human activity, including medical equipment, construction applications such as flexible roof membranes, pipes and window profiles, toys, automotive parts and electrical cabling. \u003cbr\u003e\u003cbr\u003eThe PVC industry has also started to tackle some of its end-of-life issues. \u003cbr\u003eThere have been, and still are, issues and perceptions over environmental and health acceptance covering vinyl chloride monomer, dioxins, phthalate plasticisers, and lead (and cadmium) based heat stabilisers and these are discussed in depth in this book. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to raw materials suppliers and processors or end-users of PVC, as well as anyone with a general interest in this versatile material: resins and additives properties and testing design issues processing, including post processing and assembly property enhancement sustainable development.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 History\u003cbr\u003e1.3 Major Advantages and Limitations\u003cbr\u003e1.3.1 Major Advantages\u003cbr\u003e1.3.2 Limitations\u003cbr\u003e1.4 Applications\u003cbr\u003e1.5 Competitive Materials\u003cbr\u003e1.6 Market Share and Consumption Trend\u003cbr\u003e1.7 Industry Outline and Major Suppliers\u003cbr\u003e1.8 Material Pricing\u003cbr\u003e1.9 Safety, Health, and Environmental Issues\u003cbr\u003e1.9.1 Phthalate Plasticisers\u003cbr\u003e1.9.2 Heat Stabilisers\u003cbr\u003e1.9.3 Bisphenol A\/Alkylphenols\u003cbr\u003e1.9.4 Epoxidised Soya Bean Oil (ESBO)\u003cbr\u003e1.9.5 Green Product Procurement Policies\/Eco-labelling\u003cbr\u003e1.9.6 End-of-life Issues\u003cbr\u003e1.9.7 Fire Performance \u003cbr\u003e2 PVC RESINS\u003cbr\u003e2.1 Raw Starting Materials\u003cbr\u003e2.2 Vinyl Chloride Manufacture\u003cbr\u003e2.3 Polymerisation\u003cbr\u003e2.3.1 Homopolymers\u003cbr\u003e2.3.2 Copolymers and Terpolymers\u003cbr\u003e2.3.3 Chlorinated PVC (C-PVC)\u003cbr\u003e2.4 PVC Resin Characterisation\u003cbr\u003e2.4.1 Molecular Weight\u003cbr\u003e2.4.2 Particle Size\u003cbr\u003e2.4.3 Bulk Powder Properties\u003cbr\u003e2.4.4 Porosity\u003cbr\u003e2.5 Storage and Transportation\u003cbr\u003e2.6 Role of Additives\u003cbr\u003e2.7 Identification \u003cbr\u003e3 PVC ADDITIVES\u003cbr\u003e3.1 Heat Stabilisers\u003cbr\u003e3.1.1 Solid Form\u003cbr\u003e3.1.2 Liquid Stabilisers\u003cbr\u003e3.2 Plasticisers\u003cbr\u003e3.2.1 PVC\/Plasticiser Compatibility\u003cbr\u003e3.2.2 Plasticisation Process\u003cbr\u003e3.2.3 Plasticiser Influence on Physical Properties\u003cbr\u003e3.2.4 Plasticiser Choice and Selection\u003cbr\u003e3.2.5 Plasticiser Types\u003cbr\u003e3.3 Impact Modifiers\u003cbr\u003e3.4 Process Aids\u003cbr\u003e3.5 Lubricants\u003cbr\u003e3.6 Fillers\u003cbr\u003e3.6.1 Calcium Carbonate\u003cbr\u003e3.6.2 Other Fillers\u003cbr\u003e3.7 Flame Retardants (FR) and Smoke Suppressants (SS)\u003cbr\u003e3.8 Pigments\u003cbr\u003e3.8.1 Titanium Dioxide (TiO2)\u003cbr\u003e3.8.2 Other Inorganic Pigments\u003cbr\u003e3.8.3 Organic Pigments\u003cbr\u003e3.8.4 Pigment Concentrates and Masterbatches\u003cbr\u003e3.9 Microbiocides\u003cbr\u003e3.10 Blowing Agents\u003cbr\u003e3.11 Antioxidants and Light Stabilisers\u003cbr\u003e3.12 Other PVC-P Additives\u003cbr\u003e3.12.1 Antistatic Agents\u003cbr\u003e3.12.2 Viscosity and Rheology Modifiers\u003cbr\u003e3.12.3 Bonding Agents\/Adhesion Promoters \u003cbr\u003e4 TESTING AND PROPERTIES\u003cbr\u003e4.1 Density\u003cbr\u003e4.2 Water Absorption\u003cbr\u003e4.3 Mechanical Properties\u003cbr\u003e4.3.1 Hardness\u003cbr\u003e4.3.2 Tensile Properties\u003cbr\u003e4.3.3 Flexural Properties\u003cbr\u003e4.3.4 Impact Properties\u003cbr\u003e4.3.5 Fatigue\u003cbr\u003e4.4 Thermal Properties\u003cbr\u003e4.4.1 Thermal Conductivity\u003cbr\u003e4.4.2 Heat Deflection Temperature\u003cbr\u003e4.4.3 Vicat Softening Point\u003cbr\u003e4.4.4 Linear Expansion Coefficient\u003cbr\u003e4.4.5 Specific Heat Capacity\u003cbr\u003e4.4.6 Cold Flex Temperature\u003cbr\u003e4.5 Electrical Properties\u003cbr\u003e4.5.1 Volume Resistivity\u003cbr\u003e4.5.2 Dielectric Constant or Relative Permittivity\u003cbr\u003e4.5.3 Loss Modulus or Dissipation Factor\u003cbr\u003e4.5.4 Breakdown Voltage or Dielectric Strength\u003cbr\u003e4.5.5 Arc Resistance\u003cbr\u003e4.6 Fire Properties\u003cbr\u003e4.6.1 Self-ignition Temperature\u003cbr\u003e4.6.2 Flame Ignition Temperature\u003cbr\u003e4.6.3 Limiting Oxygen Index (LOI)\u003cbr\u003e4.6.4 NBS Cone Calorimeter\u003cbr\u003e4.6.5 Smoke Evolution\u003cbr\u003e4.6.6 Fire Performance of PVC\u003cbr\u003e4.6.7 Fire Testing in the EU\u003cbr\u003e4.7 Optical Properties\u003cbr\u003e4.7.1 Transparency\u003cbr\u003e4.7.2 Gloss Level\u003cbr\u003e4.7.3 Colour\u003cbr\u003e4.8 Surface Properties\u003cbr\u003e4.8.1 Abrasion Resistance\u003cbr\u003e4.8.2 Surface Resistivity\u003cbr\u003e4.9 Biological Behaviour\u003cbr\u003e4.9.1 Assessment under Food and Water Legislation\u003cbr\u003e4.9.2 Assessment under Medical Legislation\u003cbr\u003e4.9.3 Sterilisation\u003cbr\u003e4.10 Resistance to Micro-organisms\u003cbr\u003e4.11 Performance in Service\u003cbr\u003e4.11.1 Maximum Continuous Use Temperature\u003cbr\u003e4.11.2 Stability to Light, UV Radiation, and Weathering\u003cbr\u003e4.11.4 Permeability \u003cbr\u003e5 DESIGN\u003cbr\u003e5.1 Design Considerations for PVC-U Materials\u003cbr\u003e5.1.1 Pipe\u003cbr\u003e5.1.2 Exterior Construction Applications\u003cbr\u003e5.1.3 Interior Construction Applications\u003cbr\u003e5.2 Design Considerations for PVC-P Materials\u003cbr\u003e5.2.1 Electrical Cable\u003cbr\u003e5.2.2 Resilient Flooring\u003cbr\u003e5.2.3 Wall Covering\u003cbr\u003e5.2.4 Roofing Membranes\u003cbr\u003e5.2.5 Coated Metal\u003cbr\u003e5.2.6 Toys and Baby Care Items\u003cbr\u003e5.2.7 Safety and Personal Protection\u003cbr\u003e5.2.8 Automotive and Transport\u003cbr\u003e5.2.9 Advertising Banners \u003cbr\u003e6 PROCESSING OF PVC\u003cbr\u003e6.1 Dry Blend Mixing\u003cbr\u003e6.1.1 High Intensity\u003cbr\u003e6.1.2 Low Intensity\u003cbr\u003e6.2 Liquid PVC Blending\u003cbr\u003e6.3 Gelation\u003cbr\u003e6.4 Melt Processing\u003cbr\u003e6.4.1 Melt Compounding\u003cbr\u003e6.4.2 Extrusion\u003cbr\u003e6.5 Injection Moulding\u003cbr\u003e6.6 Extrusion Blow Moulding\u003cbr\u003e6.7 Calendering\u003cbr\u003e6.8 Plastisol Moulding Processes\u003cbr\u003e6.8.1 Rheology\u003cbr\u003e6.8.2 Spreading or Coating\u003cbr\u003e6.8.3 Rotational, Slush, and Dip Moulding\u003cbr\u003e6.9 Powder Moulding Processes\u003cbr\u003e6.9.1 Fluidised Bed \u003cbr\u003e7 PROPERTY ENHANCEMENT OF PVC\u003cbr\u003e7.1 Crosslinked PVC\u003cbr\u003e7.1.1 Chemical Crosslinking\u003cbr\u003e7.1.2 Irradiation Crosslinking\u003cbr\u003e7.2 Orientation\u003cbr\u003e7.2.1 Pipe\u003cbr\u003e7.2.2 Sheet\u003cbr\u003e7.3 Blends and Alloys\u003cbr\u003e7.3.1 Flexibilisers\/Internal Plasticisers\u003cbr\u003e7.3.2 Ultrahigh Molecular Weight (UHMW) PVC\u003cbr\u003e7.4 Nanocomposites\u003cbr\u003e7.4.1 Melt Intercalation\u003cbr\u003e7.4.2 Solvent Method\u003cbr\u003e7.4.3 In Situ Polymerisation\u003cbr\u003e7.5 Wood Composites \u003cbr\u003e8 POST-PROCESSING AND ASSEMBLY\u003cbr\u003e8.1 Post-processing\u003cbr\u003e8.1.1 Thermoforming\u003cbr\u003e8.1.2 Printing and Coating\u003cbr\u003e8.2 Assembly Techniques\u003cbr\u003e8.2.1 Welding\u003cbr\u003e8.2.2 Adhesion\u003cbr\u003e8.3 Mechanical Assembly\u003cbr\u003e8.3.1 Machining, Cutting, and Fastening \u003cbr\u003e9 SUSTAINABLE DEVELOPMENT\u003cbr\u003e9.1 Environmental Attack and Response\u003cbr\u003e9.2 Vinyl 2010\/Chlorine Industry Sustainability Commitments\u003cbr\u003e9.2.1 Chlorine Generation\u003cbr\u003e9.2.2 PVC Production Industry Charters\u003cbr\u003e9.2.3 Conversion with Additives\u003cbr\u003e9.3 End of Life and Waste Management\u003cbr\u003e9.3.1 PVC-rich Waste: Mechanical Recycling\u003cbr\u003e9.3.2 PVC Feedstock Recycling\u003cbr\u003e9.3.3 Incineration\/Energy Recovery\u003cbr\u003e9.3.4 Controlled Landfill\u003cbr\u003e9.4 Life Cycle Assessments\u003cbr\u003e9.4.1 Eco-profiles\u003cbr\u003e9.5 Social Factors \u003cbr\u003e10 CAUSES OF FAILURE\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nStuart Patrick has worked extensively in the PVC and additives business and been involved in both market and technical developments in this competitive field. Before retirement, he was Global R\u0026amp;D Manager with Akzo Nobel \/ Akcros Chemicals. He is now utilising his experience as a part-time lecturer at IPTME, Loughborough University and as a coordinator for a Research Network established to improve the sustainable use of PVC. Stuart is a Fellow Institute of Materials, Minerals, and Mining, Chartered Scientist, Chartered Chemist, Member of the Royal Society of Chemistry."}
Practical Guide to Rot...
$90.00
{"id":11242209156,"title":"Practical Guide to Rotational Molding","handle":"978-1-85957-387-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford and M.P. Kearns \u003cbr\u003eISBN 978-1-85957-387-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRotational molding is a low pressure, a high temperature manufacturing method for producing hollow one-piece plastic parts. The molding process dates back hundreds of years to the Swiss use of the method to make hollow chocolate eggs. The technology involves aspects ranging from mould design to mould heating and cooling, and remolding methods. Not all materials are suitable for the process - resin and additive selection are critical. \u003cbr\u003e\u003cbr\u003eRotational moulding is a very competitive alternative to blow molding, thermoforming and injection molding for the manufacture of hollow plastic parts. It offers designers the chance to produce stress-free articles, with uniform wall thickness and complex shapes. Typical molded parts include bulk containers, tanks, canoes, toys, medical equipment, automotive parts, and ducts. \u003cbr\u003e\u003cbr\u003eThere are many advantages associated with rotational molding. Firstly, the moulds are relatively simple and cheap, because the process is low pressure, unlike injection molding. The wall thickness of parts is more uniform and it is possible to alter the wall thickness without changing the mould. Complex parts with undercuts ad intricate contours can be manufactured relatively easily. There is also very little waste as the required weight of plastic to produce the part is placed inside the mould. \u003cbr\u003e\u003cbr\u003eThis book – A Practical Guide to Rotational Molding – describes the basic aspects of rotational molding and includes information on the latest state of the art developments in the industry. A key feature of the approach is to use photographs wherever possible to illustrate the points that are being made. This book will be useful to those new to the industry, as well as those who are experienced in some aspects of the process. \u003cbr\u003e\u003cbr\u003eThe ever-changing nature of this industry means that it is very important for those involved in the manufacturing operation to keep abreast of the advances that are being made. The industry is becoming more competitive and customers are making increasing demands in terms of part quality and performance. \u003cbr\u003e\u003cbr\u003eRotational molding is becoming a highly sophisticated manufacturing method for plastic parts. New mould and machine features, and advanced process control technologies, are being developed. This gives designers, and end users, access to new opportunities to create novel and innovative plastic moldings. New technologies such as mould internal air temperature measurement, mould pressurization, and one shot foaming are now available.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003eChapter 1 – Introduction to the Rotational Molding Process\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 The Rotational Molding Process\u003cbr\u003e1.3 Overview of Rotational Molding\u003cbr\u003e1.4 Special Nature of Rotational Molding\u003cbr\u003e1.5 Advantages of Rotational Molding\u003cbr\u003e1.6 Disadvantages of Rotational Molding\u003cbr\u003e1.7 Common Applications for Rotomoulded Products\u003cbr\u003e1.7.1 Material Handling Products\u003cbr\u003e1.7.2 Industrial Products\u003cbr\u003e1.7.3 Environmental Products\u003cbr\u003e1.7.4 Leisure Products\u003cbr\u003e1.7.5 Marine Products\u003cbr\u003e1.7.6 Road Signage\u003cbr\u003eBibliography \u003cbr\u003eChapter 2 – Moulds\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Mould Materials\u003cbr\u003e2.3 Sheet Steel\u003cbr\u003e2.4 Aluminium\u003cbr\u003e2.5 Electroformed Nickel\u003cbr\u003e2.6 Comparison Between Mould Materials\u003cbr\u003e2.7 Mould Design\u003cbr\u003e2.7.1 Mould Frame\u003cbr\u003e2.7.2 Molded-in Inserts\u003cbr\u003e2.7.3 Molded-in Handles\u003cbr\u003e2.7.4 Temporary Inserts\u003cbr\u003e2.7.5 Movable Cores\u003cbr\u003e2.7.6 Threads\u003cbr\u003e2.7.7 Mould Venting\u003cbr\u003e2.7.8 Mould Surface Finish\u003cbr\u003e2.8 Mould Release\u003cbr\u003e2.8.1 Mould Preparation for Release Agent\u003cbr\u003e2.8.2 Reactive Systems\u003cbr\u003e2.8.2.1 Spray-on Zinc Stearates\u003cbr\u003e2.8.2.2 Silicones\u003cbr\u003e2.8.2.3 Disiloxanes\u003cbr\u003e2.8.3 Conventional Systems\u003cbr\u003e2.8.4 Permanent Systems\u003cbr\u003e2.8.5 Hybrid Systems\u003cbr\u003e2.9 Mould Cooling\u003cbr\u003e2.10 Mould Ancillaries\u003cbr\u003e2.11 Molding Aids\u003cbr\u003e2.12 Kiss-Offs\u003cbr\u003e2.13 Calculation of Charge Weight \u003cbr\u003eChapter 3 - Rotational Molding Machinery\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Types of Rotational Molding Machines\u003cbr\u003e3.2.1 Carousel Machines\u003cbr\u003e3.2.2 Shuttle Machines\u003cbr\u003e3.2.3 Clamshell Machines\u003cbr\u003e3.2.4 Rock and Roll Machines\u003cbr\u003e3.2.5 Other Types of Machines\u003cbr\u003e3.3 Mould Swing\u003cbr\u003e3.4 Mould Speed\u003cbr\u003e3.5 Speed Ratio\u003cbr\u003e3.6 Oven Air Flow Amplification\u003cbr\u003e3.7 Cooling\u003cbr\u003e3.8 Developments in Machine Control\u003cbr\u003e3.9 Internal Air Temperature Measurement in Rotational Molding\u003cbr\u003e3.10 Preparation of Rotolog for Molding Trials\u003cbr\u003e3.11 Monitoring Pressure Inside a Mould\u003cbr\u003eBibliography \u003cbr\u003eChapter 4 – Materials for Rotational Molding\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Typical Characteristics of Rotationally Molded Plastics\u003cbr\u003e4.3 Materials Used in Rotational Molding\u003cbr\u003e4.4 Polyethylene\u003cbr\u003e4.4.1 Low Density Polyethylene (LDPE)\u003cbr\u003e4.4.2 High Density Polyethylene (HDPE)\u003cbr\u003e4.4.3 Medium Density Polyethylene (MDPE)\u003cbr\u003e4.4.4 Linear Low Density Polyethylene (LLDPE)\u003cbr\u003e4.4.5 Metallocene Polyethylene\u003cbr\u003e4.4.6 Ethylene-Vinyl Acetate (EVA)\u003cbr\u003e4.4.7 Ethylene-Butyl Acrylate (EBA)\u003cbr\u003e4.5 Polypropylene (PP)\u003cbr\u003e4.6 Polyamides (Nylons)\u003cbr\u003e4.6.1 Nylon 6\u003cbr\u003e4.6.2 Nylon 11 and Nylon 12\u003cbr\u003e4.6.3 Reaction Injection Molding (RIM) Nylon\u003cbr\u003e4.7 Amorphous Materials\u003cbr\u003e4.7.1 Polyvinyl Chloride (PVC)\u003cbr\u003e4.7.2 Fluoropolymers\u003cbr\u003e4.8 Other Plastics\u003cbr\u003e4.9 Additives Used in Rotational Molding Materials\u003cbr\u003e4.9.1 Fillers\u003cbr\u003e4.9.2 Plasticizers\u003cbr\u003e4.9.3 Lubricants\u003cbr\u003e4.9.4 Stabilizers\u003cbr\u003e4.9.5 Anti-Oxidants\u003cbr\u003e4.9.6 Ultraviolet Stabilizers\u003cbr\u003e4.9.7 Flame Retardants\u003cbr\u003e4.9.8 Crosslinking Agents\u003cbr\u003e4.9.9 Foaming Agents\u003cbr\u003e4.9.10 Pigments\u003cbr\u003e4.10 Powders for Rotational Molding - Grinding or Pulverizing\u003cbr\u003e4.10.1 Introduction\u003cbr\u003e4.11 Particle Size Distribution\u003cbr\u003e4.12 Dry Flow\u003cbr\u003e4.13 Bulk Density\u003cbr\u003e4.14 Factors Affecting Powder Quality\u003cbr\u003e4.14.1 Gap Size\u003cbr\u003e4.14.2 Number of Mill Teeth\u003cbr\u003e4.14.3 Grinding Temperature\u003cbr\u003e4.15 Micropelletising\u003cbr\u003e4.16 Coloring of Plastics for Rotational Molding\u003cbr\u003e4.17 Types of Pigments\u003cbr\u003eBibliography \u003cbr\u003eChapter 5 – Quality Control in Rotational Molding\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Wall Thickness Distribution\u003cbr\u003e5.3 Shrinkage\u003cbr\u003e5.3.1 Shrinkage Guidelines\u003cbr\u003e5.3.2 Control of Shrinkage\u003cbr\u003e5.3.2.1 Effect of Release Point on Shrinkage\u003cbr\u003e5.3.2.2 Other Factors Affecting Shrinkage\u003cbr\u003e5.4 Warpage\u003cbr\u003e5.4.1 Control of Warpage\u003cbr\u003e5.5 Residual Stress\u003cbr\u003e5.5.1 Short-Term Effects of Residual Stresses\u003cbr\u003e5.5.2 Long-Term Effects of Residual Stresses\u003cbr\u003e5.5.3 Cures for Residual Stress Problems\u003cbr\u003e5.6 Surface Decoration\u003cbr\u003e5.6.1 Painting\u003cbr\u003e5.6.2 Hot Stamping\u003cbr\u003e5.6.3 Adhesives\u003cbr\u003e5.6.4 In-Mould Decoration\u003cbr\u003e5.6.5 Post Molding Decoration\u003cbr\u003e5.7 Foaming in Rotational Molding\u003cbr\u003e5.7.1 Chemical Blowing Agent Technology\u003cbr\u003e5.7.2 Design of Foamed Sections\u003cbr\u003e5.7.3 Solid\/Foam Cross-Sections\u003cbr\u003e5.7.4 Solid\/Foam\/Solid Cross-Sections\u003cbr\u003eBibliography \u003cbr\u003eChapter 6 – The Future for Rotational Molding\u003cbr\u003e6.1 Materials\u003cbr\u003e6.2 Moulds\u003cbr\u003e6.3 Molding Equipment\u003cbr\u003e6.4 The Challenges\u003cbr\u003e6.5 The Role that the Molder Must Play\u003cbr\u003e6.6 The Role that the Suppliers Must Play\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eProfessor Roy J.CRAWFORD\u003c\/strong\u003e FREng B.Sc., Ph.D., D.Sc., FIMechE., FIM\u003cbr\u003eQueen's University, Belfast \u003cbr\u003eProfessor Roy Crawford obtained a first-class honors degree in Mechanical Engineering from the Queen's University of Belfast in 1970. He went on to obtain a Ph.D. degree relating to the processing and properties of plastics in 1973. He obtained a DSc degree for research work on plastics in 1987. Over the past 30 years, he has concentrated on studying the processing behavior of plastics. He has published over 250 papers in learned journals and conferences during this time. He is the author of 7 textbooks on plastics and engineering materials. \u003cbr\u003e\u003cbr\u003eRoy Crawford is currently Pro Vice-Chancellor for Research and Development and Professor of Engineering Materials at Queen's University Belfast. From 1997 to 1999 he was Director of the Polymer Processing Research Centre at Queen's University. This Centre was established on the basis of the international reputation of the Rotational Molding Research Centre that he initiated at the University. \u003cbr\u003e\u003cbr\u003eHe has been awarded a number of prizes for the high quality of his research work. In 1996 he received the prestigious Netlon Medal from the Institute of Materials for innovative contributions to the molding of plastics. He is Technical Director for the Association of Rotational Molders in Chicago, USA and Technical Editor for the Rotation Magazine, published in the USA. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eM. P. KEARNS\u003c\/strong\u003e B.Eng., M.Phil., C.Eng., MIChemE\u003cbr\u003eQueen's University, Belfast \u003cbr\u003eMark Kearns is the Rotational Molding Research Manager of the Polymer Processing Research Centre at Queen’s University, Belfast. He is a Chartered Chemical Engineer with an M.Phil Degree in Rotational Molding. He manages rotational molding research and development projects for companies and institutions across Europe, Australasia, and North America, and organizes the Association of Rotational Molders - sponsored, ‘Advanced Rotational Molding Training Seminars’ both in Belfast and North America. Mark has spent over ten years in rotational molding research, initially in Industry as a Development Engineer and Deputy Production Manager. He has published over 50 papers and conference proceedings on rotational molding and has delivered lectures on rotational molding in North America, Asia, Africa and Europe.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:05-04:00","created_at":"2017-06-22T21:13:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","additives","agent","ancillaries","automotive","book","canoes","containers","cooling","cores","disiloxanes","ducts","frame","heating","inserts","low pressure molding","machinery","manufacturing","medical equipment","moulding","p-processing","parts","polyethylene","polymer","release","rotational","rotational molding","silicones","speed","tanks","technology","toys","venting","Zinc Stearates"],"price":9000,"price_min":9000,"price_max":9000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378329732,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Rotational Molding","public_title":null,"options":["Default Title"],"price":9000,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-387-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/51jQip1cC5L._SX400_BO1_204_203_200.jpg?v=1499953613"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/51jQip1cC5L._SX400_BO1_204_203_200.jpg?v=1499953613","options":["Title"],"media":[{"alt":null,"id":358721978461,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/51jQip1cC5L._SX400_BO1_204_203_200.jpg?v=1499953613"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/51jQip1cC5L._SX400_BO1_204_203_200.jpg?v=1499953613","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.J. Crawford and M.P. Kearns \u003cbr\u003eISBN 978-1-85957-387-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2003\u003cbr\u003e\u003c\/span\u003epages 184\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRotational molding is a low pressure, a high temperature manufacturing method for producing hollow one-piece plastic parts. The molding process dates back hundreds of years to the Swiss use of the method to make hollow chocolate eggs. The technology involves aspects ranging from mould design to mould heating and cooling, and remolding methods. Not all materials are suitable for the process - resin and additive selection are critical. \u003cbr\u003e\u003cbr\u003eRotational moulding is a very competitive alternative to blow molding, thermoforming and injection molding for the manufacture of hollow plastic parts. It offers designers the chance to produce stress-free articles, with uniform wall thickness and complex shapes. Typical molded parts include bulk containers, tanks, canoes, toys, medical equipment, automotive parts, and ducts. \u003cbr\u003e\u003cbr\u003eThere are many advantages associated with rotational molding. Firstly, the moulds are relatively simple and cheap, because the process is low pressure, unlike injection molding. The wall thickness of parts is more uniform and it is possible to alter the wall thickness without changing the mould. Complex parts with undercuts ad intricate contours can be manufactured relatively easily. There is also very little waste as the required weight of plastic to produce the part is placed inside the mould. \u003cbr\u003e\u003cbr\u003eThis book – A Practical Guide to Rotational Molding – describes the basic aspects of rotational molding and includes information on the latest state of the art developments in the industry. A key feature of the approach is to use photographs wherever possible to illustrate the points that are being made. This book will be useful to those new to the industry, as well as those who are experienced in some aspects of the process. \u003cbr\u003e\u003cbr\u003eThe ever-changing nature of this industry means that it is very important for those involved in the manufacturing operation to keep abreast of the advances that are being made. The industry is becoming more competitive and customers are making increasing demands in terms of part quality and performance. \u003cbr\u003e\u003cbr\u003eRotational molding is becoming a highly sophisticated manufacturing method for plastic parts. New mould and machine features, and advanced process control technologies, are being developed. This gives designers, and end users, access to new opportunities to create novel and innovative plastic moldings. New technologies such as mould internal air temperature measurement, mould pressurization, and one shot foaming are now available.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003eChapter 1 – Introduction to the Rotational Molding Process\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 The Rotational Molding Process\u003cbr\u003e1.3 Overview of Rotational Molding\u003cbr\u003e1.4 Special Nature of Rotational Molding\u003cbr\u003e1.5 Advantages of Rotational Molding\u003cbr\u003e1.6 Disadvantages of Rotational Molding\u003cbr\u003e1.7 Common Applications for Rotomoulded Products\u003cbr\u003e1.7.1 Material Handling Products\u003cbr\u003e1.7.2 Industrial Products\u003cbr\u003e1.7.3 Environmental Products\u003cbr\u003e1.7.4 Leisure Products\u003cbr\u003e1.7.5 Marine Products\u003cbr\u003e1.7.6 Road Signage\u003cbr\u003eBibliography \u003cbr\u003eChapter 2 – Moulds\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Mould Materials\u003cbr\u003e2.3 Sheet Steel\u003cbr\u003e2.4 Aluminium\u003cbr\u003e2.5 Electroformed Nickel\u003cbr\u003e2.6 Comparison Between Mould Materials\u003cbr\u003e2.7 Mould Design\u003cbr\u003e2.7.1 Mould Frame\u003cbr\u003e2.7.2 Molded-in Inserts\u003cbr\u003e2.7.3 Molded-in Handles\u003cbr\u003e2.7.4 Temporary Inserts\u003cbr\u003e2.7.5 Movable Cores\u003cbr\u003e2.7.6 Threads\u003cbr\u003e2.7.7 Mould Venting\u003cbr\u003e2.7.8 Mould Surface Finish\u003cbr\u003e2.8 Mould Release\u003cbr\u003e2.8.1 Mould Preparation for Release Agent\u003cbr\u003e2.8.2 Reactive Systems\u003cbr\u003e2.8.2.1 Spray-on Zinc Stearates\u003cbr\u003e2.8.2.2 Silicones\u003cbr\u003e2.8.2.3 Disiloxanes\u003cbr\u003e2.8.3 Conventional Systems\u003cbr\u003e2.8.4 Permanent Systems\u003cbr\u003e2.8.5 Hybrid Systems\u003cbr\u003e2.9 Mould Cooling\u003cbr\u003e2.10 Mould Ancillaries\u003cbr\u003e2.11 Molding Aids\u003cbr\u003e2.12 Kiss-Offs\u003cbr\u003e2.13 Calculation of Charge Weight \u003cbr\u003eChapter 3 - Rotational Molding Machinery\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Types of Rotational Molding Machines\u003cbr\u003e3.2.1 Carousel Machines\u003cbr\u003e3.2.2 Shuttle Machines\u003cbr\u003e3.2.3 Clamshell Machines\u003cbr\u003e3.2.4 Rock and Roll Machines\u003cbr\u003e3.2.5 Other Types of Machines\u003cbr\u003e3.3 Mould Swing\u003cbr\u003e3.4 Mould Speed\u003cbr\u003e3.5 Speed Ratio\u003cbr\u003e3.6 Oven Air Flow Amplification\u003cbr\u003e3.7 Cooling\u003cbr\u003e3.8 Developments in Machine Control\u003cbr\u003e3.9 Internal Air Temperature Measurement in Rotational Molding\u003cbr\u003e3.10 Preparation of Rotolog for Molding Trials\u003cbr\u003e3.11 Monitoring Pressure Inside a Mould\u003cbr\u003eBibliography \u003cbr\u003eChapter 4 – Materials for Rotational Molding\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Typical Characteristics of Rotationally Molded Plastics\u003cbr\u003e4.3 Materials Used in Rotational Molding\u003cbr\u003e4.4 Polyethylene\u003cbr\u003e4.4.1 Low Density Polyethylene (LDPE)\u003cbr\u003e4.4.2 High Density Polyethylene (HDPE)\u003cbr\u003e4.4.3 Medium Density Polyethylene (MDPE)\u003cbr\u003e4.4.4 Linear Low Density Polyethylene (LLDPE)\u003cbr\u003e4.4.5 Metallocene Polyethylene\u003cbr\u003e4.4.6 Ethylene-Vinyl Acetate (EVA)\u003cbr\u003e4.4.7 Ethylene-Butyl Acrylate (EBA)\u003cbr\u003e4.5 Polypropylene (PP)\u003cbr\u003e4.6 Polyamides (Nylons)\u003cbr\u003e4.6.1 Nylon 6\u003cbr\u003e4.6.2 Nylon 11 and Nylon 12\u003cbr\u003e4.6.3 Reaction Injection Molding (RIM) Nylon\u003cbr\u003e4.7 Amorphous Materials\u003cbr\u003e4.7.1 Polyvinyl Chloride (PVC)\u003cbr\u003e4.7.2 Fluoropolymers\u003cbr\u003e4.8 Other Plastics\u003cbr\u003e4.9 Additives Used in Rotational Molding Materials\u003cbr\u003e4.9.1 Fillers\u003cbr\u003e4.9.2 Plasticizers\u003cbr\u003e4.9.3 Lubricants\u003cbr\u003e4.9.4 Stabilizers\u003cbr\u003e4.9.5 Anti-Oxidants\u003cbr\u003e4.9.6 Ultraviolet Stabilizers\u003cbr\u003e4.9.7 Flame Retardants\u003cbr\u003e4.9.8 Crosslinking Agents\u003cbr\u003e4.9.9 Foaming Agents\u003cbr\u003e4.9.10 Pigments\u003cbr\u003e4.10 Powders for Rotational Molding - Grinding or Pulverizing\u003cbr\u003e4.10.1 Introduction\u003cbr\u003e4.11 Particle Size Distribution\u003cbr\u003e4.12 Dry Flow\u003cbr\u003e4.13 Bulk Density\u003cbr\u003e4.14 Factors Affecting Powder Quality\u003cbr\u003e4.14.1 Gap Size\u003cbr\u003e4.14.2 Number of Mill Teeth\u003cbr\u003e4.14.3 Grinding Temperature\u003cbr\u003e4.15 Micropelletising\u003cbr\u003e4.16 Coloring of Plastics for Rotational Molding\u003cbr\u003e4.17 Types of Pigments\u003cbr\u003eBibliography \u003cbr\u003eChapter 5 – Quality Control in Rotational Molding\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Wall Thickness Distribution\u003cbr\u003e5.3 Shrinkage\u003cbr\u003e5.3.1 Shrinkage Guidelines\u003cbr\u003e5.3.2 Control of Shrinkage\u003cbr\u003e5.3.2.1 Effect of Release Point on Shrinkage\u003cbr\u003e5.3.2.2 Other Factors Affecting Shrinkage\u003cbr\u003e5.4 Warpage\u003cbr\u003e5.4.1 Control of Warpage\u003cbr\u003e5.5 Residual Stress\u003cbr\u003e5.5.1 Short-Term Effects of Residual Stresses\u003cbr\u003e5.5.2 Long-Term Effects of Residual Stresses\u003cbr\u003e5.5.3 Cures for Residual Stress Problems\u003cbr\u003e5.6 Surface Decoration\u003cbr\u003e5.6.1 Painting\u003cbr\u003e5.6.2 Hot Stamping\u003cbr\u003e5.6.3 Adhesives\u003cbr\u003e5.6.4 In-Mould Decoration\u003cbr\u003e5.6.5 Post Molding Decoration\u003cbr\u003e5.7 Foaming in Rotational Molding\u003cbr\u003e5.7.1 Chemical Blowing Agent Technology\u003cbr\u003e5.7.2 Design of Foamed Sections\u003cbr\u003e5.7.3 Solid\/Foam Cross-Sections\u003cbr\u003e5.7.4 Solid\/Foam\/Solid Cross-Sections\u003cbr\u003eBibliography \u003cbr\u003eChapter 6 – The Future for Rotational Molding\u003cbr\u003e6.1 Materials\u003cbr\u003e6.2 Moulds\u003cbr\u003e6.3 Molding Equipment\u003cbr\u003e6.4 The Challenges\u003cbr\u003e6.5 The Role that the Molder Must Play\u003cbr\u003e6.6 The Role that the Suppliers Must Play\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eProfessor Roy J.CRAWFORD\u003c\/strong\u003e FREng B.Sc., Ph.D., D.Sc., FIMechE., FIM\u003cbr\u003eQueen's University, Belfast \u003cbr\u003eProfessor Roy Crawford obtained a first-class honors degree in Mechanical Engineering from the Queen's University of Belfast in 1970. He went on to obtain a Ph.D. degree relating to the processing and properties of plastics in 1973. He obtained a DSc degree for research work on plastics in 1987. Over the past 30 years, he has concentrated on studying the processing behavior of plastics. He has published over 250 papers in learned journals and conferences during this time. He is the author of 7 textbooks on plastics and engineering materials. \u003cbr\u003e\u003cbr\u003eRoy Crawford is currently Pro Vice-Chancellor for Research and Development and Professor of Engineering Materials at Queen's University Belfast. From 1997 to 1999 he was Director of the Polymer Processing Research Centre at Queen's University. This Centre was established on the basis of the international reputation of the Rotational Molding Research Centre that he initiated at the University. \u003cbr\u003e\u003cbr\u003eHe has been awarded a number of prizes for the high quality of his research work. In 1996 he received the prestigious Netlon Medal from the Institute of Materials for innovative contributions to the molding of plastics. He is Technical Director for the Association of Rotational Molders in Chicago, USA and Technical Editor for the Rotation Magazine, published in the USA. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eM. P. KEARNS\u003c\/strong\u003e B.Eng., M.Phil., C.Eng., MIChemE\u003cbr\u003eQueen's University, Belfast \u003cbr\u003eMark Kearns is the Rotational Molding Research Manager of the Polymer Processing Research Centre at Queen’s University, Belfast. He is a Chartered Chemical Engineer with an M.Phil Degree in Rotational Molding. He manages rotational molding research and development projects for companies and institutions across Europe, Australasia, and North America, and organizes the Association of Rotational Molders - sponsored, ‘Advanced Rotational Molding Training Seminars’ both in Belfast and North America. Mark has spent over ten years in rotational molding research, initially in Industry as a Development Engineer and Deputy Production Manager. He has published over 50 papers and conference proceedings on rotational molding and has delivered lectures on rotational molding in North America, Asia, Africa and Europe.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to Smo...
$130.00
{"id":11242255172,"title":"Practical Guide to Smoke and Combustion Products from Burning PolymersGeneration, Assessment and Control","handle":"978-1-84735-442-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sergei Levchik, Marcelo Hirschler and Edward Weil \u003cbr\u003eISBN 978-1-84735-442-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Practical Guide presents one of the complete overviews of this important topic, covering smoke generation (including obscuration, toxicity, corrosivity), small and large scale smoke assessment, regulation of smoke, and methods of controlling smoke by plastics formulation. In particular, this book focuses on the assessment of fire hazard and fire risks from combustion products and is an important book for plastics processors, regulatory personnel, and fire research and safety engineers. \u003cbr\u003e\u003cbr\u003eThis book presents a state of the art overview of smoke formation from natural and synthetic polymeric materials. Also presented is a discussion on why different commercial polymers have different intrinsic tendencies to generate smoke and ways in which smoke generation can be assessed. Mechanisms and general approaches for decreasing smoke formation are examined.\u003cbr\u003e\u003cbr\u003eThis book also gives an overview of flammability tests for measuring smoke formation. In particular, the criticality of assessing smoke formation in realistic scale is discussed. An overview is provided of regulations, codes, and standards for critical application of polymeric materials where smoke generation is controlled. Common commercial approaches to decrease smoke formation in specific polymer systems and for specific applications are also presented. Finally, a balanced opinion on the controversial issue of smoke and associated combustion gases is given.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:30-04:00","created_at":"2017-06-22T21:15:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2011","book","combustion","corrosivity","flammability","hazard","p-testing","plastics","polymer","smoke","toxicity"],"price":13000,"price_min":13000,"price_max":13000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378490692,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to Smoke and Combustion Products from Burning PolymersGeneration, Assessment and Control","public_title":null,"options":["Default Title"],"price":13000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-442-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061","options":["Title"],"media":[{"alt":null,"id":358722928733,"position":1,"preview_image":{"aspect_ratio":0.667,"height":499,"width":333,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061"},"aspect_ratio":0.667,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-442-6.jpg?v=1499644061","width":333}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sergei Levchik, Marcelo Hirschler and Edward Weil \u003cbr\u003eISBN 978-1-84735-442-6\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2011\u003c\/span\u003e \u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis Practical Guide presents one of the complete overviews of this important topic, covering smoke generation (including obscuration, toxicity, corrosivity), small and large scale smoke assessment, regulation of smoke, and methods of controlling smoke by plastics formulation. In particular, this book focuses on the assessment of fire hazard and fire risks from combustion products and is an important book for plastics processors, regulatory personnel, and fire research and safety engineers. \u003cbr\u003e\u003cbr\u003eThis book presents a state of the art overview of smoke formation from natural and synthetic polymeric materials. Also presented is a discussion on why different commercial polymers have different intrinsic tendencies to generate smoke and ways in which smoke generation can be assessed. Mechanisms and general approaches for decreasing smoke formation are examined.\u003cbr\u003e\u003cbr\u003eThis book also gives an overview of flammability tests for measuring smoke formation. In particular, the criticality of assessing smoke formation in realistic scale is discussed. An overview is provided of regulations, codes, and standards for critical application of polymeric materials where smoke generation is controlled. Common commercial approaches to decrease smoke formation in specific polymer systems and for specific applications are also presented. Finally, a balanced opinion on the controversial issue of smoke and associated combustion gases is given.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to the...
$350.00
{"id":11242209412,"title":"Practical Guide to the Assessment of the Useful Life of Plastics","handle":"978-1-85957-312-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown and J.H. Greenwood \u003cbr\u003eISBN 978-1-85957-312-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e\u003cspan\u003e \u003cbr\u003e\u003c\/span\u003epages 180\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' Lifetime expectancy is often many years, the service conditions may be complex, and there is a scarcity of definitive data on durability. The situation is complicated by the fact that there are a vast number of degradation agents, service conditions, properties of importance and different plastics. \u003cbr\u003e\u003cbr\u003eThere are many inherent difficulties in designing durability tests. In many cases, the time scale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003e\u003cbr\u003eMost assessments of the lifetime of plastics are made by considering some measure of performance, such as impact strength, and specifying some lower limit for the property, which is taken as the endpoint. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as the number of cycles of use.\u003cbr\u003e\u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of plastics. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximise the effectiveness of a durability-testing programme. \u003cbr\u003e\u003cbr\u003eThis guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation. The test procedures used are outlined and the relevant textbooks and international standards are well referenced. Examples of lifetime testing studies are cited.\u003cbr\u003e\u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing plastic components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Definition of the Polymer\u003cbr\u003e3. What is Failure?\u003cbr\u003e4. Agents and Mechanisms of Degradation\u003cbr\u003e5. Real and Simulated Service Conditions\u003cbr\u003e6. Accelerated Tests\u003cbr\u003e7. Parameters to Monitor Degradation\u003cbr\u003e8. Prediction Techniques\u003cbr\u003e9. Limitations, Pitfalls, and Uncertainties\u003cbr\u003e10. Condition Monitoring and Residual Life Assessment\u003cbr\u003e11. Data Available\u003cbr\u003e12. Examples of Current Practice\u003cbr\u003e13. Conclusion\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eRoger Brown\u003c\/strong\u003e is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. John Greenwood\u003c\/strong\u003e studied at Cambridge and has worked for over thirty years on non-metallic materials for companies in America and Europe. He is an authority on mechanical testing and lifetime prediction of polymer and composite materials including pipes and geosynthetics. He has published extensively, including patents, and is the convenor of working groups for the\u003cbr\u003estandardisation of geotextiles and fuel pipes. He is currently non-metals\u003cbr\u003econsultant at ERA.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:06-04:00","created_at":"2017-06-22T21:13:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","accelerated tests","book","conditions","degradation","durability","durability-testing","failure","p-testing","plastics","polymer","testing","weathering"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378329924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to the Assessment of the Useful Life of Plastics","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-312-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651","options":["Title"],"media":[{"alt":null,"id":358723780701,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-312-9.jpg?v=1499953651","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown and J.H. Greenwood \u003cbr\u003eISBN 978-1-85957-312-9 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2002\u003c\/span\u003e\u003cspan\u003e \u003cbr\u003e\u003c\/span\u003epages 180\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' Lifetime expectancy is often many years, the service conditions may be complex, and there is a scarcity of definitive data on durability. The situation is complicated by the fact that there are a vast number of degradation agents, service conditions, properties of importance and different plastics. \u003cbr\u003e\u003cbr\u003eThere are many inherent difficulties in designing durability tests. In many cases, the time scale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003e\u003cbr\u003eMost assessments of the lifetime of plastics are made by considering some measure of performance, such as impact strength, and specifying some lower limit for the property, which is taken as the endpoint. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as the number of cycles of use.\u003cbr\u003e\u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of plastics. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximise the effectiveness of a durability-testing programme. \u003cbr\u003e\u003cbr\u003eThis guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation. The test procedures used are outlined and the relevant textbooks and international standards are well referenced. Examples of lifetime testing studies are cited.\u003cbr\u003e\u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing plastic components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e2. Definition of the Polymer\u003cbr\u003e3. What is Failure?\u003cbr\u003e4. Agents and Mechanisms of Degradation\u003cbr\u003e5. Real and Simulated Service Conditions\u003cbr\u003e6. Accelerated Tests\u003cbr\u003e7. Parameters to Monitor Degradation\u003cbr\u003e8. Prediction Techniques\u003cbr\u003e9. Limitations, Pitfalls, and Uncertainties\u003cbr\u003e10. Condition Monitoring and Residual Life Assessment\u003cbr\u003e11. Data Available\u003cbr\u003e12. Examples of Current Practice\u003cbr\u003e13. Conclusion\u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eRoger Brown\u003c\/strong\u003e is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eDr. John Greenwood\u003c\/strong\u003e studied at Cambridge and has worked for over thirty years on non-metallic materials for companies in America and Europe. He is an authority on mechanical testing and lifetime prediction of polymer and composite materials including pipes and geosynthetics. He has published extensively, including patents, and is the convenor of working groups for the\u003cbr\u003estandardisation of geotextiles and fuel pipes. He is currently non-metals\u003cbr\u003econsultant at ERA.\u003cbr\u003e\u003cbr\u003e"}
Practical Guide to the...
$144.00
{"id":11242227652,"title":"Practical Guide to the Assessment of the Useful Life of Rubbers","handle":"978-1-85957-260-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown \u003cbr\u003eISBN 978-1-85957-260-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 150 , Figures: 23 , Tables: 5\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' This is usually a very difficult question to answer for rubber products because the expected lifetime is often in tens of years, the service conditions may be complex, and there is a scarcity of definitive data on durability. There is a vast matrix of degradation agents, service conditions, properties of importance and different rubbers. \u003cbr\u003eThere are also many inherent difficulties in designing tests. In many cases, the timescale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003eMost assessments of a lifetime of rubbers are made by considering some measure of performance, such as tensile strength, and specifying some lower limit for the property, which is taken as the end point. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as number of cycles of use. \u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of rubbers. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximize the effectiveness of a durability testing program. \u003cbr\u003eThis Guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation and the most important mechanical properties of rubbers. The test procedures used are outlined and the relevant textbooks and International standards are referenced. \u003cbr\u003eRapra Technology Limited has just completed a 40 year natural ageing program and an accelerated testing program, both on the same set of rubber compounds. The results have been drawn on in this Guide to indicate the limiting factors for particular test methods. \u003cbr\u003eThis publication is an output from the Weathering of Elastomers and Sealants project which forms part of the UK government's Department of Trade and Industry's Degradation of Materials in Aggressive Environments Program. \u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing rubber components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In\u003cbr\u003eaddition, he is editor of the journal Polymer Testing. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees and is leader of the\u003cbr\u003eBritish delegation to ISO Technical Committee 45.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:05-04:00","created_at":"2017-06-22T21:14:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","book","degradation","mechanical properties","physical testing","quality control","r-testing","rubber","rubbers","tensile strength","testing","weathering"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378395204,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Practical Guide to the Assessment of the Useful Life of Rubbers","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-260-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-260-3.jpg?v=1499953671"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-260-3.jpg?v=1499953671","options":["Title"],"media":[{"alt":null,"id":358724304989,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-260-3.jpg?v=1499953671"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-260-3.jpg?v=1499953671","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: R.P. Brown \u003cbr\u003eISBN 978-1-85957-260-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2001\u003cbr\u003e\u003c\/span\u003ePages: 150 , Figures: 23 , Tables: 5\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nAfter price and delivery time, the most frequently asked question about a product is 'How long will it last?' This is usually a very difficult question to answer for rubber products because the expected lifetime is often in tens of years, the service conditions may be complex, and there is a scarcity of definitive data on durability. There is a vast matrix of degradation agents, service conditions, properties of importance and different rubbers. \u003cbr\u003eThere are also many inherent difficulties in designing tests. In many cases, the timescale involved is such that accelerated test conditions are essential. Whilst large amounts of durability data are generated by accelerated methods, much of it is only useful for quality control purposes and relatively little has been validated as being realistically capable of representing service. \u003cbr\u003eMost assessments of a lifetime of rubbers are made by considering some measure of performance, such as tensile strength, and specifying some lower limit for the property, which is taken as the end point. Lifetime is not necessarily measured in time. For example, for some products, it will be thought of as number of cycles of use. \u003cbr\u003eThe object of this publication is to provide practical guidance on assessing the useful service life of rubbers. It describes test procedures and extrapolation techniques together with the inherent limitations and problems. The Guide aims to make available the wealth of information that can be applied to help maximize the effectiveness of a durability testing program. \u003cbr\u003eThis Guide seeks to be comprehensive but concentrates on the most common environmental effects causing degradation and the most important mechanical properties of rubbers. The test procedures used are outlined and the relevant textbooks and International standards are referenced. \u003cbr\u003eRapra Technology Limited has just completed a 40 year natural ageing program and an accelerated testing program, both on the same set of rubber compounds. The results have been drawn on in this Guide to indicate the limiting factors for particular test methods. \u003cbr\u003eThis publication is an output from the Weathering of Elastomers and Sealants project which forms part of the UK government's Department of Trade and Industry's Degradation of Materials in Aggressive Environments Program. \u003cbr\u003eThis book will be useful for anyone responsible for designing, manufacturing or testing rubber components. It will also be of benefit to suppliers and users of end products, as an assessment of useful lifetime is critical to the economics and safety aspects of any component.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In\u003cbr\u003eaddition, he is editor of the journal Polymer Testing. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees and is leader of the\u003cbr\u003eBritish delegation to ISO Technical Committee 45.\u003cbr\u003e\u003cbr\u003e"}
Processing and Propert...
$125.00
{"id":11242238340,"title":"Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends","handle":"1-895198-04-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. D. Acierno, Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-04-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-04-1\u003c\/span\u003e\u003cbr\u003eUniversity of Salerno and University of Palermo, Italy\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e230 pages, 11 tables, 152 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nLiquid crystalline polymers receive a great deal of attention for their impact on polymer structure and morphology understanding and their practical applications. \u003cbr\u003ePractical benefits of LPCs use are numerous:\u003cbr\u003e\u003cbr\u003eA small addition (5%) reduces blend viscosity they are excellent processing aids LCPs can be blended with common thermoplasts using the existing process technology in situ composites produced in simple process small additions act as a reinforcing phase ultra-high moduli, characteristic for high performance materials, are due to a high degree of crystallinity and molecular orientation materials of high mechanical stiffness result LCP particles elongate into fibrils, oriented in machine direction LCPs lower polymer melting temperature that allows to process polymers whose high processing temperature represents severe restriction.\u003cbr\u003eThe above mentioned and other important phenomena are discussed and illustrated by numerous examples in this book.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStructure and rheology of Aramid solutions: relation to the Aramid fiber modulus. S. J. Picken, M. G. Northold, and S. van der Zwaag \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMechanical\/thermal pretreatment of LCP melts and its influence on the rheological behavior of these polymers. K. Geiger \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSynthesis, processing, and properties of semirigid, thermotropic LC copolymers. U. Pedretti, A. Roggero, V. Citta, E. Montani, F. P. La Mantia, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe rheology of LCP blends. M. Hawksworth, J. B. Hull, and A. A. Collyer \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMulticomponent blends based of LCP. V. Kulichikhin, A. Bilibin, M. Zabugina, A. Semakov, and R. Zakharyan \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMelt rheology and morphology of in situ composites. M. Kozlowski \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThermotropic polymer composites. E. Suokas, P. Jarvela, and P. Tormala \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eCharacterization of blends of poly(phenylene sulfide) with LC copolyesteramide. L. I. Minkova, S. De Petris, M. Paci, M. Pracella, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of polycarbonate with LCP. A. Valenza, V. Citta, U. Pedretti, F. P. La Mantia, M. Paci, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends based on engineering polymers: the effect of the inclusion of thermotropic LCPs on the physical properties of the matrix. M. R. Nobile, L. Incarnato, G. Marino, and D. Acierno \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eFormation and stability of LCP fibers in a thermoplastic elastomeric matrix. H. Verhoogt, C. R. J. Willems, H. C. Langelaan, J. van Dam, and A. Posthuma de Boer \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","applications","blends","book","crystalline","crystallinity","fibers","fibrils","LCP","liquid","melts","morphology","p-structural","polymer","polymerization","polymers","process","rheology","stability","stiffness","structure","viscosity"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428100,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Processing and Properties of Liquid Crystalline Polymers and LCP Based Blends","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-04-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768","options":["Title"],"media":[{"alt":null,"id":412803629149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-04-6.jpg?v=1504014768","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. D. Acierno, Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-04-6 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-04-1\u003c\/span\u003e\u003cbr\u003eUniversity of Salerno and University of Palermo, Italy\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003cbr\u003e\u003c\/span\u003e230 pages, 11 tables, 152 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nLiquid crystalline polymers receive a great deal of attention for their impact on polymer structure and morphology understanding and their practical applications. \u003cbr\u003ePractical benefits of LPCs use are numerous:\u003cbr\u003e\u003cbr\u003eA small addition (5%) reduces blend viscosity they are excellent processing aids LCPs can be blended with common thermoplasts using the existing process technology in situ composites produced in simple process small additions act as a reinforcing phase ultra-high moduli, characteristic for high performance materials, are due to a high degree of crystallinity and molecular orientation materials of high mechanical stiffness result LCP particles elongate into fibrils, oriented in machine direction LCPs lower polymer melting temperature that allows to process polymers whose high processing temperature represents severe restriction.\u003cbr\u003eThe above mentioned and other important phenomena are discussed and illustrated by numerous examples in this book.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eStructure and rheology of Aramid solutions: relation to the Aramid fiber modulus. S. J. Picken, M. G. Northold, and S. van der Zwaag \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMechanical\/thermal pretreatment of LCP melts and its influence on the rheological behavior of these polymers. K. Geiger \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eSynthesis, processing, and properties of semirigid, thermotropic LC copolymers. U. Pedretti, A. Roggero, V. Citta, E. Montani, F. P. La Mantia, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe rheology of LCP blends. M. Hawksworth, J. B. Hull, and A. A. Collyer \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMulticomponent blends based of LCP. V. Kulichikhin, A. Bilibin, M. Zabugina, A. Semakov, and R. Zakharyan \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eMelt rheology and morphology of in situ composites. M. Kozlowski \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThermotropic polymer composites. E. Suokas, P. Jarvela, and P. Tormala \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eCharacterization of blends of poly(phenylene sulfide) with LC copolyesteramide. L. I. Minkova, S. De Petris, M. Paci, M. Pracella, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of polycarbonate with LCP. A. Valenza, V. Citta, U. Pedretti, F. P. La Mantia, M. Paci, and P. L. Magagnini \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends based on engineering polymers: the effect of the inclusion of thermotropic LCPs on the physical properties of the matrix. M. R. Nobile, L. Incarnato, G. Marino, and D. Acierno \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" color=\"#000031\" face=\"verdana,geneva\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eFormation and stability of LCP fibers in a thermoplastic elastomeric matrix. H. Verhoogt, C. R. J. Willems, H. C. Langelaan, J. van Dam, and A. Posthuma de Boer \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}