- Grid List
Filter
Polymer Bonding 2004
$180.00
{"id":11242250564,"title":"Polymer Bonding 2004","handle":"978-1-85957-446-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-446-1 \u003cbr\u003e\u003cbr\u003e160 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe conference aimed to widen the area of discussion from a purely rubber or purely plastic based topic to include those additional related bonding application areas. Papers discussing bonding within the polymer industries and from academic researchers will enable the reader to more fully understand the problems and their solutions for the bonding between polymers and a wide range of substrates. \u003cbr\u003e\u003cbr\u003eTopics covered at Polymer Bonding 2004 include: latest material advances, new processing technologies, analysis of bonding techniques, progress in application technology, formulation advancement, and business and industry issues\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: TECHNOLOGY OVERVIEW \u003cbr\u003eA Review of Recent Developments in Bonding of Steel Products for Rubbers and Plastics Reinforcement\u003cbr\u003eDr. Daniel Mauer, N.V. Bekaert S.A. (Bekaert Technology Centre), Belgium \u003cbr\u003eStrength vs Durability of Rubber-Metal Bonds Factor: Effects from Processing and Chemistry\u003cbr\u003eMr. RJ DelVecchio, Technical Consulting Services, USA \u003cbr\u003eQuantum Leap in Polymer Innovation Performance through Advanced Technology Management\u003cbr\u003eDr. Wolfram Keller, P R T M, Germany \u003cbr\u003e\u003cbr\u003eSESSION 2: POLYMER BONDING ANALYSIS \u003cbr\u003eCan Test Pieces Predict Component Performance?\u003cbr\u003eDr. Marina Fernando, Charles Forge \u0026amp; Jonathan Clarke, TARRC, UK \u003cbr\u003eThe Development and Exploitation of Accelerated Durability Tests - The new ASTM D429 Method G immersion Test and Potential Future Developments\u003cbr\u003eMr. Peter Hansen, MERL, UK \u003cbr\u003eAnalysis of Adhesion Differences by Nano-Indentation and Cure Kinetics in a Rubber-Glass Composite\u003cbr\u003eDr. Chris Stevens, NGF EUROPE Ltd, UK \u003cbr\u003e\u003cbr\u003eSESSION 3: NOVEL BONDING TECHNIQUES AND APPLICATIONS \u003cbr\u003eBonding Cellulosic Substrates to Polyolefins without Corona treatment or use of a Primer. Special one-component water-based adhesive\u003cbr\u003eMr. Stelios Theocharidis, Viscol, Greece \u003cbr\u003eA Shift Toward Two Component Adhesive Packaging that Fits in Standard Caulking Guns\u003cbr\u003eMs. Meghann Horner \u0026amp; Crispin Dean, TAH Europe Inc, UK \u0026amp; Dan Mottram, TAH Industries, USA \u003cbr\u003eHybrid Nonisocyanate Polyurethane Adhesives\u003cbr\u003eProf. Oleg Figovsky, EFM -Environmentally Friendly Materials GmbH, Germany \u003cbr\u003eBonding Plastics with Cyanoacrylates and UV Curing Adhesives\u003cbr\u003eMr. Bob Goss, Henkel Loctite Adhesives Ltd, UK \u003cbr\u003e\u003cbr\u003eSESSION 4: DEVELOPMENTS IN BONDING TECHNOLOGY \u003cbr\u003eReactive Fluid Bonding Systems\u003cbr\u003eDr. Daniel L Neuman, DuPont Dow Elastomers, USA \u003cbr\u003eWater Based Bonding Agents\u003cbr\u003eMr. Greg Rawlinson \u0026amp; Dr. Keith Worthington, Chemical Innovations Limited (CIL), UK \u003cbr\u003eHard-Soft Combinations with Silicone Rubber - Innovative Technical Solutions\u003cbr\u003eDr. Joachim Hegge, \u0026amp; Stefan Rist, GE Bayer Silicone GmbH \u0026amp; Co. KG, Germany \u003cbr\u003eOne Component Bonding Agents Technology for Anti Vibration Automotive Parts Production\u003cbr\u003eMr. Aissa Benarous, Chemical Innovations Limited (CIL), UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:16-04:00","created_at":"2017-06-22T21:15:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","acrylic polymers","aramid","ASTM","bonding","bonds","book","cellulosic","corona","curing","cyanoacrylates","durability","metal","p-properties","plastics","polyamide","polymer","polyolefins","reinforcement","rubber","silicone","steel","strength","UV"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471940,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Bonding 2004","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-446-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-446-1 \u003cbr\u003e\u003cbr\u003e160 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe conference aimed to widen the area of discussion from a purely rubber or purely plastic based topic to include those additional related bonding application areas. Papers discussing bonding within the polymer industries and from academic researchers will enable the reader to more fully understand the problems and their solutions for the bonding between polymers and a wide range of substrates. \u003cbr\u003e\u003cbr\u003eTopics covered at Polymer Bonding 2004 include: latest material advances, new processing technologies, analysis of bonding techniques, progress in application technology, formulation advancement, and business and industry issues\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1: TECHNOLOGY OVERVIEW \u003cbr\u003eA Review of Recent Developments in Bonding of Steel Products for Rubbers and Plastics Reinforcement\u003cbr\u003eDr. Daniel Mauer, N.V. Bekaert S.A. (Bekaert Technology Centre), Belgium \u003cbr\u003eStrength vs Durability of Rubber-Metal Bonds Factor: Effects from Processing and Chemistry\u003cbr\u003eMr. RJ DelVecchio, Technical Consulting Services, USA \u003cbr\u003eQuantum Leap in Polymer Innovation Performance through Advanced Technology Management\u003cbr\u003eDr. Wolfram Keller, P R T M, Germany \u003cbr\u003e\u003cbr\u003eSESSION 2: POLYMER BONDING ANALYSIS \u003cbr\u003eCan Test Pieces Predict Component Performance?\u003cbr\u003eDr. Marina Fernando, Charles Forge \u0026amp; Jonathan Clarke, TARRC, UK \u003cbr\u003eThe Development and Exploitation of Accelerated Durability Tests - The new ASTM D429 Method G immersion Test and Potential Future Developments\u003cbr\u003eMr. Peter Hansen, MERL, UK \u003cbr\u003eAnalysis of Adhesion Differences by Nano-Indentation and Cure Kinetics in a Rubber-Glass Composite\u003cbr\u003eDr. Chris Stevens, NGF EUROPE Ltd, UK \u003cbr\u003e\u003cbr\u003eSESSION 3: NOVEL BONDING TECHNIQUES AND APPLICATIONS \u003cbr\u003eBonding Cellulosic Substrates to Polyolefins without Corona treatment or use of a Primer. Special one-component water-based adhesive\u003cbr\u003eMr. Stelios Theocharidis, Viscol, Greece \u003cbr\u003eA Shift Toward Two Component Adhesive Packaging that Fits in Standard Caulking Guns\u003cbr\u003eMs. Meghann Horner \u0026amp; Crispin Dean, TAH Europe Inc, UK \u0026amp; Dan Mottram, TAH Industries, USA \u003cbr\u003eHybrid Nonisocyanate Polyurethane Adhesives\u003cbr\u003eProf. Oleg Figovsky, EFM -Environmentally Friendly Materials GmbH, Germany \u003cbr\u003eBonding Plastics with Cyanoacrylates and UV Curing Adhesives\u003cbr\u003eMr. Bob Goss, Henkel Loctite Adhesives Ltd, UK \u003cbr\u003e\u003cbr\u003eSESSION 4: DEVELOPMENTS IN BONDING TECHNOLOGY \u003cbr\u003eReactive Fluid Bonding Systems\u003cbr\u003eDr. Daniel L Neuman, DuPont Dow Elastomers, USA \u003cbr\u003eWater Based Bonding Agents\u003cbr\u003eMr. Greg Rawlinson \u0026amp; Dr. Keith Worthington, Chemical Innovations Limited (CIL), UK \u003cbr\u003eHard-Soft Combinations with Silicone Rubber - Innovative Technical Solutions\u003cbr\u003eDr. Joachim Hegge, \u0026amp; Stefan Rist, GE Bayer Silicone GmbH \u0026amp; Co. KG, Germany \u003cbr\u003eOne Component Bonding Agents Technology for Anti Vibration Automotive Parts Production\u003cbr\u003eMr. Aissa Benarous, Chemical Innovations Limited (CIL), UK\u003cbr\u003e\u003cbr\u003e"}
Polymer Electronics - ...
$180.00
{"id":11242242692,"title":"Polymer Electronics - A Flexible Technology","handle":"978-1-84735-422-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Various \u003cbr\u003eISBN 978-1-84735-422-8 \u003cbr\u003e\u003cbr\u003epages 158, hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e'The worldwide market for polymer electronic products has been estimated to be worth up to £15 billion by 2015 and the opportunity for new markets could be as high as £125billion by 2025.'\u003c\/p\u003e\n\u003cp\u003eThe rapid development of polymer electronics has revealed the possibility for transforming the electronics market by offering lighter, flexible and more cost effective alternatives to conventional materials and products. With applications ranging from printed, flexible conductors and novel semiconductor components to intelligent labels and large area displays and solar panels, products that were previously unimaginable are now beginning to be commercialised. \u003cbr\u003e\u003cbr\u003ePolymer Electronics - A Flexible Technology from iSmithers Rapra, is designed to inform researchers, material suppliers, component fabricators and electronics manufacturers of the latest research and developments in this dynamic and rapidly evolving field. \u003cbr\u003e\u003cbr\u003eThis authoritative book is written by a number of authors all of whom work for companies at the cutting edge of these new technologies and will prove to be a valuable reference to all involved in this field.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Roadmap for Organic and Printed Electronics\u003cbr\u003e2. Technical Issues in Printed Electrodes for All-Printed Thin-Film Transistor Applications \u003cbr\u003e3. All-Printed Flexible Organic Light-emitting Diodes\u003cbr\u003e4. Inkjet Printing and Electrospinning for Printed Electronics\u003cbr\u003e5. Highly Conductive Plastics - Custom-formulated Functional Materials for Injection Mouldable Electronic Applications (Sample Chapter - click above to view)\u003cbr\u003e6. Additives in Polymer Electronics\u003cbr\u003e7. A Facile Route to Organic Nanocomposite Dispersions of Polyaniline - single Wall Carbon Nanotubes\u003cbr\u003e8. Preparation and Characterisation of Novel Electrical Conductive Rubber Blends\u003cbr\u003e9. Solar Textiles \u003cbr\u003e10. Flexible Sensor Array for a Robotic Fingertip Using Organic Thin Film Transistors\u003cbr\u003e11. An Organic Thin Film Transistor Pixel Circuit for Active-Matrix Organic\u003cbr\u003e12. Intelligent Packaging for the Food Industry\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:52-04:00","created_at":"2017-06-22T21:14:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2009","additives","book","carbon nanotubes","conductive plastics","electronics","inkjet printing","organic nanocomposite","p-applications","poly","polymer","solar textiles","thin films"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443716,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Electronics - A Flexible Technology","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-422-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-422-8.jpg?v=1499724823"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-422-8.jpg?v=1499724823","options":["Title"],"media":[{"alt":null,"id":358550569053,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-422-8.jpg?v=1499724823"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-422-8.jpg?v=1499724823","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Various \u003cbr\u003eISBN 978-1-84735-422-8 \u003cbr\u003e\u003cbr\u003epages 158, hard cover\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e'The worldwide market for polymer electronic products has been estimated to be worth up to £15 billion by 2015 and the opportunity for new markets could be as high as £125billion by 2025.'\u003c\/p\u003e\n\u003cp\u003eThe rapid development of polymer electronics has revealed the possibility for transforming the electronics market by offering lighter, flexible and more cost effective alternatives to conventional materials and products. With applications ranging from printed, flexible conductors and novel semiconductor components to intelligent labels and large area displays and solar panels, products that were previously unimaginable are now beginning to be commercialised. \u003cbr\u003e\u003cbr\u003ePolymer Electronics - A Flexible Technology from iSmithers Rapra, is designed to inform researchers, material suppliers, component fabricators and electronics manufacturers of the latest research and developments in this dynamic and rapidly evolving field. \u003cbr\u003e\u003cbr\u003eThis authoritative book is written by a number of authors all of whom work for companies at the cutting edge of these new technologies and will prove to be a valuable reference to all involved in this field.\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Roadmap for Organic and Printed Electronics\u003cbr\u003e2. Technical Issues in Printed Electrodes for All-Printed Thin-Film Transistor Applications \u003cbr\u003e3. All-Printed Flexible Organic Light-emitting Diodes\u003cbr\u003e4. Inkjet Printing and Electrospinning for Printed Electronics\u003cbr\u003e5. Highly Conductive Plastics - Custom-formulated Functional Materials for Injection Mouldable Electronic Applications (Sample Chapter - click above to view)\u003cbr\u003e6. Additives in Polymer Electronics\u003cbr\u003e7. A Facile Route to Organic Nanocomposite Dispersions of Polyaniline - single Wall Carbon Nanotubes\u003cbr\u003e8. Preparation and Characterisation of Novel Electrical Conductive Rubber Blends\u003cbr\u003e9. Solar Textiles \u003cbr\u003e10. Flexible Sensor Array for a Robotic Fingertip Using Organic Thin Film Transistors\u003cbr\u003e11. An Organic Thin Film Transistor Pixel Circuit for Active-Matrix Organic\u003cbr\u003e12. Intelligent Packaging for the Food Industry\u003cbr\u003e\u003cbr\u003e"}
Polymer Reference Book
$297.00
{"id":11242228228,"title":"Polymer Reference Book","handle":"978-1-85957-492-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R. Crompton \u003cbr\u003eISBN 978-1-85957-492-8 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 704\u003c\/p\u003e\n\u003cp\u003eSoft-backed\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book describes the types of techniques now available to the polymer chemist and technician and discusses their capabilities, limitations, and applications. All types of modern instrumentation are covered including those used in general quality control, research analysis, process monitoring and for determining the mechanical, electrical, thermal and optical characteristics. Aspects such as automated analysis and computerised control of instruments are also included. \u003cbr\u003e\u003cbr\u003eThe book covers not only instrumentation for the determination of metals, non metals, functional groups, polymer structural analysis and end-groups in the main types of polymers now in use commercially, but also the analysis of minor non-polymeric components of the polymer formulation, whether they be deliberately added, such as processing additives, or whether they occur adventitiously, such as residual volatiles and monomers and water. Fingerprinting techniques for the rapid identification of polymers and methods for the examination of polymer surfaces and polymer defects are also discussed. \u003cbr\u003e\u003cbr\u003eThe book gives an up-to-date and thorough exposition of the present state-of-the-art of the theory and availability of instrumentation needed to effect chemical and physical analysis of polymers. Over 1,800 references are included. The book should be of great interest to all those who are engaged in the examination of polymers in industry, university research establishments, and general education. The book is intended for all staff who are concerned with instrumentation in the polymer laboratory, including laboratory designers, work planners, chemists, engineers, chemical engineers and those concerned with the implementation of specifications and process control.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Determination of Metals\u003cbr\u003e1.1 Destructive Techniques\u003cbr\u003e1.1.1 Atomic Absorption Spectrometry\u003cbr\u003e1.1.2 Graphite Furnace Atomic Absorption Spectrometry\u003cbr\u003e1.1.3 Atom Trapping Technique\u003cbr\u003e1.1.4 Vapour Generation Atomic Absorption Spectrometry\u003cbr\u003e1.1.5 Zeeman Atomic Absorption Spectrometry\u003cbr\u003e1.1.6 Inductively Coupled Plasma Atomic Emission Spectrometry\u003cbr\u003e1.1.7 Hybrid Inductively Coupled Plasma Techniques\u003cbr\u003e1.1.8 Inductively Coupled Plasma Optical Emission Spectrometry–Mass Spectrometry\u003cbr\u003e1.1.9 Pre-concentration Atomic Absorption Spectrometry Techniques\u003cbr\u003e1.1.10 Microprocessors\u003cbr\u003e1.11 Autosamplers\u003cbr\u003e1.1.12 Applications: Atomic Absorption Spectrometric Determination of Metals\u003cbr\u003e1.1.13 Visible and UV Spectroscopy\u003cbr\u003e1.1.14 Polarography and Voltammetry\u003cbr\u003e1.1.15 Ion Chromatography\u003cbr\u003e1.2 Non-destructive Methods\u003cbr\u003e1.2.1 X-ray Fluorescence Spectrometry\u003cbr\u003e1.2.2 Neutron Activation Analysis \u003cbr\u003e2 Non-metallic Elements\u003cbr\u003e2.1 Instrumentation: Furnace Combustion Methods\u003cbr\u003e2.1.1 Halogens\u003cbr\u003e2.1.2 Sulfur\u003cbr\u003e2.1.3 Total Sulfur\/Total Halogen\u003cbr\u003e2.1.4 Total Bound Nitrogen\u003cbr\u003e2.1.5 Nitrogen, Carbon, and Sulfur\u003cbr\u003e2.1.6 Carbon, Hydrogen, and Nitrogen\u003cbr\u003e2.1.7 Total Organic Carbon\u003cbr\u003e2.2 Oxygen Flask Combustion Methods\u003cbr\u003e2.2.1 Total Halogens\u003cbr\u003e2.2.2 Sulfur\u003cbr\u003e2.2.3 Oxygen Flask Combustion: Ion Chromatography\u003cbr\u003e2.2.4 Instrumentation\u003cbr\u003e2.2.5 Applications\u003cbr\u003e2.3 Acid and Solid Digestions of Polymers\u003cbr\u003e2.3.1 Chlorine\u003cbr\u003e2.3.2 Nitrogen\u003cbr\u003e2.3.3 Phosphorus\u003cbr\u003e2.3.4 Silica\u003cbr\u003e2.4 X-ray Fluorescence Spectroscopy\u003cbr\u003e2.5 Antec 9000 Nitrogen\/Sulfur Analyser \u003cbr\u003e3 Functional Groups and Polymer Structure\u003cbr\u003e3.1 Infrared and Near-Infrared Spectroscopy\u003cbr\u003e3.1.1 Instrumentation\u003cbr\u003e3.1.2 Applications\u003cbr\u003e3.2 Fourier Transform Near-Infrared Raman Spectroscopy\u003cbr\u003e3.2.1 Theory\u003cbr\u003e3.2.2 Instrumentation\u003cbr\u003e3.2.3 Applications\u003cbr\u003e3.3 Fourier Transform Infrared Spectroscopy\u003cbr\u003e3.3.1 Instrumentation\u003cbr\u003e3.3.2 Applications\u003cbr\u003e3.4 Nuclear Magnetic Resonance (NMR) Spectroscopy\u003cbr\u003e3.4.1 Instrumentation\u003cbr\u003e3.4.2 Applications\u003cbr\u003e3.5 Proton Magnetic Resonance (PMR) Spectroscopy\u003cbr\u003e3.5.1 Instrumentation\u003cbr\u003e3.5.2 Applications\u003cbr\u003e3.6 Reaction Gas Chromatography\u003cbr\u003e3.6.1 Instrumentation\u003cbr\u003e3.6.2 Applications\u003cbr\u003e3.7 Pyrolysis Gas Chromatography\u003cbr\u003e3.7.1 Theory\u003cbr\u003e3.7.2 Instrumentation\u003cbr\u003e3.7.3 Applications\u003cbr\u003e3.8 Pyrolysis Gas Chromatography–Mass Spectrometry\u003cbr\u003e3.8.1 Instrumentation\u003cbr\u003e3.8.2 Applications\u003cbr\u003e3.9 Pyrolysis Gas Chromatography–Fourier Transform NMR Spectroscopy\u003cbr\u003e3.10 High-Performance Liquid Chromatography\u003cbr\u003e3.11 Mass Spectrometric Techniques\u003cbr\u003e3.11.1 Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)\u003cbr\u003e3.11.2 XPS\u003cbr\u003e3.11.3 Tandem Mass Spectrometry (MS\/MS)\u003cbr\u003e3.11.4 Fourier Transform Ion Cyclotron Mass Spectrometry\u003cbr\u003e3.11.5 MALDI-MS\u003cbr\u003e3.11.6 Radio Frequency Glow Discharge Mass Spectrometry\u003cbr\u003e3.12 Microthermal Analysis\u003cbr\u003e3.13 Atomic Force Microscopy\u003cbr\u003e3.13.1 Applications\u003cbr\u003e3.14 Scanning Electron Microscopy and Energy Dispersive Analysis using X-rays \u003cbr\u003e4 Examination of Polymer Surfaces and Defects\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Electron Microprobe X-ray Emission Spectrometry\u003cbr\u003e4.2.1 Applications\u003cbr\u003e4.3 NMR Micro-imaging\u003cbr\u003e4.4 Fourier Transform Infrared Spectroscopy\u003cbr\u003e4.4.1 Instrumentation\u003cbr\u003e4.4.2 Applications\u003cbr\u003e4.5 Diffusion Reflectance FT-IR Spectroscopy (Spectra-Tech)\u003cbr\u003e4.6 Attenuated Total Infrared Internal Reflectance (ATR) Spectroscopy (Spectra-Tech)\u003cbr\u003e4.7 External Reflectance Spectroscopy (Spectra-Tech)\u003cbr\u003e4.8 Photoacoustic Spectroscopy\u003cbr\u003e4.8.1 Instrumentation\u003cbr\u003e4.8.2 Applications\u003cbr\u003e4.9 X-ray Diffraction\/Infrared Microscopy of Synthetic Fibres\u003cbr\u003e4.10 Scanning Electrochemical Microscopy (SECM)\u003cbr\u003e4.11 Scanning Electron Microscopy (SEM)\u003cbr\u003e4.12 Transmission Electron Microscopy (TEM)\u003cbr\u003e4.12.1 Electron Microscopy and Inverse Gas Chromatography\u003cbr\u003e4.12.2 Supersonic Jet Spectrometry\u003cbr\u003e4.13 ToF SIMS\u003cbr\u003e4.14 Laser-Induced Photoelectron Ionisation with Laser Desorption\u003cbr\u003e4.15 Atomic Force Microscopy\u003cbr\u003e4.16 Microthermal Analysis \u003cbr\u003e5 Volatiles and Water\u003cbr\u003e5.1 Gas Chromatography\u003cbr\u003e5.1.1 Instrumentation\u003cbr\u003e5.1.2 Applications\u003cbr\u003e5.2 High-Performance Liquid Chromatography\u003cbr\u003e5.2.1 Instrumentation\u003cbr\u003e5.2.2 Applications\u003cbr\u003e5.3 Polarography\u003cbr\u003e5.3.1 Instrumentation\u003cbr\u003e5.3.2 Applications\u003cbr\u003e5.4 Headspace Analysis\u003cbr\u003e5.4.1 Instrumentation\u003cbr\u003e5.4.2 Applications\u003cbr\u003e5.5 Headspace Gas Chromatography-Mass Spectrometry\u003cbr\u003e5.5.1 Instrumentation\u003cbr\u003e5.6 Purge and Trap Analysis\u003cbr\u003e5.6.1 Instrumentation \u003cbr\u003e6 Fingerprinting Techniques\u003cbr\u003e6.1 Glass Transition Temperature (Tg) and Melting Temperature (Tm)\u003cbr\u003e6.2 Pyrolysis Techniques\u003cbr\u003e6.2.1 Conventional Pyrolysis Gas Chromatography\u003cbr\u003e6.2.2 Laser Pyrolysis Gas Chromatography\u003cbr\u003e6.2.3 Photolysis Gas Chromatography\u003cbr\u003e6.2.4 Pyrolysis Mass Spectrometry\u003cbr\u003e6.3 Infrared Spectroscopy\u003cbr\u003e6.3.1 Potassium Bromide Discs\u003cbr\u003e6.3.2 Hot Pressed Film\u003cbr\u003e6.4 Pyrolysis Fourier Transform Infrared Spectroscopy\u003cbr\u003e6.4.1 Theory\u003cbr\u003e6.4.2 Instrumentation\u003cbr\u003e6.4.3 Applications\u003cbr\u003e6.5 Raman Spectroscopy\u003cbr\u003e6.6 Fourier Transform Near-Infrared Raman Spectroscopy\u003cbr\u003e6.7 Radio Frequency and Low Discharge Mass Spectrometry \u003cbr\u003e7 Polymer Additives\u003cbr\u003e7.1 IR and Raman Spectroscopy\u003cbr\u003e7.1.1 Instrumentation\u003cbr\u003e7.1.2 Applications\u003cbr\u003e7.2 Ultraviolet Spectroscopy\u003cbr\u003e7.2.1 Instrumentation\u003cbr\u003e7.2.2 Applications\u003cbr\u003e7.3 Luminescence and Fluorescence Spectroscopy\u003cbr\u003e7.3.1 Instrumentation\u003cbr\u003e7.3.2 Applications\u003cbr\u003e7.4 Nuclear Magnetic Resonance Spectroscopy (NMR)\u003cbr\u003e7.5 Mass Spectrometry\u003cbr\u003e7.5.1 Instrumentation\u003cbr\u003e7.5.2 Applications\u003cbr\u003e7.6 Gas Chromatography\u003cbr\u003e7.6.1 Instrumentation\u003cbr\u003e7.6.2 Applications\u003cbr\u003e7.7 High-Performance Liquid Chromatography\u003cbr\u003e7.7.1 Theory\u003cbr\u003e7.7.2 Instrumentation\u003cbr\u003e7.7.3 Applications\u003cbr\u003e7.8 Complementary Techniques\u003cbr\u003e7.8.1 HPLC with Mass Spectrometry\u003cbr\u003e7.8.2 HPLC with IR Spectroscopy\u003cbr\u003e7.9 Ion Chromatography\u003cbr\u003e7.10 Supercritical Fluid Chromatography\u003cbr\u003e7.10.1 Theory\u003cbr\u003e7.10.2 Instrumentation\u003cbr\u003e7.10.3 Applications\u003cbr\u003e7.11 Thin-Layer Chromatography\u003cbr\u003e7.11.1 Theory\u003cbr\u003e7.11.2 Applications\u003cbr\u003e7.12 Polarography\u003cbr\u003e7.12.1 Instrumentation\u003cbr\u003e7.12.2 Applications\u003cbr\u003e7.13 Pyrolysis-Gas Chromatography-Mass Spectrometry\u003cbr\u003e7.14 X-ray Photoelectron Spectroscopy\u003cbr\u003e7.15 Secondary Ion Mass Spectrometry\u003cbr\u003e7.16 X-ray Fluorescence Spectroscopy\u003cbr\u003e7.17 Solvent Extraction Systems \u003cbr\u003e8 Polymer Fractionation and Molecular Weight\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 High-Performance GPC and SEC\u003cbr\u003e8.2.1 Theory\u003cbr\u003e8.2.2 Applications\u003cbr\u003e8.3 High-Performance Liquid Chromatography\u003cbr\u003e8.3.1 Instrumentation\u003cbr\u003e8.3.2 Applications\u003cbr\u003e8.4 Supercritical Fluid Chromatography\u003cbr\u003e8.4.1 Theory\u003cbr\u003e8.4.2 Instrumentation\u003cbr\u003e8.4.3 Applications\u003cbr\u003e8.5 Gas Chromatography\u003cbr\u003e8.6 Thin-Layer Chromatography\u003cbr\u003e8.7 NMR Spectroscopy\u003cbr\u003e8.8 Osmometry\u003cbr\u003e8.9 Light Scattering Methods\u003cbr\u003e8.10 Viscometry\u003cbr\u003e8.11 Ultracentrifugation\u003cbr\u003e8.12 Field Desorption Mass Spectrometry\u003cbr\u003e8.13 Capillary Electrophoresis\u003cbr\u003e8.14 Liquid Chromatography-Mass Spectrometry\u003cbr\u003e8.15 Ion Exchange Chromatography\u003cbr\u003e8.16 Liquid Adsorption Chromatography\u003cbr\u003e8.17 Time-of-Flight Secondary Ion Mass Spectrometry (ToF SIMS)\u003cbr\u003e8.18 MALDI-MS\u003cbr\u003e8.19 Thermal Field Flow Fractionation\u003cbr\u003e8.20 Desorption Chemical Ionisation Mass Spectrometry\u003cbr\u003e8.21 Grazing Emission X-ray Fluorescence Spectrometry \u003cbr\u003e9 Thermal and Chemical Stability\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Theory\u003cbr\u003e9.2.1 Thermogravimetric Analysis\u003cbr\u003e9.2.2 Differential Thermal Analysis\u003cbr\u003e9.2.3 Differential Scanning Calorimetry\u003cbr\u003e9.2.4 Thermal Volatilisation Analysis\u003cbr\u003e9.2.5 Evolved Gas Analysis\u003cbr\u003e9.3 Instrumentation\u003cbr\u003e9.3.1 Instrumentation for TGA, DTA, and DSC\u003cbr\u003e9.3.2 Instrumentation for TVA and EGA\u003cbr\u003e9.4 Applications\u003cbr\u003e9.4.1 Thermogravimetric Analysis\u003cbr\u003e9.4.2 TGA–FT-IR Spectroscopy and DSC–FT-IR Spectroscopy\u003cbr\u003e9.4.3 Differential Thermal Analysis\u003cbr\u003e9.4.4 Differential Scanning Calorimetry\u003cbr\u003e9.4.5 Thermal Volatilisation Analysis\u003cbr\u003e9.4.6 EGA–TGA–Gas Chromatogravimetry and TGA–Gas Chromatography-Mass Spectrometry\u003cbr\u003e9.4.7 Mass Spectrometric Methods\u003cbr\u003e9.5 Examination of Thermal Stability by a Variety of Techniques\u003cbr\u003e9.6 Heat Stability of Polypropylene\u003cbr\u003e9.6.1 Influence of Pigmentation and UV Stabilisation on Heat Ageing Life \u003cbr\u003e10 Monitoring of Resin Cure\u003cbr\u003e10.1 Dynamic Mechanical Thermal Analysis\u003cbr\u003e10.1.1 Theory\u003cbr\u003e10.1.2 Instrumentation\u003cbr\u003e10.1.3 Applications\u003cbr\u003e10.2 Dielectric Thermal Analysis\u003cbr\u003e10.2.1 Theory\u003cbr\u003e10.2.2 Instrumentation\u003cbr\u003e10.2.3 Applications\u003cbr\u003e10.3 Differential Scanning Calorimetry\u003cbr\u003e10.4 Fibre Optic Sensor to Monitor Resin Cure \u003cbr\u003e11 Oxidative Stability\u003cbr\u003e11.1 Theory and Instrumentation\u003cbr\u003e11.2 Applications\u003cbr\u003e11.2.1 Thermogravimetric Analysis\u003cbr\u003e11.2.2 Differential Scanning Calorimetry\u003cbr\u003e11.2.3 Evolved Gas Analysis\u003cbr\u003e11.2.4 Infrared Spectroscopy of Oxidised Polymers\u003cbr\u003e11.2.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e11.2.6 Matrix-Assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e11.2.7 Imaging Chemiluminescence \u003cbr\u003e12 Examination of Photopolymers\u003cbr\u003e12.1 Differential Photocalorimetry\u003cbr\u003e12.1.1 Theory\u003cbr\u003e12.1.2 Instrumentation\u003cbr\u003e12.1.3 Applications\u003cbr\u003e12.2 Dynamic Mechanical Analysis\u003cbr\u003e12.3 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e12.4 Gas Chromatography-Based Methods \u003cbr\u003e13 Glass Transition and Other Transitions\u003cbr\u003e13.1 Glass Transition\u003cbr\u003e13.2 Differential Scanning Calorimetry\u003cbr\u003e13.2.1 Theory\u003cbr\u003e13.2.2 Instrumentation\u003cbr\u003e13.2.3 Applications\u003cbr\u003e13.3 Thermomechanical Analysis\u003cbr\u003e13.3.1 Theory\u003cbr\u003e13.3.2 Instrumentation\u003cbr\u003e13.3.3 Applications\u003cbr\u003e13.4 Dynamic Mechanical Analysis\u003cbr\u003e13.4.1 Applications\u003cbr\u003e13.5 Differential Thermal Analysis and Thermogravimetric Analysis\u003cbr\u003e13.6 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e13.7 Dielectric Thermal Analysis\u003cbr\u003e13.8 Other Transitions (alpha, beta, and gamma)\u003cbr\u003e13.8.1 Differential Thermal Analysis\u003cbr\u003e13.8.2 Dynamic Mechanical Analysis\u003cbr\u003e13.8.3 Dielectric Thermal Analysis\u003cbr\u003e13.8.4 Thermomechanical Analysis\u003cbr\u003e13.8.5 Infrared Spectroscopy \u003cbr\u003e14 Crystallinity\u003cbr\u003e14.1 Theory\u003cbr\u003e14.2 Differential Scanning Calorimetry\u003cbr\u003e14.2.1 Theory\u003cbr\u003e14.2.2 Instrumentation\u003cbr\u003e14.2.3 Applications\u003cbr\u003e14.3 Differential Thermal Analysis\u003cbr\u003e14.3.1 Theory\u003cbr\u003e14.3.2 Applications\u003cbr\u003e14.4 X-ray Powder Diffraction\u003cbr\u003e14.4.1 Applications\u003cbr\u003e14.5 Wide-Angle X-ray Scattering\/Diffraction\u003cbr\u003e14.5.1 Applications\u003cbr\u003e14.6 Small Angle X-ray Diffraction Scattering and Positron Annihilation Lifetime Spectroscopy\u003cbr\u003e14.6.1 Theory\u003cbr\u003e14.6.2 Applications\u003cbr\u003e14.7 Static and Dynamic Light Scattering\u003cbr\u003e14.7.1 Applications\u003cbr\u003e14.8 Infrared Spectroscopy\u003cbr\u003e14.8.1 Applications\u003cbr\u003e14.9 Nuclear Magnetic Resonance\u003cbr\u003e14.9.1 Applications \u003cbr\u003e15 Viscoelastic and Rheological Properties\u003cbr\u003e15.1 Dynamic Mechanical Analysis\u003cbr\u003e15.1.1 Theory\u003cbr\u003e15.1.2 Instrumentation\u003cbr\u003e15.1.3 Applications\u003cbr\u003e15.2 Thermomechanical Analysis\u003cbr\u003e15.2.1 Applications\u003cbr\u003e15.3 Dielectric Thermal Analysis\u003cbr\u003e15.3.1 Theory\u003cbr\u003e15.3.2 Instrumentation\u003cbr\u003e15.3.3 Applications\u003cbr\u003e15.4 Further Viscoelastic Behaviour Studies\u003cbr\u003e15.5 Further Rheology Studies \u003cbr\u003e16 Thermal Properties\u003cbr\u003e16.1 Linear Coefficient of Expansion\u003cbr\u003e16.1.1 Dilatometric Method\u003cbr\u003e16.2 Melting Temperature\u003cbr\u003e16.2.1 Thermal Methods\u003cbr\u003e16.2.2 Fisher-Johns Apparatus\u003cbr\u003e16.3 Softening Point (Vicat)\u003cbr\u003e16.4 Heat Deflection\/Distortion Temperature\u003cbr\u003e16.4.1 Thermomechanical Analysis\u003cbr\u003e16.4.2 Martens Method\u003cbr\u003e16.4.3 Vicat Softening Point Apparatus\u003cbr\u003e16.4.4 Dynamic Mechanical Analysis\u003cbr\u003e16.5 Brittleness Temperature (Low-Temperature Embrittlement)\u003cbr\u003e16.6 Minimum Filming Temperature\u003cbr\u003e16.7 Delamination Temperature\u003cbr\u003e16.8 Melt Flow Index\u003cbr\u003e16.9 Heat of Volatilisation\u003cbr\u003e16.10 Thermal Conductivity\u003cbr\u003e16.11 Specific Heat\u003cbr\u003e16.11.1 Transient Plane Source Technique\u003cbr\u003e16.11.2 Hot Wire Parallel Technique\u003cbr\u003e16.12 Thermal Diffusivity\u003cbr\u003e16.13 Ageing in Air \u003cbr\u003e17 Flammability Testing\u003cbr\u003e17.1 Combustion Testing and Rating of Plastics\u003cbr\u003e17.1.1Introduction\u003cbr\u003e17.1.2 Mining Applications\u003cbr\u003e17.1.3 Electrical Applications\u003cbr\u003e17.1.4 Transportation Applications\u003cbr\u003e17.1.5 Furniture and Furnishing Applications\u003cbr\u003e17.1.6 Construction Material Applications\u003cbr\u003e17.1.7 Other Fire-Related Factors\u003cbr\u003e17.2 Instrumentation\u003cbr\u003e17.3 Examination of Combustible Polymer Products\u003cbr\u003e17.4 Oxygen Consumption Cone Calorimetry\u003cbr\u003e17.5 Laser Pyrolysis–Time-of-Flight Mass Spectrometry\u003cbr\u003e17.6 Pyrolysis-Gas Chromatography-Mass Spectrometry\u003cbr\u003e17.7 Thermogravimetric Analysis \u003cbr\u003e18 Mechanical, Electrical, and Optical Properties\u003cbr\u003e18.1 Mechanical Properties of Polymers\u003cbr\u003e18.1.1 Load-Bearing Characteristics of Polymers\u003cbr\u003e18.1.2 Impact Strength Characteristics of Polymers\u003cbr\u003e18.1.3 Measurement of Mechanical Properties in Polymers\u003cbr\u003e18.1.4 Properties of Polymer Film and Pipe\u003cbr\u003e18.1.5 Polymer Powders\u003cbr\u003e18.1.6 Physical Testing of Rubbers and Elastomers\u003cbr\u003e18.2 Electrical Properties\u003cbr\u003e18.2.1 Volume and Surface Resistivity\u003cbr\u003e18.2.2 Dielectric and Dissipation Factor\u003cbr\u003e18.2.3 Dielectric Strength (Dielectric Rigidity)\u003cbr\u003e18.2.4 Surface Arc Resistance\u003cbr\u003e18.2.5 Tracking Resistance\u003cbr\u003e18.3 Optical Properties and Light Stability\u003cbr\u003e18.3.1 Stress Optical Analysis\u003cbr\u003e18.3.2 Light Stability of Polyolefins\u003cbr\u003e18.3.3 Effect of Pigments\u003cbr\u003e18.3.4 Effect of Pigments in Combination with a UV Stabiliser\u003cbr\u003e18.3.5 Effect of Carbon Black\u003cbr\u003e18.3.6 Effect of Window Glass\u003cbr\u003e18.3.7 Effect of Sunlight on Impact Strength\u003cbr\u003e18.3.8 Effect of Thickness\u003cbr\u003e18.3.9 Effect of Stress During Exposure\u003cbr\u003e18.3.10 Effect of Molecular Weight\u003cbr\u003e18.3.11 Effect of Sunlight on the Surface Appearance of Pigmented Samples \u003cbr\u003e19 Miscellaneous Physical and Chemical Properties\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Particle Size Characteristics of Polymer Powders\u003cbr\u003e19.2.1 Methods Based on Electrical Sensing Zone (or Coulter Principle)\u003cbr\u003e19.2.2 Laser Particle Size Analysers\u003cbr\u003e19.2.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e19.2.4 Sedimentation\u003cbr\u003e19.2.5 Other Instrumentation \u003cbr\u003e20 Additive Migration from Packaged Commodities\u003cbr\u003e20.1 Polymer Additives\u003cbr\u003e20.2 Extraction Tests \u003cbr\u003eAppendix 1\u003cbr\u003eInstrument Suppliers\u003cbr\u003eThermal Properties of Polymers\u003cbr\u003eMechanical Properties of Polymers\u003cbr\u003ePhysical Testing of Polymer Powders\u003cbr\u003eElectrical Properties of Polymers\u003cbr\u003eOptical Properties of Polymers\u003cbr\u003ePhysical Testing of Rubbers and Elastomers\u003cbr\u003ePolymer Flammability Properties \u003cbr\u003eAddresses of Suppliers \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoy Crompton was Head of the polymer analysis research department of a major international polymer producer for some 15 years. In the early fifties, he was heavily engaged in the development of methods of analysis for low-pressure polyolefins produced by the Ziegler-Natta route, including work on high-density polyethylene and polypropylene. He was responsible for the development of methods of analysis of the organoaluminum catalysts used for the synthesis of these polymers. He was also responsible for the development of thin-layer chromatography for the determination of various types of additives in polymers and did pioneering work on the use of TLC to separate polymer additives and to examine the separated additives by infrared and mass spectrometry. He retired in 1988 and has since been engaged as a consultant in the field of analytical chemistry and has written extensively on this subject, with some 20 books published.","published_at":"2017-06-22T21:14:07-04:00","created_at":"2017-06-22T21:14:07-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","autosamplers","book","bound","carbon","destructive","determination","elastomers","emission","flammability","furnace","general","graphite","halogen","ion chromatography","metals","microprocessors","nitrogen","optical","physical","polarography","polymer","polymers","rubbers","spectrometry","sulfur","testing","UV spectroscopy","vapour","voltammetry","X-ray","Zeeman"],"price":29700,"price_min":29700,"price_max":29700,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378396420,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Reference Book","public_title":null,"options":["Default Title"],"price":29700,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-492-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-492-8.jpg?v=1499952982"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-492-8.jpg?v=1499952982","options":["Title"],"media":[{"alt":null,"id":358550601821,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-492-8.jpg?v=1499952982"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-492-8.jpg?v=1499952982","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: T.R. Crompton \u003cbr\u003eISBN 978-1-85957-492-8 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePages: 704\u003c\/p\u003e\n\u003cp\u003eSoft-backed\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis book describes the types of techniques now available to the polymer chemist and technician and discusses their capabilities, limitations, and applications. All types of modern instrumentation are covered including those used in general quality control, research analysis, process monitoring and for determining the mechanical, electrical, thermal and optical characteristics. Aspects such as automated analysis and computerised control of instruments are also included. \u003cbr\u003e\u003cbr\u003eThe book covers not only instrumentation for the determination of metals, non metals, functional groups, polymer structural analysis and end-groups in the main types of polymers now in use commercially, but also the analysis of minor non-polymeric components of the polymer formulation, whether they be deliberately added, such as processing additives, or whether they occur adventitiously, such as residual volatiles and monomers and water. Fingerprinting techniques for the rapid identification of polymers and methods for the examination of polymer surfaces and polymer defects are also discussed. \u003cbr\u003e\u003cbr\u003eThe book gives an up-to-date and thorough exposition of the present state-of-the-art of the theory and availability of instrumentation needed to effect chemical and physical analysis of polymers. Over 1,800 references are included. The book should be of great interest to all those who are engaged in the examination of polymers in industry, university research establishments, and general education. The book is intended for all staff who are concerned with instrumentation in the polymer laboratory, including laboratory designers, work planners, chemists, engineers, chemical engineers and those concerned with the implementation of specifications and process control.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Determination of Metals\u003cbr\u003e1.1 Destructive Techniques\u003cbr\u003e1.1.1 Atomic Absorption Spectrometry\u003cbr\u003e1.1.2 Graphite Furnace Atomic Absorption Spectrometry\u003cbr\u003e1.1.3 Atom Trapping Technique\u003cbr\u003e1.1.4 Vapour Generation Atomic Absorption Spectrometry\u003cbr\u003e1.1.5 Zeeman Atomic Absorption Spectrometry\u003cbr\u003e1.1.6 Inductively Coupled Plasma Atomic Emission Spectrometry\u003cbr\u003e1.1.7 Hybrid Inductively Coupled Plasma Techniques\u003cbr\u003e1.1.8 Inductively Coupled Plasma Optical Emission Spectrometry–Mass Spectrometry\u003cbr\u003e1.1.9 Pre-concentration Atomic Absorption Spectrometry Techniques\u003cbr\u003e1.1.10 Microprocessors\u003cbr\u003e1.11 Autosamplers\u003cbr\u003e1.1.12 Applications: Atomic Absorption Spectrometric Determination of Metals\u003cbr\u003e1.1.13 Visible and UV Spectroscopy\u003cbr\u003e1.1.14 Polarography and Voltammetry\u003cbr\u003e1.1.15 Ion Chromatography\u003cbr\u003e1.2 Non-destructive Methods\u003cbr\u003e1.2.1 X-ray Fluorescence Spectrometry\u003cbr\u003e1.2.2 Neutron Activation Analysis \u003cbr\u003e2 Non-metallic Elements\u003cbr\u003e2.1 Instrumentation: Furnace Combustion Methods\u003cbr\u003e2.1.1 Halogens\u003cbr\u003e2.1.2 Sulfur\u003cbr\u003e2.1.3 Total Sulfur\/Total Halogen\u003cbr\u003e2.1.4 Total Bound Nitrogen\u003cbr\u003e2.1.5 Nitrogen, Carbon, and Sulfur\u003cbr\u003e2.1.6 Carbon, Hydrogen, and Nitrogen\u003cbr\u003e2.1.7 Total Organic Carbon\u003cbr\u003e2.2 Oxygen Flask Combustion Methods\u003cbr\u003e2.2.1 Total Halogens\u003cbr\u003e2.2.2 Sulfur\u003cbr\u003e2.2.3 Oxygen Flask Combustion: Ion Chromatography\u003cbr\u003e2.2.4 Instrumentation\u003cbr\u003e2.2.5 Applications\u003cbr\u003e2.3 Acid and Solid Digestions of Polymers\u003cbr\u003e2.3.1 Chlorine\u003cbr\u003e2.3.2 Nitrogen\u003cbr\u003e2.3.3 Phosphorus\u003cbr\u003e2.3.4 Silica\u003cbr\u003e2.4 X-ray Fluorescence Spectroscopy\u003cbr\u003e2.5 Antec 9000 Nitrogen\/Sulfur Analyser \u003cbr\u003e3 Functional Groups and Polymer Structure\u003cbr\u003e3.1 Infrared and Near-Infrared Spectroscopy\u003cbr\u003e3.1.1 Instrumentation\u003cbr\u003e3.1.2 Applications\u003cbr\u003e3.2 Fourier Transform Near-Infrared Raman Spectroscopy\u003cbr\u003e3.2.1 Theory\u003cbr\u003e3.2.2 Instrumentation\u003cbr\u003e3.2.3 Applications\u003cbr\u003e3.3 Fourier Transform Infrared Spectroscopy\u003cbr\u003e3.3.1 Instrumentation\u003cbr\u003e3.3.2 Applications\u003cbr\u003e3.4 Nuclear Magnetic Resonance (NMR) Spectroscopy\u003cbr\u003e3.4.1 Instrumentation\u003cbr\u003e3.4.2 Applications\u003cbr\u003e3.5 Proton Magnetic Resonance (PMR) Spectroscopy\u003cbr\u003e3.5.1 Instrumentation\u003cbr\u003e3.5.2 Applications\u003cbr\u003e3.6 Reaction Gas Chromatography\u003cbr\u003e3.6.1 Instrumentation\u003cbr\u003e3.6.2 Applications\u003cbr\u003e3.7 Pyrolysis Gas Chromatography\u003cbr\u003e3.7.1 Theory\u003cbr\u003e3.7.2 Instrumentation\u003cbr\u003e3.7.3 Applications\u003cbr\u003e3.8 Pyrolysis Gas Chromatography–Mass Spectrometry\u003cbr\u003e3.8.1 Instrumentation\u003cbr\u003e3.8.2 Applications\u003cbr\u003e3.9 Pyrolysis Gas Chromatography–Fourier Transform NMR Spectroscopy\u003cbr\u003e3.10 High-Performance Liquid Chromatography\u003cbr\u003e3.11 Mass Spectrometric Techniques\u003cbr\u003e3.11.1 Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)\u003cbr\u003e3.11.2 XPS\u003cbr\u003e3.11.3 Tandem Mass Spectrometry (MS\/MS)\u003cbr\u003e3.11.4 Fourier Transform Ion Cyclotron Mass Spectrometry\u003cbr\u003e3.11.5 MALDI-MS\u003cbr\u003e3.11.6 Radio Frequency Glow Discharge Mass Spectrometry\u003cbr\u003e3.12 Microthermal Analysis\u003cbr\u003e3.13 Atomic Force Microscopy\u003cbr\u003e3.13.1 Applications\u003cbr\u003e3.14 Scanning Electron Microscopy and Energy Dispersive Analysis using X-rays \u003cbr\u003e4 Examination of Polymer Surfaces and Defects\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Electron Microprobe X-ray Emission Spectrometry\u003cbr\u003e4.2.1 Applications\u003cbr\u003e4.3 NMR Micro-imaging\u003cbr\u003e4.4 Fourier Transform Infrared Spectroscopy\u003cbr\u003e4.4.1 Instrumentation\u003cbr\u003e4.4.2 Applications\u003cbr\u003e4.5 Diffusion Reflectance FT-IR Spectroscopy (Spectra-Tech)\u003cbr\u003e4.6 Attenuated Total Infrared Internal Reflectance (ATR) Spectroscopy (Spectra-Tech)\u003cbr\u003e4.7 External Reflectance Spectroscopy (Spectra-Tech)\u003cbr\u003e4.8 Photoacoustic Spectroscopy\u003cbr\u003e4.8.1 Instrumentation\u003cbr\u003e4.8.2 Applications\u003cbr\u003e4.9 X-ray Diffraction\/Infrared Microscopy of Synthetic Fibres\u003cbr\u003e4.10 Scanning Electrochemical Microscopy (SECM)\u003cbr\u003e4.11 Scanning Electron Microscopy (SEM)\u003cbr\u003e4.12 Transmission Electron Microscopy (TEM)\u003cbr\u003e4.12.1 Electron Microscopy and Inverse Gas Chromatography\u003cbr\u003e4.12.2 Supersonic Jet Spectrometry\u003cbr\u003e4.13 ToF SIMS\u003cbr\u003e4.14 Laser-Induced Photoelectron Ionisation with Laser Desorption\u003cbr\u003e4.15 Atomic Force Microscopy\u003cbr\u003e4.16 Microthermal Analysis \u003cbr\u003e5 Volatiles and Water\u003cbr\u003e5.1 Gas Chromatography\u003cbr\u003e5.1.1 Instrumentation\u003cbr\u003e5.1.2 Applications\u003cbr\u003e5.2 High-Performance Liquid Chromatography\u003cbr\u003e5.2.1 Instrumentation\u003cbr\u003e5.2.2 Applications\u003cbr\u003e5.3 Polarography\u003cbr\u003e5.3.1 Instrumentation\u003cbr\u003e5.3.2 Applications\u003cbr\u003e5.4 Headspace Analysis\u003cbr\u003e5.4.1 Instrumentation\u003cbr\u003e5.4.2 Applications\u003cbr\u003e5.5 Headspace Gas Chromatography-Mass Spectrometry\u003cbr\u003e5.5.1 Instrumentation\u003cbr\u003e5.6 Purge and Trap Analysis\u003cbr\u003e5.6.1 Instrumentation \u003cbr\u003e6 Fingerprinting Techniques\u003cbr\u003e6.1 Glass Transition Temperature (Tg) and Melting Temperature (Tm)\u003cbr\u003e6.2 Pyrolysis Techniques\u003cbr\u003e6.2.1 Conventional Pyrolysis Gas Chromatography\u003cbr\u003e6.2.2 Laser Pyrolysis Gas Chromatography\u003cbr\u003e6.2.3 Photolysis Gas Chromatography\u003cbr\u003e6.2.4 Pyrolysis Mass Spectrometry\u003cbr\u003e6.3 Infrared Spectroscopy\u003cbr\u003e6.3.1 Potassium Bromide Discs\u003cbr\u003e6.3.2 Hot Pressed Film\u003cbr\u003e6.4 Pyrolysis Fourier Transform Infrared Spectroscopy\u003cbr\u003e6.4.1 Theory\u003cbr\u003e6.4.2 Instrumentation\u003cbr\u003e6.4.3 Applications\u003cbr\u003e6.5 Raman Spectroscopy\u003cbr\u003e6.6 Fourier Transform Near-Infrared Raman Spectroscopy\u003cbr\u003e6.7 Radio Frequency and Low Discharge Mass Spectrometry \u003cbr\u003e7 Polymer Additives\u003cbr\u003e7.1 IR and Raman Spectroscopy\u003cbr\u003e7.1.1 Instrumentation\u003cbr\u003e7.1.2 Applications\u003cbr\u003e7.2 Ultraviolet Spectroscopy\u003cbr\u003e7.2.1 Instrumentation\u003cbr\u003e7.2.2 Applications\u003cbr\u003e7.3 Luminescence and Fluorescence Spectroscopy\u003cbr\u003e7.3.1 Instrumentation\u003cbr\u003e7.3.2 Applications\u003cbr\u003e7.4 Nuclear Magnetic Resonance Spectroscopy (NMR)\u003cbr\u003e7.5 Mass Spectrometry\u003cbr\u003e7.5.1 Instrumentation\u003cbr\u003e7.5.2 Applications\u003cbr\u003e7.6 Gas Chromatography\u003cbr\u003e7.6.1 Instrumentation\u003cbr\u003e7.6.2 Applications\u003cbr\u003e7.7 High-Performance Liquid Chromatography\u003cbr\u003e7.7.1 Theory\u003cbr\u003e7.7.2 Instrumentation\u003cbr\u003e7.7.3 Applications\u003cbr\u003e7.8 Complementary Techniques\u003cbr\u003e7.8.1 HPLC with Mass Spectrometry\u003cbr\u003e7.8.2 HPLC with IR Spectroscopy\u003cbr\u003e7.9 Ion Chromatography\u003cbr\u003e7.10 Supercritical Fluid Chromatography\u003cbr\u003e7.10.1 Theory\u003cbr\u003e7.10.2 Instrumentation\u003cbr\u003e7.10.3 Applications\u003cbr\u003e7.11 Thin-Layer Chromatography\u003cbr\u003e7.11.1 Theory\u003cbr\u003e7.11.2 Applications\u003cbr\u003e7.12 Polarography\u003cbr\u003e7.12.1 Instrumentation\u003cbr\u003e7.12.2 Applications\u003cbr\u003e7.13 Pyrolysis-Gas Chromatography-Mass Spectrometry\u003cbr\u003e7.14 X-ray Photoelectron Spectroscopy\u003cbr\u003e7.15 Secondary Ion Mass Spectrometry\u003cbr\u003e7.16 X-ray Fluorescence Spectroscopy\u003cbr\u003e7.17 Solvent Extraction Systems \u003cbr\u003e8 Polymer Fractionation and Molecular Weight\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 High-Performance GPC and SEC\u003cbr\u003e8.2.1 Theory\u003cbr\u003e8.2.2 Applications\u003cbr\u003e8.3 High-Performance Liquid Chromatography\u003cbr\u003e8.3.1 Instrumentation\u003cbr\u003e8.3.2 Applications\u003cbr\u003e8.4 Supercritical Fluid Chromatography\u003cbr\u003e8.4.1 Theory\u003cbr\u003e8.4.2 Instrumentation\u003cbr\u003e8.4.3 Applications\u003cbr\u003e8.5 Gas Chromatography\u003cbr\u003e8.6 Thin-Layer Chromatography\u003cbr\u003e8.7 NMR Spectroscopy\u003cbr\u003e8.8 Osmometry\u003cbr\u003e8.9 Light Scattering Methods\u003cbr\u003e8.10 Viscometry\u003cbr\u003e8.11 Ultracentrifugation\u003cbr\u003e8.12 Field Desorption Mass Spectrometry\u003cbr\u003e8.13 Capillary Electrophoresis\u003cbr\u003e8.14 Liquid Chromatography-Mass Spectrometry\u003cbr\u003e8.15 Ion Exchange Chromatography\u003cbr\u003e8.16 Liquid Adsorption Chromatography\u003cbr\u003e8.17 Time-of-Flight Secondary Ion Mass Spectrometry (ToF SIMS)\u003cbr\u003e8.18 MALDI-MS\u003cbr\u003e8.19 Thermal Field Flow Fractionation\u003cbr\u003e8.20 Desorption Chemical Ionisation Mass Spectrometry\u003cbr\u003e8.21 Grazing Emission X-ray Fluorescence Spectrometry \u003cbr\u003e9 Thermal and Chemical Stability\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Theory\u003cbr\u003e9.2.1 Thermogravimetric Analysis\u003cbr\u003e9.2.2 Differential Thermal Analysis\u003cbr\u003e9.2.3 Differential Scanning Calorimetry\u003cbr\u003e9.2.4 Thermal Volatilisation Analysis\u003cbr\u003e9.2.5 Evolved Gas Analysis\u003cbr\u003e9.3 Instrumentation\u003cbr\u003e9.3.1 Instrumentation for TGA, DTA, and DSC\u003cbr\u003e9.3.2 Instrumentation for TVA and EGA\u003cbr\u003e9.4 Applications\u003cbr\u003e9.4.1 Thermogravimetric Analysis\u003cbr\u003e9.4.2 TGA–FT-IR Spectroscopy and DSC–FT-IR Spectroscopy\u003cbr\u003e9.4.3 Differential Thermal Analysis\u003cbr\u003e9.4.4 Differential Scanning Calorimetry\u003cbr\u003e9.4.5 Thermal Volatilisation Analysis\u003cbr\u003e9.4.6 EGA–TGA–Gas Chromatogravimetry and TGA–Gas Chromatography-Mass Spectrometry\u003cbr\u003e9.4.7 Mass Spectrometric Methods\u003cbr\u003e9.5 Examination of Thermal Stability by a Variety of Techniques\u003cbr\u003e9.6 Heat Stability of Polypropylene\u003cbr\u003e9.6.1 Influence of Pigmentation and UV Stabilisation on Heat Ageing Life \u003cbr\u003e10 Monitoring of Resin Cure\u003cbr\u003e10.1 Dynamic Mechanical Thermal Analysis\u003cbr\u003e10.1.1 Theory\u003cbr\u003e10.1.2 Instrumentation\u003cbr\u003e10.1.3 Applications\u003cbr\u003e10.2 Dielectric Thermal Analysis\u003cbr\u003e10.2.1 Theory\u003cbr\u003e10.2.2 Instrumentation\u003cbr\u003e10.2.3 Applications\u003cbr\u003e10.3 Differential Scanning Calorimetry\u003cbr\u003e10.4 Fibre Optic Sensor to Monitor Resin Cure \u003cbr\u003e11 Oxidative Stability\u003cbr\u003e11.1 Theory and Instrumentation\u003cbr\u003e11.2 Applications\u003cbr\u003e11.2.1 Thermogravimetric Analysis\u003cbr\u003e11.2.2 Differential Scanning Calorimetry\u003cbr\u003e11.2.3 Evolved Gas Analysis\u003cbr\u003e11.2.4 Infrared Spectroscopy of Oxidised Polymers\u003cbr\u003e11.2.5 Electron Spin Resonance Spectroscopy\u003cbr\u003e11.2.6 Matrix-Assisted Laser Desorption\/Ionisation Mass Spectrometry\u003cbr\u003e11.2.7 Imaging Chemiluminescence \u003cbr\u003e12 Examination of Photopolymers\u003cbr\u003e12.1 Differential Photocalorimetry\u003cbr\u003e12.1.1 Theory\u003cbr\u003e12.1.2 Instrumentation\u003cbr\u003e12.1.3 Applications\u003cbr\u003e12.2 Dynamic Mechanical Analysis\u003cbr\u003e12.3 Infrared and Ultraviolet Spectroscopy\u003cbr\u003e12.4 Gas Chromatography-Based Methods \u003cbr\u003e13 Glass Transition and Other Transitions\u003cbr\u003e13.1 Glass Transition\u003cbr\u003e13.2 Differential Scanning Calorimetry\u003cbr\u003e13.2.1 Theory\u003cbr\u003e13.2.2 Instrumentation\u003cbr\u003e13.2.3 Applications\u003cbr\u003e13.3 Thermomechanical Analysis\u003cbr\u003e13.3.1 Theory\u003cbr\u003e13.3.2 Instrumentation\u003cbr\u003e13.3.3 Applications\u003cbr\u003e13.4 Dynamic Mechanical Analysis\u003cbr\u003e13.4.1 Applications\u003cbr\u003e13.5 Differential Thermal Analysis and Thermogravimetric Analysis\u003cbr\u003e13.6 Nuclear Magnetic Resonance Spectroscopy\u003cbr\u003e13.7 Dielectric Thermal Analysis\u003cbr\u003e13.8 Other Transitions (alpha, beta, and gamma)\u003cbr\u003e13.8.1 Differential Thermal Analysis\u003cbr\u003e13.8.2 Dynamic Mechanical Analysis\u003cbr\u003e13.8.3 Dielectric Thermal Analysis\u003cbr\u003e13.8.4 Thermomechanical Analysis\u003cbr\u003e13.8.5 Infrared Spectroscopy \u003cbr\u003e14 Crystallinity\u003cbr\u003e14.1 Theory\u003cbr\u003e14.2 Differential Scanning Calorimetry\u003cbr\u003e14.2.1 Theory\u003cbr\u003e14.2.2 Instrumentation\u003cbr\u003e14.2.3 Applications\u003cbr\u003e14.3 Differential Thermal Analysis\u003cbr\u003e14.3.1 Theory\u003cbr\u003e14.3.2 Applications\u003cbr\u003e14.4 X-ray Powder Diffraction\u003cbr\u003e14.4.1 Applications\u003cbr\u003e14.5 Wide-Angle X-ray Scattering\/Diffraction\u003cbr\u003e14.5.1 Applications\u003cbr\u003e14.6 Small Angle X-ray Diffraction Scattering and Positron Annihilation Lifetime Spectroscopy\u003cbr\u003e14.6.1 Theory\u003cbr\u003e14.6.2 Applications\u003cbr\u003e14.7 Static and Dynamic Light Scattering\u003cbr\u003e14.7.1 Applications\u003cbr\u003e14.8 Infrared Spectroscopy\u003cbr\u003e14.8.1 Applications\u003cbr\u003e14.9 Nuclear Magnetic Resonance\u003cbr\u003e14.9.1 Applications \u003cbr\u003e15 Viscoelastic and Rheological Properties\u003cbr\u003e15.1 Dynamic Mechanical Analysis\u003cbr\u003e15.1.1 Theory\u003cbr\u003e15.1.2 Instrumentation\u003cbr\u003e15.1.3 Applications\u003cbr\u003e15.2 Thermomechanical Analysis\u003cbr\u003e15.2.1 Applications\u003cbr\u003e15.3 Dielectric Thermal Analysis\u003cbr\u003e15.3.1 Theory\u003cbr\u003e15.3.2 Instrumentation\u003cbr\u003e15.3.3 Applications\u003cbr\u003e15.4 Further Viscoelastic Behaviour Studies\u003cbr\u003e15.5 Further Rheology Studies \u003cbr\u003e16 Thermal Properties\u003cbr\u003e16.1 Linear Coefficient of Expansion\u003cbr\u003e16.1.1 Dilatometric Method\u003cbr\u003e16.2 Melting Temperature\u003cbr\u003e16.2.1 Thermal Methods\u003cbr\u003e16.2.2 Fisher-Johns Apparatus\u003cbr\u003e16.3 Softening Point (Vicat)\u003cbr\u003e16.4 Heat Deflection\/Distortion Temperature\u003cbr\u003e16.4.1 Thermomechanical Analysis\u003cbr\u003e16.4.2 Martens Method\u003cbr\u003e16.4.3 Vicat Softening Point Apparatus\u003cbr\u003e16.4.4 Dynamic Mechanical Analysis\u003cbr\u003e16.5 Brittleness Temperature (Low-Temperature Embrittlement)\u003cbr\u003e16.6 Minimum Filming Temperature\u003cbr\u003e16.7 Delamination Temperature\u003cbr\u003e16.8 Melt Flow Index\u003cbr\u003e16.9 Heat of Volatilisation\u003cbr\u003e16.10 Thermal Conductivity\u003cbr\u003e16.11 Specific Heat\u003cbr\u003e16.11.1 Transient Plane Source Technique\u003cbr\u003e16.11.2 Hot Wire Parallel Technique\u003cbr\u003e16.12 Thermal Diffusivity\u003cbr\u003e16.13 Ageing in Air \u003cbr\u003e17 Flammability Testing\u003cbr\u003e17.1 Combustion Testing and Rating of Plastics\u003cbr\u003e17.1.1Introduction\u003cbr\u003e17.1.2 Mining Applications\u003cbr\u003e17.1.3 Electrical Applications\u003cbr\u003e17.1.4 Transportation Applications\u003cbr\u003e17.1.5 Furniture and Furnishing Applications\u003cbr\u003e17.1.6 Construction Material Applications\u003cbr\u003e17.1.7 Other Fire-Related Factors\u003cbr\u003e17.2 Instrumentation\u003cbr\u003e17.3 Examination of Combustible Polymer Products\u003cbr\u003e17.4 Oxygen Consumption Cone Calorimetry\u003cbr\u003e17.5 Laser Pyrolysis–Time-of-Flight Mass Spectrometry\u003cbr\u003e17.6 Pyrolysis-Gas Chromatography-Mass Spectrometry\u003cbr\u003e17.7 Thermogravimetric Analysis \u003cbr\u003e18 Mechanical, Electrical, and Optical Properties\u003cbr\u003e18.1 Mechanical Properties of Polymers\u003cbr\u003e18.1.1 Load-Bearing Characteristics of Polymers\u003cbr\u003e18.1.2 Impact Strength Characteristics of Polymers\u003cbr\u003e18.1.3 Measurement of Mechanical Properties in Polymers\u003cbr\u003e18.1.4 Properties of Polymer Film and Pipe\u003cbr\u003e18.1.5 Polymer Powders\u003cbr\u003e18.1.6 Physical Testing of Rubbers and Elastomers\u003cbr\u003e18.2 Electrical Properties\u003cbr\u003e18.2.1 Volume and Surface Resistivity\u003cbr\u003e18.2.2 Dielectric and Dissipation Factor\u003cbr\u003e18.2.3 Dielectric Strength (Dielectric Rigidity)\u003cbr\u003e18.2.4 Surface Arc Resistance\u003cbr\u003e18.2.5 Tracking Resistance\u003cbr\u003e18.3 Optical Properties and Light Stability\u003cbr\u003e18.3.1 Stress Optical Analysis\u003cbr\u003e18.3.2 Light Stability of Polyolefins\u003cbr\u003e18.3.3 Effect of Pigments\u003cbr\u003e18.3.4 Effect of Pigments in Combination with a UV Stabiliser\u003cbr\u003e18.3.5 Effect of Carbon Black\u003cbr\u003e18.3.6 Effect of Window Glass\u003cbr\u003e18.3.7 Effect of Sunlight on Impact Strength\u003cbr\u003e18.3.8 Effect of Thickness\u003cbr\u003e18.3.9 Effect of Stress During Exposure\u003cbr\u003e18.3.10 Effect of Molecular Weight\u003cbr\u003e18.3.11 Effect of Sunlight on the Surface Appearance of Pigmented Samples \u003cbr\u003e19 Miscellaneous Physical and Chemical Properties\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Particle Size Characteristics of Polymer Powders\u003cbr\u003e19.2.1 Methods Based on Electrical Sensing Zone (or Coulter Principle)\u003cbr\u003e19.2.2 Laser Particle Size Analysers\u003cbr\u003e19.2.3 Photon Correlation Spectroscopy (Autocorrelation Spectroscopy)\u003cbr\u003e19.2.4 Sedimentation\u003cbr\u003e19.2.5 Other Instrumentation \u003cbr\u003e20 Additive Migration from Packaged Commodities\u003cbr\u003e20.1 Polymer Additives\u003cbr\u003e20.2 Extraction Tests \u003cbr\u003eAppendix 1\u003cbr\u003eInstrument Suppliers\u003cbr\u003eThermal Properties of Polymers\u003cbr\u003eMechanical Properties of Polymers\u003cbr\u003ePhysical Testing of Polymer Powders\u003cbr\u003eElectrical Properties of Polymers\u003cbr\u003eOptical Properties of Polymers\u003cbr\u003ePhysical Testing of Rubbers and Elastomers\u003cbr\u003ePolymer Flammability Properties \u003cbr\u003eAddresses of Suppliers \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoy Crompton was Head of the polymer analysis research department of a major international polymer producer for some 15 years. In the early fifties, he was heavily engaged in the development of methods of analysis for low-pressure polyolefins produced by the Ziegler-Natta route, including work on high-density polyethylene and polypropylene. He was responsible for the development of methods of analysis of the organoaluminum catalysts used for the synthesis of these polymers. He was also responsible for the development of thin-layer chromatography for the determination of various types of additives in polymers and did pioneering work on the use of TLC to separate polymer additives and to examine the separated additives by infrared and mass spectrometry. He retired in 1988 and has since been engaged as a consultant in the field of analytical chemistry and has written extensively on this subject, with some 20 books published."}
Polymer Reinforcement
$225.00
{"id":11242239236,"title":"Polymer Reinforcement","handle":"1-895198-08-9","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Yuri S. Lipatov \u003cbr\u003e10-ISBN 1-895198-08-9 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-08-9 \u003c\/span\u003e\u003cbr\u003eAcademy of Sciences of Ukraine\u003cbr\u003e\u003cbr\u003e385 pages, 117 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe main topics of this book are fillers, their interface with polymers, composites, blends, and alloys. Treatment of the subject is fundamental based on principles of surface phenomena, the physico-chemical theory of filling, the theory of adsorption, surface adhesion, etc. Each concept is illustrated by practical consequences for real materials which allow for easy transfer of experiences from one discipline to the other and makes book invaluable for material scientists, technologists, and engineers also in scopes other than polymers. (\"The details of the mechanisms of reinforcement may be different in each case but physico-chemical principles remain valid\". Lipatov, Foreword). The book contains in-depth analysis of methods by which materials properties can be improved by fostering interaction between components of existing formulation that constitutes the most economical method of upgrading of materials even with the frequent reduction of material cost. Application of these methods requires fundamental understanding.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eThe basic theories of polymer adsorption\u003c\/li\u003e\n\u003cli\u003eAdhesion of polymers at the interface with solid\u003c\/li\u003e\n\u003cli\u003eSurface layers of polymers at the interface with solids\u003c\/li\u003e\n\u003cli\u003eThermodynamic and kinetic aspects of reinforcement\u003c\/li\u003e\n\u003cli\u003eViscoelastic properties of reinforced polymers\u003c\/li\u003e\n\u003cli\u003ePolymer alloys as composites\u003c\/li\u003e\n\u003cli\u003eFilled polymer alloys\u003c\/li\u003e\n\u003cli\u003eConcluding remarks on the mechanism of reinforcing the action of fillers in polymers.\u003c\/li\u003e\n\u003c\/ul\u003e\nAuthor and his group in Academy of Sciences in Kiev, composed of world recognized scientists, have been working on this subject for 35 years gaining recognition for their original results and very good knowledge of world literature in the field. Broad scientific experiences, deep understanding of the most current findings, the well-thought concept of presentation makes this book very essential for those working in any area of polymers but other disciplines such as rubber, coatings, inks, pharmaceutical sciences, cosmetics, food industry, paper industry, etc. will also find this book invaluable. It should be noted that book contains a broad discussion of adhesion and interphasial phenomena, and this knowledge is applied to composites, blends, and alloys.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:40-04:00","created_at":"2017-06-22T21:14:40-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1995","adhesion","adsorption","alloys","blends","coatings","composites","cosmetics","fillers","food","inks","interface","paper","pharmaceutical","polymer","polymers","reinforcement","rubber","surface"],"price":22500,"price_min":22500,"price_max":22500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432516,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Reinforcement","public_title":null,"options":["Default Title"],"price":22500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-08-9","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/1-895198-08-9.jpg?v=1503689502"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-08-9.jpg?v=1503689502","options":["Title"],"media":[{"alt":null,"id":410053509213,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-08-9.jpg?v=1503689502"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/1-895198-08-9.jpg?v=1503689502","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Yuri S. Lipatov \u003cbr\u003e10-ISBN 1-895198-08-9 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-08-9 \u003c\/span\u003e\u003cbr\u003eAcademy of Sciences of Ukraine\u003cbr\u003e\u003cbr\u003e385 pages, 117 figures\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe main topics of this book are fillers, their interface with polymers, composites, blends, and alloys. Treatment of the subject is fundamental based on principles of surface phenomena, the physico-chemical theory of filling, the theory of adsorption, surface adhesion, etc. Each concept is illustrated by practical consequences for real materials which allow for easy transfer of experiences from one discipline to the other and makes book invaluable for material scientists, technologists, and engineers also in scopes other than polymers. (\"The details of the mechanisms of reinforcement may be different in each case but physico-chemical principles remain valid\". Lipatov, Foreword). The book contains in-depth analysis of methods by which materials properties can be improved by fostering interaction between components of existing formulation that constitutes the most economical method of upgrading of materials even with the frequent reduction of material cost. Application of these methods requires fundamental understanding.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003eThe basic theories of polymer adsorption\u003c\/li\u003e\n\u003cli\u003eAdhesion of polymers at the interface with solid\u003c\/li\u003e\n\u003cli\u003eSurface layers of polymers at the interface with solids\u003c\/li\u003e\n\u003cli\u003eThermodynamic and kinetic aspects of reinforcement\u003c\/li\u003e\n\u003cli\u003eViscoelastic properties of reinforced polymers\u003c\/li\u003e\n\u003cli\u003ePolymer alloys as composites\u003c\/li\u003e\n\u003cli\u003eFilled polymer alloys\u003c\/li\u003e\n\u003cli\u003eConcluding remarks on the mechanism of reinforcing the action of fillers in polymers.\u003c\/li\u003e\n\u003c\/ul\u003e\nAuthor and his group in Academy of Sciences in Kiev, composed of world recognized scientists, have been working on this subject for 35 years gaining recognition for their original results and very good knowledge of world literature in the field. Broad scientific experiences, deep understanding of the most current findings, the well-thought concept of presentation makes this book very essential for those working in any area of polymers but other disciplines such as rubber, coatings, inks, pharmaceutical sciences, cosmetics, food industry, paper industry, etc. will also find this book invaluable. It should be noted that book contains a broad discussion of adhesion and interphasial phenomena, and this knowledge is applied to composites, blends, and alloys.\u003cbr\u003e\u003cbr\u003e"}
Polymer Rheology 2001
$160.00
{"id":11242251268,"title":"Polymer Rheology 2001","handle":"978-1-85957-250-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-250-4 \u003cbr\u003e\u003cbr\u003epages 98\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRapra presented the third successful European conference concentrating on polymer rheology as a practical tool for process control and quality analysis. \u003cbr\u003e\u003cbr\u003ePapers were presented covering the latest techniques, equipment, and innovations in the monitoring and characterisation of polymers. Subjects addressed include the application of rheology to real-time processes, quality control, and flow behaviour.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nZero Length Die Measurement Versus Bagley Correction, Alternatives to Determine Extensional Flow Properties of Molten Polymers - A Comparison\u003cbr\u003eAxel Göttfert and J. Sunder, Göttfert Werkstoff-Pruffmaschinen GmbH, Germany \u003cbr\u003eMaking Better use of the Melt Flow Rate Instrument - Multi-rate and Extensional Flow Measurements\u003cbr\u003eMartin Rides and Crispin R.G. Allen, NPL Materials Centre, UK \u003cbr\u003eA Further Investigation of Polymer Degradation During Injection Moulding Based on Capillary Rheometry\u003cbr\u003eFengge Gao, The Polymer Engineering Centre, Nottingham Trust University, UK \u003cbr\u003eExtensional Viscosity Measurement of Polymer Melts with the NPL Extensional Rheometer\u003cbr\u003eRoy Carter + , Martin Rides ++ and Crispin Allen ++ , + Magna Projects and Instruments Limited, UK and ++ National Physical Laboratory, UK \u003cbr\u003e\u003cbr\u003eCost, Precision, and Reliability in Rheological Measurements and Control\u003cbr\u003eTom Dobbie and Alan George, Porpoise Viscometers, UK \u003cbr\u003eOn-line Characterisation of Polymers, Emulsions Suspensions, and Foams\u003cbr\u003eJames Holloway, Fullbrook Systems Ltd., UK \u003cbr\u003eReturn Stream On-Line Rheometry Through a Process Sensor Port for Process and Production Applications\u003cbr\u003eDonald De Laney, Steven Oliver and Stefan Anlauf, Dynisco Polymer Testing, USA \u003cbr\u003eLight into Polymers Makes Money Spectroscopy for In-Situ Analysis of Molecular Weight, Melt Index, Degradation, and Polymerisation\u003cbr\u003eHenryk Herman, Actinic Technology, UK and Polymer Research Centre, University of Surrey, UK \u003cbr\u003eScanning Probe Microscopy: Polymer Characterisation at the Microscale\u003cbr\u003eAndrew Murray, ThermoMicroscopes, UK \u003cbr\u003eOutside the Linear Regime: Investigating the Rheology of Polymers at High Stresses\u003cbr\u003eBernard Costello, TA Instruments Ltd., UK \u003cbr\u003eAn Elasticity\/Viscosity Tester\u003cbr\u003eWilliam F. Watson, WNP Limited, UK \u003cbr\u003eRecent Rheometer Developments for Polymer Analysis\u003cbr\u003eSteve Smith, Reologica Instruments AB, UK\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eHighly Filled TPEs - Processing and Rheology\u003cbr\u003eAat C. Hordijk, Caspar Schoolderman, and Antoine E.D.M. van der Heijden TNO - Prins Mauritis Laboratory, The Netherlands \u003cbr\u003e\u003cbr\u003ePerox PP: A Range of Peroxide Masterbatch for PP Controlled Rheology\u003cbr\u003eAlain Prévot, Raphaël Mestanza \u0026amp; Leslie Bottomley, Polytechs S.A., France \u003cbr\u003eHeat Transfer in Polymer Processing: The Importance of Accurate Measurement\u003cbr\u003eChris Brown and S. Percio, NPL Materials Centre, UK \u003cbr\u003eThe Benefit of NIR Spectroscopy in the Production of Polymers\u003cbr\u003eAndrew Wallace, Bran + Luebbe Ltd., UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:18-04:00","created_at":"2017-06-22T21:15:18-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2001","book","capillary","degradation","flow","index","injection moulding","melt","molding","molecular weight","p-properties","poly","polymers","process","rate","rheology","rheometry","rubber","spectroscopy"],"price":16000,"price_min":16000,"price_max":16000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378477188,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Rheology 2001","public_title":null,"options":["Default Title"],"price":16000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-250-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-250-4.jpg?v=1499727872"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-250-4.jpg?v=1499727872","options":["Title"],"media":[{"alt":null,"id":358551552093,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-250-4.jpg?v=1499727872"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-250-4.jpg?v=1499727872","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-85957-250-4 \u003cbr\u003e\u003cbr\u003epages 98\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRapra presented the third successful European conference concentrating on polymer rheology as a practical tool for process control and quality analysis. \u003cbr\u003e\u003cbr\u003ePapers were presented covering the latest techniques, equipment, and innovations in the monitoring and characterisation of polymers. Subjects addressed include the application of rheology to real-time processes, quality control, and flow behaviour.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nZero Length Die Measurement Versus Bagley Correction, Alternatives to Determine Extensional Flow Properties of Molten Polymers - A Comparison\u003cbr\u003eAxel Göttfert and J. Sunder, Göttfert Werkstoff-Pruffmaschinen GmbH, Germany \u003cbr\u003eMaking Better use of the Melt Flow Rate Instrument - Multi-rate and Extensional Flow Measurements\u003cbr\u003eMartin Rides and Crispin R.G. Allen, NPL Materials Centre, UK \u003cbr\u003eA Further Investigation of Polymer Degradation During Injection Moulding Based on Capillary Rheometry\u003cbr\u003eFengge Gao, The Polymer Engineering Centre, Nottingham Trust University, UK \u003cbr\u003eExtensional Viscosity Measurement of Polymer Melts with the NPL Extensional Rheometer\u003cbr\u003eRoy Carter + , Martin Rides ++ and Crispin Allen ++ , + Magna Projects and Instruments Limited, UK and ++ National Physical Laboratory, UK \u003cbr\u003e\u003cbr\u003eCost, Precision, and Reliability in Rheological Measurements and Control\u003cbr\u003eTom Dobbie and Alan George, Porpoise Viscometers, UK \u003cbr\u003eOn-line Characterisation of Polymers, Emulsions Suspensions, and Foams\u003cbr\u003eJames Holloway, Fullbrook Systems Ltd., UK \u003cbr\u003eReturn Stream On-Line Rheometry Through a Process Sensor Port for Process and Production Applications\u003cbr\u003eDonald De Laney, Steven Oliver and Stefan Anlauf, Dynisco Polymer Testing, USA \u003cbr\u003eLight into Polymers Makes Money Spectroscopy for In-Situ Analysis of Molecular Weight, Melt Index, Degradation, and Polymerisation\u003cbr\u003eHenryk Herman, Actinic Technology, UK and Polymer Research Centre, University of Surrey, UK \u003cbr\u003eScanning Probe Microscopy: Polymer Characterisation at the Microscale\u003cbr\u003eAndrew Murray, ThermoMicroscopes, UK \u003cbr\u003eOutside the Linear Regime: Investigating the Rheology of Polymers at High Stresses\u003cbr\u003eBernard Costello, TA Instruments Ltd., UK \u003cbr\u003eAn Elasticity\/Viscosity Tester\u003cbr\u003eWilliam F. Watson, WNP Limited, UK \u003cbr\u003eRecent Rheometer Developments for Polymer Analysis\u003cbr\u003eSteve Smith, Reologica Instruments AB, UK\u003cbr\u003e(Paper unavailable at time of print) \u003cbr\u003eHighly Filled TPEs - Processing and Rheology\u003cbr\u003eAat C. Hordijk, Caspar Schoolderman, and Antoine E.D.M. van der Heijden TNO - Prins Mauritis Laboratory, The Netherlands \u003cbr\u003e\u003cbr\u003ePerox PP: A Range of Peroxide Masterbatch for PP Controlled Rheology\u003cbr\u003eAlain Prévot, Raphaël Mestanza \u0026amp; Leslie Bottomley, Polytechs S.A., France \u003cbr\u003eHeat Transfer in Polymer Processing: The Importance of Accurate Measurement\u003cbr\u003eChris Brown and S. Percio, NPL Materials Centre, UK \u003cbr\u003eThe Benefit of NIR Spectroscopy in the Production of Polymers\u003cbr\u003eAndrew Wallace, Bran + Luebbe Ltd., UK\u003cbr\u003e\u003cbr\u003e"}
Polymer Surfaces and I...
$209.00
{"id":11242247300,"title":"Polymer Surfaces and Interfaces","handle":"978-3-540-73864-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Manfred Stamm \u003cbr\u003eISBN 978-3-540-73864-0 \u003cbr\u003e\u003cbr\u003eApprox., 300 p., Hardcover\u003cbr\u003eNot yet published. Available: January 3, 2008\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSurfaces and interfaces of polymers play an important role in most of the application areas of polymers, e.g. moulds, foils, thin films, coatings, adhesive joints, blends, composites, biomaterials or applications in micro- and nanotechnology. Therefore it is very important to be able to characterize these surfaces and interfaces in detail. In Polymer Surfaces and Interfaces, experts provide concise explanations, with examples and illustrations, of the key techniques. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nM. Stamm: Review of Polymer Surface and Interface Characterization Techniques.\n\u003cp\u003eP. Müller-Buschbaum: Structure determination in the thin film geometry using grazing incidence small angle scattering.-\u003c\/p\u003e\n\u003cp\u003eM. Müller: Vibrational Spectroscopic and Optical Methods.\u003c\/p\u003e\n\u003cp\u003eD. Pleul and F. Simon: X-Ray Photoelectron Spectroscopy.\u003c\/p\u003e\n\u003cp\u003eD. Pleul and F. Simon: Time-of-flight secondary ion mass spectrometry.\u003c\/p\u003e\n\u003cp\u003eK. Grundke: Characterization of polymer surfaces by wetting and electrokinetic measurements- contact angle, interfacial tension, zeta potential.\u003c\/p\u003e\n\u003cp\u003eK. Schneider: Mechanical properties of polymers at surfaces and interfaces.\u003c\/p\u003e\n\u003cp\u003eP. Busch and R. Weidisch: Interfaces between Incompatible Polymers.\u003c\/p\u003e\n\u003cp\u003eM. Müller: Liquid-liquid and liquid-vapor interfaces in polymeric systems.\u003c\/p\u003e\n\u003cp\u003eM. Nitschke: Plasma Modification of Polymer Surfaces and Plasma Polymerization.\u003c\/p\u003e\n\u003cp\u003eS. Minko: Grafting on solid surfaces: \"Grafting to\" and \"Grafting from\" Methods.\u003c\/p\u003e\n\u003cp\u003eC. Bellmann: Surface Modification by Adsorption of Polymers and Surfactants.\u003c\/p\u003e\n\u003cp\u003eA. Sydorenko: Nanostructures in thin films from nanostructured polymeric templates, self-assembly.\u003c\/p\u003e\n\u003cp\u003eD. Pospiech: Influencing the interface in polymer blends by compatibilization with block copolymers.\u003c\/p\u003e\n\u003cp\u003eC. Werner: Interfacial Phenomena at Biomaterials.\u003c\/p\u003e","published_at":"2017-06-22T21:15:06-04:00","created_at":"2017-06-22T21:15:06-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","adhesive joints","application","biomaterials","blends","book","coatings","composites","contac angle","foils","grafting","interfaces","microtechnology","moulds","nanotechnology","opyical methods","p-properties","plasma","polymer","polymerization","polymers","spectrometry","spectroscopic","Springer","Surfaces","tension","thin films","X-ray"],"price":20900,"price_min":20900,"price_max":20900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378464004,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer Surfaces and Interfaces","public_title":null,"options":["Default Title"],"price":20900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-73864-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-73864-0.jpg?v=1499953029"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-73864-0.jpg?v=1499953029","options":["Title"],"media":[{"alt":null,"id":358551584861,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-73864-0.jpg?v=1499953029"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-73864-0.jpg?v=1499953029","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Ed. Manfred Stamm \u003cbr\u003eISBN 978-3-540-73864-0 \u003cbr\u003e\u003cbr\u003eApprox., 300 p., Hardcover\u003cbr\u003eNot yet published. Available: January 3, 2008\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSurfaces and interfaces of polymers play an important role in most of the application areas of polymers, e.g. moulds, foils, thin films, coatings, adhesive joints, blends, composites, biomaterials or applications in micro- and nanotechnology. Therefore it is very important to be able to characterize these surfaces and interfaces in detail. In Polymer Surfaces and Interfaces, experts provide concise explanations, with examples and illustrations, of the key techniques. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nM. Stamm: Review of Polymer Surface and Interface Characterization Techniques.\n\u003cp\u003eP. Müller-Buschbaum: Structure determination in the thin film geometry using grazing incidence small angle scattering.-\u003c\/p\u003e\n\u003cp\u003eM. Müller: Vibrational Spectroscopic and Optical Methods.\u003c\/p\u003e\n\u003cp\u003eD. Pleul and F. Simon: X-Ray Photoelectron Spectroscopy.\u003c\/p\u003e\n\u003cp\u003eD. Pleul and F. Simon: Time-of-flight secondary ion mass spectrometry.\u003c\/p\u003e\n\u003cp\u003eK. Grundke: Characterization of polymer surfaces by wetting and electrokinetic measurements- contact angle, interfacial tension, zeta potential.\u003c\/p\u003e\n\u003cp\u003eK. Schneider: Mechanical properties of polymers at surfaces and interfaces.\u003c\/p\u003e\n\u003cp\u003eP. Busch and R. Weidisch: Interfaces between Incompatible Polymers.\u003c\/p\u003e\n\u003cp\u003eM. Müller: Liquid-liquid and liquid-vapor interfaces in polymeric systems.\u003c\/p\u003e\n\u003cp\u003eM. Nitschke: Plasma Modification of Polymer Surfaces and Plasma Polymerization.\u003c\/p\u003e\n\u003cp\u003eS. Minko: Grafting on solid surfaces: \"Grafting to\" and \"Grafting from\" Methods.\u003c\/p\u003e\n\u003cp\u003eC. Bellmann: Surface Modification by Adsorption of Polymers and Surfactants.\u003c\/p\u003e\n\u003cp\u003eA. Sydorenko: Nanostructures in thin films from nanostructured polymeric templates, self-assembly.\u003c\/p\u003e\n\u003cp\u003eD. Pospiech: Influencing the interface in polymer blends by compatibilization with block copolymers.\u003c\/p\u003e\n\u003cp\u003eC. Werner: Interfacial Phenomena at Biomaterials.\u003c\/p\u003e"}
Polymer/Layered Silica...
$130.00
{"id":11242226436,"title":"Polymer\/Layered Silicate Nanocomposites","handle":"978-1-85957-391-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Masami Okamoto, Toyota Technological Institute \u003cbr\u003eISBN 978-1-85957-391-4 \u003cbr\u003e\u003cbr\u003e166 pages, Soft-backed\u003cbr\u003eVol. 14, no. 7, report 163, 2003\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer\/clay nanocomposites have received a lot of attention over the last decade. Companies such as Nanocor and Honeywell are already commercially exploiting nanocomposite materials. A small amount of nanodispersed filler leads to an improvement in material properties, such as modulus, strength, heat resistance, flame retardancy, and lowered gas permeability. Adding clay nanofillers to biodegradable polymers has also been shown to enhance compostability.\u003cbr\u003e\u003cbr\u003eThe enhancement of material properties has been linked to the interfacial interaction between the polymer matrix and the organically modified layered silicate filler structure. The filler particles provide a very high surface area.\u003cbr\u003e\u003cbr\u003eMontmorillonite, hectorite, and saponite are the most commonly used layered silicates. For a nanocomposite to be formed successfully, the mineral must disperse into separate layers. The surface chemistry is also important - ion exchange reactions with cations (commonly alkyl ammonium or alkyl phosphonium cations) allow the silicate to be compatibilised with the polymer matrix. The strong interactions between the two materials lead to dispersion at the nanometre level.\u003cbr\u003e\u003cbr\u003ePolymer\/layered silicate nanocomposites are prepared by a variety of routes. One of the first materials, a Nylon 6 nanocomposite, was prepared by in situ polymerisation of -caprolactam in a dispersion of montmorillonite. The silicate can be dispersed in a liquid monomer or a solution of monomer. It has also been possible to melt-mix polymers with layered silicates, avoiding the use of organic solvents. The latter method permits the use of conventional processing techniques such as injection moulding and extrusion.\u003cbr\u003e\u003cbr\u003eNanocomposites have been formed with a wide variety of polymers including: epoxy, polyurethane, polyetherimide, poybenzoxazine, polypropylene, polystyrene, polymethyl methacrylate, polycaprolactone, polyacrylonitrile, polyvinyl pyrrolidone, polyethylene glycol, polyvinylidene fluoride, polybutadiene, copolymers and liquid crystalline polymers. Summaries of the work carried out on these different materials and references to these studies are included in this Rapra Review Report.\u003cbr\u003e\u003cbr\u003eMany studies have been carried out to characterise different nanocomposites. Techniques in use include wide-angle X-ray diffraction and transmission electron microscopy.\u003cbr\u003e\u003cbr\u003eProcessing techniques are critical in polymer manufacturing and this holds true for nanocomposites. Several processing methods and innovative techniques are discussed. For example, Nylon 6 clay nanocomposites have been electrospun from solution, which resulted in highly aligned clay particles.\u003cbr\u003e\u003cbr\u003eTwo other types of nanofiller are briefly described here. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles combine organic and inorganic segments with nanosized cage structures. Carbon nanotubes have also been examined as they offer unique mechanical and electrical properties.\u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included. The majority of these references are cited in the review, which is exceptionally well referenced.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features\u003c\/strong\u003e\u003cbr\u003eNanocomposite structure \u003cbr\u003eNanocomposite properties \u003cbr\u003eNanocomposite preparation \u003cbr\u003eDifferent polymer nanocomposites \u003cbr\u003eProcessing nanocomposites \u003cbr\u003eWell referenced\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1.Introduction\u003cbr\u003e2. Layered Silicates \u003c\/strong\u003e\u003cbr\u003e2.1 Structure and Properties\u003cbr\u003e2.2 Organophilic Modification\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Preparative Methods for PLS Nanocomposites\u003c\/strong\u003e \u003cbr\u003e3.1 Intercalation of Polymer or Pre-Polymer from Solution\u003cbr\u003e3.2 In Situ Intercalative Polymerisation Method\u003cbr\u003e3.3 Melt Intercalation Method\u0026lt;\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. Structure and Characterisation of PLS Nanocomposites \u003c\/strong\u003e\u003cbr\u003e4.1 Structure of PLS Nanocomposites\u003cbr\u003e4.2 Characterisation of PLS Nanocomposites\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Types of Polymers for the Preparation of Nanocomposites \u003c\/strong\u003e\u003cbr\u003e5.1 Vinyl Polymer Systems\u003cbr\u003e5.1.1 PS\/LS Nanocomposites\u003cbr\u003e5.1.2 PMMA\/LS Nanocomposites\u003cbr\u003e5.1.3 PVA\/LS Nanocomposites\u003cbr\u003e5.1.4 Block Copolymer\/LS Nanocomposites\u003cbr\u003e5.2 Condensation Polymers and Rubbers\u003cbr\u003e5.2.1 Nylon\/LS Nanocomposites\u003cbr\u003e5.2.2 PCL\/LS Nanocomposites\u003cbr\u003e5.2.3 PET\/LS Nanocomposites\u003cbr\u003e5.2.4 PBT\/LS Nanocomposites\u003cbr\u003e5.2.5 PC\/LS Nanocomposites\u003cbr\u003e5.2.6 PEO\/LS Nanocomposites\u003cbr\u003e5.2.7 LCP\/LS Nanocomposites\u003cbr\u003e5.2.8 PBO\/LS Nanocomposites\u003cbr\u003e5.2.9 EPR\/LS Nanocomposites\u003cbr\u003e5.2.10 PU\/LS Nanocomposites\u003cbr\u003e5.2.11 Polyimide\/LS Nanocomposites\u003cbr\u003e5.3 Polyolefins\u003cbr\u003e5.3.1 PP\/LS Nanocomposites\u003cbr\u003e5.3.2 PE\/LS Nanocomposites\u003cbr\u003e5.4 Speciality Polymers\u003cbr\u003e5.4.1 PANI\/LS Nanocomposites\u003cbr\u003e5.4.2 PNVC\/LS Nanocomposites\u003cbr\u003e5.5 Biodegradable Polymers\u003cbr\u003e5.5.1 PLA\/LS Nanocomposites\u003cbr\u003e5.5.2 PBS\/Clay Nanocomposites\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Properties of PLS Nanocomposite Materials \u003c\/strong\u003e\u003cbr\u003e6.1 Dynamic Mechanical Analysis (DMA)\u003cbr\u003e6.2 Tensile Properties\u003cbr\u003e6.3 Flexural Properties and Heat Distortion Temperature\u003cbr\u003e6.4 Thermal Stability\u003cbr\u003e6.5 Fire Retardant Properties\u003cbr\u003e6.6 Gas Barrier Properties\u003cbr\u003e6.7 Ionic Conductivity\u003cbr\u003e6.8 Optical Transparency\u003cbr\u003e6.9 Biodegradability\u003cbr\u003e6.10 Crystallisation\u003cbr\u003e6.10.1 Spherulite Growth\u003cbr\u003e6.10.2 Effect of Intercalation on Enhancement of Dynamic Modulus\u003cbr\u003e6.10.3 Crystallisation Controlled by Silicate Surfaces\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Melt Rheology \u003c\/strong\u003e\u003cbr\u003e7.1 Linear Viscoelastic Properties\u003cbr\u003e7.2 Elongational Flow and Strain-Induced Hardening\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Processing Operations \u003c\/strong\u003e\u003cbr\u003e8.1 Foam Processing Using Supercritical CO2\u003cbr\u003e8.2 Shear Flow Processing\u003cbr\u003e8.3 Electrospinning\u003cbr\u003e8.4 Porous Ceramic Materials\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9. Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10. Carbon Nanotube Polymer Composites\u003cbr\u003e\u003cbr\u003e11. Outlook\u003cbr\u003e\u003cbr\u003eAdditional References\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Musami Okamoto is a world-renowned expert in the field of polymer\/clay nanocomposites. He is currently a Professor at the Graduate School of Engineering, in the Toyota Technological Institute. He received a Ph.D. in 1994 from the Tokyo Institute of Technology on Structure Development during Melt Processing and Mechanical Properties in Polymer Blends. He has worked at Toyobo Co., where his research programme focused on polymer blends and alloys. He held a postdoctoral post at the National Institute of Advanced Industrial Science \u0026amp; Technology, Kyushu, prior to joining the faculty at Toyota","published_at":"2017-06-22T21:14:02-04:00","created_at":"2017-06-22T21:14:02-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2003","book","copolymers","epoxy","liquid crystalline polymers","nano","nanocomposites","p-applications","polyacrylontrile","polybutadiene","polycaprolactone","polyetherimide","polyethylene glycol","polymer","polymers","polymethyl methacrylate","polypropylene","polystyrene","polyurethane","polyvinyl pyrrolidone","polyvinylidene fluoride","poybenzoxazine","silicates"],"price":13000,"price_min":13000,"price_max":13000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378392708,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymer\/Layered Silicate Nanocomposites","public_title":null,"options":["Default Title"],"price":13000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-391-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-391-4.jpg?v=1499953064"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-391-4.jpg?v=1499953064","options":["Title"],"media":[{"alt":null,"id":358552731741,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-391-4.jpg?v=1499953064"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-391-4.jpg?v=1499953064","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Masami Okamoto, Toyota Technological Institute \u003cbr\u003eISBN 978-1-85957-391-4 \u003cbr\u003e\u003cbr\u003e166 pages, Soft-backed\u003cbr\u003eVol. 14, no. 7, report 163, 2003\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer\/clay nanocomposites have received a lot of attention over the last decade. Companies such as Nanocor and Honeywell are already commercially exploiting nanocomposite materials. A small amount of nanodispersed filler leads to an improvement in material properties, such as modulus, strength, heat resistance, flame retardancy, and lowered gas permeability. Adding clay nanofillers to biodegradable polymers has also been shown to enhance compostability.\u003cbr\u003e\u003cbr\u003eThe enhancement of material properties has been linked to the interfacial interaction between the polymer matrix and the organically modified layered silicate filler structure. The filler particles provide a very high surface area.\u003cbr\u003e\u003cbr\u003eMontmorillonite, hectorite, and saponite are the most commonly used layered silicates. For a nanocomposite to be formed successfully, the mineral must disperse into separate layers. The surface chemistry is also important - ion exchange reactions with cations (commonly alkyl ammonium or alkyl phosphonium cations) allow the silicate to be compatibilised with the polymer matrix. The strong interactions between the two materials lead to dispersion at the nanometre level.\u003cbr\u003e\u003cbr\u003ePolymer\/layered silicate nanocomposites are prepared by a variety of routes. One of the first materials, a Nylon 6 nanocomposite, was prepared by in situ polymerisation of -caprolactam in a dispersion of montmorillonite. The silicate can be dispersed in a liquid monomer or a solution of monomer. It has also been possible to melt-mix polymers with layered silicates, avoiding the use of organic solvents. The latter method permits the use of conventional processing techniques such as injection moulding and extrusion.\u003cbr\u003e\u003cbr\u003eNanocomposites have been formed with a wide variety of polymers including: epoxy, polyurethane, polyetherimide, poybenzoxazine, polypropylene, polystyrene, polymethyl methacrylate, polycaprolactone, polyacrylonitrile, polyvinyl pyrrolidone, polyethylene glycol, polyvinylidene fluoride, polybutadiene, copolymers and liquid crystalline polymers. Summaries of the work carried out on these different materials and references to these studies are included in this Rapra Review Report.\u003cbr\u003e\u003cbr\u003eMany studies have been carried out to characterise different nanocomposites. Techniques in use include wide-angle X-ray diffraction and transmission electron microscopy.\u003cbr\u003e\u003cbr\u003eProcessing techniques are critical in polymer manufacturing and this holds true for nanocomposites. Several processing methods and innovative techniques are discussed. For example, Nylon 6 clay nanocomposites have been electrospun from solution, which resulted in highly aligned clay particles.\u003cbr\u003e\u003cbr\u003eTwo other types of nanofiller are briefly described here. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles combine organic and inorganic segments with nanosized cage structures. Carbon nanotubes have also been examined as they offer unique mechanical and electrical properties.\u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included. The majority of these references are cited in the review, which is exceptionally well referenced.\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eKey features\u003c\/strong\u003e\u003cbr\u003eNanocomposite structure \u003cbr\u003eNanocomposite properties \u003cbr\u003eNanocomposite preparation \u003cbr\u003eDifferent polymer nanocomposites \u003cbr\u003eProcessing nanocomposites \u003cbr\u003eWell referenced\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1.Introduction\u003cbr\u003e2. Layered Silicates \u003c\/strong\u003e\u003cbr\u003e2.1 Structure and Properties\u003cbr\u003e2.2 Organophilic Modification\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e3. Preparative Methods for PLS Nanocomposites\u003c\/strong\u003e \u003cbr\u003e3.1 Intercalation of Polymer or Pre-Polymer from Solution\u003cbr\u003e3.2 In Situ Intercalative Polymerisation Method\u003cbr\u003e3.3 Melt Intercalation Method\u0026lt;\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e4. Structure and Characterisation of PLS Nanocomposites \u003c\/strong\u003e\u003cbr\u003e4.1 Structure of PLS Nanocomposites\u003cbr\u003e4.2 Characterisation of PLS Nanocomposites\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Types of Polymers for the Preparation of Nanocomposites \u003c\/strong\u003e\u003cbr\u003e5.1 Vinyl Polymer Systems\u003cbr\u003e5.1.1 PS\/LS Nanocomposites\u003cbr\u003e5.1.2 PMMA\/LS Nanocomposites\u003cbr\u003e5.1.3 PVA\/LS Nanocomposites\u003cbr\u003e5.1.4 Block Copolymer\/LS Nanocomposites\u003cbr\u003e5.2 Condensation Polymers and Rubbers\u003cbr\u003e5.2.1 Nylon\/LS Nanocomposites\u003cbr\u003e5.2.2 PCL\/LS Nanocomposites\u003cbr\u003e5.2.3 PET\/LS Nanocomposites\u003cbr\u003e5.2.4 PBT\/LS Nanocomposites\u003cbr\u003e5.2.5 PC\/LS Nanocomposites\u003cbr\u003e5.2.6 PEO\/LS Nanocomposites\u003cbr\u003e5.2.7 LCP\/LS Nanocomposites\u003cbr\u003e5.2.8 PBO\/LS Nanocomposites\u003cbr\u003e5.2.9 EPR\/LS Nanocomposites\u003cbr\u003e5.2.10 PU\/LS Nanocomposites\u003cbr\u003e5.2.11 Polyimide\/LS Nanocomposites\u003cbr\u003e5.3 Polyolefins\u003cbr\u003e5.3.1 PP\/LS Nanocomposites\u003cbr\u003e5.3.2 PE\/LS Nanocomposites\u003cbr\u003e5.4 Speciality Polymers\u003cbr\u003e5.4.1 PANI\/LS Nanocomposites\u003cbr\u003e5.4.2 PNVC\/LS Nanocomposites\u003cbr\u003e5.5 Biodegradable Polymers\u003cbr\u003e5.5.1 PLA\/LS Nanocomposites\u003cbr\u003e5.5.2 PBS\/Clay Nanocomposites\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Properties of PLS Nanocomposite Materials \u003c\/strong\u003e\u003cbr\u003e6.1 Dynamic Mechanical Analysis (DMA)\u003cbr\u003e6.2 Tensile Properties\u003cbr\u003e6.3 Flexural Properties and Heat Distortion Temperature\u003cbr\u003e6.4 Thermal Stability\u003cbr\u003e6.5 Fire Retardant Properties\u003cbr\u003e6.6 Gas Barrier Properties\u003cbr\u003e6.7 Ionic Conductivity\u003cbr\u003e6.8 Optical Transparency\u003cbr\u003e6.9 Biodegradability\u003cbr\u003e6.10 Crystallisation\u003cbr\u003e6.10.1 Spherulite Growth\u003cbr\u003e6.10.2 Effect of Intercalation on Enhancement of Dynamic Modulus\u003cbr\u003e6.10.3 Crystallisation Controlled by Silicate Surfaces\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Melt Rheology \u003c\/strong\u003e\u003cbr\u003e7.1 Linear Viscoelastic Properties\u003cbr\u003e7.2 Elongational Flow and Strain-Induced Hardening\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Processing Operations \u003c\/strong\u003e\u003cbr\u003e8.1 Foam Processing Using Supercritical CO2\u003cbr\u003e8.2 Shear Flow Processing\u003cbr\u003e8.3 Electrospinning\u003cbr\u003e8.4 Porous Ceramic Materials\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e9. Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites \u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e10. Carbon Nanotube Polymer Composites\u003cbr\u003e\u003cbr\u003e11. Outlook\u003cbr\u003e\u003cbr\u003eAdditional References\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nProfessor Musami Okamoto is a world-renowned expert in the field of polymer\/clay nanocomposites. He is currently a Professor at the Graduate School of Engineering, in the Toyota Technological Institute. He received a Ph.D. in 1994 from the Tokyo Institute of Technology on Structure Development during Melt Processing and Mechanical Properties in Polymer Blends. He has worked at Toyobo Co., where his research programme focused on polymer blends and alloys. He held a postdoctoral post at the National Institute of Advanced Industrial Science \u0026amp; Technology, Kyushu, prior to joining the faculty at Toyota"}
Polymers - Opportuniti...
$310.00
{"id":11242244228,"title":"Polymers - Opportunities and Risks I","handle":"978-3-540-88416-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eyerer, Peter (Ed.) \u003cbr\u003eISBN 978-3-540-88416-3 \u003cbr\u003e\u003cbr\u003e432 p., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince their first industrial use polymers have gained a tremendous success. The two volumes of \"Polymers - Opportunities and Risks\" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 \"Polymers - Opportunities and Risks I: General and Environmental Aspects\" is dedicated to the basics of the engineering of polymers – always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 \"Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing\" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists but also for environmental managers and decision makers.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nClassification, characterization and economic data.- Synthesis (manufacture, production) of plastics.- Properties of plastics in structural components.- Processing (primary forming) of plastics into structural components.- Secondary forming of plastics structural components – thermoforming.- Chances and risks involved in designing structural components made of polymers.- Chances and (in particular) risks of use (utilization phase) of plastic structural components.- Plastics and structural components – the environment and recycling.- Perspectives - polymer engineering.","published_at":"2017-06-22T21:14:56-04:00","created_at":"2017-06-22T21:14:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","applications of polymers","basic polymers","book","depositing","environmental risks","general","plastics","polymer engineering","processing","recycling","surface","sustainability of polymer products"],"price":31000,"price_min":31000,"price_max":31000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378448068,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers - Opportunities and Risks I","public_title":null,"options":["Default Title"],"price":31000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-88416-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-88416-3.jpg?v=1499953110"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-88416-3.jpg?v=1499953110","options":["Title"],"media":[{"alt":null,"id":358552797277,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-88416-3.jpg?v=1499953110"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-88416-3.jpg?v=1499953110","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eyerer, Peter (Ed.) \u003cbr\u003eISBN 978-3-540-88416-3 \u003cbr\u003e\u003cbr\u003e432 p., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince their first industrial use polymers have gained a tremendous success. The two volumes of \"Polymers - Opportunities and Risks\" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 \"Polymers - Opportunities and Risks I: General and Environmental Aspects\" is dedicated to the basics of the engineering of polymers – always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 \"Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing\" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists but also for environmental managers and decision makers.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nClassification, characterization and economic data.- Synthesis (manufacture, production) of plastics.- Properties of plastics in structural components.- Processing (primary forming) of plastics into structural components.- Secondary forming of plastics structural components – thermoforming.- Chances and risks involved in designing structural components made of polymers.- Chances and (in particular) risks of use (utilization phase) of plastic structural components.- Plastics and structural components – the environment and recycling.- Perspectives - polymer engineering."}
Polymers - Opportuniti...
$310.00
{"id":11242243716,"title":"Polymers - Opportunities and Risks II","handle":"978-3-642-02796-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eyerer, Peter; Weller, Martin; Hübner, Christof (Eds.) \u003cbr\u003eISBN 978-3-642-02796-3 \u003cbr\u003e\u003cbr\u003e1st Edition., 300 p., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince their first industrial use polymers have gained a tremendous success. The two volumes of \"Polymers - Opportunities and Risks\" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 \"Polymers - Opportunities and Risks I: General and Environmental Aspects\" is dedicated to the basics of the engineering of polymers – always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 \"Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing\" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists but also for environmental managers and decision makers.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAssessing the sustainability of polymer products.- Raw and Renewable Polymers.- Sustainable embedding of the bioplastic poly-(3-hydroxybutyrate) into sugarcane industry: principles of a future-oriented technology in Brazil.- Additives for the Manufacture and Processing of Polymers.- Environmental aspects of initiators for plastic manufacture and processing.- Melt Modification of Polyamides.- Biodegradable Polymers: Properties, Possibilities and Limits Considering the Synthesis, Processing and Application of Poly(2-hydroxypropionic acid) and Poly(3-hydroxybutyric acid).- Product design and processing – Adhesive Technology.- Micro-structured polymer surfaces with complex optical functions for solar applications.- Polymer membranes for sustainable technologies.","published_at":"2017-06-22T21:14:55-04:00","created_at":"2017-06-22T21:14:55-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","additives","biodegradation","book","environmental aspects","general","poly","polymer surface","processing","raw materials for polymers","renewable resources","solar applications","sustainability of polymer products"],"price":31000,"price_min":31000,"price_max":31000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378445060,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers - Opportunities and Risks II","public_title":null,"options":["Default Title"],"price":31000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-642-02796-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-02796-3.jpg?v=1499953142"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-02796-3.jpg?v=1499953142","options":["Title"],"media":[{"alt":null,"id":358553747549,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-02796-3.jpg?v=1499953142"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-642-02796-3.jpg?v=1499953142","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eyerer, Peter; Weller, Martin; Hübner, Christof (Eds.) \u003cbr\u003eISBN 978-3-642-02796-3 \u003cbr\u003e\u003cbr\u003e1st Edition., 300 p., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince their first industrial use polymers have gained a tremendous success. The two volumes of \"Polymers - Opportunities and Risks\" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 \"Polymers - Opportunities and Risks I: General and Environmental Aspects\" is dedicated to the basics of the engineering of polymers – always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 \"Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing\" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists but also for environmental managers and decision makers.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nAssessing the sustainability of polymer products.- Raw and Renewable Polymers.- Sustainable embedding of the bioplastic poly-(3-hydroxybutyrate) into sugarcane industry: principles of a future-oriented technology in Brazil.- Additives for the Manufacture and Processing of Polymers.- Environmental aspects of initiators for plastic manufacture and processing.- Melt Modification of Polyamides.- Biodegradable Polymers: Properties, Possibilities and Limits Considering the Synthesis, Processing and Application of Poly(2-hydroxypropionic acid) and Poly(3-hydroxybutyric acid).- Product design and processing – Adhesive Technology.- Micro-structured polymer surfaces with complex optical functions for solar applications.- Polymer membranes for sustainable technologies."}
Polymers and the REACH...
$126.00
{"id":11242241796,"title":"Polymers and the REACH Legislation","handle":"978-1-84735-086-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Smithers Rapra by Suzanne Wilkinson \u003cbr\u003eISBN 978-1-84735-086-2 \u003cbr\u003e\u003cbr\u003ePublished: 2008\u003cbr\u003eSoft-backed, 297 x 210 mm, 40 pages.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nREACH, the EU regulation for the Registration, Evaluation, Authorisation, and Restriction of Chemicals, entered into force in June 2007. Its central aim is to protect human health and the environment from the risks arising from the use of chemicals. REACH has become one of the most complex and far-reaching pieces of regulation ever to originate from the European Commission. \u003cbr\u003e\u003cbr\u003eWithin the polymer industry, it will affect producers of chemicals or preparations, importers of chemicals or finished products to the EU, producers of finished products and downstream users. Its effects will truly give it global reach, within and beyond the boundaries of Europe! \u003cbr\u003e\u003cbr\u003eRapra Limited, on behalf of its Members, commissioned Smithers Rapra to produce this guide to illustrate to organisations in these industries and sectors how REACH will affect them.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction to REACH \u003cbr\u003e2. REACH Basics \u003cbr\u003e3. The Legal Text \u003cbr\u003e4. Key Milestones \u003cbr\u003e5. Monomers and Polymers \u003cbr\u003e6. Pre-registration, Registration, and Compliance \u003cbr\u003e7. Information Sharing and Confidentiality \u003cbr\u003e8. Financial Implications \u003cbr\u003e9. Glossary, Abbreviations, and Acronyms \u003cbr\u003e10. Other Resources\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:49-04:00","created_at":"2017-06-22T21:14:49-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2008","authorisation","book","environment","EU regulations","Europe","health","p-properties","polymer","REACH","restriction of chemicals","risks"],"price":12600,"price_min":12600,"price_max":12600,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378442692,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers and the REACH Legislation","public_title":null,"options":["Default Title"],"price":12600,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-086-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Smithers Rapra by Suzanne Wilkinson \u003cbr\u003eISBN 978-1-84735-086-2 \u003cbr\u003e\u003cbr\u003ePublished: 2008\u003cbr\u003eSoft-backed, 297 x 210 mm, 40 pages.\n\u003ch5\u003eSummary\u003c\/h5\u003e\nREACH, the EU regulation for the Registration, Evaluation, Authorisation, and Restriction of Chemicals, entered into force in June 2007. Its central aim is to protect human health and the environment from the risks arising from the use of chemicals. REACH has become one of the most complex and far-reaching pieces of regulation ever to originate from the European Commission. \u003cbr\u003e\u003cbr\u003eWithin the polymer industry, it will affect producers of chemicals or preparations, importers of chemicals or finished products to the EU, producers of finished products and downstream users. Its effects will truly give it global reach, within and beyond the boundaries of Europe! \u003cbr\u003e\u003cbr\u003eRapra Limited, on behalf of its Members, commissioned Smithers Rapra to produce this guide to illustrate to organisations in these industries and sectors how REACH will affect them.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction to REACH \u003cbr\u003e2. REACH Basics \u003cbr\u003e3. The Legal Text \u003cbr\u003e4. Key Milestones \u003cbr\u003e5. Monomers and Polymers \u003cbr\u003e6. Pre-registration, Registration, and Compliance \u003cbr\u003e7. Information Sharing and Confidentiality \u003cbr\u003e8. Financial Implications \u003cbr\u003e9. Glossary, Abbreviations, and Acronyms \u003cbr\u003e10. Other Resources\u003cbr\u003e\u003cbr\u003e"}
Polymers for Wire and ...
$450.00
{"id":11242206532,"title":"Polymers for Wire and Cable - Changes within an Industry","handle":"978-1-85957-190-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-85957-190-3 \u003cbr\u003e\u003cbr\u003ePublished: 2000\u003cbr\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report concentrates on the developments in polymeric materials and processes for cable specification and design. The main sections provide an overview of polymer used by a material with the main end-use markets examined: automotive, rail transport, aerospace, building and construction, business machines and computer networks, telecommunications, power generation and distribution, electrical appliances and consumer electronics marine off-shore and undersea cables, other general engineering applications. The European cable industry is discussed with particular emphasis on the markets within Benelux, France, Germany and the UK. Developments in the North American and Asian markets are briefly covered. Key trends based on new products, processes and machinery developments are indicated. The report includes profiles of leading polymer and cable companies with a discussion about recent merger and acquisition activity. Aspects of present and future European legislation are discussed with particular emphasis on those relating to fire retardancy, harmonisation of standards, recycling, and other environmental concerns.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eKeith Cousins graduated from Oxford University in engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. Moving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003c\/p\u003e","published_at":"2017-06-22T21:12:57-04:00","created_at":"2017-06-22T21:12:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","acrylic polymers","aerospace","automotive","book","building","cable","construction","copolymers","electronics","ethylene","evironmental","fire retardancy","markets","p-applications","PE","polymer","polymeric materials","processes","PVC","rail","recycling","standards","thermoplastic elastomers","thermoset elastomers"],"price":45000,"price_min":45000,"price_max":45000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378322116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers for Wire and Cable - Changes within an Industry","public_title":null,"options":["Default Title"],"price":45000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-190-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-190-3.jpg?v=1499724916"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-190-3.jpg?v=1499724916","options":["Title"],"media":[{"alt":null,"id":358698516573,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-190-3.jpg?v=1499724916"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-190-3.jpg?v=1499724916","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-85957-190-3 \u003cbr\u003e\u003cbr\u003ePublished: 2000\u003cbr\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report concentrates on the developments in polymeric materials and processes for cable specification and design. The main sections provide an overview of polymer used by a material with the main end-use markets examined: automotive, rail transport, aerospace, building and construction, business machines and computer networks, telecommunications, power generation and distribution, electrical appliances and consumer electronics marine off-shore and undersea cables, other general engineering applications. The European cable industry is discussed with particular emphasis on the markets within Benelux, France, Germany and the UK. Developments in the North American and Asian markets are briefly covered. Key trends based on new products, processes and machinery developments are indicated. The report includes profiles of leading polymer and cable companies with a discussion about recent merger and acquisition activity. Aspects of present and future European legislation are discussed with particular emphasis on those relating to fire retardancy, harmonisation of standards, recycling, and other environmental concerns.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eKeith Cousins graduated from Oxford University in engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. Moving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003c\/p\u003e"}
Polymers in Aerospace ...
$120.00
{"id":11242242116,"title":"Polymers in Aerospace Applications","handle":"978-1-84735-093-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Joel Fried \u003cbr\u003eISBN 978-1-84735-093-0 \u003c\/p\u003e\n\u003cp\u003ePublished: 2010\u003cbr\u003ePages: 136, Soft-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report gives an overview of how polymers are used in aerospace applications. Topics covered include: Composites, including thermosets, thermoplastics, and nanocomposites. Fibre reinforcement of the composites and the specialised applications are also covered. \u003cbr\u003e\u003cbr\u003eFor each type of composite, the chemistry, cure methods, fabrication methods, mechanical properties, thermal properties and environmental degradation are considered. \u003cbr\u003e\u003cbr\u003eApplications include: sealants, structural adhesives, foams, primer paint, shape memory alloys, electroactive devices, MEMS, vibration damping, NLO properties and ablative polymers.\u003cbr\u003e\u003cbr\u003eThis review report is accompanied by around 400 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e\u003cbr\u003e2. Adhesives\u003cbr\u003e\u003cbr\u003e3. Coatings\u003cbr\u003e\u003cbr\u003e4. Fibres\u003cbr\u003e\u003cbr\u003e5. Composites\u003cbr\u003e\u003cbr\u003e6. Nanocomposites\u003cbr\u003e\u003cbr\u003e7. Foams\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:50-04:00","created_at":"2017-06-22T21:14:50-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","aerospace","book","coatings","composties","nanocomposites","p-applications","polymer","polymers"],"price":12000,"price_min":12000,"price_max":12000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378443076,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Aerospace Applications","public_title":null,"options":["Default Title"],"price":12000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-093-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-093-0.jpg?v=1499953211"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-093-0.jpg?v=1499953211","options":["Title"],"media":[{"alt":null,"id":358698647645,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-093-0.jpg?v=1499953211"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-093-0.jpg?v=1499953211","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Joel Fried \u003cbr\u003eISBN 978-1-84735-093-0 \u003c\/p\u003e\n\u003cp\u003ePublished: 2010\u003cbr\u003ePages: 136, Soft-backed\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis review report gives an overview of how polymers are used in aerospace applications. Topics covered include: Composites, including thermosets, thermoplastics, and nanocomposites. Fibre reinforcement of the composites and the specialised applications are also covered. \u003cbr\u003e\u003cbr\u003eFor each type of composite, the chemistry, cure methods, fabrication methods, mechanical properties, thermal properties and environmental degradation are considered. \u003cbr\u003e\u003cbr\u003eApplications include: sealants, structural adhesives, foams, primer paint, shape memory alloys, electroactive devices, MEMS, vibration damping, NLO properties and ablative polymers.\u003cbr\u003e\u003cbr\u003eThis review report is accompanied by around 400 abstracts compiled from the Polymer Library, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction\u003cbr\u003e\u003cbr\u003e2. Adhesives\u003cbr\u003e\u003cbr\u003e3. Coatings\u003cbr\u003e\u003cbr\u003e4. Fibres\u003cbr\u003e\u003cbr\u003e5. Composites\u003cbr\u003e\u003cbr\u003e6. Nanocomposites\u003cbr\u003e\u003cbr\u003e7. Foams\u003cbr\u003e\u003cbr\u003e"}
Polymers in Agricultur...
$122.00
{"id":11242227460,"title":"Polymers in Agriculture and Horticulture.","handle":"978-1-85957-460-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Roger P Brown \u003cbr\u003eISBN 978-1-85957-460-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003e94 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers have been used in agriculture and horticulture since the middle\u003cbr\u003eof the last century. There is a tremendous potential for using polymers\u003cbr\u003ein agriculture and our fields and garden would look very different if we\u003cbr\u003edid not use polymers in them.\u003cbr\u003e\u003cbr\u003eThis review traces the history of polymer use, discusses the markets for\u003cbr\u003epolymers in these applications, and describes in detail the different\u003cbr\u003etypes of polymers that can be used and their specific applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. The Market\u003cbr\u003e3. Materials\u003cbr\u003e4. Crop Protection \u003cbr\u003e4.1 Greenhouses\/Large Tunnel \u003cbr\u003e4.2 Low Tunnels \u003cbr\u003e4.3 Direct Covers \u003cbr\u003e4.4 Windbreaks \u003cbr\u003e4.5 Shading \u003cbr\u003e4.6 Protection Against Pests\u003cbr\u003e5. Soil Conditioning \u003cbr\u003e5.1 Mulching \u003cbr\u003e5.2 Soil Improvement\u003cbr\u003e6. Water Management \u003cbr\u003e6.1 Collection, Storage, and Transport of Water \u003cbr\u003e6.2 Irrigation \u003cbr\u003e6.3 Water Holding \u003cbr\u003e6.4 Drainage\u003cbr\u003e7. Harvesting and Crop Storage\u003cbr\u003e8. Buildings\u003cbr\u003e9. Machinery and Equipment\u003cbr\u003e10. Containers and Packaging\u003cbr\u003e11. Miscellaneous Applications \u003cbr\u003e11.1 Identification Tags \u003cbr\u003e11.2 Clothing and Footwear \u003cbr\u003e11.3 Controlled Release of Fertilizers, etc \u003cbr\u003e11.4 Garden Ponds \u003cbr\u003e11.5 Greenhouse Sundries \u003cbr\u003e11.6 Labels \u003cbr\u003e11.7 Seed Coatings \u003cbr\u003e11.8 Soil Less Cultivation \u003cbr\u003e11.9 Ties and Grafting Bands \u003cbr\u003e11.10 Twine \u003cbr\u003e11.11 Others\u003cbr\u003e12. Standards and Testing\u003cbr\u003e13. Disposal and Recycling\u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.","published_at":"2017-06-22T21:14:05-04:00","created_at":"2017-06-22T21:14:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","agriculture","book","building","horticulture","p-applications","poly","polymers","polymers in acgriculture","recycling","water management"],"price":12200,"price_min":12200,"price_max":12200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394884,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Agriculture and Horticulture.","public_title":null,"options":["Default Title"],"price":12200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-460-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-460-7.jpg?v=1499953251"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-460-7.jpg?v=1499953251","options":["Title"],"media":[{"alt":null,"id":358701465693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-460-7.jpg?v=1499953251"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-460-7.jpg?v=1499953251","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Roger P Brown \u003cbr\u003eISBN 978-1-85957-460-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003e94 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers have been used in agriculture and horticulture since the middle\u003cbr\u003eof the last century. There is a tremendous potential for using polymers\u003cbr\u003ein agriculture and our fields and garden would look very different if we\u003cbr\u003edid not use polymers in them.\u003cbr\u003e\u003cbr\u003eThis review traces the history of polymer use, discusses the markets for\u003cbr\u003epolymers in these applications, and describes in detail the different\u003cbr\u003etypes of polymers that can be used and their specific applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. The Market\u003cbr\u003e3. Materials\u003cbr\u003e4. Crop Protection \u003cbr\u003e4.1 Greenhouses\/Large Tunnel \u003cbr\u003e4.2 Low Tunnels \u003cbr\u003e4.3 Direct Covers \u003cbr\u003e4.4 Windbreaks \u003cbr\u003e4.5 Shading \u003cbr\u003e4.6 Protection Against Pests\u003cbr\u003e5. Soil Conditioning \u003cbr\u003e5.1 Mulching \u003cbr\u003e5.2 Soil Improvement\u003cbr\u003e6. Water Management \u003cbr\u003e6.1 Collection, Storage, and Transport of Water \u003cbr\u003e6.2 Irrigation \u003cbr\u003e6.3 Water Holding \u003cbr\u003e6.4 Drainage\u003cbr\u003e7. Harvesting and Crop Storage\u003cbr\u003e8. Buildings\u003cbr\u003e9. Machinery and Equipment\u003cbr\u003e10. Containers and Packaging\u003cbr\u003e11. Miscellaneous Applications \u003cbr\u003e11.1 Identification Tags \u003cbr\u003e11.2 Clothing and Footwear \u003cbr\u003e11.3 Controlled Release of Fertilizers, etc \u003cbr\u003e11.4 Garden Ponds \u003cbr\u003e11.5 Greenhouse Sundries \u003cbr\u003e11.6 Labels \u003cbr\u003e11.7 Seed Coatings \u003cbr\u003e11.8 Soil Less Cultivation \u003cbr\u003e11.9 Ties and Grafting Bands \u003cbr\u003e11.10 Twine \u003cbr\u003e11.11 Others\u003cbr\u003e12. Standards and Testing\u003cbr\u003e13. Disposal and Recycling\u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees."}
Polymers in Building a...
$450.00
{"id":11242223108,"title":"Polymers in Building and Construction","handle":"978-1-85957-332-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Market Report, 2002 \u003cbr\u003eISBN 978-1-85957-332-7 \u003cbr\u003e\u003cbr\u003ePublished: 2002\u003cbr\u003epages: 124, tables: 3, figures: 9\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBuilding and construction form a large part of the global economy and this industry showed a growth rate of 1.8% worldwide in 2001. Polymer materials have been steadily replacing traditional materials in this sector. Construction applications of plastics include pipes and guttering, window and door profiles, glazing, roofing, sealants and adhesives, cement, insulation, flooring and building panels. Civil engineering applications include geomembranes, road and sports surfaces, building reinforcement and bridge building. \u003cbr\u003e\u003cbr\u003eThis is a critical market for plastics. Around 60% of all PVC production is now used in this sector, applications include profiles for windows and doors, fascias, pipes and pipe fittings. Polystyrene is also used extensively, primarily in insulation applications. Around 1.85 million tons of high density polyethylene are used annually in construction, amounting to roughly 10% of total global consumption. Low density polyethylene, polyurethane, and polypropylene are also used extensively. \u003cbr\u003e\u003cbr\u003eIn Western Europe alone in 1998 6.4 million tonnes of plastics were used in construction. The value of the plastics pipes market in the same year was estimated at 11 million euros and the growth rate is predicted to be 4% per annum in Europe. PVC accounts for 60% of the pipe market with polyolefins at 27% and growing. Alternative materials such as ABS and polyvinylidene fluoride are also being used, particularly in industrial sectors. \u003cbr\u003e\u003cbr\u003eThe growth rate for plastics consumption in building and construction in the US averaged 8% per annum from 1995 to 1998. Figures for the US housing industry showed an increase in the number of new housing starts in June 2001 at 1.658 million units, 6.3% higher than in June 2000. Other factors that influence plastics consumption are refurbishment and DIY projects. \u003cbr\u003e\u003cbr\u003eComposite materials are being used for load bearing in construction applications. Foamed wood\/plastic composites are a growing market in applications such as decking in North America. Demand is projected to be around 600,000 tons in 2005. There is potential for using recycled materials in composites. Plastic lumber decking is commonly made using recycled HDPE. Recycled plastics are also being used in a cement matrix. Polymeric fibres can also be used to reinforce cement and materials are being developed with ductility values equal to those of metals for applications such as runway surfaces, floors, and pavements. \u003cbr\u003e\u003cbr\u003eEnvironmental concerns are affecting the building industry in many ways. Recycling methods are being developed for plastic building components. Methods of using recycled material in construction are under trial. The housing itself is being redesigned to minimise usage of fossil fuels, which is leading to an increased requirement for insulation and the development of alternative means of heating such as solar panels and geothermal heating. \u003cbr\u003e\u003cbr\u003ePolymers in Building and Construction examines the extensive markets for polymers by material and also by application, listing key players in these fields and new developments. A selection of companies operating in this sector is described in greater depth in Chapter 7.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Background \u003cbr\u003e1.2 World Markets \u003cbr\u003e1.3 Scope \u003cbr\u003e1.4 Geographical Focus \u003cbr\u003e1.5 Methodology \u003cbr\u003eReference \u003cbr\u003e2 Executive Summary \u003cbr\u003e\u003cbr\u003e2.1 Global Construction Industry \u003cbr\u003e2.2 Materials \u003cbr\u003e2.2.1 Resins \u003cbr\u003e2.2.2 Composites \u003cbr\u003e2.3 Applications \u003cbr\u003e2.3.1 Plastic Pipes \u003cbr\u003e2.3.2 Profile \u003cbr\u003e2.3.3 Cladding \u003cbr\u003e2.3.4 Roofing \u003cbr\u003e2.3.5 Adhesives \u003cbr\u003e2.3.6 Glazing \u003cbr\u003e2.3.7 Insulation \u003cbr\u003e2.3.8 Flooring \u003cbr\u003e2.3.9 Civil Engineering Applications \u003cbr\u003e2.4 Recycling \u003cbr\u003e2.5 Material Suppliers \u003cbr\u003eReference \u003cbr\u003e3 Review of Material Types and Properties \u003cbr\u003e\u003cbr\u003eIntroduction \u003cbr\u003e3.1 PVC \u003cbr\u003e3.1.1 Overview \u003cbr\u003e3.1.2 PVC in Pipes \u003cbr\u003e3.1.3 PVC in Profile \u003cbr\u003e3.1.4 Compounds and Additives \u003cbr\u003e3.1.5 Foamed PVC \u003cbr\u003e3.2 Polyvinyl Butyral (PVB) \u003cbr\u003e3.3 Polyethylene \u003cbr\u003e3.3.1 Overview \u003cbr\u003e3.3.2 Polyethylene for Pipe \u003cbr\u003e3.3.3 Other Uses \u003cbr\u003e3.4 Polyethylene Terephthalate \u003cbr\u003e3.5 Polypropylene (PP) \u003cbr\u003e3.5.1 Overview \u003cbr\u003e3.5.2 Polypropylene for Pipe \u003cbr\u003e3.5.3 Other Uses \u003cbr\u003e3.6 Acrylonitrile-Butadiene-Styrene (ABS) \u003cbr\u003e3.7 Polystyrene (PS) \u003cbr\u003e3.7.1 Overview \u003cbr\u003e3.7.2 Expanded Polystyrene \u003cbr\u003e3.7.3 Other Uses \u003cbr\u003e3.8 Acrylic \u003cbr\u003e3.9 Polycarbonate \u003cbr\u003e3.10 Polyamide (PA) \u003cbr\u003e3.10.2 Polyphthalamide (PPA) \u003cbr\u003e3.11 Polyphenylene Oxide (PPO) \u003cbr\u003e3.12 Unsaturated Polyesters \u003cbr\u003e3.13 Phenolic Resins \u003cbr\u003e3.14 Epoxy Resin \u003cbr\u003e3.15 Polyurethane \u003cbr\u003e3.15.1 Overview \u003cbr\u003e3.15.2 Polyurethane Foam \u003cbr\u003e3.15.3 Blowing Agent Replacements \u003cbr\u003e3.15.4 Other Uses \u003cbr\u003e3.16 Thermoplastic Elastomers (TPE) \u003cbr\u003e3.17 Thermoset Elastomers \u003cbr\u003e3.18 Composite Materials \u003cbr\u003e3.18.1 Glass Fibre Composites \u003cbr\u003e3.18.2 Carbon Fibre Composites \u003cbr\u003e3.18.3 Wood\/Plastic Composites \u003cbr\u003e3.18.4 Other Natural Fibre Composites \u003cbr\u003e3.18.5 Cement-Based Composites \u003cbr\u003eReferences \u003cbr\u003e4 Overview of Polymer Usage in the Building and Construction Sector \u003cbr\u003e\u003cbr\u003e4.1 Windows and Doors \u003cbr\u003e4.2 Glazing \u003cbr\u003e4.2.1 Glazing Film \u003cbr\u003e4.3 Cladding and Fascias \u003cbr\u003e4.3.1 Coving, Skirting and Other Interior Items \u003cbr\u003e4.3.2 Exterior Cladding, Shuttering and Panels \u003cbr\u003e4.3.3 Other Profiles and Interior Panels \u003cbr\u003e4.4 Insulation \u003cbr\u003e4.4.1 Thermal Insulation \u003cbr\u003e4.4.1.1 Building Regulations \u003cbr\u003e4.4.1.2 Polystyrene Foam Insulation \u003cbr\u003e4.4.1.3 Polyurethane Foam Insulation \u003cbr\u003e4.4.2 Acoustic Insulation \u003cbr\u003e4.5 Sealing \u003cbr\u003e4.5.1 Seals and Gaskets \u003cbr\u003e4.5.2 Sealants \u003cbr\u003e4.6 Flooring \u003cbr\u003e4.6.1 Sheets \u003cbr\u003e4.6.2 Tiles \u003cbr\u003e4.6.3 Carpet \u003cbr\u003e4.6.5 Wall Covering \u003cbr\u003e4.7 Pipe and Conduit \u003cbr\u003e4.7.1 Overview \u003cbr\u003e4.7.2 Renovation of Water and Sewerage Pipelines \u003cbr\u003e4.7.3 Gas Pipes \u003cbr\u003e4.7.4 Pipe Coatings \u003cbr\u003e4.8 Roofing \u003cbr\u003e4.9 Houses and Shelters \u003cbr\u003e4.9.1 Hurricane-Proof Shelters \u003cbr\u003e4.9.2 Storm Shelters \u003cbr\u003e4.9.3 Emergency Shelters \u003cbr\u003e4.10 Adhesives \u003cbr\u003e4.11 Fencing and Decking \u003cbr\u003e4.12 Recycled Plastic Lumber \u003cbr\u003e4.13 Building Stone Restoration \u003cbr\u003e5 Civil Engineering Applications of Polymers \u003cbr\u003e\u003cbr\u003e5.1 Bridges \u003cbr\u003e5.1.1 Construction \u003cbr\u003e5.1.2 Repair and Reinforcement \u003cbr\u003e5.1.3 Glulams \u003cbr\u003e5.2 Seismic Damage \u003cbr\u003e5.3 Membranes \u003cbr\u003e5.4 Road and Paving Applications \u003cbr\u003e5.5 Railway Applications \u003cbr\u003e5.6 Sport and Leisure Surfaces \u003cbr\u003e6 Key Trends \u003cbr\u003e\u003cbr\u003e6.1 The Economy \u003cbr\u003e6.1.1 North America \u003cbr\u003e6.1.2 Europe \u003cbr\u003e6.2 Regional Differences in the Market for Construction Products made from Plastics \u003cbr\u003e6.3 Polymer Pricing \u003cbr\u003e6.4 Internet Trading \u003cbr\u003e6.5 Global Warming \u003cbr\u003e6.6 European Union Action Against Ozone Depleting Substances \u003cbr\u003e6.7 Recycling and Use of Recycled Materials \u003cbr\u003e6.8 Synthetic Building Materials from Solid Waste \u003cbr\u003e6.9 Trends in Housing \u003cbr\u003e6.9.1 Environmentally Friendly Housing \u003cbr\u003e6.9.2 Modular Housing \u003cbr\u003e6.9.3 Floating Houses \u003cbr\u003e6.9.4 Plastic Space House \u003cbr\u003e6.10 Solar Heating \u003cbr\u003e6.11 Geothermal Heating \u003cbr\u003e6.12 Development of Dense Plastic Foam \u003cbr\u003e7 Company Profiles \u003cbr\u003e\u003cbr\u003e7.1 Introduction - Competitive Situation \u003cbr\u003e7.2 Advanced Elastomer Systems, L.P. \u003cbr\u003e7.3 Atofina \u003cbr\u003e7.4 Barlo Plastics Europe N.V. \u003cbr\u003e7.5 BASF AG \u003cbr\u003e7.6 Bayer AG \u003cbr\u003e7.7 Borealis Holding A\/S \u003cbr\u003e7.8 BP \u003cbr\u003e7.9 British Vita PLC \u003cbr\u003e7.10 CRH PLC \u003cbr\u003e7.11 Crompton Vinyl Additives GmbH \u003cbr\u003e7.12 Deceuninck NV \u003cbr\u003e7.13 The Dow Chemical Company \u003cbr\u003e7.14 DSM \u003cbr\u003e7.15 DuPont de Nemours International SA \u003cbr\u003e7.16 European Vinyls Corporation (EVC) \u003cbr\u003e7.17 Heywood Williams Group PLC \u003cbr\u003e7.18 HT Troplast AG \u003cbr\u003e7.19 Huntsman Corporation \u003cbr\u003e7.20 Hydro Polymers \u003cbr\u003e7.21 Icopal Holding \u003cbr\u003e7.22 IMI plc \u003cbr\u003e7.23 Palram Industries Limited \u003cbr\u003e7.24 Royal Group Technologies Limited \u003cbr\u003e7.25 Solvay S.A. \u003cbr\u003e7.26 Spartech Corporation \u003cbr\u003e7.27 Tarkett Sommer Vertriebs GmbH \u0026amp; Co. KG \u003cbr\u003e7.28 Uponor Oyj \u003cbr\u003e7.29 Wavin Plastics Ltd. \u003cbr\u003e8 Future Outlook \u003cbr\u003e\u003cbr\u003e8.1 Polymers in the Third Millennium \u003cbr\u003e8.2 Technology \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University in Engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. \u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:52-04:00","created_at":"2017-06-22T21:13:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","building","construction","polymers","report"],"price":45000,"price_min":45000,"price_max":45000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378377604,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Building and Construction","public_title":null,"options":["Default Title"],"price":45000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-332-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273","options":["Title"],"media":[{"alt":null,"id":358703202397,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-332-7.jpg?v=1499953273","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\n\u003cp\u003eAuthor: Market Report, 2002 \u003cbr\u003eISBN 978-1-85957-332-7 \u003cbr\u003e\u003cbr\u003ePublished: 2002\u003cbr\u003epages: 124, tables: 3, figures: 9\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nBuilding and construction form a large part of the global economy and this industry showed a growth rate of 1.8% worldwide in 2001. Polymer materials have been steadily replacing traditional materials in this sector. Construction applications of plastics include pipes and guttering, window and door profiles, glazing, roofing, sealants and adhesives, cement, insulation, flooring and building panels. Civil engineering applications include geomembranes, road and sports surfaces, building reinforcement and bridge building. \u003cbr\u003e\u003cbr\u003eThis is a critical market for plastics. Around 60% of all PVC production is now used in this sector, applications include profiles for windows and doors, fascias, pipes and pipe fittings. Polystyrene is also used extensively, primarily in insulation applications. Around 1.85 million tons of high density polyethylene are used annually in construction, amounting to roughly 10% of total global consumption. Low density polyethylene, polyurethane, and polypropylene are also used extensively. \u003cbr\u003e\u003cbr\u003eIn Western Europe alone in 1998 6.4 million tonnes of plastics were used in construction. The value of the plastics pipes market in the same year was estimated at 11 million euros and the growth rate is predicted to be 4% per annum in Europe. PVC accounts for 60% of the pipe market with polyolefins at 27% and growing. Alternative materials such as ABS and polyvinylidene fluoride are also being used, particularly in industrial sectors. \u003cbr\u003e\u003cbr\u003eThe growth rate for plastics consumption in building and construction in the US averaged 8% per annum from 1995 to 1998. Figures for the US housing industry showed an increase in the number of new housing starts in June 2001 at 1.658 million units, 6.3% higher than in June 2000. Other factors that influence plastics consumption are refurbishment and DIY projects. \u003cbr\u003e\u003cbr\u003eComposite materials are being used for load bearing in construction applications. Foamed wood\/plastic composites are a growing market in applications such as decking in North America. Demand is projected to be around 600,000 tons in 2005. There is potential for using recycled materials in composites. Plastic lumber decking is commonly made using recycled HDPE. Recycled plastics are also being used in a cement matrix. Polymeric fibres can also be used to reinforce cement and materials are being developed with ductility values equal to those of metals for applications such as runway surfaces, floors, and pavements. \u003cbr\u003e\u003cbr\u003eEnvironmental concerns are affecting the building industry in many ways. Recycling methods are being developed for plastic building components. Methods of using recycled material in construction are under trial. The housing itself is being redesigned to minimise usage of fossil fuels, which is leading to an increased requirement for insulation and the development of alternative means of heating such as solar panels and geothermal heating. \u003cbr\u003e\u003cbr\u003ePolymers in Building and Construction examines the extensive markets for polymers by material and also by application, listing key players in these fields and new developments. A selection of companies operating in this sector is described in greater depth in Chapter 7.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e1.1 Background \u003cbr\u003e1.2 World Markets \u003cbr\u003e1.3 Scope \u003cbr\u003e1.4 Geographical Focus \u003cbr\u003e1.5 Methodology \u003cbr\u003eReference \u003cbr\u003e2 Executive Summary \u003cbr\u003e\u003cbr\u003e2.1 Global Construction Industry \u003cbr\u003e2.2 Materials \u003cbr\u003e2.2.1 Resins \u003cbr\u003e2.2.2 Composites \u003cbr\u003e2.3 Applications \u003cbr\u003e2.3.1 Plastic Pipes \u003cbr\u003e2.3.2 Profile \u003cbr\u003e2.3.3 Cladding \u003cbr\u003e2.3.4 Roofing \u003cbr\u003e2.3.5 Adhesives \u003cbr\u003e2.3.6 Glazing \u003cbr\u003e2.3.7 Insulation \u003cbr\u003e2.3.8 Flooring \u003cbr\u003e2.3.9 Civil Engineering Applications \u003cbr\u003e2.4 Recycling \u003cbr\u003e2.5 Material Suppliers \u003cbr\u003eReference \u003cbr\u003e3 Review of Material Types and Properties \u003cbr\u003e\u003cbr\u003eIntroduction \u003cbr\u003e3.1 PVC \u003cbr\u003e3.1.1 Overview \u003cbr\u003e3.1.2 PVC in Pipes \u003cbr\u003e3.1.3 PVC in Profile \u003cbr\u003e3.1.4 Compounds and Additives \u003cbr\u003e3.1.5 Foamed PVC \u003cbr\u003e3.2 Polyvinyl Butyral (PVB) \u003cbr\u003e3.3 Polyethylene \u003cbr\u003e3.3.1 Overview \u003cbr\u003e3.3.2 Polyethylene for Pipe \u003cbr\u003e3.3.3 Other Uses \u003cbr\u003e3.4 Polyethylene Terephthalate \u003cbr\u003e3.5 Polypropylene (PP) \u003cbr\u003e3.5.1 Overview \u003cbr\u003e3.5.2 Polypropylene for Pipe \u003cbr\u003e3.5.3 Other Uses \u003cbr\u003e3.6 Acrylonitrile-Butadiene-Styrene (ABS) \u003cbr\u003e3.7 Polystyrene (PS) \u003cbr\u003e3.7.1 Overview \u003cbr\u003e3.7.2 Expanded Polystyrene \u003cbr\u003e3.7.3 Other Uses \u003cbr\u003e3.8 Acrylic \u003cbr\u003e3.9 Polycarbonate \u003cbr\u003e3.10 Polyamide (PA) \u003cbr\u003e3.10.2 Polyphthalamide (PPA) \u003cbr\u003e3.11 Polyphenylene Oxide (PPO) \u003cbr\u003e3.12 Unsaturated Polyesters \u003cbr\u003e3.13 Phenolic Resins \u003cbr\u003e3.14 Epoxy Resin \u003cbr\u003e3.15 Polyurethane \u003cbr\u003e3.15.1 Overview \u003cbr\u003e3.15.2 Polyurethane Foam \u003cbr\u003e3.15.3 Blowing Agent Replacements \u003cbr\u003e3.15.4 Other Uses \u003cbr\u003e3.16 Thermoplastic Elastomers (TPE) \u003cbr\u003e3.17 Thermoset Elastomers \u003cbr\u003e3.18 Composite Materials \u003cbr\u003e3.18.1 Glass Fibre Composites \u003cbr\u003e3.18.2 Carbon Fibre Composites \u003cbr\u003e3.18.3 Wood\/Plastic Composites \u003cbr\u003e3.18.4 Other Natural Fibre Composites \u003cbr\u003e3.18.5 Cement-Based Composites \u003cbr\u003eReferences \u003cbr\u003e4 Overview of Polymer Usage in the Building and Construction Sector \u003cbr\u003e\u003cbr\u003e4.1 Windows and Doors \u003cbr\u003e4.2 Glazing \u003cbr\u003e4.2.1 Glazing Film \u003cbr\u003e4.3 Cladding and Fascias \u003cbr\u003e4.3.1 Coving, Skirting and Other Interior Items \u003cbr\u003e4.3.2 Exterior Cladding, Shuttering and Panels \u003cbr\u003e4.3.3 Other Profiles and Interior Panels \u003cbr\u003e4.4 Insulation \u003cbr\u003e4.4.1 Thermal Insulation \u003cbr\u003e4.4.1.1 Building Regulations \u003cbr\u003e4.4.1.2 Polystyrene Foam Insulation \u003cbr\u003e4.4.1.3 Polyurethane Foam Insulation \u003cbr\u003e4.4.2 Acoustic Insulation \u003cbr\u003e4.5 Sealing \u003cbr\u003e4.5.1 Seals and Gaskets \u003cbr\u003e4.5.2 Sealants \u003cbr\u003e4.6 Flooring \u003cbr\u003e4.6.1 Sheets \u003cbr\u003e4.6.2 Tiles \u003cbr\u003e4.6.3 Carpet \u003cbr\u003e4.6.5 Wall Covering \u003cbr\u003e4.7 Pipe and Conduit \u003cbr\u003e4.7.1 Overview \u003cbr\u003e4.7.2 Renovation of Water and Sewerage Pipelines \u003cbr\u003e4.7.3 Gas Pipes \u003cbr\u003e4.7.4 Pipe Coatings \u003cbr\u003e4.8 Roofing \u003cbr\u003e4.9 Houses and Shelters \u003cbr\u003e4.9.1 Hurricane-Proof Shelters \u003cbr\u003e4.9.2 Storm Shelters \u003cbr\u003e4.9.3 Emergency Shelters \u003cbr\u003e4.10 Adhesives \u003cbr\u003e4.11 Fencing and Decking \u003cbr\u003e4.12 Recycled Plastic Lumber \u003cbr\u003e4.13 Building Stone Restoration \u003cbr\u003e5 Civil Engineering Applications of Polymers \u003cbr\u003e\u003cbr\u003e5.1 Bridges \u003cbr\u003e5.1.1 Construction \u003cbr\u003e5.1.2 Repair and Reinforcement \u003cbr\u003e5.1.3 Glulams \u003cbr\u003e5.2 Seismic Damage \u003cbr\u003e5.3 Membranes \u003cbr\u003e5.4 Road and Paving Applications \u003cbr\u003e5.5 Railway Applications \u003cbr\u003e5.6 Sport and Leisure Surfaces \u003cbr\u003e6 Key Trends \u003cbr\u003e\u003cbr\u003e6.1 The Economy \u003cbr\u003e6.1.1 North America \u003cbr\u003e6.1.2 Europe \u003cbr\u003e6.2 Regional Differences in the Market for Construction Products made from Plastics \u003cbr\u003e6.3 Polymer Pricing \u003cbr\u003e6.4 Internet Trading \u003cbr\u003e6.5 Global Warming \u003cbr\u003e6.6 European Union Action Against Ozone Depleting Substances \u003cbr\u003e6.7 Recycling and Use of Recycled Materials \u003cbr\u003e6.8 Synthetic Building Materials from Solid Waste \u003cbr\u003e6.9 Trends in Housing \u003cbr\u003e6.9.1 Environmentally Friendly Housing \u003cbr\u003e6.9.2 Modular Housing \u003cbr\u003e6.9.3 Floating Houses \u003cbr\u003e6.9.4 Plastic Space House \u003cbr\u003e6.10 Solar Heating \u003cbr\u003e6.11 Geothermal Heating \u003cbr\u003e6.12 Development of Dense Plastic Foam \u003cbr\u003e7 Company Profiles \u003cbr\u003e\u003cbr\u003e7.1 Introduction - Competitive Situation \u003cbr\u003e7.2 Advanced Elastomer Systems, L.P. \u003cbr\u003e7.3 Atofina \u003cbr\u003e7.4 Barlo Plastics Europe N.V. \u003cbr\u003e7.5 BASF AG \u003cbr\u003e7.6 Bayer AG \u003cbr\u003e7.7 Borealis Holding A\/S \u003cbr\u003e7.8 BP \u003cbr\u003e7.9 British Vita PLC \u003cbr\u003e7.10 CRH PLC \u003cbr\u003e7.11 Crompton Vinyl Additives GmbH \u003cbr\u003e7.12 Deceuninck NV \u003cbr\u003e7.13 The Dow Chemical Company \u003cbr\u003e7.14 DSM \u003cbr\u003e7.15 DuPont de Nemours International SA \u003cbr\u003e7.16 European Vinyls Corporation (EVC) \u003cbr\u003e7.17 Heywood Williams Group PLC \u003cbr\u003e7.18 HT Troplast AG \u003cbr\u003e7.19 Huntsman Corporation \u003cbr\u003e7.20 Hydro Polymers \u003cbr\u003e7.21 Icopal Holding \u003cbr\u003e7.22 IMI plc \u003cbr\u003e7.23 Palram Industries Limited \u003cbr\u003e7.24 Royal Group Technologies Limited \u003cbr\u003e7.25 Solvay S.A. \u003cbr\u003e7.26 Spartech Corporation \u003cbr\u003e7.27 Tarkett Sommer Vertriebs GmbH \u0026amp; Co. KG \u003cbr\u003e7.28 Uponor Oyj \u003cbr\u003e7.29 Wavin Plastics Ltd. \u003cbr\u003e8 Future Outlook \u003cbr\u003e\u003cbr\u003e8.1 Polymers in the Third Millennium \u003cbr\u003e8.2 Technology \u003cbr\u003eAbbreviations and Acronyms\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University in Engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. \u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003cbr\u003e\u003cbr\u003e"}
Polymers in Defence an...
$125.00
{"id":11242237636,"title":"Polymers in Defence and Aerospace Applications 2010","handle":"978-1-84735-398-6","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-398-6 \u003cbr\u003e\u003cbr\u003ePublished: 2010\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the aerospace and defence industries poised for growth in virtually every segment; the commercial, general aviation, military and space sectors are a ‘must watch’ area for businesses seeking new business and technology opportunities. Accompanying this growth, polymers will play an increasing role, with, for example, a near doubling of the aerocomposites market is predicted by 2016.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003ePolymers in Defence and Aerospace Applications took an in-depth look at how polymers are increasingly being used to meet the developing demands of this industry in areas such as weight minimisation, increased strength, and enhanced affordability. Both defence and aerospace are industries where the performance requirements of polymer-based materials are continually being pushed to the limits of what is possible in order to help achieve these goals, and where there is a constant demand for new and improved materials for a wide range of existing and new applications. \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis conference covered all of the important polymer related areas specific to the defence and aerospace industries, from state-of-the-art R\u0026amp;D to characterisation, fabrication, technology development and many new and emerging applications. \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003ePolymers in Defence \u0026amp; Aerospace Applications featured presentations from key defence and aerospace industry experts, as well as from polymer manufacturers and those developing new polymer-based materials, technologies and applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: NOVEL MATERIALS \u0026amp; PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 1: Team MAST – Delivering materials and structures R \u0026amp; D to UK MOD\u003cbr\u003e\u003cbr\u003eDr. Dan Kells, BAE Systems, UK \u0026amp; Dr Eoin O’Keefe, QinetiQ Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 2: Phosphazene elastomer use in defence and aerospace\u003cbr\u003e\u003cbr\u003eBill Goodwin \u0026amp; Raymond E Stiles, Materials Science Technology, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 3: Formulation and properties of rigid polyurethane foams\u003cbr\u003e\u003cbr\u003eKaren J Foster, K N Hunt, C N Warriner, D R Harbron \u0026amp; D A Broughton, AWE plc, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 4: Inkjet printing as a fabrication tool and its potential in defence \u0026amp; aerospace applications\u003cbr\u003e\u003cbr\u003eDr. Kay Yeong, Xennia Technology, UK\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: ELECTRONIC MATERIALS \u0026amp; APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 5: Development of a thermoplastic printed circuit board for applications in the aviation industry\u003cbr\u003e\u003cbr\u003eDipl-Ing Thomas Apeldorn, Universität Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 6: Synthesis and characterization of novel conducting monomer showing chimeric polymerisation behaviour: Versatile applications in defence and aerospace research\u003cbr\u003e\u003cbr\u003eDr Dhana Lakshmi, Cranfield University, UK et al\u003cbr\u003e\u003cbr\u003ePaper 7: Use of fluoropolymers in aerospace and defence: new applications and advantages\u003cbr\u003e\u003cbr\u003eStefano Mortara, P Toniolo, M Gebert, A Marrani \u0026amp; M Bassi, Solvay Solexis SPA, Italy\u003cbr\u003e\u003cbr\u003ePaper 8: Rapid manufacturing of syntactic foams\u003cbr\u003e\u003cbr\u003eA.K. Walmsley, M. Carne, M. Swan, C. Warriner, K. Hunt AWE plc, UK, G.J. Gibbons, The University of Warwick, UK \u0026amp; S. Bubb, 3T RPD, UK\u003cbr\u003e\u003cbr\u003ePaper 9: Design for manufacture and reliability of polymer-based electronics\u003cbr\u003e\u003cbr\u003eChris Bailey, Tim Tilford \u0026amp; Hua Lu, University of Greenwich, UK \u0026amp; Marc Desmulliez, Heriot-Watt University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: COMPOSITES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10: Rapid manufacture of structural thermoplastic composite components for aerospace and defence applications\u003cbr\u003e\u003cbr\u003eCharlotte Vacogne \u0026amp; Museok Kwak TWI, UK\u003cbr\u003e\u003cbr\u003ePaper 11: Novel high temperature polymers for demanding composite applications\u003cbr\u003e\u003cbr\u003eDr.Theo Dingemans, Delft University of Technology, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 12: Microfocus X-ray diffraction and its application to high-performance polymers and composites\u003cbr\u003e\u003cbr\u003eRichard Davies, C Riekel \u0026amp; M Burghammer, European Synchrotron Radiation Facility, France \u0026amp; S J Eichhorn \u0026amp; R J Young, University of Manchester, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4: CARBON NANO FIBRE-BASED MATERIALS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 13: Development of multifunctional advanced composites with polymer nanocomposite matrices for aerospace applications\u003cbr\u003e\u003cbr\u003eMarco Monti, Luigi Torre, R Petrucci \u0026amp; Prof Jose Kenny, University of Perugia, Italy\u003cbr\u003e\u003cbr\u003ePaper 14: Manufacture and evaluation of hybrid carbon nanofiber containing nonwoven papers\u003cbr\u003e\u003cbr\u003eAndrew Austin, Napier University, UK and J Haaland, Michael Jeschke \u0026amp; D Jhaveri, Technical Fibre Products, USA\u003cbr\u003e\u003cbr\u003ePaper 15: New generation of multifunctional composites with carbon nanotubes for aerospace applications\u003cbr\u003e\u003cbr\u003eProf Dr Sergio H Pezzin \u0026amp; L A F Coelho, Santa Catrina State University, Brazil \u0026amp; S Amico, UFRGS, Brazil\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: INORGANIC NANO-MATERIALS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 16: Development of phenolic based nanocomposites for ablative rocket combustion chambers\u003cbr\u003e\u003cbr\u003eLuigi Torre, M Natali \u0026amp; J Kenny, University of Perugia, Italy\u003cbr\u003e\u003cbr\u003ePaper 17: High-performance polyurethane shape - memory polymer and its composites\u003cbr\u003e\u003cbr\u003eDr. W M Huang \u0026amp; Y Zhao, Nanyang Technological University, Singapore and Y Q Fu, Heriot-Watt University, UK\u003cbr\u003e\u003cbr\u003ePaper 18: Ageing and performance predictions of polymer nanocomposites for exterior defence and aerospace applications\u003cbr\u003e\u003cbr\u003eDr. James Njuguna, Cranfield University, UK \u0026amp; K Pielichowski, Cracow University of Technology, Poland\u003cbr\u003e\u003cbr\u003ePaper 19: UK strategic focus: The Materials and Structures National Technical Committee\u003cbr\u003e\u003cbr\u003eDr. Dan Kells, BAE Systems, UK \u003cbr\u003e\u003cbr\u003ePaper 20: The role of micro and nanofillers on mechanical and tribological behaviour of polymer matrix composites for aerospace and automotive applications\u003cbr\u003e\u003cbr\u003eProf B Suresha \u0026amp; Prof Mohammed Ismail, The National Institute of Engineering, India\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6: COATINGS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21: Engineered coatings for composites and polymers used in defence \u0026amp; aerospace: Now and the future\u003cbr\u003e\u003cbr\u003eGraham Armstrong, Indestructible Paint Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 22: Silicone based coatings for aircraft applications\u003cbr\u003e\u003cbr\u003eBill Riegler, B Burkitt \u0026amp; R Thomaier, Nusil Technology, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:36-04:00","created_at":"2017-06-22T21:14:36-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","aerospace","application","book","carbon nanofibers","coatings","composite","electronic materials","formulation","inorganic","material","nano-materials","polymer","Polymers"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378425220,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Defence and Aerospace Applications 2010","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-398-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-398-6.jpg?v=1499953296"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-398-6.jpg?v=1499953296","options":["Title"],"media":[{"alt":null,"id":358705070173,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-398-6.jpg?v=1499953296"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-398-6.jpg?v=1499953296","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-84735-398-6 \u003cbr\u003e\u003cbr\u003ePublished: 2010\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nWith the aerospace and defence industries poised for growth in virtually every segment; the commercial, general aviation, military and space sectors are a ‘must watch’ area for businesses seeking new business and technology opportunities. Accompanying this growth, polymers will play an increasing role, with, for example, a near doubling of the aerocomposites market is predicted by 2016.\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003ePolymers in Defence and Aerospace Applications took an in-depth look at how polymers are increasingly being used to meet the developing demands of this industry in areas such as weight minimisation, increased strength, and enhanced affordability. Both defence and aerospace are industries where the performance requirements of polymer-based materials are continually being pushed to the limits of what is possible in order to help achieve these goals, and where there is a constant demand for new and improved materials for a wide range of existing and new applications. \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003eThis conference covered all of the important polymer related areas specific to the defence and aerospace industries, from state-of-the-art R\u0026amp;D to characterisation, fabrication, technology development and many new and emerging applications. \u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003ePolymers in Defence \u0026amp; Aerospace Applications featured presentations from key defence and aerospace industry experts, as well as from polymer manufacturers and those developing new polymer-based materials, technologies and applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003eSESSION 1: NOVEL MATERIALS \u0026amp; PROCESSES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 1: Team MAST – Delivering materials and structures R \u0026amp; D to UK MOD\u003cbr\u003e\u003cbr\u003eDr. Dan Kells, BAE Systems, UK \u0026amp; Dr Eoin O’Keefe, QinetiQ Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 2: Phosphazene elastomer use in defence and aerospace\u003cbr\u003e\u003cbr\u003eBill Goodwin \u0026amp; Raymond E Stiles, Materials Science Technology, USA\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 3: Formulation and properties of rigid polyurethane foams\u003cbr\u003e\u003cbr\u003eKaren J Foster, K N Hunt, C N Warriner, D R Harbron \u0026amp; D A Broughton, AWE plc, UK\u003cbr\u003e\u003cbr\u003e\u003cbr\u003ePaper 4: Inkjet printing as a fabrication tool and its potential in defence \u0026amp; aerospace applications\u003cbr\u003e\u003cbr\u003eDr. Kay Yeong, Xennia Technology, UK\u003cbr\u003e\u003cbr\u003e \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 2: ELECTRONIC MATERIALS \u0026amp; APPLICATIONS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 5: Development of a thermoplastic printed circuit board for applications in the aviation industry\u003cbr\u003e\u003cbr\u003eDipl-Ing Thomas Apeldorn, Universität Bayreuth, Germany\u003cbr\u003e\u003cbr\u003ePaper 6: Synthesis and characterization of novel conducting monomer showing chimeric polymerisation behaviour: Versatile applications in defence and aerospace research\u003cbr\u003e\u003cbr\u003eDr Dhana Lakshmi, Cranfield University, UK et al\u003cbr\u003e\u003cbr\u003ePaper 7: Use of fluoropolymers in aerospace and defence: new applications and advantages\u003cbr\u003e\u003cbr\u003eStefano Mortara, P Toniolo, M Gebert, A Marrani \u0026amp; M Bassi, Solvay Solexis SPA, Italy\u003cbr\u003e\u003cbr\u003ePaper 8: Rapid manufacturing of syntactic foams\u003cbr\u003e\u003cbr\u003eA.K. Walmsley, M. Carne, M. Swan, C. Warriner, K. Hunt AWE plc, UK, G.J. Gibbons, The University of Warwick, UK \u0026amp; S. Bubb, 3T RPD, UK\u003cbr\u003e\u003cbr\u003ePaper 9: Design for manufacture and reliability of polymer-based electronics\u003cbr\u003e\u003cbr\u003eChris Bailey, Tim Tilford \u0026amp; Hua Lu, University of Greenwich, UK \u0026amp; Marc Desmulliez, Heriot-Watt University, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 3: COMPOSITES\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 10: Rapid manufacture of structural thermoplastic composite components for aerospace and defence applications\u003cbr\u003e\u003cbr\u003eCharlotte Vacogne \u0026amp; Museok Kwak TWI, UK\u003cbr\u003e\u003cbr\u003ePaper 11: Novel high temperature polymers for demanding composite applications\u003cbr\u003e\u003cbr\u003eDr.Theo Dingemans, Delft University of Technology, The Netherlands\u003cbr\u003e\u003cbr\u003ePaper 12: Microfocus X-ray diffraction and its application to high-performance polymers and composites\u003cbr\u003e\u003cbr\u003eRichard Davies, C Riekel \u0026amp; M Burghammer, European Synchrotron Radiation Facility, France \u0026amp; S J Eichhorn \u0026amp; R J Young, University of Manchester, UK\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 4: CARBON NANO FIBRE-BASED MATERIALS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 13: Development of multifunctional advanced composites with polymer nanocomposite matrices for aerospace applications\u003cbr\u003e\u003cbr\u003eMarco Monti, Luigi Torre, R Petrucci \u0026amp; Prof Jose Kenny, University of Perugia, Italy\u003cbr\u003e\u003cbr\u003ePaper 14: Manufacture and evaluation of hybrid carbon nanofiber containing nonwoven papers\u003cbr\u003e\u003cbr\u003eAndrew Austin, Napier University, UK and J Haaland, Michael Jeschke \u0026amp; D Jhaveri, Technical Fibre Products, USA\u003cbr\u003e\u003cbr\u003ePaper 15: New generation of multifunctional composites with carbon nanotubes for aerospace applications\u003cbr\u003e\u003cbr\u003eProf Dr Sergio H Pezzin \u0026amp; L A F Coelho, Santa Catrina State University, Brazil \u0026amp; S Amico, UFRGS, Brazil\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 5: INORGANIC NANO-MATERIALS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 16: Development of phenolic based nanocomposites for ablative rocket combustion chambers\u003cbr\u003e\u003cbr\u003eLuigi Torre, M Natali \u0026amp; J Kenny, University of Perugia, Italy\u003cbr\u003e\u003cbr\u003ePaper 17: High-performance polyurethane shape - memory polymer and its composites\u003cbr\u003e\u003cbr\u003eDr. W M Huang \u0026amp; Y Zhao, Nanyang Technological University, Singapore and Y Q Fu, Heriot-Watt University, UK\u003cbr\u003e\u003cbr\u003ePaper 18: Ageing and performance predictions of polymer nanocomposites for exterior defence and aerospace applications\u003cbr\u003e\u003cbr\u003eDr. James Njuguna, Cranfield University, UK \u0026amp; K Pielichowski, Cracow University of Technology, Poland\u003cbr\u003e\u003cbr\u003ePaper 19: UK strategic focus: The Materials and Structures National Technical Committee\u003cbr\u003e\u003cbr\u003eDr. Dan Kells, BAE Systems, UK \u003cbr\u003e\u003cbr\u003ePaper 20: The role of micro and nanofillers on mechanical and tribological behaviour of polymer matrix composites for aerospace and automotive applications\u003cbr\u003e\u003cbr\u003eProf B Suresha \u0026amp; Prof Mohammed Ismail, The National Institute of Engineering, India\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eSESSION 6: COATINGS\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003ePaper 21: Engineered coatings for composites and polymers used in defence \u0026amp; aerospace: Now and the future\u003cbr\u003e\u003cbr\u003eGraham Armstrong, Indestructible Paint Ltd, UK\u003cbr\u003e\u003cbr\u003ePaper 22: Silicone based coatings for aircraft applications\u003cbr\u003e\u003cbr\u003eBill Riegler, B Burkitt \u0026amp; R Thomaier, Nusil Technology, USA\u003cbr\u003e\u003cbr\u003e"}
Polymers in Defence an...
$185.00
{"id":11242250308,"title":"Polymers in Defence and Aerospace Applications, 2007","handle":"978-1-84735-019-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-019-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eToulouse, France, 18-19 September 2007\u003cbr\u003eRapra Conference Proceedings, 2007\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers play a vital role in many defence and aerospace applications and there is a huge amount of activity underway globally to produce new polymers and polymeric materials that can enhance these applications. Composites are one such example where materials have revolutionised performance capabilities and, with the emergence of nanomaterials, the world of composites is set to be further extended. Many new nanocomposites have been developed, each with interesting and novel properties and new potential applications. \u003cbr\u003e\u003cbr\u003eA significant part of the conference was therefore devoted to presentations detailing composites, nanocomposites, and their novel applications. The conference also covered many of the other key novel polymers, processes, and applications, including high-temperature thermoplastics, elastomers, and rubbers. These proceedings will appeal to all those seeking to gain insights into the crucial role that polymers play in many critical aerospace and defence applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1. COMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 1 Composite Applications and Challenges for Lightweight Design of Aircraft Structure \u003cbr\u003eDave Wood, BAE SYSTEMS – Military Air Solutions, UK \u003cbr\u003e\u003cbr\u003ePaper 2 Quickstep curing technology: an out of – autoclave technology for prepegs and dry fibre reinforced laminates \u003cbr\u003eDr. J. Schlimbach, A. Ogale, D. Brosius \u0026amp; N. Noble, Quickstep GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION 2. NANOCOMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 3 Polymer nanocomposites with carbon nanotubes in aerospace and defence \u003cbr\u003eDr. James Njuguna, Cranefield University, UK \u003cbr\u003e\u003cbr\u003ePaper 4 Nylon-12 nanocomposite thin films as protective barriers \u003cbr\u003eDr. Celia Stevens, M. Gnatowski \u0026amp; S. Duncan, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 5 Thermal conductivity of ethylene vinyl acetate copolymer\/carbon nanofiller blends \u003cbr\u003eDr. Sayata Ghose, K.A. Watson, D.C. Working, J.W. Connell, J.G. Smith Jr, Y. Lin \u0026amp; Y.P. Sun, National Institute of Aerospace, USA \u003cbr\u003e\u003cbr\u003ePaper 6 Nanoscopically controlled polymer containing gadolinium atoms for shielding against radiation \u003cbr\u003eJoseph D Lichtenhan, J.P. Spratt, S. Aghara, P.A. Wheeler \u0026amp; R. Leadon, Hybrid Plastics, USA \u003cbr\u003e\u003cbr\u003ePaper 7 Conducting polymer nanofibres obtained by electrospinning \u003cbr\u003eDr. Lucie Robitaille \u0026amp; A. Laforgue, National Research Council Canada, Canada \u003cbr\u003e\u003cbr\u003ePaper 8 Influence of space radiation on nano adhesive bonding of high-performance polymer \u003cbr\u003eDr. Shantanu Bhowmik, Delft University of Technology, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION 3. NOVEL POLYMER SYSTEMS \u003cbr\u003e\u003cbr\u003ePaper 9 Electrically conductive shape memory polymer with anisotropic electro-thermo-mechanical properties \u003cbr\u003eW.M. Huang, N. Liu, S.Y. Phoo \u0026amp; C.S. Chan, Nanyang Technological University, Singapore \u003cbr\u003e\u003cbr\u003ePaper 10 Development of new, conductive and microwave-lossy materials involving conducting polymer coatings \u003cbr\u003eDr. Jamshid Avloni, Eeonyx Corp, USA \u0026amp; Dr. A. Henn, Marktek Inc, USA \u003cbr\u003e\u003cbr\u003ePaper 11 Incorporating functional fillers into silicone elastomer systems \u003cbr\u003eBrian Burkitt, B. Riegler \u0026amp; S. Bruner, NuSil Technology Europe, UK \u003cbr\u003e\u003cbr\u003eSESSION 4. ELASTOMERS AND RUBBERS \u003cbr\u003e\u003cbr\u003ePaper 12 Elastomeric solutions to seal jet oils at high temperature with fluoroelastomers and perfluoroelastomers \u003cbr\u003eJean-Luc Matoux, EW Thomas \u0026amp; R.W. Schnell, DuPont Performance Elastomers SA, Switzerland \u003cbr\u003e\u003cbr\u003ePaper 13 Novel nylon\/halogenated butyl rubber blends in protection against warfare agents \u003cbr\u003eDr. Marek Gnatowski, J.D. Van Dyke \u0026amp; A. Burczyk, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 14 Development of wider performance range rubber seal materials and the utility of FEA modeling \u003cbr\u003eDr. Robert Keller, Freudenberg-NOK General Partnership, USA \u003cbr\u003e\u003cbr\u003eSESSION 5 OTHER MATERIALS AND ASSESSMENT \u003cbr\u003e\u003cbr\u003ePaper 15 New PEEK™ products and process technology developments for lightweight aerospace components \u003cbr\u003eDidier Padey, John Walling \u0026amp; Alan Wood, Victrex plc, France \u003cbr\u003e\u003cbr\u003ePaper 16 Polymerisation, compound and elastomeric modified ETFE in aerospace and defence applications \u003cbr\u003ePhil Spencer, AGC Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePaper 17 Lifetime prediction and assessment of metal-polymer laminates \u003cbr\u003eJulie Etheridge, AWE plc, UK \u003cbr\u003e\u003cbr\u003eSESSION 6 POLYMER PROCESSES AND APPLICATIONS \u003cbr\u003e\u003cbr\u003ePaper 18 Sonochemical surface modification for advanced electronic materials \u003cbr\u003eDr. Andy Cobley \u0026amp; Prof T. Mason, The Sonochemistry Centre at Coventry University, UK \u003cbr\u003e\u003cbr\u003ePaper 19 Polymers for exo-atmospheric supersonic vehicles: a tough life \u003cbr\u003eDr. Duncan Broughton, AWEplc, UK \u003cbr\u003e\u003cbr\u003ePaper 20 The role of polymeric materials for effective structural damping \u003cbr\u003eJohn R. House MIOA, QinetiQ, UK \u003cbr\u003e\u003cbr\u003ePaper 21 Liquid Crystal Polymer (LCP): the ultimate solution for low-cost RF flexible electronics and antennae \u003cbr\u003eRushi Vyas, A. Ride, S. Bhattacharya \u0026amp; M.M. Tentzeris, Georgia Institute of Technology, USA\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:15-04:00","created_at":"2017-06-22T21:15:15-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","aerospace","book","p-applications","polymer","polymer applications","polymeric materials","polymers"],"price":18500,"price_min":18500,"price_max":18500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378471428,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Defence and Aerospace Applications, 2007","public_title":null,"options":["Default Title"],"price":18500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-019-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781847350190.jpg?v=1503691452"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781847350190.jpg?v=1503691452","options":["Title"],"media":[{"alt":null,"id":410062422109,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847350190.jpg?v=1503691452"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781847350190.jpg?v=1503691452","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference \u003cbr\u003eISBN 978-1-84735-019-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003c\/span\u003e\u003cbr\u003eToulouse, France, 18-19 September 2007\u003cbr\u003eRapra Conference Proceedings, 2007\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers play a vital role in many defence and aerospace applications and there is a huge amount of activity underway globally to produce new polymers and polymeric materials that can enhance these applications. Composites are one such example where materials have revolutionised performance capabilities and, with the emergence of nanomaterials, the world of composites is set to be further extended. Many new nanocomposites have been developed, each with interesting and novel properties and new potential applications. \u003cbr\u003e\u003cbr\u003eA significant part of the conference was therefore devoted to presentations detailing composites, nanocomposites, and their novel applications. The conference also covered many of the other key novel polymers, processes, and applications, including high-temperature thermoplastics, elastomers, and rubbers. These proceedings will appeal to all those seeking to gain insights into the crucial role that polymers play in many critical aerospace and defence applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION 1. COMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 1 Composite Applications and Challenges for Lightweight Design of Aircraft Structure \u003cbr\u003eDave Wood, BAE SYSTEMS – Military Air Solutions, UK \u003cbr\u003e\u003cbr\u003ePaper 2 Quickstep curing technology: an out of – autoclave technology for prepegs and dry fibre reinforced laminates \u003cbr\u003eDr. J. Schlimbach, A. Ogale, D. Brosius \u0026amp; N. Noble, Quickstep GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION 2. NANOCOMPOSITES \u003cbr\u003e\u003cbr\u003ePaper 3 Polymer nanocomposites with carbon nanotubes in aerospace and defence \u003cbr\u003eDr. James Njuguna, Cranefield University, UK \u003cbr\u003e\u003cbr\u003ePaper 4 Nylon-12 nanocomposite thin films as protective barriers \u003cbr\u003eDr. Celia Stevens, M. Gnatowski \u0026amp; S. Duncan, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 5 Thermal conductivity of ethylene vinyl acetate copolymer\/carbon nanofiller blends \u003cbr\u003eDr. Sayata Ghose, K.A. Watson, D.C. Working, J.W. Connell, J.G. Smith Jr, Y. Lin \u0026amp; Y.P. Sun, National Institute of Aerospace, USA \u003cbr\u003e\u003cbr\u003ePaper 6 Nanoscopically controlled polymer containing gadolinium atoms for shielding against radiation \u003cbr\u003eJoseph D Lichtenhan, J.P. Spratt, S. Aghara, P.A. Wheeler \u0026amp; R. Leadon, Hybrid Plastics, USA \u003cbr\u003e\u003cbr\u003ePaper 7 Conducting polymer nanofibres obtained by electrospinning \u003cbr\u003eDr. Lucie Robitaille \u0026amp; A. Laforgue, National Research Council Canada, Canada \u003cbr\u003e\u003cbr\u003ePaper 8 Influence of space radiation on nano adhesive bonding of high-performance polymer \u003cbr\u003eDr. Shantanu Bhowmik, Delft University of Technology, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION 3. NOVEL POLYMER SYSTEMS \u003cbr\u003e\u003cbr\u003ePaper 9 Electrically conductive shape memory polymer with anisotropic electro-thermo-mechanical properties \u003cbr\u003eW.M. Huang, N. Liu, S.Y. Phoo \u0026amp; C.S. Chan, Nanyang Technological University, Singapore \u003cbr\u003e\u003cbr\u003ePaper 10 Development of new, conductive and microwave-lossy materials involving conducting polymer coatings \u003cbr\u003eDr. Jamshid Avloni, Eeonyx Corp, USA \u0026amp; Dr. A. Henn, Marktek Inc, USA \u003cbr\u003e\u003cbr\u003ePaper 11 Incorporating functional fillers into silicone elastomer systems \u003cbr\u003eBrian Burkitt, B. Riegler \u0026amp; S. Bruner, NuSil Technology Europe, UK \u003cbr\u003e\u003cbr\u003eSESSION 4. ELASTOMERS AND RUBBERS \u003cbr\u003e\u003cbr\u003ePaper 12 Elastomeric solutions to seal jet oils at high temperature with fluoroelastomers and perfluoroelastomers \u003cbr\u003eJean-Luc Matoux, EW Thomas \u0026amp; R.W. Schnell, DuPont Performance Elastomers SA, Switzerland \u003cbr\u003e\u003cbr\u003ePaper 13 Novel nylon\/halogenated butyl rubber blends in protection against warfare agents \u003cbr\u003eDr. Marek Gnatowski, J.D. Van Dyke \u0026amp; A. Burczyk, Polymer Engineering Company Ltd, Canada \u003cbr\u003e\u003cbr\u003ePaper 14 Development of wider performance range rubber seal materials and the utility of FEA modeling \u003cbr\u003eDr. Robert Keller, Freudenberg-NOK General Partnership, USA \u003cbr\u003e\u003cbr\u003eSESSION 5 OTHER MATERIALS AND ASSESSMENT \u003cbr\u003e\u003cbr\u003ePaper 15 New PEEK™ products and process technology developments for lightweight aerospace components \u003cbr\u003eDidier Padey, John Walling \u0026amp; Alan Wood, Victrex plc, France \u003cbr\u003e\u003cbr\u003ePaper 16 Polymerisation, compound and elastomeric modified ETFE in aerospace and defence applications \u003cbr\u003ePhil Spencer, AGC Chemicals Europe Ltd, UK \u003cbr\u003e\u003cbr\u003ePaper 17 Lifetime prediction and assessment of metal-polymer laminates \u003cbr\u003eJulie Etheridge, AWE plc, UK \u003cbr\u003e\u003cbr\u003eSESSION 6 POLYMER PROCESSES AND APPLICATIONS \u003cbr\u003e\u003cbr\u003ePaper 18 Sonochemical surface modification for advanced electronic materials \u003cbr\u003eDr. Andy Cobley \u0026amp; Prof T. Mason, The Sonochemistry Centre at Coventry University, UK \u003cbr\u003e\u003cbr\u003ePaper 19 Polymers for exo-atmospheric supersonic vehicles: a tough life \u003cbr\u003eDr. Duncan Broughton, AWEplc, UK \u003cbr\u003e\u003cbr\u003ePaper 20 The role of polymeric materials for effective structural damping \u003cbr\u003eJohn R. House MIOA, QinetiQ, UK \u003cbr\u003e\u003cbr\u003ePaper 21 Liquid Crystal Polymer (LCP): the ultimate solution for low-cost RF flexible electronics and antennae \u003cbr\u003eRushi Vyas, A. Ride, S. Bhattacharya \u0026amp; M.M. Tentzeris, Georgia Institute of Technology, USA\u003cbr\u003e\u003cbr\u003e"}
Polymers in Electronics
$490.00
{"id":11242223236,"title":"Polymers in Electronics","handle":"978-1-84735-006-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-84735-006-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e120 pages, Soft-backed, Rapra market report\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDesigners of electrical and electronic components have a wide choice of polymers at their disposal - cost is a prime consideration but competition in the market place is imposing ever more stringent specification criteria on the equipment designer who, in turn, is demanding significantly improved performance from his polymer supplier. This report lists the most commonly used polymers with brief notes on their properties.\u003cbr\u003e\u003cbr\u003eThis report seeks to provide an overall picture of the varied use of polymers in the manufacture of electronic components. It has endeavoured to identify trends and future movements of the market.\u003cbr\u003e\u003cbr\u003eThe pattern of polymer usage has changed and material formulations have had to be modified to conform with new European Union (EU) legislation relating to the use of hazardous materials in components. Furthermore, there is now far more emphasis on recycling rather than landfill disposal and these are issues covered in the report.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to all those involved in using polymers to produce electronic components and to those who provide the raw materials for the production.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Executive Summary\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3. Review of Materials and Properties\u003c\/strong\u003e\u003cstrong\u003e\u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction\u003cbr\u003e3.2 Polymers for Components\u003cbr\u003e3.2.1 Acrylonitrile-Butadiene-Styrene (ABS)\u003cbr\u003e3.2.2 Acetal Copolymers (Polyoxymethylene; POM)\u003cbr\u003e3.2.3 IXEF Polyarylamide\u003cbr\u003e3.2.4 Liquid Crystalline Polymers (LCP)\u003cbr\u003e3.2.5 Polyamide (Nylon; PA)\u003cbr\u003e3.2.6 Polybutylene Terephthalate (PBT)\u003cbr\u003e3.2.7 Polycarbonate (PC)\u003cbr\u003e3.2.8 Poly Ether Ether Ketone (PEEK)\u003cbr\u003e3.2.9 Polyetherimide (PEI)\u003cbr\u003e3.2.10 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.2.11 Polyethylene Terephthalate (PET)\u003cbr\u003e3.2.12 Polyparaphenylene Terephthalamide\u003cbr\u003e3.2.13 Polyimide (PI)\u003cbr\u003e3.2.14 Polypropylene (PP)\u003cbr\u003e3.2.15 Polyphthalamides (PPA)\u003cbr\u003e3.2.16 Polyphenylene Sulfide (PPS)\u003cbr\u003e3.2.17 Polystyrene (PS)\u003cbr\u003e3.2.18 PS-Modified Polyphenylene Oxide (PPO)\u003cbr\u003e3.2.19 Polysulfone (PSU)\u003cbr\u003e3.2.20 Polytetrafluoroethylene (PTFE)\u003cbr\u003e3.2.21 Polyurethane (PU)\u003cbr\u003e3.2.22 Polyvinyl Chloride (PVC)\u003cbr\u003e3.2.23 Polyvinylidene Fluoride (PVDF)\u003cbr\u003e3.2.24 Styrene\/Acrylonitrile (SAN)\u003cbr\u003e3.2.25 Elastomers\u003cbr\u003e3.2.26 Conductive Materials\u003cbr\u003e3.2.27 Additives\u003cbr\u003e3.3 Component Characteristics\u003cbr\u003e3.4 Polymers for Enclosures\u003cbr\u003e3.5 Electronic Components - Polymers Typically Employed\u003cbr\u003e3.5.1 Batteries including Lithium Polymer Types\u003cbr\u003e3.5.2 Capacitors\u003cbr\u003e3.5.3 Coil Formers\u003cbr\u003e3.5.4 Connectors\u003cbr\u003e3.5.5 Membrane Keypads\u003cbr\u003e3.5.6 Plugs and Sockets\u003cbr\u003e3.5.7 Printed Circuit Boards (PCB)\u003cbr\u003e3.5.8 Relays\u003cbr\u003e3.5.9 Resistors\u003cbr\u003e3.5.10 RFI Screening\u003cbr\u003e3.5.11 Sensors\u003cbr\u003e3.5.12 Switches\u003cbr\u003e3.5.13 Terminals\u003cbr\u003e3.5.14 Touch Screens\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Overview of European Electronic Component Markets\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Market Analysis\u003cbr\u003e4.3 Mobile Communications\u003cbr\u003e4.4 Automotive Applications\u003cbr\u003e4.5 Fuel Cells\u003cbr\u003e4.6 Computers\u003cbr\u003e4.7 Contract Electronic Manufacturing\u003cbr\u003e4.8 Component Distribution\u003cbr\u003e4.9 European Markets - Germany\u003cbr\u003e4.10 European Markets - France\u003cbr\u003e4.11 European Markets - Italy\u003cbr\u003e4.12 Other European Markets\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Key Trends and Developments\u003c\/strong\u003e\u003cbr\u003e5.1 Bluetooth Technology\u003cbr\u003e5.2 Organic and Other Polymer Developments\u003cbr\u003e5.3 Supercapacitors\u003cbr\u003e5.4 Solar Cells\u003cbr\u003e5.5 Flat Panel Displays\u003cbr\u003e5.6 Other New Technologies\u003cbr\u003e5.7 Recycling\u003cbr\u003e5.8 Chemical Safety\u003cbr\u003e5.9 Compliance with European RoHS and WEEE Directives\u003cbr\u003e5.10 Nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Company Profiles\u003c\/strong\u003e\u003cbr\u003eArkema\u003cbr\u003eBasell BV\u003cbr\u003eBASF AG\u003cbr\u003eBayer AG\u003cbr\u003eBorealis A\/S\u003cbr\u003eBP Plc\u003cbr\u003eCDT Limited\u003cbr\u003eDegussa AG\u003cbr\u003eDow Europe GmbH\u003cbr\u003eDSM Engineering Plastics BV\u003cbr\u003eDupont (UK) Limited\u003cbr\u003eEMS-chemie (UK) Limited\u003cbr\u003eEpcos AG\u003cbr\u003eGeneral Electric Company\u003cbr\u003eHuntsman Corporation\u003cbr\u003eLG Chem\u003cbr\u003ePlastic Logic Limited\u003cbr\u003eRogers Corporation\u003cbr\u003eSABIC Europe\u003cbr\u003eSamsung Electronics\u003cbr\u003eSolutia Inc.\u003cbr\u003eSolvay Chemicals Limited\u003cbr\u003eTeijin\u003cbr\u003eTicona GmbH\u003cbr\u003eToray Europe Limited (TEL)\u003cbr\u003eTotal SA\u003cbr\u003eTT Electronics plc\u003cbr\u003eTyco Electronics UK Limited\u003cbr\u003eVictrex Plc\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Future Outlook\u003c\/strong\u003e\u003cbr\u003e7.1 Optical Applications\u003cbr\u003e7.2 Search for New Products\u003cbr\u003e7.3 Superconducting Plastics\u003cbr\u003e7.4 Asia - Opportunity or Threat\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Abbreviations and Acronyms\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University with an Engineering Science degree and followed a graduate apprenticeship with one of the forerunners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery.\u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately commissioned studies.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:52-04:00","created_at":"2017-06-22T21:13:52-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2006","book","chemical and structural properties","components","electronics","formulations","hazardous materials","polymers","report"],"price":49000,"price_min":49000,"price_max":49000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378378308,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Electronics","public_title":null,"options":["Default Title"],"price":49000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-006-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333","options":["Title"],"media":[{"alt":null,"id":358705889373,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-006-0.jpg?v=1499953333","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-84735-006-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2007\u003cbr\u003e\u003c\/span\u003e120 pages, Soft-backed, Rapra market report\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nDesigners of electrical and electronic components have a wide choice of polymers at their disposal - cost is a prime consideration but competition in the market place is imposing ever more stringent specification criteria on the equipment designer who, in turn, is demanding significantly improved performance from his polymer supplier. This report lists the most commonly used polymers with brief notes on their properties.\u003cbr\u003e\u003cbr\u003eThis report seeks to provide an overall picture of the varied use of polymers in the manufacture of electronic components. It has endeavoured to identify trends and future movements of the market.\u003cbr\u003e\u003cbr\u003eThe pattern of polymer usage has changed and material formulations have had to be modified to conform with new European Union (EU) legislation relating to the use of hazardous materials in components. Furthermore, there is now far more emphasis on recycling rather than landfill disposal and these are issues covered in the report.\u003cbr\u003e\u003cbr\u003eThis report will be of interest to all those involved in using polymers to produce electronic components and to those who provide the raw materials for the production.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cstrong\u003e1. Introduction\u003c\/strong\u003e\u003cbr\u003e1.1 Background\u003cbr\u003e1.2 The Report\u003cbr\u003e1.3 Methodology\u003cbr\u003e\u003cbr\u003e\n\u003cp\u003e\u003cstrong\u003e2. Executive Summary\u003c\/strong\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003e3. Review of Materials and Properties\u003c\/strong\u003e\u003cstrong\u003e\u003c\/strong\u003e\u003c\/p\u003e\n3.1 Introduction\u003cbr\u003e3.2 Polymers for Components\u003cbr\u003e3.2.1 Acrylonitrile-Butadiene-Styrene (ABS)\u003cbr\u003e3.2.2 Acetal Copolymers (Polyoxymethylene; POM)\u003cbr\u003e3.2.3 IXEF Polyarylamide\u003cbr\u003e3.2.4 Liquid Crystalline Polymers (LCP)\u003cbr\u003e3.2.5 Polyamide (Nylon; PA)\u003cbr\u003e3.2.6 Polybutylene Terephthalate (PBT)\u003cbr\u003e3.2.7 Polycarbonate (PC)\u003cbr\u003e3.2.8 Poly Ether Ether Ketone (PEEK)\u003cbr\u003e3.2.9 Polyetherimide (PEI)\u003cbr\u003e3.2.10 Polyethylene Naphthalate (PEN)\u003cbr\u003e3.2.11 Polyethylene Terephthalate (PET)\u003cbr\u003e3.2.12 Polyparaphenylene Terephthalamide\u003cbr\u003e3.2.13 Polyimide (PI)\u003cbr\u003e3.2.14 Polypropylene (PP)\u003cbr\u003e3.2.15 Polyphthalamides (PPA)\u003cbr\u003e3.2.16 Polyphenylene Sulfide (PPS)\u003cbr\u003e3.2.17 Polystyrene (PS)\u003cbr\u003e3.2.18 PS-Modified Polyphenylene Oxide (PPO)\u003cbr\u003e3.2.19 Polysulfone (PSU)\u003cbr\u003e3.2.20 Polytetrafluoroethylene (PTFE)\u003cbr\u003e3.2.21 Polyurethane (PU)\u003cbr\u003e3.2.22 Polyvinyl Chloride (PVC)\u003cbr\u003e3.2.23 Polyvinylidene Fluoride (PVDF)\u003cbr\u003e3.2.24 Styrene\/Acrylonitrile (SAN)\u003cbr\u003e3.2.25 Elastomers\u003cbr\u003e3.2.26 Conductive Materials\u003cbr\u003e3.2.27 Additives\u003cbr\u003e3.3 Component Characteristics\u003cbr\u003e3.4 Polymers for Enclosures\u003cbr\u003e3.5 Electronic Components - Polymers Typically Employed\u003cbr\u003e3.5.1 Batteries including Lithium Polymer Types\u003cbr\u003e3.5.2 Capacitors\u003cbr\u003e3.5.3 Coil Formers\u003cbr\u003e3.5.4 Connectors\u003cbr\u003e3.5.5 Membrane Keypads\u003cbr\u003e3.5.6 Plugs and Sockets\u003cbr\u003e3.5.7 Printed Circuit Boards (PCB)\u003cbr\u003e3.5.8 Relays\u003cbr\u003e3.5.9 Resistors\u003cbr\u003e3.5.10 RFI Screening\u003cbr\u003e3.5.11 Sensors\u003cbr\u003e3.5.12 Switches\u003cbr\u003e3.5.13 Terminals\u003cbr\u003e3.5.14 Touch Screens\u003cbr\u003e\u003cstrong\u003e\u003cbr\u003e4. Overview of European Electronic Component Markets\u003c\/strong\u003e\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Market Analysis\u003cbr\u003e4.3 Mobile Communications\u003cbr\u003e4.4 Automotive Applications\u003cbr\u003e4.5 Fuel Cells\u003cbr\u003e4.6 Computers\u003cbr\u003e4.7 Contract Electronic Manufacturing\u003cbr\u003e4.8 Component Distribution\u003cbr\u003e4.9 European Markets - Germany\u003cbr\u003e4.10 European Markets - France\u003cbr\u003e4.11 European Markets - Italy\u003cbr\u003e4.12 Other European Markets\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e5. Key Trends and Developments\u003c\/strong\u003e\u003cbr\u003e5.1 Bluetooth Technology\u003cbr\u003e5.2 Organic and Other Polymer Developments\u003cbr\u003e5.3 Supercapacitors\u003cbr\u003e5.4 Solar Cells\u003cbr\u003e5.5 Flat Panel Displays\u003cbr\u003e5.6 Other New Technologies\u003cbr\u003e5.7 Recycling\u003cbr\u003e5.8 Chemical Safety\u003cbr\u003e5.9 Compliance with European RoHS and WEEE Directives\u003cbr\u003e5.10 Nanotechnology\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e6. Company Profiles\u003c\/strong\u003e\u003cbr\u003eArkema\u003cbr\u003eBasell BV\u003cbr\u003eBASF AG\u003cbr\u003eBayer AG\u003cbr\u003eBorealis A\/S\u003cbr\u003eBP Plc\u003cbr\u003eCDT Limited\u003cbr\u003eDegussa AG\u003cbr\u003eDow Europe GmbH\u003cbr\u003eDSM Engineering Plastics BV\u003cbr\u003eDupont (UK) Limited\u003cbr\u003eEMS-chemie (UK) Limited\u003cbr\u003eEpcos AG\u003cbr\u003eGeneral Electric Company\u003cbr\u003eHuntsman Corporation\u003cbr\u003eLG Chem\u003cbr\u003ePlastic Logic Limited\u003cbr\u003eRogers Corporation\u003cbr\u003eSABIC Europe\u003cbr\u003eSamsung Electronics\u003cbr\u003eSolutia Inc.\u003cbr\u003eSolvay Chemicals Limited\u003cbr\u003eTeijin\u003cbr\u003eTicona GmbH\u003cbr\u003eToray Europe Limited (TEL)\u003cbr\u003eTotal SA\u003cbr\u003eTT Electronics plc\u003cbr\u003eTyco Electronics UK Limited\u003cbr\u003eVictrex Plc\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e7. Future Outlook\u003c\/strong\u003e\u003cbr\u003e7.1 Optical Applications\u003cbr\u003e7.2 Search for New Products\u003cbr\u003e7.3 Superconducting Plastics\u003cbr\u003e7.4 Asia - Opportunity or Threat\u003cbr\u003e\u003cbr\u003e\u003cstrong\u003e8. Abbreviations and Acronyms\u003c\/strong\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nKeith Cousins graduated from Oxford University with an Engineering Science degree and followed a graduate apprenticeship with one of the forerunners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery.\u003cbr\u003e\u003cbr\u003eMoving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax, he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately commissioned studies.\u003cbr\u003e\u003cbr\u003e"}
Polymers in Electronic...
$135.00
{"id":11242231236,"title":"Polymers in Electronics 2007","handle":"978-1-84735-009-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-009-1 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 30-31 January 2007\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis conference saw presentations from all parts of the electronics industry’s materials supply chain, from raw materials to finished products and offered an opportunity to learn more about both traditional and new polymer materials, their markets, manufacturing processes, and applications. It also covered the impact of legislation, the need to recycle and other polymer-related challenges and opportunities for the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1. TRENDS AND GROWTH \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 1: Plastics in Electronics - the CEE market \u003cbr\u003eKalman Wappel, Eastern, and Central European Business Development Ltd., Hungary\u003c\/p\u003e\n\u003cb\u003eSESSION 2. CONDUCTIVE POLYMERS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 2: Electrically conductive polymer blends filled with low melting metal alloys \u003cbr\u003eProf. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli \u0026amp; Dipl.-Ing. Tobias Pfefferkorn, Institute of Plastics Processing at RWTH Aachen University (IKV), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 3: Development and applications of nano- and microscale layers of conductive polymers applied to various surfaces\u003c\/b\u003e \u003cbr\u003eDr. Jamshid Avloni \u0026amp; Ryan Lau, Eeonyx Corporation \u0026amp; Dr. Arthur Henn, Marktek Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 4: Conducting polymer nanocomposites in EMI shielding\/radar absorption applications\u003c\/b\u003e \u003cbr\u003eMatt Aldissi, Fractal Systems Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 5: Inherently conductive polyaniline for electronics applications\u003c\/b\u003e \u003cbr\u003eJukka Perento, Panipol, Finland\u003c\/p\u003e\n\u003cb\u003eSESSION 3. NEW DEVELOPMENTS IN FLAME RETARDED POLYMERS FOR ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 6: Sustainable flame retardants – beyond fire safety, RoHS, and WEEE compliance \u003cbr\u003eTroy DeSoto \u0026amp; Veronique Steukers, Albemarle Corporation, Belgium \u0026amp; Kumar Kumar, Albemarle Corporation, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 7: Phosphinates, the flame retardants for polymers in electronics\u003c\/b\u003e \u003cbr\u003eDr. Sebastian Hörold, lmar Schmitt, Mathias Dietz, Jerome De Boysere, Clariant Produkte GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 8: Fire retardancy of polymers in electronics, a scientific approach\u003c\/b\u003e \u003cbr\u003eR. Borms, S. Goebelbecker \u0026amp; L. Tange, Eurobrom B.V. ICL-IP \u0026amp; P. Georlette \u0026amp; Y. Bar Yaakov, ICL-IP, The Netherlands\u003c\/p\u003e\n\u003cb\u003eSESSION 4. POLYMERS IN SUBSTRATES, ASSEMBLY AND RELIABILITY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 9: An overview of polymers as key enablers in electronics assembly \u003cbr\u003eProf. Martin Goosey, IeMRC, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 10: New epoxy resins for printed wiring board application\u003c\/b\u003e \u003cbr\u003eDr. Bernd Hoevel, Dr. Ludovic Valette \u0026amp; Dr. Joseph Gan, Dow Deutschland Anlagengesellschaft mbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 11: Printed circuit boards for lead-free soldering, materials and failure mechanisms\u003c\/b\u003e \u003cbr\u003ePer Johander, Per-Erik Tegehall, Abelrahim Ahmed Osman, Göran Wetter \u0026amp; Dag Andersson, IVF Industrial Research \u0026amp; Development Corporation, Sweden\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 12: Selection and qualification of polymers for rigid and flexible interconnect applications\u003c\/b\u003e \u003cbr\u003eFlorian Schuessler, Prof. Dr.-Ing. Klaus Feldmann \u0026amp; Thomas Bigl, Institute for Manufacturing Automation and Production Systems (FAPS), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 13: Macromelt molding - low-pressure adhesive injection molding\u003c\/b\u003e \u003cbr\u003eOlaf Muendelein, Henkel GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 14: Conformal coating resistance to organic and inorganic contaminants\u003c\/b\u003e \u003cbr\u003eDr. Christopher Hunt, National Physical Laboratory, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 5. POLYMER FORMULATION AND RECYCLING FOR ELECTRONICS APPLICATIONS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 15: Additives: the way to tailor-made plastics for E\u0026amp;E applications \u003cbr\u003eDr. Markus C. Grob, Eelco Dekker \u0026amp; Dr. Wolfgang Diegritz, Ciba Specialty Chemicals Inc., Switzerland\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 16: Polymer recycling from WEEE - rapid assessment of electronic product enclosure plastics for improved resource management\u003c\/b\u003e \u003cbr\u003eProf. Gary Stevens et al, Gnosys\/Surrey University, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 17: Polymers in WEEE – A ‘sustainable’ raw material resource\u003c\/b\u003e \u003cbr\u003eKeith Freegard, Axion Recycling Ltd, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 6. POLYMERS AND PRINTED ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 18: Printed electronics: market opportunities and technical challenges \u003cbr\u003eMark Hutton \u0026amp; Nick Pearne, BPA Consulting, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 19: Inkjet printing of electronics\u003c\/b\u003e \u003cbr\u003eSteve Jones, Printed Electronics Limited, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 20: Flexible printing process for bespoke film based FCBs on polymer foil by combining laser technology, printing technology and electroplating \"Flextronic\"\u003c\/b\u003e \u003cbr\u003eFrits Feenstra, TNO Science \u0026amp; Industry, The Netherlands \u0026amp; Juergen Hackert, Vipem GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 21: Printed interconnects and batteries\u003c\/b\u003e \u003cbr\u003eDarren Southee, Gareth Hay, Peter Evans \u0026amp; David Harrison, Brunel University, UK\u003c\/p\u003e","published_at":"2017-06-22T21:14:16-04:00","created_at":"2017-06-22T21:14:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additive","application","batteries","blends","book","circuit boards","coating resistance","conductive polymer","electronics","epoxy resins","flame retardants","ink jet printing","interconnects","metal alloys","molding","nanocomposites","p-applications","phosphinates","plastics","polyaniline","polymer","polymers","printed wiring board","recycling"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378405380,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Electronics 2007","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-009-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353","options":["Title"],"media":[{"alt":null,"id":358706872413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-009-1 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 30-31 January 2007\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis conference saw presentations from all parts of the electronics industry’s materials supply chain, from raw materials to finished products and offered an opportunity to learn more about both traditional and new polymer materials, their markets, manufacturing processes, and applications. It also covered the impact of legislation, the need to recycle and other polymer-related challenges and opportunities for the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1. TRENDS AND GROWTH \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 1: Plastics in Electronics - the CEE market \u003cbr\u003eKalman Wappel, Eastern, and Central European Business Development Ltd., Hungary\u003c\/p\u003e\n\u003cb\u003eSESSION 2. CONDUCTIVE POLYMERS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 2: Electrically conductive polymer blends filled with low melting metal alloys \u003cbr\u003eProf. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli \u0026amp; Dipl.-Ing. Tobias Pfefferkorn, Institute of Plastics Processing at RWTH Aachen University (IKV), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 3: Development and applications of nano- and microscale layers of conductive polymers applied to various surfaces\u003c\/b\u003e \u003cbr\u003eDr. Jamshid Avloni \u0026amp; Ryan Lau, Eeonyx Corporation \u0026amp; Dr. Arthur Henn, Marktek Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 4: Conducting polymer nanocomposites in EMI shielding\/radar absorption applications\u003c\/b\u003e \u003cbr\u003eMatt Aldissi, Fractal Systems Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 5: Inherently conductive polyaniline for electronics applications\u003c\/b\u003e \u003cbr\u003eJukka Perento, Panipol, Finland\u003c\/p\u003e\n\u003cb\u003eSESSION 3. NEW DEVELOPMENTS IN FLAME RETARDED POLYMERS FOR ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 6: Sustainable flame retardants – beyond fire safety, RoHS, and WEEE compliance \u003cbr\u003eTroy DeSoto \u0026amp; Veronique Steukers, Albemarle Corporation, Belgium \u0026amp; Kumar Kumar, Albemarle Corporation, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 7: Phosphinates, the flame retardants for polymers in electronics\u003c\/b\u003e \u003cbr\u003eDr. Sebastian Hörold, lmar Schmitt, Mathias Dietz, Jerome De Boysere, Clariant Produkte GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 8: Fire retardancy of polymers in electronics, a scientific approach\u003c\/b\u003e \u003cbr\u003eR. Borms, S. Goebelbecker \u0026amp; L. Tange, Eurobrom B.V. ICL-IP \u0026amp; P. Georlette \u0026amp; Y. Bar Yaakov, ICL-IP, The Netherlands\u003c\/p\u003e\n\u003cb\u003eSESSION 4. POLYMERS IN SUBSTRATES, ASSEMBLY AND RELIABILITY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 9: An overview of polymers as key enablers in electronics assembly \u003cbr\u003eProf. Martin Goosey, IeMRC, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 10: New epoxy resins for printed wiring board application\u003c\/b\u003e \u003cbr\u003eDr. Bernd Hoevel, Dr. Ludovic Valette \u0026amp; Dr. Joseph Gan, Dow Deutschland Anlagengesellschaft mbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 11: Printed circuit boards for lead-free soldering, materials and failure mechanisms\u003c\/b\u003e \u003cbr\u003ePer Johander, Per-Erik Tegehall, Abelrahim Ahmed Osman, Göran Wetter \u0026amp; Dag Andersson, IVF Industrial Research \u0026amp; Development Corporation, Sweden\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 12: Selection and qualification of polymers for rigid and flexible interconnect applications\u003c\/b\u003e \u003cbr\u003eFlorian Schuessler, Prof. Dr.-Ing. Klaus Feldmann \u0026amp; Thomas Bigl, Institute for Manufacturing Automation and Production Systems (FAPS), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 13: Macromelt molding - low-pressure adhesive injection molding\u003c\/b\u003e \u003cbr\u003eOlaf Muendelein, Henkel GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 14: Conformal coating resistance to organic and inorganic contaminants\u003c\/b\u003e \u003cbr\u003eDr. Christopher Hunt, National Physical Laboratory, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 5. POLYMER FORMULATION AND RECYCLING FOR ELECTRONICS APPLICATIONS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 15: Additives: the way to tailor-made plastics for E\u0026amp;E applications \u003cbr\u003eDr. Markus C. Grob, Eelco Dekker \u0026amp; Dr. Wolfgang Diegritz, Ciba Specialty Chemicals Inc., Switzerland\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 16: Polymer recycling from WEEE - rapid assessment of electronic product enclosure plastics for improved resource management\u003c\/b\u003e \u003cbr\u003eProf. Gary Stevens et al, Gnosys\/Surrey University, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 17: Polymers in WEEE – A ‘sustainable’ raw material resource\u003c\/b\u003e \u003cbr\u003eKeith Freegard, Axion Recycling Ltd, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 6. POLYMERS AND PRINTED ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 18: Printed electronics: market opportunities and technical challenges \u003cbr\u003eMark Hutton \u0026amp; Nick Pearne, BPA Consulting, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 19: Inkjet printing of electronics\u003c\/b\u003e \u003cbr\u003eSteve Jones, Printed Electronics Limited, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 20: Flexible printing process for bespoke film based FCBs on polymer foil by combining laser technology, printing technology and electroplating \"Flextronic\"\u003c\/b\u003e \u003cbr\u003eFrits Feenstra, TNO Science \u0026amp; Industry, The Netherlands \u0026amp; Juergen Hackert, Vipem GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 21: Printed interconnects and batteries\u003c\/b\u003e \u003cbr\u003eDarren Southee, Gareth Hay, Peter Evans \u0026amp; David Harrison, Brunel University, UK\u003c\/p\u003e"}
Polymers in Organic El...
$350.00
{"id":4534925295709,"title":"Polymers in Organic Electronics. Polymer Selection for Electronic, Mechatronic \u0026 Optoelectronic Systems","handle":"polymers-in-organic-electronics","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sulaiman Khalifeh\u003cbr\u003eISBN 978-1-927885-67-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages: 606+x\u003cbr\u003eFigures: 189\u003cbr\u003eTables: 76\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eElectronics (including micro, nano, and quantum systems); mechanics (including MEMS, NEMS, MOEMS, and NOEMS); mechatronics (including robots, artificial muscles, and automated air vehicles); informatics (including software, hardware, and communication); materials science (including conjugated polymers, smart materials, and conducting small molecules); and optoelectronics (optical fibers and lenses) are the critical elements of development in science today. An integration is the practical concept by which these elements are combined and implemented; so that a new high performance, low cost, and lightweight organic electronic components (devices or systems) can be produced with shorter lead time.\u003c\/p\u003e\n\u003cp\u003eOrganic electronics or polymer electronics represent the important branch of material science dealing with electrically conductive polymers and small conductive molecules of carbon-based nature. This branch focuses on optimizing the semi-conductivity, conductivity, light emitting properties of organic materials (polymers, oligomers, and small molecules), and hybrid composites having organic-inorganic structures. That is because organic (p-conjugated) polymers exhibit the following attractive advantages:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003ecan be formed and shaped from solution depending on high-tech processes such as spin coating or inkjet printing at room temperature due to their lightweight and flexibility.\u003c\/li\u003e\n\u003cli\u003ethe capability of acting as electron donors and acceptors for structuring organic photovoltaics such as large scale, micro-, and nano-solar cells.\u003c\/li\u003e\n\u003cli\u003ethe ability to control their low band gaps energy levels makes them promising for fabricating developed organic electronic systems such as field-effect transistors, solar cells, light-emitting diodes, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eEvery year new conducting polymers, small molecules, composites, and complexes are being developed. Parallel to such development, the opportunities for additional electronic applications have increased. Included in this book are polymeric structures of the most familiar electronic devices (micro, opto, nano, etc.).\u003c\/p\u003e\n\u003cp\u003eThe main objective of this book is to help designers to optimize their design of organic electronic systems built out of novel polymers. For example, it is not enough to calculate the optical constants of an optoelectronic light-emitting diode LED using Afromowitz dielectric model starting from the calculation of real and imaginary part of the dielectric function, but its optical performance must be optimized by applying optical modeling of thin layers on a polymeric substrate.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 1\u003c\/strong\u003e is an introduction to polymers for electronic engineers. It provides identifications of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers. The chapter contains a classification of polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules. Several optimized ideas have been introduced to make this book a practical reference source.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 2\u003c\/strong\u003e is also introductory but explaining the principles of electronics to polymer engineers. It provides information on electronic theories of polymers. The theories are very important for undergraduate students in understanding mechanisms of polymer conductivity and studying theories governing electrical conductivity of polymers. This chapter was also illustrated with optimized ideas to facilitate practical applications.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains information on concepts and optimized types of electronic (polymers, small molecules, organic complexes, and elastomers). It contains a classification system of electronic polymers such as piezoelectric and pyroelectric, optoelectronic, electroactive, and mechatronics, and electronic small molecules, organic electronic complexes, and electronic elastomers. The chapter helps in the selection of the optimized electronic polymers, small molecules, complexes, and elastomers for structuring organic electronic systems.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e covers the most common properties of electronic polymers, such as electrical, electronic, and optical properties. The methods of optimization of electrical, electronic, and optical properties-dependent organic electronic structures are critical components of the chapter. For example, high occupied molecular orbital HOMO, low unoccupied molecular orbital LUMO, band gap, are essential concepts for understanding the electronic properties of electronic polymers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e is the location of discussion on polymeric structured printed circuit boards (PCBs). Here the reader may start building his own experience in creating polymer-based PCBs. Advanced PCBs and rapid PCB prototyping (a state of the art) are discussed. Optimizing the polymeric structures of organic printed circuit boards is broadly discussed here.\u003c\/p\u003e\n\u003cp\u003eBoth \u003cstrong\u003echapters 6 and 7\u003c\/strong\u003e are based on two crucial and advanced types of electronic components (polymer-based active and passive electronic components). Chapter 6 focuses on optimizing the polymeric structures of organic active electronic components, and chapter 7 on optimizing the polymeric structures of organic passive electronic components. The most critical systems listed in chapter 6 include integrated circuits ICs, organic thin-film transistors OTFT, organic light-emitting diodes OLEDs, optoelectronic devices, photovoltaic (or photo-electronic) systems, tandem or multi-junction organic solar cells, display technologies, discharge devices, organic thermo-electric generators, etc. The most important systems listed in chapter 7 include thin-film resistors, tantalum capacitors, axial inductor, fiber optic cable (fiber optic networks), optical sensors, flexible-skin contact antenna, flexible elastomeric actuators, etc.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 8\u003c\/strong\u003e describes the polymeric structures of optoelectronics and photonics supplied with the main optical and physical properties of conjugated polymers used for structuring the most developed optoelectronic devices and their optimization. Optoelectronic polymers such as optical electroactive conjugated polymers, optical organic photovoltaic polymers, and electro-phosphorescence polymers are used to emphasize the high efficiencies of the used optoelectronic devices.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 9\u003c\/strong\u003e has been designed to show the importance of polymeric structures for packaging of electronic devices, namely nanoelectronic packaging such as nanoelectronic circuits packaging and nanoelectromechanical packaging NEMS. Optimized polymeric structures of organic electronic packages are the subject of this chapter.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction to Polymers for Electronic Engineers\u003cbr\u003e1.1 Overview \u003cbr\u003e1.2 Synthetic electronic polymers\u003cbr\u003e1.3 Chemistry of electronic polymers \u003cbr\u003e1.3.1 Electronic resins\u003cbr\u003e1.3.2 Hydrocarbons (nature and electronic applications) \u003cbr\u003e1.4 Concepts of electronic polymers \u003cbr\u003e1. 4.1 Bond type of polymer\u003cbr\u003e1. 4.2 Chain geometry of polymers\u003cbr\u003e1. 4.3 Characteristics and properties of polymers \u003cbr\u003e1.4.4 Polymer morphology \u003cbr\u003e1.5 Classification of polymer families and types \u003cbr\u003e1.5.1 Electronic thermoplastic polymers \u003cbr\u003e1.5.2 Electronic thermosetting polymers \u003cbr\u003e1.5.3 Electronic elastomers \u003cbr\u003e1.6 Micro- and nano-electronic polymers \u003cbr\u003e1.7 Electronic copolymers and copolymerization \u003cbr\u003e1.8 Electronic oligomers\u003cbr\u003e1.9 Electronic polymer-based compounds \u003cbr\u003e1.9.1 Electronic inorganic polymers \u003cbr\u003e1.9.2 Electronic organometallic polymers \u003cbr\u003e1.9.3 Electronic complex polymers \u003cbr\u003e1.9.4 Electronic small molecules \u003cbr\u003e1.9.5 Electronic nanocomposites \u003cbr\u003e\u003cbr\u003e2 Electronics for Polymer Engineers\u003cbr\u003e2.1 Electrical conductivity of electronic polymers\u003cbr\u003e2.2 Electronic polymers “electrical conductivity” theory \u003cbr\u003e2.3 Electronic polymers “charge transport and charge transfer” theory \u003cbr\u003e2.4 Electronic polymers “molecular orbital” theory \u003cbr\u003e2.5 Electronic polymers “valence bond and Lewis structure” theory \u003cbr\u003e2.6 Electronic polymers “electroluminescent” theory \u003cbr\u003e2.7 Electronic polymers “piezoelectricity” theory \u003cbr\u003e2.8 Electronic polymers “electroactivity” theory \u003cbr\u003e2.9 Fundamentals of microelectronics for polymers \u003cbr\u003e2.10 Fundamentals of nanoelectronics for polymers \u003cbr\u003e2.11 Fundamentals of optoelectronics for polymers \u003cbr\u003e\u003cbr\u003e3 Optimized Electronic Polymers, Small Molecules, Complexes, \u003cbr\u003e and Elastomers for Organic Electronic Systems \u003cbr\u003e3.1 Electronic polymers \u003cbr\u003e3.2 Electroactive polymers \u003cbr\u003e3.2.1 Electronic-electroactive polymers \u003cbr\u003e3.2.2 Ionic-electroactive polymers \u003cbr\u003e3.3 Non-electroactive polymers \u003cbr\u003e3.3.1 Chemically activated polymers\u003cbr\u003e3.3.2 Shape memory polymers \u003cbr\u003e3.3.3 Electronic inflatable structure polymers \u003cbr\u003e3.3.4 Electronic light-activated polymers \u003cbr\u003e3.3.5 Magnetically activated polymers \u003cbr\u003e3.3.6 Electronic thermally activated gels \u003cbr\u003e3.4 Electronic conductive (conjugated and doped) polymers \u003cbr\u003e3.4.1 Electronic extrinsically conductive polymers \u003cbr\u003e3.4.2 Electronic intrinsically (inherently) conductive polymers \u003cbr\u003e3.5 Electronic piezoelectric and pyroelectric polymers \u003cbr\u003e3.5.1 Electronic bulk piezoelectric polymers \u003cbr\u003e3.5.2 Electronic piezoelectric\/polymeric composites \u003cbr\u003e3.5.3 Electronic voided charged piezoelectric polymers \u003cbr\u003e3.6 Microelectronic polymers \u003cbr\u003e3.6.1 Microelectronic three-dimensional conjugated macromolecules \u003cbr\u003e3.6.2 Microelectronic low-k polymers in microelectronics \u003cbr\u003e3.6.3 Organic\/inorganic hybrid nanocomposites for microelectronics \u003cbr\u003e3.7 Nanoelectronic polymers (nanopolymers) \u003cbr\u003e3.7.1 Electroactive nanostructured polymers \u003cbr\u003e3.7.2 Self-assembled nanostructured polymers \u003cbr\u003e3.7.3 Non-self-assembled nanostructured polymers \u003cbr\u003e3.7.4 Numbered nanoscale dimension polymers\u003cbr\u003e3.8 Optoelectronic polymers \u003cbr\u003e3.8.1 Optoelectronic light-emitting polymers \u003cbr\u003e3.8.2 Optoelectronic light transporting polymers \u003cbr\u003e3.8.3 Optoelectronic light receiving (absorbing) polymers \u003cbr\u003e3.9 Actuation polymers \u003cbr\u003e3.9.1 Stretchable electronic polymers \u003cbr\u003e3.9.2 Robotic polymers \u003cbr\u003e3.10 Electronic small molecules \u003cbr\u003e3.10.1 Electronic small molecules based on polycyclic aromatics \u003cbr\u003e3.10.2 Solution-processable electronic small molecules \u003cbr\u003e3.10.3 Electronic small molecule dyes \u003cbr\u003e3.10.4 Donor-p-acceptor structure electronic small molecules \u003cbr\u003e3.10.5 Optoelectronic small molecules \u003cbr\u003e3.10.6 Organic p-conjugated electronic small molecules \u003cbr\u003e3.11 Organic electronic complexes \u003cbr\u003e3.11.1 Polymeric metal complexes \u003cbr\u003e3.11.2 Small molecule complexes \u003cbr\u003e3.11.3 Heavy-metal complexes \u003cbr\u003e3.12 Electronic elastomers \u003cbr\u003e3.12.1 Electronic liquid crystalline elastomers \u003cbr\u003e3.12.2 Ferroelectric elastomers \u003cbr\u003e3.12.3 Electrostrictive grafted elastomers \u003cbr\u003e3.12.4 Optoelectronic elastomers \u003cbr\u003e3.12.5 Electrostatic elastomers \u003cbr\u003e3.12.6 Electroviscoelastic elastomers \u003cbr\u003e3.12.7 Electromagnetic-interference-shielding elastomers \u003cbr\u003e3.12.8 Electronic stretchable elastomers \u003cbr\u003e\u003cbr\u003e4 Optimization of Electrical, Electronic and Optical Properties of Organic Electronic Structures \u003cbr\u003e4.1 Overview \u003cbr\u003e4.2 Electrical properties \u003cbr\u003e4.3 Electronic properties \u003cbr\u003e4.3.1 HOMO-LUMO energy (band) gaps\u003cbr\u003e4.3.2 Electronic excitation energy \u003cbr\u003e4.3.3 Absorption wavelength \u003cbr\u003e4.4 Optical properties \u003cbr\u003e4.4.1 Transparency and colorlessness \u003cbr\u003e4.4.2 Refractive index \u003cbr\u003e4.4.3 Optical absorption \u003cbr\u003e4.4.4 Birefringence \u003cbr\u003e4.4.5 Optical transmission \u003cbr\u003e4.4.6 Polarizability\u003cbr\u003e4.4.7 Haze \u003cbr\u003e4.4.8 Photoconductivity \u003cbr\u003e4.4.9 Optical emission \u003cbr\u003e4.4.10 Luminescence \u003cbr\u003e\u003cbr\u003e5 Optimization of Polymeric Structures of Organic Printed Circuit Boards \u003cbr\u003e5.1 Overview \u003cbr\u003e5.2 Polymers for conventional printed circuit boards \u003cbr\u003e5.2.1 Dielectric substrate-based polymeric printed circuit boards \u003cbr\u003e5.2.2 Prepreg polymeric printed circuit boards \u003cbr\u003e5.2.3 Polymeric single-sided printed circuit boards \u003cbr\u003e5.2.4 Polymeric structures of double-sided printed circuit boards \u003cbr\u003e5.2.5 Polymeric structures of multilayered printed circuit boards\u003cbr\u003e5.3 Polymeric structures of flexible printed circuit boards \u003cbr\u003e5.3.1 Polymeric structures of single-sided flexible printed circuit boards \u003cbr\u003e5.3.2 Polymeric structures of double-sided flexible printed circuit boards \u003cbr\u003e5.3.3 Polymeric structures of multilayer flexible printed circuit boards \u003cbr\u003e5.3.4 Polymeric structures of rigid-flexible printed circuit boards \u003cbr\u003e5.3.5 Polymeric structures of dual access (back-bared) flexible printed circuit boards \u003cbr\u003e5.3.6 Polymeric structures of polymer thick-film flexible printed circuit boards \u003cbr\u003e5.4 Polymeric structures of ultra-multilayer printed circuit boards \u003cbr\u003e5.5 Polymeric structure of three-dimensional printed circuit boards \u003cbr\u003e5.5.1 Polymers in molded interconnected devices \u003cbr\u003e5.5.2 Combination of molded interconnected device polymers \u003cbr\u003e5.5.3 Manufacturing methods of molded interconnected devices \u003cbr\u003e5.6 Functions of advanced printed circuit boards optimized \u003cbr\u003e5.6.1 Printed circuit boards embedded in a polymeric substrate \u003cbr\u003e5.6.2 Polymeric microelectronic printed circuit boards \u003cbr\u003e5.6.3 Polymeric nanoelectronic printed circuit boards \u003cbr\u003e5.6.4 Polymeric optoelectronic printed circuit boards \u003cbr\u003e5.6.5 Polymeric structures of smart-textile printed circuit boards \u003cbr\u003e5.7 Polymeric structures of rapid printed circuit boards (state of the art) \u003cbr\u003e\u003cbr\u003e6 Optimized Polymeric Structures of Organic Active Electronic Components \u003cbr\u003e6.1 Overview \u003cbr\u003e6.2 Polymeric structures of organic semiconductors \u003cbr\u003e6.2.1 Polymeric structures of organic integrated circuits \u003cbr\u003e6.2.2 Polymeric structures of organic transistors \u003cbr\u003e6.2.3 Polymeric structures of organic diodes \u003cbr\u003e6.2.4 Polymeric structures of organic optoelectronic systems \u003cbr\u003e6.3 Polymeric structures of organic display technologies \u003cbr\u003e6.4 Polymeric structures of organic discharge devices \u003cbr\u003e6.5 Polymeric structures of organic power sources \u003cbr\u003e6.5.1 Polymeric structures of organic batteries \u003cbr\u003e6.5.2 Polymeric structures of organic fuel cells \u003cbr\u003e6.5.3 Polymeric structures of organic thermoelectric generators \u003cbr\u003e6.5.4 Polymeric structures for organic piezoelectric pressure \u003cbr\u003e\u003cbr\u003e7 Polymeric Structures Optimized for Organic Passive Electronic Components \u003cbr\u003e7.1 Overview \u003cbr\u003e7.2 Organic film resistors \u003cbr\u003e7.2.1 Thin film resistors \u003cbr\u003e7.2.2 Thick film resistors \u003cbr\u003e7.3 Organic capacitors \u003cbr\u003e7.3.1 Organic film capacitors \u003cbr\u003e7.3.2 Aluminum polymer capacitors \u003cbr\u003e7.3.3 Tantalum polymer capacitors \u003cbr\u003e7.3.4 Functional polymer capacitor \u003cbr\u003e7.4 Organic magnetic systems \u003cbr\u003e7.4.1 Magnetic polymers \u003cbr\u003e7.4.2 Organic\/polymeric magnets \u003cbr\u003e7.5 Organic networks \u003cbr\u003e7.6 Organic transducers \u003cbr\u003e7.6.1 Piezoelectric polymer transducers \u003cbr\u003e7.6.2 Ionic polymer transducers \u003cbr\u003e7.6.3 Elastomeric transducers \u003cbr\u003e7.7 Organic sensors \u003cbr\u003e7.7.1 Organic gas sensors \u003cbr\u003e7.7.2 Organic optical sensors \u003cbr\u003e7.7.3 Organic fiber optic-sensors \u003cbr\u003e7.7.4 Organic, flexible sensors \u003cbr\u003e7.8 Organic antennas \u003cbr\u003e7.9 Organic actuators \u003cbr\u003e7.9.1 All-organic\/polymeric actuators \u003cbr\u003e7.9.2 Conducting polymer actuators \u003cbr\u003e7.9.3 Ionomeric polymer-metal composite actuators \u003cbr\u003e7.9.4 Piezoelectric polymer actuators \u003cbr\u003e7.9.5 Flexible elastomeric actuators \u003cbr\u003e7.9.6 Conjugated polymer actuators \u003cbr\u003e7.9.7 Polymeric microactuators \u003cbr\u003e\u003cbr\u003e8 Optimizing Polymeric Structures in Organic Optoelectronics \u003cbr\u003e8.1 Overview \u003cbr\u003e8.2 Optical polymers\u003cbr\u003e8.2.1 Optical electroactive conjugated polymers \u003cbr\u003e8.2.2 Transparent (photonic) polymers \u003cbr\u003e8.2.3 Optical organic photovoltaic polymers \u003cbr\u003e8.2.4 Electroluminescent polymers \u003cbr\u003e8.2.5 Electro-phosphorescent polymers \u003cbr\u003e8.3 Properties of optical polymers \u003cbr\u003e8.4 Physical properties of optical polymers \u003cbr\u003e8.5 Organic optoelectronic systems \u003cbr\u003e8.5.1 Optical polymers for forming organic optoelectronic emitters \u003cbr\u003e8.5.2 Optical polymers for organic electroluminescent systems \u003cbr\u003e8.5.3 Organic photonics \u003cbr\u003e8.5.4 Organic optical amplifiers \u003cbr\u003e8.5.5 Organic optical detectors and receivers \u003cbr\u003e8.5.6 Organic optoelectronic thin-films \u003cbr\u003e8.5.7 Organic electro-optic modulators \u003cbr\u003e\u003cbr\u003e9 Optimizing Polymeric Structures of Organic Electronic Packages \u003cbr\u003e9.1 Overview \u003cbr\u003e9.2 Polymers in organic electronic packaging \u003cbr\u003e9.3 Polymeric structures of packaging systems \u003cbr\u003e9.3.1 Polymeric dual in-line package \u003cbr\u003e9.3.2 Polymeric single in-line package \u003cbr\u003e9.3.3 Polymeric zig-zag in-line package\u003cbr\u003e9.4 Structures of organic microelectronic packaging \u003cbr\u003e9.4.1 Practical concept of organic microelectronic packaging \u003cbr\u003e9.4.2 Organic microelectronic packages \u003cbr\u003e9.5 Electrically and thermally conductive polymer adhesives \u003cbr\u003e9.6 Organic microelectromechanical packaging \u003cbr\u003e9.6.1 Polymeric thin-film multilayer packaging \u003cbr\u003e9.6.2 Microelectromechanical packaging \u003cbr\u003e9.6.3 Vacuum and air cavity packaged organic microelectromechanical systems \u003cbr\u003e9.6.4 Organic encapsulation gels \u003cbr\u003e9.6.5 Organic near-hermetic (quasi-hermetic) materials \u003cbr\u003e9.7 Organic nanoelectronic packaging \u003cbr\u003e9.7.1 Polymeric system-on a-chip (or nanochip) \u003cbr\u003e9.7.2 Polymeric nanoscaled systems \u003cbr\u003e9.7.3 Nanoelectronic circuit packaging (nanopackaging) \u003cbr\u003e9.7.4 Organic nanoelectromechanical packaging \u003cbr\u003e9.8 Organic optoelectronic packaging \u003cbr\u003e9.8.1 Polymeric optoelectronic waveguides \u003cbr\u003e9.8.2 Organic optocoupler (optoisolator) packaging \u003cbr\u003e9.8.3 Organic microoptoelectromechanical systems packaging\u003cbr\u003e9.9 Polymeric packages \u003cbr\u003e9.10 Polymeric adhesive packages \u003cbr\u003e\u003cbr\u003e Index\u003cbr\u003e","published_at":"2020-02-07T16:12:33-05:00","created_at":"2020-02-06T11:44:58-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2020","book","electronics"],"price":35000,"price_min":35000,"price_max":35000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":31943766605917,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Organic Electronics. Polymer Selection for Electronic, Mechatronic \u0026 Optoelectronic Systems","public_title":null,"options":["Default Title"],"price":35000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-67-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372","options":["Title"],"media":[{"alt":null,"id":6968062345309,"position":1,"preview_image":{"aspect_ratio":0.664,"height":450,"width":299,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372"},"aspect_ratio":0.664,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781927885673-Case.png?v=1581110372","width":299}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Sulaiman Khalifeh\u003cbr\u003eISBN 978-1-927885-67-3 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublication date: \u003c\/span\u003e January 2020\u003cbr\u003ePages: 606+x\u003cbr\u003eFigures: 189\u003cbr\u003eTables: 76\u003cbr\u003e\u003cbr\u003e\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003eElectronics (including micro, nano, and quantum systems); mechanics (including MEMS, NEMS, MOEMS, and NOEMS); mechatronics (including robots, artificial muscles, and automated air vehicles); informatics (including software, hardware, and communication); materials science (including conjugated polymers, smart materials, and conducting small molecules); and optoelectronics (optical fibers and lenses) are the critical elements of development in science today. An integration is the practical concept by which these elements are combined and implemented; so that a new high performance, low cost, and lightweight organic electronic components (devices or systems) can be produced with shorter lead time.\u003c\/p\u003e\n\u003cp\u003eOrganic electronics or polymer electronics represent the important branch of material science dealing with electrically conductive polymers and small conductive molecules of carbon-based nature. This branch focuses on optimizing the semi-conductivity, conductivity, light emitting properties of organic materials (polymers, oligomers, and small molecules), and hybrid composites having organic-inorganic structures. That is because organic (p-conjugated) polymers exhibit the following attractive advantages:\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003ecan be formed and shaped from solution depending on high-tech processes such as spin coating or inkjet printing at room temperature due to their lightweight and flexibility.\u003c\/li\u003e\n\u003cli\u003ethe capability of acting as electron donors and acceptors for structuring organic photovoltaics such as large scale, micro-, and nano-solar cells.\u003c\/li\u003e\n\u003cli\u003ethe ability to control their low band gaps energy levels makes them promising for fabricating developed organic electronic systems such as field-effect transistors, solar cells, light-emitting diodes, etc.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003eEvery year new conducting polymers, small molecules, composites, and complexes are being developed. Parallel to such development, the opportunities for additional electronic applications have increased. Included in this book are polymeric structures of the most familiar electronic devices (micro, opto, nano, etc.).\u003c\/p\u003e\n\u003cp\u003eThe main objective of this book is to help designers to optimize their design of organic electronic systems built out of novel polymers. For example, it is not enough to calculate the optical constants of an optoelectronic light-emitting diode LED using Afromowitz dielectric model starting from the calculation of real and imaginary part of the dielectric function, but its optical performance must be optimized by applying optical modeling of thin layers on a polymeric substrate.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 1\u003c\/strong\u003e is an introduction to polymers for electronic engineers. It provides identifications of polymers, micro-polymers, nano-polymers, resins, hydrocarbons, and oligomers. The chapter contains a classification of polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules. Several optimized ideas have been introduced to make this book a practical reference source.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 2\u003c\/strong\u003e is also introductory but explaining the principles of electronics to polymer engineers. It provides information on electronic theories of polymers. The theories are very important for undergraduate students in understanding mechanisms of polymer conductivity and studying theories governing electrical conductivity of polymers. This chapter was also illustrated with optimized ideas to facilitate practical applications.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 3\u003c\/strong\u003e contains information on concepts and optimized types of electronic (polymers, small molecules, organic complexes, and elastomers). It contains a classification system of electronic polymers such as piezoelectric and pyroelectric, optoelectronic, electroactive, and mechatronics, and electronic small molecules, organic electronic complexes, and electronic elastomers. The chapter helps in the selection of the optimized electronic polymers, small molecules, complexes, and elastomers for structuring organic electronic systems.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 4\u003c\/strong\u003e covers the most common properties of electronic polymers, such as electrical, electronic, and optical properties. The methods of optimization of electrical, electronic, and optical properties-dependent organic electronic structures are critical components of the chapter. For example, high occupied molecular orbital HOMO, low unoccupied molecular orbital LUMO, band gap, are essential concepts for understanding the electronic properties of electronic polymers.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 5\u003c\/strong\u003e is the location of discussion on polymeric structured printed circuit boards (PCBs). Here the reader may start building his own experience in creating polymer-based PCBs. Advanced PCBs and rapid PCB prototyping (a state of the art) are discussed. Optimizing the polymeric structures of organic printed circuit boards is broadly discussed here.\u003c\/p\u003e\n\u003cp\u003eBoth \u003cstrong\u003echapters 6 and 7\u003c\/strong\u003e are based on two crucial and advanced types of electronic components (polymer-based active and passive electronic components). Chapter 6 focuses on optimizing the polymeric structures of organic active electronic components, and chapter 7 on optimizing the polymeric structures of organic passive electronic components. The most critical systems listed in chapter 6 include integrated circuits ICs, organic thin-film transistors OTFT, organic light-emitting diodes OLEDs, optoelectronic devices, photovoltaic (or photo-electronic) systems, tandem or multi-junction organic solar cells, display technologies, discharge devices, organic thermo-electric generators, etc. The most important systems listed in chapter 7 include thin-film resistors, tantalum capacitors, axial inductor, fiber optic cable (fiber optic networks), optical sensors, flexible-skin contact antenna, flexible elastomeric actuators, etc.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 8\u003c\/strong\u003e describes the polymeric structures of optoelectronics and photonics supplied with the main optical and physical properties of conjugated polymers used for structuring the most developed optoelectronic devices and their optimization. Optoelectronic polymers such as optical electroactive conjugated polymers, optical organic photovoltaic polymers, and electro-phosphorescence polymers are used to emphasize the high efficiencies of the used optoelectronic devices.\u003c\/p\u003e\n\u003cp\u003e\u003cstrong\u003eChapter 9\u003c\/strong\u003e has been designed to show the importance of polymeric structures for packaging of electronic devices, namely nanoelectronic packaging such as nanoelectronic circuits packaging and nanoelectromechanical packaging NEMS. Optimized polymeric structures of organic electronic packages are the subject of this chapter.\u003c\/p\u003e\n\u003ch5\u003eTable of Contents\u003cbr\u003e\n\u003c\/h5\u003e\n1 Introduction to Polymers for Electronic Engineers\u003cbr\u003e1.1 Overview \u003cbr\u003e1.2 Synthetic electronic polymers\u003cbr\u003e1.3 Chemistry of electronic polymers \u003cbr\u003e1.3.1 Electronic resins\u003cbr\u003e1.3.2 Hydrocarbons (nature and electronic applications) \u003cbr\u003e1.4 Concepts of electronic polymers \u003cbr\u003e1. 4.1 Bond type of polymer\u003cbr\u003e1. 4.2 Chain geometry of polymers\u003cbr\u003e1. 4.3 Characteristics and properties of polymers \u003cbr\u003e1.4.4 Polymer morphology \u003cbr\u003e1.5 Classification of polymer families and types \u003cbr\u003e1.5.1 Electronic thermoplastic polymers \u003cbr\u003e1.5.2 Electronic thermosetting polymers \u003cbr\u003e1.5.3 Electronic elastomers \u003cbr\u003e1.6 Micro- and nano-electronic polymers \u003cbr\u003e1.7 Electronic copolymers and copolymerization \u003cbr\u003e1.8 Electronic oligomers\u003cbr\u003e1.9 Electronic polymer-based compounds \u003cbr\u003e1.9.1 Electronic inorganic polymers \u003cbr\u003e1.9.2 Electronic organometallic polymers \u003cbr\u003e1.9.3 Electronic complex polymers \u003cbr\u003e1.9.4 Electronic small molecules \u003cbr\u003e1.9.5 Electronic nanocomposites \u003cbr\u003e\u003cbr\u003e2 Electronics for Polymer Engineers\u003cbr\u003e2.1 Electrical conductivity of electronic polymers\u003cbr\u003e2.2 Electronic polymers “electrical conductivity” theory \u003cbr\u003e2.3 Electronic polymers “charge transport and charge transfer” theory \u003cbr\u003e2.4 Electronic polymers “molecular orbital” theory \u003cbr\u003e2.5 Electronic polymers “valence bond and Lewis structure” theory \u003cbr\u003e2.6 Electronic polymers “electroluminescent” theory \u003cbr\u003e2.7 Electronic polymers “piezoelectricity” theory \u003cbr\u003e2.8 Electronic polymers “electroactivity” theory \u003cbr\u003e2.9 Fundamentals of microelectronics for polymers \u003cbr\u003e2.10 Fundamentals of nanoelectronics for polymers \u003cbr\u003e2.11 Fundamentals of optoelectronics for polymers \u003cbr\u003e\u003cbr\u003e3 Optimized Electronic Polymers, Small Molecules, Complexes, \u003cbr\u003e and Elastomers for Organic Electronic Systems \u003cbr\u003e3.1 Electronic polymers \u003cbr\u003e3.2 Electroactive polymers \u003cbr\u003e3.2.1 Electronic-electroactive polymers \u003cbr\u003e3.2.2 Ionic-electroactive polymers \u003cbr\u003e3.3 Non-electroactive polymers \u003cbr\u003e3.3.1 Chemically activated polymers\u003cbr\u003e3.3.2 Shape memory polymers \u003cbr\u003e3.3.3 Electronic inflatable structure polymers \u003cbr\u003e3.3.4 Electronic light-activated polymers \u003cbr\u003e3.3.5 Magnetically activated polymers \u003cbr\u003e3.3.6 Electronic thermally activated gels \u003cbr\u003e3.4 Electronic conductive (conjugated and doped) polymers \u003cbr\u003e3.4.1 Electronic extrinsically conductive polymers \u003cbr\u003e3.4.2 Electronic intrinsically (inherently) conductive polymers \u003cbr\u003e3.5 Electronic piezoelectric and pyroelectric polymers \u003cbr\u003e3.5.1 Electronic bulk piezoelectric polymers \u003cbr\u003e3.5.2 Electronic piezoelectric\/polymeric composites \u003cbr\u003e3.5.3 Electronic voided charged piezoelectric polymers \u003cbr\u003e3.6 Microelectronic polymers \u003cbr\u003e3.6.1 Microelectronic three-dimensional conjugated macromolecules \u003cbr\u003e3.6.2 Microelectronic low-k polymers in microelectronics \u003cbr\u003e3.6.3 Organic\/inorganic hybrid nanocomposites for microelectronics \u003cbr\u003e3.7 Nanoelectronic polymers (nanopolymers) \u003cbr\u003e3.7.1 Electroactive nanostructured polymers \u003cbr\u003e3.7.2 Self-assembled nanostructured polymers \u003cbr\u003e3.7.3 Non-self-assembled nanostructured polymers \u003cbr\u003e3.7.4 Numbered nanoscale dimension polymers\u003cbr\u003e3.8 Optoelectronic polymers \u003cbr\u003e3.8.1 Optoelectronic light-emitting polymers \u003cbr\u003e3.8.2 Optoelectronic light transporting polymers \u003cbr\u003e3.8.3 Optoelectronic light receiving (absorbing) polymers \u003cbr\u003e3.9 Actuation polymers \u003cbr\u003e3.9.1 Stretchable electronic polymers \u003cbr\u003e3.9.2 Robotic polymers \u003cbr\u003e3.10 Electronic small molecules \u003cbr\u003e3.10.1 Electronic small molecules based on polycyclic aromatics \u003cbr\u003e3.10.2 Solution-processable electronic small molecules \u003cbr\u003e3.10.3 Electronic small molecule dyes \u003cbr\u003e3.10.4 Donor-p-acceptor structure electronic small molecules \u003cbr\u003e3.10.5 Optoelectronic small molecules \u003cbr\u003e3.10.6 Organic p-conjugated electronic small molecules \u003cbr\u003e3.11 Organic electronic complexes \u003cbr\u003e3.11.1 Polymeric metal complexes \u003cbr\u003e3.11.2 Small molecule complexes \u003cbr\u003e3.11.3 Heavy-metal complexes \u003cbr\u003e3.12 Electronic elastomers \u003cbr\u003e3.12.1 Electronic liquid crystalline elastomers \u003cbr\u003e3.12.2 Ferroelectric elastomers \u003cbr\u003e3.12.3 Electrostrictive grafted elastomers \u003cbr\u003e3.12.4 Optoelectronic elastomers \u003cbr\u003e3.12.5 Electrostatic elastomers \u003cbr\u003e3.12.6 Electroviscoelastic elastomers \u003cbr\u003e3.12.7 Electromagnetic-interference-shielding elastomers \u003cbr\u003e3.12.8 Electronic stretchable elastomers \u003cbr\u003e\u003cbr\u003e4 Optimization of Electrical, Electronic and Optical Properties of Organic Electronic Structures \u003cbr\u003e4.1 Overview \u003cbr\u003e4.2 Electrical properties \u003cbr\u003e4.3 Electronic properties \u003cbr\u003e4.3.1 HOMO-LUMO energy (band) gaps\u003cbr\u003e4.3.2 Electronic excitation energy \u003cbr\u003e4.3.3 Absorption wavelength \u003cbr\u003e4.4 Optical properties \u003cbr\u003e4.4.1 Transparency and colorlessness \u003cbr\u003e4.4.2 Refractive index \u003cbr\u003e4.4.3 Optical absorption \u003cbr\u003e4.4.4 Birefringence \u003cbr\u003e4.4.5 Optical transmission \u003cbr\u003e4.4.6 Polarizability\u003cbr\u003e4.4.7 Haze \u003cbr\u003e4.4.8 Photoconductivity \u003cbr\u003e4.4.9 Optical emission \u003cbr\u003e4.4.10 Luminescence \u003cbr\u003e\u003cbr\u003e5 Optimization of Polymeric Structures of Organic Printed Circuit Boards \u003cbr\u003e5.1 Overview \u003cbr\u003e5.2 Polymers for conventional printed circuit boards \u003cbr\u003e5.2.1 Dielectric substrate-based polymeric printed circuit boards \u003cbr\u003e5.2.2 Prepreg polymeric printed circuit boards \u003cbr\u003e5.2.3 Polymeric single-sided printed circuit boards \u003cbr\u003e5.2.4 Polymeric structures of double-sided printed circuit boards \u003cbr\u003e5.2.5 Polymeric structures of multilayered printed circuit boards\u003cbr\u003e5.3 Polymeric structures of flexible printed circuit boards \u003cbr\u003e5.3.1 Polymeric structures of single-sided flexible printed circuit boards \u003cbr\u003e5.3.2 Polymeric structures of double-sided flexible printed circuit boards \u003cbr\u003e5.3.3 Polymeric structures of multilayer flexible printed circuit boards \u003cbr\u003e5.3.4 Polymeric structures of rigid-flexible printed circuit boards \u003cbr\u003e5.3.5 Polymeric structures of dual access (back-bared) flexible printed circuit boards \u003cbr\u003e5.3.6 Polymeric structures of polymer thick-film flexible printed circuit boards \u003cbr\u003e5.4 Polymeric structures of ultra-multilayer printed circuit boards \u003cbr\u003e5.5 Polymeric structure of three-dimensional printed circuit boards \u003cbr\u003e5.5.1 Polymers in molded interconnected devices \u003cbr\u003e5.5.2 Combination of molded interconnected device polymers \u003cbr\u003e5.5.3 Manufacturing methods of molded interconnected devices \u003cbr\u003e5.6 Functions of advanced printed circuit boards optimized \u003cbr\u003e5.6.1 Printed circuit boards embedded in a polymeric substrate \u003cbr\u003e5.6.2 Polymeric microelectronic printed circuit boards \u003cbr\u003e5.6.3 Polymeric nanoelectronic printed circuit boards \u003cbr\u003e5.6.4 Polymeric optoelectronic printed circuit boards \u003cbr\u003e5.6.5 Polymeric structures of smart-textile printed circuit boards \u003cbr\u003e5.7 Polymeric structures of rapid printed circuit boards (state of the art) \u003cbr\u003e\u003cbr\u003e6 Optimized Polymeric Structures of Organic Active Electronic Components \u003cbr\u003e6.1 Overview \u003cbr\u003e6.2 Polymeric structures of organic semiconductors \u003cbr\u003e6.2.1 Polymeric structures of organic integrated circuits \u003cbr\u003e6.2.2 Polymeric structures of organic transistors \u003cbr\u003e6.2.3 Polymeric structures of organic diodes \u003cbr\u003e6.2.4 Polymeric structures of organic optoelectronic systems \u003cbr\u003e6.3 Polymeric structures of organic display technologies \u003cbr\u003e6.4 Polymeric structures of organic discharge devices \u003cbr\u003e6.5 Polymeric structures of organic power sources \u003cbr\u003e6.5.1 Polymeric structures of organic batteries \u003cbr\u003e6.5.2 Polymeric structures of organic fuel cells \u003cbr\u003e6.5.3 Polymeric structures of organic thermoelectric generators \u003cbr\u003e6.5.4 Polymeric structures for organic piezoelectric pressure \u003cbr\u003e\u003cbr\u003e7 Polymeric Structures Optimized for Organic Passive Electronic Components \u003cbr\u003e7.1 Overview \u003cbr\u003e7.2 Organic film resistors \u003cbr\u003e7.2.1 Thin film resistors \u003cbr\u003e7.2.2 Thick film resistors \u003cbr\u003e7.3 Organic capacitors \u003cbr\u003e7.3.1 Organic film capacitors \u003cbr\u003e7.3.2 Aluminum polymer capacitors \u003cbr\u003e7.3.3 Tantalum polymer capacitors \u003cbr\u003e7.3.4 Functional polymer capacitor \u003cbr\u003e7.4 Organic magnetic systems \u003cbr\u003e7.4.1 Magnetic polymers \u003cbr\u003e7.4.2 Organic\/polymeric magnets \u003cbr\u003e7.5 Organic networks \u003cbr\u003e7.6 Organic transducers \u003cbr\u003e7.6.1 Piezoelectric polymer transducers \u003cbr\u003e7.6.2 Ionic polymer transducers \u003cbr\u003e7.6.3 Elastomeric transducers \u003cbr\u003e7.7 Organic sensors \u003cbr\u003e7.7.1 Organic gas sensors \u003cbr\u003e7.7.2 Organic optical sensors \u003cbr\u003e7.7.3 Organic fiber optic-sensors \u003cbr\u003e7.7.4 Organic, flexible sensors \u003cbr\u003e7.8 Organic antennas \u003cbr\u003e7.9 Organic actuators \u003cbr\u003e7.9.1 All-organic\/polymeric actuators \u003cbr\u003e7.9.2 Conducting polymer actuators \u003cbr\u003e7.9.3 Ionomeric polymer-metal composite actuators \u003cbr\u003e7.9.4 Piezoelectric polymer actuators \u003cbr\u003e7.9.5 Flexible elastomeric actuators \u003cbr\u003e7.9.6 Conjugated polymer actuators \u003cbr\u003e7.9.7 Polymeric microactuators \u003cbr\u003e\u003cbr\u003e8 Optimizing Polymeric Structures in Organic Optoelectronics \u003cbr\u003e8.1 Overview \u003cbr\u003e8.2 Optical polymers\u003cbr\u003e8.2.1 Optical electroactive conjugated polymers \u003cbr\u003e8.2.2 Transparent (photonic) polymers \u003cbr\u003e8.2.3 Optical organic photovoltaic polymers \u003cbr\u003e8.2.4 Electroluminescent polymers \u003cbr\u003e8.2.5 Electro-phosphorescent polymers \u003cbr\u003e8.3 Properties of optical polymers \u003cbr\u003e8.4 Physical properties of optical polymers \u003cbr\u003e8.5 Organic optoelectronic systems \u003cbr\u003e8.5.1 Optical polymers for forming organic optoelectronic emitters \u003cbr\u003e8.5.2 Optical polymers for organic electroluminescent systems \u003cbr\u003e8.5.3 Organic photonics \u003cbr\u003e8.5.4 Organic optical amplifiers \u003cbr\u003e8.5.5 Organic optical detectors and receivers \u003cbr\u003e8.5.6 Organic optoelectronic thin-films \u003cbr\u003e8.5.7 Organic electro-optic modulators \u003cbr\u003e\u003cbr\u003e9 Optimizing Polymeric Structures of Organic Electronic Packages \u003cbr\u003e9.1 Overview \u003cbr\u003e9.2 Polymers in organic electronic packaging \u003cbr\u003e9.3 Polymeric structures of packaging systems \u003cbr\u003e9.3.1 Polymeric dual in-line package \u003cbr\u003e9.3.2 Polymeric single in-line package \u003cbr\u003e9.3.3 Polymeric zig-zag in-line package\u003cbr\u003e9.4 Structures of organic microelectronic packaging \u003cbr\u003e9.4.1 Practical concept of organic microelectronic packaging \u003cbr\u003e9.4.2 Organic microelectronic packages \u003cbr\u003e9.5 Electrically and thermally conductive polymer adhesives \u003cbr\u003e9.6 Organic microelectromechanical packaging \u003cbr\u003e9.6.1 Polymeric thin-film multilayer packaging \u003cbr\u003e9.6.2 Microelectromechanical packaging \u003cbr\u003e9.6.3 Vacuum and air cavity packaged organic microelectromechanical systems \u003cbr\u003e9.6.4 Organic encapsulation gels \u003cbr\u003e9.6.5 Organic near-hermetic (quasi-hermetic) materials \u003cbr\u003e9.7 Organic nanoelectronic packaging \u003cbr\u003e9.7.1 Polymeric system-on a-chip (or nanochip) \u003cbr\u003e9.7.2 Polymeric nanoscaled systems \u003cbr\u003e9.7.3 Nanoelectronic circuit packaging (nanopackaging) \u003cbr\u003e9.7.4 Organic nanoelectromechanical packaging \u003cbr\u003e9.8 Organic optoelectronic packaging \u003cbr\u003e9.8.1 Polymeric optoelectronic waveguides \u003cbr\u003e9.8.2 Organic optocoupler (optoisolator) packaging \u003cbr\u003e9.8.3 Organic microoptoelectromechanical systems packaging\u003cbr\u003e9.9 Polymeric packages \u003cbr\u003e9.10 Polymeric adhesive packages \u003cbr\u003e\u003cbr\u003e Index\u003cbr\u003e"}
Polyolefin Foams
$125.00
{"id":11242224644,"title":"Polyolefin Foams","handle":"978-1-85957-434-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N.J. Mills \u003cbr\u003eISBN 978-1-85957-434-8 \u003cbr\u003e\u003cbr\u003ePublished: 2004\u003cbr\u003epages 138\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer Foams are used in many different types of applications and it is hard to find an area where they are not utilised. Polyolefin Foams are a relatively recent development compared to the other types of foam. The Polyolefin foam processes were developed in the 1960s and 1970s.\u003cbr\u003eThis Review starts with a brief history of the subject and then reports on the current situation regarding Polyolefin Foams. The section on processing discusses the properties required for successful foam production. The polymer section then describes the molecular structures necessary to produce the required properties and then considers novel polymer that can be used for foams. The properties section covers the mechanical and thermal properties and how these can be used to best advantage, while the applications section discusses how these properties can be used.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Polymers\u003cbr\u003e2.1 Polyethylenes\u003cbr\u003e2.1.1 Blends\u003cbr\u003e2.2 Ethylene-Styrene ‘Interpolymers’\u003cbr\u003e2.3 EPDM\u003cbr\u003e2.4 Polypropylenes \u003cbr\u003e3 Processing\u003cbr\u003e3.1 Melt Rheology Suitable for Foaming\u003cbr\u003e3.2 Foam Expansion\u003cbr\u003e3.2.1 Control of Cell Size and Cell Stability\u003cbr\u003e3.2.2 Control of Density\u003cbr\u003e3.3 Post-Extrusion Shrinkage\u003cbr\u003e3.4 Rotomoulding\u003cbr\u003e3.5 Microcellular Foams\u003cbr\u003e3.6 Oriented PP Foams – Strandfoam \u0026lt; \u003cbr\u003e4 Mechanical Properties\u003cbr\u003e4.1 Initial Response in Compression\u003cbr\u003e4.2 Bulk Modulus\u003cbr\u003e4.3 Compressive Collapse\u003cbr\u003e4.4 High Strain Compressive Response\u003cbr\u003e4.5 Heat Transfer from Gas to Polymer During High Strain Compression\u003cbr\u003e4.6 Creep Response and Air Loss from Cells\u003cbr\u003e4.7 Recovery After Creep\u003cbr\u003e4.8 Fatigue\u003cbr\u003e4.9 Cushion Curves for Impact Response\u003cbr\u003e4.10 Impact Response in Shear or Shear Plus Compression\u003cbr\u003e4.11 Recovery After Impact\u003cbr\u003e4.12 Multiple Impacts \u003cbr\u003e5 Thermal Properties\u003cbr\u003e5.1 Dynamic Mechanical Thermal Analysis (DMTA)\u003cbr\u003e5.2 Thermal Expansion\u003cbr\u003e5.3 Thermal Conductivity \u003cbr\u003e6 Applications\u003cbr\u003e6.1 Packaging Against Impact Damage\u003cbr\u003e6.2 EVA in Running Shoe Midsoles\u003cbr\u003e6.3 Body Armour\u003cbr\u003e6.4 Helmets\u003cbr\u003e6.5 Soccer Shin Protectors\u003cbr\u003e6.6 Automotive \u003cbr\u003e7 Market Growth\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNigel Mills, D.Eng., Ph. D, F.I.M. graduated in Natural Sciences from Kings College, Cambridge, and then worked for ICI Petrochemical and Polymer Laboratory in Runcorn from 1964 to 1970. Since then he has been at Birmingham University, where he is currently Reader in Polymer Engineering, in the Metallurgy and Materials Department. His research interests include modeling and testing the mechanical properties of polymer foams, and the testing and design of protective helmets, clothing, and shoes. The latter involves linking injury criteria to product performance tests. His research group is equipped for impact, creep and fracture testing of foams and plastics, and testing of helmets and sports equipment. He is chairman of the British Standards committee for motorcycle helmets. He has published 140 papers on foam and polymer properties and applications.","published_at":"2017-06-22T21:13:56-04:00","created_at":"2017-06-22T21:13:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","automotive","blends","book","cells","conductivity","creep","expansion","fatigue","foams","helmets","impact","market growth","p-structural","packaging","polymer","polymers","polyolefin","response","shear","soccer","thermal"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378386180,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polyolefin Foams","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":0,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-434-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381","options":["Title"],"media":[{"alt":null,"id":358708510813,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-434-8.jpg?v=1499953381","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: N.J. Mills \u003cbr\u003eISBN 978-1-85957-434-8 \u003cbr\u003e\u003cbr\u003ePublished: 2004\u003cbr\u003epages 138\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymer Foams are used in many different types of applications and it is hard to find an area where they are not utilised. Polyolefin Foams are a relatively recent development compared to the other types of foam. The Polyolefin foam processes were developed in the 1960s and 1970s.\u003cbr\u003eThis Review starts with a brief history of the subject and then reports on the current situation regarding Polyolefin Foams. The section on processing discusses the properties required for successful foam production. The polymer section then describes the molecular structures necessary to produce the required properties and then considers novel polymer that can be used for foams. The properties section covers the mechanical and thermal properties and how these can be used to best advantage, while the applications section discusses how these properties can be used.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction \u003cbr\u003e2 Polymers\u003cbr\u003e2.1 Polyethylenes\u003cbr\u003e2.1.1 Blends\u003cbr\u003e2.2 Ethylene-Styrene ‘Interpolymers’\u003cbr\u003e2.3 EPDM\u003cbr\u003e2.4 Polypropylenes \u003cbr\u003e3 Processing\u003cbr\u003e3.1 Melt Rheology Suitable for Foaming\u003cbr\u003e3.2 Foam Expansion\u003cbr\u003e3.2.1 Control of Cell Size and Cell Stability\u003cbr\u003e3.2.2 Control of Density\u003cbr\u003e3.3 Post-Extrusion Shrinkage\u003cbr\u003e3.4 Rotomoulding\u003cbr\u003e3.5 Microcellular Foams\u003cbr\u003e3.6 Oriented PP Foams – Strandfoam \u0026lt; \u003cbr\u003e4 Mechanical Properties\u003cbr\u003e4.1 Initial Response in Compression\u003cbr\u003e4.2 Bulk Modulus\u003cbr\u003e4.3 Compressive Collapse\u003cbr\u003e4.4 High Strain Compressive Response\u003cbr\u003e4.5 Heat Transfer from Gas to Polymer During High Strain Compression\u003cbr\u003e4.6 Creep Response and Air Loss from Cells\u003cbr\u003e4.7 Recovery After Creep\u003cbr\u003e4.8 Fatigue\u003cbr\u003e4.9 Cushion Curves for Impact Response\u003cbr\u003e4.10 Impact Response in Shear or Shear Plus Compression\u003cbr\u003e4.11 Recovery After Impact\u003cbr\u003e4.12 Multiple Impacts \u003cbr\u003e5 Thermal Properties\u003cbr\u003e5.1 Dynamic Mechanical Thermal Analysis (DMTA)\u003cbr\u003e5.2 Thermal Expansion\u003cbr\u003e5.3 Thermal Conductivity \u003cbr\u003e6 Applications\u003cbr\u003e6.1 Packaging Against Impact Damage\u003cbr\u003e6.2 EVA in Running Shoe Midsoles\u003cbr\u003e6.3 Body Armour\u003cbr\u003e6.4 Helmets\u003cbr\u003e6.5 Soccer Shin Protectors\u003cbr\u003e6.6 Automotive \u003cbr\u003e7 Market Growth\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nNigel Mills, D.Eng., Ph. D, F.I.M. graduated in Natural Sciences from Kings College, Cambridge, and then worked for ICI Petrochemical and Polymer Laboratory in Runcorn from 1964 to 1970. Since then he has been at Birmingham University, where he is currently Reader in Polymer Engineering, in the Metallurgy and Materials Department. His research interests include modeling and testing the mechanical properties of polymer foams, and the testing and design of protective helmets, clothing, and shoes. The latter involves linking injury criteria to product performance tests. His research group is equipped for impact, creep and fracture testing of foams and plastics, and testing of helmets and sports equipment. He is chairman of the British Standards committee for motorcycle helmets. He has published 140 papers on foam and polymer properties and applications."}