- Grid List
Filter
Multi-Material Injecti...
$115.00
{"id":11242214852,"title":"Multi-Material Injection Moulding","handle":"978-1-85957-327-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V. Goodship and J.C. Love, The University of Warwick \u003cbr\u003eISBN 978-1-85957-327-3 \u003cbr\u003e\u003cbr\u003epages: 116, figures: 23, tables: 6\n\u003ch5\u003eSummary\u003c\/h5\u003e\nInjection moulding is the most important of all the commercial methods of plastics processing. Many variations have been developed and one of the rapidly expanding fields is multi-material injection moulding. This is particularly important where processors are looking to gain technological advantages over rivals by adding value to products. Whilst tooling costs can be very high, cost savings can be made by eliminating assembly steps. This review looks at the many techniques being used, from the terminology to case studies. \u003cbr\u003e\u003cbr\u003eThere are many issues involved in moulding different types of materials together. Advantages are gained in the product by combining different properties. Recyclate can be used as a core material with virgin resin skin. However, there are potential problems. Compatibility is important for interfacial adhesion. Different materials have varying rheological properties and optimal moulding conditions, which can limit material choice. This is a big area for research as there have been few studies on co-molding incompatible polymers. \u003cbr\u003e\u003cbr\u003eThe three primary types of multi-material injection moulding examined are multi-component, multi-shot and over-moulding. \u003cbr\u003e\u003cbr\u003eMulti-component moulding can be further subdivided. Co-injection moulding involves making sequential injections into the same mould with one material as the core and one as the skin. It is also known as sandwich moulding because the core is fully encapsulated. Bi-injection moulding is the simultaneous injection of different materials through different gates. Interval injection moulding, also known as marbling, is the simultaneous injection of different materials through different gates giving limited mixing. \u003cbr\u003e\u003cbr\u003eMulti-shot moulding describes any process where distinct material shots are applied to produce the final component. This includes transfer moulding, core back moulding and rotating tool moulding. \u003cbr\u003e\u003cbr\u003eOver-moulding includes both insert moulding and lost core moulding, the latter produces hollow parts. \u003cbr\u003e\u003cbr\u003eThis review describes the basic types of multi-material injection moulding, the issues surrounding combining different types of polymers and examples of practical uses of this technology. It is clearly written and difficult concepts are explained with illustrations. \u003cbr\u003e\u003cbr\u003eThe abstracts from the Polymer Library include many more examples of the use of this technology, giving names of companies and organisations involved in this field.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Multi-Component Moulding \u003cbr\u003e1.1.1 Co-Injection Moulding \u003cbr\u003e1.1.2 Bi-Injection Moulding \u003cbr\u003e1.1.3 Interval Injection Moulding \u003cbr\u003e1.2 Multi-Shot Moulding \u003cbr\u003e1.2.1 Transfer \u003cbr\u003e1.2.2 Core Back \u003cbr\u003e1.2.3 Rotating Tool \u003cbr\u003e1.3 Over-Moulding \u003cbr\u003e1.4 Business Trends \u003cbr\u003e2. Injection Moulding Basics \u003cbr\u003e\u003cbr\u003e2.1 Stages of Injection Moulding \u003cbr\u003e2.1.1 Plastication \u003cbr\u003e2.1.2 Mould Filling \u003cbr\u003e2.1.3 Packing and Solidification \u003cbr\u003e2.2 Differential Shrinkage and Cooling Effects \u003cbr\u003e2.3 Microstructure of Injection Mouldings \u003cbr\u003e3. Material Selection \u003cbr\u003e\u003cbr\u003e3.1 Material Bonding Properties \u003cbr\u003e3.2 General Material Properties \u003cbr\u003e4. Multi-Component Injection Moulding \u003cbr\u003e\u003cbr\u003e4.1 Co-Injection Moulding \u003cbr\u003e4.1.1 Material Selection for Co-Injection Moulding \u003cbr\u003e4.1.2 Co-Injection Moulding: Different Techniques \u003cbr\u003e4.1.3 Sequential Injection: Single Channel Technique \u003cbr\u003e4.1.4 Sequential Injection: Mono-Sandwich Technique \u003cbr\u003e4.1.5 Simultaneous Injection: Two Channel Technique \u003cbr\u003e4.1.6 Simultaneous Injection: Three Channel Technique \u003cbr\u003e4.1.7 Part Design and Tooling Requirements for Co-Injection Moulding \u003cbr\u003e4.1.8 Rheology and Mould Filling: Why and How Co-Injection Moulding Works \u003cbr\u003e4.1.9 Immiscible Materials Research in Co-Injection Moulding \u003cbr\u003e4.1.10 Co-Injection Moulding Applications - Case Studies \u003cbr\u003e4.1.11 Recycling and Legislation \u003cbr\u003e4.1.12 Discussion and Conclusions \u003cbr\u003e4.2 Bi-Injection Moulding \u003cbr\u003e4.3 Interval Injection Moulding \u003cbr\u003e5. Multi-Shot Moulding \u003cbr\u003e\u003cbr\u003e5.1 Machine Technology \u003cbr\u003e5.1.1 Injection Unit Configurations \u003cbr\u003e5.1.2 Plastication Design \u003cbr\u003e5.1.3 Machine Type \u003cbr\u003e5.2 Core Back Moulding \u003cbr\u003e5.3 Rotating Tool Moulding \u003cbr\u003e5.4 Transfer Moulding \u003cbr\u003e5.5 Multi-Shot with a Single Injection Unit \u003cbr\u003e5.6 Material Selection for Multi-Shot \u003cbr\u003e5.6.1 Material Properties \u003cbr\u003e5.6.2 Material Process Order \u003cbr\u003e5.6.3 Using Thermoset Materials \u003cbr\u003e5.6.4 Liquid Silicone Rubber (LSR) \u003cbr\u003e5.6.5 Thermoplastic Elastomers (TPEs) \u003cbr\u003e5.7 Multi-Shot Moulding Applications - Case Studies \u003cbr\u003e5.7.1 Trio Knob \u003cbr\u003e5.7.2 Stanley Screwdriver \u003cbr\u003e5.8 Limitations to Multi-Shot Moulding \u003cbr\u003e6. Over-Moulding \u003cbr\u003e\u003cbr\u003e6.1 Insert Moulding \u003cbr\u003e6.2 Lost Core Moulding \u003cbr\u003e7. The Future? \u003cbr\u003e\u003cbr\u003eAdditional References \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eAbstracts from the Polymer Library Database \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Goodship is a Senior Research Fellow with 14 years experience in the industry, expertise in coinjection moulding technology and a particular interest in recycling. Jo Love is an experienced materials engineer currently working on in-mould decoration. The authors are based at the Warwick Manufacturing Group in the Advanced Technology Centre at the University of Warwick.","published_at":"2017-06-22T21:13:24-04:00","created_at":"2017-06-22T21:13:24-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","co-injection molding","injection moulding","insert molding","molding","mould shrinkage","multi-component moulding","multi-shot molding","multi-shot moulding","p-processing","polymer","recycling","rheology","rotating molding transfer molding","rotating moulding transfer moulding","rotational moulding"],"price":11500,"price_min":11500,"price_max":11500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378354180,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Multi-Material Injection Moulding","public_title":null,"options":["Default Title"],"price":11500,"weight":1000,"compare_at_price":null,"inventory_quantity":-3,"inventory_management":null,"inventory_policy":"continue","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-327-3.jpg?v=1499716740"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-327-3.jpg?v=1499716740","options":["Title"],"media":[{"alt":null,"id":358515671133,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-327-3.jpg?v=1499716740"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-327-3.jpg?v=1499716740","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: V. Goodship and J.C. Love, The University of Warwick \u003cbr\u003eISBN 978-1-85957-327-3 \u003cbr\u003e\u003cbr\u003epages: 116, figures: 23, tables: 6\n\u003ch5\u003eSummary\u003c\/h5\u003e\nInjection moulding is the most important of all the commercial methods of plastics processing. Many variations have been developed and one of the rapidly expanding fields is multi-material injection moulding. This is particularly important where processors are looking to gain technological advantages over rivals by adding value to products. Whilst tooling costs can be very high, cost savings can be made by eliminating assembly steps. This review looks at the many techniques being used, from the terminology to case studies. \u003cbr\u003e\u003cbr\u003eThere are many issues involved in moulding different types of materials together. Advantages are gained in the product by combining different properties. Recyclate can be used as a core material with virgin resin skin. However, there are potential problems. Compatibility is important for interfacial adhesion. Different materials have varying rheological properties and optimal moulding conditions, which can limit material choice. This is a big area for research as there have been few studies on co-molding incompatible polymers. \u003cbr\u003e\u003cbr\u003eThe three primary types of multi-material injection moulding examined are multi-component, multi-shot and over-moulding. \u003cbr\u003e\u003cbr\u003eMulti-component moulding can be further subdivided. Co-injection moulding involves making sequential injections into the same mould with one material as the core and one as the skin. It is also known as sandwich moulding because the core is fully encapsulated. Bi-injection moulding is the simultaneous injection of different materials through different gates. Interval injection moulding, also known as marbling, is the simultaneous injection of different materials through different gates giving limited mixing. \u003cbr\u003e\u003cbr\u003eMulti-shot moulding describes any process where distinct material shots are applied to produce the final component. This includes transfer moulding, core back moulding and rotating tool moulding. \u003cbr\u003e\u003cbr\u003eOver-moulding includes both insert moulding and lost core moulding, the latter produces hollow parts. \u003cbr\u003e\u003cbr\u003eThis review describes the basic types of multi-material injection moulding, the issues surrounding combining different types of polymers and examples of practical uses of this technology. It is clearly written and difficult concepts are explained with illustrations. \u003cbr\u003e\u003cbr\u003eThe abstracts from the Polymer Library include many more examples of the use of this technology, giving names of companies and organisations involved in this field.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e1.1 Multi-Component Moulding \u003cbr\u003e1.1.1 Co-Injection Moulding \u003cbr\u003e1.1.2 Bi-Injection Moulding \u003cbr\u003e1.1.3 Interval Injection Moulding \u003cbr\u003e1.2 Multi-Shot Moulding \u003cbr\u003e1.2.1 Transfer \u003cbr\u003e1.2.2 Core Back \u003cbr\u003e1.2.3 Rotating Tool \u003cbr\u003e1.3 Over-Moulding \u003cbr\u003e1.4 Business Trends \u003cbr\u003e2. Injection Moulding Basics \u003cbr\u003e\u003cbr\u003e2.1 Stages of Injection Moulding \u003cbr\u003e2.1.1 Plastication \u003cbr\u003e2.1.2 Mould Filling \u003cbr\u003e2.1.3 Packing and Solidification \u003cbr\u003e2.2 Differential Shrinkage and Cooling Effects \u003cbr\u003e2.3 Microstructure of Injection Mouldings \u003cbr\u003e3. Material Selection \u003cbr\u003e\u003cbr\u003e3.1 Material Bonding Properties \u003cbr\u003e3.2 General Material Properties \u003cbr\u003e4. Multi-Component Injection Moulding \u003cbr\u003e\u003cbr\u003e4.1 Co-Injection Moulding \u003cbr\u003e4.1.1 Material Selection for Co-Injection Moulding \u003cbr\u003e4.1.2 Co-Injection Moulding: Different Techniques \u003cbr\u003e4.1.3 Sequential Injection: Single Channel Technique \u003cbr\u003e4.1.4 Sequential Injection: Mono-Sandwich Technique \u003cbr\u003e4.1.5 Simultaneous Injection: Two Channel Technique \u003cbr\u003e4.1.6 Simultaneous Injection: Three Channel Technique \u003cbr\u003e4.1.7 Part Design and Tooling Requirements for Co-Injection Moulding \u003cbr\u003e4.1.8 Rheology and Mould Filling: Why and How Co-Injection Moulding Works \u003cbr\u003e4.1.9 Immiscible Materials Research in Co-Injection Moulding \u003cbr\u003e4.1.10 Co-Injection Moulding Applications - Case Studies \u003cbr\u003e4.1.11 Recycling and Legislation \u003cbr\u003e4.1.12 Discussion and Conclusions \u003cbr\u003e4.2 Bi-Injection Moulding \u003cbr\u003e4.3 Interval Injection Moulding \u003cbr\u003e5. Multi-Shot Moulding \u003cbr\u003e\u003cbr\u003e5.1 Machine Technology \u003cbr\u003e5.1.1 Injection Unit Configurations \u003cbr\u003e5.1.2 Plastication Design \u003cbr\u003e5.1.3 Machine Type \u003cbr\u003e5.2 Core Back Moulding \u003cbr\u003e5.3 Rotating Tool Moulding \u003cbr\u003e5.4 Transfer Moulding \u003cbr\u003e5.5 Multi-Shot with a Single Injection Unit \u003cbr\u003e5.6 Material Selection for Multi-Shot \u003cbr\u003e5.6.1 Material Properties \u003cbr\u003e5.6.2 Material Process Order \u003cbr\u003e5.6.3 Using Thermoset Materials \u003cbr\u003e5.6.4 Liquid Silicone Rubber (LSR) \u003cbr\u003e5.6.5 Thermoplastic Elastomers (TPEs) \u003cbr\u003e5.7 Multi-Shot Moulding Applications - Case Studies \u003cbr\u003e5.7.1 Trio Knob \u003cbr\u003e5.7.2 Stanley Screwdriver \u003cbr\u003e5.8 Limitations to Multi-Shot Moulding \u003cbr\u003e6. Over-Moulding \u003cbr\u003e\u003cbr\u003e6.1 Insert Moulding \u003cbr\u003e6.2 Lost Core Moulding \u003cbr\u003e7. The Future? \u003cbr\u003e\u003cbr\u003eAdditional References \u003cbr\u003eAbbreviations and Acronyms \u003cbr\u003eAbstracts from the Polymer Library Database \u003cbr\u003eSubject Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Goodship is a Senior Research Fellow with 14 years experience in the industry, expertise in coinjection moulding technology and a particular interest in recycling. Jo Love is an experienced materials engineer currently working on in-mould decoration. The authors are based at the Warwick Manufacturing Group in the Advanced Technology Centre at the University of Warwick."}
Handbook of Polymer Foams
$190.00
{"id":11242213380,"title":"Handbook of Polymer Foams","handle":"978-1-85957-388-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Eaves \u003cbr\u003eISBN 978-1-85957-388-6 \u003cbr\u003e\u003cbr\u003epages 274\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymer foams is extremely widespread. Indeed, it is hard to think of any industries where polymer foams do not have a part to play. They can be found for example in sports and leisure products, in military applications, in vehicles, in aircraft, and in the home. Most people will encounter polymer foams every day in one form or another, whether it be in furniture, in packaging, in their car, in refrigerator insulation, or in some other common application. \u003cbr\u003e\u003cbr\u003eAlthough naturally occurring polymer foams have been known for a long time, (e.g., sponges, cork), synthetic polymer foams have only been introduced to the market over the last fifty years or so. The development of a new polymer has usually been quickly followed by its production in an expanded or foam form owing to the unique and useful properties, which can be realised in the expanded state. \u003cbr\u003e\u003cbr\u003eThis Handbook reviews the chemistry, manufacturing methods, properties and applications of the synthetic polymer foams used in most applications. In addition, a chapter is included on the fundamental principles, which apply to all polymer foams. There is also a chapter on the blowing agents used to expand polymers, blowing agents having undergone considerable change and development in recent years in order to meet the requirements of the Montreal Protocol in relation to the reduction and elimination of chloroflurocarbons (CFC) and other ozone depleting agents. A chapter is also included on microcellular foams - a relatively new development where applications are still being explored. Most chapters have references to facilitate further exploration of the topics. The chapters are all written by experts in the field. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to those just embarking upon an exploration of the subject of foams, whether in industry or academia. But this will be equally useful to those already working in the field, who need to know about different types of foam.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Foam Fundamentals (David Eaves, Independent Consultant)\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Foam Structure\u003cbr\u003e1.3 Foam Properties\u003cbr\u003e1.3.1 Compression Properties\u003cbr\u003e1.3.2 Energy Absorption Properties\u003cbr\u003e1.3.3 Thermal Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Blowing Agents (Sachida Singh, Huntsman Polyurethanes)\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Physical Blowing Agents\u003cbr\u003e2.2.1 Selection Criteria for Physical Blowing Agents\u003cbr\u003e2.2.2 Halogenated Hydrocarbons\u003cbr\u003e2.2.3 Hydrocarbons (HC)\u003cbr\u003e2.2.4 Inert Gases\u003cbr\u003e2.2.5 Other Physical Blowing Agents\u003cbr\u003e2.2.6 Blends of Physical Blowing Agents\u003cbr\u003e2.2.7 Encapsulated Physical Blowing Agents\u003cbr\u003e2.2.8 Physical Blowing Agent by Foam Type and Application\u003cbr\u003e2.3 Chemical Blowing Agents\u003cbr\u003e2.3.1 Selection Criteria for Chemical Blowing Agent\u003cbr\u003e2.3.2 Exothermic CBA\u003cbr\u003e2.3.3 Endothermic CBA\u003cbr\u003e2.3.4 Endo\/Exo Blends\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 Expanded Polystyrene: Development, Processing, Applications and Key Issues (Andrew Barnetson, BPF)\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.1.1 Development of Expanded Polystyrene (EPS)\u003cbr\u003e3.2 Manufacture of Expanded Polystyrene Mouldings\u003cbr\u003e3.3 Applications for Expanded Polystyrene Packaging\u003cbr\u003e3.3.1 Packaging\u003cbr\u003e3.3.2 Construction\u003cbr\u003e3.3.3 Other Applications\u003cbr\u003e3.3.4 Novel Applications\u003cbr\u003e3.4 Properties of EPS\u003cbr\u003e3.4.1 Mechanical Performance\u003cbr\u003e3.4.2 Thermal Insulation\u003cbr\u003e3.4.3 Chemical Properties\u003cbr\u003e3.4.4 Recent Research on Properties of EPS: Value for Fruit and Vegetables\u003cbr\u003e3.5 Global Structure of Markets and Companies\u003cbr\u003e3.5.1 Europe\u003cbr\u003e3.5.2 Asia\u003cbr\u003e3.5.3 USA\u003cbr\u003e3.6 Key Issues Facing the EPS Industry\u003cbr\u003e3.6.1 Fire\u003cbr\u003e3.6.2 Recycling\u003cbr\u003e3.6.2 Alternatives to Mechanical Recycling\u003cbr\u003eFurther Information \u003cbr\u003e\u003cbr\u003e4 Rigid Polyurethane Foams (David Eaves, Independent Consultant)\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Materials\u003cbr\u003e4.2.1 Polyols\u003cbr\u003e4.2.2 Isocyanates\u003cbr\u003e4.2.3 Blowing Agents\u003cbr\u003e4.2.4 Other Additives\u003cbr\u003e4.3 Manufacturing Processes for Rigid Polyurethane Foam\u003cbr\u003e4.4 Recycling Processes for Rigid Polyurethane Foam\u003cbr\u003e4.5 Properties of Rigid Polyurethane Foams\u003cbr\u003e4.6 Applications\u003cbr\u003e4.6.1 Applications in Construction\u003cbr\u003e4.6.2 Applications in the Appliance Industry\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Flexible Polyurethane Foam (Tyler Housel, Inolex Chemical Company)\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Chemistry\u003cbr\u003e5.3 Starting Materials\u003cbr\u003e5.3.1 Isocyanate\u003cbr\u003e5.3.2 Polyol\u003cbr\u003e5.3.3 Water\u003cbr\u003e5.3.4 Surfactant\u003cbr\u003e5.3.5 Catalyst\u003cbr\u003e5.3.6 Colorants\u003cbr\u003e5.3.7 Antioxidants\u003cbr\u003e5.3.8 Light Stabilisers\u003cbr\u003e5.3.9 Flame Retardants\u003cbr\u003e5.3.10 Adhesion Promoters\u003cbr\u003e5.3.11 Other Additives\u003cbr\u003e5.4 The Foaming Process\u003cbr\u003e5.4.1 Raw Material Conditioning\u003cbr\u003e5.4.2 Mixing\u003cbr\u003e5.4.3 Growth\u003cbr\u003e5.4.4 Cell Opening\u003cbr\u003e5.4.5 Cure\u003cbr\u003e5.5 Manufacturing Equipment\u003cbr\u003e5.5.1 Storage and Delivery\u003cbr\u003e5.5.2 Mixing\u003cbr\u003e5.5.3 Foam Rise and Cure\u003cbr\u003e5.5.4 Innovations\u003cbr\u003e5.6 Foam Characterisation\u003cbr\u003e5.6.1 Density\u003cbr\u003e5.6.2 Hardness\u003cbr\u003e5.6.3 Resilience\u003cbr\u003e5.6.4 Porosity\u003cbr\u003e5.6.5 Strength Properties\u003cbr\u003e5.6.6 Cell Structure\u003cbr\u003e5.6.7 Environmental Stability\u003cbr\u003e5.6.8 Fatigue\u003cbr\u003e5.6.9 Compression Set\u003cbr\u003e5.6.10 Flammability\u003cbr\u003e5.7 FPF Markets\u003cbr\u003e5.7.1 Transportation\u003cbr\u003e5.7.2 Comfort\u003cbr\u003e5.7.3 Carpet Cushion\u003cbr\u003e5.7.4 Packaging\u003cbr\u003e5.7.5 Specialty Applications\u003cbr\u003e5.8 Environmental Issues\u003cbr\u003e5.9 Organisations\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Rigid PVC Foam (Noreen Thomas, University of Loughborough)\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Foam Extrusion\u003cbr\u003e6.2.1 Basic Principles\u003cbr\u003e6.2.2 Extrusion Processes\u003cbr\u003e6.2.3 Effect of Processing Conditions\u003cbr\u003e6.3 Foam Formulation Technology\u003cbr\u003e6.3.1 Blowing Agents\u003cbr\u003e6.3.2 Processing Aids\u003cbr\u003e6.3.3 Type of PVC\u003cbr\u003e6.3.4 Stabilisers\u003cbr\u003e6.3.5 Lubricants\u003cbr\u003e6.3.6 Typical Formulations\u003cbr\u003e6.4 Properties\u003cbr\u003e6.5 Novel Processes and Applications\u003cbr\u003e6.5.1 Recycling\u003cbr\u003e6.5.2 Microcellular Foam\u003cbr\u003e6.5.3 Foamed Composites\u003cbr\u003e6.6 Summary\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Flexible PVC Foams (Chris Howick, EVC)\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Flexible Foam Types and PVC Types\u003cbr\u003e7.2.1 Flexible Foams Based on Suspension PVC\u003cbr\u003e7.2.2 Flexible Foams Based on Dispersion or Paste Resins\u003cbr\u003e7.2.3 Chemically Blown Foams from PVC Plastisols: Fundamentals\u003cbr\u003e7.2.4 PVC Resins used in Plastisol Foam Formation\u003cbr\u003e7.2.5 Mineral Fillers\u003cbr\u003e7.2.6 Pigments\u003cbr\u003e7.2.7 Liquid Plasticiser\u003cbr\u003e7.2.8 Blowing Agent Type and Level\u003cbr\u003e7.3 Products Utilising Foamed Plastisols\u003cbr\u003e7.3.1 Floorings and Carpet Backings\u003cbr\u003e7.3.2 Wallcoverings\u003cbr\u003e7.3.3 Synthetic Leather\u003cbr\u003e7.3.4 General Foams\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Polyolefin Foams (David Eaves, Independent Consultant)\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Manufacturing Processes and Materials\u003cbr\u003e8.2.1 Extruded Non-Crosslinked Foam\u003cbr\u003e8.2.2 Expanded (Non-Crosslinked) Polyolefin Beads\u003cbr\u003e8.2.3 Extruded Crosslinked Foam - Processes\u003cbr\u003e8.2.4 Press Moulded Crosslinked Foam Process\u003cbr\u003e8.2.5 Injection Moulded Foam Process\u003cbr\u003e8.2.6 The Nitrogen Autoclave Process\u003cbr\u003e8.2.7 Recycling Processes\u003cbr\u003e8.2.8 Post Manufacturing Operations\u003cbr\u003e8.3 Properties of Polyolefin Foams\u003cbr\u003e8.4 Applications\u003cbr\u003e8.5 Foam Specifications\u003cbr\u003e8.5.1 Packaging\u003cbr\u003e8.5.2 Automotive\u003cbr\u003e8.5.3 Furnishings\u003cbr\u003e8.5.4 Buoyancy\u003cbr\u003e8.5.5 Aerospace\u003cbr\u003e8.5.6 Construction\u003cbr\u003e8.5.7 Toys\u003cbr\u003e8.5.8 Food contact\u003cbr\u003e8.6 Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Latex Foam (Rani Joseph, Cochin University)\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Dunlop Process\u003cbr\u003e9.2.1 Batch Process\u003cbr\u003e9.2.2 Selecting a Formulation for Latex Compounds\u003cbr\u003e9.2.3 Selection of Other Compounding Ingredients\u003cbr\u003e9.2.4 Continuous Process for Latex Foam Production\u003cbr\u003e9.3 Talalay Process\u003cbr\u003e9.4 Trouble Shooting in Latex Foam Manufacture\u003cbr\u003e9.5 Testing\u003cbr\u003e9.5.1 Compression Set\u003cbr\u003e9.5.2 Indentation Hardness\u003cbr\u003e9.5.3 Flexing Resistance\u003cbr\u003e9.5.4 Density\u003cbr\u003e9.5.5 Metallic Impurities\u003cbr\u003e9.6 Important Uses of Latex Foam\u003cbr\u003e9.6.1 Transportation\u003cbr\u003e9.6.2 Furniture\u003cbr\u003e9.6.3 Special Uses\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Microcellular Foams (Vipin Kumar, University of Washington \u0026amp; Krishna Nadella, University of Washington)\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Processing of Microcellular Foams\u003cbr\u003e10.2.1 The Solid-State Batch Process\u003cbr\u003e10.2.2 The Semi-Continuous Process\u003cbr\u003e10.2.3 Extrusion and other Processing Methods\u003cbr\u003e10.3 Properties of Microcellular Foams\u003cbr\u003e10.4 Current Research Directions\u003cbr\u003e10.4.1 Microcellular Materials for Construction\u003cbr\u003e11.4.2 Open-Cell (Porous) Microcellular Foams\u003cbr\u003e10.4.3 Sub-Micron Foams and Nanofoams\u003cbr\u003e10.5 Commercial Opportunities\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Eaves studied polymer chemistry at the University in Birmingham and completed his doctorate in 1958. He then joined Dunlop in their Central Research and Development Laboratories in Birmingham, later going out to Ireland (Cork) and Japan (Kobe) to establish and manage overseas satellite research centres. In 1984 he left Dunlop and joined BP Chemicals' polyethylene foam operation in Croydon as Technical Manager. He was part of the management buy-out team in 1992 when the company was renamed 'Zotefoams', and retired in 1998 as Technical Director. He has published many papers on aspects of polymer and polymer foam technology and is the author of the Rapra report 'Polymer Foams: Trends in Use and Technology.","published_at":"2017-06-22T21:13:18-04:00","created_at":"2017-06-22T21:13:19-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","aerospace","automotive","blends","blowing agents","book","construction","fire","foams","food","furnishing","hydrocarbons","inert gases","insulation","molding","moulding","p-structural","packaging","polymer","polymers","polystyrene","properties","recycling","structure","toys"],"price":19000,"price_min":19000,"price_max":19000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378350212,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Polymer Foams","public_title":null,"options":["Default Title"],"price":19000,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-388-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663","options":["Title"],"media":[{"alt":null,"id":355732226141,"position":1,"preview_image":{"aspect_ratio":0.701,"height":499,"width":350,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663"},"aspect_ratio":0.701,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-388-4.jpg?v=1499442663","width":350}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: David Eaves \u003cbr\u003eISBN 978-1-85957-388-6 \u003cbr\u003e\u003cbr\u003epages 274\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of polymer foams is extremely widespread. Indeed, it is hard to think of any industries where polymer foams do not have a part to play. They can be found for example in sports and leisure products, in military applications, in vehicles, in aircraft, and in the home. Most people will encounter polymer foams every day in one form or another, whether it be in furniture, in packaging, in their car, in refrigerator insulation, or in some other common application. \u003cbr\u003e\u003cbr\u003eAlthough naturally occurring polymer foams have been known for a long time, (e.g., sponges, cork), synthetic polymer foams have only been introduced to the market over the last fifty years or so. The development of a new polymer has usually been quickly followed by its production in an expanded or foam form owing to the unique and useful properties, which can be realised in the expanded state. \u003cbr\u003e\u003cbr\u003eThis Handbook reviews the chemistry, manufacturing methods, properties and applications of the synthetic polymer foams used in most applications. In addition, a chapter is included on the fundamental principles, which apply to all polymer foams. There is also a chapter on the blowing agents used to expand polymers, blowing agents having undergone considerable change and development in recent years in order to meet the requirements of the Montreal Protocol in relation to the reduction and elimination of chloroflurocarbons (CFC) and other ozone depleting agents. A chapter is also included on microcellular foams - a relatively new development where applications are still being explored. Most chapters have references to facilitate further exploration of the topics. The chapters are all written by experts in the field. \u003cbr\u003e\u003cbr\u003eThis book will be of interest to those just embarking upon an exploration of the subject of foams, whether in industry or academia. But this will be equally useful to those already working in the field, who need to know about different types of foam.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface \u003cbr\u003e1 Foam Fundamentals (David Eaves, Independent Consultant)\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 Foam Structure\u003cbr\u003e1.3 Foam Properties\u003cbr\u003e1.3.1 Compression Properties\u003cbr\u003e1.3.2 Energy Absorption Properties\u003cbr\u003e1.3.3 Thermal Properties\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e2 Blowing Agents (Sachida Singh, Huntsman Polyurethanes)\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Physical Blowing Agents\u003cbr\u003e2.2.1 Selection Criteria for Physical Blowing Agents\u003cbr\u003e2.2.2 Halogenated Hydrocarbons\u003cbr\u003e2.2.3 Hydrocarbons (HC)\u003cbr\u003e2.2.4 Inert Gases\u003cbr\u003e2.2.5 Other Physical Blowing Agents\u003cbr\u003e2.2.6 Blends of Physical Blowing Agents\u003cbr\u003e2.2.7 Encapsulated Physical Blowing Agents\u003cbr\u003e2.2.8 Physical Blowing Agent by Foam Type and Application\u003cbr\u003e2.3 Chemical Blowing Agents\u003cbr\u003e2.3.1 Selection Criteria for Chemical Blowing Agent\u003cbr\u003e2.3.2 Exothermic CBA\u003cbr\u003e2.3.3 Endothermic CBA\u003cbr\u003e2.3.4 Endo\/Exo Blends\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e3 Expanded Polystyrene: Development, Processing, Applications and Key Issues (Andrew Barnetson, BPF)\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.1.1 Development of Expanded Polystyrene (EPS)\u003cbr\u003e3.2 Manufacture of Expanded Polystyrene Mouldings\u003cbr\u003e3.3 Applications for Expanded Polystyrene Packaging\u003cbr\u003e3.3.1 Packaging\u003cbr\u003e3.3.2 Construction\u003cbr\u003e3.3.3 Other Applications\u003cbr\u003e3.3.4 Novel Applications\u003cbr\u003e3.4 Properties of EPS\u003cbr\u003e3.4.1 Mechanical Performance\u003cbr\u003e3.4.2 Thermal Insulation\u003cbr\u003e3.4.3 Chemical Properties\u003cbr\u003e3.4.4 Recent Research on Properties of EPS: Value for Fruit and Vegetables\u003cbr\u003e3.5 Global Structure of Markets and Companies\u003cbr\u003e3.5.1 Europe\u003cbr\u003e3.5.2 Asia\u003cbr\u003e3.5.3 USA\u003cbr\u003e3.6 Key Issues Facing the EPS Industry\u003cbr\u003e3.6.1 Fire\u003cbr\u003e3.6.2 Recycling\u003cbr\u003e3.6.2 Alternatives to Mechanical Recycling\u003cbr\u003eFurther Information \u003cbr\u003e\u003cbr\u003e4 Rigid Polyurethane Foams (David Eaves, Independent Consultant)\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Materials\u003cbr\u003e4.2.1 Polyols\u003cbr\u003e4.2.2 Isocyanates\u003cbr\u003e4.2.3 Blowing Agents\u003cbr\u003e4.2.4 Other Additives\u003cbr\u003e4.3 Manufacturing Processes for Rigid Polyurethane Foam\u003cbr\u003e4.4 Recycling Processes for Rigid Polyurethane Foam\u003cbr\u003e4.5 Properties of Rigid Polyurethane Foams\u003cbr\u003e4.6 Applications\u003cbr\u003e4.6.1 Applications in Construction\u003cbr\u003e4.6.2 Applications in the Appliance Industry\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e5 Flexible Polyurethane Foam (Tyler Housel, Inolex Chemical Company)\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Chemistry\u003cbr\u003e5.3 Starting Materials\u003cbr\u003e5.3.1 Isocyanate\u003cbr\u003e5.3.2 Polyol\u003cbr\u003e5.3.3 Water\u003cbr\u003e5.3.4 Surfactant\u003cbr\u003e5.3.5 Catalyst\u003cbr\u003e5.3.6 Colorants\u003cbr\u003e5.3.7 Antioxidants\u003cbr\u003e5.3.8 Light Stabilisers\u003cbr\u003e5.3.9 Flame Retardants\u003cbr\u003e5.3.10 Adhesion Promoters\u003cbr\u003e5.3.11 Other Additives\u003cbr\u003e5.4 The Foaming Process\u003cbr\u003e5.4.1 Raw Material Conditioning\u003cbr\u003e5.4.2 Mixing\u003cbr\u003e5.4.3 Growth\u003cbr\u003e5.4.4 Cell Opening\u003cbr\u003e5.4.5 Cure\u003cbr\u003e5.5 Manufacturing Equipment\u003cbr\u003e5.5.1 Storage and Delivery\u003cbr\u003e5.5.2 Mixing\u003cbr\u003e5.5.3 Foam Rise and Cure\u003cbr\u003e5.5.4 Innovations\u003cbr\u003e5.6 Foam Characterisation\u003cbr\u003e5.6.1 Density\u003cbr\u003e5.6.2 Hardness\u003cbr\u003e5.6.3 Resilience\u003cbr\u003e5.6.4 Porosity\u003cbr\u003e5.6.5 Strength Properties\u003cbr\u003e5.6.6 Cell Structure\u003cbr\u003e5.6.7 Environmental Stability\u003cbr\u003e5.6.8 Fatigue\u003cbr\u003e5.6.9 Compression Set\u003cbr\u003e5.6.10 Flammability\u003cbr\u003e5.7 FPF Markets\u003cbr\u003e5.7.1 Transportation\u003cbr\u003e5.7.2 Comfort\u003cbr\u003e5.7.3 Carpet Cushion\u003cbr\u003e5.7.4 Packaging\u003cbr\u003e5.7.5 Specialty Applications\u003cbr\u003e5.8 Environmental Issues\u003cbr\u003e5.9 Organisations\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e6 Rigid PVC Foam (Noreen Thomas, University of Loughborough)\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Foam Extrusion\u003cbr\u003e6.2.1 Basic Principles\u003cbr\u003e6.2.2 Extrusion Processes\u003cbr\u003e6.2.3 Effect of Processing Conditions\u003cbr\u003e6.3 Foam Formulation Technology\u003cbr\u003e6.3.1 Blowing Agents\u003cbr\u003e6.3.2 Processing Aids\u003cbr\u003e6.3.3 Type of PVC\u003cbr\u003e6.3.4 Stabilisers\u003cbr\u003e6.3.5 Lubricants\u003cbr\u003e6.3.6 Typical Formulations\u003cbr\u003e6.4 Properties\u003cbr\u003e6.5 Novel Processes and Applications\u003cbr\u003e6.5.1 Recycling\u003cbr\u003e6.5.2 Microcellular Foam\u003cbr\u003e6.5.3 Foamed Composites\u003cbr\u003e6.6 Summary\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e7 Flexible PVC Foams (Chris Howick, EVC)\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Flexible Foam Types and PVC Types\u003cbr\u003e7.2.1 Flexible Foams Based on Suspension PVC\u003cbr\u003e7.2.2 Flexible Foams Based on Dispersion or Paste Resins\u003cbr\u003e7.2.3 Chemically Blown Foams from PVC Plastisols: Fundamentals\u003cbr\u003e7.2.4 PVC Resins used in Plastisol Foam Formation\u003cbr\u003e7.2.5 Mineral Fillers\u003cbr\u003e7.2.6 Pigments\u003cbr\u003e7.2.7 Liquid Plasticiser\u003cbr\u003e7.2.8 Blowing Agent Type and Level\u003cbr\u003e7.3 Products Utilising Foamed Plastisols\u003cbr\u003e7.3.1 Floorings and Carpet Backings\u003cbr\u003e7.3.2 Wallcoverings\u003cbr\u003e7.3.3 Synthetic Leather\u003cbr\u003e7.3.4 General Foams\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e8 Polyolefin Foams (David Eaves, Independent Consultant)\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 Manufacturing Processes and Materials\u003cbr\u003e8.2.1 Extruded Non-Crosslinked Foam\u003cbr\u003e8.2.2 Expanded (Non-Crosslinked) Polyolefin Beads\u003cbr\u003e8.2.3 Extruded Crosslinked Foam - Processes\u003cbr\u003e8.2.4 Press Moulded Crosslinked Foam Process\u003cbr\u003e8.2.5 Injection Moulded Foam Process\u003cbr\u003e8.2.6 The Nitrogen Autoclave Process\u003cbr\u003e8.2.7 Recycling Processes\u003cbr\u003e8.2.8 Post Manufacturing Operations\u003cbr\u003e8.3 Properties of Polyolefin Foams\u003cbr\u003e8.4 Applications\u003cbr\u003e8.5 Foam Specifications\u003cbr\u003e8.5.1 Packaging\u003cbr\u003e8.5.2 Automotive\u003cbr\u003e8.5.3 Furnishings\u003cbr\u003e8.5.4 Buoyancy\u003cbr\u003e8.5.5 Aerospace\u003cbr\u003e8.5.6 Construction\u003cbr\u003e8.5.7 Toys\u003cbr\u003e8.5.8 Food contact\u003cbr\u003e8.6 Markets\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e9 Latex Foam (Rani Joseph, Cochin University)\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Dunlop Process\u003cbr\u003e9.2.1 Batch Process\u003cbr\u003e9.2.2 Selecting a Formulation for Latex Compounds\u003cbr\u003e9.2.3 Selection of Other Compounding Ingredients\u003cbr\u003e9.2.4 Continuous Process for Latex Foam Production\u003cbr\u003e9.3 Talalay Process\u003cbr\u003e9.4 Trouble Shooting in Latex Foam Manufacture\u003cbr\u003e9.5 Testing\u003cbr\u003e9.5.1 Compression Set\u003cbr\u003e9.5.2 Indentation Hardness\u003cbr\u003e9.5.3 Flexing Resistance\u003cbr\u003e9.5.4 Density\u003cbr\u003e9.5.5 Metallic Impurities\u003cbr\u003e9.6 Important Uses of Latex Foam\u003cbr\u003e9.6.1 Transportation\u003cbr\u003e9.6.2 Furniture\u003cbr\u003e9.6.3 Special Uses\u003cbr\u003eReferences \u003cbr\u003e\u003cbr\u003e10 Microcellular Foams (Vipin Kumar, University of Washington \u0026amp; Krishna Nadella, University of Washington)\u003cbr\u003e10.1 Introduction\u003cbr\u003e10.2 Processing of Microcellular Foams\u003cbr\u003e10.2.1 The Solid-State Batch Process\u003cbr\u003e10.2.2 The Semi-Continuous Process\u003cbr\u003e10.2.3 Extrusion and other Processing Methods\u003cbr\u003e10.3 Properties of Microcellular Foams\u003cbr\u003e10.4 Current Research Directions\u003cbr\u003e10.4.1 Microcellular Materials for Construction\u003cbr\u003e11.4.2 Open-Cell (Porous) Microcellular Foams\u003cbr\u003e10.4.3 Sub-Micron Foams and Nanofoams\u003cbr\u003e10.5 Commercial Opportunities\u003cbr\u003eReferences\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDavid Eaves studied polymer chemistry at the University in Birmingham and completed his doctorate in 1958. He then joined Dunlop in their Central Research and Development Laboratories in Birmingham, later going out to Ireland (Cork) and Japan (Kobe) to establish and manage overseas satellite research centres. In 1984 he left Dunlop and joined BP Chemicals' polyethylene foam operation in Croydon as Technical Manager. He was part of the management buy-out team in 1992 when the company was renamed 'Zotefoams', and retired in 1998 as Technical Director. He has published many papers on aspects of polymer and polymer foam technology and is the author of the Rapra report 'Polymer Foams: Trends in Use and Technology."}
Handbook of Solvents -...
$295.00
{"id":2059099308125,"title":"Handbook of Solvents - 3rd Edition, Volume 2, Use, Health, and Environment","handle":"handbook-of-solvents-3rd-edition-volume-2-use-health-and-environment","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-41-3 \u003cbr\u003e\u003cbr\u003ePublication date: March 2019\u003cbr\u003eNumber of pages: 930+xii\u003cbr\u003eFigures: 240\u003cbr\u003eTables: 260\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 1 Properties; Databook of Green Solvents; and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003e\u003cbr\u003eThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on the available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. \u003cbr\u003e\u003cbr\u003eChapter 14 contains information on the methods of analysis of solvents and materials containing solvents. The chapter is divided into two sections containing standard and special methods of solvent analysis. This chapter is followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in chapter 16. The chapter also contains discussion of solvents impact on tropospheric air pollution.\u003cbr\u003e\u003cbr\u003eThe next two chapters are devoted to toxicology of solvents and regulations aiming to keep solvents toxicity under control. The analysis of concentration of solvents in more than 15 industries, specific issues related to paint industry, and characteristics of environment in automotive collision repair shops are followed by the thorough discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapters were written by professors and scientists from major centers who study the effects of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show some examples of solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, deep eutectic solvents, and agriculture-based products, such as ethyl lactate. Discussion of solvent recycling, removal, and degradation includes absorptive solvent recovery, comparison of results of recovery and incineration, and application of solar photocatalytic oxidation. \u003cbr\u003e\u003cbr\u003eThe book is concluded with evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils.\u003cbr\u003e\u003cbr\u003eThis comprehensive two volume book has no equal in depth and breadth to any other publication available today Also, Solvent database on CD-ROM is available which contains data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.9 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.10 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.11 Inorganic chemical industry\u003cbr\u003e13.12 Iron and steel industry\u003cbr\u003e13.13 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.14 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.15 Metal casting\u003cbr\u003e13.16 Motor vehicle assembly\u003cbr\u003e13.17 Organic chemical industry\u003cbr\u003e13.18 Paints and coatings\u003cbr\u003e13.18.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.18.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.19 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.20 Pharmaceutical industry\u003cbr\u003e13.20.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.20.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.21 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.22 Printing industry\u003cbr\u003e13.23 Pulp and paper\u003cbr\u003e13.24 Rubber and Plastics\u003cbr\u003e13.25 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.26 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.27 Textile industry\u003cbr\u003e13.28 Transportation equipment cleaning\u003cbr\u003e13.29 Water transportation\u003cbr\u003e13.30 Wood furniture\u003cbr\u003e13.31 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Bart Desmedt\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental chemistry of organic solvents\u003cbr\u003eWilliam R. Roy, USA\u003cbr\u003e16.2 The environmental chemistry of ionic liquids\u003cbr\u003eWilliam R. Roy, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Solvent levels in the vehicle collision repair industry\u003cbr\u003eSamuel Keer, Centre for Public Health Research, Wellington, New Zealand\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Solvent exposure in pregnancy\u003cbr\u003eSC Mitchell, Computational and Systems Medicine, Imperial College, London, UK and RH Waring\u003cbr\u003eSchool of Biosciences, University of Birmingham, UK \u003cbr\u003e19.3 Nephrotoxicity of industrial solvents\u003cbr\u003eNachman Brautbar and Michael P. Wu, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic malignancies among workers exposed to benzene including leukemia, lymphoma, and multiple myeloma\u003cbr\u003eNachman Brautbar, Michael P. Wu, Alexandra E. Rieders, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.5 Genotoxicity of benzene\u003cbr\u003eNachman Brautbar, Michael P. Wu, Alexandra E. Rieders, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.6 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.7 Hepatotoxicity of industrial solvents\u003cbr\u003eNachman Brautbar and Michael P. Wu, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.8 Toxicity of environmental solvent exposure for brain, lung and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney and Johan Jacquemin, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez, Universidad de Oviedo, Spain\u003cbr\u003e20.4 Novel applications of the bio-based solvent ethyl lactate in chemical technology\u003cbr\u003eDavid Villanueva-Bermejo, Department of Agricultural, Food and Nutritional Science, \u003cbr\u003eUniversity of Alberta, Edmonton, Alberta, Canada and Tiziana Fornari, Instituto de Investigación en Ciencias de la Alimentación, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Recovery versus incineration\u003cbr\u003eDanilo Alexander Figueroa Paredes and José Espinosa. INGAR, Avellaneda, Argentina and Antonio Amelio, Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Torino, Italy \u003cbr\u003e21.3 Solvent recovery, recycling, and incineration\u003cbr\u003eGeorge Wypych\u003cbr\u003eChemTec Laboratories, Toronto, Canada\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson,C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e","published_at":"2019-03-18T15:00:01-04:00","created_at":"2019-03-18T14:55:10-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["book","degradation","detection","environment","health","lymphohematopoietic study","pharmaceutical","recycling","regulations","solvents","tesing","toxic effects"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":20181988212829,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents - 3rd Edition, Volume 2, Use, Health, and Environment","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-65-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-41-3.jpg?v=1552935531"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-41-3.jpg?v=1552935531","options":["Title"],"media":[{"alt":null,"id":1423181709405,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-41-3.jpg?v=1552935531"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-41-3.jpg?v=1552935531","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-41-3 \u003cbr\u003e\u003cbr\u003ePublication date: March 2019\u003cbr\u003eNumber of pages: 930+xii\u003cbr\u003eFigures: 240\u003cbr\u003eTables: 260\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 1 Properties; Databook of Green Solvents; and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003e\u003cbr\u003eThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on the available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. \u003cbr\u003e\u003cbr\u003eChapter 14 contains information on the methods of analysis of solvents and materials containing solvents. The chapter is divided into two sections containing standard and special methods of solvent analysis. This chapter is followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in chapter 16. The chapter also contains discussion of solvents impact on tropospheric air pollution.\u003cbr\u003e\u003cbr\u003eThe next two chapters are devoted to toxicology of solvents and regulations aiming to keep solvents toxicity under control. The analysis of concentration of solvents in more than 15 industries, specific issues related to paint industry, and characteristics of environment in automotive collision repair shops are followed by the thorough discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapters were written by professors and scientists from major centers who study the effects of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show some examples of solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, deep eutectic solvents, and agriculture-based products, such as ethyl lactate. Discussion of solvent recycling, removal, and degradation includes absorptive solvent recovery, comparison of results of recovery and incineration, and application of solar photocatalytic oxidation. \u003cbr\u003e\u003cbr\u003eThe book is concluded with evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils.\u003cbr\u003e\u003cbr\u003eThis comprehensive two volume book has no equal in depth and breadth to any other publication available today Also, Solvent database on CD-ROM is available which contains data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.9 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.10 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.11 Inorganic chemical industry\u003cbr\u003e13.12 Iron and steel industry\u003cbr\u003e13.13 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.14 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.15 Metal casting\u003cbr\u003e13.16 Motor vehicle assembly\u003cbr\u003e13.17 Organic chemical industry\u003cbr\u003e13.18 Paints and coatings\u003cbr\u003e13.18.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.18.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.19 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.20 Pharmaceutical industry\u003cbr\u003e13.20.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.20.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.21 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.22 Printing industry\u003cbr\u003e13.23 Pulp and paper\u003cbr\u003e13.24 Rubber and Plastics\u003cbr\u003e13.25 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.26 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.27 Textile industry\u003cbr\u003e13.28 Transportation equipment cleaning\u003cbr\u003e13.29 Water transportation\u003cbr\u003e13.30 Wood furniture\u003cbr\u003e13.31 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Bart Desmedt\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental chemistry of organic solvents\u003cbr\u003eWilliam R. Roy, USA\u003cbr\u003e16.2 The environmental chemistry of ionic liquids\u003cbr\u003eWilliam R. Roy, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Solvent levels in the vehicle collision repair industry\u003cbr\u003eSamuel Keer, Centre for Public Health Research, Wellington, New Zealand\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Solvent exposure in pregnancy\u003cbr\u003eSC Mitchell, Computational and Systems Medicine, Imperial College, London, UK and RH Waring\u003cbr\u003eSchool of Biosciences, University of Birmingham, UK \u003cbr\u003e19.3 Nephrotoxicity of industrial solvents\u003cbr\u003eNachman Brautbar and Michael P. Wu, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic malignancies among workers exposed to benzene including leukemia, lymphoma, and multiple myeloma\u003cbr\u003eNachman Brautbar, Michael P. Wu, Alexandra E. Rieders, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.5 Genotoxicity of benzene\u003cbr\u003eNachman Brautbar, Michael P. Wu, Alexandra E. Rieders, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.6 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.7 Hepatotoxicity of industrial solvents\u003cbr\u003eNachman Brautbar and Michael P. Wu, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA and Nachman Brautbar, M.D., Inc., Los Angeles, CA, USA\u003cbr\u003e19.8 Toxicity of environmental solvent exposure for brain, lung and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney and Johan Jacquemin, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez, Universidad de Oviedo, Spain\u003cbr\u003e20.4 Novel applications of the bio-based solvent ethyl lactate in chemical technology\u003cbr\u003eDavid Villanueva-Bermejo, Department of Agricultural, Food and Nutritional Science, \u003cbr\u003eUniversity of Alberta, Edmonton, Alberta, Canada and Tiziana Fornari, Instituto de Investigación en Ciencias de la Alimentación, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Recovery versus incineration\u003cbr\u003eDanilo Alexander Figueroa Paredes and José Espinosa. INGAR, Avellaneda, Argentina and Antonio Amelio, Department of Environment, Land and Infrastructure Engineering), Politecnico di Torino, Torino, Italy \u003cbr\u003e21.3 Solvent recovery, recycling, and incineration\u003cbr\u003eGeorge Wypych\u003cbr\u003eChemTec Laboratories, Toronto, Canada\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson,C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003eIndex\u003cbr\u003e\u003cbr\u003e"}
Handbook of Solvents -...
$295.00
{"id":2059094556765,"title":"Handbook of Solvents - 3rd Edition, Volume 1, Properties","handle":"handbook-of-solvents-3rd-edition-volume-1-properties","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-38-3 \u003cbr\u003e\u003cbr\u003ePublished: March 2019\u003cbr\u003ePages 900+x\u003cbr\u003eFigures: 315\u003cbr\u003eTables: 130\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 2 Use, Health \u0026amp; Environment, Databook of Green Solvents, and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003eEach chapter in this volume is focused on a specific aspect of solvent properties which determine its selection, such as effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. The detailed breakdown of the book contents is given in Table of contents.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databooks containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Solvation dynamics: theory and experiments\u003cbr\u003eYogita Silori and Arijit K. De, Indian Institute of Science Education and Research, Knowledge City, India\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e8.2 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Tatyana Rebrova and Alexander Rebrov, Institute for Scintillation Materials, Kharkov, Ukraine\u003cbr\u003e9.3 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski, Boguslaw Pilarski, Augustin Asuero, Anna Michalowska-Kaczmarczyk, Technical University of Cracow, Cracow, Poland and University of Seville Seville, Spain\u003cbr\u003e10 ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS\u003cbr\u003e10.1 Solvent effects on electronic and vibrational spectra\u003cbr\u003eGeorge Wypych\u003cbr\u003e10.2 Dielectric solvent effects on the intensity of light absorption and the radiative rate constant\u003cbr\u003eTai-ichi Shibuya\u003cbr\u003e10.3 Solvatochromic behavior\u003cbr\u003eMalgorzata Wielgus and Wojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e11 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e11.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12 EFFECT OF SOLVENTS ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e12.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfganG Linert, Markus Holzweber, and Roland Schmid, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e12.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia","published_at":"2019-03-18T15:00:01-04:00","created_at":"2019-03-18T14:49:26-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2019","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","book","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","p-additives","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":20181960851549,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents - 3rd Edition, Volume 1, Properties","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":-1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-64-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-38-3.jpg?v=1552935229"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-38-3.jpg?v=1552935229","options":["Title"],"media":[{"alt":null,"id":1423177613405,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-38-3.jpg?v=1552935229"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-38-3.jpg?v=1552935229","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-927885-38-3 \u003cbr\u003e\u003cbr\u003ePublished: March 2019\u003cbr\u003ePages 900+x\u003cbr\u003eFigures: 315\u003cbr\u003eTables: 130\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe third edition contains the most recent findings and trends in the solvent application. This volume together with Vol. 2 Use, Health \u0026amp; Environment, Databook of Green Solvents, and Databook of Solvents contains the most comprehensive, and up to date information ever published on solvents. \u003cbr\u003eEach chapter in this volume is focused on a specific aspect of solvent properties which determine its selection, such as effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. The detailed breakdown of the book contents is given in Table of contents.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databooks containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Solvation dynamics: theory and experiments\u003cbr\u003eYogita Silori and Arijit K. De, Indian Institute of Science Education and Research, Knowledge City, India\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e8.2 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Tatyana Rebrova and Alexander Rebrov, Institute for Scintillation Materials, Kharkov, Ukraine\u003cbr\u003e9.3 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski, Boguslaw Pilarski, Augustin Asuero, Anna Michalowska-Kaczmarczyk, Technical University of Cracow, Cracow, Poland and University of Seville Seville, Spain\u003cbr\u003e10 ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS\u003cbr\u003e10.1 Solvent effects on electronic and vibrational spectra\u003cbr\u003eGeorge Wypych\u003cbr\u003e10.2 Dielectric solvent effects on the intensity of light absorption and the radiative rate constant\u003cbr\u003eTai-ichi Shibuya\u003cbr\u003e10.3 Solvatochromic behavior\u003cbr\u003eMalgorzata Wielgus and Wojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e11 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e11.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12 EFFECT OF SOLVENTS ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e12.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfganG Linert, Markus Holzweber, and Roland Schmid, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e12.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia"}
Thermal Degradation of...
$145.00
{"id":11242208196,"title":"Thermal Degradation of Polymeric Materials","handle":"978-1-85957-498-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Pielichowski and J. Njuguna \u003cbr\u003eISBN 978-1-85957-498-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003cbr\u003e\u003c\/span\u003e306 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal degradation of polymeric materials is an important issue from both the academic and the industrial viewpoints. Understanding the thermal degradation of polymers is of paramount importance for developing a rational technology of polymer processing and higher-temperature applications. Controlling degradation requires an understanding of many different phenomena, including chemical mechanisms, the influence of polymer morphology, the complexities of oxidation chemistry, and the effects of stabilisers, fillers and other additives. \u003cbr\u003e\u003cbr\u003eThis work summarises recent developments in the study of the thermal degradation of polymers. The authors present an overview of thermal degradation mechanisms and kinetics as well as describing the use of thermogravimetry and differential scanning calorimetry, in combination with mass spectroscopy and infrared spectrometry, to investigate thermal decomposition. These methods have proved useful for defining suitable processing conditions for polymers as well as useful service guidelines for their application. \u003cbr\u003e\u003cbr\u003eThe authors go on to discuss the thermal degradation of various polymers, copolymers, high-performance plastics, blends, and composites, including polyolefins, styrene polymers, polyvinyl chloride, polyamides, polyurethanes, polyesters, polyacrylates and others. \u003cbr\u003e\u003cbr\u003eThis book offers a wealth of information for polymer researchers and processors requiring an understanding of the implications of thermal degradation on material and product performance.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Thermal Degradation Techniques\u003cbr\u003e1.1.1 Thermogravimetry (TG)\u003cbr\u003e1.1.2 Pyrolysis (Py)\u003cbr\u003e1.1.3 Thermal Volatilisation Analysis (TVA)\u003cbr\u003e1.1.4 Differential Scanning Calorimetry (DSC)\u003cbr\u003e1.1.5 Matrix-Assisted Laser Desorption\/Ionisation Mass Spectrometry (MALDI)\u003cbr\u003e1.1.6 Others\u003cbr\u003e1.2 Ageing and Lifetime Predictions\u003cbr\u003e1.3 Thermal Degradation Pathways \u003cbr\u003e2 Mechanisms of Thermal Degradation of Polymers\u003cbr\u003e2.1 Side-Group Elimination\u003cbr\u003e2.2 Random Scission\u003cbr\u003e2.3 Depolymerisation \u003cbr\u003e3 Thermooxidative Degradation \u003cbr\u003e4 Kinetics of Thermal Degradation\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Kinetic Analysis \u003cbr\u003e5 Polymers, Copolymers, and Blends\u003cbr\u003e5.1 Polyolefins\u003cbr\u003e5.1.1 Polyethylene (PE)\u003cbr\u003e5.1.2 Polypropylene (PP)\u003cbr\u003e5.1.3 Polyisobutylene (PIB)\u003cbr\u003e5.1.4 Cyclic Olefin Copolymers\u003cbr\u003e5.1.5 Diene Polymers\u003cbr\u003e5.2 Styrene Polymers\u003cbr\u003e5.2.1 Polystyrene (PS) and its Chemical Modifications\u003cbr\u003e5.2.2 Styrene Copolymers\u003cbr\u003e5.2.3 Acrylonitrile-Butadiene-Styrene Terpolymer (ABS)\u003cbr\u003e5.2.4 Polystyrene Blends\u003cbr\u003e5.3 Poly(Vinyl Chloride) (PVC)\u003cbr\u003e5.3.1 Poly(Vinyl Chloride) Homopolymer\u003cbr\u003e5.3.2 Poly(Vinyl Chloride) Blends\u003cbr\u003e5.4 Polyamides (PA)\u003cbr\u003e5.4.1 Poly(Ester Amide)s\u003cbr\u003e5.4.2 Liquid-Crystalline Polyamides\u003cbr\u003e5.4.3 Polyamide Blends\u003cbr\u003e5.5 Polyurethanes (PUs)\u003cbr\u003e5.5.1 Thermoplastic Polyurethanes\u003cbr\u003e5.5.2 Polyurethane Foams\u003cbr\u003e5.6 Polyesters\u003cbr\u003e5.6.1 Poly(Ethylene Terephthalate) (PET)\u003cbr\u003e5.6.2 Biodegradable Polyesters\u003cbr\u003e5.7 Acryl Polymers\u003cbr\u003e5.7.1 Poly(Methyl Methacrylate) (PMMA)\u003cbr\u003e5.7.2 Acryl (Co)Polymers\u003cbr\u003e5.7.3 Acrylonitrile-Containing (Co)Polymers\u003cbr\u003e5.8 Others\u003cbr\u003e5.8.1 Poly(Vinyl Acetate) (PVAc)\u003cbr\u003e5.8.2 Poly(Vinyl Alcohol) (PVOH)\u003cbr\u003e5.8.3 Vinylidene Chloride (VDC) Copolymers\u003cbr\u003e5.8.4 Sulfone-Containing Polymers\u003cbr\u003e5.8.5 Sulfide-Containing (Co)Polymers\u003cbr\u003e5.8.6 Poly(Bisphenol-A Carbonate) (PC)\u003cbr\u003e5.8.7 Poly(Butylene Terephthalate) (PBT)\u003cbr\u003e5.8.8 Poly(Ethylene Glycol Allenyl Methyl Ether) (PEGA)\u003cbr\u003e5.8.9 Poly(Ether Ketone)s (PEKs)\u003cbr\u003e5.8.10 Poly(Epichlorohydrin-co-Ethylene Oxide) \u003cbr\u003e6 Natural Polymers\u003cbr\u003e6.1 Starch\u003cbr\u003e6.2 Chitin and Chitosan\u003cbr\u003e6.3 Cellulose\u003cbr\u003e6.4 Lignins\u003cbr\u003e6.5 Poly(Hydroxyalkanoate)s (PHAs)\u003cbr\u003e6.6 Proteins\u003cbr\u003e6.7 Natural Rubber\u003cbr\u003e6.8 Poly(Hydroxy Acid)s\u003cbr\u003e6.8.1 Poly(L-Lactic Acid) (PLLA)\u003cbr\u003e6.8.2 Poly(L-Lactic Acid) Blends\u003cbr\u003e6.9 Poly(p-Dioxanone) (PPDO) \u003cbr\u003e7 Reinforced Polymer Nanocomposites\u003cbr\u003e7.1 Glass-Fibre-Reinforced Composites\u003cbr\u003e7.2 Carbon-Fibre-Reinforced Composites\u003cbr\u003e7.3 Unsaturated Polyester Resins Reinforced with Fibres\u003cbr\u003e7.4 Reinforced Polyurethane Composites\u003cbr\u003e7.5 Polyamides with Natural Fibres\u003cbr\u003e7.6 Other Composites \u003cbr\u003e8 Inorganic Polymers\u003cbr\u003e8.1 Polysiloxanes\u003cbr\u003e8.2 Polyphosphazenes\u003cbr\u003e8.3 Polysilazanes and Polysilanes\u003cbr\u003e8.4 Organic-Inorganic Hybrid Polymers \u003cbr\u003e9 High Temperature-Resistant Polymers\u003cbr\u003e9.1 Aromatic Polyamides\u003cbr\u003e9.2 Aromatic Polycarbonates\u003cbr\u003e9.3 Aromatic Polyethers\u003cbr\u003e9.4 Phenylene-Containing Polymers\u003cbr\u003e9.5 Poly(Ether Ether Ketone) (PEEK)\u003cbr\u003e9.6 Polybenzimidazoles (PBIs)\u003cbr\u003e9.7 Polybismaleimides (BMIs)\u003cbr\u003e9.8 Polybenzoxazines\u003cbr\u003e9.9 Other High-Temperature Polymers\u003cbr\u003e9.9.1 Phenolic Resins\u003cbr\u003e9.9.2 Epoxies\u003cbr\u003e9.9.3 Poly(Ether Imide) (PEI) \u003cbr\u003e10 Recycling of Polymers by Thermal Degradation\u003cbr\u003e10.1 Polyolefins\u003cbr\u003e10.2 Polystyrene\u003cbr\u003e10.2.1 Polystyrene in the Melt\u003cbr\u003e10.2.2 Polystyrene in Solution\u003cbr\u003e10.3 Poly(Vinyl Chloride)\u003cbr\u003e10.4 Polyamides\u003cbr\u003e10.5 Natural Polymers\u003cbr\u003e10.5.1 Poly(L-Lactic Acid)\u003cbr\u003e10.5.2 Lignocellulose\u003cbr\u003e10.6 Other Homopolymers\u003cbr\u003e10.7 Mixtures of Polymer Wastes\u003cbr\u003e10.8 Thermal Degradation of Polymeric Materials – Ecological Issues\u003cbr\u003e10.8.1 Disposal Options and Sources of Information\u003cbr\u003e10.8.2 Sustainable Development \u003cbr\u003e11 Thermal Degradation During Processing of Polymers\u003cbr\u003e11.1 Polyethylene\u003cbr\u003e11.2 Polypropylene and its Blends\u003cbr\u003e11.3 Poly(Vinyl Alcohol)\u003cbr\u003e11.4 Other Polymers \u003cbr\u003e12 Modelling of Thermal Degradation Processes \u003cbr\u003e13 Concluding Remarks \u003cbr\u003e14 References \u003cbr\u003e15 References Available from the Polymer Library\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eKrzysztof Pielichowski\u003c\/strong\u003e is currently an associate professor of polymer science at the Cracow University of Technology. He has written over 80 articles and was awarded the Foundation for Polish Science fellowship in 1996 and the Fulbright fellowship in 2003. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eJames Njuguna\u003c\/strong\u003e is a Ph.D. student at the City University of London. He was a Marie Curie Fellow at the Cracow University of Technology in 2003\/2004, performing research in the area of polymeric nanocomposites.\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:02-04:00","created_at":"2017-06-22T21:13:02-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2005","book","composites","Differential Scanning Calorimetry","fibres","high-performance plastics","mechanisms of degradation","methods of testing","nanocomposites","p-properties","polymer","PVC degradation","recycling","thermal degradation","thermal degradation of composites","thermal degradation of natural rubber","thermal degradation of polymers"],"price":14500,"price_min":14500,"price_max":14500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378327748,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermal Degradation of Polymeric Materials","public_title":null,"options":["Default Title"],"price":14500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-498-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622","options":["Title"],"media":[{"alt":null,"id":358804947037,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-498-0_9eaf5567-fe97-4693-824d-b7ab6ead2bf1.jpg?v=1499956622","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Pielichowski and J. Njuguna \u003cbr\u003eISBN 978-1-85957-498-0 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2005 \u003cbr\u003e\u003c\/span\u003e306 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThermal degradation of polymeric materials is an important issue from both the academic and the industrial viewpoints. Understanding the thermal degradation of polymers is of paramount importance for developing a rational technology of polymer processing and higher-temperature applications. Controlling degradation requires an understanding of many different phenomena, including chemical mechanisms, the influence of polymer morphology, the complexities of oxidation chemistry, and the effects of stabilisers, fillers and other additives. \u003cbr\u003e\u003cbr\u003eThis work summarises recent developments in the study of the thermal degradation of polymers. The authors present an overview of thermal degradation mechanisms and kinetics as well as describing the use of thermogravimetry and differential scanning calorimetry, in combination with mass spectroscopy and infrared spectrometry, to investigate thermal decomposition. These methods have proved useful for defining suitable processing conditions for polymers as well as useful service guidelines for their application. \u003cbr\u003e\u003cbr\u003eThe authors go on to discuss the thermal degradation of various polymers, copolymers, high-performance plastics, blends, and composites, including polyolefins, styrene polymers, polyvinyl chloride, polyamides, polyurethanes, polyesters, polyacrylates and others. \u003cbr\u003e\u003cbr\u003eThis book offers a wealth of information for polymer researchers and processors requiring an understanding of the implications of thermal degradation on material and product performance.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e1.1 Thermal Degradation Techniques\u003cbr\u003e1.1.1 Thermogravimetry (TG)\u003cbr\u003e1.1.2 Pyrolysis (Py)\u003cbr\u003e1.1.3 Thermal Volatilisation Analysis (TVA)\u003cbr\u003e1.1.4 Differential Scanning Calorimetry (DSC)\u003cbr\u003e1.1.5 Matrix-Assisted Laser Desorption\/Ionisation Mass Spectrometry (MALDI)\u003cbr\u003e1.1.6 Others\u003cbr\u003e1.2 Ageing and Lifetime Predictions\u003cbr\u003e1.3 Thermal Degradation Pathways \u003cbr\u003e2 Mechanisms of Thermal Degradation of Polymers\u003cbr\u003e2.1 Side-Group Elimination\u003cbr\u003e2.2 Random Scission\u003cbr\u003e2.3 Depolymerisation \u003cbr\u003e3 Thermooxidative Degradation \u003cbr\u003e4 Kinetics of Thermal Degradation\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Kinetic Analysis \u003cbr\u003e5 Polymers, Copolymers, and Blends\u003cbr\u003e5.1 Polyolefins\u003cbr\u003e5.1.1 Polyethylene (PE)\u003cbr\u003e5.1.2 Polypropylene (PP)\u003cbr\u003e5.1.3 Polyisobutylene (PIB)\u003cbr\u003e5.1.4 Cyclic Olefin Copolymers\u003cbr\u003e5.1.5 Diene Polymers\u003cbr\u003e5.2 Styrene Polymers\u003cbr\u003e5.2.1 Polystyrene (PS) and its Chemical Modifications\u003cbr\u003e5.2.2 Styrene Copolymers\u003cbr\u003e5.2.3 Acrylonitrile-Butadiene-Styrene Terpolymer (ABS)\u003cbr\u003e5.2.4 Polystyrene Blends\u003cbr\u003e5.3 Poly(Vinyl Chloride) (PVC)\u003cbr\u003e5.3.1 Poly(Vinyl Chloride) Homopolymer\u003cbr\u003e5.3.2 Poly(Vinyl Chloride) Blends\u003cbr\u003e5.4 Polyamides (PA)\u003cbr\u003e5.4.1 Poly(Ester Amide)s\u003cbr\u003e5.4.2 Liquid-Crystalline Polyamides\u003cbr\u003e5.4.3 Polyamide Blends\u003cbr\u003e5.5 Polyurethanes (PUs)\u003cbr\u003e5.5.1 Thermoplastic Polyurethanes\u003cbr\u003e5.5.2 Polyurethane Foams\u003cbr\u003e5.6 Polyesters\u003cbr\u003e5.6.1 Poly(Ethylene Terephthalate) (PET)\u003cbr\u003e5.6.2 Biodegradable Polyesters\u003cbr\u003e5.7 Acryl Polymers\u003cbr\u003e5.7.1 Poly(Methyl Methacrylate) (PMMA)\u003cbr\u003e5.7.2 Acryl (Co)Polymers\u003cbr\u003e5.7.3 Acrylonitrile-Containing (Co)Polymers\u003cbr\u003e5.8 Others\u003cbr\u003e5.8.1 Poly(Vinyl Acetate) (PVAc)\u003cbr\u003e5.8.2 Poly(Vinyl Alcohol) (PVOH)\u003cbr\u003e5.8.3 Vinylidene Chloride (VDC) Copolymers\u003cbr\u003e5.8.4 Sulfone-Containing Polymers\u003cbr\u003e5.8.5 Sulfide-Containing (Co)Polymers\u003cbr\u003e5.8.6 Poly(Bisphenol-A Carbonate) (PC)\u003cbr\u003e5.8.7 Poly(Butylene Terephthalate) (PBT)\u003cbr\u003e5.8.8 Poly(Ethylene Glycol Allenyl Methyl Ether) (PEGA)\u003cbr\u003e5.8.9 Poly(Ether Ketone)s (PEKs)\u003cbr\u003e5.8.10 Poly(Epichlorohydrin-co-Ethylene Oxide) \u003cbr\u003e6 Natural Polymers\u003cbr\u003e6.1 Starch\u003cbr\u003e6.2 Chitin and Chitosan\u003cbr\u003e6.3 Cellulose\u003cbr\u003e6.4 Lignins\u003cbr\u003e6.5 Poly(Hydroxyalkanoate)s (PHAs)\u003cbr\u003e6.6 Proteins\u003cbr\u003e6.7 Natural Rubber\u003cbr\u003e6.8 Poly(Hydroxy Acid)s\u003cbr\u003e6.8.1 Poly(L-Lactic Acid) (PLLA)\u003cbr\u003e6.8.2 Poly(L-Lactic Acid) Blends\u003cbr\u003e6.9 Poly(p-Dioxanone) (PPDO) \u003cbr\u003e7 Reinforced Polymer Nanocomposites\u003cbr\u003e7.1 Glass-Fibre-Reinforced Composites\u003cbr\u003e7.2 Carbon-Fibre-Reinforced Composites\u003cbr\u003e7.3 Unsaturated Polyester Resins Reinforced with Fibres\u003cbr\u003e7.4 Reinforced Polyurethane Composites\u003cbr\u003e7.5 Polyamides with Natural Fibres\u003cbr\u003e7.6 Other Composites \u003cbr\u003e8 Inorganic Polymers\u003cbr\u003e8.1 Polysiloxanes\u003cbr\u003e8.2 Polyphosphazenes\u003cbr\u003e8.3 Polysilazanes and Polysilanes\u003cbr\u003e8.4 Organic-Inorganic Hybrid Polymers \u003cbr\u003e9 High Temperature-Resistant Polymers\u003cbr\u003e9.1 Aromatic Polyamides\u003cbr\u003e9.2 Aromatic Polycarbonates\u003cbr\u003e9.3 Aromatic Polyethers\u003cbr\u003e9.4 Phenylene-Containing Polymers\u003cbr\u003e9.5 Poly(Ether Ether Ketone) (PEEK)\u003cbr\u003e9.6 Polybenzimidazoles (PBIs)\u003cbr\u003e9.7 Polybismaleimides (BMIs)\u003cbr\u003e9.8 Polybenzoxazines\u003cbr\u003e9.9 Other High-Temperature Polymers\u003cbr\u003e9.9.1 Phenolic Resins\u003cbr\u003e9.9.2 Epoxies\u003cbr\u003e9.9.3 Poly(Ether Imide) (PEI) \u003cbr\u003e10 Recycling of Polymers by Thermal Degradation\u003cbr\u003e10.1 Polyolefins\u003cbr\u003e10.2 Polystyrene\u003cbr\u003e10.2.1 Polystyrene in the Melt\u003cbr\u003e10.2.2 Polystyrene in Solution\u003cbr\u003e10.3 Poly(Vinyl Chloride)\u003cbr\u003e10.4 Polyamides\u003cbr\u003e10.5 Natural Polymers\u003cbr\u003e10.5.1 Poly(L-Lactic Acid)\u003cbr\u003e10.5.2 Lignocellulose\u003cbr\u003e10.6 Other Homopolymers\u003cbr\u003e10.7 Mixtures of Polymer Wastes\u003cbr\u003e10.8 Thermal Degradation of Polymeric Materials – Ecological Issues\u003cbr\u003e10.8.1 Disposal Options and Sources of Information\u003cbr\u003e10.8.2 Sustainable Development \u003cbr\u003e11 Thermal Degradation During Processing of Polymers\u003cbr\u003e11.1 Polyethylene\u003cbr\u003e11.2 Polypropylene and its Blends\u003cbr\u003e11.3 Poly(Vinyl Alcohol)\u003cbr\u003e11.4 Other Polymers \u003cbr\u003e12 Modelling of Thermal Degradation Processes \u003cbr\u003e13 Concluding Remarks \u003cbr\u003e14 References \u003cbr\u003e15 References Available from the Polymer Library\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cstrong\u003eKrzysztof Pielichowski\u003c\/strong\u003e is currently an associate professor of polymer science at the Cracow University of Technology. He has written over 80 articles and was awarded the Foundation for Polish Science fellowship in 1996 and the Fulbright fellowship in 2003. \u003cbr\u003e\u003cbr\u003e\u003cstrong\u003eJames Njuguna\u003c\/strong\u003e is a Ph.D. student at the City University of London. He was a Marie Curie Fellow at the Cracow University of Technology in 2003\/2004, performing research in the area of polymeric nanocomposites.\u003cbr\u003e\u003cbr\u003e"}
Polymers in Agricultur...
$122.00
{"id":11242227460,"title":"Polymers in Agriculture and Horticulture.","handle":"978-1-85957-460-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Roger P Brown \u003cbr\u003eISBN 978-1-85957-460-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003e94 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers have been used in agriculture and horticulture since the middle\u003cbr\u003eof the last century. There is a tremendous potential for using polymers\u003cbr\u003ein agriculture and our fields and garden would look very different if we\u003cbr\u003edid not use polymers in them.\u003cbr\u003e\u003cbr\u003eThis review traces the history of polymer use, discusses the markets for\u003cbr\u003epolymers in these applications, and describes in detail the different\u003cbr\u003etypes of polymers that can be used and their specific applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. The Market\u003cbr\u003e3. Materials\u003cbr\u003e4. Crop Protection \u003cbr\u003e4.1 Greenhouses\/Large Tunnel \u003cbr\u003e4.2 Low Tunnels \u003cbr\u003e4.3 Direct Covers \u003cbr\u003e4.4 Windbreaks \u003cbr\u003e4.5 Shading \u003cbr\u003e4.6 Protection Against Pests\u003cbr\u003e5. Soil Conditioning \u003cbr\u003e5.1 Mulching \u003cbr\u003e5.2 Soil Improvement\u003cbr\u003e6. Water Management \u003cbr\u003e6.1 Collection, Storage, and Transport of Water \u003cbr\u003e6.2 Irrigation \u003cbr\u003e6.3 Water Holding \u003cbr\u003e6.4 Drainage\u003cbr\u003e7. Harvesting and Crop Storage\u003cbr\u003e8. Buildings\u003cbr\u003e9. Machinery and Equipment\u003cbr\u003e10. Containers and Packaging\u003cbr\u003e11. Miscellaneous Applications \u003cbr\u003e11.1 Identification Tags \u003cbr\u003e11.2 Clothing and Footwear \u003cbr\u003e11.3 Controlled Release of Fertilizers, etc \u003cbr\u003e11.4 Garden Ponds \u003cbr\u003e11.5 Greenhouse Sundries \u003cbr\u003e11.6 Labels \u003cbr\u003e11.7 Seed Coatings \u003cbr\u003e11.8 Soil Less Cultivation \u003cbr\u003e11.9 Ties and Grafting Bands \u003cbr\u003e11.10 Twine \u003cbr\u003e11.11 Others\u003cbr\u003e12. Standards and Testing\u003cbr\u003e13. Disposal and Recycling\u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees.","published_at":"2017-06-22T21:14:05-04:00","created_at":"2017-06-22T21:14:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","agriculture","book","building","horticulture","p-applications","poly","polymers","polymers in acgriculture","recycling","water management"],"price":12200,"price_min":12200,"price_max":12200,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378394884,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Agriculture and Horticulture.","public_title":null,"options":["Default Title"],"price":12200,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-460-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-460-7.jpg?v=1499953251"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-460-7.jpg?v=1499953251","options":["Title"],"media":[{"alt":null,"id":358701465693,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-460-7.jpg?v=1499953251"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-460-7.jpg?v=1499953251","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Roger P Brown \u003cbr\u003eISBN 978-1-85957-460-7 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003e94 pages\n\u003ch5\u003eSummary\u003c\/h5\u003e\nPolymers have been used in agriculture and horticulture since the middle\u003cbr\u003eof the last century. There is a tremendous potential for using polymers\u003cbr\u003ein agriculture and our fields and garden would look very different if we\u003cbr\u003edid not use polymers in them.\u003cbr\u003e\u003cbr\u003eThis review traces the history of polymer use, discusses the markets for\u003cbr\u003epolymers in these applications, and describes in detail the different\u003cbr\u003etypes of polymers that can be used and their specific applications.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. Introduction \u003cbr\u003e2. The Market\u003cbr\u003e3. Materials\u003cbr\u003e4. Crop Protection \u003cbr\u003e4.1 Greenhouses\/Large Tunnel \u003cbr\u003e4.2 Low Tunnels \u003cbr\u003e4.3 Direct Covers \u003cbr\u003e4.4 Windbreaks \u003cbr\u003e4.5 Shading \u003cbr\u003e4.6 Protection Against Pests\u003cbr\u003e5. Soil Conditioning \u003cbr\u003e5.1 Mulching \u003cbr\u003e5.2 Soil Improvement\u003cbr\u003e6. Water Management \u003cbr\u003e6.1 Collection, Storage, and Transport of Water \u003cbr\u003e6.2 Irrigation \u003cbr\u003e6.3 Water Holding \u003cbr\u003e6.4 Drainage\u003cbr\u003e7. Harvesting and Crop Storage\u003cbr\u003e8. Buildings\u003cbr\u003e9. Machinery and Equipment\u003cbr\u003e10. Containers and Packaging\u003cbr\u003e11. Miscellaneous Applications \u003cbr\u003e11.1 Identification Tags \u003cbr\u003e11.2 Clothing and Footwear \u003cbr\u003e11.3 Controlled Release of Fertilizers, etc \u003cbr\u003e11.4 Garden Ponds \u003cbr\u003e11.5 Greenhouse Sundries \u003cbr\u003e11.6 Labels \u003cbr\u003e11.7 Seed Coatings \u003cbr\u003e11.8 Soil Less Cultivation \u003cbr\u003e11.9 Ties and Grafting Bands \u003cbr\u003e11.10 Twine \u003cbr\u003e11.11 Others\u003cbr\u003e12. Standards and Testing\u003cbr\u003e13. Disposal and Recycling\u003cbr\u003eAdditional References\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nRoger Brown is an internationally acknowledged expert on physical testing and quality assurance of polymers. He has published more than 70 technical papers and three standard textbooks on testing. In addition, he is editor of the journal Polymer Testing and co-editor of the newsletter The Test Report. He has over 25 years experience of running the testing laboratories and services at Rapra. Roger is active on many Standards committees."}
Handbook of Solvents, ...
$295.00
{"id":11242243268,"title":"Handbook of Solvents, Volume 2, Use, Health, and Environment","handle":"978-1-895198-65-2","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-895198-65-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of pages: 978\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in a separate chapter. This is followed by the analysis of the concentration of solvents in more than 15 and discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapter was written by professors and scientists from major centers who study the effect of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show possibilities in solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, ionic melts, and agriculture-based products. Solvent recycling, removal from contaminated air, and degradation are discussed by experts in these technologies with regard to research and industry manufacturing equipment for safe methods of processing with solvents.\u003cbr\u003e\u003cbr\u003eThe book is concluded with an evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils, selection of gloves, Handbook of Silicon Based MEMS Materials and Technologies, and respirators, and new trends in solvent technology.\u003cbr\u003e\u003cbr\u003eThis comprehensive two-volume book has no equal in depth and breadth to any other publication available today. It contains the most recent finds and additional source data in a separate printed and digital publications, such as\u003cbr\u003eSolvent databook\u003cbr\u003eSolvent database on CD-ROM\u003cbr\u003eThese two publications contain data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\u003cbr\u003eThere are a few chemical companies, universities, research centers, which can conduct their activities without consulting this book.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Electronic industry - CFC-free alternatives for cleaning in electronic industry\u003cbr\u003eMartin Hanek, Norbert Loew, Dr. O. K. Wack Chemie, Ingolstadt, Germany; Andreas Muehlbauer, Zestron Corporation, Ashburn, VA, USA\u003cbr\u003e13.9 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.10 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.11 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.12 Inorganic chemical industry\u003cbr\u003e13.13 Iron and steel industry\u003cbr\u003e13.14 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.15 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.16 Metal casting\u003cbr\u003e13.17 Motor vehicle assembly\u003cbr\u003e13.18 Organic chemical industry\u003cbr\u003e13.19 Paints and coatings\u003cbr\u003e13.19.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.19.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.20 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.21 Pharmaceutical industry\u003cbr\u003e13.21.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.21.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.22 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.23 Printing industry\u003cbr\u003e13.24 Pulp and paper\u003cbr\u003e13.25 Rubber and Plastics\u003cbr\u003e13.26 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.27 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.28 Textile industry\u003cbr\u003e13.29 Transportation equipment cleaning\u003cbr\u003e13.30 Water transportation\u003cbr\u003e13.31 Wood furniture\u003cbr\u003e13.32 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e14.3 Simple test to determine toxicity of bacteria\u003cbr\u003eJames L. Botsford, New Mexico State University, Las Cruces, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Jaques O. De Beer\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental fate and movement of organic solvents in water, soil, and air\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.2 Fate-based management of organic solvent-containing wastes\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Indoor air pollution by solvents contained in paints and varnishes\u003cbr\u003eTilman Hahn, Konrad Botznhart, Fritz Schweinsberg, Gerhard Volland, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e17.4 Solvent uses with exposure risks\u003cbr\u003ePentti Kalliokoski, Kai Savolainen, Finnish Institute of Occupational Health, Helsinki, Finland\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in the US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Pregnancy outcome following maternal organic solvent exposure\u003cbr\u003eGideon Koren, The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada\u003cbr\u003e19.3 Industrial solvents and kidney disease\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic study of workers exposed to benzene including multiple myeloma, lymphoma, and chronic lymphatic leukemia\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.5 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.6 Hepatotoxicity\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.7 Toxicity of environmental solvent exposure for brain, lung, and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney, K.R. Seddon, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez\u003cbr\u003e20.4 Ethyl lactate: a biorenewable agrochemical solvent for food technology\u003cbr\u003eTiziana Fornari, David Villaneuva Bermejo, Guillermo Reglero, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Solvent recovery\u003cbr\u003eIsao Kimura, Kanken Techno Co., Ltd., Osaka, Japan\u003cbr\u003e21.3 Solvent treatment in a paints and coating plant\u003cbr\u003eDenis Kargol, OFRU Recycling GmbH \u0026amp; Co. KG, Babenhausen, Germany\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson, C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003e23 PROTECTION\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e22.1 Gloves\u003cbr\u003e22.2 Suit materials\u003cbr\u003e22.3 Respiratory protection\u003cbr\u003e\u003cbr\u003e24 NEW TRENDS BASED ON PATENT LITERATURE\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003eAcknowledgments\u003cbr\u003eIndex","published_at":"2017-06-22T21:14:53-04:00","created_at":"2017-06-22T21:14:53-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","book","degradation","detection","environment","health","lymphohematopoietic study","pharmaceutical","recycling","regulations","solvents","tesing","toxic effects"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378444612,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents, Volume 2, Use, Health, and Environment","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-895198-65-2","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258","options":["Title"],"media":[{"alt":null,"id":356342988893,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-895198-65-2.jpg?v=1499887258","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1-895198-65-2 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003eNumber of pages: 978\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe volume begins with a discussion of solvent used in over 30 industries, which are the main consumers of solvents. The analysis is conducted based on available data and contains information on the types (and frequently amounts) of solvents used and potential problems and solutions. This followed by a discussion of residual solvents left in final products.\u003cbr\u003e\u003cbr\u003eThe environmental impact of solvents, such as their fate and movement in the water, soil and air, fate-based management of solvent containing wastes, and ecotoxicological effects are discussed in a separate chapter. This is followed by the analysis of the concentration of solvents in more than 15 and discussion of regulations in the USA and Europe.\u003cbr\u003e\u003cbr\u003eSolvent toxicology chapter was written by professors and scientists from major centers who study the effect of solvents on various aspects of human health, immediate reaction to solvent poisoning, persistence of symptoms of solvent exposure, and effects of solvents on various parts of the human organism. This is a unique collection of observations which should be frequently consulted by solvent users and agencies which are responsible for the protection of people in the industrial environment.\u003cbr\u003e\u003cbr\u003eThe following chapters show possibilities in solvent substitution by safer materials. Here the emphasis is placed on supercritical solvents, ionic liquids, ionic melts, and agriculture-based products. Solvent recycling, removal from contaminated air, and degradation are discussed by experts in these technologies with regard to research and industry manufacturing equipment for safe methods of processing with solvents.\u003cbr\u003e\u003cbr\u003eThe book is concluded with an evaluation of methods of natural attenuation of various solvents in soils and modern methods of cleaning contaminated soils, selection of gloves, Handbook of Silicon Based MEMS Materials and Technologies, and respirators, and new trends in solvent technology.\u003cbr\u003e\u003cbr\u003eThis comprehensive two-volume book has no equal in depth and breadth to any other publication available today. It contains the most recent finds and additional source data in a separate printed and digital publications, such as\u003cbr\u003eSolvent databook\u003cbr\u003eSolvent database on CD-ROM\u003cbr\u003eThese two publications contain data on close to 2000 solvents. The data organized in sections such as General, Physical \u0026amp; Chemical Properties, Health \u0026amp; Safety, Environmental, and Use, contain all available and required data to use solvent efficiently and safely.\u003cbr\u003e\u003cbr\u003eThere are a few chemical companies, universities, research centers, which can conduct their activities without consulting this book.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n13 SOLVENT USE IN VARIOUS INDUSTRIES\u003cbr\u003e13.1 Adhesives and sealants\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.2 Aerospace\u003cbr\u003e13.3 Asphalt compounding\u003cbr\u003e13.4 Biotechnology\u003cbr\u003e13.4.1 Organic solvents in microbial production processes\u003cbr\u003eMichiaki Matsumoto, Sonja Isken, Jan A. M. de Bont, Division of Industrial Microbiology Department of Food Technology and Nutritional Sciences, Wageningen University, Wageningen, The Netherlands\u003cbr\u003e13.4.2 Solvent-resistant microorganisms\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e13.4.3 Choice of solvent for enzymatic reaction in organic solvent\u003cbr\u003eTsuneo Yamane, Graduate School of Bio- and Agro-Sciences, Nagoya University, Nagoya, Japan\u003cbr\u003e13.5 Coil coating\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.6 Cosmetics and personal care products\u003cbr\u003e13.7 Dry cleaning - treatment of textiles in solvents\u003cbr\u003eKaspar D. Hasenclever, Kreussler \u0026amp; Co. GmbH, Wiesbaden, Germany\u003cbr\u003e13.8 Electronic industry - CFC-free alternatives for cleaning in electronic industry\u003cbr\u003eMartin Hanek, Norbert Loew, Dr. O. K. Wack Chemie, Ingolstadt, Germany; Andreas Muehlbauer, Zestron Corporation, Ashburn, VA, USA\u003cbr\u003e13.9 Fabricated metal products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.10 Food industry - solvents for extracting vegetable oils\u003cbr\u003ePhillip J. Wakelyn, National Cotton Council, Washington, DC, USA; Peter J. Wan, USDA, ARS, SRRC, New Orleans, LA, USA\u003cbr\u003e13.11 Ground transportation\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.12 Inorganic chemical industry\u003cbr\u003e13.13 Iron and steel industry\u003cbr\u003e13.14 Lumber and wood products - Wood preservation treatment: significance of solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.15 Medical applications\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.16 Metal casting\u003cbr\u003e13.17 Motor vehicle assembly\u003cbr\u003e13.18 Organic chemical industry\u003cbr\u003e13.19 Paints and coatings\u003cbr\u003e13.19.1 Architectural surface coatings and solvents\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany; Gerhard Volland, Otto-Graf-Institut, Universitaet Stuttgart, Stuttgart, Germany\u003cbr\u003e13.19.2 Recent advances in coalescing solvents for waterborne coatings\u003cbr\u003eDavid Randall, Chemoxy International pcl, Cleveland, United Kingdom\u003cbr\u003e13.20 Petroleum refining industry\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.21 Pharmaceutical industry\u003cbr\u003e13.21.1 Use of solvents in the manufacture of drug substances (DS) and drug products (DP)\u003cbr\u003eMichel Bauer, International Analytical Department, Sanofi-Synthelabo, Toulouse, France; Christine Barthelemy, Laboratoire de Pharmacie Galenique et Biopharmacie, Faculte des Sciences Pharmaceutiques et Biologiques, Universite de Lille 2, Lille, France\u003cbr\u003e13.21.2 Predicting cosolvency for pharmaceutical and environmental applications\u003cbr\u003eAn Li, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA\u003cbr\u003e13.22 Polymers and man-made fibers\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.23 Printing industry\u003cbr\u003e13.24 Pulp and paper\u003cbr\u003e13.25 Rubber and Plastics\u003cbr\u003e13.26 Use of solvents in the shipbuilding and ship repair industry\u003cbr\u003eMohamed Serageldin, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; Dave Reeves, Midwest Research Institute, Cary, NC, USA\u003cbr\u003e13.27 Stone, clay, glass, and concrete\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e13.28 Textile industry\u003cbr\u003e13.29 Transportation equipment cleaning\u003cbr\u003e13.30 Water transportation\u003cbr\u003e13.31 Wood furniture\u003cbr\u003e13.32 Summary\u003cbr\u003e\u003cbr\u003e14 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e14.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e14.2 Special methods of solvent analysis\u003cbr\u003eMyrto Petreas, California Environmental Protection Agency, Berkeley, USA\u003cbr\u003e14.3 Simple test to determine toxicity of bacteria\u003cbr\u003eJames L. Botsford, New Mexico State University, Las Cruces, USA\u003cbr\u003e\u003cbr\u003e15 RESIDUAL SOLVENTS IN PRODUCTS\u003cbr\u003e15.1 Residual solvents in various products\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e15.2 Residual solvents in pharmaceutical substances and products\u003cbr\u003eEric Deconinck and Jaques O. De Beer\u003cbr\u003e\u003cbr\u003e16 ENVIRONMENTAL IMPACT OF SOLVENTS\u003cbr\u003e16.1 The environmental fate and movement of organic solvents in water, soil, and air\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.2 Fate-based management of organic solvent-containing wastes\u003cbr\u003eWilliam R. Roy, Illinois State Geological Survey, Champaign, IL, USA\u003cbr\u003e16.3 Organic solvent impacts on tropospheric air pollution\u003cbr\u003eMichelle Bergin, Armistead Russell, Georgia Institute of Technology, Atlanta, Georgia, USA\u003cbr\u003e\u003cbr\u003e17 CONCENTRATION OF SOLVENTS IN VARIOUS INDUSTRIAL ENVIRONMENTS\u003cbr\u003e17.1 Measurement and estimation of solvents emission and odor\u003cbr\u003eMargot Scheithauer, Institut fuer Holztechnologie Dresden, Germany\u003cbr\u003e17.2 Emission of organic solvents during usage of ecological paints\u003cbr\u003eKrzysztof M. Benczek, Joanna Kurpiewska, Central Institute for Labor Protection, Warsaw, Poland\u003cbr\u003e17.3 Indoor air pollution by solvents contained in paints and varnishes\u003cbr\u003eTilman Hahn, Konrad Botznhart, Fritz Schweinsberg, Gerhard Volland, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e17.4 Solvent uses with exposure risks\u003cbr\u003ePentti Kalliokoski, Kai Savolainen, Finnish Institute of Occupational Health, Helsinki, Finland\u003cbr\u003e\u003cbr\u003e18 REGULATIONS\u003cbr\u003e18 Regulations in the US and other countries\u003cbr\u003eCarlos M. Nunez, U.S. Environmental Protection Agency, National Risk Management Research Laboratory Research, Triangle Park, NC, USA\u003cbr\u003e18.1 Regulations in Europe\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, Institut fuer Allgemeine Hygiene und Umwelthygiene, Universitaet Tuebingen, Tuebingen, Germany\u003cbr\u003e\u003cbr\u003e19 TOXIC EFFECTS OF SOLVENT EXPOSURE\u003cbr\u003e19.1 Toxicokinetics, toxicodynamics, and toxicology\u003cbr\u003eTilman Hahn, Konrad Botzenhart, Fritz Schweinsberg, University of Tuebingen, Tuebingen, Germany\u003cbr\u003e19.2 Pregnancy outcome following maternal organic solvent exposure\u003cbr\u003eGideon Koren, The Motherisk Program, Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, Toronto, Canada\u003cbr\u003e19.3 Industrial solvents and kidney disease\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.4 Lymphohematopoietic study of workers exposed to benzene including multiple myeloma, lymphoma, and chronic lymphatic leukemia\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.5 Chromosomal aberrations and sister chromatoid exchanges\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.6 Hepatotoxicity\u003cbr\u003eNachman Brautbar, University of Southern California, School of Medicine, Department of Medicine, Los Angeles, CA, USA\u003cbr\u003e19.7 Toxicity of environmental solvent exposure for brain, lung, and heart\u003cbr\u003eKaye H. Kilburn, School of Medicine, University of Southern California, Los Angeles, CA, USA\u003cbr\u003e\u003cbr\u003e20 SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS AND PROCESSES\u003cbr\u003e20.1 Supercritical solvents\u003cbr\u003eAydin K. Sunol, Sermin G. Sunol, Department of Chemical Engineering, University of South Florida, Tampa, FL, USA\u003cbr\u003e20.2 Ionic liquids\u003cbr\u003eD.W. Rooney, K.R. Seddon, School of Chemistry, The Queen’s University of Belfast, Belfast, Northern Ireland\u003cbr\u003e20.3 Deep eutectic solvents and their applications as new green reaction media\u003cbr\u003eJoaquin Garcia-Alvarez\u003cbr\u003e20.4 Ethyl lactate: a biorenewable agrochemical solvent for food technology\u003cbr\u003eTiziana Fornari, David Villaneuva Bermejo, Guillermo Reglero, Universidad Autonoma de Madrid, Madrid, Spain\u003cbr\u003e\u003cbr\u003e21 SOLVENT RECYCLING, REMOVAL, AND DEGRADATION\u003cbr\u003e21.1 Absorptive solvent recovery\u003cbr\u003eKlaus-Dirk Henning, CarboTech Aktivkohlen GmbH, Essen, Germany\u003cbr\u003e21.2 Solvent recovery\u003cbr\u003eIsao Kimura, Kanken Techno Co., Ltd., Osaka, Japan\u003cbr\u003e21.3 Solvent treatment in a paints and coating plant\u003cbr\u003eDenis Kargol, OFRU Recycling GmbH \u0026amp; Co. KG, Babenhausen, Germany\u003cbr\u003e21.4 Application of solar photocatalytic oxidation to VOC-containing airstreams\u003cbr\u003eK. A. Magrini, A. S. Watt, L. C. Boyd, E. J. Wolfrum, S. A. Larson, C. Roth, G. C. Glatzmaier, National Renewable Energy Laboratory, Golden, CO, USA\u003cbr\u003e\u003cbr\u003e22 NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER\u003cbr\u003eHanadi S. Rifai, Civil and Environmental Engineering, University of Houston, Houston, Texas, USA; Groundwater Services, Inc., Houston, Texas, USA; Charles J. Newell Todd H. Wiedemeier, Parson Engineering Science, Denver, CO, USA\u003cbr\u003eMoffett Field, CA\u003cbr\u003e\u003cbr\u003e23 PROTECTION\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e22.1 Gloves\u003cbr\u003e22.2 Suit materials\u003cbr\u003e22.3 Respiratory protection\u003cbr\u003e\u003cbr\u003e24 NEW TRENDS BASED ON PATENT LITERATURE\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003eAcknowledgments\u003cbr\u003eIndex"}
Functional Fillers. Ch...
$285.00
{"id":384215023647,"title":"Functional Fillers. Chemical composition, morphology, performance, applications","handle":"functional-fillers-chemical-composition-morphology-performance-applications","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-37-6 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2018\u003cbr\u003ePages 226 + vi\u003cbr\u003e\u003c\/span\u003e\u003cspan\u003eFigures 135\u003cbr\u003e\u003c\/span\u003eTables 34\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eFillers do not fill but modify the next generation materials, control their properties, open new applications. This opening sentence underlines the aims of this book which shows applications of fillers resulting from their chemical composition (or modification) and\/or special morphological features. This combination results in a high performance required by many new products.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has two sections: analysis of the chemical composition and morphology of classical fillers (some of the over 100 fillers listed in \u003cstrong\u003eHandbook of Fillers\u003c\/strong\u003e, 4\u003csup\u003eth\u003c\/sup\u003e Edition) which contributed to the exceptional enhancements in their properties and applications.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePresentation of new generations of fillers which provide designers with special properties not available so far from the classical fillers used by industry. Special groups of fillers discussed in this part of the book include, as follows\u003c\/span\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cspan\u003eStructure \u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eMolecular (e.g., silsesquioxanes)\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eCarbon dots\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNano\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanowires\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanorods\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanosheets\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanodiamonds\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eHigh aspect ratio\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eLayered double hydroxides\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eFunctionalized\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eEncapsulated\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eHybrid\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003ePhysical properties \u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eSuperlight\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eDense\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eThermally insulating and conductive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eThermal energy storage\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eElectrical and magnetic properties\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eConductive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eInsulating \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eInsulating\/conductive mixtures\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eDielectric\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMagnetic\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMagnetodielectric\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eEMI shielding\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMicrowave absorption\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003ePiezoresistive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eElectrostatic discharge prevention\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eApplications\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eLubricant\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eAnti-corrosion\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMembrane\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eOsteoconductive and other bone tissue engineering fillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eTissue fillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eAntimicrobial\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eRenewable and recycling\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eBiofillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eBiosorbents\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eGeopolymers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eRecycled materials\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan\u003eFrom the above list, it is pertinent that chemical modifications, structural features, enhanced physical properties, mixtures of fillers, electrical and magnetic properties, special applications corrosion resistance, medicine, dentistry, and antimicrobial, and fillers from renewable resources are the main topics of the book.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience, as in the case of \u003cstrong\u003eHandbook of Fillers\u003c\/strong\u003e, includes most branches of chemical industry (and some other such as pharmaceutical, medicinal, electronics, etc.), considering that these products are common throughout the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education.","published_at":"2017-06-22T21:15:02-04:00","created_at":"2017-12-21T15:29:34-05:00","vendor":"Chemtec Publishing","type":"Book","tags":["2018","additive","additives","applications","book","filler","fillers","mechanical and thermal properties","polymer","polymers","properties","recycling","structure"],"price":28500,"price_min":28500,"price_max":28500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":5105827282975,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Functional Fillers. Chemical composition, morphology, performance, applications","public_title":null,"options":["Default Title"],"price":28500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-927885-37-6","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-37-6.jpg?v=1513888277"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-37-6.jpg?v=1513888277","options":["Title"],"media":[{"alt":null,"id":730921467997,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-37-6.jpg?v=1513888277"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-927885-37-6.jpg?v=1513888277","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych\u003cbr\u003eISBN 978-1-927885-37-6 \u003cbr\u003e\u003cbr\u003e \u003cmeta charset=\"utf-8\"\u003e\n\u003cp\u003e\u003cspan\u003ePublished: 2018\u003cbr\u003ePages 226 + vi\u003cbr\u003e\u003c\/span\u003e\u003cspan\u003eFigures 135\u003cbr\u003e\u003c\/span\u003eTables 34\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cp\u003e\u003cspan\u003eFillers do not fill but modify the next generation materials, control their properties, open new applications. This opening sentence underlines the aims of this book which shows applications of fillers resulting from their chemical composition (or modification) and\/or special morphological features. This combination results in a high performance required by many new products.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe book has two sections: analysis of the chemical composition and morphology of classical fillers (some of the over 100 fillers listed in \u003cstrong\u003eHandbook of Fillers\u003c\/strong\u003e, 4\u003csup\u003eth\u003c\/sup\u003e Edition) which contributed to the exceptional enhancements in their properties and applications.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003ePresentation of new generations of fillers which provide designers with special properties not available so far from the classical fillers used by industry. Special groups of fillers discussed in this part of the book include, as follows\u003c\/span\u003e\u003c\/p\u003e\n\u003cul\u003e\n\u003cli\u003e\n\u003cspan\u003eStructure \u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eMolecular (e.g., silsesquioxanes)\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eCarbon dots\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNano\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanowires\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanorods\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanosheets\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eNanodiamonds\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eHigh aspect ratio\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eLayered double hydroxides\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eFunctionalized\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eEncapsulated\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eHybrid\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003ePhysical properties \u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eSuperlight\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eDense\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eThermally insulating and conductive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eThermal energy storage\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eElectrical and magnetic properties\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eConductive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eInsulating \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eInsulating\/conductive mixtures\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eDielectric\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMagnetic\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMagnetodielectric\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eEMI shielding\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMicrowave absorption\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003ePiezoresistive\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eElectrostatic discharge prevention\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eApplications\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eLubricant\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eAnti-corrosion\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eMembrane\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eOsteoconductive and other bone tissue engineering fillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eTissue fillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eAntimicrobial\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003cli\u003e\n\u003cspan\u003eRenewable and recycling\u003c\/span\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan\u003eBiofillers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eBiosorbents\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eGeopolymers\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan\u003eRecycled materials\u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e\u003cspan\u003eFrom the above list, it is pertinent that chemical modifications, structural features, enhanced physical properties, mixtures of fillers, electrical and magnetic properties, special applications corrosion resistance, medicine, dentistry, and antimicrobial, and fillers from renewable resources are the main topics of the book.\u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003e \u003c\/span\u003e\u003c\/p\u003e\n\u003cp\u003e\u003cspan\u003eThe expected audience, as in the case of \u003cstrong\u003eHandbook of Fillers\u003c\/strong\u003e, includes most branches of chemical industry (and some other such as pharmaceutical, medicinal, electronics, etc.), considering that these products are common throughout the industry.\u003c\/span\u003e\u003c\/p\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nGeorge Wypych has a Ph. D. in chemical engineering. His professional expertise includes both university teaching (full professor) and research \u0026amp; development. He has published 17 books: PVC Plastisols, (University Press); Polyvinylchloride Degradation, (Elsevier); Polyvinylchloride Stabilization, (Elsevier); Polymer Modified Textile Materials, (Wiley \u0026amp; Sons); Handbook of Material Weathering, 1st, 2nd, 3rd, and 4th Editions, (ChemTec Publishing); Handbook of Fillers, 1st, 2nd and 3rd Editions, (ChemTec Publishing); Recycling of PVC, (ChemTec Publishing); Weathering of Plastics. Testing to Mirror Real Life Performance, (Plastics Design Library), Handbook of Solvents, Handbook of Plasticizers, Handbook of Antistatics, Handbook of Antiblocking, Release, and Slip Additives (1st and 2nd Editions), PVC Degradation \u0026amp; Stabilization, PVC Formulary, Handbook of UV Degradation and Stabilization, Handbook of Biodeterioration, Biodegradation and Biostabilization, and Handbook of Polymers (all by ChemTec Publishing), 47 scientific papers, and he has obtained 16 patents. He specializes in polymer additives, polymer processing and formulation, material durability, and the development of sealants and coatings. He is included in the Dictionary of International Biography, Who's Who in Plastics and Polymers, Who's Who in Engineering, and was selected International Man of the Year 1996-1997 in recognition for his services to education."}
Handbook of Solvents, ...
$295.00
{"id":11242240516,"title":"Handbook of Solvents, Volume 1, Properties","handle":"978-1895198-64-5","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA","published_at":"2017-06-22T21:14:44-04:00","created_at":"2017-06-22T21:14:44-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2014","acids","adsorption","aggregation","aldehydes","amine-amine","amines","amphoterism","binary solutions","book","brain","coating","coefficient","constant","contaminated air","degradation","dielectric","diffusion","dry-cleaning","drying rate","ecotoxicological","environment","equilibrium","esters","ethers","gas chromatography","H-acid-L-acid","Hamiltonian","handbook","Hansen solubility","health","Henry constant","Hildebrand","Hook law","hydrogen","in-door","industrial","ketons","kidneys","L-acids","latex","liquid","liquid-vapor","liver","lungs","mass transfer","nervous system","occupational","p-additives","permeability","phenols","physico-chemical","pollution","recycling","regulations","residual solvents","rheology","solubility","solvent","solvents","spectrometer","technologies","toxic","unborn babies","volatilization","wastes","workers"],"price":29500,"price_min":29500,"price_max":29500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378433924,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Solvents, Volume 1, Properties","public_title":null,"options":["Default Title"],"price":29500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1895198-64-5","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259","options":["Title"],"media":[{"alt":null,"id":356342956125,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1895198-64-5.jpg?v=1499472259","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: George Wypych, Editor \u003cbr\u003eISBN 978-1895198-64-5 \u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2014\u003cbr\u003e\u003c\/span\u003ePages 900\n\u003ch5\u003eSummary\u003c\/h5\u003e\nEach chapter in this volume is focused on a specific set of solvent properties which determine its choice, effect on properties of solutes and solutions, properties of different groups of solvents and the summary of their applications' effect on health and environment (given in tabulated form), swelling of solids in solvents, solvent diffusion and drying processes, nature of interaction of solvent and solute in solutions, acid-base interactions, effect of solvents on spectral and other electronic properties of solutions, effect of solvents on rheology of solution, aggregation of solutes, permeability, molecular structure, crystallinity, configuration, and conformation of dissolved high molecular weight compounds, methods of application of solvent mixtures to enhance the range of their applicability, and effect of solvents on chemical reactions and reactivity of dissolved substances. For more information see TOC.\u003cbr\u003e\u003cbr\u003eThe main emphasis in this volume is on comprehensive treatment and ease of information use. The first goal was achieved by the selection of authors who are specialists in individual areas. The second goal was achieved by targeting the intended audience, which includes readers of different specializations who need to understand solvents from various relevant views of their applications and effects. This difficult task was fully embraced by the authors, who used their deep knowledge to write about all the important details with the clarity of non-specialized language. This makes this book unique because it allows all those involved in the area of solvents to understand the disciplines involved in this complex, multi-disciplinary subject. The additional goal was to present a synthesis of existing data for immediate use but leaving specific data on individual solvents to the databook containing information on presently used solvents or its database format on CD-ROM which can handle a large amount of information with ease of retrieval.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 INTRODUCTION\u003cbr\u003eChristian Reichardt, Department of Chemistry, Philipps University, Marburg, Germany\u003cbr\u003e\u003cbr\u003e2 FUNDAMENTAL PRINCIPLES GOVERNING SOLVENTS USE\u003cbr\u003e2.1 Solvent effects on chemical systems\u003cbr\u003eEstanislao Silla, Arturo Arnau and Inaki Tunon, Department of Physical Chemistry, University of Valencia, Burjassot (Valencia), Spain\u003cbr\u003e2.2 Molecular design of solvents\u003cbr\u003eKoichiro Nakanishi, Kurashiki Univ. Sci. \u0026amp; the Arts, Okayama, Japan\u003cbr\u003e2.3 Basic physical and chemical properties of solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e3 PRODUCTION METHODS, PROPERTIES, AND MAIN APPLICATIONS\u003cbr\u003e3.1 Definitions and solvent classification\u003cbr\u003eChristian Reichardt, Philipps-Universitaet, Marburg, Germany\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.2 Overview of methods of solvent manufacture\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e3.3 Solvent properties\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e\u003cbr\u003e4 GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS\u003cbr\u003e4.1 Simple solvent characteristics\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.2 Effect of system variables on solubility\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e4.3 Polar solvation dynamics: Theory and simulations\u003cbr\u003eAbraham Nitzan, School of Chemistry, The Sackler Faculty of Sciences, Tel Aviv University, Tel Aviv, Israel\u003cbr\u003e4.4 Methods for the measurement of solvent activity of polymer solutions\u003cbr\u003eChristian Wohlfarth, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, Merseburg, Germany\u003cbr\u003e\u003cbr\u003e5 SOLUBILITY OF SELECTED SYSTEMS AND INFLUENCE OF SOLUTES\u003cbr\u003e5.1 Experimental methods of evaluation and calculation of solubility parameters of polymers and solvents. Solubility parameters data\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e5.2 Prediction of solubility parameter\u003cbr\u003eNobuyuki Tanaka, Department of Biological and Chemical Engineering Gunma University, Kiryu, Japan\u003cbr\u003e5.3 Methods of calculation of solubility parameters of solvents and polymers\u003cbr\u003eValery Yu. Senichev, Vasiliy V. Tereshatov, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia, \u003cbr\u003e\u003cbr\u003e6 SWELLING\u003cbr\u003e6.1 Modern views on kinetics of swelling of crosslinked elastomers in solvents\u003cbr\u003eE. Ya. Denisyuk, Institute of Continuous Media Mechanics; V. V. Tereshatov Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.2 Equilibrium swelling in binary solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry; E. Ya. Denisyuk, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.3 Swelling data on crosslinked polymers in solvents\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.4 Influence of structure on equilibrium swelling\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.5 Effect of strain on swelling of nanostructured elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e6.6 Effect of thermodynamic parameters of polymer-solvent system on the swelling kinetics of crosslinked elastomers\u003cbr\u003eVasiliy V. Tereshatov, Valery Yu. Senichev, Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Perm, Russia\u003cbr\u003e\u003cbr\u003e7 SOLVENT TRANSPORT PHENOMENA\u003cbr\u003e7.1 Diffusion, swelling, and drying\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e7.2 Bubbles dynamics and boiling of polymeric solutions \u003cbr\u003eSemyon Levitsky, Negev Academic College of Engineering, Israel; Zinoviy Shulman, A.V. Luikov Heat and Mass Transfer Institute, Belarus\u003cbr\u003e\u003cbr\u003e8 MIXED SOLVENTS\u003cbr\u003e8.1 The phenomenological theory of solvent effects in mixed solvent systems\u003cbr\u003eKenneth A. Connors, School of Pharmacy, University of Wisconsin, Madison, USA\u003cbr\u003e8.2 Mixed solvents\u003cbr\u003eY. Y. Fialkov, V. L. Chumak, Department of Chemistry, National Technical University of Ukraine, Kiev, Ukraine\u003cbr\u003e\u003cbr\u003e9 ACID-BASE INTERACTIONS\u003cbr\u003e9.1 General concept of acid-base interactions\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e9.2 Solvent effects based on pure solvent scales\u003cbr\u003eJavier Catalan, Departamento de Química Fisíca Aplicada, Universidad Autónoma de Madrid, Madrid, Spain\u003cbr\u003e9.3 Acid-base equilibria in ionic solvents (ionic melts)\u003cbr\u003eVictor Cherginets, Institute for Single Crystals, Kharkov, Ukraine\u003cbr\u003e9.4 Acid\/base properties of solvents mixtures\u003cbr\u003eTadeusz Michalowski and Augustin Asuero\u003cbr\u003e\u003cbr\u003e10 OTHER PROPERTIES OF SOLVENTS, SOLUTIONS, AND PRODUCTS OBTAINED FROM SOLUTIONS\u003cbr\u003e10.1 Rheological properties, aggregation, permeability, molecular structure, crystallinity, and other properties affected by solvents\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e10.2 Solvatochromic behavior\u003cbr\u003eWojciech Bartkowiak, Wroclaw Technical University, Poland\u003cbr\u003e10.3 Solvent effect on surfactant self-assembly\u003cbr\u003e\u003cbr\u003e11 EFFECT OF SOLVENT ON CHEMICAL REACTIONS AND REACTIVITY\u003cbr\u003e11.1 Solvent effects on chemical reactivity\u003cbr\u003eWolfgang Linert, Technical University of Vienna, Institute of Inorganic Chemistry, Vienna, Austria\u003cbr\u003e11.2 Solvent effects on free radical polymerization\u003cbr\u003eMichelle L. Coote and Thomas P. Davis, Centre for Advanced Macromolecular Design, School of Chemical, Engineering \u0026amp; Industrial Chemistry, The University of New South Wales, Sydney, Australia\u003cbr\u003e\u003cbr\u003e12 METHODS OF SOLVENT DETECTION AND TESTING\u003cbr\u003e12.1 Standard methods of solvent analysis\u003cbr\u003eGeorge Wypych, ChemTec Laboratories, Toronto, Canada\u003cbr\u003e12.2 Use of breath monitoring to assess exposures to volatile organic solvents\u003cbr\u003eMyrto Petreas, Hazardous Materials Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA\u003cbr\u003e12.2.2 A simple test to determine toxicity using bacteria\u003cbr\u003eJames L. Botsford, Department of Biology, New Mexico State University, Las Cruces, NM, USA"}
Handbook of Recycling,...
$140.00
{"id":11242247044,"title":"Handbook of Recycling, 1st Edition","handle":"9780123964595","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Worrell and Reuter \u003cbr\u003eISBN 9780123964595 \u003cbr\u003e\u003cbr\u003eState-of-the-art for practitioners, analysts, and scientists\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Portrays recent and emerging technologies in metal recycling, by-product utilization, and management of post-consumer waste\u003cbr\u003e\u003cbr\u003e- Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes\u003cbr\u003e\u003cbr\u003e- Uses examples from current professional and industrial practice, with policy implications and economics, to present a real-world portrait useful to engineers and professionals as well as academics\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn concept, this book is an Encyclopedia-style authoritative description of the various aspects of material reuse and recycling (including technology, policy, economics) by leading authors from around the globe.\u003cbr\u003e\u003cbr\u003eThis book resolves the problem of there currently (nor published in the past decade) being no single book that provides an authoritative review of the state-of-the-art in recycling. This book should resolve that, by providing a state-of-the-art review of all aspects of recycling.\u003cbr\u003e\u003cbr\u003eThe author's intention in writing this book was to provide the market with a basic textbook on recycling that could be used by students, scholars, and decision makers, as well as stakeholders in the recycling industry, for the next few years.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors\u003cbr\u003ePart I: Recycling in Context\u003cbr\u003eChapter 1. Recycling: A Key Factor for Resource Efficiency\u003cbr\u003eAbstract\u003cbr\u003eReferences\u003cbr\u003eChapter 2. Definitions and Terminology\u003cbr\u003eAbstract\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Defining Recycling\u003cbr\u003e2.3 Materials and Products\u003cbr\u003e2.4 Applying the Product-Centric Approach—Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 3. Recycling in Context\u003cbr\u003eAbstract\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Metal Recycling Considerations and Technologies\u003cbr\u003e3.3 Defining Recycling Statistics\u003cbr\u003e3.4 Process Efficiencies and Recycling Rate Constraints\u003cbr\u003e3.5 Perspectives on Current Recycling Statistics\u003cbr\u003e3.6 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 4. Recycling Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Indium\u003cbr\u003e4.3 Other Examples of Rare Metals\u003cbr\u003e4.4 The Distant Future: Georgescu's Last Laugh?\u003cbr\u003eReferences\u003cbr\u003eChapter 5. Theory and Tools of Physical Separation\/Recycling\u003cbr\u003eAbstract\u003cbr\u003e5.1 Recycling Process\u003cbr\u003e5.2 Particle Size\u003cbr\u003e5.3 Pulp Rheology\u003cbr\u003e5.4 Properties and Property Spaces\u003cbr\u003e5.5 Sampling\u003cbr\u003e5.6 Mass Balances and Process Dynamics\u003cbr\u003e5.7 Material Balancing\u003cbr\u003e5.8 Liberation\u003cbr\u003e5.9 Grade-Recovery Curves\u003cbr\u003eReferences\u003cbr\u003ePart II: Recycling - Application \u0026amp; Technology\u003cbr\u003eChapter 6. Recycling of Steel\u003cbr\u003eAbstract\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Scrap Processing and Material Streams from Scrap Processing\u003cbr\u003e6.3 The Processes Used for Smelting Steel Scrap\u003cbr\u003e6.4 Trends in Quality of the Scrap Available for Steel Production\u003cbr\u003e6.5 Hindrances for Recycling—Tramp Elements\u003cbr\u003e6.6 Purification of Scrap\u003cbr\u003e6.7 To Live with Impurities\u003cbr\u003e6.8 Measures to Secure Sustainable Recycling of Steel\u003cbr\u003eReferences\u003cbr\u003eChapter 7. Copper Recycling\u003cbr\u003eAbstract\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Raw Material for Copper Recycling\u003cbr\u003e7.3 Processes for Recycling\u003cbr\u003e7.4 Challenges in Copper Recycling\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 8. Lead Recycling\u003cbr\u003eAbstract\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 The Lead-Acid Battery\u003cbr\u003e8.3 Battery Preprocessing\u003cbr\u003e8.4 Smelting\u003cbr\u003e8.5 Alternative Approaches\u003cbr\u003e8.6 Refining\u003cbr\u003e8.7 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eChapter 9. Zinc and Residue Recycling\u003cbr\u003eAbstract\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Zinc Oxide Production from Drosses\u003cbr\u003e9.3 Electric Arc Furnace Dust and Other Pb, Zn, Cu-containing Residues\u003cbr\u003e9.4 Zinc Recycling from Copper Industry Dusts\u003cbr\u003e9.5 Fuming of Slags from Lead Metallurgy\u003cbr\u003eReferences\u003cbr\u003eChapter 10. Recycling of Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e10.1 Precious Metals\u003cbr\u003e10.2 Rare Earth Metals\u003cbr\u003e10.3 Electronic Metals\u003cbr\u003e10.4 Refractory Metals (Ferro-alloys Metals, Specialty Metals)\u003cbr\u003e10.5 Other Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 11. Recycling of Lumber\u003cbr\u003eAbstract\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Background\u003cbr\u003e11.3 Key Issues in Post-use Management of Wood\u003cbr\u003e11.4 Case Study Scenarios\u003cbr\u003e11.5 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 12. Paper Recycling\u003cbr\u003eAbstract\u003cbr\u003e12.1 Important Facts about Paper Recycling\u003cbr\u003e12.2 Stock Preparation for Paper Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 13. Plastic Recycling\u003cbr\u003eAbstract\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Use of Plastics\u003cbr\u003e13.3 Plastic Recycling\u003cbr\u003e13.4 Mechanical Recycling\u003cbr\u003e13.5 Impact of Recycling\u003cbr\u003e13.6 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 14. Glass Recycling\u003cbr\u003eAbstract\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Types of Glass\u003cbr\u003e14.3 Glass Manufacture\u003cbr\u003e14.4 Glass Recovery for Reuse and Recycling\u003cbr\u003e14.5 Reuse of Glass\u003cbr\u003e14.6 Closed-Loop Recycling of Glass\u003cbr\u003e14.7 Environmental Benefits of Closed-Loop Recycling of Glass\u003cbr\u003e14.8 The Growth of Glass Recycling\u003cbr\u003e14.9 Open-Loop Glass Recycling\u003cbr\u003e14.10 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 15. Textile Recycling\u003cbr\u003eAbstract\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 The Recycling Effort\u003cbr\u003e15.3 Export of Secondhand Clothing\u003cbr\u003e15.4 Conversion to New Products\u003cbr\u003e15.5 Conversion of Mattresses\u003cbr\u003e15.6 Conversion of Carpet\u003cbr\u003e15.7 Wipers\u003cbr\u003e15.8 Landfill and Incineration\u003cbr\u003e15.9 Diamonds\u003cbr\u003e15.10 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 16. Cementitious Binders Incorporating Residues\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e16.1 Introduction\u003cbr\u003e16.2 Clinker Production: Process Flow, Alternative Fuels and Alternative Raw Materials\u003cbr\u003e16.3 From Clinker to Cement: Residues in Blended Cements\u003cbr\u003e16.4 Alternative Cements for the Future: Reducing the CO2 Footprint while Incorporating Residues\u003cbr\u003e16.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 17. Industrial By-products\u003cbr\u003eAbstract\u003cbr\u003e17.1 What is a By-product?\u003cbr\u003e17.2 Major By-products and Their Generic Properties\u003cbr\u003e17.3 Where and How to Use By-products\u003cbr\u003e17.4 Technical and Environmental Requirements\u003cbr\u003e17.5 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eChapter 18. Recovery of Metals from Different Secondary Resources (Waste)\u003cbr\u003eAbstract\u003cbr\u003e18.1 Introduction\u003cbr\u003e18.2 Production of Ferroalloys from Waste\u003cbr\u003e18.3 Recycling Concepts for Rare Earth Containing Magnets\u003cbr\u003eReferences\u003cbr\u003eChapter 19. Recycling of Carbon Fibers\u003cbr\u003eAbstract\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Carbon Fiber Recycling Processes\u003cbr\u003e19.3 Composites Remanufacturing\u003cbr\u003e19.4 Applications for Recycled Carbon Fibers and Composites\u003cbr\u003e19.5 Life-Cycle Analysis of Carbon Fiber Reinforced Polymers\u003cbr\u003e19.6 Further Challenges\u003cbr\u003e19.7 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 20. Recycling of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e20.1 Introduction\u003cbr\u003e20.2 The Existing Low-Cost Housing Technologies\u003cbr\u003e20.3 Earth\/Mud Building\u003cbr\u003e20.4 Prefabrication Method\u003cbr\u003e20.5 Lightweight Foamed or Cellular Concrete Technology\u003cbr\u003e20.6 Stabilized Earth Brick Technology\u003cbr\u003e20.7 Case Study\u003cbr\u003e20.8 Cost-Effectiveness of Using Low-Cost Housing Technologies\u003cbr\u003e20.9 Recycling Technologies and Practice\u003cbr\u003e20.10 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 21. Recycling of Packaging\u003cbr\u003eAbstract\u003cbr\u003e21.1 Introduction\u003cbr\u003e21.2 Packaging Waste\u003cbr\u003e21.3 Composition\u003cbr\u003e21.4 Recovery and Recycling\u003cbr\u003e21.5 Recovery and Collection Schemes\u003cbr\u003e21.6 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 22. Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules\u003cbr\u003eAbstract\u003cbr\u003e22.1 Introduction\u003cbr\u003e22.2 Material-Centric Recycling: Aluminum and Copper\u003cbr\u003e22.3 Product-Centric Recycling: Complex Sustainability Enabling and Consumer Products\u003cbr\u003e22.4 Recycling Complex Multimaterial Consumer Goods: A Product-Centric Approach\u003cbr\u003e22.5 Automotive Recycling\/Recycling of ELVs Including Automotive Battery Recycling\u003cbr\u003e22.6 Recycling of Waste Electrical and Electronic Equipment\u003cbr\u003e22.7 Recycling of Lighting\u003cbr\u003e22.8 Technology for Recycling of Batteries and Catalysts\u003cbr\u003e22.9 Design for Recycling and Resource Efficiency\u003cbr\u003eReferences\u003cbr\u003eChapter 23. Separation of Large Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e23.1 Introduction\u003cbr\u003e23.2 The Circular Process for Large Municipal Solid Waste\u003cbr\u003e23.3 The Preconditions for Sorting Large Municipal Solid Waste\u003cbr\u003e23.4 Collection System of Large Municipal Solid Waste\u003cbr\u003e23.5 Sorting of Large Municipal Solid Waste\u003cbr\u003e23.6 Sorting Installation\u003cbr\u003e23.7 Sorting Process\u003cbr\u003e23.8 Recycling Efficiency\u003cbr\u003e23.9 The Future\u003cbr\u003eReference\u003cbr\u003eChapter 24. Recovery of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e24.1 Introduction\u003cbr\u003e24.2 Existing Recycled Aggregate Concrete Applications\u003cbr\u003e24.3 Existing Concrete Recycling Methods\u003cbr\u003e24.4 Cost and Benefit Analysis\u003cbr\u003e24.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 25. Waste Electrical and Electronic Equipment Management\u003cbr\u003eAbstract\u003cbr\u003e25.1 Introduction\u003cbr\u003e25.2 Objectives of WEEE Management\u003cbr\u003e25.3 WEEE Take-Back Schemes\u003cbr\u003e25.4 Long-term Trends\u003cbr\u003eReferences\u003cbr\u003eChapter 26. Developments in Collection of Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e26.1 Introduction\u003cbr\u003e26.2 Definition of Municipal Solid Waste\u003cbr\u003e26.3 Quantities of Municipal Solid Waste\u003cbr\u003e26.4 Quality of Municipal Solid Waste\u003cbr\u003e26.5 Management of Municipal Solid Waste\u003cbr\u003eReferences\u003cbr\u003ePart III: Strategy and Policy\u003cbr\u003eChapter 27. From Recycling to Eco-design\u003cbr\u003eAbstract\u003cbr\u003e27.1 Introduction\u003cbr\u003e27.2 Principle of Material Design for Recycling\u003cbr\u003e27.3 Eco-design Strategies for Recycling\u003cbr\u003e27.4 Is Recycling Really Less Impactful on the Environment?\u003cbr\u003e27.5 Current Limits for Eco-design for Recycling Strategies\u003cbr\u003e27.6 Market Demand\u003cbr\u003e27.7 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 28. Recycling and Labeling\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e28.1 Introduction\u003cbr\u003e28.2 Functional Needs Analysis\u003cbr\u003e28.3 Bibliographical Research on the Polymer Labeling Processes\u003cbr\u003e28.4 First Results of Detection Tests with Polypropylene Samples\u003cbr\u003e28.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 29. Informal Waste Recycling in Developing Countries\u003cbr\u003eAbstract\u003cbr\u003e29.1 Introduction\u003cbr\u003e29.2 Defining the Informal Sector\u003cbr\u003e29.3 Informal Solid Waste Management\u003cbr\u003e29.4 Informal e-Waste Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 30. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e30.1 Is a Circular Economy Possible or Desirable?\u003cbr\u003e30.2 Hierarchies of Material Conservation\u003cbr\u003e30.3 When is Recycling Not the Answer?\u003cbr\u003e30.4 Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 31. The Economics of Recycling\u003cbr\u003eAbstract\u003cbr\u003e31.1 Introduction\u003cbr\u003e31.2 Economic Trends and Drivers\u003cbr\u003e31.3 Environmental and Social Costs and Benefits\u003cbr\u003e31.4 Economic Instruments\u003cbr\u003e31.5 Conclusions and Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 32. Geopolitics of Resources and Recycling\u003cbr\u003eAbstract\u003cbr\u003e32.1 Introduction\u003cbr\u003e32.2 Resources, Scarcity and Geopolitics\u003cbr\u003e32.3 Recycling in the Geopolitical Context\u003cbr\u003eReferences\u003cbr\u003eChapter 33. Recycling in Waste Management Policy\u003cbr\u003eAbstract\u003cbr\u003e33.1 Introduction\u003cbr\u003e33.2 A Brief History of Waste Management\u003cbr\u003e33.3 Integrating Recycling in Waste Management Policy Design\u003cbr\u003eReferences\u003cbr\u003eChapter 34. Voluntary and Negotiated Agreements\u003cbr\u003eAbstract\u003cbr\u003e34.1 Introduction\u003cbr\u003e34.2 Experiences in Recycling Policy\u003cbr\u003e34.3 Lessons Learned\u003cbr\u003eReferences\u003cbr\u003eChapter 35. Economic Instruments\u003cbr\u003eAbstract\u003cbr\u003e35.1 Introduction\u003cbr\u003e35.2 Criteria to Compare Policy Instruments\u003cbr\u003e35.3 Basic Environmental Policy Instruments Aimed at Stimulating Recycling\u003cbr\u003e35.4 Incentives for Upstream Green Product Design\u003cbr\u003e35.5 Multiproduct and Mixed Waste Streams\u003cbr\u003e35.6 EPR and Recycling Certificates\u003cbr\u003e35.7 Durable Goods\u003cbr\u003e35.8 Imperfect Competition in Product and Recycling Markets\u003cbr\u003e35.9 Policy Instruments in an International Market for Waste and Materials\u003cbr\u003e35.10 Recycling and Nonrenewable Resources in a Macro Economic Perspective\u003cbr\u003e35.11 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 36. Information Instruments\u003cbr\u003eAbstract\u003cbr\u003e36.1 Introduction\u003cbr\u003e36.2 Target Groups\/Audience\u003cbr\u003e36.3 Communication Tools\u003cbr\u003e36.4 Messaging: Information and Communication\u003cbr\u003e36.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 37. Regulatory Instruments: Sustainable Materials Management, Recycling, and the Law\u003cbr\u003eAbstract\u003cbr\u003e37.1 Introduction\u003cbr\u003e37.2 Resource Efficiency and Waste Strategy—The Blurb\u003cbr\u003e37.3 The EU Framework Directive on Waste, and Its View on Recovery and Recycling\u003cbr\u003eAppendix 1. Physical Separation 101\u003cbr\u003eA1.1 Breakage\u003cbr\u003eA1.2 Size Classification\u003cbr\u003eA1.3 Screens\u003cbr\u003eA1.4 Dynamic Separators\u003cbr\u003eA1.5 Gravity Separations\u003cbr\u003eA1.6 Water Media Separations\u003cbr\u003eA1.7 Dense Media Separations\u003cbr\u003eA1.8 Flotation\u003cbr\u003eA1.9 Magnetic Separations\u003cbr\u003eA1.10 Eddy Current Separation\u003cbr\u003eA1.11 Electrostatic Separations\u003cbr\u003eA1.12 Sorting\u003cbr\u003eReference\u003cbr\u003eAppendix 2. Thermodynamics 101\u003cbr\u003eA2.1 On the Consumption and Availability of Metals\u003cbr\u003eA2.2 Recycling and Extractive Metallurgy: An Energy Issue\u003cbr\u003eA2.3 The Second Law of Thermodynamics Devil: An Entropy Issue\u003cbr\u003eA2.4 Chemical Thermodynamics and Reaction Equilibrium\u003cbr\u003eA2.5 On the Stability of Oxides and Other Metal-Containing Minerals\u003cbr\u003eA2.6 The Carbon Tragedy\u003cbr\u003eA2.7 H2 is an Alternative Reductor\u003cbr\u003eA2.8 Very Stable Oxides\u003cbr\u003eA2.9 About Solutions and Desired Purity Levels\u003cbr\u003eA2.10 Some Conclusions\u003cbr\u003eReference\u003cbr\u003eAppendix 3. Life-Cycle Assessment\u003cbr\u003eA3.1 Life-Cycle Assessment\u003cbr\u003eA3.2 Life-Cycle Assessment in the Mining and Metallurgy\u003cbr\u003eA3.3 LCA and Multimetal Output\u003cbr\u003eA3.4 End-of-Life Treatment in the LCA Context\u003cbr\u003eA3.5 Case Studies on LCA Results for Multimetal Outputs\u003cbr\u003eA3.6 Summary and Outlook\u003cbr\u003eReference\u003cbr\u003eIndex","published_at":"2017-06-22T21:15:05-04:00","created_at":"2017-06-22T21:15:05-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","automotive recycling","batteries","book","composite recycling","metal recycling","plastics recycling","recycling","textiles"],"price":14000,"price_min":14000,"price_max":14000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378460548,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Handbook of Recycling, 1st Edition","public_title":null,"options":["Default Title"],"price":14000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9780123964595","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882","options":["Title"],"media":[{"alt":null,"id":356338073693,"position":1,"preview_image":{"aspect_ratio":0.671,"height":499,"width":335,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882"},"aspect_ratio":0.671,"height":499,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9780123964595.jpg?v=1499471882","width":335}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Worrell and Reuter \u003cbr\u003eISBN 9780123964595 \u003cbr\u003e\u003cbr\u003eState-of-the-art for practitioners, analysts, and scientists\n\u003cdiv\u003e\u003c\/div\u003e\n\u003cdiv\u003e\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e- Portrays recent and emerging technologies in metal recycling, by-product utilization, and management of post-consumer waste\u003cbr\u003e\u003cbr\u003e- Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes\u003cbr\u003e\u003cbr\u003e- Uses examples from current professional and industrial practice, with policy implications and economics, to present a real-world portrait useful to engineers and professionals as well as academics\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eIn concept, this book is an Encyclopedia-style authoritative description of the various aspects of material reuse and recycling (including technology, policy, economics) by leading authors from around the globe.\u003cbr\u003e\u003cbr\u003eThis book resolves the problem of there currently (nor published in the past decade) being no single book that provides an authoritative review of the state-of-the-art in recycling. This book should resolve that, by providing a state-of-the-art review of all aspects of recycling.\u003cbr\u003e\u003cbr\u003eThe author's intention in writing this book was to provide the market with a basic textbook on recycling that could be used by students, scholars, and decision makers, as well as stakeholders in the recycling industry, for the next few years.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nList of Contributors\u003cbr\u003ePart I: Recycling in Context\u003cbr\u003eChapter 1. Recycling: A Key Factor for Resource Efficiency\u003cbr\u003eAbstract\u003cbr\u003eReferences\u003cbr\u003eChapter 2. Definitions and Terminology\u003cbr\u003eAbstract\u003cbr\u003e2.1 Introduction\u003cbr\u003e2.2 Defining Recycling\u003cbr\u003e2.3 Materials and Products\u003cbr\u003e2.4 Applying the Product-Centric Approach—Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 3. Recycling in Context\u003cbr\u003eAbstract\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Metal Recycling Considerations and Technologies\u003cbr\u003e3.3 Defining Recycling Statistics\u003cbr\u003e3.4 Process Efficiencies and Recycling Rate Constraints\u003cbr\u003e3.5 Perspectives on Current Recycling Statistics\u003cbr\u003e3.6 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 4. Recycling Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Indium\u003cbr\u003e4.3 Other Examples of Rare Metals\u003cbr\u003e4.4 The Distant Future: Georgescu's Last Laugh?\u003cbr\u003eReferences\u003cbr\u003eChapter 5. Theory and Tools of Physical Separation\/Recycling\u003cbr\u003eAbstract\u003cbr\u003e5.1 Recycling Process\u003cbr\u003e5.2 Particle Size\u003cbr\u003e5.3 Pulp Rheology\u003cbr\u003e5.4 Properties and Property Spaces\u003cbr\u003e5.5 Sampling\u003cbr\u003e5.6 Mass Balances and Process Dynamics\u003cbr\u003e5.7 Material Balancing\u003cbr\u003e5.8 Liberation\u003cbr\u003e5.9 Grade-Recovery Curves\u003cbr\u003eReferences\u003cbr\u003ePart II: Recycling - Application \u0026amp; Technology\u003cbr\u003eChapter 6. Recycling of Steel\u003cbr\u003eAbstract\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Scrap Processing and Material Streams from Scrap Processing\u003cbr\u003e6.3 The Processes Used for Smelting Steel Scrap\u003cbr\u003e6.4 Trends in Quality of the Scrap Available for Steel Production\u003cbr\u003e6.5 Hindrances for Recycling—Tramp Elements\u003cbr\u003e6.6 Purification of Scrap\u003cbr\u003e6.7 To Live with Impurities\u003cbr\u003e6.8 Measures to Secure Sustainable Recycling of Steel\u003cbr\u003eReferences\u003cbr\u003eChapter 7. Copper Recycling\u003cbr\u003eAbstract\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Raw Material for Copper Recycling\u003cbr\u003e7.3 Processes for Recycling\u003cbr\u003e7.4 Challenges in Copper Recycling\u003cbr\u003e7.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 8. Lead Recycling\u003cbr\u003eAbstract\u003cbr\u003e8.1 Introduction\u003cbr\u003e8.2 The Lead-Acid Battery\u003cbr\u003e8.3 Battery Preprocessing\u003cbr\u003e8.4 Smelting\u003cbr\u003e8.5 Alternative Approaches\u003cbr\u003e8.6 Refining\u003cbr\u003e8.7 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eChapter 9. Zinc and Residue Recycling\u003cbr\u003eAbstract\u003cbr\u003e9.1 Introduction\u003cbr\u003e9.2 Zinc Oxide Production from Drosses\u003cbr\u003e9.3 Electric Arc Furnace Dust and Other Pb, Zn, Cu-containing Residues\u003cbr\u003e9.4 Zinc Recycling from Copper Industry Dusts\u003cbr\u003e9.5 Fuming of Slags from Lead Metallurgy\u003cbr\u003eReferences\u003cbr\u003eChapter 10. Recycling of Rare Metals\u003cbr\u003eAbstract\u003cbr\u003e10.1 Precious Metals\u003cbr\u003e10.2 Rare Earth Metals\u003cbr\u003e10.3 Electronic Metals\u003cbr\u003e10.4 Refractory Metals (Ferro-alloys Metals, Specialty Metals)\u003cbr\u003e10.5 Other Metals\u003cbr\u003eReferences\u003cbr\u003eChapter 11. Recycling of Lumber\u003cbr\u003eAbstract\u003cbr\u003e11.1 Introduction\u003cbr\u003e11.2 Background\u003cbr\u003e11.3 Key Issues in Post-use Management of Wood\u003cbr\u003e11.4 Case Study Scenarios\u003cbr\u003e11.5 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 12. Paper Recycling\u003cbr\u003eAbstract\u003cbr\u003e12.1 Important Facts about Paper Recycling\u003cbr\u003e12.2 Stock Preparation for Paper Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 13. Plastic Recycling\u003cbr\u003eAbstract\u003cbr\u003e13.1 Introduction\u003cbr\u003e13.2 Use of Plastics\u003cbr\u003e13.3 Plastic Recycling\u003cbr\u003e13.4 Mechanical Recycling\u003cbr\u003e13.5 Impact of Recycling\u003cbr\u003e13.6 Conclusions and Outlook\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 14. Glass Recycling\u003cbr\u003eAbstract\u003cbr\u003e14.1 Introduction\u003cbr\u003e14.2 Types of Glass\u003cbr\u003e14.3 Glass Manufacture\u003cbr\u003e14.4 Glass Recovery for Reuse and Recycling\u003cbr\u003e14.5 Reuse of Glass\u003cbr\u003e14.6 Closed-Loop Recycling of Glass\u003cbr\u003e14.7 Environmental Benefits of Closed-Loop Recycling of Glass\u003cbr\u003e14.8 The Growth of Glass Recycling\u003cbr\u003e14.9 Open-Loop Glass Recycling\u003cbr\u003e14.10 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 15. Textile Recycling\u003cbr\u003eAbstract\u003cbr\u003e15.1 Introduction\u003cbr\u003e15.2 The Recycling Effort\u003cbr\u003e15.3 Export of Secondhand Clothing\u003cbr\u003e15.4 Conversion to New Products\u003cbr\u003e15.5 Conversion of Mattresses\u003cbr\u003e15.6 Conversion of Carpet\u003cbr\u003e15.7 Wipers\u003cbr\u003e15.8 Landfill and Incineration\u003cbr\u003e15.9 Diamonds\u003cbr\u003e15.10 Summary\u003cbr\u003eReferences\u003cbr\u003eChapter 16. Cementitious Binders Incorporating Residues\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e16.1 Introduction\u003cbr\u003e16.2 Clinker Production: Process Flow, Alternative Fuels and Alternative Raw Materials\u003cbr\u003e16.3 From Clinker to Cement: Residues in Blended Cements\u003cbr\u003e16.4 Alternative Cements for the Future: Reducing the CO2 Footprint while Incorporating Residues\u003cbr\u003e16.5 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 17. Industrial By-products\u003cbr\u003eAbstract\u003cbr\u003e17.1 What is a By-product?\u003cbr\u003e17.2 Major By-products and Their Generic Properties\u003cbr\u003e17.3 Where and How to Use By-products\u003cbr\u003e17.4 Technical and Environmental Requirements\u003cbr\u003e17.5 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eChapter 18. Recovery of Metals from Different Secondary Resources (Waste)\u003cbr\u003eAbstract\u003cbr\u003e18.1 Introduction\u003cbr\u003e18.2 Production of Ferroalloys from Waste\u003cbr\u003e18.3 Recycling Concepts for Rare Earth Containing Magnets\u003cbr\u003eReferences\u003cbr\u003eChapter 19. Recycling of Carbon Fibers\u003cbr\u003eAbstract\u003cbr\u003e19.1 Introduction\u003cbr\u003e19.2 Carbon Fiber Recycling Processes\u003cbr\u003e19.3 Composites Remanufacturing\u003cbr\u003e19.4 Applications for Recycled Carbon Fibers and Composites\u003cbr\u003e19.5 Life-Cycle Analysis of Carbon Fiber Reinforced Polymers\u003cbr\u003e19.6 Further Challenges\u003cbr\u003e19.7 Conclusions\u003cbr\u003eReferences\u003cbr\u003eChapter 20. Recycling of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e20.1 Introduction\u003cbr\u003e20.2 The Existing Low-Cost Housing Technologies\u003cbr\u003e20.3 Earth\/Mud Building\u003cbr\u003e20.4 Prefabrication Method\u003cbr\u003e20.5 Lightweight Foamed or Cellular Concrete Technology\u003cbr\u003e20.6 Stabilized Earth Brick Technology\u003cbr\u003e20.7 Case Study\u003cbr\u003e20.8 Cost-Effectiveness of Using Low-Cost Housing Technologies\u003cbr\u003e20.9 Recycling Technologies and Practice\u003cbr\u003e20.10 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 21. Recycling of Packaging\u003cbr\u003eAbstract\u003cbr\u003e21.1 Introduction\u003cbr\u003e21.2 Packaging Waste\u003cbr\u003e21.3 Composition\u003cbr\u003e21.4 Recovery and Recycling\u003cbr\u003e21.5 Recovery and Collection Schemes\u003cbr\u003e21.6 Concluding Remarks\u003cbr\u003eReferences\u003cbr\u003eFurther Reading\u003cbr\u003eChapter 22. Material-Centric (Aluminum and Copper) and Product-Centric (Cars, WEEE, TV, Lamps, Batteries, Catalysts) Recycling and DfR Rules\u003cbr\u003eAbstract\u003cbr\u003e22.1 Introduction\u003cbr\u003e22.2 Material-Centric Recycling: Aluminum and Copper\u003cbr\u003e22.3 Product-Centric Recycling: Complex Sustainability Enabling and Consumer Products\u003cbr\u003e22.4 Recycling Complex Multimaterial Consumer Goods: A Product-Centric Approach\u003cbr\u003e22.5 Automotive Recycling\/Recycling of ELVs Including Automotive Battery Recycling\u003cbr\u003e22.6 Recycling of Waste Electrical and Electronic Equipment\u003cbr\u003e22.7 Recycling of Lighting\u003cbr\u003e22.8 Technology for Recycling of Batteries and Catalysts\u003cbr\u003e22.9 Design for Recycling and Resource Efficiency\u003cbr\u003eReferences\u003cbr\u003eChapter 23. Separation of Large Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e23.1 Introduction\u003cbr\u003e23.2 The Circular Process for Large Municipal Solid Waste\u003cbr\u003e23.3 The Preconditions for Sorting Large Municipal Solid Waste\u003cbr\u003e23.4 Collection System of Large Municipal Solid Waste\u003cbr\u003e23.5 Sorting of Large Municipal Solid Waste\u003cbr\u003e23.6 Sorting Installation\u003cbr\u003e23.7 Sorting Process\u003cbr\u003e23.8 Recycling Efficiency\u003cbr\u003e23.9 The Future\u003cbr\u003eReference\u003cbr\u003eChapter 24. Recovery of Construction and Demolition Wastes\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e24.1 Introduction\u003cbr\u003e24.2 Existing Recycled Aggregate Concrete Applications\u003cbr\u003e24.3 Existing Concrete Recycling Methods\u003cbr\u003e24.4 Cost and Benefit Analysis\u003cbr\u003e24.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 25. Waste Electrical and Electronic Equipment Management\u003cbr\u003eAbstract\u003cbr\u003e25.1 Introduction\u003cbr\u003e25.2 Objectives of WEEE Management\u003cbr\u003e25.3 WEEE Take-Back Schemes\u003cbr\u003e25.4 Long-term Trends\u003cbr\u003eReferences\u003cbr\u003eChapter 26. Developments in Collection of Municipal Solid Waste\u003cbr\u003eAbstract\u003cbr\u003e26.1 Introduction\u003cbr\u003e26.2 Definition of Municipal Solid Waste\u003cbr\u003e26.3 Quantities of Municipal Solid Waste\u003cbr\u003e26.4 Quality of Municipal Solid Waste\u003cbr\u003e26.5 Management of Municipal Solid Waste\u003cbr\u003eReferences\u003cbr\u003ePart III: Strategy and Policy\u003cbr\u003eChapter 27. From Recycling to Eco-design\u003cbr\u003eAbstract\u003cbr\u003e27.1 Introduction\u003cbr\u003e27.2 Principle of Material Design for Recycling\u003cbr\u003e27.3 Eco-design Strategies for Recycling\u003cbr\u003e27.4 Is Recycling Really Less Impactful on the Environment?\u003cbr\u003e27.5 Current Limits for Eco-design for Recycling Strategies\u003cbr\u003e27.6 Market Demand\u003cbr\u003e27.7 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 28. Recycling and Labeling\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e28.1 Introduction\u003cbr\u003e28.2 Functional Needs Analysis\u003cbr\u003e28.3 Bibliographical Research on the Polymer Labeling Processes\u003cbr\u003e28.4 First Results of Detection Tests with Polypropylene Samples\u003cbr\u003e28.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 29. Informal Waste Recycling in Developing Countries\u003cbr\u003eAbstract\u003cbr\u003e29.1 Introduction\u003cbr\u003e29.2 Defining the Informal Sector\u003cbr\u003e29.3 Informal Solid Waste Management\u003cbr\u003e29.4 Informal e-Waste Recycling\u003cbr\u003eReferences\u003cbr\u003eChapter 30. Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies\u003cbr\u003eAbstract\u003cbr\u003eAcknowledgments\u003cbr\u003e30.1 Is a Circular Economy Possible or Desirable?\u003cbr\u003e30.2 Hierarchies of Material Conservation\u003cbr\u003e30.3 When is Recycling Not the Answer?\u003cbr\u003e30.4 Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 31. The Economics of Recycling\u003cbr\u003eAbstract\u003cbr\u003e31.1 Introduction\u003cbr\u003e31.2 Economic Trends and Drivers\u003cbr\u003e31.3 Environmental and Social Costs and Benefits\u003cbr\u003e31.4 Economic Instruments\u003cbr\u003e31.5 Conclusions and Discussion\u003cbr\u003eReferences\u003cbr\u003eChapter 32. Geopolitics of Resources and Recycling\u003cbr\u003eAbstract\u003cbr\u003e32.1 Introduction\u003cbr\u003e32.2 Resources, Scarcity and Geopolitics\u003cbr\u003e32.3 Recycling in the Geopolitical Context\u003cbr\u003eReferences\u003cbr\u003eChapter 33. Recycling in Waste Management Policy\u003cbr\u003eAbstract\u003cbr\u003e33.1 Introduction\u003cbr\u003e33.2 A Brief History of Waste Management\u003cbr\u003e33.3 Integrating Recycling in Waste Management Policy Design\u003cbr\u003eReferences\u003cbr\u003eChapter 34. Voluntary and Negotiated Agreements\u003cbr\u003eAbstract\u003cbr\u003e34.1 Introduction\u003cbr\u003e34.2 Experiences in Recycling Policy\u003cbr\u003e34.3 Lessons Learned\u003cbr\u003eReferences\u003cbr\u003eChapter 35. Economic Instruments\u003cbr\u003eAbstract\u003cbr\u003e35.1 Introduction\u003cbr\u003e35.2 Criteria to Compare Policy Instruments\u003cbr\u003e35.3 Basic Environmental Policy Instruments Aimed at Stimulating Recycling\u003cbr\u003e35.4 Incentives for Upstream Green Product Design\u003cbr\u003e35.5 Multiproduct and Mixed Waste Streams\u003cbr\u003e35.6 EPR and Recycling Certificates\u003cbr\u003e35.7 Durable Goods\u003cbr\u003e35.8 Imperfect Competition in Product and Recycling Markets\u003cbr\u003e35.9 Policy Instruments in an International Market for Waste and Materials\u003cbr\u003e35.10 Recycling and Nonrenewable Resources in a Macro Economic Perspective\u003cbr\u003e35.11 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 36. Information Instruments\u003cbr\u003eAbstract\u003cbr\u003e36.1 Introduction\u003cbr\u003e36.2 Target Groups\/Audience\u003cbr\u003e36.3 Communication Tools\u003cbr\u003e36.4 Messaging: Information and Communication\u003cbr\u003e36.5 Conclusion\u003cbr\u003eReferences\u003cbr\u003eChapter 37. Regulatory Instruments: Sustainable Materials Management, Recycling, and the Law\u003cbr\u003eAbstract\u003cbr\u003e37.1 Introduction\u003cbr\u003e37.2 Resource Efficiency and Waste Strategy—The Blurb\u003cbr\u003e37.3 The EU Framework Directive on Waste, and Its View on Recovery and Recycling\u003cbr\u003eAppendix 1. Physical Separation 101\u003cbr\u003eA1.1 Breakage\u003cbr\u003eA1.2 Size Classification\u003cbr\u003eA1.3 Screens\u003cbr\u003eA1.4 Dynamic Separators\u003cbr\u003eA1.5 Gravity Separations\u003cbr\u003eA1.6 Water Media Separations\u003cbr\u003eA1.7 Dense Media Separations\u003cbr\u003eA1.8 Flotation\u003cbr\u003eA1.9 Magnetic Separations\u003cbr\u003eA1.10 Eddy Current Separation\u003cbr\u003eA1.11 Electrostatic Separations\u003cbr\u003eA1.12 Sorting\u003cbr\u003eReference\u003cbr\u003eAppendix 2. Thermodynamics 101\u003cbr\u003eA2.1 On the Consumption and Availability of Metals\u003cbr\u003eA2.2 Recycling and Extractive Metallurgy: An Energy Issue\u003cbr\u003eA2.3 The Second Law of Thermodynamics Devil: An Entropy Issue\u003cbr\u003eA2.4 Chemical Thermodynamics and Reaction Equilibrium\u003cbr\u003eA2.5 On the Stability of Oxides and Other Metal-Containing Minerals\u003cbr\u003eA2.6 The Carbon Tragedy\u003cbr\u003eA2.7 H2 is an Alternative Reductor\u003cbr\u003eA2.8 Very Stable Oxides\u003cbr\u003eA2.9 About Solutions and Desired Purity Levels\u003cbr\u003eA2.10 Some Conclusions\u003cbr\u003eReference\u003cbr\u003eAppendix 3. Life-Cycle Assessment\u003cbr\u003eA3.1 Life-Cycle Assessment\u003cbr\u003eA3.2 Life-Cycle Assessment in the Mining and Metallurgy\u003cbr\u003eA3.3 LCA and Multimetal Output\u003cbr\u003eA3.4 End-of-Life Treatment in the LCA Context\u003cbr\u003eA3.5 Case Studies on LCA Results for Multimetal Outputs\u003cbr\u003eA3.6 Summary and Outlook\u003cbr\u003eReference\u003cbr\u003eIndex"}
TPE 2002
$180.00
{"id":11242250692,"title":"TPE 2002","handle":"978-1-85957-317-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-317-4 \u003cbr\u003e\u003cbr\u003eHotel Le Plaza, Brussels, Belgium, 24th- 25th June 2002\u003cbr\u003e\u003cbr\u003epages 160\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe's premier meeting place for the thermoplastics elastomers sector. The last three events which were held in London, Amsterdam and Brussels each brought together more than 200 key players involved in all stages of the TPEs supply chain. \u003cbr\u003e\u003cbr\u003eThe TPEs 2002 conference program featured expert presentations on key market trends, new application developments and the very latest material innovations.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION ONE: INTRODUCTION AND MARKET TRENDS \u003cbr\u003ePaper 1: Keynote - Thermoplastic Elastomers - Materials of Great Promise and Potential \u003cbr\u003eBarry Statham, Consultant, UK \u003cbr\u003ePaper 2: TPE Growth and Value Applications in Auto Interiors and Body Seals \u003cbr\u003eRobert Eller, Robert Eller Associates, USA \u003cbr\u003ePaper 3: Recent Trends and Outlook for Elastomers \u003cbr\u003ePrachaya Jumpasut, International Rubber Study Group, UK \u003cbr\u003e\u003cbr\u003eSESSION TWO: MATERIALS INNOVATION \u003cbr\u003ePaper 4: Freedom to Innovate - The Changing Face of the TPE Industry \u003cbr\u003eRoger Morgan, KRATON Polymers LLC, Germany \u003cbr\u003ePaper 5: The Development of a New Elastomeric Homopolymer Polypropylene \u003cbr\u003eGian De Belder \u0026amp; Emily Boswell, Procter \u0026amp; Gamble, UK \u003cbr\u003e\u003cbr\u003eSESSION THREE: BONDING AND ADHESION \u003cbr\u003ePaper 6: New TPV Bonding Technologies \u003cbr\u003eJuergen Kautt, Advanced Elastomer Systems, USA \u003cbr\u003ePaper 7: Hard \/ Soft Combinations with THERMOLAST K (TPE-S): Material Combinations Processing Testing Method \u003cbr\u003eJörg Sänger, KRAIBURG TPE GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION FOUR: MATERIAL AND APPLICATION DEVELOPMENTS \u003cbr\u003ePaper 8: \"Case-Study\": From Concept to Commercialisation \u003cbr\u003eTony Carroll, PolyOne Engineered Materials UK, UK \u003cbr\u003ePaper 9: TPE and Wine: A Toast Deserving Combination \u003cbr\u003eat van Veelen, Wittenburg BV, The Netherlands \u003cbr\u003ePaper unavailable at time of print \u003cbr\u003e\u003cbr\u003eSESSION FIVE: AUTOMOTIVE APPLICATIONS \u003cbr\u003ePaper 10: Comparison of Sealing Performance between EPDM and TPV Weatherstrip Profiles \u003cbr\u003eZuoxing (Steven) Yu, Cooper Standard Automotive Canada Ltd, Canada \u003cbr\u003ePaper 11: Development of a Polypropylene\/Ethylene-octene Based TPE for Automotive Fluid Handling Applications \u003cbr\u003eTony McNally, P McShane, G M McNally W R Murphy M Cook \u0026amp; A Miller, Queen's University Belfast, UK \u003cbr\u003ePaper 12: Evaluation of Slip Coat Materials Co-Extruded on TPVS for Automotive Weatherseal \u003cbr\u003eJan Tom Fernhout, Reza Sadeghi, Hua Cai, Chris La Tulippe, Ryszard Brzoskowski \u0026amp; Edwin Currie, DSM Elastomers, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION SIX: ADVANCES IN MATERIALS PRODUCTION TECHNOLOGY \u003cbr\u003ePaper 13: Dimerised Fatty Acid Technology for Rubbery Thermoplastic Polyurethane Elastomers \u003cbr\u003ePaul Cameron, Uniqema Ltd (ICI), UK \u003cbr\u003e\u003cbr\u003eSESSION SEVEN: PROCESSING AND RECYCLING ISSUES \u003cbr\u003ePaper 14: 3D Flow Simulation of TPEs \u003cbr\u003eLothar Kallien, Sigma Engineering GmbH, Germany \u003cbr\u003ePaper 15: Foaming and Applications of TPV \u003cbr\u003eAbdelhadi Sahnoune, Advanced Elastomer Systems, USA \u003cbr\u003ePaper 16 A Method for the Multiple Recycling of Thermoplastic Polyurethane Elastomers which Retains their Mechanical Strength Properties \u003cbr\u003eClaude Hepburn (Professor of Polymer Engineering) \u0026amp; G Knox, UK\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:15:17-04:00","created_at":"2017-06-22T21:15:17-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","acrylic polymers","adhesion","application","automotive","bonding","book","elastomers","EPDM","foams","p-chemistry","poly","polymer","polymers","polypropylene","polyurethane","recycling","sealing","thermoplastics","TPE","TPV","weatherstrip"],"price":18000,"price_min":18000,"price_max":18000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378472516,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"TPE 2002","public_title":null,"options":["Default Title"],"price":18000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-317-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-317-4.jpg?v=1499207826"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-317-4.jpg?v=1499207826","options":["Title"],"media":[{"alt":null,"id":353944272989,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-317-4.jpg?v=1499207826"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-317-4.jpg?v=1499207826","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Conference Proceedings \u003cbr\u003eISBN 978-1-85957-317-4 \u003cbr\u003e\u003cbr\u003eHotel Le Plaza, Brussels, Belgium, 24th- 25th June 2002\u003cbr\u003e\u003cbr\u003epages 160\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis international two-day conference is now firmly established as Europe's premier meeting place for the thermoplastics elastomers sector. The last three events which were held in London, Amsterdam and Brussels each brought together more than 200 key players involved in all stages of the TPEs supply chain. \u003cbr\u003e\u003cbr\u003eThe TPEs 2002 conference program featured expert presentations on key market trends, new application developments and the very latest material innovations.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nSESSION ONE: INTRODUCTION AND MARKET TRENDS \u003cbr\u003ePaper 1: Keynote - Thermoplastic Elastomers - Materials of Great Promise and Potential \u003cbr\u003eBarry Statham, Consultant, UK \u003cbr\u003ePaper 2: TPE Growth and Value Applications in Auto Interiors and Body Seals \u003cbr\u003eRobert Eller, Robert Eller Associates, USA \u003cbr\u003ePaper 3: Recent Trends and Outlook for Elastomers \u003cbr\u003ePrachaya Jumpasut, International Rubber Study Group, UK \u003cbr\u003e\u003cbr\u003eSESSION TWO: MATERIALS INNOVATION \u003cbr\u003ePaper 4: Freedom to Innovate - The Changing Face of the TPE Industry \u003cbr\u003eRoger Morgan, KRATON Polymers LLC, Germany \u003cbr\u003ePaper 5: The Development of a New Elastomeric Homopolymer Polypropylene \u003cbr\u003eGian De Belder \u0026amp; Emily Boswell, Procter \u0026amp; Gamble, UK \u003cbr\u003e\u003cbr\u003eSESSION THREE: BONDING AND ADHESION \u003cbr\u003ePaper 6: New TPV Bonding Technologies \u003cbr\u003eJuergen Kautt, Advanced Elastomer Systems, USA \u003cbr\u003ePaper 7: Hard \/ Soft Combinations with THERMOLAST K (TPE-S): Material Combinations Processing Testing Method \u003cbr\u003eJörg Sänger, KRAIBURG TPE GmbH, Germany \u003cbr\u003e\u003cbr\u003eSESSION FOUR: MATERIAL AND APPLICATION DEVELOPMENTS \u003cbr\u003ePaper 8: \"Case-Study\": From Concept to Commercialisation \u003cbr\u003eTony Carroll, PolyOne Engineered Materials UK, UK \u003cbr\u003ePaper 9: TPE and Wine: A Toast Deserving Combination \u003cbr\u003eat van Veelen, Wittenburg BV, The Netherlands \u003cbr\u003ePaper unavailable at time of print \u003cbr\u003e\u003cbr\u003eSESSION FIVE: AUTOMOTIVE APPLICATIONS \u003cbr\u003ePaper 10: Comparison of Sealing Performance between EPDM and TPV Weatherstrip Profiles \u003cbr\u003eZuoxing (Steven) Yu, Cooper Standard Automotive Canada Ltd, Canada \u003cbr\u003ePaper 11: Development of a Polypropylene\/Ethylene-octene Based TPE for Automotive Fluid Handling Applications \u003cbr\u003eTony McNally, P McShane, G M McNally W R Murphy M Cook \u0026amp; A Miller, Queen's University Belfast, UK \u003cbr\u003ePaper 12: Evaluation of Slip Coat Materials Co-Extruded on TPVS for Automotive Weatherseal \u003cbr\u003eJan Tom Fernhout, Reza Sadeghi, Hua Cai, Chris La Tulippe, Ryszard Brzoskowski \u0026amp; Edwin Currie, DSM Elastomers, The Netherlands \u003cbr\u003e\u003cbr\u003eSESSION SIX: ADVANCES IN MATERIALS PRODUCTION TECHNOLOGY \u003cbr\u003ePaper 13: Dimerised Fatty Acid Technology for Rubbery Thermoplastic Polyurethane Elastomers \u003cbr\u003ePaul Cameron, Uniqema Ltd (ICI), UK \u003cbr\u003e\u003cbr\u003eSESSION SEVEN: PROCESSING AND RECYCLING ISSUES \u003cbr\u003ePaper 14: 3D Flow Simulation of TPEs \u003cbr\u003eLothar Kallien, Sigma Engineering GmbH, Germany \u003cbr\u003ePaper 15: Foaming and Applications of TPV \u003cbr\u003eAbdelhadi Sahnoune, Advanced Elastomer Systems, USA \u003cbr\u003ePaper 16 A Method for the Multiple Recycling of Thermoplastic Polyurethane Elastomers which Retains their Mechanical Strength Properties \u003cbr\u003eClaude Hepburn (Professor of Polymer Engineering) \u0026amp; G Knox, UK\u003cbr\u003e\u003cbr\u003e"}
Thermoforming of Singl...
$149.00
{"id":11242249476,"title":"Thermoforming of Single and Multilayer Laminates, 1st Edition","handle":"9781455731725","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ashter \u003cbr\u003eISBN 9781455731725 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePlastic Films Technologies, Testing, and Applications\u003cbr\u003ePublished: 2013\u003c\/p\u003e\n\u003cp\u003ePages: 352\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• First comprehensive source of information and hands-on guide for the thermoforming of multilayered laminates\u003cbr\u003e\u003cbr\u003e• Covers applications across such sectors as automotive, packaging, home goods, and construction\u003cbr\u003e\u003cbr\u003e• Introduces new testing methods leveraging protocols used for metals\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermoforming of Single and Multilayer Laminates explains the fundamentals of lamination and plastics thermoforming technologies along with current and new developments. It focuses on properties and thermoforming mechanics of plastic films and in particular single and multilayered laminates, including barrier films.\u003cbr\u003e\u003cbr\u003eFor environmental and economic reasons, laminates are becoming increasingly important as a replacement for solid sheets and paint finishes in many industries, including transportation, packaging, and construction. Yet the processes of film formability during the extensive deformation and elevated temperatures experienced in conventional processing technologies, such as thermoforming, are poorly understood by most engineers.\u003cbr\u003e\u003cbr\u003eThis book covers production processes, such as extrusion, calendaring, and casting, as well as mechanical and impact testing methods. It also describes how testing protocols developed for metals can be leveraged for plastic films and laminates and includes a thorough discussion on methods for performing optical strain analysis.\u003cbr\u003e\u003cbr\u003eApplications in transportation vehicles and packaging, including packaging for food, medical and electronics applications, sports equipment, and household appliances, are discussed. Safety, recycling and environmental aspects of thermoforming and its products complete the book.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEngineers working with plastics films or products using plastic films (OEM level to the actual part manufacturer of thermoforming) in industries such as Automotive\/ transportation manufacturing, Packaging, Plastics Industry, Paint Industry; Personnel involved in testing and QA of products using plastics films, and managers; Academic Institutions\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eAcknowledgments\u003cbr\u003e1. Introduction to Thermoforming\u003cbr\u003e1.1 History\u003cbr\u003e1.2 Market and Applications\u003cbr\u003eReferences\u003cbr\u003e2. The Thermoforming Process\u003cbr\u003e2.1 Background\u003cbr\u003e2.2 Basic Principles of Thermoforming\u003cbr\u003e2.3 Difference between Plastic Sheets and Laminates\u003cbr\u003e2.4 Theory of Forming Process\u003cbr\u003e2.5 Forming Characteristics\u003cbr\u003e2.6 Machinery\u003cbr\u003eReferences\u003cbr\u003e3. Review of Characteristics of Common Plastics for Thermoforming\u003cbr\u003e3.1 Impact of Main Variables\u003cbr\u003eReferences\u003cbr\u003e4. Lamination\u003cbr\u003e4.1 Why Laminates?\u003cbr\u003e4.2 Elements of Laminates\u003cbr\u003e4.3 Typical Commercial Laminates\u003cbr\u003e4.4 Hot-Roll Lamination\u003cbr\u003e4.5 Extrusion Lamination\u003cbr\u003e4.6 Flame Lamination\u003cbr\u003e4.7 Adhesive Lamination\u003cbr\u003eReferences\u003cbr\u003e5. New Developments\u003cbr\u003e5.1 Heating Technology\u003cbr\u003e5.2 Trimming Technology\u003cbr\u003e5.3 Thickness Reduction\u003cbr\u003e5.4 Pressure Forming\u003cbr\u003e5.5 Vacuum Forming\u003cbr\u003e5.6 Twin-Sheet Forming\u003cbr\u003e5.7 Reinforced-Sheet Forming\u003cbr\u003e5.8 Multilayer Sheet Forming\u003cbr\u003e5.9 Biaxial Bulge\u003cbr\u003e5.10 Biaxial Strain\u003cbr\u003e5.11 Bulge Test Models\u003cbr\u003eReferences\u003cbr\u003e6. Mechanics of Materials\u003cbr\u003e6.1 Stress\u003cbr\u003e6.2 Strain\u003cbr\u003e6.3 Stress Relaxation and Creep\u003cbr\u003e6.4 Creep and Stress Relaxation Models\u003cbr\u003e6.5 Peeling\u003cbr\u003e6.6 Delamination\u003cbr\u003eReferences\u003cbr\u003e7. Characterization\u003cbr\u003e7.1 Mechanical Testing\u003cbr\u003e7.2 Impact Testing\u003cbr\u003e7.3 Biaxial Bulge Testing\u003cbr\u003e7.4 Rheological Testing\u003cbr\u003e7.5 Differential Scanning Calorimetry (DSC)\u003cbr\u003e7.6 Color Test\u003cbr\u003e7.7 Specular Gloss Test\u003cbr\u003eReferences\u003cbr\u003e8. Matching Material Characteristics to Commercial Thermoforming\u003cbr\u003e8.1 Packaging\u003cbr\u003e8.2 Appliances\u003cbr\u003e8.3 Bathroom\u003cbr\u003e8.4 Transportation\u003cbr\u003e8.5 Sports\u003cbr\u003eReferences\u003cbr\u003e9. Safety, Recycling and Environmental Issues of Thermoforming and its Products\u003cbr\u003e9.1 Safety\u003cbr\u003e9.2 Safety Guards\u003cbr\u003e9.3 Recycling\u003cbr\u003e9.4 The Economics of Recycling\u003cbr\u003e9.5 Handling of Scrap\u003cbr\u003e9.6 Contamination\u003cbr\u003e9.7 Environmental Impact\u003cbr\u003eReferences\u003cbr\u003e10. Other Processing Approaches\u003cbr\u003e10.1 Melt Extrusion\u003cbr\u003e10.2 Coextrusion\u003cbr\u003e10.3 Calendering\u003cbr\u003e10.4 Casting\u003cbr\u003e10.5 Coating\u003cbr\u003eReferences\u003cbr\u003e11. Modeling of Thermoforming: A Literature Review\u003cbr\u003e11.1 Models\u003cbr\u003eReferences\u003cbr\u003e12. Troubleshooting\u003cbr\u003e12.1 Thermoforming\u003cbr\u003e12.2 Hot-Roll Lamination\u003cbr\u003eReferences\u003cbr\u003eIndex","published_at":"2017-06-22T21:15:13-04:00","created_at":"2017-06-22T21:15:13-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","biaxial","book","characterization","environment","laminates","lamination","market and applications","p-processing","plastics","polymer","recycling","safety","technology","thermoforming","troubleshooting"],"price":14900,"price_min":14900,"price_max":14900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378469828,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Thermoforming of Single and Multilayer Laminates, 1st Edition","public_title":null,"options":["Default Title"],"price":14900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"9781455731725","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280","options":["Title"],"media":[{"alt":null,"id":358810157149,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/9781455731725_9de2532f-a7bd-428f-8283-c2521a2c0bb3.jpg?v=1499726280","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: S Ashter \u003cbr\u003eISBN 9781455731725 \u003cbr\u003e\u003cbr\u003e\n\u003cp\u003ePlastic Films Technologies, Testing, and Applications\u003cbr\u003ePublished: 2013\u003c\/p\u003e\n\u003cp\u003ePages: 352\u003c\/p\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\n\u003cb\u003eKey Features\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003e• First comprehensive source of information and hands-on guide for the thermoforming of multilayered laminates\u003cbr\u003e\u003cbr\u003e• Covers applications across such sectors as automotive, packaging, home goods, and construction\u003cbr\u003e\u003cbr\u003e• Introduces new testing methods leveraging protocols used for metals\u003cbr\u003e\u003cbr\u003e\u003cb\u003eDescription\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eThermoforming of Single and Multilayer Laminates explains the fundamentals of lamination and plastics thermoforming technologies along with current and new developments. It focuses on properties and thermoforming mechanics of plastic films and in particular single and multilayered laminates, including barrier films.\u003cbr\u003e\u003cbr\u003eFor environmental and economic reasons, laminates are becoming increasingly important as a replacement for solid sheets and paint finishes in many industries, including transportation, packaging, and construction. Yet the processes of film formability during the extensive deformation and elevated temperatures experienced in conventional processing technologies, such as thermoforming, are poorly understood by most engineers.\u003cbr\u003e\u003cbr\u003eThis book covers production processes, such as extrusion, calendaring, and casting, as well as mechanical and impact testing methods. It also describes how testing protocols developed for metals can be leveraged for plastic films and laminates and includes a thorough discussion on methods for performing optical strain analysis.\u003cbr\u003e\u003cbr\u003eApplications in transportation vehicles and packaging, including packaging for food, medical and electronics applications, sports equipment, and household appliances, are discussed. Safety, recycling and environmental aspects of thermoforming and its products complete the book.\u003cbr\u003e\u003cbr\u003e\u003cb\u003eReadership\u003c\/b\u003e\u003cbr\u003e\u003cbr\u003eEngineers working with plastics films or products using plastic films (OEM level to the actual part manufacturer of thermoforming) in industries such as Automotive\/ transportation manufacturing, Packaging, Plastics Industry, Paint Industry; Personnel involved in testing and QA of products using plastics films, and managers; Academic Institutions\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nPreface\u003cbr\u003eAcknowledgments\u003cbr\u003e1. Introduction to Thermoforming\u003cbr\u003e1.1 History\u003cbr\u003e1.2 Market and Applications\u003cbr\u003eReferences\u003cbr\u003e2. The Thermoforming Process\u003cbr\u003e2.1 Background\u003cbr\u003e2.2 Basic Principles of Thermoforming\u003cbr\u003e2.3 Difference between Plastic Sheets and Laminates\u003cbr\u003e2.4 Theory of Forming Process\u003cbr\u003e2.5 Forming Characteristics\u003cbr\u003e2.6 Machinery\u003cbr\u003eReferences\u003cbr\u003e3. Review of Characteristics of Common Plastics for Thermoforming\u003cbr\u003e3.1 Impact of Main Variables\u003cbr\u003eReferences\u003cbr\u003e4. Lamination\u003cbr\u003e4.1 Why Laminates?\u003cbr\u003e4.2 Elements of Laminates\u003cbr\u003e4.3 Typical Commercial Laminates\u003cbr\u003e4.4 Hot-Roll Lamination\u003cbr\u003e4.5 Extrusion Lamination\u003cbr\u003e4.6 Flame Lamination\u003cbr\u003e4.7 Adhesive Lamination\u003cbr\u003eReferences\u003cbr\u003e5. New Developments\u003cbr\u003e5.1 Heating Technology\u003cbr\u003e5.2 Trimming Technology\u003cbr\u003e5.3 Thickness Reduction\u003cbr\u003e5.4 Pressure Forming\u003cbr\u003e5.5 Vacuum Forming\u003cbr\u003e5.6 Twin-Sheet Forming\u003cbr\u003e5.7 Reinforced-Sheet Forming\u003cbr\u003e5.8 Multilayer Sheet Forming\u003cbr\u003e5.9 Biaxial Bulge\u003cbr\u003e5.10 Biaxial Strain\u003cbr\u003e5.11 Bulge Test Models\u003cbr\u003eReferences\u003cbr\u003e6. Mechanics of Materials\u003cbr\u003e6.1 Stress\u003cbr\u003e6.2 Strain\u003cbr\u003e6.3 Stress Relaxation and Creep\u003cbr\u003e6.4 Creep and Stress Relaxation Models\u003cbr\u003e6.5 Peeling\u003cbr\u003e6.6 Delamination\u003cbr\u003eReferences\u003cbr\u003e7. Characterization\u003cbr\u003e7.1 Mechanical Testing\u003cbr\u003e7.2 Impact Testing\u003cbr\u003e7.3 Biaxial Bulge Testing\u003cbr\u003e7.4 Rheological Testing\u003cbr\u003e7.5 Differential Scanning Calorimetry (DSC)\u003cbr\u003e7.6 Color Test\u003cbr\u003e7.7 Specular Gloss Test\u003cbr\u003eReferences\u003cbr\u003e8. Matching Material Characteristics to Commercial Thermoforming\u003cbr\u003e8.1 Packaging\u003cbr\u003e8.2 Appliances\u003cbr\u003e8.3 Bathroom\u003cbr\u003e8.4 Transportation\u003cbr\u003e8.5 Sports\u003cbr\u003eReferences\u003cbr\u003e9. Safety, Recycling and Environmental Issues of Thermoforming and its Products\u003cbr\u003e9.1 Safety\u003cbr\u003e9.2 Safety Guards\u003cbr\u003e9.3 Recycling\u003cbr\u003e9.4 The Economics of Recycling\u003cbr\u003e9.5 Handling of Scrap\u003cbr\u003e9.6 Contamination\u003cbr\u003e9.7 Environmental Impact\u003cbr\u003eReferences\u003cbr\u003e10. Other Processing Approaches\u003cbr\u003e10.1 Melt Extrusion\u003cbr\u003e10.2 Coextrusion\u003cbr\u003e10.3 Calendering\u003cbr\u003e10.4 Casting\u003cbr\u003e10.5 Coating\u003cbr\u003eReferences\u003cbr\u003e11. Modeling of Thermoforming: A Literature Review\u003cbr\u003e11.1 Models\u003cbr\u003eReferences\u003cbr\u003e12. Troubleshooting\u003cbr\u003e12.1 Thermoforming\u003cbr\u003e12.2 Hot-Roll Lamination\u003cbr\u003eReferences\u003cbr\u003eIndex"}
Regulation of Food Pac...
$125.00
{"id":11242214212,"title":"Regulation of Food Packaging in Europe and the USA","handle":"978-1-85957-471-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Derek J Knight and Lesley A Creighton \u003cbr\u003eISBN 978-1-85957-471-3 \u003cbr\u003e\u003cbr\u003eSafePharm Laboratories Ltd.\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003eRapra Review Reports, Vol. 15, No. 5, Report 173\u003cbr\u003epages 120\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA wide variety of plastics is used in food-contact applications and it is important that such plastics do not affect the food with which they come into contact. Given the obvious importance of producing safe and wholesome food, with adequate shelf life, it is not surprising that the food industry is heavily regulated. There is considerable public concern about the safety of food packaging, and one issue is the potential migration of compounding ingredients, monomers or additives from plastics into food. In general, food diffuses into plastic packaging, enhancing the migration of unreacted monomers and potentially mobile additives from the plastic into the food. \u003cbr\u003e\u003cbr\u003eThe objective of food packaging legislation is to protect the consumer by controlling the contamination of food by chemicals transferred from the packaging. Standard migration tests are available based on prescribed food simulants; these tests include overall migration testing and specific migration tests (for individual chemical species). The gradual development of lower detection limits for analytical methods has shown that many substances previously not considered as indirect food additives do actually migrate into food. \u003cbr\u003e\u003cbr\u003eFood packaging regulations are constantly under revision, and differ significantly between Europe and the USA – even between countries within the EU, although there is a strong harmonising influence from the Council of Europe and the European Commission. The regulation of food-contact materials in the EU is currently in a state of development, with various aspects still subject to national provisions until the European Commission has completed the harmonisation process. The US regulatory system is complex, with various approval and certification schemes. \u003cbr\u003e\u003cbr\u003eThis Rapra Review Report provides a clearly written summary of the current legislation surrounding the use of plastics in contact with food. It will be of interest to those working to formulate food-contact plastics, food processors and testing laboratories, packaging manufacturers and users, together with organisations working to ensure safe conditions for food production. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. INTRODUCTION AND OVERVIEW \u003cbr\u003e2. PLASTICS FOR USE IN PACKAGING\u003cbr\u003e2.1 Characteristics of Plastics\u003cbr\u003e2.2 Applications in Packaging\u003cbr\u003e2.2.1 Polymer Types\u003cbr\u003e2.2.2 Combination Products \u003cbr\u003e3. SAFETY EVALUATION OF FOOD PACKAGING\u003cbr\u003e3.1 Exposure Assessment\u003cbr\u003e3.1.1 Migration Evaluation\u003cbr\u003e3.1.2 Estimation of Dietary Exposure\u003cbr\u003e3.2 Toxicology Testing\u003cbr\u003e3.3 Risk Assessment \u003cbr\u003e4. CONTROL OF FOOD PACKAGING IN THE EU\u003cbr\u003e4.1 General Principles and the Framework Directive\u003cbr\u003e4.2 Food-Contact Plastics\u003cbr\u003e4.2.1 The Plastics Directive\u003cbr\u003e4.2.2 EU Lists of Substances for Plastics\u003cbr\u003e4.2.3 Safety Assessment of Additives and Starting Substances for Food-Contact Plastics\u003cbr\u003e4.2.4 Safety Assessment of Polymer Substances\u003cbr\u003e4.3 Future Developments for Food Plastics in the EU\u003cbr\u003e4.3.1 Introduction\u003cbr\u003e4.3.2 Proposed Introduction of a Revised Regulation to Council Directive 89\/109\/EC\u003cbr\u003e4.3.3 The Plastics Super Directive\u003cbr\u003e4.3.4 Active and Intelligent Packaging\u003cbr\u003e4.4 Other EU Food Packaging Measures\u003cbr\u003e4.4.1 Regenerated Cellulose Film\u003cbr\u003e4.4.2 Ceramic Articles\u003cbr\u003e4.4.3 Control of Vinyl Chloride from PVC\u003cbr\u003e4.4.4 Control of N-nitrosamines from Teats and Soothers\u003cbr\u003e4.4.5 Restrictions on Certain Epoxy Derivatives\u003cbr\u003e4.5 Disposal and Recycling of Plastics\u003cbr\u003e4.6 Strategy for Food-Contact Plastic Approval in the EU \u003cbr\u003e5. NATIONAL CONTROLS ON FOOD PACKAGING IN EU COUNTRIES\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Germany\u003cbr\u003e5.3 France\u003cbr\u003e5.4 The Netherlands\u003cbr\u003e5.5 Belgium\u003cbr\u003e5.6 Italy \u003cbr\u003e6. COUNCIL OF EUROPE WORK ON FOOD PACKAGING\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Completed Council of Europe Resolutions\u003cbr\u003e6.2.1 Colorants in Plastic Materials\u003cbr\u003e6.2.2 Polymerisation Aids\u003cbr\u003e6.2.3 Surface Coatings\u003cbr\u003e6.2.4 Ion Exchange and Absorbent Resins\u003cbr\u003e6.2.5 Silicones\u003cbr\u003e6.3 Council of Europe Ongoing Work\u003cbr\u003e6.3.1 Paper and Board\u003cbr\u003e6.3.2 Packaging Inks\u003cbr\u003e6.3.3 Rubber\u003cbr\u003e6.3.4 Other Draft Resolutions and Guidelines and Future Developments \u003cbr\u003e7. FOOD PACKAGING IN THE USA\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Development of US Food Packaging Legislation\u003cbr\u003e7.3 The Petition\u003cbr\u003e7.4 Threshold of Regulation Process\u003cbr\u003e7.5 The Pre-Marketing Notification Scheme \u003cbr\u003e8. CONCLUSIONS\u003cbr\u003eAcknowledgements\u003cbr\u003eAdditional References\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDerek J Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd., a leading UK contract research organisation, specialising in safety assessments of chemicals, biocides, and agrochemical pesticides. He heads a team of regulatory affairs professionals who deal with a wide range of registration projects covering many product types for regulatory compliance in all the key markets globally. As such he has gained an overall perspective into commercial issues associated with the regulation of the chemical industry. He is a Fellow of the RSC and a Fellow of TOPRA. His doctoral studies at the University of Oxford were in organosulphur chemistry. \u003cbr\u003e\u003cbr\u003eLesley A Creighton has worked within SafePharm Laboratories for 13 years providing regulatory support to the chemical industry for the notification of new chemical substances, food contact materials, and cosmetic products. She has a combined science degree in chemistry and mathematics and is a member of both the RSC and TOPRA. 2004\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:13:21-04:00","created_at":"2017-06-22T21:13:21-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2004","acrylic polymers","book","cellulose","ceramic","epoxy derivatives","EU","exposure","film","food","materials","migration","p-applications","packaging","plastics","polymer","PVC","recycling","testing","toxicology"],"price":12500,"price_min":12500,"price_max":12500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378351300,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Regulation of Food Packaging in Europe and the USA","public_title":null,"options":["Default Title"],"price":12500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-471-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-471-3.jpg?v=1499724997"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-471-3.jpg?v=1499724997","options":["Title"],"media":[{"alt":null,"id":358733873245,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-471-3.jpg?v=1499724997"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-471-3.jpg?v=1499724997","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Derek J Knight and Lesley A Creighton \u003cbr\u003eISBN 978-1-85957-471-3 \u003cbr\u003e\u003cbr\u003eSafePharm Laboratories Ltd.\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 2004\u003cbr\u003e\u003c\/span\u003eRapra Review Reports, Vol. 15, No. 5, Report 173\u003cbr\u003epages 120\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nA wide variety of plastics is used in food-contact applications and it is important that such plastics do not affect the food with which they come into contact. Given the obvious importance of producing safe and wholesome food, with adequate shelf life, it is not surprising that the food industry is heavily regulated. There is considerable public concern about the safety of food packaging, and one issue is the potential migration of compounding ingredients, monomers or additives from plastics into food. In general, food diffuses into plastic packaging, enhancing the migration of unreacted monomers and potentially mobile additives from the plastic into the food. \u003cbr\u003e\u003cbr\u003eThe objective of food packaging legislation is to protect the consumer by controlling the contamination of food by chemicals transferred from the packaging. Standard migration tests are available based on prescribed food simulants; these tests include overall migration testing and specific migration tests (for individual chemical species). The gradual development of lower detection limits for analytical methods has shown that many substances previously not considered as indirect food additives do actually migrate into food. \u003cbr\u003e\u003cbr\u003eFood packaging regulations are constantly under revision, and differ significantly between Europe and the USA – even between countries within the EU, although there is a strong harmonising influence from the Council of Europe and the European Commission. The regulation of food-contact materials in the EU is currently in a state of development, with various aspects still subject to national provisions until the European Commission has completed the harmonisation process. The US regulatory system is complex, with various approval and certification schemes. \u003cbr\u003e\u003cbr\u003eThis Rapra Review Report provides a clearly written summary of the current legislation surrounding the use of plastics in contact with food. It will be of interest to those working to formulate food-contact plastics, food processors and testing laboratories, packaging manufacturers and users, together with organisations working to ensure safe conditions for food production. \u003cbr\u003e\u003cbr\u003eThis review is accompanied by around 400 abstracts from papers and books in the Rapra Polymer Library database, to facilitate further reading on this subject. A subject index and a company index are included.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1. INTRODUCTION AND OVERVIEW \u003cbr\u003e2. PLASTICS FOR USE IN PACKAGING\u003cbr\u003e2.1 Characteristics of Plastics\u003cbr\u003e2.2 Applications in Packaging\u003cbr\u003e2.2.1 Polymer Types\u003cbr\u003e2.2.2 Combination Products \u003cbr\u003e3. SAFETY EVALUATION OF FOOD PACKAGING\u003cbr\u003e3.1 Exposure Assessment\u003cbr\u003e3.1.1 Migration Evaluation\u003cbr\u003e3.1.2 Estimation of Dietary Exposure\u003cbr\u003e3.2 Toxicology Testing\u003cbr\u003e3.3 Risk Assessment \u003cbr\u003e4. CONTROL OF FOOD PACKAGING IN THE EU\u003cbr\u003e4.1 General Principles and the Framework Directive\u003cbr\u003e4.2 Food-Contact Plastics\u003cbr\u003e4.2.1 The Plastics Directive\u003cbr\u003e4.2.2 EU Lists of Substances for Plastics\u003cbr\u003e4.2.3 Safety Assessment of Additives and Starting Substances for Food-Contact Plastics\u003cbr\u003e4.2.4 Safety Assessment of Polymer Substances\u003cbr\u003e4.3 Future Developments for Food Plastics in the EU\u003cbr\u003e4.3.1 Introduction\u003cbr\u003e4.3.2 Proposed Introduction of a Revised Regulation to Council Directive 89\/109\/EC\u003cbr\u003e4.3.3 The Plastics Super Directive\u003cbr\u003e4.3.4 Active and Intelligent Packaging\u003cbr\u003e4.4 Other EU Food Packaging Measures\u003cbr\u003e4.4.1 Regenerated Cellulose Film\u003cbr\u003e4.4.2 Ceramic Articles\u003cbr\u003e4.4.3 Control of Vinyl Chloride from PVC\u003cbr\u003e4.4.4 Control of N-nitrosamines from Teats and Soothers\u003cbr\u003e4.4.5 Restrictions on Certain Epoxy Derivatives\u003cbr\u003e4.5 Disposal and Recycling of Plastics\u003cbr\u003e4.6 Strategy for Food-Contact Plastic Approval in the EU \u003cbr\u003e5. NATIONAL CONTROLS ON FOOD PACKAGING IN EU COUNTRIES\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Germany\u003cbr\u003e5.3 France\u003cbr\u003e5.4 The Netherlands\u003cbr\u003e5.5 Belgium\u003cbr\u003e5.6 Italy \u003cbr\u003e6. COUNCIL OF EUROPE WORK ON FOOD PACKAGING\u003cbr\u003e6.1 Introduction\u003cbr\u003e6.2 Completed Council of Europe Resolutions\u003cbr\u003e6.2.1 Colorants in Plastic Materials\u003cbr\u003e6.2.2 Polymerisation Aids\u003cbr\u003e6.2.3 Surface Coatings\u003cbr\u003e6.2.4 Ion Exchange and Absorbent Resins\u003cbr\u003e6.2.5 Silicones\u003cbr\u003e6.3 Council of Europe Ongoing Work\u003cbr\u003e6.3.1 Paper and Board\u003cbr\u003e6.3.2 Packaging Inks\u003cbr\u003e6.3.3 Rubber\u003cbr\u003e6.3.4 Other Draft Resolutions and Guidelines and Future Developments \u003cbr\u003e7. FOOD PACKAGING IN THE USA\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Development of US Food Packaging Legislation\u003cbr\u003e7.3 The Petition\u003cbr\u003e7.4 Threshold of Regulation Process\u003cbr\u003e7.5 The Pre-Marketing Notification Scheme \u003cbr\u003e8. CONCLUSIONS\u003cbr\u003eAcknowledgements\u003cbr\u003eAdditional References\u003cbr\u003eAbstracts from the Polymer Library Database\u003cbr\u003eSubject Index\u003cbr\u003eCompany Index\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDerek J Knight is the Director of Regulatory Affairs at Safepharm Laboratories Ltd., a leading UK contract research organisation, specialising in safety assessments of chemicals, biocides, and agrochemical pesticides. He heads a team of regulatory affairs professionals who deal with a wide range of registration projects covering many product types for regulatory compliance in all the key markets globally. As such he has gained an overall perspective into commercial issues associated with the regulation of the chemical industry. He is a Fellow of the RSC and a Fellow of TOPRA. His doctoral studies at the University of Oxford were in organosulphur chemistry. \u003cbr\u003e\u003cbr\u003eLesley A Creighton has worked within SafePharm Laboratories for 13 years providing regulatory support to the chemical industry for the notification of new chemical substances, food contact materials, and cosmetic products. She has a combined science degree in chemistry and mathematics and is a member of both the RSC and TOPRA. 2004\u003cbr\u003e\u003cbr\u003e"}
Recycling of Plastic M...
$109.00
{"id":11242238468,"title":"Recycling of Plastic Materials","handle":"1-895198-03-8","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e","published_at":"2017-06-22T21:14:38-04:00","created_at":"2017-06-22T21:14:38-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["1993","book","bottles","car","environment","film","packing","paper","PE","PET","plastic materials","plastics","polyamide-6. blends","polyethylene","polymer","pvc","recycling","rubber","tires","waste"],"price":10900,"price_min":10900,"price_max":10900,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378428868,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Recycling of Plastic Materials","public_title":null,"options":["Default Title"],"price":10900,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"1-895198-03-8","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":[],"featured_image":null,"options":["Title"],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Prof. F. P. La Mantia \u003cbr\u003e10-ISBN 1-895198-03-8 \u003cbr\u003e\u003cspan\u003e13-ISBN 978-1-895198-03-4\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\u003cmeta charset=\"utf-8\"\u003e\u003cspan\u003ePublished: 1993\u003c\/span\u003e\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nRecycling of materials is rapidly developing discipline because of environmental awareness, need to conserve materials and energy, and growing demand to increase production economy. This book combines topics discussing the state of art, analysis of processes successfully implemented in industrial practice, ideas concerning production with recycling in mind, and the new research developments offering practical solutions for recycling industry and product manufacturers. The major emphasis is given to polyolefins, polyethylene terephthalate, PVC, and rubber. Materials concerned include films, bottles, packing materials, paper, car batteries, plastics used in car interiors, tires, etc. Experiences of those involved in recycling in large companies, such as Agfa-Gevaert, Kodak, du Pont, BMW, and Metallgesellschaft, which have recycling installations in operation, are shared and generalized. Papers show that recycling is not only environmentally correct but also can be a source of income for producers of materials and final products, and also those who develop and implement service technologies. A large part of the book is concerned with processing and recycling of post-customer wastes. Several important aspects are reviewed.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cul\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePET film recycling. W. De Winter\u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe importance and practicality of co-injected, recycled PET\/virgin PET containers. E. H. Neumann \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of post-consumer greenhouse PE films: blends with polyamide-6. F. P. La Mantia and D. Curto \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eRecycling of plastics from urban solid wastes: comparison between blends from virgin and recovered from waste polymers. E. Gattiglia, A. Turturro, A. Serra, S. Delfino, and A. Tinnirello \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eManagement of plastic wastes: a technical and economic approach. O. Laguna Castellanos, E. \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003ePerez Collar, and J. Taranco Gonzalez \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eBlends of PE and plastics waste. Processing and characterization. F. P. La Mantia, C. Perrone, and E. Bellio \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eTechniques for selection and recycling of post-consumer plastic bottles. E. Sereni \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eHydrolytic treatment of plastic waste containing paper. C. Klason, J. Kubat, and H. R. Skov \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eProcessing of mixed plastic wastes. A. Vezzoli, C. A. Beretta, and M. Lamperti \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eThe use of recyclable plastics in motor vehicles. M. E. Henstock and K. Seidl \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eGround rubber tire-polymer composites. K. Oliphant, P. Rajalingam, and W. E. Baker \u003c\/span\u003e\u003c\/li\u003e\n\u003cli\u003e\u003cspan size=\"1\" face=\"verdana,geneva\" color=\"#000031\" style=\"color: #000031; font-family: verdana, geneva; font-size: xx-small;\"\u003eQuality assurance in plastic recycling by the example of polypropylene. K. Heil and R. Pfaff \u003c\/span\u003e\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cp\u003e \u003c\/p\u003e"}
Reactive Polymers Fund...
$270.00
{"id":11242217540,"title":"Reactive Polymers Fundamentals and Applications, 2nd Edition","handle":"978-1-4557-3149-7","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Johannes Karl Fink \u003cbr\u003eISBN 978-1-4557-3149-7 \u003cbr\u003e\u003cbr\u003ePublished: 2013\u003cbr\u003eA Concise Guide to Industrial Polymers\n\u003cdiv\u003eHardbound, 576 Pages\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of reactive polymers enables manufacturers to make chemical changes at a late stage in the production process - these in turn cause changes in performance and properties. In order to achieve optimal performance, material selection and the control of the reaction are essential. In this handbook, Dr. Fink introduces engineers and scientists to the range of reactive polymers available, explains the reactions that take place, and details applications and performance benefits.\u003cbr\u003e\u003cbr\u003eFor each class of reactive resin (Thermoset) basic principles and industrial processes are described as well as additives, the curing process, and applications and uses. The initial chapters are devoted to individual resin types, e.g. epoxides, cyanoacrylates etc. Then more general chapters, e.g. reactive extrusion, and special topics, e.g. dental applications, follow. Additionally, the new edition will include information on the most recent developments, applications, and commercial products for each chemical class of Thermosets as well as sections on fabrication methods, reactive biopolymers, recycling of reactive polymers, and case studies. A chapter about injection molding of reactive polymers, and sections on radiation curing, Thermosetting elastomers, and reactive extrusion equipment will be included.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Unsaturated Polyester Resins\u003cbr\u003e\u003cbr\u003e2 Polyurethanes\u003cbr\u003e\u003cbr\u003e3 Epoxy Resins\u003cbr\u003e\u003cbr\u003e4 Phenol\/formaldehyde Resins\u003cbr\u003e\u003cbr\u003e5 Urea\/formaldehyde Resins\u003cbr\u003e\u003cbr\u003e6 Melamine Resins\u003cbr\u003e\u003cbr\u003e7 Furan Resins\u003cbr\u003e\u003cbr\u003e8 Silicones\u003cbr\u003e\u003cbr\u003e9 Acrylic Resins\u003cbr\u003e\u003cbr\u003e10 Cyanate Ester Resins\u003cbr\u003e\u003cbr\u003e11 Bismaleimide Resins\u003cbr\u003e\u003cbr\u003e12 Terpene Resins\u003cbr\u003e\u003cbr\u003e13 Cyanoacrylates\u003cbr\u003e\u003cbr\u003e14 Benzocyclobutene Resins\u003cbr\u003e\u003cbr\u003e15 Reactive Extrusion\u003cbr\u003e\u003cbr\u003e16 Compatibilization\u003cbr\u003e\u003cbr\u003e17 Rheology Control\u003cbr\u003e\u003cbr\u003e18 Grafting\u003cbr\u003e\u003cbr\u003e19 Acrylic Dental Fillers\u003cbr\u003e\u003cbr\u003e20 Toners\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Johannes Karl Fink, Montanuniversität Leoben, Austria","published_at":"2017-06-22T21:13:33-04:00","created_at":"2017-06-22T21:13:33-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2013","book","extrusion","fillers","fluorosilicones","grafting","industrial polymers","injection molding","material","nanocomposites","reactive biopolymers","reactive polymers","recycling","resins","rheology","silicones"],"price":27000,"price_min":27000,"price_max":27000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378360964,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Reactive Polymers Fundamentals and Applications, 2nd Edition","public_title":null,"options":["Default Title"],"price":27000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-4557-3149-7","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-3149-7.jpg?v=1499954053"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-3149-7.jpg?v=1499954053","options":["Title"],"media":[{"alt":null,"id":358731579485,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-3149-7.jpg?v=1499954053"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-4557-3149-7.jpg?v=1499954053","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Johannes Karl Fink \u003cbr\u003eISBN 978-1-4557-3149-7 \u003cbr\u003e\u003cbr\u003ePublished: 2013\u003cbr\u003eA Concise Guide to Industrial Polymers\n\u003cdiv\u003eHardbound, 576 Pages\u003c\/div\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThe use of reactive polymers enables manufacturers to make chemical changes at a late stage in the production process - these in turn cause changes in performance and properties. In order to achieve optimal performance, material selection and the control of the reaction are essential. In this handbook, Dr. Fink introduces engineers and scientists to the range of reactive polymers available, explains the reactions that take place, and details applications and performance benefits.\u003cbr\u003e\u003cbr\u003eFor each class of reactive resin (Thermoset) basic principles and industrial processes are described as well as additives, the curing process, and applications and uses. The initial chapters are devoted to individual resin types, e.g. epoxides, cyanoacrylates etc. Then more general chapters, e.g. reactive extrusion, and special topics, e.g. dental applications, follow. Additionally, the new edition will include information on the most recent developments, applications, and commercial products for each chemical class of Thermosets as well as sections on fabrication methods, reactive biopolymers, recycling of reactive polymers, and case studies. A chapter about injection molding of reactive polymers, and sections on radiation curing, Thermosetting elastomers, and reactive extrusion equipment will be included.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Unsaturated Polyester Resins\u003cbr\u003e\u003cbr\u003e2 Polyurethanes\u003cbr\u003e\u003cbr\u003e3 Epoxy Resins\u003cbr\u003e\u003cbr\u003e4 Phenol\/formaldehyde Resins\u003cbr\u003e\u003cbr\u003e5 Urea\/formaldehyde Resins\u003cbr\u003e\u003cbr\u003e6 Melamine Resins\u003cbr\u003e\u003cbr\u003e7 Furan Resins\u003cbr\u003e\u003cbr\u003e8 Silicones\u003cbr\u003e\u003cbr\u003e9 Acrylic Resins\u003cbr\u003e\u003cbr\u003e10 Cyanate Ester Resins\u003cbr\u003e\u003cbr\u003e11 Bismaleimide Resins\u003cbr\u003e\u003cbr\u003e12 Terpene Resins\u003cbr\u003e\u003cbr\u003e13 Cyanoacrylates\u003cbr\u003e\u003cbr\u003e14 Benzocyclobutene Resins\u003cbr\u003e\u003cbr\u003e15 Reactive Extrusion\u003cbr\u003e\u003cbr\u003e16 Compatibilization\u003cbr\u003e\u003cbr\u003e17 Rheology Control\u003cbr\u003e\u003cbr\u003e18 Grafting\u003cbr\u003e\u003cbr\u003e19 Acrylic Dental Fillers\u003cbr\u003e\u003cbr\u003e20 Toners\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Johannes Karl Fink, Montanuniversität Leoben, Austria"}
Polymers in Electronic...
$135.00
{"id":11242231236,"title":"Polymers in Electronics 2007","handle":"978-1-84735-009-1","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-009-1 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 30-31 January 2007\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis conference saw presentations from all parts of the electronics industry’s materials supply chain, from raw materials to finished products and offered an opportunity to learn more about both traditional and new polymer materials, their markets, manufacturing processes, and applications. It also covered the impact of legislation, the need to recycle and other polymer-related challenges and opportunities for the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1. TRENDS AND GROWTH \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 1: Plastics in Electronics - the CEE market \u003cbr\u003eKalman Wappel, Eastern, and Central European Business Development Ltd., Hungary\u003c\/p\u003e\n\u003cb\u003eSESSION 2. CONDUCTIVE POLYMERS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 2: Electrically conductive polymer blends filled with low melting metal alloys \u003cbr\u003eProf. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli \u0026amp; Dipl.-Ing. Tobias Pfefferkorn, Institute of Plastics Processing at RWTH Aachen University (IKV), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 3: Development and applications of nano- and microscale layers of conductive polymers applied to various surfaces\u003c\/b\u003e \u003cbr\u003eDr. Jamshid Avloni \u0026amp; Ryan Lau, Eeonyx Corporation \u0026amp; Dr. Arthur Henn, Marktek Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 4: Conducting polymer nanocomposites in EMI shielding\/radar absorption applications\u003c\/b\u003e \u003cbr\u003eMatt Aldissi, Fractal Systems Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 5: Inherently conductive polyaniline for electronics applications\u003c\/b\u003e \u003cbr\u003eJukka Perento, Panipol, Finland\u003c\/p\u003e\n\u003cb\u003eSESSION 3. NEW DEVELOPMENTS IN FLAME RETARDED POLYMERS FOR ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 6: Sustainable flame retardants – beyond fire safety, RoHS, and WEEE compliance \u003cbr\u003eTroy DeSoto \u0026amp; Veronique Steukers, Albemarle Corporation, Belgium \u0026amp; Kumar Kumar, Albemarle Corporation, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 7: Phosphinates, the flame retardants for polymers in electronics\u003c\/b\u003e \u003cbr\u003eDr. Sebastian Hörold, lmar Schmitt, Mathias Dietz, Jerome De Boysere, Clariant Produkte GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 8: Fire retardancy of polymers in electronics, a scientific approach\u003c\/b\u003e \u003cbr\u003eR. Borms, S. Goebelbecker \u0026amp; L. Tange, Eurobrom B.V. ICL-IP \u0026amp; P. Georlette \u0026amp; Y. Bar Yaakov, ICL-IP, The Netherlands\u003c\/p\u003e\n\u003cb\u003eSESSION 4. POLYMERS IN SUBSTRATES, ASSEMBLY AND RELIABILITY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 9: An overview of polymers as key enablers in electronics assembly \u003cbr\u003eProf. Martin Goosey, IeMRC, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 10: New epoxy resins for printed wiring board application\u003c\/b\u003e \u003cbr\u003eDr. Bernd Hoevel, Dr. Ludovic Valette \u0026amp; Dr. Joseph Gan, Dow Deutschland Anlagengesellschaft mbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 11: Printed circuit boards for lead-free soldering, materials and failure mechanisms\u003c\/b\u003e \u003cbr\u003ePer Johander, Per-Erik Tegehall, Abelrahim Ahmed Osman, Göran Wetter \u0026amp; Dag Andersson, IVF Industrial Research \u0026amp; Development Corporation, Sweden\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 12: Selection and qualification of polymers for rigid and flexible interconnect applications\u003c\/b\u003e \u003cbr\u003eFlorian Schuessler, Prof. Dr.-Ing. Klaus Feldmann \u0026amp; Thomas Bigl, Institute for Manufacturing Automation and Production Systems (FAPS), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 13: Macromelt molding - low-pressure adhesive injection molding\u003c\/b\u003e \u003cbr\u003eOlaf Muendelein, Henkel GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 14: Conformal coating resistance to organic and inorganic contaminants\u003c\/b\u003e \u003cbr\u003eDr. Christopher Hunt, National Physical Laboratory, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 5. POLYMER FORMULATION AND RECYCLING FOR ELECTRONICS APPLICATIONS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 15: Additives: the way to tailor-made plastics for E\u0026amp;E applications \u003cbr\u003eDr. Markus C. Grob, Eelco Dekker \u0026amp; Dr. Wolfgang Diegritz, Ciba Specialty Chemicals Inc., Switzerland\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 16: Polymer recycling from WEEE - rapid assessment of electronic product enclosure plastics for improved resource management\u003c\/b\u003e \u003cbr\u003eProf. Gary Stevens et al, Gnosys\/Surrey University, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 17: Polymers in WEEE – A ‘sustainable’ raw material resource\u003c\/b\u003e \u003cbr\u003eKeith Freegard, Axion Recycling Ltd, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 6. POLYMERS AND PRINTED ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 18: Printed electronics: market opportunities and technical challenges \u003cbr\u003eMark Hutton \u0026amp; Nick Pearne, BPA Consulting, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 19: Inkjet printing of electronics\u003c\/b\u003e \u003cbr\u003eSteve Jones, Printed Electronics Limited, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 20: Flexible printing process for bespoke film based FCBs on polymer foil by combining laser technology, printing technology and electroplating \"Flextronic\"\u003c\/b\u003e \u003cbr\u003eFrits Feenstra, TNO Science \u0026amp; Industry, The Netherlands \u0026amp; Juergen Hackert, Vipem GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 21: Printed interconnects and batteries\u003c\/b\u003e \u003cbr\u003eDarren Southee, Gareth Hay, Peter Evans \u0026amp; David Harrison, Brunel University, UK\u003c\/p\u003e","published_at":"2017-06-22T21:14:16-04:00","created_at":"2017-06-22T21:14:16-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2007","additive","application","batteries","blends","book","circuit boards","coating resistance","conductive polymer","electronics","epoxy resins","flame retardants","ink jet printing","interconnects","metal alloys","molding","nanocomposites","p-applications","phosphinates","plastics","polyaniline","polymer","polymers","printed wiring board","recycling"],"price":13500,"price_min":13500,"price_max":13500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378405380,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers in Electronics 2007","public_title":null,"options":["Default Title"],"price":13500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-009-1","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353","options":["Title"],"media":[{"alt":null,"id":358706872413,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-009-1.jpg?v=1499953353","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Rapra Conference Proceedings \u003cbr\u003eISBN 978-1-84735-009-1 \u003cbr\u003e\u003cbr\u003eMunich, Germany, 30-31 January 2007\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis conference saw presentations from all parts of the electronics industry’s materials supply chain, from raw materials to finished products and offered an opportunity to learn more about both traditional and new polymer materials, their markets, manufacturing processes, and applications. It also covered the impact of legislation, the need to recycle and other polymer-related challenges and opportunities for the industry.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n\u003cb\u003eSESSION 1. TRENDS AND GROWTH \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 1: Plastics in Electronics - the CEE market \u003cbr\u003eKalman Wappel, Eastern, and Central European Business Development Ltd., Hungary\u003c\/p\u003e\n\u003cb\u003eSESSION 2. CONDUCTIVE POLYMERS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 2: Electrically conductive polymer blends filled with low melting metal alloys \u003cbr\u003eProf. Dr.-Ing. Dr.-Ing. E.h. Walter Michaeli \u0026amp; Dipl.-Ing. Tobias Pfefferkorn, Institute of Plastics Processing at RWTH Aachen University (IKV), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 3: Development and applications of nano- and microscale layers of conductive polymers applied to various surfaces\u003c\/b\u003e \u003cbr\u003eDr. Jamshid Avloni \u0026amp; Ryan Lau, Eeonyx Corporation \u0026amp; Dr. Arthur Henn, Marktek Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 4: Conducting polymer nanocomposites in EMI shielding\/radar absorption applications\u003c\/b\u003e \u003cbr\u003eMatt Aldissi, Fractal Systems Inc., USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 5: Inherently conductive polyaniline for electronics applications\u003c\/b\u003e \u003cbr\u003eJukka Perento, Panipol, Finland\u003c\/p\u003e\n\u003cb\u003eSESSION 3. NEW DEVELOPMENTS IN FLAME RETARDED POLYMERS FOR ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 6: Sustainable flame retardants – beyond fire safety, RoHS, and WEEE compliance \u003cbr\u003eTroy DeSoto \u0026amp; Veronique Steukers, Albemarle Corporation, Belgium \u0026amp; Kumar Kumar, Albemarle Corporation, USA\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 7: Phosphinates, the flame retardants for polymers in electronics\u003c\/b\u003e \u003cbr\u003eDr. Sebastian Hörold, lmar Schmitt, Mathias Dietz, Jerome De Boysere, Clariant Produkte GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 8: Fire retardancy of polymers in electronics, a scientific approach\u003c\/b\u003e \u003cbr\u003eR. Borms, S. Goebelbecker \u0026amp; L. Tange, Eurobrom B.V. ICL-IP \u0026amp; P. Georlette \u0026amp; Y. Bar Yaakov, ICL-IP, The Netherlands\u003c\/p\u003e\n\u003cb\u003eSESSION 4. POLYMERS IN SUBSTRATES, ASSEMBLY AND RELIABILITY \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 9: An overview of polymers as key enablers in electronics assembly \u003cbr\u003eProf. Martin Goosey, IeMRC, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 10: New epoxy resins for printed wiring board application\u003c\/b\u003e \u003cbr\u003eDr. Bernd Hoevel, Dr. Ludovic Valette \u0026amp; Dr. Joseph Gan, Dow Deutschland Anlagengesellschaft mbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 11: Printed circuit boards for lead-free soldering, materials and failure mechanisms\u003c\/b\u003e \u003cbr\u003ePer Johander, Per-Erik Tegehall, Abelrahim Ahmed Osman, Göran Wetter \u0026amp; Dag Andersson, IVF Industrial Research \u0026amp; Development Corporation, Sweden\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 12: Selection and qualification of polymers for rigid and flexible interconnect applications\u003c\/b\u003e \u003cbr\u003eFlorian Schuessler, Prof. Dr.-Ing. Klaus Feldmann \u0026amp; Thomas Bigl, Institute for Manufacturing Automation and Production Systems (FAPS), Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 13: Macromelt molding - low-pressure adhesive injection molding\u003c\/b\u003e \u003cbr\u003eOlaf Muendelein, Henkel GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 14: Conformal coating resistance to organic and inorganic contaminants\u003c\/b\u003e \u003cbr\u003eDr. Christopher Hunt, National Physical Laboratory, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 5. POLYMER FORMULATION AND RECYCLING FOR ELECTRONICS APPLICATIONS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 15: Additives: the way to tailor-made plastics for E\u0026amp;E applications \u003cbr\u003eDr. Markus C. Grob, Eelco Dekker \u0026amp; Dr. Wolfgang Diegritz, Ciba Specialty Chemicals Inc., Switzerland\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 16: Polymer recycling from WEEE - rapid assessment of electronic product enclosure plastics for improved resource management\u003c\/b\u003e \u003cbr\u003eProf. Gary Stevens et al, Gnosys\/Surrey University, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 17: Polymers in WEEE – A ‘sustainable’ raw material resource\u003c\/b\u003e \u003cbr\u003eKeith Freegard, Axion Recycling Ltd, UK\u003c\/p\u003e\n\u003cb\u003eSESSION 6. POLYMERS AND PRINTED ELECTRONICS \u003c\/b\u003e\u003cb\u003e\u003c\/b\u003e\n\u003cp\u003ePaper 18: Printed electronics: market opportunities and technical challenges \u003cbr\u003eMark Hutton \u0026amp; Nick Pearne, BPA Consulting, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 19: Inkjet printing of electronics\u003c\/b\u003e \u003cbr\u003eSteve Jones, Printed Electronics Limited, UK\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 20: Flexible printing process for bespoke film based FCBs on polymer foil by combining laser technology, printing technology and electroplating \"Flextronic\"\u003c\/b\u003e \u003cbr\u003eFrits Feenstra, TNO Science \u0026amp; Industry, The Netherlands \u0026amp; Juergen Hackert, Vipem GmbH, Germany\u003c\/p\u003e\n\u003cp\u003e\u003cb\u003ePaper 21: Printed interconnects and batteries\u003c\/b\u003e \u003cbr\u003eDarren Southee, Gareth Hay, Peter Evans \u0026amp; David Harrison, Brunel University, UK\u003c\/p\u003e"}
Polymers for Wire and ...
$450.00
{"id":11242206532,"title":"Polymers for Wire and Cable - Changes within an Industry","handle":"978-1-85957-190-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-85957-190-3 \u003cbr\u003e\u003cbr\u003ePublished: 2000\u003cbr\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report concentrates on the developments in polymeric materials and processes for cable specification and design. The main sections provide an overview of polymer used by a material with the main end-use markets examined: automotive, rail transport, aerospace, building and construction, business machines and computer networks, telecommunications, power generation and distribution, electrical appliances and consumer electronics marine off-shore and undersea cables, other general engineering applications. The European cable industry is discussed with particular emphasis on the markets within Benelux, France, Germany and the UK. Developments in the North American and Asian markets are briefly covered. Key trends based on new products, processes and machinery developments are indicated. The report includes profiles of leading polymer and cable companies with a discussion about recent merger and acquisition activity. Aspects of present and future European legislation are discussed with particular emphasis on those relating to fire retardancy, harmonisation of standards, recycling, and other environmental concerns.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eKeith Cousins graduated from Oxford University in engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. Moving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003c\/p\u003e","published_at":"2017-06-22T21:12:57-04:00","created_at":"2017-06-22T21:12:57-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2000","acrylic polymers","aerospace","automotive","book","building","cable","construction","copolymers","electronics","ethylene","evironmental","fire retardancy","markets","p-applications","PE","polymer","polymeric materials","processes","PVC","rail","recycling","standards","thermoplastic elastomers","thermoset elastomers"],"price":45000,"price_min":45000,"price_max":45000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378322116,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers for Wire and Cable - Changes within an Industry","public_title":null,"options":["Default Title"],"price":45000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-190-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-190-3.jpg?v=1499724916"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-190-3.jpg?v=1499724916","options":["Title"],"media":[{"alt":null,"id":358698516573,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-190-3.jpg?v=1499724916"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-190-3.jpg?v=1499724916","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: K. Cousins \u003cbr\u003eISBN 978-1-85957-190-3 \u003cbr\u003e\u003cbr\u003ePublished: 2000\u003cbr\u003e110 pages, softbound\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis report concentrates on the developments in polymeric materials and processes for cable specification and design. The main sections provide an overview of polymer used by a material with the main end-use markets examined: automotive, rail transport, aerospace, building and construction, business machines and computer networks, telecommunications, power generation and distribution, electrical appliances and consumer electronics marine off-shore and undersea cables, other general engineering applications. The European cable industry is discussed with particular emphasis on the markets within Benelux, France, Germany and the UK. Developments in the North American and Asian markets are briefly covered. Key trends based on new products, processes and machinery developments are indicated. The report includes profiles of leading polymer and cable companies with a discussion about recent merger and acquisition activity. Aspects of present and future European legislation are discussed with particular emphasis on those relating to fire retardancy, harmonisation of standards, recycling, and other environmental concerns.\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\n\u003cp\u003eKeith Cousins graduated from Oxford University in engineering Science and followed a graduate apprenticeship with one of the fore-runners of GEC with a career in export sales. This included export area management with Francis Shaw, a leading manufacturer of rubber and plastics extruders and mixing machinery. Moving to market research at Buckingham-based Harkness Consultants after posts in Export Area and Market Planning Management at Coventry Climax he has since November 1993, established a successful independent market research consultancy. Assignments have included a succession of published reports and privately communicated studies.\u003c\/p\u003e"}
Polymers - Opportuniti...
$310.00
{"id":11242244228,"title":"Polymers - Opportunities and Risks I","handle":"978-3-540-88416-3","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eyerer, Peter (Ed.) \u003cbr\u003eISBN 978-3-540-88416-3 \u003cbr\u003e\u003cbr\u003e432 p., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince their first industrial use polymers have gained a tremendous success. The two volumes of \"Polymers - Opportunities and Risks\" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 \"Polymers - Opportunities and Risks I: General and Environmental Aspects\" is dedicated to the basics of the engineering of polymers – always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 \"Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing\" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists but also for environmental managers and decision makers.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nClassification, characterization and economic data.- Synthesis (manufacture, production) of plastics.- Properties of plastics in structural components.- Processing (primary forming) of plastics into structural components.- Secondary forming of plastics structural components – thermoforming.- Chances and risks involved in designing structural components made of polymers.- Chances and (in particular) risks of use (utilization phase) of plastic structural components.- Plastics and structural components – the environment and recycling.- Perspectives - polymer engineering.","published_at":"2017-06-22T21:14:56-04:00","created_at":"2017-06-22T21:14:56-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","applications of polymers","basic polymers","book","depositing","environmental risks","general","plastics","polymer engineering","processing","recycling","surface","sustainability of polymer products"],"price":31000,"price_min":31000,"price_max":31000,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378448068,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Polymers - Opportunities and Risks I","public_title":null,"options":["Default Title"],"price":31000,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-3-540-88416-3","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-88416-3.jpg?v=1499953110"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-88416-3.jpg?v=1499953110","options":["Title"],"media":[{"alt":null,"id":358552797277,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-88416-3.jpg?v=1499953110"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-3-540-88416-3.jpg?v=1499953110","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eyerer, Peter (Ed.) \u003cbr\u003eISBN 978-3-540-88416-3 \u003cbr\u003e\u003cbr\u003e432 p., Hardcover\n\u003ch5\u003eSummary\u003c\/h5\u003e\nSince their first industrial use polymers have gained a tremendous success. The two volumes of \"Polymers - Opportunities and Risks\" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 \"Polymers - Opportunities and Risks I: General and Environmental Aspects\" is dedicated to the basics of the engineering of polymers – always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 \"Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing\" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists but also for environmental managers and decision makers.\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\nClassification, characterization and economic data.- Synthesis (manufacture, production) of plastics.- Properties of plastics in structural components.- Processing (primary forming) of plastics into structural components.- Secondary forming of plastics structural components – thermoforming.- Chances and risks involved in designing structural components made of polymers.- Chances and (in particular) risks of use (utilization phase) of plastic structural components.- Plastics and structural components – the environment and recycling.- Perspectives - polymer engineering."}
Plastics Waste - Feeds...
$144.00
{"id":11242216644,"title":"Plastics Waste - Feedstock Recycling, Chemical Recycling and Incineration","handle":"978-1-85957-331-0","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Arnold Tukker, TNO \u003cbr\u003eISBN 978-1-85957-331-0 \u003cbr\u003e\u003cbr\u003epages: 110, figures: 3, tables: 5\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProtection of our environment is now a global priority and legislation is being introduced in regions such as the European Union to ensure that material usage is maximised. Much of the development work has been pioneered in Germany which introduced very strict recycling laws. This report examines the issue of converting Plastics Waste into energy and\/or useful chemicals.\u003cbr\u003e\u003cbr\u003ePolymers are generally derived from fossil fuels which are being gradually depleted. Much plastic material is discarded as waste, such as packaging and end-of-life vehicle components. It is essential that we find means to preserve fossil fuels and to reuse materials in some form. Life cycle analysis is being performed on the different methods of disposing of waste plastics to discover the most environmentally friendly methods. Mechanical recycling is often discussed but it is limited by the need to separate and clean used plastics prior to recycling.\u003cbr\u003e\u003cbr\u003eThis report introduces the different waste management options. It discusses the methods available for treating mixed plastics waste and PVC-rich plastics waste. PVC can cause problems in some processes due to the chlorine content, which can cause corrosion of equipment and potentially generate hazardous gas on combustion. The emphasis in this report is on technologies which are already being used or assessed for use on a commercial scale. Comparisons are made between the different types of recycling currently available in terms of life cycle assessment and environmental impact.\u003cbr\u003e\u003cbr\u003eThe EU draft directive on Packaging waste includes definitions of the types of recycling. Chemical recycling implies a change of the chemical structure of the material, but in such a way that the resulting chemicals can be used to produce the original material again. Such processes include monomer recover. There are few commercial techniques available which accomplish this, one outstanding example is nylon carpet recycling. \u003cbr\u003e\u003cbr\u003eFeedstock recycling is discussed extensively in this review. It is defined as a change in the chemical structure of the material, where the resulting chemicals are used for another purpose than producing the original material. Methods have been developed including the Texaco gasification process, polymer cracking, the BASF conversion process, the Veba Combi cracking process, BSL incineration process, the Akzo Nobel steam gasification process, the Linde gasification process, the NKT pyrolysis process and pressurised fixed bed gasification from SVZ. Typical feedstocks generated include synthesis gas, containing mainly CO and H2. By-products such as chlorides are generally sold on for other processes and slag can be used in applications such as a building. The energy released during these processes is generally used or recovered.\u003cbr\u003e\u003cbr\u003eAlternatives to feedstock recycling include cement kilns (energy recovery), the Solvay Vinyloop PVC-recovery process, mechanical recycling, landfill and municipal solid waste incinerators (energy recovery). These processes are briefly discussed and compared to feedstock recycling as methods of disposing of plastics wastes. The commercial viability of each process is examined.\u003cbr\u003e\u003cbr\u003eThis report is accompanied by around 400 abstracts from papers in the Rapra Polymer Library. This selection includes references to feedstock and chemical recycling, but also methods of energy recovery and the Vinyloop process.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Plastics Waste Recycling: An Overview\u003cbr\u003e3 Feedstock Recycling of Mixed Plastic Waste\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Texaco Gasification Process\u003cbr\u003e3.3 The Polymer Cracking Process (Consortium Project)\u003cbr\u003e3.4 The BASF Conversion Process\u003cbr\u003e3.5 Use of Mixed Plastic Waste in Blast Furnaces\u003cbr\u003e3.6 Veba Combi Cracking Process\u003cbr\u003e3.7 SVZ Gasification Process\u003cbr\u003e4 Feedstock Recycling of PVC-Rich Waste\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 BSL Incineration Process\u003cbr\u003e4.3 Akzo Nobel Steam Gasification Process\u003cbr\u003e4.4 Linde Gasification Process\u003cbr\u003e4.5 NKT Pyrolysis Process\u003cbr\u003e5 Dedicated Chemical Recycling for Specific Plastics\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 PET\u003cbr\u003e5.3 PUR\u003cbr\u003e5.4 Nylon from Carpets\u003cbr\u003e6 Other Treatment Options for Mixed Plastic Waste\u003cbr\u003e6.1 Alternatives to Feedstock Recycling\u003cbr\u003e6.2 The Vinyloop PVC-Recovery Process\u003cbr\u003e6.3 Cement Kilns (Energy Recovery)\u003cbr\u003e6.4 Municipal Solid Waste Incinerators (with Energy Recovery)\u003cbr\u003e6.5 Mechanical Recycling and Landfill\u003cbr\u003e7 Pros and Cons of the Different Treatment Routes\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Discussion of Environmental Effects\u003cbr\u003e7.3 Discussion of Economic Aspects\u003cbr\u003e8 Overall Conclusions\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Arnold Tukker is a manager at TNO, Netherlands and a chemist by training. He has published widely in the field of eco-efficiency and waste management, with reports for the EU among others on topics such as PVC waste management. His focus is on practical, applied solutions to problems rather than theoretical research.","published_at":"2017-06-22T21:13:30-04:00","created_at":"2017-06-22T21:13:30-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2002","book","conversion","cracking","feedstock recycling","gasification","management","plastics","polymer","process","recycling","reports","rubber","scrap","tires","waste"],"price":14400,"price_min":14400,"price_max":14400,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378358724,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics Waste - Feedstock Recycling, Chemical Recycling and Incineration","public_title":null,"options":["Default Title"],"price":14400,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-85957-331-0","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-331-0.jpg?v=1499914128"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-331-0.jpg?v=1499914128","options":["Title"],"media":[{"alt":null,"id":358548537437,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-331-0.jpg?v=1499914128"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-85957-331-0.jpg?v=1499914128","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Arnold Tukker, TNO \u003cbr\u003eISBN 978-1-85957-331-0 \u003cbr\u003e\u003cbr\u003epages: 110, figures: 3, tables: 5\n\u003ch5\u003eSummary\u003c\/h5\u003e\nProtection of our environment is now a global priority and legislation is being introduced in regions such as the European Union to ensure that material usage is maximised. Much of the development work has been pioneered in Germany which introduced very strict recycling laws. This report examines the issue of converting Plastics Waste into energy and\/or useful chemicals.\u003cbr\u003e\u003cbr\u003ePolymers are generally derived from fossil fuels which are being gradually depleted. Much plastic material is discarded as waste, such as packaging and end-of-life vehicle components. It is essential that we find means to preserve fossil fuels and to reuse materials in some form. Life cycle analysis is being performed on the different methods of disposing of waste plastics to discover the most environmentally friendly methods. Mechanical recycling is often discussed but it is limited by the need to separate and clean used plastics prior to recycling.\u003cbr\u003e\u003cbr\u003eThis report introduces the different waste management options. It discusses the methods available for treating mixed plastics waste and PVC-rich plastics waste. PVC can cause problems in some processes due to the chlorine content, which can cause corrosion of equipment and potentially generate hazardous gas on combustion. The emphasis in this report is on technologies which are already being used or assessed for use on a commercial scale. Comparisons are made between the different types of recycling currently available in terms of life cycle assessment and environmental impact.\u003cbr\u003e\u003cbr\u003eThe EU draft directive on Packaging waste includes definitions of the types of recycling. Chemical recycling implies a change of the chemical structure of the material, but in such a way that the resulting chemicals can be used to produce the original material again. Such processes include monomer recover. There are few commercial techniques available which accomplish this, one outstanding example is nylon carpet recycling. \u003cbr\u003e\u003cbr\u003eFeedstock recycling is discussed extensively in this review. It is defined as a change in the chemical structure of the material, where the resulting chemicals are used for another purpose than producing the original material. Methods have been developed including the Texaco gasification process, polymer cracking, the BASF conversion process, the Veba Combi cracking process, BSL incineration process, the Akzo Nobel steam gasification process, the Linde gasification process, the NKT pyrolysis process and pressurised fixed bed gasification from SVZ. Typical feedstocks generated include synthesis gas, containing mainly CO and H2. By-products such as chlorides are generally sold on for other processes and slag can be used in applications such as a building. The energy released during these processes is generally used or recovered.\u003cbr\u003e\u003cbr\u003eAlternatives to feedstock recycling include cement kilns (energy recovery), the Solvay Vinyloop PVC-recovery process, mechanical recycling, landfill and municipal solid waste incinerators (energy recovery). These processes are briefly discussed and compared to feedstock recycling as methods of disposing of plastics wastes. The commercial viability of each process is examined.\u003cbr\u003e\u003cbr\u003eThis report is accompanied by around 400 abstracts from papers in the Rapra Polymer Library. This selection includes references to feedstock and chemical recycling, but also methods of energy recovery and the Vinyloop process.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Introduction\u003cbr\u003e2 Plastics Waste Recycling: An Overview\u003cbr\u003e3 Feedstock Recycling of Mixed Plastic Waste\u003cbr\u003e3.1 Introduction\u003cbr\u003e3.2 Texaco Gasification Process\u003cbr\u003e3.3 The Polymer Cracking Process (Consortium Project)\u003cbr\u003e3.4 The BASF Conversion Process\u003cbr\u003e3.5 Use of Mixed Plastic Waste in Blast Furnaces\u003cbr\u003e3.6 Veba Combi Cracking Process\u003cbr\u003e3.7 SVZ Gasification Process\u003cbr\u003e4 Feedstock Recycling of PVC-Rich Waste\u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 BSL Incineration Process\u003cbr\u003e4.3 Akzo Nobel Steam Gasification Process\u003cbr\u003e4.4 Linde Gasification Process\u003cbr\u003e4.5 NKT Pyrolysis Process\u003cbr\u003e5 Dedicated Chemical Recycling for Specific Plastics\u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 PET\u003cbr\u003e5.3 PUR\u003cbr\u003e5.4 Nylon from Carpets\u003cbr\u003e6 Other Treatment Options for Mixed Plastic Waste\u003cbr\u003e6.1 Alternatives to Feedstock Recycling\u003cbr\u003e6.2 The Vinyloop PVC-Recovery Process\u003cbr\u003e6.3 Cement Kilns (Energy Recovery)\u003cbr\u003e6.4 Municipal Solid Waste Incinerators (with Energy Recovery)\u003cbr\u003e6.5 Mechanical Recycling and Landfill\u003cbr\u003e7 Pros and Cons of the Different Treatment Routes\u003cbr\u003e7.1 Introduction\u003cbr\u003e7.2 Discussion of Environmental Effects\u003cbr\u003e7.3 Discussion of Economic Aspects\u003cbr\u003e8 Overall Conclusions\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eAbout Author\u003c\/h5\u003e\nDr. Arnold Tukker is a manager at TNO, Netherlands and a chemist by training. He has published widely in the field of eco-efficiency and waste management, with reports for the EU among others on topics such as PVC waste management. His focus is on practical, applied solutions to problems rather than theoretical research."}
Plastics and the Envir...
$165.00
{"id":11242239364,"title":"Plastics and the Environment","handle":"978-1-84735-491-4","description":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eleanor Garmson and Frances Gardiner \u003cbr\u003eISBN 978-1-84735-491-4 \u003cbr\u003e\u003cbr\u003ePages: 142, Hard cover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis multi-authored book - from some of the leading researchers and practitioners on this topic - is a distinctive look at how to maximize profitability through environmental compliance in the plastics supply chain, a topic of great and ever-growing interest in the industry.\u003cbr\u003e\u003cbr\u003eThis distinguished assembly of authors from across the global - and from both industry and academia - provides the reader with a distinctive perspective on this topic. Plastics and the Environment provide readers with a look into the environmental issues of plastics products throughout the complete product lifecycle - from material selection to product design to recycling.\u003cbr\u003e\u003cbr\u003eTopics covered include Plastics Materials and Sustainability, Environmental Design for Plastics Products, Energy Efficiency, Plastics, Recycling and Technology, and Life Cycle Assessment.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Developments in Polymer Technology Driven by the Need for Sustainability\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 What Drives Developments Forward?\u003cbr\u003e1.3 How can we save the World?\u003cbr\u003e1.4 Getting the Science Right\u003cbr\u003e1.5 Legislation and Design\u003cbr\u003e1.6 New Materials\u003cbr\u003e1.7 New Processes\u003cbr\u003e1.8 Conclusions\u003cbr\u003e\u003cbr\u003e2 A Medium Voltage Switchgear Mechanism which is Insensitive to its Environment \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Selection of the Most Appropriate Material\u003cbr\u003e2.3 Design of a New Range of Mechanisms\u003cbr\u003e2.4 Environmental Studies\u003cbr\u003e2.5 Material Balance Analysis\u003cbr\u003e2.6 LCA18\u003cbr\u003e2.7 Conclusion.20\u003cbr\u003e\u003cbr\u003e3 From Industrial Polymerisation Wastes to High Valued Material: Interfacial Agents for Polymer Blends and Composites based on Chemically Modified Atactic\u003cbr\u003ePolypropylenes\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Chemical Modification \u003cbr\u003e3.3 Role in Heterogeneous Materials Based on Polymers \u003cbr\u003e3.4 Conclusions and Perspectives \u003cbr\u003e\u003cbr\u003e4 Energy Efficiency Index for Plastic Processing Machines \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Aim and Benefits of the Energy Efficiency Label\u003cbr\u003e4.3 Definition of Energy Efficiency Labels\u003cbr\u003e4.4 Label Development Process\u003cbr\u003e4.4.1 Define the Kind of Label: Which Type of Label do we Need?\u003cbr\u003e4.4.2 Form a Project Team: Who should be Involved in the Label Development Process? Which Steps have to be Done and When?\u003cbr\u003e4.4.3 Definition of the Product Groups: Which Product Groups\/Segments can be Defined and Considered Together?\u003cbr\u003e4.4.4 Definition of Criteria: Which Efficiency Criterion can be used for the Evaluation of the Energy Efficiency?\u003cbr\u003e4.4.5 Developing Measurement Standards: How to Measure the Energy Consumption of the Product?\u003cbr\u003e4.4.6 Calculate the Energy Efficiency Index (EEI) How to Define an EEI?\u003cbr\u003e4.4.7 Classification of Energy Classes: How Can Products be Classified?\u003cbr\u003e4.4.8 Label Design: How the Label is Designed and which Information is Included?\u003cbr\u003e4.4.9 Energy Measurements: How to Provide Data for the Definition of the Measurement Standard and the Definition of the Energy Classes?\u003cbr\u003e4.4.10 Energy Efficiency Improvement: What are Possible Improvement Strategies for a Higher Energy Class?\u003cbr\u003e4.4.11 Label Introduction\u003cbr\u003e4.4.12 Label Monitoring\u003cbr\u003e4.5 Example: Plastic Extrusion Machines\u003cbr\u003e4.5.1 Label Definition and Project Team\u003cbr\u003e4.5.2 Label Development\u003cbr\u003e4.5.3 Energy Efficiency Criteria \u003cbr\u003e4.5.4 Energy Measurement and Measurement Standard\u003cbr\u003e4.5.5 Energy Efficiency Index\u003cbr\u003e4.5.6 Energy Efficiency Classes\u003cbr\u003e4.5.7 Label Design\u003cbr\u003e4.5.8 Market Introduction and Communication\u003cbr\u003e4.6 Product Improvement and Ecodesign\u003cbr\u003e4.7 Summary\u003cbr\u003e\u003cbr\u003e5 Comparative Analysis of the Carbon Footprint of Wood and Plastic Lumber Railway Sleepers in Brazil and Germany \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Waste Management System\u003cbr\u003e5.2.1 Brazil\u003cbr\u003e5.2.2 Germany\u003cbr\u003e5.3 Railway Sleepers Market\u003cbr\u003e5.3.1 Brazil\u003cbr\u003e5.3.2 Germany\u003cbr\u003e5.4 Scope Definition and Life Cycle Inventory (LCI)\u003cbr\u003e5.4.1 Functional Unit\u003cbr\u003e5.4.2 Intended Audience \u003cbr\u003e5.4.3 Product Systems and System Boundaries \u003cbr\u003e5.4.4 Data Collection\u003cbr\u003e5.5 Results \u003cbr\u003e5.5.1 Brazil\u003cbr\u003e5.5.2 Germany\u003cbr\u003e5.5.3 Scenario Analysis\u003cbr\u003e5.5.4 Brazilian Case\u003cbr\u003e5.5.5 German Case\u003cbr\u003e5.6 Discussions and Conclusions \u003cbr\u003e\u003cbr\u003e6 Perfect Sorting Solutions for Packaging Recycling \u003cbr\u003e6.1 Post-consumer Polyethylene Terephthalate Through the Ages \u003cbr\u003e6.2 Bottle Sorting, the First Step in the Recycling Process \u003cbr\u003e6.3 Quality Improvement and Decontamination during the Flake Washing and Sorting Process \u003cbr\u003e6.4 Bottle to Bottle Recycling - The Ecological Alternative \u003cbr\u003e\u003cbr\u003e7 UK Household Plastic Packaging Collection Survey 2009\u003cbr\u003e7.1 UK Household Plastics Packaging Recycling Survey Background\u003cbr\u003e7.2 UK Plastic Packaging Consumption Statistics\u003cbr\u003e7.3 Household Plastic Packaging Recycling Rates in 2008\u003cbr\u003e7.4 Plastic Bottle Collection Infrastructure Summary\u003cbr\u003e7.5 Bring Scheme Performance\u003cbr\u003e7.6 Kerbside Scheme Performance\u003cbr\u003e7.7 Reported Perceptions of Running Plastic Bottle Collections\u003cbr\u003e7.8 Collection of Non Bottle Plastics Packaging for Recycling\u003cbr\u003e7.9 Sale of Material\u003cbr\u003e7.10 Planned Developments\u003cbr\u003e7.10.1 Bring Schemes \u003cbr\u003e7.10.2 Kerbside Schemes \u003cbr\u003e7.11 Development of Non Bottle Plastics Packaging Collections\u003cbr\u003e\u003cbr\u003e8 Vinyl 2010: Experience and Perspectives in Polyvinyl Chloride (PVC) Sustainable Development\u003cbr\u003e8.1 PVC: Strengths and Concerns\u003cbr\u003e8.2 The Vinyl 2010 Initiative\u003cbr\u003e8.2.1 Vinyl 2010: Foundation, Structure, and Organisation\u003cbr\u003e8.2.2 Commitments \u003cbr\u003e8.2.2.1 Manufacturing\u003cbr\u003e8.2.2.2 Plasticisers \u003cbr\u003e8.2.2.3 Stabilisers\u003cbr\u003e8.2.2.4 Waste Management\u003cbr\u003e8.3 Activities and Achievements of Vinyl 2010 \u003cbr\u003e8.3.1 Manufacturing\u003cbr\u003e8.3.2 Stabilisers \u003cbr\u003e8.3.3 Plasticisers\u003cbr\u003e8.3.4 Waste Management\u003cbr\u003e8.3.4.1 Collection and Recycling for Specific Applications \u003cbr\u003e8.3.4.2 Mixed PVC Recycling \u003cbr\u003e8.3.4.3 Recovinyl\u003cbr\u003e8.3.4.4 Mechanical Recycling \u003cbr\u003e8.3.4.5 Feedstock Recycling\u003cbr\u003e8.3.4.6 Energy Recovery\u003cbr\u003e8.3.4.7 PVC Waste Statistics\u003cbr\u003e8.3.4.8 Partnership with Local Authorities\u003cbr\u003e8.3.4.9 Other Partnerships\u003cbr\u003e8.4 Lessons Learnt\u003cbr\u003e8.4.1 Manufacturing\u003cbr\u003e8.4.2 Additives\u003cbr\u003e8.4.3 Waste Management\u003cbr\u003e8.4.4 Recycling Technologies\u003cbr\u003e8.5 Future Challenges \u003cbr\u003e8.6 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e","published_at":"2017-06-22T21:14:41-04:00","created_at":"2017-06-22T21:14:41-04:00","vendor":"Chemtec Publishing","type":"Book","tags":["2010","book","carbon footprint","composites","environment","life cycle assessment","plastic processing machines","plastics","polymer blends","Polyvinyl Chloride (PVC)","recycling"],"price":16500,"price_min":16500,"price_max":16500,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":43378432644,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"Plastics and the Environment","public_title":null,"options":["Default Title"],"price":16500,"weight":1000,"compare_at_price":null,"inventory_quantity":1,"inventory_management":null,"inventory_policy":"continue","barcode":"978-1-84735-491-4","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851"],"featured_image":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851","options":["Title"],"media":[{"alt":null,"id":358534905949,"position":1,"preview_image":{"aspect_ratio":0.767,"height":450,"width":345,"src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851"},"aspect_ratio":0.767,"height":450,"media_type":"image","src":"\/\/chemtec.org\/cdn\/shop\/products\/978-1-84735-491-4.jpg?v=1499725851","width":345}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003ch5\u003eDescription\u003c\/h5\u003e\nAuthor: Eleanor Garmson and Frances Gardiner \u003cbr\u003eISBN 978-1-84735-491-4 \u003cbr\u003e\u003cbr\u003ePages: 142, Hard cover\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eSummary\u003c\/h5\u003e\nThis multi-authored book - from some of the leading researchers and practitioners on this topic - is a distinctive look at how to maximize profitability through environmental compliance in the plastics supply chain, a topic of great and ever-growing interest in the industry.\u003cbr\u003e\u003cbr\u003eThis distinguished assembly of authors from across the global - and from both industry and academia - provides the reader with a distinctive perspective on this topic. Plastics and the Environment provide readers with a look into the environmental issues of plastics products throughout the complete product lifecycle - from material selection to product design to recycling.\u003cbr\u003e\u003cbr\u003eTopics covered include Plastics Materials and Sustainability, Environmental Design for Plastics Products, Energy Efficiency, Plastics, Recycling and Technology, and Life Cycle Assessment.\u003cbr\u003e\u003cbr\u003e\n\u003ch5\u003eTable of Contents\u003c\/h5\u003e\n1 Developments in Polymer Technology Driven by the Need for Sustainability\u003cbr\u003e1.1 Introduction\u003cbr\u003e1.2 What Drives Developments Forward?\u003cbr\u003e1.3 How can we save the World?\u003cbr\u003e1.4 Getting the Science Right\u003cbr\u003e1.5 Legislation and Design\u003cbr\u003e1.6 New Materials\u003cbr\u003e1.7 New Processes\u003cbr\u003e1.8 Conclusions\u003cbr\u003e\u003cbr\u003e2 A Medium Voltage Switchgear Mechanism which is Insensitive to its Environment \u003cbr\u003e2.1 Introduction \u003cbr\u003e2.2 Selection of the Most Appropriate Material\u003cbr\u003e2.3 Design of a New Range of Mechanisms\u003cbr\u003e2.4 Environmental Studies\u003cbr\u003e2.5 Material Balance Analysis\u003cbr\u003e2.6 LCA18\u003cbr\u003e2.7 Conclusion.20\u003cbr\u003e\u003cbr\u003e3 From Industrial Polymerisation Wastes to High Valued Material: Interfacial Agents for Polymer Blends and Composites based on Chemically Modified Atactic\u003cbr\u003ePolypropylenes\u003cbr\u003e3.1 Introduction \u003cbr\u003e3.2 Chemical Modification \u003cbr\u003e3.3 Role in Heterogeneous Materials Based on Polymers \u003cbr\u003e3.4 Conclusions and Perspectives \u003cbr\u003e\u003cbr\u003e4 Energy Efficiency Index for Plastic Processing Machines \u003cbr\u003e4.1 Introduction\u003cbr\u003e4.2 Aim and Benefits of the Energy Efficiency Label\u003cbr\u003e4.3 Definition of Energy Efficiency Labels\u003cbr\u003e4.4 Label Development Process\u003cbr\u003e4.4.1 Define the Kind of Label: Which Type of Label do we Need?\u003cbr\u003e4.4.2 Form a Project Team: Who should be Involved in the Label Development Process? Which Steps have to be Done and When?\u003cbr\u003e4.4.3 Definition of the Product Groups: Which Product Groups\/Segments can be Defined and Considered Together?\u003cbr\u003e4.4.4 Definition of Criteria: Which Efficiency Criterion can be used for the Evaluation of the Energy Efficiency?\u003cbr\u003e4.4.5 Developing Measurement Standards: How to Measure the Energy Consumption of the Product?\u003cbr\u003e4.4.6 Calculate the Energy Efficiency Index (EEI) How to Define an EEI?\u003cbr\u003e4.4.7 Classification of Energy Classes: How Can Products be Classified?\u003cbr\u003e4.4.8 Label Design: How the Label is Designed and which Information is Included?\u003cbr\u003e4.4.9 Energy Measurements: How to Provide Data for the Definition of the Measurement Standard and the Definition of the Energy Classes?\u003cbr\u003e4.4.10 Energy Efficiency Improvement: What are Possible Improvement Strategies for a Higher Energy Class?\u003cbr\u003e4.4.11 Label Introduction\u003cbr\u003e4.4.12 Label Monitoring\u003cbr\u003e4.5 Example: Plastic Extrusion Machines\u003cbr\u003e4.5.1 Label Definition and Project Team\u003cbr\u003e4.5.2 Label Development\u003cbr\u003e4.5.3 Energy Efficiency Criteria \u003cbr\u003e4.5.4 Energy Measurement and Measurement Standard\u003cbr\u003e4.5.5 Energy Efficiency Index\u003cbr\u003e4.5.6 Energy Efficiency Classes\u003cbr\u003e4.5.7 Label Design\u003cbr\u003e4.5.8 Market Introduction and Communication\u003cbr\u003e4.6 Product Improvement and Ecodesign\u003cbr\u003e4.7 Summary\u003cbr\u003e\u003cbr\u003e5 Comparative Analysis of the Carbon Footprint of Wood and Plastic Lumber Railway Sleepers in Brazil and Germany \u003cbr\u003e5.1 Introduction\u003cbr\u003e5.2 Waste Management System\u003cbr\u003e5.2.1 Brazil\u003cbr\u003e5.2.2 Germany\u003cbr\u003e5.3 Railway Sleepers Market\u003cbr\u003e5.3.1 Brazil\u003cbr\u003e5.3.2 Germany\u003cbr\u003e5.4 Scope Definition and Life Cycle Inventory (LCI)\u003cbr\u003e5.4.1 Functional Unit\u003cbr\u003e5.4.2 Intended Audience \u003cbr\u003e5.4.3 Product Systems and System Boundaries \u003cbr\u003e5.4.4 Data Collection\u003cbr\u003e5.5 Results \u003cbr\u003e5.5.1 Brazil\u003cbr\u003e5.5.2 Germany\u003cbr\u003e5.5.3 Scenario Analysis\u003cbr\u003e5.5.4 Brazilian Case\u003cbr\u003e5.5.5 German Case\u003cbr\u003e5.6 Discussions and Conclusions \u003cbr\u003e\u003cbr\u003e6 Perfect Sorting Solutions for Packaging Recycling \u003cbr\u003e6.1 Post-consumer Polyethylene Terephthalate Through the Ages \u003cbr\u003e6.2 Bottle Sorting, the First Step in the Recycling Process \u003cbr\u003e6.3 Quality Improvement and Decontamination during the Flake Washing and Sorting Process \u003cbr\u003e6.4 Bottle to Bottle Recycling - The Ecological Alternative \u003cbr\u003e\u003cbr\u003e7 UK Household Plastic Packaging Collection Survey 2009\u003cbr\u003e7.1 UK Household Plastics Packaging Recycling Survey Background\u003cbr\u003e7.2 UK Plastic Packaging Consumption Statistics\u003cbr\u003e7.3 Household Plastic Packaging Recycling Rates in 2008\u003cbr\u003e7.4 Plastic Bottle Collection Infrastructure Summary\u003cbr\u003e7.5 Bring Scheme Performance\u003cbr\u003e7.6 Kerbside Scheme Performance\u003cbr\u003e7.7 Reported Perceptions of Running Plastic Bottle Collections\u003cbr\u003e7.8 Collection of Non Bottle Plastics Packaging for Recycling\u003cbr\u003e7.9 Sale of Material\u003cbr\u003e7.10 Planned Developments\u003cbr\u003e7.10.1 Bring Schemes \u003cbr\u003e7.10.2 Kerbside Schemes \u003cbr\u003e7.11 Development of Non Bottle Plastics Packaging Collections\u003cbr\u003e\u003cbr\u003e8 Vinyl 2010: Experience and Perspectives in Polyvinyl Chloride (PVC) Sustainable Development\u003cbr\u003e8.1 PVC: Strengths and Concerns\u003cbr\u003e8.2 The Vinyl 2010 Initiative\u003cbr\u003e8.2.1 Vinyl 2010: Foundation, Structure, and Organisation\u003cbr\u003e8.2.2 Commitments \u003cbr\u003e8.2.2.1 Manufacturing\u003cbr\u003e8.2.2.2 Plasticisers \u003cbr\u003e8.2.2.3 Stabilisers\u003cbr\u003e8.2.2.4 Waste Management\u003cbr\u003e8.3 Activities and Achievements of Vinyl 2010 \u003cbr\u003e8.3.1 Manufacturing\u003cbr\u003e8.3.2 Stabilisers \u003cbr\u003e8.3.3 Plasticisers\u003cbr\u003e8.3.4 Waste Management\u003cbr\u003e8.3.4.1 Collection and Recycling for Specific Applications \u003cbr\u003e8.3.4.2 Mixed PVC Recycling \u003cbr\u003e8.3.4.3 Recovinyl\u003cbr\u003e8.3.4.4 Mechanical Recycling \u003cbr\u003e8.3.4.5 Feedstock Recycling\u003cbr\u003e8.3.4.6 Energy Recovery\u003cbr\u003e8.3.4.7 PVC Waste Statistics\u003cbr\u003e8.3.4.8 Partnership with Local Authorities\u003cbr\u003e8.3.4.9 Other Partnerships\u003cbr\u003e8.4 Lessons Learnt\u003cbr\u003e8.4.1 Manufacturing\u003cbr\u003e8.4.2 Additives\u003cbr\u003e8.4.3 Waste Management\u003cbr\u003e8.4.4 Recycling Technologies\u003cbr\u003e8.5 Future Challenges \u003cbr\u003e8.6 Conclusions \u003cbr\u003eAbbreviations\u003cbr\u003e\u003cbr\u003e"}